xref: /qemu/target/arm/cpu.c (revision 366a85e4)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
45 
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     CPUARMState *env = &cpu->env;
50 
51     if (is_a64(env)) {
52         env->pc = value;
53         env->thumb = 0;
54     } else {
55         env->regs[15] = value & ~1;
56         env->thumb = value & 1;
57     }
58 }
59 
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62                                  const TranslationBlock *tb)
63 {
64     ARMCPU *cpu = ARM_CPU(cs);
65     CPUARMState *env = &cpu->env;
66 
67     /*
68      * It's OK to look at env for the current mode here, because it's
69      * never possible for an AArch64 TB to chain to an AArch32 TB.
70      */
71     if (is_a64(env)) {
72         env->pc = tb->pc;
73     } else {
74         env->regs[15] = tb->pc;
75     }
76 }
77 #endif /* CONFIG_TCG */
78 
79 static bool arm_cpu_has_work(CPUState *cs)
80 {
81     ARMCPU *cpu = ARM_CPU(cs);
82 
83     return (cpu->power_state != PSCI_OFF)
84         && cs->interrupt_request &
85         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87          | CPU_INTERRUPT_EXITTB);
88 }
89 
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91                                  void *opaque)
92 {
93     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 
95     entry->hook = hook;
96     entry->opaque = opaque;
97 
98     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
99 }
100 
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102                                  void *opaque)
103 {
104     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 
106     entry->hook = hook;
107     entry->opaque = opaque;
108 
109     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
110 }
111 
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 {
114     /* Reset a single ARMCPRegInfo register */
115     ARMCPRegInfo *ri = value;
116     ARMCPU *cpu = opaque;
117 
118     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119         return;
120     }
121 
122     if (ri->resetfn) {
123         ri->resetfn(&cpu->env, ri);
124         return;
125     }
126 
127     /* A zero offset is never possible as it would be regs[0]
128      * so we use it to indicate that reset is being handled elsewhere.
129      * This is basically only used for fields in non-core coprocessors
130      * (like the pxa2xx ones).
131      */
132     if (!ri->fieldoffset) {
133         return;
134     }
135 
136     if (cpreg_field_is_64bit(ri)) {
137         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138     } else {
139         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
140     }
141 }
142 
143 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
144 {
145     /* Purely an assertion check: we've already done reset once,
146      * so now check that running the reset for the cpreg doesn't
147      * change its value. This traps bugs where two different cpregs
148      * both try to reset the same state field but to different values.
149      */
150     ARMCPRegInfo *ri = value;
151     ARMCPU *cpu = opaque;
152     uint64_t oldvalue, newvalue;
153 
154     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155         return;
156     }
157 
158     oldvalue = read_raw_cp_reg(&cpu->env, ri);
159     cp_reg_reset(key, value, opaque);
160     newvalue = read_raw_cp_reg(&cpu->env, ri);
161     assert(oldvalue == newvalue);
162 }
163 
164 static void arm_cpu_reset(DeviceState *dev)
165 {
166     CPUState *s = CPU(dev);
167     ARMCPU *cpu = ARM_CPU(s);
168     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169     CPUARMState *env = &cpu->env;
170 
171     acc->parent_reset(dev);
172 
173     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 
178     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 
183     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 
185     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
187     }
188 
189     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190         /* 64 bit CPUs always start in 64 bit mode */
191         env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193         env->pstate = PSTATE_MODE_EL0t;
194         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196         /* Enable all PAC keys.  */
197         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198                                   SCTLR_EnDA | SCTLR_EnDB);
199         /* and to the FP/Neon instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201         /* and to the SVE instructions */
202         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203         /* with reasonable vector length */
204         if (cpu_isar_feature(aa64_sve, cpu)) {
205             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
206         }
207         /*
208          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
209          * turning on both here will produce smaller code and otherwise
210          * make no difference to the user-level emulation.
211          *
212          * In sve_probe_page, we assume that this is set.
213          * Do not modify this without other changes.
214          */
215         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
216 #else
217         /* Reset into the highest available EL */
218         if (arm_feature(env, ARM_FEATURE_EL3)) {
219             env->pstate = PSTATE_MODE_EL3h;
220         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
221             env->pstate = PSTATE_MODE_EL2h;
222         } else {
223             env->pstate = PSTATE_MODE_EL1h;
224         }
225         env->pc = cpu->rvbar;
226 #endif
227     } else {
228 #if defined(CONFIG_USER_ONLY)
229         /* Userspace expects access to cp10 and cp11 for FP/Neon */
230         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
231 #endif
232     }
233 
234 #if defined(CONFIG_USER_ONLY)
235     env->uncached_cpsr = ARM_CPU_MODE_USR;
236     /* For user mode we must enable access to coprocessors */
237     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
238     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
239         env->cp15.c15_cpar = 3;
240     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
241         env->cp15.c15_cpar = 1;
242     }
243 #else
244 
245     /*
246      * If the highest available EL is EL2, AArch32 will start in Hyp
247      * mode; otherwise it starts in SVC. Note that if we start in
248      * AArch64 then these values in the uncached_cpsr will be ignored.
249      */
250     if (arm_feature(env, ARM_FEATURE_EL2) &&
251         !arm_feature(env, ARM_FEATURE_EL3)) {
252         env->uncached_cpsr = ARM_CPU_MODE_HYP;
253     } else {
254         env->uncached_cpsr = ARM_CPU_MODE_SVC;
255     }
256     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
257 
258     if (arm_feature(env, ARM_FEATURE_M)) {
259         uint32_t initial_msp; /* Loaded from 0x0 */
260         uint32_t initial_pc; /* Loaded from 0x4 */
261         uint8_t *rom;
262         uint32_t vecbase;
263 
264         if (cpu_isar_feature(aa32_lob, cpu)) {
265             /*
266              * LTPSIZE is constant 4 if MVE not implemented, and resets
267              * to an UNKNOWN value if MVE is implemented. We choose to
268              * always reset to 4.
269              */
270             env->v7m.ltpsize = 4;
271             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
272             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
273             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
274         }
275 
276         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
277             env->v7m.secure = true;
278         } else {
279             /* This bit resets to 0 if security is supported, but 1 if
280              * it is not. The bit is not present in v7M, but we set it
281              * here so we can avoid having to make checks on it conditional
282              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
283              */
284             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
285             /*
286              * Set NSACR to indicate "NS access permitted to everything";
287              * this avoids having to have all the tests of it being
288              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
289              * v8.1M the guest-visible value of NSACR in a CPU without the
290              * Security Extension is 0xcff.
291              */
292             env->v7m.nsacr = 0xcff;
293         }
294 
295         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
296          * that it resets to 1, so QEMU always does that rather than making
297          * it dependent on CPU model. In v8M it is RES1.
298          */
299         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
300         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
301         if (arm_feature(env, ARM_FEATURE_V8)) {
302             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
303             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
304             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
305         }
306         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
307             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
308             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
309         }
310 
311         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
312             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
313             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
314                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
315         }
316         /* Unlike A/R profile, M profile defines the reset LR value */
317         env->regs[14] = 0xffffffff;
318 
319         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
320 
321         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
322         vecbase = env->v7m.vecbase[env->v7m.secure];
323         rom = rom_ptr(vecbase, 8);
324         if (rom) {
325             /* Address zero is covered by ROM which hasn't yet been
326              * copied into physical memory.
327              */
328             initial_msp = ldl_p(rom);
329             initial_pc = ldl_p(rom + 4);
330         } else {
331             /* Address zero not covered by a ROM blob, or the ROM blob
332              * is in non-modifiable memory and this is a second reset after
333              * it got copied into memory. In the latter case, rom_ptr
334              * will return a NULL pointer and we should use ldl_phys instead.
335              */
336             initial_msp = ldl_phys(s->as, vecbase);
337             initial_pc = ldl_phys(s->as, vecbase + 4);
338         }
339 
340         env->regs[13] = initial_msp & 0xFFFFFFFC;
341         env->regs[15] = initial_pc & ~1;
342         env->thumb = initial_pc & 1;
343     }
344 
345     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
346      * executing as AArch32 then check if highvecs are enabled and
347      * adjust the PC accordingly.
348      */
349     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
350         env->regs[15] = 0xFFFF0000;
351     }
352 
353     /* M profile requires that reset clears the exclusive monitor;
354      * A profile does not, but clearing it makes more sense than having it
355      * set with an exclusive access on address zero.
