xref: /qemu/system/physmem.c (revision 3cc72cdb)
1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 
33 #include "exec/exec-all.h"
34 #include "exec/target_page.h"
35 #include "hw/qdev-core.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/boards.h"
38 #include "hw/xen/xen.h"
39 #include "sysemu/kvm.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "qemu/timer.h"
43 #include "qemu/config-file.h"
44 #include "qemu/error-report.h"
45 #include "qemu/qemu-print.h"
46 #include "qemu/log.h"
47 #include "qemu/memalign.h"
48 #include "exec/memory.h"
49 #include "exec/ioport.h"
50 #include "sysemu/dma.h"
51 #include "sysemu/hostmem.h"
52 #include "sysemu/hw_accel.h"
53 #include "sysemu/xen-mapcache.h"
54 #include "trace/trace-root.h"
55 
56 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
57 #include <linux/falloc.h>
58 #endif
59 
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "exec/translate-all.h"
63 #include "sysemu/replay.h"
64 
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 
68 #include "qemu/pmem.h"
69 
70 #include "migration/vmstate.h"
71 
72 #include "qemu/range.h"
73 #ifndef _WIN32
74 #include "qemu/mmap-alloc.h"
75 #endif
76 
77 #include "monitor/monitor.h"
78 
79 #ifdef CONFIG_LIBDAXCTL
80 #include <daxctl/libdaxctl.h>
81 #endif
82 
83 //#define DEBUG_SUBPAGE
84 
85 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
86  * are protected by the ramlist lock.
87  */
88 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
89 
90 static MemoryRegion *system_memory;
91 static MemoryRegion *system_io;
92 
93 AddressSpace address_space_io;
94 AddressSpace address_space_memory;
95 
96 static MemoryRegion io_mem_unassigned;
97 
98 typedef struct PhysPageEntry PhysPageEntry;
99 
100 struct PhysPageEntry {
101     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
102     uint32_t skip : 6;
103      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
104     uint32_t ptr : 26;
105 };
106 
107 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
108 
109 /* Size of the L2 (and L3, etc) page tables.  */
110 #define ADDR_SPACE_BITS 64
111 
112 #define P_L2_BITS 9
113 #define P_L2_SIZE (1 << P_L2_BITS)
114 
115 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
116 
117 typedef PhysPageEntry Node[P_L2_SIZE];
118 
119 typedef struct PhysPageMap {
120     struct rcu_head rcu;
121 
122     unsigned sections_nb;
123     unsigned sections_nb_alloc;
124     unsigned nodes_nb;
125     unsigned nodes_nb_alloc;
126     Node *nodes;
127     MemoryRegionSection *sections;
128 } PhysPageMap;
129 
130 struct AddressSpaceDispatch {
131     MemoryRegionSection *mru_section;
132     /* This is a multi-level map on the physical address space.
133      * The bottom level has pointers to MemoryRegionSections.
134      */
135     PhysPageEntry phys_map;
136     PhysPageMap map;
137 };
138 
139 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
140 typedef struct subpage_t {
141     MemoryRegion iomem;
142     FlatView *fv;
143     hwaddr base;
144     uint16_t sub_section[];
145 } subpage_t;
146 
147 #define PHYS_SECTION_UNASSIGNED 0
148 
149 static void io_mem_init(void);
150 static void memory_map_init(void);
151 static void tcg_log_global_after_sync(MemoryListener *listener);
152 static void tcg_commit(MemoryListener *listener);
153 
154 /**
155  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
156  * @cpu: the CPU whose AddressSpace this is
157  * @as: the AddressSpace itself
158  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
159  * @tcg_as_listener: listener for tracking changes to the AddressSpace
160  */
161 struct CPUAddressSpace {
162     CPUState *cpu;
163     AddressSpace *as;
164     struct AddressSpaceDispatch *memory_dispatch;
165     MemoryListener tcg_as_listener;
166 };
167 
168 struct DirtyBitmapSnapshot {
169     ram_addr_t start;
170     ram_addr_t end;
171     unsigned long dirty[];
172 };
173 
174 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
175 {
176     static unsigned alloc_hint = 16;
177     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
178         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
179         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
180         alloc_hint = map->nodes_nb_alloc;
181     }
182 }
183 
184 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
185 {
186     unsigned i;
187     uint32_t ret;
188     PhysPageEntry e;
189     PhysPageEntry *p;
190 
191     ret = map->nodes_nb++;
192     p = map->nodes[ret];
193     assert(ret != PHYS_MAP_NODE_NIL);
194     assert(ret != map->nodes_nb_alloc);
195 
196     e.skip = leaf ? 0 : 1;
197     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
198     for (i = 0; i < P_L2_SIZE; ++i) {
199         memcpy(&p[i], &e, sizeof(e));
200     }
201     return ret;
202 }
203 
204 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
205                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
206                                 int level)
207 {
208     PhysPageEntry *p;
209     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
210 
211     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
212         lp->ptr = phys_map_node_alloc(map, level == 0);
213     }
214     p = map->nodes[lp->ptr];
215     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
216 
217     while (*nb && lp < &p[P_L2_SIZE]) {
218         if ((*index & (step - 1)) == 0 && *nb >= step) {
219             lp->skip = 0;
220             lp->ptr = leaf;
221             *index += step;
222             *nb -= step;
223         } else {
224             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
225         }
226         ++lp;
227     }
228 }
229 
230 static void phys_page_set(AddressSpaceDispatch *d,
231                           hwaddr index, uint64_t nb,
232                           uint16_t leaf)
233 {
234     /* Wildly overreserve - it doesn't matter much. */
235     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
236 
237     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
238 }
239 
240 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
241  * and update our entry so we can skip it and go directly to the destination.
242  */
243 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
244 {
245     unsigned valid_ptr = P_L2_SIZE;
246     int valid = 0;
247     PhysPageEntry *p;
248     int i;
249 
250     if (lp->ptr == PHYS_MAP_NODE_NIL) {
251         return;
252     }
253 
254     p = nodes[lp->ptr];
255     for (i = 0; i < P_L2_SIZE; i++) {
256         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
257             continue;
258         }
259 
260         valid_ptr = i;
261         valid++;
262         if (p[i].skip) {
263             phys_page_compact(&p[i], nodes);
264         }
265     }
266 
267     /* We can only compress if there's only one child. */
268     if (valid != 1) {
269         return;
270     }
271 
272     assert(valid_ptr < P_L2_SIZE);
273 
274     /* Don't compress if it won't fit in the # of bits we have. */
275     if (P_L2_LEVELS >= (1 << 6) &&
276         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
277         return;
278     }
279 
280     lp->ptr = p[valid_ptr].ptr;
281     if (!p[valid_ptr].skip) {
282         /* If our only child is a leaf, make this a leaf. */
283         /* By design, we should have made this node a leaf to begin with so we
284          * should never reach here.
285          * But since it's so simple to handle this, let's do it just in case we
286          * change this rule.
287          */
288         lp->skip = 0;
289     } else {
290         lp->skip += p[valid_ptr].skip;
291     }
292 }
293 
294 void address_space_dispatch_compact(AddressSpaceDispatch *d)
295 {
296     if (d->phys_map.skip) {
297         phys_page_compact(&d->phys_map, d->map.nodes);
298     }
299 }
300 
301 static inline bool section_covers_addr(const MemoryRegionSection *section,
302                                        hwaddr addr)
303 {
304     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
305      * the section must cover the entire address space.
306      */
307     return int128_gethi(section->size) ||
308            range_covers_byte(section->offset_within_address_space,
309                              int128_getlo(section->size), addr);
310 }
311 
312 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
313 {
314     PhysPageEntry lp = d->phys_map, *p;
315     Node *nodes = d->map.nodes;
316     MemoryRegionSection *sections = d->map.sections;
317     hwaddr index = addr >> TARGET_PAGE_BITS;
318     int i;
319 
320     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
321         if (lp.ptr == PHYS_MAP_NODE_NIL) {
322             return &sections[PHYS_SECTION_UNASSIGNED];
323         }
324         p = nodes[lp.ptr];
325         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
326     }
327 
328     if (section_covers_addr(&sections[lp.ptr], addr)) {
329         return &sections[lp.ptr];
330     } else {
331         return &sections[PHYS_SECTION_UNASSIGNED];
332     }
333 }
334 
335 /* Called from RCU critical section */
336 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
337                                                         hwaddr addr,
338                                                         bool resolve_subpage)
339 {
340     MemoryRegionSection *section = qatomic_read(&d->mru_section);
341     subpage_t *subpage;
342 
343     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
344         !section_covers_addr(section, addr)) {
345         section = phys_page_find(d, addr);
346         qatomic_set(&d->mru_section, section);
347     }
348     if (resolve_subpage && section->mr->subpage) {
349         subpage = container_of(section->mr, subpage_t, iomem);
350         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
351     }
352     return section;
353 }
354 
355 /* Called from RCU critical section */
356 static MemoryRegionSection *
357 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
358                                  hwaddr *plen, bool resolve_subpage)
359 {
360     MemoryRegionSection *section;
361     MemoryRegion *mr;
362     Int128 diff;
363 
364     section = address_space_lookup_region(d, addr, resolve_subpage);
365     /* Compute offset within MemoryRegionSection */
366     addr -= section->offset_within_address_space;
367 
368     /* Compute offset within MemoryRegion */
369     *xlat = addr + section->offset_within_region;
370 
371     mr = section->mr;
372 
373     /* MMIO registers can be expected to perform full-width accesses based only
374      * on their address, without considering adjacent registers that could
375      * decode to completely different MemoryRegions.  When such registers
376      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
377      * regions overlap wildly.  For this reason we cannot clamp the accesses
378      * here.
379      *
380      * If the length is small (as is the case for address_space_ldl/stl),
381      * everything works fine.  If the incoming length is large, however,
382      * the caller really has to do the clamping through memory_access_size.
383      */
384     if (memory_region_is_ram(mr)) {
385         diff = int128_sub(section->size, int128_make64(addr));
386         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
387     }
388     return section;
389 }
390 
391 /**
392  * address_space_translate_iommu - translate an address through an IOMMU
393  * memory region and then through the target address space.
394  *
395  * @iommu_mr: the IOMMU memory region that we start the translation from
396  * @addr: the address to be translated through the MMU
397  * @xlat: the translated address offset within the destination memory region.
398  *        It cannot be %NULL.
399  * @plen_out: valid read/write length of the translated address. It
400  *            cannot be %NULL.
401  * @page_mask_out: page mask for the translated address. This
402  *            should only be meaningful for IOMMU translated
403  *            addresses, since there may be huge pages that this bit
404  *            would tell. It can be %NULL if we don't care about it.
405  * @is_write: whether the translation operation is for write
406  * @is_mmio: whether this can be MMIO, set true if it can
407  * @target_as: the address space targeted by the IOMMU
408  * @attrs: transaction attributes
409  *
410  * This function is called from RCU critical section.  It is the common
411  * part of flatview_do_translate and address_space_translate_cached.
412  */
413 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
414                                                          hwaddr *xlat,
415                                                          hwaddr *plen_out,
416                                                          hwaddr *page_mask_out,
417                                                          bool is_write,
418                                                          bool is_mmio,
419                                                          AddressSpace **target_as,
420                                                          MemTxAttrs attrs)
421 {
422     MemoryRegionSection *section;
423     hwaddr page_mask = (hwaddr)-1;
424 
425     do {
426         hwaddr addr = *xlat;
427         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
428         int iommu_idx = 0;
429         IOMMUTLBEntry iotlb;
430 
431         if (imrc->attrs_to_index) {
432             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
433         }
434 
435         iotlb = imrc->translate(iommu_mr, addr, is_write ?
436                                 IOMMU_WO : IOMMU_RO, iommu_idx);
437 
438         if (!(iotlb.perm & (1 << is_write))) {
439             goto unassigned;
440         }
441 
442         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
443                 | (addr & iotlb.addr_mask));
444         page_mask &= iotlb.addr_mask;
445         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
446         *target_as = iotlb.target_as;
447 
448         section = address_space_translate_internal(
449                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
450                 plen_out, is_mmio);
451 
452         iommu_mr = memory_region_get_iommu(section->mr);
453     } while (unlikely(iommu_mr));
454 
455     if (page_mask_out) {
456         *page_mask_out = page_mask;
457     }
458     return *section;
459 
460 unassigned:
461     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
462 }
463 
464 /**
465  * flatview_do_translate - translate an address in FlatView
466  *
467  * @fv: the flat view that we want to translate on
468  * @addr: the address to be translated in above address space
469  * @xlat: the translated address offset within memory region. It
470  *        cannot be @NULL.
471  * @plen_out: valid read/write length of the translated address. It
472  *            can be @NULL when we don't care about it.
473  * @page_mask_out: page mask for the translated address. This
474  *            should only be meaningful for IOMMU translated
475  *            addresses, since there may be huge pages that this bit
476  *            would tell. It can be @NULL if we don't care about it.
477  * @is_write: whether the translation operation is for write
478  * @is_mmio: whether this can be MMIO, set true if it can
479  * @target_as: the address space targeted by the IOMMU
480  * @attrs: memory transaction attributes
481  *
482  * This function is called from RCU critical section
483  */
484 static MemoryRegionSection flatview_do_translate(FlatView *fv,
485                                                  hwaddr addr,
486                                                  hwaddr *xlat,
487                                                  hwaddr *plen_out,
488                                                  hwaddr *page_mask_out,
489                                                  bool is_write,
490                                                  bool is_mmio,
491                                                  AddressSpace **target_as,
492                                                  MemTxAttrs attrs)
493 {
494     MemoryRegionSection *section;
495     IOMMUMemoryRegion *iommu_mr;
496     hwaddr plen = (hwaddr)(-1);
497 
498     if (!plen_out) {
499         plen_out = &plen;
500     }
501 
502     section = address_space_translate_internal(
503             flatview_to_dispatch(fv), addr, xlat,
504             plen_out, is_mmio);
505 
506     iommu_mr = memory_region_get_iommu(section->mr);
507     if (unlikely(iommu_mr)) {
508         return address_space_translate_iommu(iommu_mr, xlat,
509                                              plen_out, page_mask_out,
510                                              is_write, is_mmio,
511                                              target_as, attrs);
512     }
513     if (page_mask_out) {
514         /* Not behind an IOMMU, use default page size. */
515         *page_mask_out = ~TARGET_PAGE_MASK;
516     }
517 
518     return *section;
519 }
520 
521 /* Called from RCU critical section */
522 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
523                                             bool is_write, MemTxAttrs attrs)
524 {
525     MemoryRegionSection section;
526     hwaddr xlat, page_mask;
527 
528     /*
529      * This can never be MMIO, and we don't really care about plen,
530      * but page mask.
