xref: /qemu/target/alpha/cpu.h (revision f6a51c84)
1 /*
2  *  Alpha emulation cpu definitions for qemu.
3  *
4  *  Copyright (c) 2007 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ALPHA_CPU_H
21 #define ALPHA_CPU_H
22 
23 #include "qemu-common.h"
24 #include "cpu-qom.h"
25 
26 #define TARGET_LONG_BITS 64
27 #define ALIGNED_ONLY
28 
29 #define CPUArchState struct CPUAlphaState
30 
31 #include "exec/cpu-defs.h"
32 
33 #include "fpu/softfloat.h"
34 
35 #define ICACHE_LINE_SIZE 32
36 #define DCACHE_LINE_SIZE 32
37 
38 #define TARGET_PAGE_BITS 13
39 
40 #ifdef CONFIG_USER_ONLY
41 /* ??? The kernel likes to give addresses in high memory.  If the host has
42    more virtual address space than the guest, this can lead to impossible
43    allocations.  Honor the long-standing assumption that only kernel addrs
44    are negative, but otherwise allow allocations anywhere.  This could lead
45    to tricky emulation problems for programs doing tagged addressing, but
46    that's far fewer than encounter the impossible allocation problem.  */
47 #define TARGET_PHYS_ADDR_SPACE_BITS  63
48 #define TARGET_VIRT_ADDR_SPACE_BITS  63
49 #else
50 /* ??? EV4 has 34 phys addr bits, EV5 has 40, EV6 has 44.  */
51 #define TARGET_PHYS_ADDR_SPACE_BITS  44
52 #define TARGET_VIRT_ADDR_SPACE_BITS  (30 + TARGET_PAGE_BITS)
53 #endif
54 
55 /* Alpha major type */
56 enum {
57     ALPHA_EV3  = 1,
58     ALPHA_EV4  = 2,
59     ALPHA_SIM  = 3,
60     ALPHA_LCA  = 4,
61     ALPHA_EV5  = 5, /* 21164 */
62     ALPHA_EV45 = 6, /* 21064A */
63     ALPHA_EV56 = 7, /* 21164A */
64 };
65 
66 /* EV4 minor type */
67 enum {
68     ALPHA_EV4_2 = 0,
69     ALPHA_EV4_3 = 1,
70 };
71 
72 /* LCA minor type */
73 enum {
74     ALPHA_LCA_1 = 1, /* 21066 */
75     ALPHA_LCA_2 = 2, /* 20166 */
76     ALPHA_LCA_3 = 3, /* 21068 */
77     ALPHA_LCA_4 = 4, /* 21068 */
78     ALPHA_LCA_5 = 5, /* 21066A */
79     ALPHA_LCA_6 = 6, /* 21068A */
80 };
81 
82 /* EV5 minor type */
83 enum {
84     ALPHA_EV5_1 = 1, /* Rev BA, CA */
85     ALPHA_EV5_2 = 2, /* Rev DA, EA */
86     ALPHA_EV5_3 = 3, /* Pass 3 */
87     ALPHA_EV5_4 = 4, /* Pass 3.2 */
88     ALPHA_EV5_5 = 5, /* Pass 4 */
89 };
90 
91 /* EV45 minor type */
92 enum {
93     ALPHA_EV45_1 = 1, /* Pass 1 */
94     ALPHA_EV45_2 = 2, /* Pass 1.1 */
95     ALPHA_EV45_3 = 3, /* Pass 2 */
96 };
97 
98 /* EV56 minor type */
99 enum {
100     ALPHA_EV56_1 = 1, /* Pass 1 */
101     ALPHA_EV56_2 = 2, /* Pass 2 */
102 };
103 
104 enum {
105     IMPLVER_2106x = 0, /* EV4, EV45 & LCA45 */
106     IMPLVER_21164 = 1, /* EV5, EV56 & PCA45 */
107     IMPLVER_21264 = 2, /* EV6, EV67 & EV68x */
108     IMPLVER_21364 = 3, /* EV7 & EV79 */
109 };
110 
111 enum {
112     AMASK_BWX      = 0x00000001,
113     AMASK_FIX      = 0x00000002,
114     AMASK_CIX      = 0x00000004,
115     AMASK_MVI      = 0x00000100,
116     AMASK_TRAP     = 0x00000200,
117     AMASK_PREFETCH = 0x00001000,
118 };
119 
120 enum {
121     VAX_ROUND_NORMAL = 0,
122     VAX_ROUND_CHOPPED,
123 };
124 
125 enum {
126     IEEE_ROUND_NORMAL = 0,
127     IEEE_ROUND_DYNAMIC,
128     IEEE_ROUND_PLUS,
129     IEEE_ROUND_MINUS,
130     IEEE_ROUND_CHOPPED,