356      */
357     arm_clear_exclusive(env);
358 
359     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
360 #endif
361 
362     if (arm_feature(env, ARM_FEATURE_PMSA)) {
363         if (cpu->pmsav7_dregion > 0) {
364             if (arm_feature(env, ARM_FEATURE_V8)) {
365                 memset(env->pmsav8.rbar[M_REG_NS], 0,
366                        sizeof(*env->pmsav8.rbar[M_REG_NS])
367                        * cpu->pmsav7_dregion);
368                 memset(env->pmsav8.rlar[M_REG_NS], 0,
369                        sizeof(*env->pmsav8.rlar[M_REG_NS])
370                        * cpu->pmsav7_dregion);
371                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
372                     memset(env->pmsav8.rbar[M_REG_S], 0,
373                            sizeof(*env->pmsav8.rbar[M_REG_S])
374                            * cpu->pmsav7_dregion);
375                     memset(env->pmsav8.rlar[M_REG_S], 0,
376                            sizeof(*env->pmsav8.rlar[M_REG_S])
377                            * cpu->pmsav7_dregion);
378                 }
379             } else if (arm_feature(env, ARM_FEATURE_V7)) {
380                 memset(env->pmsav7.drbar, 0,
381                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
382                 memset(env->pmsav7.drsr, 0,
383                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
384                 memset(env->pmsav7.dracr, 0,
385                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
386             }
387         }
388         env->pmsav7.rnr[M_REG_NS] = 0;
389         env->pmsav7.rnr[M_REG_S] = 0;
390         env->pmsav8.mair0[M_REG_NS] = 0;
391         env->pmsav8.mair0[M_REG_S] = 0;
392         env->pmsav8.mair1[M_REG_NS] = 0;
393         env->pmsav8.mair1[M_REG_S] = 0;
394     }
395 
396     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
397         if (cpu->sau_sregion > 0) {
398             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
399             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
400         }
401         env->sau.rnr = 0;
402         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
403          * the Cortex-M33 does.
404          */
405         env->sau.ctrl = 0;
406     }
407 
408     set_flush_to_zero(1, &env->vfp.standard_fp_status);
409     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
410     set_default_nan_mode(1, &env->vfp.standard_fp_status);
411     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
412     set_float_detect_tininess(float_tininess_before_rounding,
413                               &env->vfp.fp_status);
414     set_float_detect_tininess(float_tininess_before_rounding,
415                               &env->vfp.standard_fp_status);
416     set_float_detect_tininess(float_tininess_before_rounding,
417                               &env->vfp.fp_status_f16);
418     set_float_detect_tininess(float_tininess_before_rounding,
419                               &env->vfp.standard_fp_status_f16);
420 #ifndef CONFIG_USER_ONLY
421     if (kvm_enabled()) {
422         kvm_arm_reset_vcpu(cpu);
423     }
424 #endif
425 
426     hw_breakpoint_update_all(cpu);
427     hw_watchpoint_update_all(cpu);
428     arm_rebuild_hflags(env);
429 }
430 
431 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
432                                      unsigned int target_el,
433                                      unsigned int cur_el, bool secure,
434                                      uint64_t hcr_el2)
435 {
436     CPUARMState *env = cs->env_ptr;
437     bool pstate_unmasked;
438     bool unmasked = false;
439 
440     /*
441      * Don't take exceptions if they target a lower EL.
442      * This check should catch any exceptions that would not be taken
443      * but left pending.
444      */
445     if (cur_el > target_el) {
446         return false;
447     }
448 
449     switch (excp_idx) {
450     case EXCP_FIQ:
451         pstate_unmasked = !(env->daif & PSTATE_F);
452         break;
453 
454     case EXCP_IRQ:
455         pstate_unmasked = !(env->daif & PSTATE_I);
456         break;
457 
458     case EXCP_VFIQ:
459         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
460             /* VFIQs are only taken when hypervized.  */
461             return false;
462         }
463         return !(env->daif & PSTATE_F);
464     case EXCP_VIRQ:
465         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
466             /* VIRQs are only taken when hypervized.  */
467             return false;
468         }
469         return !(env->daif & PSTATE_I);
470     default:
471         g_assert_not_reached();
472     }
473 
474     /*
475      * Use the target EL, current execution state and SCR/HCR settings to
476      * determine whether the corresponding CPSR bit is used to mask the
477      * interrupt.
478      */
479     if ((target_el > cur_el) && (target_el != 1)) {
480         /* Exceptions targeting a higher EL may not be maskable */
481         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
482             /*
483              * 64-bit masking rules are simple: exceptions to EL3
484              * can't be masked, and exceptions to EL2 can only be
485              * masked from Secure state. The HCR and SCR settings
486              * don't affect the masking logic, only the interrupt routing.
487              */
488             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
489                 unmasked = true;
490             }
491         } else {
492             /*
493              * The old 32-bit-only environment has a more complicated
494              * masking setup. HCR and SCR bits not only affect interrupt
495              * routing but also change the behaviour of masking.
496              */
497             bool hcr, scr;
498 
499             switch (excp_idx) {
500             case EXCP_FIQ:
501                 /*
502                  * If FIQs are routed to EL3 or EL2 then there are cases where
503                  * we override the CPSR.F in determining if the exception is
504                  * masked or not. If neither of these are set then we fall back
505                  * to the CPSR.F setting otherwise we further assess the state
506                  * below.
507                  */
508                 hcr = hcr_el2 & HCR_FMO;
509                 scr = (env->cp15.scr_el3 & SCR_FIQ);
510 
511                 /*
512                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
513                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
514                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
515                  * when non-secure but only when FIQs are only routed to EL3.
516                  */
517                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
518                 break;
519             case EXCP_IRQ:
520                 /*
521                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
522                  * we may override the CPSR.I masking when in non-secure state.
523                  * The SCR.IRQ setting has already been taken into consideration
524                  * when setting the target EL, so it does not have a further
525                  * affect here.
526                  */
527                 hcr = hcr_el2 & HCR_IMO;
528                 scr = false;
529                 break;
530             default:
531                 g_assert_not_reached();
532             }
533 
534             if ((scr || hcr) && !secure) {
535                 unmasked = true;
536             }
537         }
538     }
539 
540     /*
541      * The PSTATE bits only mask the interrupt if we have not overriden the
542      * ability above.
543      */
544     return unmasked || pstate_unmasked;
545 }
546 
547 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
548 {
549     CPUClass *cc = CPU_GET_CLASS(cs);
550     CPUARMState *env = cs->env_ptr;
551     uint32_t cur_el = arm_current_el(env);
552     bool secure = arm_is_secure(env);
553     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
554     uint32_t target_el;
555     uint32_t excp_idx;
556 
557     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
558 
559     if (interrupt_request & CPU_INTERRUPT_FIQ) {
560         excp_idx = EXCP_FIQ;
561         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
562         if (arm_excp_unmasked(cs, excp_idx, target_el,
563                               cur_el, secure, hcr_el2)) {
564             goto found;
565         }
566     }
567     if (interrupt_request & CPU_INTERRUPT_HARD) {
568         excp_idx = EXCP_IRQ;
569         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
570         if (arm_excp_unmasked(cs, excp_idx, target_el,
571                               cur_el, secure, hcr_el2)) {
572             goto found;
573         }
574     }
575     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
576         excp_idx = EXCP_VIRQ;
577         target_el = 1;
578         if (arm_excp_unmasked(cs, excp_idx, target_el,
579                               cur_el, secure, hcr_el2)) {
580             goto found;
581         }
582     }
583     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
584         excp_idx = EXCP_VFIQ;
585         target_el = 1;
586         if (arm_excp_unmasked(cs, excp_idx, target_el,
587                               cur_el, secure, hcr_el2)) {
588             goto found;
589         }
590     }
591     return false;
592 
593  found:
594     cs->exception_index = excp_idx;
595     env->exception.target_el = target_el;
596     cc->tcg_ops->do_interrupt(cs);
597     return true;
598 }
599 
600 void arm_cpu_update_virq(ARMCPU *cpu)
601 {
602     /*
603      * Update the interrupt level for VIRQ, which is the logical OR of
604      * the HCR_EL2.VI bit and the input line level from the GIC.
605      */
606     CPUARMState *env = &cpu->env;
607     CPUState *cs = CPU(cpu);
608 
609     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
610         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
611 
612     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
613         if (new_state) {
614             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
615         } else {
616             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
617         }
618     }
619 }
620 
621 void arm_cpu_update_vfiq(ARMCPU *cpu)
622 {
623     /*
624      * Update the interrupt level for VFIQ, which is the logical OR of
625      * the HCR_EL2.VF bit and the input line level from the GIC.