531      */
532     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
533                                     NULL, &page_mask, is_write, false, &as,
534                                     attrs);
535 
536     /* Illegal translation */
537     if (section.mr == &io_mem_unassigned) {
538         goto iotlb_fail;
539     }
540 
541     /* Convert memory region offset into address space offset */
542     xlat += section.offset_within_address_space -
543         section.offset_within_region;
544 
545     return (IOMMUTLBEntry) {
546         .target_as = as,
547         .iova = addr & ~page_mask,
548         .translated_addr = xlat & ~page_mask,
549         .addr_mask = page_mask,
550         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
551         .perm = IOMMU_RW,
552     };
553 
554 iotlb_fail:
555     return (IOMMUTLBEntry) {0};
556 }
557 
558 /* Called from RCU critical section */
559 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
560                                  hwaddr *plen, bool is_write,
561                                  MemTxAttrs attrs)
562 {
563     MemoryRegion *mr;
564     MemoryRegionSection section;
565     AddressSpace *as = NULL;
566 
567     /* This can be MMIO, so setup MMIO bit. */
568     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
569                                     is_write, true, &as, attrs);
570     mr = section.mr;
571 
572     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
573         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
574         *plen = MIN(page, *plen);
575     }
576 
577     return mr;
578 }
579 
580 typedef struct TCGIOMMUNotifier {
581     IOMMUNotifier n;
582     MemoryRegion *mr;
583     CPUState *cpu;
584     int iommu_idx;
585     bool active;
586 } TCGIOMMUNotifier;
587 
588 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
589 {
590     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
591 
592     if (!notifier->active) {
593         return;
594     }
595     tlb_flush(notifier->cpu);
596     notifier->active = false;
597     /* We leave the notifier struct on the list to avoid reallocating it later.
598      * Generally the number of IOMMUs a CPU deals with will be small.
599      * In any case we can't unregister the iommu notifier from a notify
600      * callback.
601      */
602 }
603 
604 static void tcg_register_iommu_notifier(CPUState *cpu,
605                                         IOMMUMemoryRegion *iommu_mr,
606                                         int iommu_idx)
607 {
608     /* Make sure this CPU has an IOMMU notifier registered for this
609      * IOMMU/IOMMU index combination, so that we can flush its TLB
610      * when the IOMMU tells us the mappings we've cached have changed.
611      */
612     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
613     TCGIOMMUNotifier *notifier = NULL;
614     int i;
615 
616     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
617         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
618         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
619             break;
620         }
621     }
622     if (i == cpu->iommu_notifiers->len) {
623         /* Not found, add a new entry at the end of the array */
624         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
625         notifier = g_new0(TCGIOMMUNotifier, 1);
626         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
627 
628         notifier->mr = mr;
629         notifier->iommu_idx = iommu_idx;
630         notifier->cpu = cpu;
631         /* Rather than trying to register interest in the specific part
632          * of the iommu's address space that we've accessed and then
633          * expand it later as subsequent accesses touch more of it, we
634          * just register interest in the whole thing, on the assumption
635          * that iommu reconfiguration will be rare.
636          */
637         iommu_notifier_init(&notifier->n,
638                             tcg_iommu_unmap_notify,
639                             IOMMU_NOTIFIER_UNMAP,
640                             0,
641                             HWADDR_MAX,
642                             iommu_idx);
643         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
644                                               &error_fatal);
645     }
646 
647     if (!notifier->active) {
648         notifier->active = true;
649     }
650 }
651 
652 void tcg_iommu_free_notifier_list(CPUState *cpu)
653 {
654     /* Destroy the CPU's notifier list */
655     int i;
656     TCGIOMMUNotifier *notifier;
657 
658     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
659         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
660         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
661         g_free(notifier);
662     }
663     g_array_free(cpu->iommu_notifiers, true);
664 }
665 
666 void tcg_iommu_init_notifier_list(CPUState *cpu)
667 {
668     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
669 }
670 
671 /* Called from RCU critical section */
672 MemoryRegionSection *
673 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
674                                   hwaddr *xlat, hwaddr *plen,
675                                   MemTxAttrs attrs, int *prot)
676 {
677     MemoryRegionSection *section;
678     IOMMUMemoryRegion *iommu_mr;
679     IOMMUMemoryRegionClass *imrc;
680     IOMMUTLBEntry iotlb;
681     int iommu_idx;
682     hwaddr addr = orig_addr;
683     AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
684 
685     for (;;) {
686         section = address_space_translate_internal(d, addr, &addr, plen, false);
687 
688         iommu_mr = memory_region_get_iommu(section->mr);
689         if (!iommu_mr) {
690             break;
691         }
692 
693         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
694 
695         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
696         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
697         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
698          * doesn't short-cut its translation table walk.
699          */
700         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
701         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
702                 | (addr & iotlb.addr_mask));
703         /* Update the caller's prot bits to remove permissions the IOMMU
704          * is giving us a failure response for. If we get down to no
705          * permissions left at all we can give up now.
706          */
707         if (!(iotlb.perm & IOMMU_RO)) {
708             *prot &= ~(PAGE_READ | PAGE_EXEC);
709         }
710         if (!(iotlb.perm & IOMMU_WO)) {
711             *prot &= ~PAGE_WRITE;
712         }
713 
714         if (!*prot) {
715             goto translate_fail;
716         }
717 
718         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
719     }
720 
721     assert(!memory_region_is_iommu(section->mr));
722     *xlat = addr;
723     return section;
724 
725 translate_fail:
726     /*
727      * We should be given a page-aligned address -- certainly
728      * tlb_set_page_with_attrs() does so.  The page offset of xlat
729      * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
730      * The page portion of xlat will be logged by memory_region_access_valid()
731      * when this memory access is rejected, so use the original untranslated
732      * physical address.
733      */
734     assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
735     *xlat = orig_addr;
736     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
737 }
738 
739 void cpu_address_space_init(CPUState *cpu, int asidx,
740                             const char *prefix, MemoryRegion *mr)
741 {
742     CPUAddressSpace *newas;
743     AddressSpace *as = g_new0(AddressSpace, 1);
744     char *as_name;
745 
746     assert(mr);
747     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
748     address_space_init(as, mr, as_name);
749     g_free(as_name);
750 
751     /* Target code should have set num_ases before calling us */
752     assert(asidx < cpu->num_ases);
753 
754     if (asidx == 0) {
755         /* address space 0 gets the convenience alias */
756         cpu->as = as;
757     }
758 
759     /* KVM cannot currently support multiple address spaces. */
760     assert(asidx == 0 || !kvm_enabled());
761 
762     if (!cpu->cpu_ases) {
763         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
764     }
765 
766     newas = &cpu->cpu_ases[asidx];
767     newas->cpu = cpu;
768     newas->as = as;
769     if (tcg_enabled()) {
770         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
771         newas->tcg_as_listener.commit = tcg_commit;
772         newas->tcg_as_listener.name = "tcg";
773         memory_listener_register(&newas->tcg_as_listener, as);
774     }
775 }
776 
777 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
778 {
779     /* Return the AddressSpace corresponding to the specified index */
780     return cpu->cpu_ases[asidx].as;
781 }
782 
783 /* Called from RCU critical section */
784 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
785 {
786     RAMBlock *block;
787 
788     block = qatomic_rcu_read(&ram_list.mru_block);
789     if (block && addr - block->offset < block->max_length) {
790         return block;
791     }
792     RAMBLOCK_FOREACH(block) {
793         if (addr - block->offset < block->max_length) {
794             goto found;
795         }
796     }
797 
798     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
799     abort();
800 
801 found:
802     /* It is safe to write mru_block outside the iothread lock.  This
803      * is what happens:
804      *
805      *     mru_block = xxx
806      *     rcu_read_unlock()
807      *                                        xxx removed from list
808      *                  rcu_read_lock()
809      *                  read mru_block
810      *                                        mru_block = NULL;
811      *                                        call_rcu(reclaim_ramblock, xxx);
812      *                  rcu_read_unlock()
813      *
814      * qatomic_rcu_set is not needed here.  The block was already published
815      * when it was placed into the list.  Here we're just making an extra
816      * copy of the pointer.
817      */
818     ram_list.mru_block = block;
819     return block;
820 }
821 
822 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
823 {
824     CPUState *cpu;
825     ram_addr_t start1;
826     RAMBlock *block;
827     ram_addr_t end;
828 
829     assert(tcg_enabled());
830     end = TARGET_PAGE_ALIGN(start + length);
831     start &= TARGET_PAGE_MASK;
832 
833     RCU_READ_LOCK_GUARD();
834     block = qemu_get_ram_block(start);
835     assert(block == qemu_get_ram_block(end - 1));
836     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
837     CPU_FOREACH(cpu) {
838         tlb_reset_dirty(cpu, start1, length);
839     }
840 }
841 
842 /* Note: start and end must be within the same ram block.  */
843 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
844                                               ram_addr_t length,
845                                               unsigned client)
846 {
847     DirtyMemoryBlocks *blocks;
848     unsigned long end, page, start_page;
849     bool dirty = false;
850     RAMBlock *ramblock;
851     uint64_t mr_offset, mr_size;
852 
853     if (length == 0) {
854         return false;
855     }
856 
857     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
858     start_page = start >> TARGET_PAGE_BITS;
859     page = start_page;
860 
861     WITH_RCU_READ_LOCK_GUARD() {
862         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
863         ramblock = qemu_get_ram_block(start);
864         /* Range sanity check on the ramblock */
865         assert(start >= ramblock->offset &&
866                start + length <= ramblock->offset + ramblock->used_length);
867 
868         while (page < end) {
869             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
870             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
871             unsigned long num = MIN(end - page,
872                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
873 
874             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
875                                                   offset, num);
876             page += num;
877         }
878 
879         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
880         mr_size = (end - start_page) << TARGET_PAGE_BITS;
881         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
882     }
883 
884     if (dirty && tcg_enabled()) {
885         tlb_reset_dirty_range_all(start, length);
886     }
887 
888     return dirty;
889 }
890 
891 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
892     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
893 {
894     DirtyMemoryBlocks *blocks;
895     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
896     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
897     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
898     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
899     DirtyBitmapSnapshot *snap;
900     unsigned long page, end, dest;
901 
902     snap = g_malloc0(sizeof(*snap) +
903                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
904     snap->start = first;
905     snap->end   = last;
906 
907     page = first >> TARGET_PAGE_BITS;
908     end  = last  >> TARGET_PAGE_BITS;
909     dest = 0;
910 
911     WITH_RCU_READ_LOCK_GUARD() {
912         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
913 
914         while (page < end) {
915             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
916             unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
917             unsigned long num = MIN(end - page,
918                                     DIRTY_MEMORY_BLOCK_SIZE - ofs);
919 
920             assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
921             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
922             ofs >>= BITS_PER_LEVEL;
923 
924             bitmap_copy_and_clear_atomic(snap->dirty + dest,
925                                          blocks->blocks[idx] + ofs,
926                                          num);
927             page += num;
928             dest += num >> BITS_PER_LEVEL;
929         }
930     }
931 
932     if (tcg_enabled()) {
933         tlb_reset_dirty_range_all(start, length);
934     }
935 
936     memory_region_clear_dirty_bitmap(mr, offset, length);
937 
938     return snap;
939 }
940 
941 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
942                                             ram_addr_t start,
943                                             ram_addr_t length)
944 {
945     unsigned long page, end;
946 
947     assert(start >= snap->start);
948     assert(start + length <= snap->end);
949 
950     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
951     page = (start - snap->start) >> TARGET_PAGE_BITS;
952 
953     while (page < end) {
954         if (test_bit(page, snap->dirty)) {
955             return true;
956         }
957         page++;
958     }
959     return false;
960 }
961 
962 /* Called from RCU critical section */
963 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
964                                        MemoryRegionSection *section)
965 {
966     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
967     return section - d->map.sections;
968 }
969 
970 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
971                             uint16_t section);
972 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
973 
974 static uint16_t phys_section_add(PhysPageMap *map,
975                                  MemoryRegionSection *section)
976 {
977     /* The physical section number is ORed with a page-aligned
978      * pointer to produce the iotlb entries.  Thus it should
979      * never overflow into the page-aligned value.