131 };
132 
133 /* IEEE floating-point operations encoding */
134 /* Trap mode */
135 enum {
136     FP_TRAP_I   = 0x0,
137     FP_TRAP_U   = 0x1,
138     FP_TRAP_S  = 0x4,
139     FP_TRAP_SU  = 0x5,
140     FP_TRAP_SUI = 0x7,
141 };
142 
143 /* Rounding mode */
144 enum {
145     FP_ROUND_CHOPPED = 0x0,
146     FP_ROUND_MINUS   = 0x1,
147     FP_ROUND_NORMAL  = 0x2,
148     FP_ROUND_DYNAMIC = 0x3,
149 };
150 
151 /* FPCR bits -- right-shifted 32 so we can use a uint32_t.  */
152 #define FPCR_SUM                (1U << (63 - 32))
153 #define FPCR_INED               (1U << (62 - 32))
154 #define FPCR_UNFD               (1U << (61 - 32))
155 #define FPCR_UNDZ               (1U << (60 - 32))
156 #define FPCR_DYN_SHIFT          (58 - 32)
157 #define FPCR_DYN_CHOPPED        (0U << FPCR_DYN_SHIFT)
158 #define FPCR_DYN_MINUS          (1U << FPCR_DYN_SHIFT)
159 #define FPCR_DYN_NORMAL         (2U << FPCR_DYN_SHIFT)
160 #define FPCR_DYN_PLUS           (3U << FPCR_DYN_SHIFT)
161 #define FPCR_DYN_MASK           (3U << FPCR_DYN_SHIFT)
162 #define FPCR_IOV                (1U << (57 - 32))
163 #define FPCR_INE                (1U << (56 - 32))
164 #define FPCR_UNF                (1U << (55 - 32))
165 #define FPCR_OVF                (1U << (54 - 32))
166 #define FPCR_DZE                (1U << (53 - 32))
167 #define FPCR_INV                (1U << (52 - 32))
168 #define FPCR_OVFD               (1U << (51 - 32))
169 #define FPCR_DZED               (1U << (50 - 32))
170 #define FPCR_INVD               (1U << (49 - 32))
171 #define FPCR_DNZ                (1U << (48 - 32))
172 #define FPCR_DNOD               (1U << (47 - 32))
173 #define FPCR_STATUS_MASK        (FPCR_IOV | FPCR_INE | FPCR_UNF \
174                                  | FPCR_OVF | FPCR_DZE | FPCR_INV)
175 
176 /* The silly software trap enables implemented by the kernel emulation.
177    These are more or less architecturally required, since the real hardware
178    has read-as-zero bits in the FPCR when the features aren't implemented.
179    For the purposes of QEMU, we pretend the FPCR can hold everything.  */
180 #define SWCR_TRAP_ENABLE_INV    (1U << 1)
181 #define SWCR_TRAP_ENABLE_DZE    (1U << 2)
182 #define SWCR_TRAP_ENABLE_OVF    (1U << 3)
183 #define SWCR_TRAP_ENABLE_UNF    (1U << 4)
184 #define SWCR_TRAP_ENABLE_INE    (1U << 5)
185 #define SWCR_TRAP_ENABLE_DNO    (1U << 6)
186 #define SWCR_TRAP_ENABLE_MASK   ((1U << 7) - (1U << 1))
187 
188 #define SWCR_MAP_DMZ            (1U << 12)
189 #define SWCR_MAP_UMZ            (1U << 13)
190 #define SWCR_MAP_MASK           (SWCR_MAP_DMZ | SWCR_MAP_UMZ)
191 
192 #define SWCR_STATUS_INV         (1U << 17)
193 #define SWCR_STATUS_DZE         (1U << 18)
194 #define SWCR_STATUS_OVF         (1U << 19)
195 #define SWCR_STATUS_UNF         (1U << 20)
196 #define SWCR_STATUS_INE         (1U << 21)
197 #define SWCR_STATUS_DNO         (1U << 22)
198 #define SWCR_STATUS_MASK        ((1U << 23) - (1U << 17))
199 
200 #define SWCR_MASK  (SWCR_TRAP_ENABLE_MASK | SWCR_MAP_MASK | SWCR_STATUS_MASK)
201 
202 /* MMU modes definitions */
203 
204 /* Alpha has 5 MMU modes: PALcode, Kernel, Executive, Supervisor, and User.