626      */
627     CPUARMState *env = &cpu->env;
628     CPUState *cs = CPU(cpu);
629 
630     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
631         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
632 
633     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
634         if (new_state) {
635             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
636         } else {
637             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
638         }
639     }
640 }
641 
642 #ifndef CONFIG_USER_ONLY
643 static void arm_cpu_set_irq(void *opaque, int irq, int level)
644 {
645     ARMCPU *cpu = opaque;
646     CPUARMState *env = &cpu->env;
647     CPUState *cs = CPU(cpu);
648     static const int mask[] = {
649         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
650         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
651         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
652         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
653     };
654 
655     if (level) {
656         env->irq_line_state |= mask[irq];
657     } else {
658         env->irq_line_state &= ~mask[irq];
659     }
660 
661     switch (irq) {
662     case ARM_CPU_VIRQ:
663         assert(arm_feature(env, ARM_FEATURE_EL2));
664         arm_cpu_update_virq(cpu);
665         break;
666     case ARM_CPU_VFIQ:
667         assert(arm_feature(env, ARM_FEATURE_EL2));
668         arm_cpu_update_vfiq(cpu);
669         break;
670     case ARM_CPU_IRQ:
671     case ARM_CPU_FIQ:
672         if (level) {
673             cpu_interrupt(cs, mask[irq]);
674         } else {
675             cpu_reset_interrupt(cs, mask[irq]);
676         }
677         break;
678     default:
679         g_assert_not_reached();
680     }
681 }
682 
683 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
684 {
685 #ifdef CONFIG_KVM
686     ARMCPU *cpu = opaque;
687     CPUARMState *env = &cpu->env;
688     CPUState *cs = CPU(cpu);
689     uint32_t linestate_bit;
690     int irq_id;
691 
692     switch (irq) {
693     case ARM_CPU_IRQ:
694         irq_id = KVM_ARM_IRQ_CPU_IRQ;
695         linestate_bit = CPU_INTERRUPT_HARD;
696         break;
697     case ARM_CPU_FIQ:
698         irq_id = KVM_ARM_IRQ_CPU_FIQ;
699         linestate_bit = CPU_INTERRUPT_FIQ;
700         break;
701     default:
702         g_assert_not_reached();
703     }
704 
705     if (level) {
706         env->irq_line_state |= linestate_bit;
707     } else {
708         env->irq_line_state &= ~linestate_bit;
709     }
710     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
711 #endif
712 }
713 
714 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
715 {
716     ARMCPU *cpu = ARM_CPU(cs);
717     CPUARMState *env = &cpu->env;
718 
719     cpu_synchronize_state(cs);
720     return arm_cpu_data_is_big_endian(env);
721 }
722 
723 #endif
724 
725 static int
726 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
727 {
728   return print_insn_arm(pc | 1, info);
729 }
730 
731 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
732 {
733     ARMCPU *ac = ARM_CPU(cpu);
734     CPUARMState *env = &ac->env;
735     bool sctlr_b;
736 
737     if (is_a64(env)) {
738         /* We might not be compiled with the A64 disassembler
739          * because it needs a C++ compiler. Leave print_insn
740          * unset in this case to use the caller default behaviour.
741          */
742 #if defined(CONFIG_ARM_A64_DIS)
743         info->print_insn = print_insn_arm_a64;
744 #endif
745         info->cap_arch = CS_ARCH_ARM64;
746         info->cap_insn_unit = 4;
747         info->cap_insn_split = 4;
748     } else {
749         int cap_mode;
750         if (env->thumb) {
751             info->print_insn = print_insn_thumb1;
752             info->cap_insn_unit = 2;
753             info->cap_insn_split = 4;
754             cap_mode = CS_MODE_THUMB;
755         } else {
756             info->print_insn = print_insn_arm;
757             info->cap_insn_unit = 4;
758             info->cap_insn_split = 4;
759             cap_mode = CS_MODE_ARM;
760         }
761         if (arm_feature(env, ARM_FEATURE_V8)) {
762             cap_mode |= CS_MODE_V8;
763         }
764         if (arm_feature(env, ARM_FEATURE_M)) {
765             cap_mode |= CS_MODE_MCLASS;
766         }
767         info->cap_arch = CS_ARCH_ARM;
768         info->cap_mode = cap_mode;
769     }
770 
771     sctlr_b = arm_sctlr_b(env);
772     if (bswap_code(sctlr_b)) {
773 #ifdef TARGET_WORDS_BIGENDIAN
774         info->endian = BFD_ENDIAN_LITTLE;
775 #else
776         info->endian = BFD_ENDIAN_BIG;
777 #endif
778     }
779     info->flags &= ~INSN_ARM_BE32;
780 #ifndef CONFIG_USER_ONLY
781     if (sctlr_b) {
782         info->flags |= INSN_ARM_BE32;
783     }
784 #endif
785 }
786 
787 #ifdef TARGET_AARCH64
788 
789 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
790 {
791     ARMCPU *cpu = ARM_CPU(cs);
792     CPUARMState *env = &cpu->env;
793     uint32_t psr = pstate_read(env);
794     int i;
795     int el = arm_current_el(env);
796     const char *ns_status;
797 
798     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
799     for (i = 0; i < 32; i++) {
800         if (i == 31) {
801             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
802         } else {
803             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
804                          (i + 2) % 3 ? " " : "\n");
805         }
806     }
807 
808     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
809         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
810     } else {
811         ns_status = "";
812     }
813     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
814                  psr,
815                  psr & PSTATE_N ? 'N' : '-',
816                  psr & PSTATE_Z ? 'Z' : '-',
817                  psr & PSTATE_C ? 'C' : '-',
818                  psr & PSTATE_V ? 'V' : '-',
819                  ns_status,
820                  el,
821                  psr & PSTATE_SP ? 'h' : 't');
822 
823     if (cpu_isar_feature(aa64_bti, cpu)) {
824         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
825     }
826     if (!(flags & CPU_DUMP_FPU)) {
827         qemu_fprintf(f, "\n");
828         return;
829     }
830     if (fp_exception_el(env, el) != 0) {
831         qemu_fprintf(f, "    FPU disabled\n");
832         return;
833     }
834     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
835                  vfp_get_fpcr(env), vfp_get_fpsr(env));
836 
837     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
838         int j, zcr_len = sve_zcr_len_for_el(env, el);
839 
840         for (i = 0; i <= FFR_PRED_NUM; i++) {
841             bool eol;
842             if (i == FFR_PRED_NUM) {
843                 qemu_fprintf(f, "FFR=");
844                 /* It's last, so end the line.  */
845                 eol = true;
846             } else {
847                 qemu_fprintf(f, "P%02d=", i);
848                 switch (zcr_len) {
849                 case 0:
850                     eol = i % 8 == 7;
851                     break;
852                 case 1:
853                     eol = i % 6 == 5;
854                     break;
855                 case 2:
856                 case 3:
857                     eol = i % 3 == 2;
858                     break;
859                 default:
860                     /* More than one quadword per predicate.  */
861                     eol = true;
862                     break;
863                 }
864             }
865             for (j = zcr_len / 4; j >= 0; j--) {
866                 int digits;
867                 if (j * 4 + 4 <= zcr_len + 1) {
868                     digits = 16;
869                 } else {
870                     digits = (zcr_len % 4 + 1) * 4;
871                 }
872                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
873                              env->vfp.pregs[i].p[j],
874                              j ? ":" : eol ? "\n" : " ");
875             }
876         }
877 
878         for (i = 0; i < 32; i++) {
879             if (zcr_len == 0) {
880                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
881                              i, env->vfp.zregs[i].d[1],
882                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
883             } else if (zcr_len == 1) {
884                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
885                              ":%016" PRIx64 ":%016" PRIx64 "\n",
886                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
887                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
888             } else {
889                 for (j = zcr_len; j >= 0; j--) {
890                     bool odd = (zcr_len - j) % 2 != 0;
891                     if (j == zcr_len) {
892                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
893                     } else if (!odd) {
894                         if (j > 0) {
895                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
896                         } else {
897                             qemu_fprintf(f, "     [%x]=", j);
898                         }
899                     }
900                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
901                                  env->vfp.zregs[i].d[j * 2 + 1],
902                                  env->vfp.zregs[i].d[j * 2],
903                                  odd || j == 0 ? "\n" : ":");
904                 }
905             }
906         }
907     } else {
908         for (i = 0; i < 32; i++) {
909             uint64_t *q = aa64_vfp_qreg(env, i);
910             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
911                          i, q[1], q[0], (i & 1 ? "\n" : " "));
912         }
913     }
914 }
915 
916 #else
917 
918 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
919 {
920     g_assert_not_reached();
921 }
922 
923 #endif
924 
925 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
926 {
927     ARMCPU *cpu = ARM_CPU(cs);
928     CPUARMState *env = &cpu->env;
929     int i;
930 
931     if (is_a64(env)) {
932         aarch64_cpu_dump_state(cs, f, flags);
933         return;
934     }
935 
936     for (i = 0; i < 16; i++) {
937         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
938         if ((i % 4) == 3) {
939             qemu_fprintf(f, "\n");
940         } else {
941             qemu_fprintf(f, " ");
942         }
943     }
944 
945     if (arm_feature(env, ARM_FEATURE_M)) {
946         uint32_t xpsr = xpsr_read(env);
947         const char *mode;
948         const char *ns_status = "";
949 
950         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
951             ns_status = env->v7m.secure ? "S " : "NS ";
952         }
953 
954         if (xpsr & XPSR_EXCP) {
955             mode = "handler";
956         } else {
957             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
958                 mode = "unpriv-thread";
959             } else {
960                 mode = "priv-thread";
961             }
962         }
963 
964         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
965                      xpsr,
966                      xpsr & XPSR_N ? 'N' : '-',
967                      xpsr & XPSR_Z ? 'Z' : '-',
968                      xpsr & XPSR_C ? 'C' : '-',
969                      xpsr & XPSR_V ? 'V' : '-',
970                      xpsr & XPSR_T ? 'T' : 'A',
971                      ns_status,
972                      mode);
973     } else {
974         uint32_t psr = cpsr_read(env);
975         const char *ns_status = "";
976 
977         if (arm_feature(env, ARM_FEATURE_EL3) &&
978             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
979             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
980         }
981 
982         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
983                      psr,
984                      psr & CPSR_N ? 'N' : '-',
985                      psr & CPSR_Z ? 'Z' : '-',
986                      psr & CPSR_C ? 'C' : '-',
987                      psr & CPSR_V ? 'V' : '-',
988                      psr & CPSR_T ? 'T' : 'A',
989                      ns_status,
990                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
991     }
992 
993     if (flags & CPU_DUMP_FPU) {
994         int numvfpregs = 0;
995         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
996             numvfpregs = 32;
997         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
998             numvfpregs = 16;
999         }
1000         for (i = 0; i < numvfpregs; i++) {
1001             uint64_t v = *aa32_vfp_dreg(env, i);
1002             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1003                          i * 2, (uint32_t)v,
1004                          i * 2 + 1, (uint32_t)(v >> 32),
1005                          i, v);
1006         }
1007         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1008     }
1009 }
1010 
1011 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1012 {
1013     uint32_t Aff1 = idx / clustersz;
1014     uint32_t Aff0 = idx % clustersz;
1015     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1016 }
1017 
1018 static void cpreg_hashtable_data_destroy(gpointer data)
1019 {
1020     /*
1021      * Destroy function for cpu->cp_regs hashtable data entries.