980      */
981     assert(map->sections_nb < TARGET_PAGE_SIZE);
982 
983     if (map->sections_nb == map->sections_nb_alloc) {
984         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
985         map->sections = g_renew(MemoryRegionSection, map->sections,
986                                 map->sections_nb_alloc);
987     }
988     map->sections[map->sections_nb] = *section;
989     memory_region_ref(section->mr);
990     return map->sections_nb++;
991 }
992 
993 static void phys_section_destroy(MemoryRegion *mr)
994 {
995     bool have_sub_page = mr->subpage;
996 
997     memory_region_unref(mr);
998 
999     if (have_sub_page) {
1000         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1001         object_unref(OBJECT(&subpage->iomem));
1002         g_free(subpage);
1003     }
1004 }
1005 
1006 static void phys_sections_free(PhysPageMap *map)
1007 {
1008     while (map->sections_nb > 0) {
1009         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1010         phys_section_destroy(section->mr);
1011     }
1012     g_free(map->sections);
1013     g_free(map->nodes);
1014 }
1015 
1016 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1017 {
1018     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1019     subpage_t *subpage;
1020     hwaddr base = section->offset_within_address_space
1021         & TARGET_PAGE_MASK;
1022     MemoryRegionSection *existing = phys_page_find(d, base);
1023     MemoryRegionSection subsection = {
1024         .offset_within_address_space = base,
1025         .size = int128_make64(TARGET_PAGE_SIZE),
1026     };
1027     hwaddr start, end;
1028 
1029     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1030 
1031     if (!(existing->mr->subpage)) {
1032         subpage = subpage_init(fv, base);
1033         subsection.fv = fv;
1034         subsection.mr = &subpage->iomem;
1035         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1036                       phys_section_add(&d->map, &subsection));
1037     } else {
1038         subpage = container_of(existing->mr, subpage_t, iomem);
1039     }
1040     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1041     end = start + int128_get64(section->size) - 1;
1042     subpage_register(subpage, start, end,
1043                      phys_section_add(&d->map, section));
1044 }
1045 
1046 
1047 static void register_multipage(FlatView *fv,
1048                                MemoryRegionSection *section)
1049 {
1050     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1051     hwaddr start_addr = section->offset_within_address_space;
1052     uint16_t section_index = phys_section_add(&d->map, section);
1053     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1054                                                     TARGET_PAGE_BITS));
1055 
1056     assert(num_pages);
1057     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1058 }
1059 
1060 /*
1061  * The range in *section* may look like this:
1062  *
1063  *      |s|PPPPPPP|s|
1064  *
1065  * where s stands for subpage and P for page.
1066  */
1067 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1068 {
1069     MemoryRegionSection remain = *section;
1070     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1071 
1072     /* register first subpage */
1073     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1074         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1075                         - remain.offset_within_address_space;
1076 
1077         MemoryRegionSection now = remain;
1078         now.size = int128_min(int128_make64(left), now.size);
1079         register_subpage(fv, &now);
1080         if (int128_eq(remain.size, now.size)) {
1081             return;
1082         }
1083         remain.size = int128_sub(remain.size, now.size);
1084         remain.offset_within_address_space += int128_get64(now.size);
1085         remain.offset_within_region += int128_get64(now.size);
1086     }
1087 
1088     /* register whole pages */
1089     if (int128_ge(remain.size, page_size)) {
1090         MemoryRegionSection now = remain;
1091         now.size = int128_and(now.size, int128_neg(page_size));
1092         register_multipage(fv, &now);
1093         if (int128_eq(remain.size, now.size)) {
1094             return;
1095         }
1096         remain.size = int128_sub(remain.size, now.size);
1097         remain.offset_within_address_space += int128_get64(now.size);
1098         remain.offset_within_region += int128_get64(now.size);
1099     }
1100 
1101     /* register last subpage */
1102     register_subpage(fv, &remain);
1103 }
1104 
1105 void qemu_flush_coalesced_mmio_buffer(void)
1106 {
1107     if (kvm_enabled())
1108         kvm_flush_coalesced_mmio_buffer();
1109 }
1110 
1111 void qemu_mutex_lock_ramlist(void)
1112 {
1113     qemu_mutex_lock(&ram_list.mutex);
1114 }
1115 
1116 void qemu_mutex_unlock_ramlist(void)
1117 {
1118     qemu_mutex_unlock(&ram_list.mutex);
1119 }
1120 
1121 GString *ram_block_format(void)
1122 {
1123     RAMBlock *block;
1124     char *psize;
1125     GString *buf = g_string_new("");
1126 
1127     RCU_READ_LOCK_GUARD();
1128     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s %18s %3s\n",
1129                            "Block Name", "PSize", "Offset", "Used", "Total",
1130                            "HVA", "RO");
1131 
1132     RAMBLOCK_FOREACH(block) {
1133         psize = size_to_str(block->page_size);
1134         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1135                                " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1136                                block->idstr, psize,
1137                                (uint64_t)block->offset,
1138                                (uint64_t)block->used_length,
1139                                (uint64_t)block->max_length,
1140                                (uint64_t)(uintptr_t)block->host,
1141                                block->mr->readonly ? "ro" : "rw");
1142 
1143         g_free(psize);
1144     }
1145 
1146     return buf;
1147 }
1148 
1149 static int find_min_backend_pagesize(Object *obj, void *opaque)
1150 {
1151     long *hpsize_min = opaque;
1152 
1153     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1154         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1155         long hpsize = host_memory_backend_pagesize(backend);
1156 
1157         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1158             *hpsize_min = hpsize;
1159         }
1160     }
1161 
1162     return 0;
1163 }
1164 
1165 static int find_max_backend_pagesize(Object *obj, void *opaque)
1166 {
1167     long *hpsize_max = opaque;
1168 
1169     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1170         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1171         long hpsize = host_memory_backend_pagesize(backend);
1172 
1173         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1174             *hpsize_max = hpsize;
1175         }
1176     }
1177 
1178     return 0;
1179 }
1180 
1181 /*
1182  * TODO: We assume right now that all mapped host memory backends are
1183  * used as RAM, however some might be used for different purposes.
1184  */
1185 long qemu_minrampagesize(void)
1186 {
1187     long hpsize = LONG_MAX;
1188     Object *memdev_root = object_resolve_path("/objects", NULL);
1189 
1190     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1191     return hpsize;
1192 }
1193 
1194 long qemu_maxrampagesize(void)
1195 {
1196     long pagesize = 0;
1197     Object *memdev_root = object_resolve_path("/objects", NULL);
1198 
1199     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1200     return pagesize;
1201 }
1202 
1203 #ifdef CONFIG_POSIX
1204 static int64_t get_file_size(int fd)
1205 {
1206     int64_t size;
1207 #if defined(__linux__)
1208     struct stat st;
1209 
1210     if (fstat(fd, &st) < 0) {
1211         return -errno;
1212     }
1213 
1214     /* Special handling for devdax character devices */
1215     if (S_ISCHR(st.st_mode)) {
1216         g_autofree char *subsystem_path = NULL;
1217         g_autofree char *subsystem = NULL;
1218 
1219         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1220                                          major(st.st_rdev), minor(st.st_rdev));
1221         subsystem = g_file_read_link(subsystem_path, NULL);
1222 
1223         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1224             g_autofree char *size_path = NULL;
1225             g_autofree char *size_str = NULL;
1226 
1227             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1228                                     major(st.st_rdev), minor(st.st_rdev));
1229 
1230             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1231                 return g_ascii_strtoll(size_str, NULL, 0);
1232             }
1233         }
1234     }
1235 #endif /* defined(__linux__) */
1236 
1237     /* st.st_size may be zero for special files yet lseek(2) works */
1238     size = lseek(fd, 0, SEEK_END);
1239     if (size < 0) {
1240         return -errno;
1241     }
1242     return size;
1243 }
1244 
1245 static int64_t get_file_align(int fd)
1246 {
1247     int64_t align = -1;
1248 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1249     struct stat st;
1250 
1251     if (fstat(fd, &st) < 0) {
1252         return -errno;
1253     }
1254 
1255     /* Special handling for devdax character devices */
1256     if (S_ISCHR(st.st_mode)) {
1257         g_autofree char *path = NULL;
1258         g_autofree char *rpath = NULL;
1259         struct daxctl_ctx *ctx;
1260         struct daxctl_region *region;
1261         int rc = 0;
1262 
1263         path = g_strdup_printf("/sys/dev/char/%d:%d",
1264                     major(st.st_rdev), minor(st.st_rdev));
1265         rpath = realpath(path, NULL);
1266         if (!rpath) {
1267             return -errno;
1268         }
1269 
1270         rc = daxctl_new(&ctx);
1271         if (rc) {
1272             return -1;
1273         }
1274 
1275         daxctl_region_foreach(ctx, region) {
1276             if (strstr(rpath, daxctl_region_get_path(region))) {
1277                 align = daxctl_region_get_align(region);
1278                 break;
1279             }
1280         }
1281         daxctl_unref(ctx);
1282     }
1283 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1284 
1285     return align;
1286 }
1287 
1288 static int file_ram_open(const char *path,
1289                          const char *region_name,
1290                          bool readonly,
1291                          bool *created)
1292 {
1293     char *filename;
1294     char *sanitized_name;
1295     char *c;
1296     int fd = -1;
1297 
1298     *created = false;
1299     for (;;) {
1300         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1301         if (fd >= 0) {
1302             /*
1303              * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1304              * opened a directory and fail similarly to how we fail ENOENT
1305              * in readonly mode. Note that mkstemp() would imply O_RDWR.
1306              */
1307             if (readonly) {
1308                 struct stat file_stat;
1309 
1310                 if (fstat(fd, &file_stat)) {
1311                     close(fd);
1312                     if (errno == EINTR) {
1313                         continue;
1314                     }
1315                     return -errno;
1316                 } else if (S_ISDIR(file_stat.st_mode)) {
1317                     close(fd);
1318                     return -EISDIR;
1319                 }
1320             }
1321             /* @path names an existing file, use it */
1322             break;
1323         }
1324         if (errno == ENOENT) {
1325             if (readonly) {
1326                 /* Refuse to create new, readonly files. */
1327                 return -ENOENT;
1328             }
1329             /* @path names a file that doesn't exist, create it */
1330             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1331             if (fd >= 0) {
1332                 *created = true;
1333                 break;
1334             }
1335         } else if (errno == EISDIR) {
1336             /* @path names a directory, create a file there */
1337             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1338             sanitized_name = g_strdup(region_name);
1339             for (c = sanitized_name; *c != '\0'; c++) {
1340                 if (*c == '/') {
1341                     *c = '_';
1342                 }
1343             }
1344 
1345             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1346                                        sanitized_name);
1347             g_free(sanitized_name);
1348 
1349             fd = mkstemp(filename);
1350             if (fd >= 0) {
1351                 unlink(filename);
1352                 g_free(filename);
1353                 break;
1354             }
1355             g_free(filename);
1356         }
1357         if (errno != EEXIST && errno != EINTR) {
1358             return -errno;
1359         }
1360         /*
1361          * Try again on EINTR and EEXIST.  The latter happens when
1362          * something else creates the file between our two open().
1363          */
1364     }
1365 
1366     return fd;
1367 }
1368 
1369 static void *file_ram_alloc(RAMBlock *block,
1370                             ram_addr_t memory,
1371                             int fd,
1372                             bool truncate,
1373                             off_t offset,
1374                             Error **errp)
1375 {
1376     uint32_t qemu_map_flags;
1377     void *area;
1378 
1379     block->page_size = qemu_fd_getpagesize(fd);
1380     if (block->mr->align % block->page_size) {
1381         error_setg(errp, "alignment 0x%" PRIx64
1382                    " must be multiples of page size 0x%zx",
1383                    block->mr->align, block->page_size);
1384         return NULL;
1385     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1386         error_setg(errp, "alignment 0x%" PRIx64
1387                    " must be a power of two", block->mr->align);
1388         return NULL;
1389     } else if (offset % block->page_size) {
1390         error_setg(errp, "offset 0x%" PRIx64
1391                    " must be multiples of page size 0x%zx",
1392                    offset, block->page_size);
1393         return NULL;
1394     }
1395     block->mr->align = MAX(block->page_size, block->mr->align);
1396 #if defined(__s390x__)
1397     if (kvm_enabled()) {
1398         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1399     }
1400 #endif
1401 
1402     if (memory < block->page_size) {
1403         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1404                    "or larger than page size 0x%zx",
1405                    memory, block->page_size);
1406         return NULL;
1407     }
1408 
1409     memory = ROUND_UP(memory, block->page_size);
1410 
1411     /*
1412      * ftruncate is not supported by hugetlbfs in older
1413      * hosts, so don't bother bailing out on errors.
1414      * If anything goes wrong with it under other filesystems,
1415      * mmap will fail.
1416      *
1417      * Do not truncate the non-empty backend file to avoid corrupting
1418      * the existing data in the file. Disabling shrinking is not
1419      * enough. For example, the current vNVDIMM implementation stores
1420      * the guest NVDIMM labels at the end of the backend file. If the
1421      * backend file is later extended, QEMU will not be able to find
1422      * those labels. Therefore, extending the non-empty backend file
1423      * is disabled as well.
1424      */
1425     if (truncate && ftruncate(fd, offset + memory)) {
1426         perror("ftruncate");
1427     }
1428 
1429     qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1430     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1431     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1432     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1433     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1434     if (area == MAP_FAILED) {
1435         error_setg_errno(errp, errno,
1436                          "unable to map backing store for guest RAM");
1437         return NULL;
1438     }
1439 
1440     block->fd = fd;
1441     block->fd_offset = offset;
1442     return area;
1443 }
1444 #endif
1445 
1446 /* Allocate space within the ram_addr_t space that governs the
1447  * dirty bitmaps.
1448  * Called with the ramlist lock held.
1449  */
1450 static ram_addr_t find_ram_offset(ram_addr_t size)
1451 {
1452     RAMBlock *block, *next_block;
1453     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1454 
1455     assert(size != 0); /* it would hand out same offset multiple times */
1456 
1457     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1458         return 0;
1459     }
1460 
1461     RAMBLOCK_FOREACH(block) {
1462         ram_addr_t candidate, next = RAM_ADDR_MAX;
1463 
1464         /* Align blocks to start on a 'long' in the bitmap
1465          * which makes the bitmap sync'ing take the fast path.
1466          */
1467         candidate = block->offset + block->max_length;
1468         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1469 
1470         /* Search for the closest following block
1471          * and find the gap.
1472          */
1473         RAMBLOCK_FOREACH(next_block) {
1474             if (next_block->offset >= candidate) {
1475                 next = MIN(next, next_block->offset);
1476             }
1477         }
1478 
1479         /* If it fits remember our place and remember the size
1480          * of gap, but keep going so that we might find a smaller
1481          * gap to fill so avoiding fragmentation.