205    The Unix PALcode only exposes the kernel and user modes; presumably
206    executive and supervisor are used by VMS.
207 
208    PALcode itself uses physical mode for code and kernel mode for data;
209    there are PALmode instructions that can access data via physical mode
210    or via an os-installed "alternate mode", which is one of the 4 above.
211 
212    That said, we're only emulating Unix PALcode, and not attempting VMS,
213    so we don't need to implement Executive and Supervisor.  QEMU's own
214    PALcode cheats and usees the KSEG mapping for its code+data rather than
215    physical addresses.  */
216 
217 #define NB_MMU_MODES 3
218 
219 #define MMU_MODE0_SUFFIX _kernel
220 #define MMU_MODE1_SUFFIX _user
221 #define MMU_KERNEL_IDX   0
222 #define MMU_USER_IDX     1
223 #define MMU_PHYS_IDX     2
224 
225 typedef struct CPUAlphaState CPUAlphaState;
226 
227 struct CPUAlphaState {
228     uint64_t ir[31];
229     float64 fir[31];
230     uint64_t pc;
231     uint64_t unique;
232     uint64_t lock_addr;
233     uint64_t lock_value;
234 
235     /* The FPCR, and disassembled portions thereof.  */
236     uint32_t fpcr;
237     uint32_t fpcr_exc_enable;
238     float_status fp_status;
239     uint8_t fpcr_dyn_round;
240     uint8_t fpcr_flush_to_zero;
241 
242     /* The Internal Processor Registers.  Some of these we assume always
243        exist for use in user-mode.  */
244     uint8_t ps;
245     uint8_t intr_flag;
246     uint8_t pal_mode;
247     uint8_t fen;
248 
249     uint32_t pcc_ofs;
250 
251     /* These pass data from the exception logic in the translator and
252        helpers to the OS entry point.  This is used for both system
253        emulation and user-mode.  */
254     uint64_t trap_arg0;
255     uint64_t trap_arg1;
256     uint64_t trap_arg2;
257 
258 #if !defined(CONFIG_USER_ONLY)
259     /* The internal data required by our emulation of the Unix PALcode.  */
260     uint64_t exc_addr;
261     uint64_t palbr;
262     uint64_t ptbr;
263     uint64_t vptptr;
264     uint64_t sysval;
265     uint64_t usp;
266     uint64_t shadow[8];
267     uint64_t scratch[24];
268 #endif
269 
270     /* This alarm doesn't exist in real hardware; we wish it did.  */
271     uint64_t alarm_expire;
272 
273     /* Those resources are used only in QEMU core */
274     CPU_COMMON
275 
276     int error_code;
277 
278     uint32_t features;
279     uint32_t amask;
280     int implver;
281 };
282 
283 /**
284  * AlphaCPU:
285  * @env: #CPUAlphaState
286  *
287  * An Alpha CPU.