1022      * We must free the name string because it was g_strdup()ed in
1023      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1024      * from r->name because we know we definitely allocated it.
1025      */
1026     ARMCPRegInfo *r = data;
1027 
1028     g_free((void *)r->name);
1029     g_free(r);
1030 }
1031 
1032 static void arm_cpu_initfn(Object *obj)
1033 {
1034     ARMCPU *cpu = ARM_CPU(obj);
1035 
1036     cpu_set_cpustate_pointers(cpu);
1037     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1038                                          g_free, cpreg_hashtable_data_destroy);
1039 
1040     QLIST_INIT(&cpu->pre_el_change_hooks);
1041     QLIST_INIT(&cpu->el_change_hooks);
1042 
1043 #ifndef CONFIG_USER_ONLY
1044     /* Our inbound IRQ and FIQ lines */
1045     if (kvm_enabled()) {
1046         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1047          * the same interface as non-KVM CPUs.
1048          */
1049         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1050     } else {
1051         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1052     }
1053 
1054     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1055                        ARRAY_SIZE(cpu->gt_timer_outputs));
1056 
1057     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1058                              "gicv3-maintenance-interrupt", 1);
1059     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1060                              "pmu-interrupt", 1);
1061 #endif
1062 
1063     /* DTB consumers generally don't in fact care what the 'compatible'
1064      * string is, so always provide some string and trust that a hypothetical
1065      * picky DTB consumer will also provide a helpful error message.
1066      */
1067     cpu->dtb_compatible = "qemu,unknown";
1068     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1069     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1070 
1071     if (tcg_enabled()) {
1072         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1073     }
1074 }
1075 
1076 static Property arm_cpu_gt_cntfrq_property =
1077             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1078                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1079 
1080 static Property arm_cpu_reset_cbar_property =
1081             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1082 
1083 static Property arm_cpu_reset_hivecs_property =
1084             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1085 
1086 static Property arm_cpu_rvbar_property =
1087             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1088 
1089 #ifndef CONFIG_USER_ONLY
1090 static Property arm_cpu_has_el2_property =
1091             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1092 
1093 static Property arm_cpu_has_el3_property =
1094             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1095 #endif
1096 
1097 static Property arm_cpu_cfgend_property =
1098             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1099 
1100 static Property arm_cpu_has_vfp_property =
1101             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1102 
1103 static Property arm_cpu_has_neon_property =
1104             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1105 
1106 static Property arm_cpu_has_dsp_property =
1107             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1108 
1109 static Property arm_cpu_has_mpu_property =
1110             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1111 
1112 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1113  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1114  * the right value for that particular CPU type, and we don't want
1115  * to override that with an incorrect constant value.
1116  */
1117 static Property arm_cpu_pmsav7_dregion_property =
1118             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1119                                            pmsav7_dregion,
1120                                            qdev_prop_uint32, uint32_t);
1121 
1122 static bool arm_get_pmu(Object *obj, Error **errp)
1123 {
1124     ARMCPU *cpu = ARM_CPU(obj);
1125 
1126     return cpu->has_pmu;
1127 }
1128 
1129 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1130 {
1131     ARMCPU *cpu = ARM_CPU(obj);
1132 
1133     if (value) {
1134         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1135             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1136             return;
1137         }
1138         set_feature(&cpu->env, ARM_FEATURE_PMU);
1139     } else {
1140         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1141     }
1142     cpu->has_pmu = value;
1143 }
1144 
1145 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1146 {
1147     /*
1148      * The exact approach to calculating guest ticks is:
1149      *
1150      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1151      *              NANOSECONDS_PER_SECOND);
1152      *
1153      * We don't do that. Rather we intentionally use integer division
1154      * truncation below and in the caller for the conversion of host monotonic
1155      * time to guest ticks to provide the exact inverse for the semantics of
1156      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1157      * it loses precision when representing frequencies where
1158      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1159      * provide an exact inverse leads to scheduling timers with negative
1160      * periods, which in turn leads to sticky behaviour in the guest.
1161      *
1162      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1163      * cannot become zero.
1164      */
1165     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1166       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1167 }
1168 
1169 void arm_cpu_post_init(Object *obj)
1170 {
1171     ARMCPU *cpu = ARM_CPU(obj);
1172 
1173     /* M profile implies PMSA. We have to do this here rather than
1174      * in realize with the other feature-implication checks because
1175      * we look at the PMSA bit to see if we should add some properties.
1176      */
1177     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1178         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1179     }
1180 
1181     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1182         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1183         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1184     }
1185 
1186     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1187         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1188     }
1189 
1190     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1191         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1192     }
1193 
1194 #ifndef CONFIG_USER_ONLY
1195     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1196         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1197          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1198          */
1199         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1200 
1201         object_property_add_link(obj, "secure-memory",
1202                                  TYPE_MEMORY_REGION,
1203                                  (Object **)&cpu->secure_memory,
1204                                  qdev_prop_allow_set_link_before_realize,
1205                                  OBJ_PROP_LINK_STRONG);
1206     }
1207 
1208     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1209         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1210     }
1211 #endif
1212 
1213     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1214         cpu->has_pmu = true;
1215         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1216     }
1217 
1218     /*
1219      * Allow user to turn off VFP and Neon support, but only for TCG --
1220      * KVM does not currently allow us to lie to the guest about its
1221      * ID/feature registers, so the guest always sees what the host has.
1222      */
1223     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1224         ? cpu_isar_feature(aa64_fp_simd, cpu)
1225         : cpu_isar_feature(aa32_vfp, cpu)) {
1226         cpu->has_vfp = true;
1227         if (!kvm_enabled()) {
1228             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1229         }
1230     }
1231 
1232     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1233         cpu->has_neon = true;
1234         if (!kvm_enabled()) {
1235             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1236         }
1237     }
1238 
1239     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1240         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1241         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1242     }
1243 
1244     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1245         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1246         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1247             qdev_property_add_static(DEVICE(obj),
1248                                      &arm_cpu_pmsav7_dregion_property);
1249         }
1250     }
1251 
1252     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1253         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1254                                  qdev_prop_allow_set_link_before_realize,
1255                                  OBJ_PROP_LINK_STRONG);
1256         /*
1257          * M profile: initial value of the Secure VTOR. We can't just use
1258          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1259          * the property to be set after realize.
1260          */
1261         object_property_add_uint32_ptr(obj, "init-svtor",
1262                                        &cpu->init_svtor,
1263                                        OBJ_PROP_FLAG_READWRITE);
1264     }
1265 
1266     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1267 
1268     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1269         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1270     }
1271 
1272     if (kvm_enabled()) {
1273         kvm_arm_add_vcpu_properties(obj);
1274     }
1275 
1276 #ifndef CONFIG_USER_ONLY
1277     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1278         cpu_isar_feature(aa64_mte, cpu)) {
1279         object_property_add_link(obj, "tag-memory",
1280                                  TYPE_MEMORY_REGION,
1281                                  (Object **)&cpu->tag_memory,
1282                                  qdev_prop_allow_set_link_before_realize,
1283                                  OBJ_PROP_LINK_STRONG);
1284 
1285         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1286             object_property_add_link(obj, "secure-tag-memory",
1287                                      TYPE_MEMORY_REGION,
1288                                      (Object **)&cpu->secure_tag_memory,
1289                                      qdev_prop_allow_set_link_before_realize,
1290                                      OBJ_PROP_LINK_STRONG);
1291         }
1292     }
1293 #endif
1294 }
1295 
1296 static void arm_cpu_finalizefn(Object *obj)
1297 {
1298     ARMCPU *cpu = ARM_CPU(obj);
1299     ARMELChangeHook *hook, *next;
1300 
1301     g_hash_table_destroy(cpu->cp_regs);
1302 
1303     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1304         QLIST_REMOVE(hook, node);
1305         g_free(hook);
1306     }
1307     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1308         QLIST_REMOVE(hook, node);
1309         g_free(hook);
1310     }
1311 #ifndef CONFIG_USER_ONLY
1312     if (cpu->pmu_timer) {
1313         timer_free(cpu->pmu_timer);
1314     }
1315 #endif
1316 }
1317 
1318 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1319 {
1320     Error *local_err = NULL;
1321 
1322     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1323         arm_cpu_sve_finalize(cpu, &local_err);
1324         if (local_err != NULL) {
1325             error_propagate(errp, local_err);
1326             return;
1327         }
1328 
1329         /*
1330          * KVM does not support modifications to this feature.