1482          */
1483         if (next - candidate >= size && next - candidate < mingap) {
1484             offset = candidate;
1485             mingap = next - candidate;
1486         }
1487 
1488         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1489     }
1490 
1491     if (offset == RAM_ADDR_MAX) {
1492         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1493                 (uint64_t)size);
1494         abort();
1495     }
1496 
1497     trace_find_ram_offset(size, offset);
1498 
1499     return offset;
1500 }
1501 
1502 static unsigned long last_ram_page(void)
1503 {
1504     RAMBlock *block;
1505     ram_addr_t last = 0;
1506 
1507     RCU_READ_LOCK_GUARD();
1508     RAMBLOCK_FOREACH(block) {
1509         last = MAX(last, block->offset + block->max_length);
1510     }
1511     return last >> TARGET_PAGE_BITS;
1512 }
1513 
1514 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1515 {
1516     int ret;
1517 
1518     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1519     if (!machine_dump_guest_core(current_machine)) {
1520         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1521         if (ret) {
1522             perror("qemu_madvise");
1523             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1524                             "but dump_guest_core=off specified\n");
1525         }
1526     }
1527 }
1528 
1529 const char *qemu_ram_get_idstr(RAMBlock *rb)
1530 {
1531     return rb->idstr;
1532 }
1533 
1534 void *qemu_ram_get_host_addr(RAMBlock *rb)
1535 {
1536     return rb->host;
1537 }
1538 
1539 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1540 {
1541     return rb->offset;
1542 }
1543 
1544 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1545 {
1546     return rb->used_length;
1547 }
1548 
1549 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1550 {
1551     return rb->max_length;
1552 }
1553 
1554 bool qemu_ram_is_shared(RAMBlock *rb)
1555 {
1556     return rb->flags & RAM_SHARED;
1557 }
1558 
1559 bool qemu_ram_is_noreserve(RAMBlock *rb)
1560 {
1561     return rb->flags & RAM_NORESERVE;
1562 }
1563 
1564 /* Note: Only set at the start of postcopy */
1565 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1566 {
1567     return rb->flags & RAM_UF_ZEROPAGE;
1568 }
1569 
1570 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1571 {
1572     rb->flags |= RAM_UF_ZEROPAGE;
1573 }
1574 
1575 bool qemu_ram_is_migratable(RAMBlock *rb)
1576 {
1577     return rb->flags & RAM_MIGRATABLE;
1578 }
1579 
1580 void qemu_ram_set_migratable(RAMBlock *rb)
1581 {
1582     rb->flags |= RAM_MIGRATABLE;
1583 }
1584 
1585 void qemu_ram_unset_migratable(RAMBlock *rb)
1586 {
1587     rb->flags &= ~RAM_MIGRATABLE;
1588 }
1589 
1590 bool qemu_ram_is_named_file(RAMBlock *rb)
1591 {
1592     return rb->flags & RAM_NAMED_FILE;
1593 }
1594 
1595 int qemu_ram_get_fd(RAMBlock *rb)
1596 {
1597     return rb->fd;
1598 }
1599 
1600 /* Called with iothread lock held.  */
1601 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1602 {
1603     RAMBlock *block;
1604 
1605     assert(new_block);
1606     assert(!new_block->idstr[0]);
1607 
1608     if (dev) {
1609         char *id = qdev_get_dev_path(dev);
1610         if (id) {
1611             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1612             g_free(id);
1613         }
1614     }
1615     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1616 
1617     RCU_READ_LOCK_GUARD();
1618     RAMBLOCK_FOREACH(block) {
1619         if (block != new_block &&
1620             !strcmp(block->idstr, new_block->idstr)) {
1621             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1622                     new_block->idstr);
1623             abort();
1624         }
1625     }
1626 }
1627 
1628 /* Called with iothread lock held.  */
1629 void qemu_ram_unset_idstr(RAMBlock *block)
1630 {
1631     /* FIXME: arch_init.c assumes that this is not called throughout
1632      * migration.  Ignore the problem since hot-unplug during migration
1633      * does not work anyway.
1634      */
1635     if (block) {
1636         memset(block->idstr, 0, sizeof(block->idstr));
1637     }
1638 }
1639 
1640 size_t qemu_ram_pagesize(RAMBlock *rb)
1641 {
1642     return rb->page_size;
1643 }
1644 
1645 /* Returns the largest size of page in use */
1646 size_t qemu_ram_pagesize_largest(void)
1647 {
1648     RAMBlock *block;
1649     size_t largest = 0;
1650 
1651     RAMBLOCK_FOREACH(block) {
1652         largest = MAX(largest, qemu_ram_pagesize(block));
1653     }
1654 
1655     return largest;
1656 }
1657 
1658 static int memory_try_enable_merging(void *addr, size_t len)
1659 {
1660     if (!machine_mem_merge(current_machine)) {
1661         /* disabled by the user */
1662         return 0;
1663     }
1664 
1665     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1666 }
1667 
1668 /*
1669  * Resizing RAM while migrating can result in the migration being canceled.
1670  * Care has to be taken if the guest might have already detected the memory.
1671  *
1672  * As memory core doesn't know how is memory accessed, it is up to
1673  * resize callback to update device state and/or add assertions to detect
1674  * misuse, if necessary.
1675  */
1676 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1677 {
1678     const ram_addr_t oldsize = block->used_length;
1679     const ram_addr_t unaligned_size = newsize;
1680 
1681     assert(block);
1682 
1683     newsize = HOST_PAGE_ALIGN(newsize);
1684 
1685     if (block->used_length == newsize) {
1686         /*
1687          * We don't have to resize the ram block (which only knows aligned
1688          * sizes), however, we have to notify if the unaligned size changed.
1689          */
1690         if (unaligned_size != memory_region_size(block->mr)) {
1691             memory_region_set_size(block->mr, unaligned_size);
1692             if (block->resized) {
1693                 block->resized(block->idstr, unaligned_size, block->host);
1694             }
1695         }
1696         return 0;
1697     }
1698 
1699     if (!(block->flags & RAM_RESIZEABLE)) {
1700         error_setg_errno(errp, EINVAL,
1701                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1702                          " != 0x" RAM_ADDR_FMT, block->idstr,
1703                          newsize, block->used_length);
1704         return -EINVAL;
1705     }
1706 
1707     if (block->max_length < newsize) {
1708         error_setg_errno(errp, EINVAL,
1709                          "Size too large: %s: 0x" RAM_ADDR_FMT
1710                          " > 0x" RAM_ADDR_FMT, block->idstr,
1711                          newsize, block->max_length);
1712         return -EINVAL;
1713     }
1714 
1715     /* Notify before modifying the ram block and touching the bitmaps. */
1716     if (block->host) {
1717         ram_block_notify_resize(block->host, oldsize, newsize);
1718     }
1719 
1720     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1721     block->used_length = newsize;
1722     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1723                                         DIRTY_CLIENTS_ALL);
1724     memory_region_set_size(block->mr, unaligned_size);
1725     if (block->resized) {
1726         block->resized(block->idstr, unaligned_size, block->host);
1727     }
1728     return 0;
1729 }
1730 
1731 /*
1732  * Trigger sync on the given ram block for range [start, start + length]
1733  * with the backing store if one is available.
1734  * Otherwise no-op.
1735  * @Note: this is supposed to be a synchronous op.
1736  */
1737 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1738 {
1739     /* The requested range should fit in within the block range */
1740     g_assert((start + length) <= block->used_length);
1741 
1742 #ifdef CONFIG_LIBPMEM
1743     /* The lack of support for pmem should not block the sync */
1744     if (ramblock_is_pmem(block)) {
1745         void *addr = ramblock_ptr(block, start);
1746         pmem_persist(addr, length);
1747         return;
1748     }
1749 #endif
1750     if (block->fd >= 0) {
1751         /**
1752          * Case there is no support for PMEM or the memory has not been
1753          * specified as persistent (or is not one) - use the msync.
1754          * Less optimal but still achieves the same goal
1755          */
1756         void *addr = ramblock_ptr(block, start);
1757         if (qemu_msync(addr, length, block->fd)) {
1758             warn_report("%s: failed to sync memory range: start: "
1759                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1760                     __func__, start, length);
1761         }
1762     }
1763 }
1764 
1765 /* Called with ram_list.mutex held */
1766 static void dirty_memory_extend(ram_addr_t old_ram_size,
1767                                 ram_addr_t new_ram_size)
1768 {
1769     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1770                                              DIRTY_MEMORY_BLOCK_SIZE);
1771     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1772                                              DIRTY_MEMORY_BLOCK_SIZE);
1773     int i;
1774 
1775     /* Only need to extend if block count increased */
1776     if (new_num_blocks <= old_num_blocks) {
1777         return;
1778     }
1779 
1780     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1781         DirtyMemoryBlocks *old_blocks;
1782         DirtyMemoryBlocks *new_blocks;
1783         int j;
1784 
1785         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1786         new_blocks = g_malloc(sizeof(*new_blocks) +
1787                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1788 
1789         if (old_num_blocks) {
1790             memcpy(new_blocks->blocks, old_blocks->blocks,
1791                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1792         }
1793 
1794         for (j = old_num_blocks; j < new_num_blocks; j++) {
1795             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1796         }
1797 
1798         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1799 
1800         if (old_blocks) {
1801             g_free_rcu(old_blocks, rcu);
1802         }
1803     }
1804 }
1805 
1806 static void ram_block_add(RAMBlock *new_block, Error **errp)
1807 {
1808     const bool noreserve = qemu_ram_is_noreserve(new_block);
1809     const bool shared = qemu_ram_is_shared(new_block);
1810     RAMBlock *block;
1811     RAMBlock *last_block = NULL;
1812     ram_addr_t old_ram_size, new_ram_size;
1813     Error *err = NULL;
1814 
1815     old_ram_size = last_ram_page();
1816 
1817     qemu_mutex_lock_ramlist();
1818     new_block->offset = find_ram_offset(new_block->max_length);
1819 
1820     if (!new_block->host) {
1821         if (xen_enabled()) {
1822             xen_ram_alloc(new_block->offset, new_block->max_length,
1823                           new_block->mr, &err);
1824             if (err) {
1825                 error_propagate(errp, err);
1826                 qemu_mutex_unlock_ramlist();
1827                 return;
1828             }
1829         } else {
1830             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1831                                                   &new_block->mr->align,
1832                                                   shared, noreserve);
1833             if (!new_block->host) {
1834                 error_setg_errno(errp, errno,
1835                                  "cannot set up guest memory '%s'",
1836                                  memory_region_name(new_block->mr));
1837                 qemu_mutex_unlock_ramlist();
1838                 return;
1839             }
1840             memory_try_enable_merging(new_block->host, new_block->max_length);
1841         }
1842     }
1843 
1844     new_ram_size = MAX(old_ram_size,
1845               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1846     if (new_ram_size > old_ram_size) {
1847         dirty_memory_extend(old_ram_size, new_ram_size);
1848     }
1849     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
1850      * QLIST (which has an RCU-friendly variant) does not have insertion at
1851      * tail, so save the last element in last_block.
1852      */
1853     RAMBLOCK_FOREACH(block) {
1854         last_block = block;
1855         if (block->max_length < new_block->max_length) {
1856             break;
1857         }
1858     }
1859     if (block) {
1860         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1861     } else if (last_block) {
1862         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1863     } else { /* list is empty */
1864         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1865     }
1866     ram_list.mru_block = NULL;
1867 
1868     /* Write list before version */
1869     smp_wmb();
1870     ram_list.version++;
1871     qemu_mutex_unlock_ramlist();
1872 
1873     cpu_physical_memory_set_dirty_range(new_block->offset,
1874                                         new_block->used_length,
1875                                         DIRTY_CLIENTS_ALL);
1876 
1877     if (new_block->host) {
1878         qemu_ram_setup_dump(new_block->host, new_block->max_length);
1879         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1880         /*
1881          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1882          * Configure it unless the machine is a qtest server, in which case
1883          * KVM is not used and it may be forked (eg for fuzzing purposes).
1884          */
1885         if (!qtest_enabled()) {
1886             qemu_madvise(new_block->host, new_block->max_length,
1887                          QEMU_MADV_DONTFORK);
1888         }
1889         ram_block_notify_add(new_block->host, new_block->used_length,
1890                              new_block->max_length);
1891     }
1892 }
1893 
1894 #ifdef CONFIG_POSIX
1895 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1896                                  uint32_t ram_flags, int fd, off_t offset,
1897                                  Error **errp)
1898 {
1899     RAMBlock *new_block;
1900     Error *local_err = NULL;
1901     int64_t file_size, file_align;
1902 
1903     /* Just support these ram flags by now. */
1904     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
1905                           RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
1906                           RAM_READONLY_FD)) == 0);
1907 
1908     if (xen_enabled()) {
1909         error_setg(errp, "-mem-path not supported with Xen");
1910         return NULL;
1911     }
1912 
1913     if (kvm_enabled() && !kvm_has_sync_mmu()) {
1914         error_setg(errp,
1915                    "host lacks kvm mmu notifiers, -mem-path unsupported");
1916         return NULL;
1917     }
1918 
1919     size = HOST_PAGE_ALIGN(size);
1920     file_size = get_file_size(fd);
1921     if (file_size > offset && file_size < (offset + size)) {
1922         error_setg(errp, "backing store size 0x%" PRIx64
1923                    " does not match 'size' option 0x" RAM_ADDR_FMT,
1924                    file_size, size);
1925         return NULL;
1926     }
1927 
1928     file_align = get_file_align(fd);
1929     if (file_align > 0 && file_align > mr->align) {
1930         error_setg(errp, "backing store align 0x%" PRIx64
1931                    " is larger than 'align' option 0x%" PRIx64,
1932                    file_align, mr->align);
1933         return NULL;
1934     }
1935 
1936     new_block = g_malloc0(sizeof(*new_block));
1937     new_block->mr = mr;
1938     new_block->used_length = size;
1939     new_block->max_length = size;
1940     new_block->flags = ram_flags;
1941     new_block->host = file_ram_alloc(new_block, size, fd, !file_size, offset,
1942                                      errp);
1943     if (!new_block->host) {
1944         g_free(new_block);
1945         return NULL;
1946     }
1947 
1948     ram_block_add(new_block, &local_err);
1949     if (local_err) {
1950         g_free(new_block);
1951         error_propagate(errp, local_err);
1952         return NULL;
1953     }
1954     return new_block;
1955 
1956 }
1957 
1958 
1959 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1960                                    uint32_t ram_flags, const char *mem_path,
1961                                    off_t offset, Error **errp)
1962 {
1963     int fd;
1964     bool created;
1965     RAMBlock *block;
1966 
1967     fd = file_ram_open(mem_path, memory_region_name(mr),
1968                        !!(ram_flags & RAM_READONLY_FD), &created);
1969     if (fd < 0) {
1970         error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
1971                          mem_path);
1972         if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
1973             fd == -EACCES) {
1974             /*
1975              * If we can open the file R/O (note: will never create a new file)
1976              * and we are dealing with a private mapping, there are still ways
1977              * to consume such files and get RAM instead of ROM.
