xref: /qemu/target/alpha/cpu.h (revision 6402cbbb)
1 /*
2  *  Alpha emulation cpu definitions for qemu.
3  *
4  *  Copyright (c) 2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ALPHA_CPU_H
21 #define ALPHA_CPU_H
22 
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
25 
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
28 
29 #define CPUArchState struct CPUAlphaState
30 
31 /* Alpha processors have a weak memory model */
32 #define TCG_GUEST_DEFAULT_MO      (0)
33 
34 #include "exec/cpu-defs.h"
35 
36 #include "fpu/softfloat.h"
37 
38 #define ICACHE_LINE_SIZE 32
39 #define DCACHE_LINE_SIZE 32
40 
41 #define TARGET_PAGE_BITS 13
42 
43 #ifdef CONFIG_USER_ONLY
44 /* ??? The kernel likes to give addresses in high memory.  If the host has
45    more virtual address space than the guest, this can lead to impossible
46    allocations.  Honor the long-standing assumption that only kernel addrs
47    are negative, but otherwise allow allocations anywhere.  This could lead
48    to tricky emulation problems for programs doing tagged addressing, but
49    that's far fewer than encounter the impossible allocation problem.  */
50 #define TARGET_PHYS_ADDR_SPACE_BITS  63
51 #define TARGET_VIRT_ADDR_SPACE_BITS  63
52 #else
53 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44.  */
54 #define TARGET_PHYS_ADDR_SPACE_BITS  44
55 #define TARGET_VIRT_ADDR_SPACE_BITS  (30 + TARGET_PAGE_BITS)
56 #endif
57 
58 /* Alpha major type */
59 enum {
60     ALPHA_EV3  = 1,
61     ALPHA_EV4  = 2,
62     ALPHA_SIM  = 3,
63     ALPHA_LCA  = 4,
64     ALPHA_EV5  = 5, /* 21164 */
65     ALPHA_EV45 = 6, /* 21064A */
66     ALPHA_EV56 = 7, /* 21164A */
67 };
68 
69 /* EV4 minor type */
70 enum {
71     ALPHA_EV4_2 = 0,
72     ALPHA_EV4_3 = 1,
73 };
74 
75 /* LCA minor type */
76 enum {
77     ALPHA_LCA_1 = 1, /* 21066 */
78     ALPHA_LCA_2 = 2, /* 20166 */
79     ALPHA_LCA_3 = 3, /* 21068 */
80     ALPHA_LCA_4 = 4, /* 21068 */
81     ALPHA_LCA_5 = 5, /* 21066A */
82     ALPHA_LCA_6 = 6, /* 21068A */
83 };
84 
85 /* EV5 minor type */
86 enum {
87     ALPHA_EV5_1 = 1, /* Rev BA, CA */
88     ALPHA_EV5_2 = 2, /* Rev DA, EA */
89     ALPHA_EV5_3 = 3, /* Pass 3 */
90     ALPHA_EV5_4 = 4, /* Pass 3.2 */
91     ALPHA_EV5_5 = 5, /* Pass 4 */
92 };
93 
94 /* EV45 minor type */
95 enum {
96     ALPHA_EV45_1 = 1, /* Pass 1 */
97     ALPHA_EV45_2 = 2, /* Pass 1.1 */
98     ALPHA_EV45_3 = 3, /* Pass 2 */
99 };
100 
101 /* EV56 minor type */
102 enum {
103     ALPHA_EV56_1 = 1, /* Pass 1 */
104     ALPHA_EV56_2 = 2, /* Pass 2 */
105 };
106 
107 enum {
108     IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
109     IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
110     IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
111     IMPLVER_21364 = 3, /* EV7 & EV79 */
112 };
113 
114 enum {
115     AMASK_BWX      = 0x00000001,
116     AMASK_FIX      = 0x00000002,
117     AMASK_CIX      = 0x00000004,
118     AMASK_MVI      = 0x00000100,
119     AMASK_TRAP     = 0x00000200,
120     AMASK_PREFETCH = 0x00001000,
121 };
122 
123 enum {
124     VAX_ROUND_NORMAL = 0,
125     VAX_ROUND_CHOPPED,
126 };
127 
128 enum {
129     IEEE_ROUND_NORMAL = 0,
130     IEEE_ROUND_DYNAMIC,
131     IEEE_ROUND_PLUS,
132     IEEE_ROUND_MINUS,
133     IEEE_ROUND_CHOPPED,
134 };
135 
136 /* IEEE floating-point operations encoding */
137 /* Trap mode */
138 enum {
139     FP_TRAP_I   = 0x0,