1331          * We have not registered the cpu properties when KVM
1332          * is in use, so the user will not be able to set them.
1333          */
1334         if (!kvm_enabled()) {
1335             arm_cpu_pauth_finalize(cpu, &local_err);
1336             if (local_err != NULL) {
1337                 error_propagate(errp, local_err);
1338                 return;
1339             }
1340         }
1341     }
1342 
1343     if (kvm_enabled()) {
1344         kvm_arm_steal_time_finalize(cpu, &local_err);
1345         if (local_err != NULL) {
1346             error_propagate(errp, local_err);
1347             return;
1348         }
1349     }
1350 }
1351 
1352 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1353 {
1354     CPUState *cs = CPU(dev);
1355     ARMCPU *cpu = ARM_CPU(dev);
1356     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1357     CPUARMState *env = &cpu->env;
1358     int pagebits;
1359     Error *local_err = NULL;
1360     bool no_aa32 = false;
1361 
1362     /* If we needed to query the host kernel for the CPU features
1363      * then it's possible that might have failed in the initfn, but
1364      * this is the first point where we can report it.
1365      */
1366     if (cpu->host_cpu_probe_failed) {
1367         if (!kvm_enabled()) {
1368             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1369         } else {
1370             error_setg(errp, "Failed to retrieve host CPU features");
1371         }
1372         return;
1373     }
1374 
1375 #ifndef CONFIG_USER_ONLY
1376     /* The NVIC and M-profile CPU are two halves of a single piece of
1377      * hardware; trying to use one without the other is a command line
1378      * error and will result in segfaults if not caught here.
1379      */
1380     if (arm_feature(env, ARM_FEATURE_M)) {
1381         if (!env->nvic) {
1382             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1383             return;
1384         }
1385     } else {
1386         if (env->nvic) {
1387             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1388             return;
1389         }
1390     }
1391 
1392     {
1393         uint64_t scale;
1394 
1395         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1396             if (!cpu->gt_cntfrq_hz) {
1397                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1398                            cpu->gt_cntfrq_hz);
1399                 return;
1400             }
1401             scale = gt_cntfrq_period_ns(cpu);
1402         } else {
1403             scale = GTIMER_SCALE;
1404         }
1405 
1406         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1407                                                arm_gt_ptimer_cb, cpu);
1408         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1409                                                arm_gt_vtimer_cb, cpu);
1410         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1411                                               arm_gt_htimer_cb, cpu);
1412         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1413                                               arm_gt_stimer_cb, cpu);
1414         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1415                                                   arm_gt_hvtimer_cb, cpu);
1416     }
1417 #endif
1418 
1419     cpu_exec_realizefn(cs, &local_err);
1420     if (local_err != NULL) {
1421         error_propagate(errp, local_err);
1422         return;
1423     }
1424 
1425     arm_cpu_finalize_features(cpu, &local_err);
1426     if (local_err != NULL) {
1427         error_propagate(errp, local_err);
1428         return;
1429     }
1430 
1431     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1432         cpu->has_vfp != cpu->has_neon) {
1433         /*
1434          * This is an architectural requirement for AArch64; AArch32 is
1435          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1436          */
1437         error_setg(errp,
1438                    "AArch64 CPUs must have both VFP and Neon or neither");
1439         return;
1440     }
1441 
1442     if (!cpu->has_vfp) {
1443         uint64_t t;
1444         uint32_t u;
1445 
1446         t = cpu->isar.id_aa64isar1;
1447         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1448         cpu->isar.id_aa64isar1 = t;
1449 
1450         t = cpu->isar.id_aa64pfr0;
1451         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1452         cpu->isar.id_aa64pfr0 = t;
1453 
1454         u = cpu->isar.id_isar6;
1455         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1456         cpu->isar.id_isar6 = u;
1457 
1458         u = cpu->isar.mvfr0;
1459         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1460         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1461         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1462         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1463         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1464         if (!arm_feature(env, ARM_FEATURE_M)) {
1465             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1466             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1467         }
1468         cpu->isar.mvfr0 = u;
1469 
1470         u = cpu->isar.mvfr1;
1471         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1472         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1473         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1474         if (arm_feature(env, ARM_FEATURE_M)) {
1475             u = FIELD_DP32(u, MVFR1, FP16, 0);
1476         }
1477         cpu->isar.mvfr1 = u;
1478 
1479         u = cpu->isar.mvfr2;
1480         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1481         cpu->isar.mvfr2 = u;
1482     }
1483 
1484     if (!cpu->has_neon) {
1485         uint64_t t;
1486         uint32_t u;
1487 
1488         unset_feature(env, ARM_FEATURE_NEON);
1489 
1490         t = cpu->isar.id_aa64isar0;
1491         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1492         cpu->isar.id_aa64isar0 = t;
1493 
1494         t = cpu->isar.id_aa64isar1;
1495         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1496         cpu->isar.id_aa64isar1 = t;
1497 
1498         t = cpu->isar.id_aa64pfr0;
1499         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1500         cpu->isar.id_aa64pfr0 = t;
1501 
1502         u = cpu->isar.id_isar5;
1503         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1504         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1505         cpu->isar.id_isar5 = u;
1506 
1507         u = cpu->isar.id_isar6;
1508         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1509         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1510         cpu->isar.id_isar6 = u;
1511 
1512         if (!arm_feature(env, ARM_FEATURE_M)) {
1513             u = cpu->isar.mvfr1;
1514             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1515             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1516             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1517             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1518             cpu->isar.mvfr1 = u;
1519 
1520             u = cpu->isar.mvfr2;
1521             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1522             cpu->isar.mvfr2 = u;
1523         }
1524     }
1525 
1526     if (!cpu->has_neon && !cpu->has_vfp) {
1527         uint64_t t;
1528         uint32_t u;
1529 
1530         t = cpu->isar.id_aa64isar0;
1531         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1532         cpu->isar.id_aa64isar0 = t;
1533 
1534         t = cpu->isar.id_aa64isar1;
1535         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1536         cpu->isar.id_aa64isar1 = t;
1537 
1538         u = cpu->isar.mvfr0;
1539         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1540         cpu->isar.mvfr0 = u;
1541 
1542         /* Despite the name, this field covers both VFP and Neon */
1543         u = cpu->isar.mvfr1;
1544         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1545         cpu->isar.mvfr1 = u;
1546     }
1547 
1548     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1549         uint32_t u;
1550 
1551         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1552 
1553         u = cpu->isar.id_isar1;
1554         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1555         cpu->isar.id_isar1 = u;
1556 
1557         u = cpu->isar.id_isar2;
1558         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1559         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1560         cpu->isar.id_isar2 = u;
1561 
1562         u = cpu->isar.id_isar3;
1563         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1564         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1565         cpu->isar.id_isar3 = u;
1566     }
1567 
1568     /* Some features automatically imply others: */
1569     if (arm_feature(env, ARM_FEATURE_V8)) {
1570         if (arm_feature(env, ARM_FEATURE_M)) {
1571             set_feature(env, ARM_FEATURE_V7);
1572         } else {
1573             set_feature(env, ARM_FEATURE_V7VE);
1574         }
1575     }
1576 
1577     /*
1578      * There exist AArch64 cpus without AArch32 support.  When KVM
1579      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1580      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1581      * As a general principle, we also do not make ID register
1582      * consistency checks anywhere unless using TCG, because only
1583      * for TCG would a consistency-check failure be a QEMU bug.
1584      */
1585     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1586         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1587     }
1588 
1589     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1590         /* v7 Virtualization Extensions. In real hardware this implies
1591          * EL2 and also the presence of the Security Extensions.
1592          * For QEMU, for backwards-compatibility we implement some
1593          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1594          * include the various other features that V7VE implies.
1595          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1596          * Security Extensions is ARM_FEATURE_EL3.