288  */
289 struct AlphaCPU {
290     /*< private >*/
291     CPUState parent_obj;
292     /*< public >*/
293 
294     CPUAlphaState env;
295 
296     /* This alarm doesn't exist in real hardware; we wish it did.  */
297     QEMUTimer *alarm_timer;
298 };
299 
300 static inline AlphaCPU *alpha_env_get_cpu(CPUAlphaState *env)
301 {
302     return container_of(env, AlphaCPU, env);
303 }
304 
305 #define ENV_GET_CPU(e) CPU(alpha_env_get_cpu(e))
306 
307 #define ENV_OFFSET offsetof(AlphaCPU, env)
308 
309 #ifndef CONFIG_USER_ONLY
310 extern const struct VMStateDescription vmstate_alpha_cpu;
311 #endif
312 
313 void alpha_cpu_do_interrupt(CPUState *cpu);
314 bool alpha_cpu_exec_interrupt(CPUState *cpu, int int_req);
315 void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
316                           int flags);
317 hwaddr alpha_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
318 int alpha_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
319 int alpha_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
320 void alpha_cpu_do_unaligned_access(CPUState *cpu, vaddr addr,
321                                    MMUAccessType access_type,
322                                    int mmu_idx, uintptr_t retaddr);
323 
324 #define cpu_list alpha_cpu_list
325 #define cpu_signal_handler cpu_alpha_signal_handler
326 
327 #include "exec/cpu-all.h"
328 
329 enum {
330     FEATURE_ASN    = 0x00000001,
331     FEATURE_SPS    = 0x00000002,
332     FEATURE_VIRBND = 0x00000004,
333     FEATURE_TBCHK  = 0x00000008,
334 };
335 
336 enum {
337     EXCP_RESET,
338     EXCP_MCHK,
339     EXCP_SMP_INTERRUPT,
340     EXCP_CLK_INTERRUPT,
341     EXCP_DEV_INTERRUPT,
342     EXCP_MMFAULT,
343     EXCP_UNALIGN,
344     EXCP_OPCDEC,
345     EXCP_ARITH,
346     EXCP_FEN,
347     EXCP_CALL_PAL,
348 };
349 
350 /* Alpha-specific interrupt pending bits.  */
351 #define CPU_INTERRUPT_TIMER	CPU_INTERRUPT_TGT_EXT_0
352 #define CPU_INTERRUPT_SMP	CPU_INTERRUPT_TGT_EXT_1
353 #define CPU_INTERRUPT_MCHK	CPU_INTERRUPT_TGT_EXT_2
354 
355 /* OSF/1 Page table bits.  */
356 enum {
357     PTE_VALID = 0x0001,
358     PTE_FOR   = 0x0002,  /* used for page protection (fault on read) */
359     PTE_FOW   = 0x0004,  /* used for page protection (fault on write) */
360     PTE_FOE   = 0x0008,  /* used for page protection (fault on exec) */
361     PTE_ASM   = 0x0010,
362     PTE_KRE   = 0x0100,
363     PTE_URE   = 0x0200,
364     PTE_KWE   = 0x1000,
365     PTE_UWE   = 0x2000
366 };
367 
368 /* Hardware interrupt (entInt) constants.  */
369 enum {
370     INT_K_IP,
371     INT_K_CLK,
372     INT_K_MCHK,
373     INT_K_DEV,
374     INT_K_PERF,
375 };
376 
377 /* Memory management (entMM) constants.  */
378 enum {
379     MM_K_TNV,
380     MM_K_ACV,
381     MM_K_FOR,
382     MM_K_FOE,
383     MM_K_FOW
384 };
385 
386 /* Arithmetic exception (entArith) constants.  */
387 enum {
388     EXC_M_SWC = 1,      /* Software completion */
389     EXC_M_INV = 2,      /* Invalid operation */
390     EXC_M_DZE = 4,      /* Division by zero */
391     EXC_M_FOV = 8,      /* Overflow */
392     EXC_M_UNF = 16,     /* Underflow */
393     EXC_M_INE = 32,     /* Inexact result */
394     EXC_M_IOV = 64      /* Integer Overflow */
395 };
396 
397 /* Processor status constants.  */
398 enum {
399     /* Low 3 bits are interrupt mask level.  */
400     PS_INT_MASK = 7,
401 
402     /* Bits 4 and 5 are the mmu mode.  The VMS PALcode uses all 4 modes;
403        The Unix PALcode only uses bit 4.  */
404     PS_USER_MODE = 8
405 };
406 
407 static inline int cpu_mmu_index(CPUAlphaState *env, bool ifetch)