140     FP_TRAP_U   = 0x1,
141     FP_TRAP_S  = 0x4,
142     FP_TRAP_SU  = 0x5,
143     FP_TRAP_SUI = 0x7,
144 };
145 
146 /* Rounding mode */
147 enum {
148     FP_ROUND_CHOPPED = 0x0,
149     FP_ROUND_MINUS   = 0x1,
150     FP_ROUND_NORMAL  = 0x2,
151     FP_ROUND_DYNAMIC = 0x3,
152 };
153 
154 /* FPCR bits -- right-shifted 32 so we can use a uint32_t.  */
155 #define FPCR_SUM                (1U << (63 - 32))
156 #define FPCR_INED               (1U << (62 - 32))
157 #define FPCR_UNFD               (1U << (61 - 32))
158 #define FPCR_UNDZ               (1U << (60 - 32))
159 #define FPCR_DYN_SHIFT          (58 - 32)
160 #define FPCR_DYN_CHOPPED        (0U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MINUS          (1U << FPCR_DYN_SHIFT)
162 #define FPCR_DYN_NORMAL         (2U << FPCR_DYN_SHIFT)
163 #define FPCR_DYN_PLUS           (3U << FPCR_DYN_SHIFT)
164 #define FPCR_DYN_MASK           (3U << FPCR_DYN_SHIFT)
165 #define FPCR_IOV                (1U << (57 - 32))
166 #define FPCR_INE                (1U << (56 - 32))
167 #define FPCR_UNF                (1U << (55 - 32))
168 #define FPCR_OVF                (1U << (54 - 32))
169 #define FPCR_DZE                (1U << (53 - 32))
170 #define FPCR_INV                (1U << (52 - 32))
171 #define FPCR_OVFD               (1U << (51 - 32))
172 #define FPCR_DZED               (1U << (50 - 32))
173 #define FPCR_INVD               (1U << (49 - 32))
174 #define FPCR_DNZ                (1U << (48 - 32))
175 #define FPCR_DNOD               (1U << (47 - 32))
176 #define FPCR_STATUS_MASK        (FPCR_IOV | FPCR_INE | FPCR_UNF \
177                                  | FPCR_OVF | FPCR_DZE | FPCR_INV)
178 
179 /* The silly software trap enables implemented by the kernel emulation.
180    These are more or less architecturally required, since the real hardware
181    has read-as-zero bits in the FPCR when the features aren't implemented.
182    For the purposes of QEMU, we pretend the FPCR can hold everything.  */
183 #define SWCR_TRAP_ENABLE_INV    (1U << 1)
184 #define SWCR_TRAP_ENABLE_DZE    (1U << 2)
185 #define SWCR_TRAP_ENABLE_OVF    (1U << 3)
186 #define SWCR_TRAP_ENABLE_UNF    (1U << 4)
187 #define SWCR_TRAP_ENABLE_INE    (1U << 5)
188 #define SWCR_TRAP_ENABLE_DNO    (1U << 6)
189 #define SWCR_TRAP_ENABLE_MASK   ((1U << 7) - (1U << 1))
190 
191 #define SWCR_MAP_DMZ            (1U << 12)
192 #define SWCR_MAP_UMZ            (1U << 13)
193 #define SWCR_MAP_MASK           (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
194 
195 #define SWCR_STATUS_INV         (1U << 17)
196 #define SWCR_STATUS_DZE         (1U << 18)
197 #define SWCR_STATUS_OVF         (1U << 19)
198 #define SWCR_STATUS_UNF         (1U << 20)
199 #define SWCR_STATUS_INE         (1U << 21)
200 #define SWCR_STATUS_DNO         (1U << 22)
201 #define SWCR_STATUS_MASK        ((1U << 23) - (1U << 17))
202 
203 #define SWCR_MASK  (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
204 
205 /* MMU modes definitions */
206 
207 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
208    The Unix PALcode only exposes the kernel and user modes; presumably
209    executive and supervisor are used by VMS.
210 
211    PALcode itself uses physical mode for code and kernel mode for data;
212    there are PALmode instructions that can access data via physical mode
213    or via an os-installed "alternate mode", which is one of the 4 above.