1597          */
1598         assert(!tcg_enabled() || no_aa32 ||
1599                cpu_isar_feature(aa32_arm_div, cpu));
1600         set_feature(env, ARM_FEATURE_LPAE);
1601         set_feature(env, ARM_FEATURE_V7);
1602     }
1603     if (arm_feature(env, ARM_FEATURE_V7)) {
1604         set_feature(env, ARM_FEATURE_VAPA);
1605         set_feature(env, ARM_FEATURE_THUMB2);
1606         set_feature(env, ARM_FEATURE_MPIDR);
1607         if (!arm_feature(env, ARM_FEATURE_M)) {
1608             set_feature(env, ARM_FEATURE_V6K);
1609         } else {
1610             set_feature(env, ARM_FEATURE_V6);
1611         }
1612 
1613         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1614          * non-EL3 configs. This is needed by some legacy boards.
1615          */
1616         set_feature(env, ARM_FEATURE_VBAR);
1617     }
1618     if (arm_feature(env, ARM_FEATURE_V6K)) {
1619         set_feature(env, ARM_FEATURE_V6);
1620         set_feature(env, ARM_FEATURE_MVFR);
1621     }
1622     if (arm_feature(env, ARM_FEATURE_V6)) {
1623         set_feature(env, ARM_FEATURE_V5);
1624         if (!arm_feature(env, ARM_FEATURE_M)) {
1625             assert(!tcg_enabled() || no_aa32 ||
1626                    cpu_isar_feature(aa32_jazelle, cpu));
1627             set_feature(env, ARM_FEATURE_AUXCR);
1628         }
1629     }
1630     if (arm_feature(env, ARM_FEATURE_V5)) {
1631         set_feature(env, ARM_FEATURE_V4T);
1632     }
1633     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1634         set_feature(env, ARM_FEATURE_V7MP);
1635     }
1636     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1637         set_feature(env, ARM_FEATURE_CBAR);
1638     }
1639     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1640         !arm_feature(env, ARM_FEATURE_M)) {
1641         set_feature(env, ARM_FEATURE_THUMB_DSP);
1642     }
1643 
1644     /*
1645      * We rely on no XScale CPU having VFP so we can use the same bits in the
1646      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1647      */
1648     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1649            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1650            !arm_feature(env, ARM_FEATURE_XSCALE));
1651 
1652     if (arm_feature(env, ARM_FEATURE_V7) &&
1653         !arm_feature(env, ARM_FEATURE_M) &&
1654         !arm_feature(env, ARM_FEATURE_PMSA)) {
1655         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1656          * can use 4K pages.
1657          */
1658         pagebits = 12;
1659     } else {
1660         /* For CPUs which might have tiny 1K pages, or which have an
1661          * MPU and might have small region sizes, stick with 1K pages.
1662          */
1663         pagebits = 10;
1664     }
1665     if (!set_preferred_target_page_bits(pagebits)) {
1666         /* This can only ever happen for hotplugging a CPU, or if
1667          * the board code incorrectly creates a CPU which it has
1668          * promised via minimum_page_size that it will not.
1669          */
1670         error_setg(errp, "This CPU requires a smaller page size than the "
1671                    "system is using");
1672         return;
1673     }
1674 
1675     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1676      * We don't support setting cluster ID ([16..23]) (known as Aff2
1677      * in later ARM ARM versions), or any of the higher affinity level fields,
1678      * so these bits always RAZ.
1679      */
1680     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1681         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1682                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1683     }
1684 
1685     if (cpu->reset_hivecs) {
1686             cpu->reset_sctlr |= (1 << 13);
1687     }
1688 
1689     if (cpu->cfgend) {
1690         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1691             cpu->reset_sctlr |= SCTLR_EE;
1692         } else {
1693             cpu->reset_sctlr |= SCTLR_B;
1694         }
1695     }
1696 
1697     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1698         /* If the has_el3 CPU property is disabled then we need to disable the
1699          * feature.
1700          */
1701         unset_feature(env, ARM_FEATURE_EL3);
1702 
1703         /* Disable the security extension feature bits in the processor feature
1704          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1705          */
1706         cpu->isar.id_pfr1 &= ~0xf0;
1707         cpu->isar.id_aa64pfr0 &= ~0xf000;
1708     }
1709 
1710     if (!cpu->has_el2) {
1711         unset_feature(env, ARM_FEATURE_EL2);
1712     }
1713 
1714     if (!cpu->has_pmu) {
1715         unset_feature(env, ARM_FEATURE_PMU);
1716     }
1717     if (arm_feature(env, ARM_FEATURE_PMU)) {
1718         pmu_init(cpu);
1719 
1720         if (!kvm_enabled()) {
1721             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1722             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1723         }
1724 
1725 #ifndef CONFIG_USER_ONLY
1726         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1727                 cpu);
1728 #endif
1729     } else {
1730         cpu->isar.id_aa64dfr0 =
1731             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1732         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1733         cpu->pmceid0 = 0;
1734         cpu->pmceid1 = 0;
1735     }
1736 
1737     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1738         /* Disable the hypervisor feature bits in the processor feature
1739          * registers if we don't have EL2. These are id_pfr1[15:12] and
1740          * id_aa64pfr0_el1[11:8].
1741          */
1742         cpu->isar.id_aa64pfr0 &= ~0xf00;
1743         cpu->isar.id_pfr1 &= ~0xf000;
1744     }
1745 
1746 #ifndef CONFIG_USER_ONLY
1747     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1748         /*
1749          * Disable the MTE feature bits if we do not have tag-memory
1750          * provided by the machine.
1751          */
1752         cpu->isar.id_aa64pfr1 =
1753             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1754     }
1755 #endif
1756 
1757     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1758      * to false or by setting pmsav7-dregion to 0.
1759      */
1760     if (!cpu->has_mpu) {
1761         cpu->pmsav7_dregion = 0;
1762     }
1763     if (cpu->pmsav7_dregion == 0) {
1764         cpu->has_mpu = false;
1765     }
1766 
1767     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1768         arm_feature(env, ARM_FEATURE_V7)) {
1769         uint32_t nr = cpu->pmsav7_dregion;
1770 
1771         if (nr > 0xff) {
1772             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1773             return;
1774         }
1775 
1776         if (nr) {
1777             if (arm_feature(env, ARM_FEATURE_V8)) {
1778                 /* PMSAv8 */
1779                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1780                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1781                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1782                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1783                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1784                 }
1785             } else {
1786                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1787                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1788                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1789             }
1790         }
1791     }
1792 
1793     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1794         uint32_t nr = cpu->sau_sregion;
1795 
1796         if (nr > 0xff) {
1797             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1798             return;
1799         }
1800 
1801         if (nr) {
1802             env->sau.rbar = g_new0(uint32_t, nr);
1803             env->sau.rlar = g_new0(uint32_t, nr);
1804         }
1805     }
1806 
1807     if (arm_feature(env, ARM_FEATURE_EL3)) {
1808         set_feature(env, ARM_FEATURE_VBAR);
1809     }
1810 
1811     register_cp_regs_for_features(cpu);
1812     arm_cpu_register_gdb_regs_for_features(cpu);
1813 
1814     init_cpreg_list(cpu);
1815 
1816 #ifndef CONFIG_USER_ONLY
1817     MachineState *ms = MACHINE(qdev_get_machine());
1818     unsigned int smp_cpus = ms->smp.cpus;
1819     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1820 
1821     /*
1822      * We must set cs->num_ases to the final value before
1823      * the first call to cpu_address_space_init.
1824      */
1825     if (cpu->tag_memory != NULL) {
1826         cs->num_ases = 3 + has_secure;
1827     } else {
1828         cs->num_ases = 1 + has_secure;
1829     }
1830 
1831     if (has_secure) {
1832         if (!cpu->secure_memory) {
1833             cpu->secure_memory = cs->memory;
1834         }
1835         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1836                                cpu->secure_memory);
1837     }
1838 
1839     if (cpu->tag_memory != NULL) {
1840         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1841                                cpu->tag_memory);
1842         if (has_secure) {
1843             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1844                                    cpu->secure_tag_memory);
1845         }
1846     }
1847 
1848     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1849 
1850     /* No core_count specified, default to smp_cpus. */
1851     if (cpu->core_count == -1) {
1852         cpu->core_count = smp_cpus;
1853     }
1854 #endif
1855 
1856     if (tcg_enabled()) {
1857         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1858 
1859         /*
1860          * We only support DCZ blocklen that fits on one page.
1861          *
1862          * Architectually this is always true.  However TARGET_PAGE_SIZE
1863          * is variable and, for compatibility with -machine virt-2.7,
1864          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1865          * But even then, while the largest architectural DCZ blocklen
1866          * is 2KiB, no cpu actually uses such a large blocklen.
1867          */
1868         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1869 
1870         /*
1871          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1872          * both nibbles of each byte storing tag data may be written at once.
1873          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1874          */
1875         if (cpu_isar_feature(aa64_mte, cpu)) {
1876             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1877         }
1878     }
1879 
1880     qemu_init_vcpu(cs);
1881     cpu_reset(cs);
1882 
1883     acc->parent_realize(dev, errp);
1884 }
1885 
1886 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1887 {
1888     ObjectClass *oc;
1889     char *typename;
1890     char **cpuname;
1891     const char *cpunamestr;
1892 
1893     cpuname = g_strsplit(cpu_model, ",", 1);
1894     cpunamestr = cpuname[0];
1895 #ifdef CONFIG_USER_ONLY
1896     /* For backwards compatibility usermode emulation allows "-cpu any",
1897      * which has the same semantics as "-cpu max".