408 {
409     if (env->pal_mode) {
410         return MMU_KERNEL_IDX;
411     } else if (env->ps & PS_USER_MODE) {
412         return MMU_USER_IDX;
413     } else {
414         return MMU_KERNEL_IDX;
415     }
416 }
417 
418 enum {
419     IR_V0   = 0,
420     IR_T0   = 1,
421     IR_T1   = 2,
422     IR_T2   = 3,
423     IR_T3   = 4,
424     IR_T4   = 5,
425     IR_T5   = 6,
426     IR_T6   = 7,
427     IR_T7   = 8,
428     IR_S0   = 9,
429     IR_S1   = 10,
430     IR_S2   = 11,
431     IR_S3   = 12,
432     IR_S4   = 13,
433     IR_S5   = 14,
434     IR_S6   = 15,
435     IR_FP   = IR_S6,
436     IR_A0   = 16,
437     IR_A1   = 17,
438     IR_A2   = 18,
439     IR_A3   = 19,
440     IR_A4   = 20,
441     IR_A5   = 21,
442     IR_T8   = 22,
443     IR_T9   = 23,
444     IR_T10  = 24,
445     IR_T11  = 25,
446     IR_RA   = 26,
447     IR_T12  = 27,
448     IR_PV   = IR_T12,
449     IR_AT   = 28,
450     IR_GP   = 29,
451     IR_SP   = 30,
452     IR_ZERO = 31,
453 };
454 
455 void alpha_translate_init(void);
456 
457 AlphaCPU *cpu_alpha_init(const char *cpu_model);
458 
459 #define cpu_init(cpu_model) CPU(cpu_alpha_init(cpu_model))
460 
461 void alpha_cpu_list(FILE *f, fprintf_function cpu_fprintf);
462 /* you can call this signal handler from your SIGBUS and SIGSEGV
463    signal handlers to inform the virtual CPU of exceptions. non zero
464    is returned if the signal was handled by the virtual CPU.  */
465 int cpu_alpha_signal_handler(int host_signum, void *pinfo,
466                              void *puc);
467 int alpha_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
468                                int mmu_idx);
469 void QEMU_NORETURN dynamic_excp(CPUAlphaState *, uintptr_t, int, int);
470 void QEMU_NORETURN arith_excp(CPUAlphaState *, uintptr_t, int, uint64_t);
471 
472 uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env);
473 void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val);
474 uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg);
475 void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val);
476 #ifndef CONFIG_USER_ONLY
477 QEMU_NORETURN void alpha_cpu_unassigned_access(CPUState *cpu, hwaddr addr,
478                                                bool is_write, bool is_exec,
479                                                int unused, unsigned size);
480 #endif
481 
482 /* Bits in TB->FLAGS that control how translation is processed.  */
483 enum {
484     TB_FLAGS_PAL_MODE = 1,
485     TB_FLAGS_FEN = 2,
486     TB_FLAGS_USER_MODE = 8,
487 
488     TB_FLAGS_AMASK_SHIFT = 4,
489     TB_FLAGS_AMASK_BWX = AMASK_BWX << TB_FLAGS_AMASK_SHIFT,
490     TB_FLAGS_AMASK_FIX = AMASK_FIX << TB_FLAGS_AMASK_SHIFT,
491     TB_FLAGS_AMASK_CIX = AMASK_CIX << TB_FLAGS_AMASK_SHIFT,
492     TB_FLAGS_AMASK_MVI = AMASK_MVI << TB_FLAGS_AMASK_SHIFT,
493     TB_FLAGS_AMASK_TRAP = AMASK_TRAP << TB_FLAGS_AMASK_SHIFT,
494     TB_FLAGS_AMASK_PREFETCH = AMASK_PREFETCH << TB_FLAGS_AMASK_SHIFT,
495 };
496 
497 static inline void cpu_get_tb_cpu_state(CPUAlphaState *env, target_ulong *pc,
498                                         target_ulong *cs_base, uint32_t *pflags)
499 {
500     int flags = 0;
501 
502     *pc = env->pc;
503     *cs_base = 0;
504 
505     if (env->pal_mode) {
506         flags = TB_FLAGS_PAL_MODE;
507     } else {
508         flags = env->ps & PS_USER_MODE;
509     }
510     if (env->fen) {
511         flags |= TB_FLAGS_FEN;
512     }
513     flags |= env->amask << TB_FLAGS_AMASK_SHIFT;
514 
515     *pflags = flags;
516 }
517 
518 #endif /* ALPHA_CPU_H */
519