1978              */
1979             fd = file_ram_open(mem_path, memory_region_name(mr), true,
1980                                &created);
1981             if (fd < 0) {
1982                 return NULL;
1983             }
1984             assert(!created);
1985             close(fd);
1986             error_append_hint(errp, "Consider opening the backing store"
1987                 " read-only but still creating writable RAM using"
1988                 " '-object memory-backend-file,readonly=on,rom=off...'"
1989                 " (see \"VM templating\" documentation)\n");
1990         }
1991         return NULL;
1992     }
1993 
1994     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset, errp);
1995     if (!block) {
1996         if (created) {
1997             unlink(mem_path);
1998         }
1999         close(fd);
2000         return NULL;
2001     }
2002 
2003     return block;
2004 }
2005 #endif
2006 
2007 static
2008 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2009                                   void (*resized)(const char*,
2010                                                   uint64_t length,
2011                                                   void *host),
2012                                   void *host, uint32_t ram_flags,
2013                                   MemoryRegion *mr, Error **errp)
2014 {
2015     RAMBlock *new_block;
2016     Error *local_err = NULL;
2017 
2018     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2019                           RAM_NORESERVE)) == 0);
2020     assert(!host ^ (ram_flags & RAM_PREALLOC));
2021 
2022     size = HOST_PAGE_ALIGN(size);
2023     max_size = HOST_PAGE_ALIGN(max_size);
2024     new_block = g_malloc0(sizeof(*new_block));
2025     new_block->mr = mr;
2026     new_block->resized = resized;
2027     new_block->used_length = size;
2028     new_block->max_length = max_size;
2029     assert(max_size >= size);
2030     new_block->fd = -1;
2031     new_block->page_size = qemu_real_host_page_size();
2032     new_block->host = host;
2033     new_block->flags = ram_flags;
2034     ram_block_add(new_block, &local_err);
2035     if (local_err) {
2036         g_free(new_block);
2037         error_propagate(errp, local_err);
2038         return NULL;
2039     }
2040     return new_block;
2041 }
2042 
2043 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2044                                    MemoryRegion *mr, Error **errp)
2045 {
2046     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2047                                    errp);
2048 }
2049 
2050 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2051                          MemoryRegion *mr, Error **errp)
2052 {
2053     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2054     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2055 }
2056 
2057 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2058                                      void (*resized)(const char*,
2059                                                      uint64_t length,
2060                                                      void *host),
2061                                      MemoryRegion *mr, Error **errp)
2062 {
2063     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2064                                    RAM_RESIZEABLE, mr, errp);
2065 }
2066 
2067 static void reclaim_ramblock(RAMBlock *block)
2068 {
2069     if (block->flags & RAM_PREALLOC) {
2070         ;
2071     } else if (xen_enabled()) {
2072         xen_invalidate_map_cache_entry(block->host);
2073 #ifndef _WIN32
2074     } else if (block->fd >= 0) {
2075         qemu_ram_munmap(block->fd, block->host, block->max_length);
2076         close(block->fd);
2077 #endif
2078     } else {
2079         qemu_anon_ram_free(block->host, block->max_length);
2080     }
2081     g_free(block);
2082 }
2083 
2084 void qemu_ram_free(RAMBlock *block)
2085 {
2086     if (!block) {
2087         return;
2088     }
2089 
2090     if (block->host) {
2091         ram_block_notify_remove(block->host, block->used_length,
2092                                 block->max_length);
2093     }
2094 
2095     qemu_mutex_lock_ramlist();
2096     QLIST_REMOVE_RCU(block, next);
2097     ram_list.mru_block = NULL;
2098     /* Write list before version */
2099     smp_wmb();
2100     ram_list.version++;
2101     call_rcu(block, reclaim_ramblock, rcu);
2102     qemu_mutex_unlock_ramlist();
2103 }
2104 
2105 #ifndef _WIN32
2106 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2107 {
2108     RAMBlock *block;
2109     ram_addr_t offset;
2110     int flags;
2111     void *area, *vaddr;
2112     int prot;
2113 
2114     RAMBLOCK_FOREACH(block) {
2115         offset = addr - block->offset;
2116         if (offset < block->max_length) {
2117             vaddr = ramblock_ptr(block, offset);
2118             if (block->flags & RAM_PREALLOC) {
2119                 ;
2120             } else if (xen_enabled()) {
2121                 abort();
2122             } else {
2123                 flags = MAP_FIXED;
2124                 flags |= block->flags & RAM_SHARED ?
2125                          MAP_SHARED : MAP_PRIVATE;
2126                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2127                 prot = PROT_READ;
2128                 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2129                 if (block->fd >= 0) {
2130                     area = mmap(vaddr, length, prot, flags, block->fd,
2131                                 offset + block->fd_offset);
2132                 } else {
2133                     flags |= MAP_ANONYMOUS;
2134                     area = mmap(vaddr, length, prot, flags, -1, 0);
2135                 }
2136                 if (area != vaddr) {
2137                     error_report("Could not remap addr: "
2138                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2139                                  length, addr);
2140                     exit(1);
2141                 }
2142                 memory_try_enable_merging(vaddr, length);
2143                 qemu_ram_setup_dump(vaddr, length);
2144             }
2145         }
2146     }
2147 }
2148 #endif /* !_WIN32 */
2149 
2150 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2151  * This should not be used for general purpose DMA.  Use address_space_map
2152  * or address_space_rw instead. For local memory (e.g. video ram) that the
2153  * device owns, use memory_region_get_ram_ptr.
2154  *
2155  * Called within RCU critical section.
2156  */
2157 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2158 {
2159     RAMBlock *block = ram_block;
2160 
2161     if (block == NULL) {
2162         block = qemu_get_ram_block(addr);
2163         addr -= block->offset;
2164     }
2165 
2166     if (xen_enabled() && block->host == NULL) {
2167         /* We need to check if the requested address is in the RAM
2168          * because we don't want to map the entire memory in QEMU.
2169          * In that case just map until the end of the page.
2170          */
2171         if (block->offset == 0) {
2172             return xen_map_cache(addr, 0, 0, false);
2173         }
2174 
2175         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2176     }
2177     return ramblock_ptr(block, addr);
2178 }
2179 
2180 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2181  * but takes a size argument.
2182  *
2183  * Called within RCU critical section.
2184  */
2185 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2186                                  hwaddr *size, bool lock)
2187 {
2188     RAMBlock *block = ram_block;
2189     if (*size == 0) {
2190         return NULL;
2191     }
2192 
2193     if (block == NULL) {
2194         block = qemu_get_ram_block(addr);
2195         addr -= block->offset;
2196     }
2197     *size = MIN(*size, block->max_length - addr);
2198 
2199     if (xen_enabled() && block->host == NULL) {
2200         /* We need to check if the requested address is in the RAM
2201          * because we don't want to map the entire memory in QEMU.
2202          * In that case just map the requested area.
2203          */
2204         if (block->offset == 0) {
2205             return xen_map_cache(addr, *size, lock, lock);
2206         }
2207 
2208         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2209     }
2210 
2211     return ramblock_ptr(block, addr);
2212 }
2213 
2214 /* Return the offset of a hostpointer within a ramblock */
2215 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2216 {
2217     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2218     assert((uintptr_t)host >= (uintptr_t)rb->host);
2219     assert(res < rb->max_length);
2220 
2221     return res;
2222 }
2223 
2224 /*
2225  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2226  * in that RAMBlock.
2227  *
2228  * ptr: Host pointer to look up
2229  * round_offset: If true round the result offset down to a page boundary
2230  * *ram_addr: set to result ram_addr
2231  * *offset: set to result offset within the RAMBlock
2232  *
2233  * Returns: RAMBlock (or NULL if not found)
2234  *
2235  * By the time this function returns, the returned pointer is not protected
2236  * by RCU anymore.  If the caller is not within an RCU critical section and
2237  * does not hold the iothread lock, it must have other means of protecting the
2238  * pointer, such as a reference to the region that includes the incoming
2239  * ram_addr_t.
2240  */
2241 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2242                                    ram_addr_t *offset)
2243 {
2244     RAMBlock *block;
2245     uint8_t *host = ptr;
2246 
2247     if (xen_enabled()) {
2248         ram_addr_t ram_addr;
2249         RCU_READ_LOCK_GUARD();
2250         ram_addr = xen_ram_addr_from_mapcache(ptr);
2251         block = qemu_get_ram_block(ram_addr);
2252         if (block) {
2253             *offset = ram_addr - block->offset;
2254         }
2255         return block;
2256     }
2257 
2258     RCU_READ_LOCK_GUARD();
2259     block = qatomic_rcu_read(&ram_list.mru_block);
2260     if (block && block->host && host - block->host < block->max_length) {
2261         goto found;
2262     }
2263 
2264     RAMBLOCK_FOREACH(block) {
2265         /* This case append when the block is not mapped. */
2266         if (block->host == NULL) {
2267             continue;
2268         }
2269         if (host - block->host < block->max_length) {
2270             goto found;
2271         }
2272     }
2273 
2274     return NULL;
2275 
2276 found:
2277     *offset = (host - block->host);
2278     if (round_offset) {
2279         *offset &= TARGET_PAGE_MASK;
2280     }
2281     return block;
2282 }
2283 
2284 /*
2285  * Finds the named RAMBlock
2286  *
2287  * name: The name of RAMBlock to find
2288  *
2289  * Returns: RAMBlock (or NULL if not found)
2290  */
2291 RAMBlock *qemu_ram_block_by_name(const char *name)
2292 {
2293     RAMBlock *block;
2294 
2295     RAMBLOCK_FOREACH(block) {
2296         if (!strcmp(name, block->idstr)) {
2297             return block;
2298         }
2299     }
2300 
2301     return NULL;
2302 }
2303 
2304 /*
2305  * Some of the system routines need to translate from a host pointer
2306  * (typically a TLB entry) back to a ram offset.
2307  */
2308 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2309 {
2310     RAMBlock *block;
2311     ram_addr_t offset;
2312 
2313     block = qemu_ram_block_from_host(ptr, false, &offset);
2314     if (!block) {
2315         return RAM_ADDR_INVALID;
2316     }
2317 
2318     return block->offset + offset;
2319 }
2320 
2321 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2322 {
2323     ram_addr_t ram_addr;
2324 
2325     ram_addr = qemu_ram_addr_from_host(ptr);
2326     if (ram_addr == RAM_ADDR_INVALID) {
2327         error_report("Bad ram pointer %p", ptr);
2328         abort();
2329     }
2330     return ram_addr;
2331 }
2332 
2333 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2334                                  MemTxAttrs attrs, void *buf, hwaddr len);
2335 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2336                                   const void *buf, hwaddr len);
2337 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2338                                   bool is_write, MemTxAttrs attrs);
2339 
2340 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2341                                 unsigned len, MemTxAttrs attrs)
2342 {
2343     subpage_t *subpage = opaque;
2344     uint8_t buf[8];
2345     MemTxResult res;
2346 
2347 #if defined(DEBUG_SUBPAGE)
2348     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2349            subpage, len, addr);
2350 #endif
2351     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2352     if (res) {
2353         return res;
2354     }
2355     *data = ldn_p(buf, len);
2356     return MEMTX_OK;
2357 }
2358 
2359 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2360                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2361 {
2362     subpage_t *subpage = opaque;
2363     uint8_t buf[8];
2364 
2365 #if defined(DEBUG_SUBPAGE)
2366     printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2367            " value %"PRIx64"\n",
2368            __func__, subpage, len, addr, value);
2369 #endif
2370     stn_p(buf, len, value);
2371     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2372 }
2373 
2374 static bool subpage_accepts(void *opaque, hwaddr addr,
2375                             unsigned len, bool is_write,
2376                             MemTxAttrs attrs)
2377 {
2378     subpage_t *subpage = opaque;
2379 #if defined(DEBUG_SUBPAGE)
2380     printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2381            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2382 #endif
2383 
2384     return flatview_access_valid(subpage->fv, addr + subpage->base,
2385                                  len, is_write, attrs);
2386 }
2387 
2388 static const MemoryRegionOps subpage_ops = {
2389     .read_with_attrs = subpage_read,
2390     .write_with_attrs = subpage_write,
2391     .impl.min_access_size = 1,
2392     .impl.max_access_size = 8,
2393     .valid.min_access_size = 1,
2394     .valid.max_access_size = 8,
2395     .valid.accepts = subpage_accepts,
2396     .endianness = DEVICE_NATIVE_ENDIAN,
2397 };
2398 
2399 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2400                             uint16_t section)
2401 {
2402     int idx, eidx;
2403 
2404     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2405         return -1;
2406     idx = SUBPAGE_IDX(start);
2407     eidx = SUBPAGE_IDX(end);
2408 #if defined(DEBUG_SUBPAGE)
2409     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2410            __func__, mmio, start, end, idx, eidx, section);
2411 #endif
2412     for (; idx <= eidx; idx++) {
2413         mmio->sub_section[idx] = section;
2414     }
2415 
2416     return 0;
2417 }
2418 
2419 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2420 {
2421     subpage_t *mmio;
2422 
2423     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2424     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2425     mmio->fv = fv;
2426     mmio->base = base;
2427     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2428                           NULL, TARGET_PAGE_SIZE);
2429     mmio->iomem.subpage = true;
2430 #if defined(DEBUG_SUBPAGE)
2431     printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2432            mmio, base, TARGET_PAGE_SIZE);
2433 #endif
2434 
2435     return mmio;
2436 }
2437 
2438 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2439 {
2440     assert(fv);
2441     MemoryRegionSection section = {
2442         .fv = fv,
2443         .mr = mr,
2444         .offset_within_address_space = 0,
2445         .offset_within_region = 0,
2446         .size = int128_2_64(),
2447     };
2448 
2449     return phys_section_add(map, &section);
2450 }
2451 
2452 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2453                                       hwaddr index, MemTxAttrs attrs)
2454 {
2455     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2456     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2457     AddressSpaceDispatch *d = cpuas->memory_dispatch;
2458     int section_index = index & ~TARGET_PAGE_MASK;
2459     MemoryRegionSection *ret;
2460 
2461     assert(section_index < d->map.sections_nb);
2462     ret = d->map.sections + section_index;
2463     assert(ret->mr);
2464     assert(ret->mr->ops);
2465 
2466     return ret;
2467 }
2468 
2469 static void io_mem_init(void)
2470 {
2471     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2472                           NULL, UINT64_MAX);
2473 }
2474 
2475 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2476 {
2477     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2478     uint16_t n;
2479 
2480     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2481     assert(n == PHYS_SECTION_UNASSIGNED);
2482 
2483     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2484 
2485     return d;
2486 }
2487 
2488 void address_space_dispatch_free(AddressSpaceDispatch *d)
2489 {
2490     phys_sections_free(&d->map);
2491     g_free(d);
2492 }
2493 
2494 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2495 {
2496 }
2497 
2498 static void tcg_log_global_after_sync(MemoryListener *listener)
2499 {
2500     CPUAddressSpace *cpuas;
2501 
2502     /* Wait for the CPU to end the current TB.  This avoids the following
2503      * incorrect race:
2504      *
2505      *      vCPU                         migration
2506      *      ----------------------       -------------------------
2507      *      TLB check -> slow path
2508      *        notdirty_mem_write
2509      *          write to RAM
2510      *          mark dirty
2511      *                                   clear dirty flag
2512      *      TLB check -> fast path
2513      *                                   read memory
2514      *        write to RAM
2515      *
2516      * by pushing the migration thread's memory read after the vCPU thread has
2517      * written the memory.