1898      */
1899     if (!strcmp(cpunamestr, "any")) {
1900         cpunamestr = "max";
1901     }
1902 #endif
1903     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1904     oc = object_class_by_name(typename);
1905     g_strfreev(cpuname);
1906     g_free(typename);
1907     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1908         object_class_is_abstract(oc)) {
1909         return NULL;
1910     }
1911     return oc;
1912 }
1913 
1914 /* CPU models. These are not needed for the AArch64 linux-user build. */
1915 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1916 
1917 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1918     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1919       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1920     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1921       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1922     REGINFO_SENTINEL
1923 };
1924 
1925 static void cortex_a8_initfn(Object *obj)
1926 {
1927     ARMCPU *cpu = ARM_CPU(obj);
1928 
1929     cpu->dtb_compatible = "arm,cortex-a8";
1930     set_feature(&cpu->env, ARM_FEATURE_V7);
1931     set_feature(&cpu->env, ARM_FEATURE_NEON);
1932     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1933     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1934     set_feature(&cpu->env, ARM_FEATURE_EL3);
1935     cpu->midr = 0x410fc080;
1936     cpu->reset_fpsid = 0x410330c0;
1937     cpu->isar.mvfr0 = 0x11110222;
1938     cpu->isar.mvfr1 = 0x00011111;
1939     cpu->ctr = 0x82048004;
1940     cpu->reset_sctlr = 0x00c50078;
1941     cpu->isar.id_pfr0 = 0x1031;
1942     cpu->isar.id_pfr1 = 0x11;
1943     cpu->isar.id_dfr0 = 0x400;
1944     cpu->id_afr0 = 0;
1945     cpu->isar.id_mmfr0 = 0x31100003;
1946     cpu->isar.id_mmfr1 = 0x20000000;
1947     cpu->isar.id_mmfr2 = 0x01202000;
1948     cpu->isar.id_mmfr3 = 0x11;
1949     cpu->isar.id_isar0 = 0x00101111;
1950     cpu->isar.id_isar1 = 0x12112111;
1951     cpu->isar.id_isar2 = 0x21232031;
1952     cpu->isar.id_isar3 = 0x11112131;
1953     cpu->isar.id_isar4 = 0x00111142;
1954     cpu->isar.dbgdidr = 0x15141000;
1955     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1956     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1957     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1958     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1959     cpu->reset_auxcr = 2;
1960     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1961 }
1962 
1963 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1964     /* power_control should be set to maximum latency. Again,
1965      * default to 0 and set by private hook
1966      */
1967     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1968       .access = PL1_RW, .resetvalue = 0,
1969       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1970     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1971       .access = PL1_RW, .resetvalue = 0,
1972       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1973     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1974       .access = PL1_RW, .resetvalue = 0,
1975       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1976     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1977       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1978     /* TLB lockdown control */
1979     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1980       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1981     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1982       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1983     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1984       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1985     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1986       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1987     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1988       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1989     REGINFO_SENTINEL
1990 };
1991 
1992 static void cortex_a9_initfn(Object *obj)
1993 {
1994     ARMCPU *cpu = ARM_CPU(obj);
1995 
1996     cpu->dtb_compatible = "arm,cortex-a9";
1997     set_feature(&cpu->env, ARM_FEATURE_V7);
1998     set_feature(&cpu->env, ARM_FEATURE_NEON);
1999     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2000     set_feature(&cpu->env, ARM_FEATURE_EL3);
2001     /* Note that A9 supports the MP extensions even for
2002      * A9UP and single-core A9MP (which are both different
2003      * and valid configurations; we don't model A9UP).
2004      */
2005     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2006     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2007     cpu->midr = 0x410fc090;
2008     cpu->reset_fpsid = 0x41033090;
2009     cpu->isar.mvfr0 = 0x11110222;
2010     cpu->isar.mvfr1 = 0x01111111;
2011     cpu->ctr = 0x80038003;
2012     cpu->reset_sctlr = 0x00c50078;
2013     cpu->isar.id_pfr0 = 0x1031;
2014     cpu->isar.id_pfr1 = 0x11;
2015     cpu->isar.id_dfr0 = 0x000;
2016     cpu->id_afr0 = 0;
2017     cpu->isar.id_mmfr0 = 0x00100103;
2018     cpu->isar.id_mmfr1 = 0x20000000;
2019     cpu->isar.id_mmfr2 = 0x01230000;
2020     cpu->isar.id_mmfr3 = 0x00002111;
2021     cpu->isar.id_isar0 = 0x00101111;
2022     cpu->isar.id_isar1 = 0x13112111;
2023     cpu->isar.id_isar2 = 0x21232041;
2024     cpu->isar.id_isar3 = 0x11112131;
2025     cpu->isar.id_isar4 = 0x00111142;
2026     cpu->isar.dbgdidr = 0x35141000;
2027     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2028     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2029     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2030     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2031 }
2032 
2033 #ifndef CONFIG_USER_ONLY
2034 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2035 {
2036     MachineState *ms = MACHINE(qdev_get_machine());
2037 
2038     /* Linux wants the number of processors from here.
2039      * Might as well set the interrupt-controller bit too.
2040      */
2041     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2042 }
2043 #endif
2044 
2045 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2046 #ifndef CONFIG_USER_ONLY
2047     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2048       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2049       .writefn = arm_cp_write_ignore, },
2050 #endif
2051     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2052       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2053     REGINFO_SENTINEL
2054 };
2055 
2056 static void cortex_a7_initfn(Object *obj)
2057 {
2058     ARMCPU *cpu = ARM_CPU(obj);
2059 
2060     cpu->dtb_compatible = "arm,cortex-a7";
2061     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2062     set_feature(&cpu->env, ARM_FEATURE_NEON);
2063     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2064     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2065     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2066     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2067     set_feature(&cpu->env, ARM_FEATURE_EL2);
2068     set_feature(&cpu->env, ARM_FEATURE_EL3);
2069     set_feature(&cpu->env, ARM_FEATURE_PMU);
2070     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2071     cpu->midr = 0x410fc075;
2072     cpu->reset_fpsid = 0x41023075;
2073     cpu->isar.mvfr0 = 0x10110222;
2074     cpu->isar.mvfr1 = 0x11111111;
2075     cpu->ctr = 0x84448003;
2076     cpu->reset_sctlr = 0x00c50078;
2077     cpu->isar.id_pfr0 = 0x00001131;
2078     cpu->isar.id_pfr1 = 0x00011011;
2079     cpu->isar.id_dfr0 = 0x02010555;
2080     cpu->id_afr0 = 0x00000000;
2081     cpu->isar.id_mmfr0 = 0x10101105;
2082     cpu->isar.id_mmfr1 = 0x40000000;
2083     cpu->isar.id_mmfr2 = 0x01240000;
2084     cpu->isar.id_mmfr3 = 0x02102211;
2085     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2086      * table 4-41 gives 0x02101110, which includes the arm div insns.
2087      */
2088     cpu->isar.id_isar0 = 0x02101110;
2089     cpu->isar.id_isar1 = 0x13112111;
2090     cpu->isar.id_isar2 = 0x21232041;
2091     cpu->isar.id_isar3 = 0x11112131;
2092     cpu->isar.id_isar4 = 0x10011142;
2093     cpu->isar.dbgdidr = 0x3515f005;
2094     cpu->clidr = 0x0a200023;
2095     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2096     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2097     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2098     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2099 }
2100 
2101 static void cortex_a15_initfn(Object *obj)
2102 {
2103     ARMCPU *cpu = ARM_CPU(obj);
2104 
2105     cpu->dtb_compatible = "arm,cortex-a15";
2106     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2107     set_feature(&cpu->env, ARM_FEATURE_NEON);
2108     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2109     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2110     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2111     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2112     set_feature(&cpu->env, ARM_FEATURE_EL2);
2113     set_feature(&cpu->env, ARM_FEATURE_EL3);
2114     set_feature(&cpu->env, ARM_FEATURE_PMU);
2115     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2116     cpu->midr = 0x412fc0f1;
2117     cpu->reset_fpsid = 0x410430f0;
2118     cpu->isar.mvfr0 = 0x10110222;
2119     cpu->isar.mvfr1 = 0x11111111;
2120     cpu->ctr = 0x8444c004;
2121     cpu->reset_sctlr = 0x00c50078;
2122     cpu->isar.id_pfr0 = 0x00001131;
2123     cpu->isar.id_pfr1 = 0x00011011;
2124     cpu->isar.id_dfr0 = 0x02010555;
2125     cpu->id_afr0 = 0x00000000;
2126     cpu->isar.id_mmfr0 = 0x10201105;
2127     cpu->isar.id_mmfr1 = 0x20000000;
2128     cpu->isar.id_mmfr2 = 0x01240000;
2129     cpu->isar.id_mmfr3 = 0x02102211;
2130     cpu->isar.id_isar0 = 0x02101110;
2131     cpu->isar.id_isar1 = 0x13112111;
2132     cpu->isar.id_isar2 = 0x21232041;
2133     cpu->isar.id_isar3 = 0x11112131;
2134     cpu->isar.id_isar4 = 0x10011142;
2135     cpu->isar.dbgdidr = 0x3515f021;
2136     cpu->clidr = 0x0a200023;
2137     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2138     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2139     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2140     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2141 }
2142 
2143 #ifndef TARGET_AARCH64
2144 /*
2145  * -cpu max: a CPU with as many features enabled as our emulation supports.