214 
215    That said, we're only emulating Unix PALcode, and not attempting VMS,
216    so we don't need to implement Executive and Supervisor.  QEMU's own
217    PALcode cheats and usees the KSEG mapping for its code+data rather than
218    physical addresses.  */
219 
220 #define NB_MMU_MODES 3
221 
222 #define MMU_MODE0_SUFFIX _kernel
223 #define MMU_MODE1_SUFFIX _user
224 #define MMU_KERNEL_IDX   0
225 #define MMU_USER_IDX     1
226 #define MMU_PHYS_IDX     2
227 
228 typedef struct CPUAlphaState CPUAlphaState;
229 
230 struct CPUAlphaState {
231     uint64_t ir[31];
232     float64 fir[31];
233     uint64_t pc;
234     uint64_t unique;
235     uint64_t lock_addr;
236     uint64_t lock_value;
237 
238     /* The FPCR, and disassembled portions thereof.  */
239     uint32_t fpcr;
240     uint32_t fpcr_exc_enable;
241     float_status fp_status;
242     uint8_t fpcr_dyn_round;
243     uint8_t fpcr_flush_to_zero;
244 
245     /* Mask of PALmode, Processor State et al.  Most of this gets copied
246        into the TranslatorBlock flags and controls code generation.  */
247     uint32_t flags;
248 
249     /* The high 32-bits of the processor cycle counter.  */
250     uint32_t pcc_ofs;
251 
252     /* These pass data from the exception logic in the translator and
253        helpers to the OS entry point.  This is used for both system
254        emulation and user-mode.  */
255     uint64_t trap_arg0;
256     uint64_t trap_arg1;
257     uint64_t trap_arg2;
258 
259 #if !defined(CONFIG_USER_ONLY)
260     /* The internal data required by our emulation of the Unix PALcode.  */
261     uint64_t exc_addr;
262     uint64_t palbr;
263     uint64_t ptbr;
264     uint64_t vptptr;
265     uint64_t sysval;
266     uint64_t usp;
267     uint64_t shadow[8];
268     uint64_t scratch[24];
269 #endif
270 
271     /* This alarm doesn't exist in real hardware; we wish it did.  */
272     uint64_t alarm_expire;
273 
274     /* Those resources are used only in QEMU core */
275     CPU_COMMON
276 
277     int error_code;
278 
279     uint32_t features;
280     uint32_t amask;
281     int implver;
282 };
283 
284 /**
285  * AlphaCPU:
286  * @env: #CPUAlphaState
287  *
288  * An Alpha CPU.
289  */
290 struct AlphaCPU {
291     /*< private >*/
292     CPUState parent_obj;
293     /*< public >*/
294 
295     CPUAlphaState env;
296 
297     /* This alarm doesn't exist in real hardware; we wish it did.  */
298     QEMUTimer *alarm_timer;
299 };
300 
301 static inline AlphaCPU *alpha_env_get_cpu(CPUAlphaState *env)
302 {
303     return container_of(env, AlphaCPU, env);
304 }
305 
306 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
307 
308 #define ENV_OFFSET offsetof(AlphaCPU, env)
309 
310 #ifndef CONFIG_USER_ONLY
311 extern const struct VMStateDescription vmstate_alpha_cpu;
312 #endif
313 
314 void alpha_cpu_do_interrupt(CPUState *cpu);
315 bool alpha_cpu_exec_interrupt(CPUState *cpu, int int_req);
316 void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
317                           int flags);
318 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
319 int alpha_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
320 int alpha_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
321 void alpha_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
322                                    MMUAccessType access_type,
323                                    int mmu_idx, uintptr_t retaddr);
324 
325 #define cpu_list alpha_cpu_list
326 #define cpu_signal_handler cpu_alpha_signal_handler
327 
328 #include "exec/cpu-all.h"
329 
330 enum {
331     FEATURE_ASN    = 0x00000001,
332     FEATURE_SPS    = 0x00000002,
333     FEATURE_VIRBND = 0x00000004,
334     FEATURE_TBCHK  = 0x00000008,
335 };
336 
337 enum {
338     EXCP_RESET,
339     EXCP_MCHK,
340     EXCP_SMP_INTERRUPT,
341     EXCP_CLK_INTERRUPT,
342     EXCP_DEV_INTERRUPT,
343     EXCP_MMFAULT,
344     EXCP_UNALIGN,
345     EXCP_OPCDEC,
346     EXCP_ARITH,
347     EXCP_FEN,
348     EXCP_CALL_PAL,
349 };
350 
351 /* Alpha-specific interrupt pending bits.  */
352 #define CPU_INTERRUPT_TIMER	CPU_INTERRUPT_TGT_EXT_0
353 #define CPU_INTERRUPT_SMP	CPU_INTERRUPT_TGT_EXT_1
354 #define CPU_INTERRUPT_MCHK	CPU_INTERRUPT_TGT_EXT_2
355 
356 /* OSF/1 Page table bits.  */
357 enum {
358     PTE_VALID = 0x0001,
359     PTE_FOR   = 0x0002,  /* used for page protection (fault on read) */
360     PTE_FOW   = 0x0004,  /* used for page protection (fault on write) */