2518      */
2519     if (replay_mode == REPLAY_MODE_NONE) {
2520         /*
2521          * VGA can make calls to this function while updating the screen.
2522          * In record/replay mode this causes a deadlock, because
2523          * run_on_cpu waits for rr mutex. Therefore no races are possible
2524          * in this case and no need for making run_on_cpu when
2525          * record/replay is enabled.
2526          */
2527         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2528         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2529     }
2530 }
2531 
2532 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2533 {
2534     CPUAddressSpace *cpuas = data.host_ptr;
2535 
2536     cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2537     tlb_flush(cpu);
2538 }
2539 
2540 static void tcg_commit(MemoryListener *listener)
2541 {
2542     CPUAddressSpace *cpuas;
2543     CPUState *cpu;
2544 
2545     assert(tcg_enabled());
2546     /* since each CPU stores ram addresses in its TLB cache, we must
2547        reset the modified entries */
2548     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2549     cpu = cpuas->cpu;
2550 
2551     /*
2552      * Defer changes to as->memory_dispatch until the cpu is quiescent.
2553      * Otherwise we race between (1) other cpu threads and (2) ongoing
2554      * i/o for the current cpu thread, with data cached by mmu_lookup().
2555      *
2556      * In addition, queueing the work function will kick the cpu back to
2557      * the main loop, which will end the RCU critical section and reclaim
2558      * the memory data structures.
2559      *
2560      * That said, the listener is also called during realize, before
2561      * all of the tcg machinery for run-on is initialized: thus halt_cond.
2562      */
2563     if (cpu->halt_cond) {
2564         async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2565     } else {
2566         tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2567     }
2568 }
2569 
2570 static void memory_map_init(void)
2571 {
2572     system_memory = g_malloc(sizeof(*system_memory));
2573 
2574     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2575     address_space_init(&address_space_memory, system_memory, "memory");
2576 
2577     system_io = g_malloc(sizeof(*system_io));
2578     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2579                           65536);
2580     address_space_init(&address_space_io, system_io, "I/O");
2581 }
2582 
2583 MemoryRegion *get_system_memory(void)
2584 {
2585     return system_memory;
2586 }
2587 
2588 MemoryRegion *get_system_io(void)
2589 {
2590     return system_io;
2591 }
2592 
2593 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2594                                      hwaddr length)
2595 {
2596     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2597     addr += memory_region_get_ram_addr(mr);
2598 
2599     /* No early return if dirty_log_mask is or becomes 0, because
2600      * cpu_physical_memory_set_dirty_range will still call
2601      * xen_modified_memory.
2602      */
2603     if (dirty_log_mask) {
2604         dirty_log_mask =
2605             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2606     }
2607     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2608         assert(tcg_enabled());
2609         tb_invalidate_phys_range(addr, addr + length - 1);
2610         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2611     }
2612     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2613 }
2614 
2615 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2616 {
2617     /*
2618      * In principle this function would work on other memory region types too,
2619      * but the ROM device use case is the only one where this operation is
2620      * necessary.  Other memory regions should use the
2621      * address_space_read/write() APIs.
2622      */
2623     assert(memory_region_is_romd(mr));
2624 
2625     invalidate_and_set_dirty(mr, addr, size);
2626 }
2627 
2628 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2629 {
2630     unsigned access_size_max = mr->ops->valid.max_access_size;
2631 
2632     /* Regions are assumed to support 1-4 byte accesses unless
2633        otherwise specified.  */
2634     if (access_size_max == 0) {
2635         access_size_max = 4;
2636     }
2637 
2638     /* Bound the maximum access by the alignment of the address.  */
2639     if (!mr->ops->impl.unaligned) {
2640         unsigned align_size_max = addr & -addr;
2641         if (align_size_max != 0 && align_size_max < access_size_max) {
2642             access_size_max = align_size_max;
2643         }
2644     }
2645 
2646     /* Don't attempt accesses larger than the maximum.  */
2647     if (l > access_size_max) {
2648         l = access_size_max;
2649     }
2650     l = pow2floor(l);
2651 
2652     return l;
2653 }
2654 
2655 bool prepare_mmio_access(MemoryRegion *mr)
2656 {
2657     bool release_lock = false;
2658 
2659     if (!qemu_mutex_iothread_locked()) {
2660         qemu_mutex_lock_iothread();
2661         release_lock = true;
2662     }
2663     if (mr->flush_coalesced_mmio) {
2664         qemu_flush_coalesced_mmio_buffer();
2665     }
2666 
2667     return release_lock;
2668 }
2669 
2670 /**
2671  * flatview_access_allowed
2672  * @mr: #MemoryRegion to be accessed
2673  * @attrs: memory transaction attributes
2674  * @addr: address within that memory region
2675  * @len: the number of bytes to access
2676  *
2677  * Check if a memory transaction is allowed.
2678  *
2679  * Returns: true if transaction is allowed, false if denied.
2680  */
2681 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2682                                     hwaddr addr, hwaddr len)
2683 {
2684     if (likely(!attrs.memory)) {
2685         return true;
2686     }
2687     if (memory_region_is_ram(mr)) {
2688         return true;
2689     }
2690     qemu_log_mask(LOG_GUEST_ERROR,
2691                   "Invalid access to non-RAM device at "
2692                   "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2693                   "region '%s'\n", addr, len, memory_region_name(mr));
2694     return false;
2695 }
2696 
2697 /* Called within RCU critical section.  */
2698 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2699                                            MemTxAttrs attrs,
2700                                            const void *ptr,
2701                                            hwaddr len, hwaddr addr1,
2702                                            hwaddr l, MemoryRegion *mr)
2703 {
2704     uint8_t *ram_ptr;
2705     uint64_t val;
2706     MemTxResult result = MEMTX_OK;
2707     bool release_lock = false;
2708     const uint8_t *buf = ptr;
2709 
2710     for (;;) {
2711         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2712             result |= MEMTX_ACCESS_ERROR;
2713             /* Keep going. */
2714         } else if (!memory_access_is_direct(mr, true)) {
2715             release_lock |= prepare_mmio_access(mr);
2716             l = memory_access_size(mr, l, addr1);
2717             /* XXX: could force current_cpu to NULL to avoid
2718                potential bugs */
2719             val = ldn_he_p(buf, l);
2720             result |= memory_region_dispatch_write(mr, addr1, val,
2721                                                    size_memop(l), attrs);
2722         } else {
2723             /* RAM case */
2724             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2725             memmove(ram_ptr, buf, l);
2726             invalidate_and_set_dirty(mr, addr1, l);
2727         }
2728 
2729         if (release_lock) {
2730             qemu_mutex_unlock_iothread();
2731             release_lock = false;
2732         }
2733 
2734         len -= l;
2735         buf += l;
2736         addr += l;
2737 
2738         if (!len) {
2739             break;
2740         }
2741 
2742         l = len;
2743         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2744     }
2745 
2746     return result;
2747 }
2748 
2749 /* Called from RCU critical section.  */
2750 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2751                                   const void *buf, hwaddr len)
2752 {
2753     hwaddr l;
2754     hwaddr addr1;
2755     MemoryRegion *mr;
2756 
2757     l = len;
2758     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2759     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2760         return MEMTX_ACCESS_ERROR;
2761     }
2762     return flatview_write_continue(fv, addr, attrs, buf, len,
2763                                    addr1, l, mr);
2764 }
2765 
2766 /* Called within RCU critical section.  */
2767 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2768                                    MemTxAttrs attrs, void *ptr,
2769                                    hwaddr len, hwaddr addr1, hwaddr l,
2770                                    MemoryRegion *mr)
2771 {
2772     uint8_t *ram_ptr;
2773     uint64_t val;
2774     MemTxResult result = MEMTX_OK;
2775     bool release_lock = false;
2776     uint8_t *buf = ptr;
2777 
2778     fuzz_dma_read_cb(addr, len, mr);
2779     for (;;) {
2780         if (!flatview_access_allowed(mr, attrs, addr1, l)) {
2781             result |= MEMTX_ACCESS_ERROR;
2782             /* Keep going. */
2783         } else if (!memory_access_is_direct(mr, false)) {
2784             /* I/O case */
2785             release_lock |= prepare_mmio_access(mr);
2786             l = memory_access_size(mr, l, addr1);
2787             result |= memory_region_dispatch_read(mr, addr1, &val,
2788                                                   size_memop(l), attrs);
2789             stn_he_p(buf, l, val);
2790         } else {
2791             /* RAM case */
2792             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2793             memcpy(buf, ram_ptr, l);
2794         }
2795 
2796         if (release_lock) {
2797             qemu_mutex_unlock_iothread();
2798             release_lock = false;
2799         }
2800 
2801         len -= l;
2802         buf += l;
2803         addr += l;
2804 
2805         if (!len) {
2806             break;
2807         }
2808 
2809         l = len;
2810         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2811     }
2812 
2813     return result;
2814 }
2815 
2816 /* Called from RCU critical section.  */
2817 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2818                                  MemTxAttrs attrs, void *buf, hwaddr len)
2819 {
2820     hwaddr l;
2821     hwaddr addr1;
2822     MemoryRegion *mr;
2823 
2824     l = len;
2825     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2826     if (!flatview_access_allowed(mr, attrs, addr, len)) {
2827         return MEMTX_ACCESS_ERROR;
2828     }
2829     return flatview_read_continue(fv, addr, attrs, buf, len,
2830                                   addr1, l, mr);
2831 }
2832 
2833 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2834                                     MemTxAttrs attrs, void *buf, hwaddr len)
2835 {
2836     MemTxResult result = MEMTX_OK;
2837     FlatView *fv;
2838 
2839     if (len > 0) {
2840         RCU_READ_LOCK_GUARD();
2841         fv = address_space_to_flatview(as);
2842         result = flatview_read(fv, addr, attrs, buf, len);
2843     }
2844 
2845     return result;
2846 }
2847 
2848 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2849                                 MemTxAttrs attrs,
2850                                 const void *buf, hwaddr len)
2851 {
2852     MemTxResult result = MEMTX_OK;
2853     FlatView *fv;
2854 
2855     if (len > 0) {
2856         RCU_READ_LOCK_GUARD();
2857         fv = address_space_to_flatview(as);
2858         result = flatview_write(fv, addr, attrs, buf, len);
2859     }
2860 
2861     return result;
2862 }
2863 
2864 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2865                              void *buf, hwaddr len, bool is_write)
2866 {
2867     if (is_write) {
2868         return address_space_write(as, addr, attrs, buf, len);
2869     } else {
2870         return address_space_read_full(as, addr, attrs, buf, len);
2871     }
2872 }
2873 
2874 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
2875                               uint8_t c, hwaddr len, MemTxAttrs attrs)
2876 {
2877 #define FILLBUF_SIZE 512
2878     uint8_t fillbuf[FILLBUF_SIZE];
2879     int l;
2880     MemTxResult error = MEMTX_OK;
2881 
2882     memset(fillbuf, c, FILLBUF_SIZE);
2883     while (len > 0) {
2884         l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
2885         error |= address_space_write(as, addr, attrs, fillbuf, l);
2886         len -= l;
2887         addr += l;
2888     }
2889 
2890     return error;
2891 }
2892 
2893 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2894                             hwaddr len, bool is_write)
2895 {
2896     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2897                      buf, len, is_write);
2898 }
2899 
2900 enum write_rom_type {
2901     WRITE_DATA,
2902     FLUSH_CACHE,
2903 };
2904 
2905 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2906                                                            hwaddr addr,
2907                                                            MemTxAttrs attrs,
2908                                                            const void *ptr,
2909                                                            hwaddr len,
2910                                                            enum write_rom_type type)
2911 {
2912     hwaddr l;
2913     uint8_t *ram_ptr;
2914     hwaddr addr1;
2915     MemoryRegion *mr;
2916     const uint8_t *buf = ptr;
2917 
2918     RCU_READ_LOCK_GUARD();
2919     while (len > 0) {
2920         l = len;
2921         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2922 
2923         if (!(memory_region_is_ram(mr) ||
2924               memory_region_is_romd(mr))) {
2925             l = memory_access_size(mr, l, addr1);
2926         } else {
2927             /* ROM/RAM case */
2928             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2929             switch (type) {
2930             case WRITE_DATA:
2931                 memcpy(ram_ptr, buf, l);
2932                 invalidate_and_set_dirty(mr, addr1, l);
2933                 break;
2934             case FLUSH_CACHE:
2935                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2936                 break;
2937             }
2938         }
2939         len -= l;
2940         buf += l;
2941         addr += l;
2942     }
2943     return MEMTX_OK;
2944 }
2945 
2946 /* used for ROM loading : can write in RAM and ROM */
2947 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2948                                     MemTxAttrs attrs,
2949                                     const void *buf, hwaddr len)
2950 {
2951     return address_space_write_rom_internal(as, addr, attrs,
2952                                             buf, len, WRITE_DATA);
2953 }
2954 
2955 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2956 {
2957     /*
2958      * This function should do the same thing as an icache flush that was
2959      * triggered from within the guest. For TCG we are always cache coherent,
2960      * so there is no need to flush anything. For KVM / Xen we need to flush
2961      * the host's instruction cache at least.