2146  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2147  * this only needs to handle 32 bits, and need not care about KVM.
2148  */
2149 static void arm_max_initfn(Object *obj)
2150 {
2151     ARMCPU *cpu = ARM_CPU(obj);
2152 
2153     cortex_a15_initfn(obj);
2154 
2155     /* old-style VFP short-vector support */
2156     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2157 
2158 #ifdef CONFIG_USER_ONLY
2159     /*
2160      * We don't set these in system emulation mode for the moment,
2161      * since we don't correctly set (all of) the ID registers to
2162      * advertise them.
2163      */
2164     set_feature(&cpu->env, ARM_FEATURE_V8);
2165     {
2166         uint32_t t;
2167 
2168         t = cpu->isar.id_isar5;
2169         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2170         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2171         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2172         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2173         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2174         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2175         cpu->isar.id_isar5 = t;
2176 
2177         t = cpu->isar.id_isar6;
2178         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2179         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2180         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2181         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2182         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2183         cpu->isar.id_isar6 = t;
2184 
2185         t = cpu->isar.mvfr1;
2186         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2187         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2188         cpu->isar.mvfr1 = t;
2189 
2190         t = cpu->isar.mvfr2;
2191         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2192         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2193         cpu->isar.mvfr2 = t;
2194 
2195         t = cpu->isar.id_mmfr3;
2196         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2197         cpu->isar.id_mmfr3 = t;
2198 
2199         t = cpu->isar.id_mmfr4;
2200         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2201         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2202         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2203         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2204         cpu->isar.id_mmfr4 = t;
2205 
2206         t = cpu->isar.id_pfr0;
2207         t = FIELD_DP32(t, ID_PFR0, DIT, 1);
2208         cpu->isar.id_pfr0 = t;
2209     }
2210 #endif
2211 }
2212 #endif
2213 
2214 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2215 
2216 static const ARMCPUInfo arm_cpus[] = {
2217 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2218     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2219     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2220     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2221     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2222 #ifndef TARGET_AARCH64
2223     { .name = "max",         .initfn = arm_max_initfn },
2224 #endif
2225 #ifdef CONFIG_USER_ONLY
2226     { .name = "any",         .initfn = arm_max_initfn },
2227 #endif
2228 #endif
2229 };
2230 
2231 static Property arm_cpu_properties[] = {
2232     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2233     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2234     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2235                         mp_affinity, ARM64_AFFINITY_INVALID),
2236     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2237     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2238     DEFINE_PROP_END_OF_LIST()
2239 };
2240 
2241 static gchar *arm_gdb_arch_name(CPUState *cs)
2242 {
2243     ARMCPU *cpu = ARM_CPU(cs);
2244     CPUARMState *env = &cpu->env;
2245 
2246     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2247         return g_strdup("iwmmxt");
2248     }
2249     return g_strdup("arm");
2250 }
2251 
2252 #ifdef CONFIG_TCG
2253 static struct TCGCPUOps arm_tcg_ops = {
2254     .initialize = arm_translate_init,
2255     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2256     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2257     .tlb_fill = arm_cpu_tlb_fill,
2258     .debug_excp_handler = arm_debug_excp_handler,
2259 
2260 #if !defined(CONFIG_USER_ONLY)
2261     .do_interrupt = arm_cpu_do_interrupt,
2262     .do_transaction_failed = arm_cpu_do_transaction_failed,
2263     .do_unaligned_access = arm_cpu_do_unaligned_access,
2264     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2265     .debug_check_watchpoint = arm_debug_check_watchpoint,
2266 #endif /* !CONFIG_USER_ONLY */
2267 };
2268 #endif /* CONFIG_TCG */
2269 
2270 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2271 {
2272     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2273     CPUClass *cc = CPU_CLASS(acc);
2274     DeviceClass *dc = DEVICE_CLASS(oc);
2275 
2276     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2277                                     &acc->parent_realize);
2278 
2279     device_class_set_props(dc, arm_cpu_properties);
2280     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2281 
2282     cc->class_by_name = arm_cpu_class_by_name;
2283     cc->has_work = arm_cpu_has_work;
2284     cc->dump_state = arm_cpu_dump_state;
2285     cc->set_pc = arm_cpu_set_pc;
2286     cc->gdb_read_register = arm_cpu_gdb_read_register;
2287     cc->gdb_write_register = arm_cpu_gdb_write_register;
2288 #ifndef CONFIG_USER_ONLY
2289     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2290     cc->asidx_from_attrs = arm_asidx_from_attrs;
2291     cc->vmsd = &vmstate_arm_cpu;
2292     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2293     cc->write_elf64_note = arm_cpu_write_elf64_note;
2294     cc->write_elf32_note = arm_cpu_write_elf32_note;
2295 #endif
2296     cc->gdb_num_core_regs = 26;
2297     cc->gdb_core_xml_file = "arm-core.xml";
2298     cc->gdb_arch_name = arm_gdb_arch_name;
2299     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2300     cc->gdb_stop_before_watchpoint = true;
2301     cc->disas_set_info = arm_disas_set_info;
2302 
2303 #ifdef CONFIG_TCG
2304     cc->tcg_ops = &arm_tcg_ops;
2305 #endif /* CONFIG_TCG */
2306 }
2307 
2308 #ifdef CONFIG_KVM
2309 static void arm_host_initfn(Object *obj)
2310 {
2311     ARMCPU *cpu = ARM_CPU(obj);
2312 
2313     kvm_arm_set_cpu_features_from_host(cpu);
2314     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2315         aarch64_add_sve_properties(obj);
2316     }
2317     arm_cpu_post_init(obj);
2318 }
2319 
2320 static const TypeInfo host_arm_cpu_type_info = {
2321     .name = TYPE_ARM_HOST_CPU,
2322     .parent = TYPE_AARCH64_CPU,
2323     .instance_init = arm_host_initfn,
2324 };
2325 
2326 #endif
2327 
2328 static void arm_cpu_instance_init(Object *obj)
2329 {
2330     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2331 
2332     acc->info->initfn(obj);
2333     arm_cpu_post_init(obj);
2334 }
2335 
2336 static void cpu_register_class_init(ObjectClass *oc, void *data)
2337 {
2338     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2339 
2340     acc->info = data;
2341 }
2342 
2343 void arm_cpu_register(const ARMCPUInfo *info)
2344 {
2345     TypeInfo type_info = {
2346         .parent = TYPE_ARM_CPU,
2347         .instance_size = sizeof(ARMCPU),
2348         .instance_align = __alignof__(ARMCPU),
2349         .instance_init = arm_cpu_instance_init,
2350         .class_size = sizeof(ARMCPUClass),
2351         .class_init = info->class_init ?: cpu_register_class_init,
2352         .class_data = (void *)info,
2353     };
2354 
2355     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2356     type_register(&type_info);
2357     g_free((void *)type_info.name);
2358 }
2359 
2360 static const TypeInfo arm_cpu_type_info = {
2361     .name = TYPE_ARM_CPU,
2362     .parent = TYPE_CPU,
2363     .instance_size = sizeof(ARMCPU),
2364     .instance_align = __alignof__(ARMCPU),
2365     .instance_init = arm_cpu_initfn,
2366     .instance_finalize = arm_cpu_finalizefn,
2367     .abstract = true,
2368     .class_size = sizeof(ARMCPUClass),
2369     .class_init = arm_cpu_class_init,
2370 };
2371 
2372 static const TypeInfo idau_interface_type_info = {
2373     .name = TYPE_IDAU_INTERFACE,
2374     .parent = TYPE_INTERFACE,
2375     .class_size = sizeof(IDAUInterfaceClass),
2376 };
2377 
2378 static void arm_cpu_register_types(void)
2379 {
2380     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2381 
2382     type_register_static(&arm_cpu_type_info);
2383 
2384 #ifdef CONFIG_KVM
2385     type_register_static(&host_arm_cpu_type_info);
2386 #endif
2387 
2388     if (cpu_count) {
2389         size_t i;
2390 
2391         type_register_static(&idau_interface_type_info);
2392         for (i = 0; i < cpu_count; ++i) {
2393             arm_cpu_register(&arm_cpus[i]);
2394         }
2395     }
2396 }
2397 
2398 type_init(arm_cpu_register_types)
2399