361     PTE_FOE   = 0x0008,  /* used for page protection (fault on exec) */
362     PTE_ASM   = 0x0010,
363     PTE_KRE   = 0x0100,
364     PTE_URE   = 0x0200,
365     PTE_KWE   = 0x1000,
366     PTE_UWE   = 0x2000
367 };
368 
369 /* Hardware interrupt (entInt) constants.  */
370 enum {
371     INT_K_IP,
372     INT_K_CLK,
373     INT_K_MCHK,
374     INT_K_DEV,
375     INT_K_PERF,
376 };
377 
378 /* Memory management (entMM) constants.  */
379 enum {
380     MM_K_TNV,
381     MM_K_ACV,
382     MM_K_FOR,
383     MM_K_FOE,
384     MM_K_FOW
385 };
386 
387 /* Arithmetic exception (entArith) constants.  */
388 enum {
389     EXC_M_SWC = 1,      /* Software completion */
390     EXC_M_INV = 2,      /* Invalid operation */
391     EXC_M_DZE = 4,      /* Division by zero */
392     EXC_M_FOV = 8,      /* Overflow */
393     EXC_M_UNF = 16,     /* Underflow */
394     EXC_M_INE = 32,     /* Inexact result */
395     EXC_M_IOV = 64      /* Integer Overflow */
396 };
397 
398 /* Processor status constants.  */
399 /* Low 3 bits are interrupt mask level.  */
400 #define PS_INT_MASK   7u
401 
402 /* Bits 4 and 5 are the mmu mode.  The VMS PALcode uses all 4 modes;
403    The Unix PALcode only uses bit 4.  */
404 #define PS_USER_MODE  8u
405 
406 /* CPUAlphaState->flags constants.  These are layed out so that we
407    can set or reset the pieces individually by assigning to the byte,
408    or manipulated as a whole.  */
409 
410 #define ENV_FLAG_PAL_SHIFT    0
411 #define ENV_FLAG_PS_SHIFT     8
412 #define ENV_FLAG_RX_SHIFT     16
413 #define ENV_FLAG_FEN_SHIFT    24
414 
415 #define ENV_FLAG_PAL_MODE     (1u << ENV_FLAG_PAL_SHIFT)
416 #define ENV_FLAG_PS_USER      (PS_USER_MODE << ENV_FLAG_PS_SHIFT)
417 #define ENV_FLAG_RX_FLAG      (1u << ENV_FLAG_RX_SHIFT)
418 #define ENV_FLAG_FEN          (1u << ENV_FLAG_FEN_SHIFT)
419 
420 #define ENV_FLAG_TB_MASK \
421     (ENV_FLAG_PAL_MODE | ENV_FLAG_PS_USER | ENV_FLAG_FEN)
422 
423 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
424 {
425     int ret = env->flags & ENV_FLAG_PS_USER ? MMU_USER_IDX : MMU_KERNEL_IDX;
426     if (env->flags & ENV_FLAG_PAL_MODE) {
427         ret = MMU_KERNEL_IDX;
428     }
429     return ret;
430 }
431 
432 enum {
433     IR_V0   = 0,
434     IR_T0   = 1,
435     IR_T1   = 2,
436     IR_T2   = 3,
437     IR_T3   = 4,
438     IR_T4   = 5,
439     IR_T5   = 6,
440     IR_T6   = 7,
441     IR_T7   = 8,
442     IR_S0   = 9,
443     IR_S1   = 10,
444     IR_S2   = 11,
445     IR_S3   = 12,
446     IR_S4   = 13,
447     IR_S5   = 14,
448     IR_S6   = 15,
449     IR_FP   = IR_S6,
450     IR_A0   = 16,
451     IR_A1   = 17,
452     IR_A2   = 18,
453     IR_A3   = 19,
454     IR_A4   = 20,
455     IR_A5   = 21,
456     IR_T8   = 22,
457     IR_T9   = 23,
458     IR_T10  = 24,
459     IR_T11  = 25,
460     IR_RA   = 26,
461     IR_T12  = 27,
462     IR_PV   = IR_T12,
463     IR_AT   = 28,
464     IR_GP   = 29,
465     IR_SP   = 30,
466     IR_ZERO = 31,
467 };
468 
469 void alpha_translate_init(void);
470 
471 AlphaCPU *cpu_alpha_init(const char *cpu_model);
472 
473 #define cpu_init(cpu_model) CPU(cpu_alpha_init(cpu_model))
474 
475 void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
476 /* you can call this signal handler from your SIGBUS and SIGSEGV
477    signal handlers to inform the virtual CPU of exceptions. non zero
478    is returned if the signal was handled by the virtual CPU.  */
479 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
480                              void *puc);
481 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
482                                int mmu_idx);
483 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
484 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
485 
486 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
487 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
488 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
489 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
490 #ifndef CONFIG_USER_ONLY
491 QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
492                                                bool is_write, bool is_exec,
493                                                int unused, unsigned size);
494 #endif
495 
496 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
497                                         target_ulong *cs_base, uint32_t *pflags)
498 {
499     *pc = env->pc;
500     *cs_base = 0;
501     *pflags = env->flags & ENV_FLAG_TB_MASK;
502 }
503 
504 #endif /* ALPHA_CPU_H */
505