2962      */
2963     if (tcg_enabled()) {
2964         return;
2965     }
2966 
2967     address_space_write_rom_internal(&address_space_memory,
2968                                      start, MEMTXATTRS_UNSPECIFIED,
2969                                      NULL, len, FLUSH_CACHE);
2970 }
2971 
2972 typedef struct {
2973     MemoryRegion *mr;
2974     void *buffer;
2975     hwaddr addr;
2976     hwaddr len;
2977     bool in_use;
2978 } BounceBuffer;
2979 
2980 static BounceBuffer bounce;
2981 
2982 typedef struct MapClient {
2983     QEMUBH *bh;
2984     QLIST_ENTRY(MapClient) link;
2985 } MapClient;
2986 
2987 QemuMutex map_client_list_lock;
2988 static QLIST_HEAD(, MapClient) map_client_list
2989     = QLIST_HEAD_INITIALIZER(map_client_list);
2990 
2991 static void cpu_unregister_map_client_do(MapClient *client)
2992 {
2993     QLIST_REMOVE(client, link);
2994     g_free(client);
2995 }
2996 
2997 static void cpu_notify_map_clients_locked(void)
2998 {
2999     MapClient *client;
3000 
3001     while (!QLIST_EMPTY(&map_client_list)) {
3002         client = QLIST_FIRST(&map_client_list);
3003         qemu_bh_schedule(client->bh);
3004         cpu_unregister_map_client_do(client);
3005     }
3006 }
3007 
3008 void cpu_register_map_client(QEMUBH *bh)
3009 {
3010     MapClient *client = g_malloc(sizeof(*client));
3011 
3012     qemu_mutex_lock(&map_client_list_lock);
3013     client->bh = bh;
3014     QLIST_INSERT_HEAD(&map_client_list, client, link);
3015     /* Write map_client_list before reading in_use.  */
3016     smp_mb();
3017     if (!qatomic_read(&bounce.in_use)) {
3018         cpu_notify_map_clients_locked();
3019     }
3020     qemu_mutex_unlock(&map_client_list_lock);
3021 }
3022 
3023 void cpu_exec_init_all(void)
3024 {
3025     qemu_mutex_init(&ram_list.mutex);
3026     /* The data structures we set up here depend on knowing the page size,
3027      * so no more changes can be made after this point.
3028      * In an ideal world, nothing we did before we had finished the
3029      * machine setup would care about the target page size, and we could
3030      * do this much later, rather than requiring board models to state
3031      * up front what their requirements are.
3032      */
3033     finalize_target_page_bits();
3034     io_mem_init();
3035     memory_map_init();
3036     qemu_mutex_init(&map_client_list_lock);
3037 }
3038 
3039 void cpu_unregister_map_client(QEMUBH *bh)
3040 {
3041     MapClient *client;
3042 
3043     qemu_mutex_lock(&map_client_list_lock);
3044     QLIST_FOREACH(client, &map_client_list, link) {
3045         if (client->bh == bh) {
3046             cpu_unregister_map_client_do(client);
3047             break;
3048         }
3049     }
3050     qemu_mutex_unlock(&map_client_list_lock);
3051 }
3052 
3053 static void cpu_notify_map_clients(void)
3054 {
3055     qemu_mutex_lock(&map_client_list_lock);
3056     cpu_notify_map_clients_locked();
3057     qemu_mutex_unlock(&map_client_list_lock);
3058 }
3059 
3060 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3061                                   bool is_write, MemTxAttrs attrs)
3062 {
3063     MemoryRegion *mr;
3064     hwaddr l, xlat;
3065 
3066     while (len > 0) {
3067         l = len;
3068         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3069         if (!memory_access_is_direct(mr, is_write)) {
3070             l = memory_access_size(mr, l, addr);
3071             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3072                 return false;
3073             }
3074         }
3075 
3076         len -= l;
3077         addr += l;
3078     }
3079     return true;
3080 }
3081 
3082 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3083                                 hwaddr len, bool is_write,
3084                                 MemTxAttrs attrs)
3085 {
3086     FlatView *fv;
3087 
3088     RCU_READ_LOCK_GUARD();
3089     fv = address_space_to_flatview(as);
3090     return flatview_access_valid(fv, addr, len, is_write, attrs);
3091 }
3092 
3093 static hwaddr
3094 flatview_extend_translation(FlatView *fv, hwaddr addr,
3095                             hwaddr target_len,
3096                             MemoryRegion *mr, hwaddr base, hwaddr len,
3097                             bool is_write, MemTxAttrs attrs)
3098 {
3099     hwaddr done = 0;
3100     hwaddr xlat;
3101     MemoryRegion *this_mr;
3102 
3103     for (;;) {
3104         target_len -= len;
3105         addr += len;
3106         done += len;
3107         if (target_len == 0) {
3108             return done;
3109         }
3110 
3111         len = target_len;
3112         this_mr = flatview_translate(fv, addr, &xlat,
3113                                      &len, is_write, attrs);
3114         if (this_mr != mr || xlat != base + done) {
3115             return done;
3116         }
3117     }
3118 }
3119 
3120 /* Map a physical memory region into a host virtual address.
3121  * May map a subset of the requested range, given by and returned in *plen.
3122  * May return NULL if resources needed to perform the mapping are exhausted.
3123  * Use only for reads OR writes - not for read-modify-write operations.
3124  * Use cpu_register_map_client() to know when retrying the map operation is
3125  * likely to succeed.
3126  */
3127 void *address_space_map(AddressSpace *as,
3128                         hwaddr addr,
3129                         hwaddr *plen,
3130                         bool is_write,
3131                         MemTxAttrs attrs)
3132 {
3133     hwaddr len = *plen;
3134     hwaddr l, xlat;
3135     MemoryRegion *mr;
3136     FlatView *fv;
3137 
3138     if (len == 0) {
3139         return NULL;
3140     }
3141 
3142     l = len;
3143     RCU_READ_LOCK_GUARD();
3144     fv = address_space_to_flatview(as);
3145     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3146 
3147     if (!memory_access_is_direct(mr, is_write)) {
3148         if (qatomic_xchg(&bounce.in_use, true)) {
3149             *plen = 0;
3150             return NULL;
3151         }
3152         /* Avoid unbounded allocations */
3153         l = MIN(l, TARGET_PAGE_SIZE);
3154         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3155         bounce.addr = addr;
3156         bounce.len = l;
3157 
3158         memory_region_ref(mr);
3159         bounce.mr = mr;
3160         if (!is_write) {
3161             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3162                                bounce.buffer, l);
3163         }
3164 
3165         *plen = l;
3166         return bounce.buffer;
3167     }
3168 
3169 
3170     memory_region_ref(mr);
3171     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3172                                         l, is_write, attrs);
3173     fuzz_dma_read_cb(addr, *plen, mr);
3174     return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3175 }
3176 
3177 /* Unmaps a memory region previously mapped by address_space_map().
3178  * Will also mark the memory as dirty if is_write is true.  access_len gives
3179  * the amount of memory that was actually read or written by the caller.
3180  */
3181 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3182                          bool is_write, hwaddr access_len)
3183 {
3184     if (buffer != bounce.buffer) {
3185         MemoryRegion *mr;
3186         ram_addr_t addr1;
3187 
3188         mr = memory_region_from_host(buffer, &addr1);
3189         assert(mr != NULL);
3190         if (is_write) {
3191             invalidate_and_set_dirty(mr, addr1, access_len);
3192         }
3193         if (xen_enabled()) {
3194             xen_invalidate_map_cache_entry(buffer);
3195         }
3196         memory_region_unref(mr);
3197         return;
3198     }
3199     if (is_write) {
3200         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3201                             bounce.buffer, access_len);
3202     }
3203     qemu_vfree(bounce.buffer);
3204     bounce.buffer = NULL;
3205     memory_region_unref(bounce.mr);
3206     /* Clear in_use before reading map_client_list.  */
3207     qatomic_set_mb(&bounce.in_use, false);
3208     cpu_notify_map_clients();
3209 }
3210 
3211 void *cpu_physical_memory_map(hwaddr addr,
3212                               hwaddr *plen,
3213                               bool is_write)
3214 {
3215     return address_space_map(&address_space_memory, addr, plen, is_write,
3216                              MEMTXATTRS_UNSPECIFIED);
3217 }
3218 
3219 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3220                                bool is_write, hwaddr access_len)
3221 {
3222     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3223 }
3224 
3225 #define ARG1_DECL                AddressSpace *as
3226 #define ARG1                     as
3227 #define SUFFIX
3228 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3229 #define RCU_READ_LOCK(...)       rcu_read_lock()
3230 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3231 #include "memory_ldst.c.inc"
3232 
3233 int64_t address_space_cache_init(MemoryRegionCache *cache,
3234                                  AddressSpace *as,
3235                                  hwaddr addr,
3236                                  hwaddr len,
3237                                  bool is_write)
3238 {
3239     AddressSpaceDispatch *d;
3240     hwaddr l;
3241     MemoryRegion *mr;
3242     Int128 diff;
3243 
3244     assert(len > 0);
3245 
3246     l = len;
3247     cache->fv = address_space_get_flatview(as);
3248     d = flatview_to_dispatch(cache->fv);
3249     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3250 
3251     /*
3252      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3253      * Take that into account to compute how many bytes are there between
3254      * cache->xlat and the end of the section.
3255      */
3256     diff = int128_sub(cache->mrs.size,
3257                       int128_make64(cache->xlat - cache->mrs.offset_within_region));
3258     l = int128_get64(int128_min(diff, int128_make64(l)));
3259 
3260     mr = cache->mrs.mr;
3261     memory_region_ref(mr);
3262     if (memory_access_is_direct(mr, is_write)) {
3263         /* We don't care about the memory attributes here as we're only
3264          * doing this if we found actual RAM, which behaves the same
3265          * regardless of attributes; so UNSPECIFIED is fine.
3266          */
3267         l = flatview_extend_translation(cache->fv, addr, len, mr,
3268                                         cache->xlat, l, is_write,
3269                                         MEMTXATTRS_UNSPECIFIED);
3270         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3271     } else {
3272         cache->ptr = NULL;
3273     }
3274 
3275     cache->len = l;
3276     cache->is_write = is_write;
3277     return l;
3278 }
3279 
3280 void address_space_cache_invalidate(MemoryRegionCache *cache,
3281                                     hwaddr addr,
3282                                     hwaddr access_len)
3283 {
3284     assert(cache->is_write);
3285     if (likely(cache->ptr)) {
3286         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3287     }
3288 }
3289 
3290 void address_space_cache_destroy(MemoryRegionCache *cache)
3291 {
3292     if (!cache->mrs.mr) {
3293         return;
3294     }
3295 
3296     if (xen_enabled()) {
3297         xen_invalidate_map_cache_entry(cache->ptr);
3298     }
3299     memory_region_unref(cache->mrs.mr);
3300     flatview_unref(cache->fv);
3301     cache->mrs.mr = NULL;
3302     cache->fv = NULL;
3303 }
3304 
3305 /* Called from RCU critical section.  This function has the same
3306  * semantics as address_space_translate, but it only works on a
3307  * predefined range of a MemoryRegion that was mapped with
3308  * address_space_cache_init.
3309  */
3310 static inline MemoryRegion *address_space_translate_cached(
3311     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3312     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3313 {
3314     MemoryRegionSection section;
3315     MemoryRegion *mr;
3316     IOMMUMemoryRegion *iommu_mr;
3317     AddressSpace *target_as;
3318 
3319     assert(!cache->ptr);
3320     *xlat = addr + cache->xlat;
3321 
3322     mr = cache->mrs.mr;
3323     iommu_mr = memory_region_get_iommu(mr);
3324     if (!iommu_mr) {
3325         /* MMIO region.  */
3326         return mr;
3327     }
3328 
3329     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3330                                             NULL, is_write, true,
3331                                             &target_as, attrs);
3332     return section.mr;
3333 }
3334 
3335 /* Called from RCU critical section. address_space_read_cached uses this
3336  * out of line function when the target is an MMIO or IOMMU region.
3337  */
3338 MemTxResult
3339 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3340                                    void *buf, hwaddr len)
3341 {
3342     hwaddr addr1, l;
3343     MemoryRegion *mr;
3344 
3345     l = len;
3346     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3347                                         MEMTXATTRS_UNSPECIFIED);
3348     return flatview_read_continue(cache->fv,
3349                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3350                                   addr1, l, mr);
3351 }
3352 
3353 /* Called from RCU critical section. address_space_write_cached uses this
3354  * out of line function when the target is an MMIO or IOMMU region.
3355  */
3356 MemTxResult
3357 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3358                                     const void *buf, hwaddr len)
3359 {
3360     hwaddr addr1, l;
3361     MemoryRegion *mr;
3362 
3363     l = len;
3364     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3365                                         MEMTXATTRS_UNSPECIFIED);
3366     return flatview_write_continue(cache->fv,
3367                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3368                                    addr1, l, mr);
3369 }
3370 
3371 #define ARG1_DECL                MemoryRegionCache *cache
3372 #define ARG1                     cache
3373 #define SUFFIX                   _cached_slow
3374 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3375 #define RCU_READ_LOCK()          ((void)0)
3376 #define RCU_READ_UNLOCK()        ((void)0)
3377 #include "memory_ldst.c.inc"
3378 
3379 /* virtual memory access for debug (includes writing to ROM) */
3380 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3381                         void *ptr, size_t len, bool is_write)
3382 {
3383     hwaddr phys_addr;
3384     vaddr l, page;
3385     uint8_t *buf = ptr;
3386 
3387     cpu_synchronize_state(cpu);
3388     while (len > 0) {
3389         int asidx;
3390         MemTxAttrs attrs;
3391         MemTxResult res;
3392 
3393         page = addr & TARGET_PAGE_MASK;
3394         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3395         asidx = cpu_asidx_from_attrs(cpu, attrs);
3396         /* if no physical page mapped, return an error */
3397         if (phys_addr == -1)
3398             return -1;
3399         l = (page + TARGET_PAGE_SIZE) - addr;
3400         if (l > len)
3401             l = len;
3402         phys_addr += (addr & ~TARGET_PAGE_MASK);
3403         if (is_write) {
3404             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3405                                           attrs, buf, l);
3406         } else {
3407             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3408                                      attrs, buf, l);
3409         }
3410         if (res != MEMTX_OK) {
3411             return -1;
3412         }
3413         len -= l;
3414         buf += l;
3415         addr += l;
3416     }
3417     return 0;
3418 }
3419 
3420 /*
3421  * Allows code that needs to deal with migration bitmaps etc to still be built
3422  * target independent.
3423  */
3424 size_t qemu_target_page_size(void)
3425 {
3426     return TARGET_PAGE_SIZE;
3427 }
3428 
3429 int qemu_target_page_mask(void)
3430 {
3431     return TARGET_PAGE_MASK;
3432 }
3433 
3434 int qemu_target_page_bits(void)
3435 {
3436     return TARGET_PAGE_BITS;
3437 }
3438 
3439 int qemu_target_page_bits_min(void)
3440 {
3441     return TARGET_PAGE_BITS_MIN;
3442 }
3443 
3444 /* Convert target pages to MiB (2**20). */
3445 size_t qemu_target_pages_to_MiB(size_t pages)
3446 {
3447     int page_bits = TARGET_PAGE_BITS;
3448 
3449     /* So far, the largest (non-huge) page size is 64k, i.e. 16 bits. */
3450     g_assert(page_bits < 20);
3451 
3452     return pages >> (20 - page_bits);
3453 }
3454 
3455 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3456 {
3457     MemoryRegion*mr;
3458     hwaddr l = 1;
3459 
3460     RCU_READ_LOCK_GUARD();
3461     mr = address_space_translate(&address_space_memory,
3462                                  phys_addr, &phys_addr, &l, false,
3463                                  MEMTXATTRS_UNSPECIFIED);
3464 
3465     return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3466 }
3467 
3468 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3469 {
3470     RAMBlock *block;
3471     int ret = 0;
3472 
3473     RCU_READ_LOCK_GUARD();
3474     RAMBLOCK_FOREACH(block) {
3475         ret = func(block, opaque);
3476         if (ret) {
3477             break;
3478         }
3479     }
3480     return ret;
3481 }
3482 
3483 /*
3484  * Unmap pages of memory from start to start+length such that
3485  * they a) read as 0, b) Trigger whatever fault mechanism
3486  * the OS provides for postcopy.
3487  * The pages must be unmapped by the end of the function.
3488  * Returns: 0 on success, none-0 on failure
3489  *
3490  */
3491 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3492 {
3493     int ret = -1;
3494 
3495     uint8_t *host_startaddr = rb->host + start;
3496 
3497     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3498         error_report("ram_block_discard_range: Unaligned start address: %p",
3499                      host_startaddr);
3500         goto err;
3501     }
3502 
3503     if ((start + length) <= rb->max_length) {
3504         bool need_madvise, need_fallocate;
3505         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3506             error_report("ram_block_discard_range: Unaligned length: %zx",
3507                          length);
3508             goto err;
3509         }
3510 
3511         errno = ENOTSUP; /* If we are missing MADVISE etc */
3512 
3513         /* The logic here is messy;
3514          *    madvise DONTNEED fails for hugepages
3515          *    fallocate works on hugepages and shmem
3516          *    shared anonymous memory requires madvise REMOVE
3517          */
3518         need_madvise = (rb->page_size == qemu_host_page_size);
3519         need_fallocate = rb->fd != -1;
3520         if (need_fallocate) {
3521             /* For a file, this causes the area of the file to be zero'd
3522              * if read, and for hugetlbfs also causes it to be unmapped
3523              * so a userfault will trigger.
3524              */
3525 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3526             /*
3527              * fallocate() will fail with readonly files. Let's print a
3528              * proper error message.
3529              */
3530             if (rb->flags & RAM_READONLY_FD) {
3531                 error_report("ram_block_discard_range: Discarding RAM"
3532                              " with readonly files is not supported");
3533                 goto err;
3534 
3535             }
3536             /*
3537              * We'll discard data from the actual file, even though we only
3538              * have a MAP_PRIVATE mapping, possibly messing with other
3539              * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3540              * change that behavior whithout violating the promised
3541              * semantics of ram_block_discard_range().
3542              *
3543              * Only warn, because it works as long as nobody else uses that
3544              * file.
3545              */
3546             if (!qemu_ram_is_shared(rb)) {
3547                 warn_report_once("ram_block_discard_range: Discarding RAM"
3548                                  " in private file mappings is possibly"
3549                                  " dangerous, because it will modify the"
3550                                  " underlying file and will affect other"
3551                                  " users of the file");
3552             }
3553 
3554             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3555                             start, length);
3556             if (ret) {
3557                 ret = -errno;
3558                 error_report("ram_block_discard_range: Failed to fallocate "
3559                              "%s:%" PRIx64 " +%zx (%d)",
3560                              rb->idstr, start, length, ret);
3561                 goto err;
3562             }
3563 #else
3564             ret = -ENOSYS;
3565             error_report("ram_block_discard_range: fallocate not available/file"
3566                          "%s:%" PRIx64 " +%zx (%d)",
3567                          rb->idstr, start, length, ret);
3568             goto err;
3569 #endif
3570         }
3571         if (need_madvise) {
3572             /* For normal RAM this causes it to be unmapped,
3573              * for shared memory it causes the local mapping to disappear
3574              * and to fall back on the file contents (which we just
3575              * fallocate'd away).
3576              */
3577 #if defined(CONFIG_MADVISE)
3578             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3579                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3580             } else {
3581                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3582             }
3583             if (ret) {
3584                 ret = -errno;
3585                 error_report("ram_block_discard_range: Failed to discard range "
3586                              "%s:%" PRIx64 " +%zx (%d)",
3587                              rb->idstr, start, length, ret);
3588                 goto err;
3589             }
3590 #else
3591             ret = -ENOSYS;
3592             error_report("ram_block_discard_range: MADVISE not available"
3593                          "%s:%" PRIx64 " +%zx (%d)",
3594                          rb->idstr, start, length, ret);
3595             goto err;
3596 #endif
3597         }
3598         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3599                                       need_madvise, need_fallocate, ret);
3600     } else {
3601         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3602                      "/%zx/" RAM_ADDR_FMT")",
3603                      rb->idstr, start, length, rb->max_length);
3604     }
3605 
3606 err:
3607     return ret;
3608 }
3609 
3610 bool ramblock_is_pmem(RAMBlock *rb)
3611 {
3612     return rb->flags & RAM_PMEM;
3613 }
3614 
3615 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3616 {
3617     if (start == end - 1) {
3618         qemu_printf("\t%3d      ", start);
3619     } else {
3620         qemu_printf("\t%3d..%-3d ", start, end - 1);
3621     }
3622     qemu_printf(" skip=%d ", skip);
3623     if (ptr == PHYS_MAP_NODE_NIL) {
3624         qemu_printf(" ptr=NIL");
3625     } else if (!skip) {
3626         qemu_printf(" ptr=#%d", ptr);
3627     } else {
3628         qemu_printf(" ptr=[%d]", ptr);
3629     }
3630     qemu_printf("\n");
3631 }
3632 
3633 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3634                            int128_sub((size), int128_one())) : 0)
3635 
3636 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3637 {
3638     int i;
3639 
3640     qemu_printf("  Dispatch\n");
3641     qemu_printf("    Physical sections\n");
3642 
3643     for (i = 0; i < d->map.sections_nb; ++i) {
3644         MemoryRegionSection *s = d->map.sections + i;
3645         const char *names[] = { " [unassigned]", " [not dirty]",
3646                                 " [ROM]", " [watch]" };
3647 
3648         qemu_printf("      #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3649                     " %s%s%s%s%s",
3650             i,
3651             s->offset_within_address_space,
3652             s->offset_within_address_space + MR_SIZE(s->size),
3653             s->mr->name ? s->mr->name : "(noname)",
3654             i < ARRAY_SIZE(names) ? names[i] : "",
3655             s->mr == root ? " [ROOT]" : "",
3656             s == d->mru_section ? " [MRU]" : "",
3657             s->mr->is_iommu ? " [iommu]" : "");
3658 
3659         if (s->mr->alias) {
3660             qemu_printf(" alias=%s", s->mr->alias->name ?
3661                     s->mr->alias->name : "noname");
3662         }
3663         qemu_printf("\n");
3664     }
3665 
3666     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3667                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3668     for (i = 0; i < d->map.nodes_nb; ++i) {
3669         int j, jprev;
3670         PhysPageEntry prev;
3671         Node *n = d->map.nodes + i;
3672 
3673         qemu_printf("      [%d]\n", i);
3674 
3675         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3676             PhysPageEntry *pe = *n + j;
3677 
3678             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3679                 continue;
3680             }
3681 
3682             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3683 
3684             jprev = j;
3685             prev = *pe;
3686         }
3687 
3688         if (jprev != ARRAY_SIZE(*n)) {
3689             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3690         }
3691     }
3692 }
3693 
3694 /* Require any discards to work. */
3695 static unsigned int ram_block_discard_required_cnt;
3696 /* Require only coordinated discards to work. */
3697 static unsigned int ram_block_coordinated_discard_required_cnt;
3698 /* Disable any discards. */
3699 static unsigned int ram_block_discard_disabled_cnt;
3700 /* Disable only uncoordinated discards. */
3701 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3702 static QemuMutex ram_block_discard_disable_mutex;
3703 
3704 static void ram_block_discard_disable_mutex_lock(void)
3705 {
3706     static gsize initialized;
3707 
3708     if (g_once_init_enter(&initialized)) {
3709         qemu_mutex_init(&ram_block_discard_disable_mutex);
3710         g_once_init_leave(&initialized, 1);
3711     }
3712     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3713 }
3714 
3715 static void ram_block_discard_disable_mutex_unlock(void)
3716 {
3717     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3718 }
3719 
3720 int ram_block_discard_disable(bool state)
3721 {
3722     int ret = 0;
3723 
3724     ram_block_discard_disable_mutex_lock();
3725     if (!state) {
3726         ram_block_discard_disabled_cnt--;
3727     } else if (ram_block_discard_required_cnt ||
3728                ram_block_coordinated_discard_required_cnt) {
3729         ret = -EBUSY;
3730     } else {
3731         ram_block_discard_disabled_cnt++;
3732     }
3733     ram_block_discard_disable_mutex_unlock();
3734     return ret;
3735 }
3736 
3737 int ram_block_uncoordinated_discard_disable(bool state)
3738 {
3739     int ret = 0;
3740 
3741     ram_block_discard_disable_mutex_lock();
3742     if (!state) {
3743         ram_block_uncoordinated_discard_disabled_cnt--;
3744     } else if (ram_block_discard_required_cnt) {
3745         ret = -EBUSY;
3746     } else {
3747         ram_block_uncoordinated_discard_disabled_cnt++;
3748     }
3749     ram_block_discard_disable_mutex_unlock();
3750     return ret;
3751 }
3752 
3753 int ram_block_discard_require(bool state)
3754 {
3755     int ret = 0;
3756 
3757     ram_block_discard_disable_mutex_lock();
3758     if (!state) {
3759         ram_block_discard_required_cnt--;
3760     } else if (ram_block_discard_disabled_cnt ||
3761                ram_block_uncoordinated_discard_disabled_cnt) {
3762         ret = -EBUSY;
3763     } else {
3764         ram_block_discard_required_cnt++;
3765     }
3766     ram_block_discard_disable_mutex_unlock();
3767     return ret;
3768 }
3769 
3770 int ram_block_coordinated_discard_require(bool state)
3771 {
3772     int ret = 0;
3773 
3774     ram_block_discard_disable_mutex_lock();
3775     if (!state) {
3776         ram_block_coordinated_discard_required_cnt--;
3777     } else if (ram_block_discard_disabled_cnt) {
3778         ret = -EBUSY;
3779     } else {
3780         ram_block_coordinated_discard_required_cnt++;
3781     }
3782     ram_block_discard_disable_mutex_unlock();
3783     return ret;
3784 }
3785 
3786 bool ram_block_discard_is_disabled(void)
3787 {
3788     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3789            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3790 }
3791 
3792 bool ram_block_discard_is_required(void)
3793 {
3794     return qatomic_read(&ram_block_discard_required_cnt) ||
3795            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3796 }
3797