xref: /qemu/target/arm/cpu.c (revision 4ce1e15f)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* and to the FP/Neon instructions */
195         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
196         /* and to the SVE instructions */
197         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
198         /* with maximum vector length */
199         env->vfp.zcr_el[1] = cpu_isar_feature(aa64_sve, cpu) ?
200                              cpu->sve_max_vq - 1 : 0;
201         /*
202          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
203          * turning on both here will produce smaller code and otherwise
204          * make no difference to the user-level emulation.
205          */
206         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
207 #else
208         /* Reset into the highest available EL */
209         if (arm_feature(env, ARM_FEATURE_EL3)) {
210             env->pstate = PSTATE_MODE_EL3h;
211         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
212             env->pstate = PSTATE_MODE_EL2h;
213         } else {
214             env->pstate = PSTATE_MODE_EL1h;
215         }
216         env->pc = cpu->rvbar;
217 #endif
218     } else {
219 #if defined(CONFIG_USER_ONLY)
220         /* Userspace expects access to cp10 and cp11 for FP/Neon */
221         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
222 #endif
223     }
224 
225 #if defined(CONFIG_USER_ONLY)
226     env->uncached_cpsr = ARM_CPU_MODE_USR;
227     /* For user mode we must enable access to coprocessors */
228     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
229     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
230         env->cp15.c15_cpar = 3;
231     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
232         env->cp15.c15_cpar = 1;
233     }
234 #else
235 
236     /*
237      * If the highest available EL is EL2, AArch32 will start in Hyp
238      * mode; otherwise it starts in SVC. Note that if we start in
239      * AArch64 then these values in the uncached_cpsr will be ignored.
240      */
241     if (arm_feature(env, ARM_FEATURE_EL2) &&
242         !arm_feature(env, ARM_FEATURE_EL3)) {
243         env->uncached_cpsr = ARM_CPU_MODE_HYP;
244     } else {
245         env->uncached_cpsr = ARM_CPU_MODE_SVC;
246     }
247     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
248 
249     if (arm_feature(env, ARM_FEATURE_M)) {
250         uint32_t initial_msp; /* Loaded from 0x0 */
251         uint32_t initial_pc; /* Loaded from 0x4 */
252         uint8_t *rom;
253         uint32_t vecbase;
254 
255         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
256             env->v7m.secure = true;
257         } else {
258             /* This bit resets to 0 if security is supported, but 1 if
259              * it is not. The bit is not present in v7M, but we set it
260              * here so we can avoid having to make checks on it conditional
261              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
262              */
263             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
264             /*
265              * Set NSACR to indicate "NS access permitted to everything";
266              * this avoids having to have all the tests of it being
267              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
268              * v8.1M the guest-visible value of NSACR in a CPU without the
269              * Security Extension is 0xcff.
270              */
271             env->v7m.nsacr = 0xcff;
272         }
273 
274         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
275          * that it resets to 1, so QEMU always does that rather than making
276          * it dependent on CPU model. In v8M it is RES1.
277          */
278         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
279         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
280         if (arm_feature(env, ARM_FEATURE_V8)) {
281             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
282             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
283             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
284         }
285         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
286             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
287             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
288         }
289 
290         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
291             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
292             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
293                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
294         }
295         /* Unlike A/R profile, M profile defines the reset LR value */
296         env->regs[14] = 0xffffffff;
297 
298         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
299 
300         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
301         vecbase = env->v7m.vecbase[env->v7m.secure];
302         rom = rom_ptr(vecbase, 8);
303         if (rom) {
304             /* Address zero is covered by ROM which hasn't yet been
305              * copied into physical memory.
306              */
307             initial_msp = ldl_p(rom);
308             initial_pc = ldl_p(rom + 4);
309         } else {
310             /* Address zero not covered by a ROM blob, or the ROM blob
311              * is in non-modifiable memory and this is a second reset after
312              * it got copied into memory. In the latter case, rom_ptr
313              * will return a NULL pointer and we should use ldl_phys instead.
314              */
315             initial_msp = ldl_phys(s->as, vecbase);
316             initial_pc = ldl_phys(s->as, vecbase + 4);
317         }
318 
319         env->regs[13] = initial_msp & 0xFFFFFFFC;
320         env->regs[15] = initial_pc & ~1;
321         env->thumb = initial_pc & 1;
322     }
323 
324     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
325      * executing as AArch32 then check if highvecs are enabled and
326      * adjust the PC accordingly.
327      */
328     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
329         env->regs[15] = 0xFFFF0000;
330     }
331 
332     /* M profile requires that reset clears the exclusive monitor;
333      * A profile does not, but clearing it makes more sense than having it
334      * set with an exclusive access on address zero.
335      */
336     arm_clear_exclusive(env);
337 
338     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
339 #endif
340 
341     if (arm_feature(env, ARM_FEATURE_PMSA)) {
342         if (cpu->pmsav7_dregion > 0) {
343             if (arm_feature(env, ARM_FEATURE_V8)) {
344                 memset(env->pmsav8.rbar[M_REG_NS], 0,
345                        sizeof(*env->pmsav8.rbar[M_REG_NS])
346                        * cpu->pmsav7_dregion);
347                 memset(env->pmsav8.rlar[M_REG_NS], 0,
348                        sizeof(*env->pmsav8.rlar[M_REG_NS])
349                        * cpu->pmsav7_dregion);
350                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
351                     memset(env->pmsav8.rbar[M_REG_S], 0,
352                            sizeof(*env->pmsav8.rbar[M_REG_S])
353                            * cpu->pmsav7_dregion);
354                     memset(env->pmsav8.rlar[M_REG_S], 0,
355                            sizeof(*env->pmsav8.rlar[M_REG_S])
356                            * cpu->pmsav7_dregion);
357                 }
358             } else if (arm_feature(env, ARM_FEATURE_V7)) {
359                 memset(env->pmsav7.drbar, 0,
360                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
361                 memset(env->pmsav7.drsr, 0,
362                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
363                 memset(env->pmsav7.dracr, 0,
364                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
365             }
366         }
367         env->pmsav7.rnr[M_REG_NS] = 0;
368         env->pmsav7.rnr[M_REG_S] = 0;
369         env->pmsav8.mair0[M_REG_NS] = 0;
370         env->pmsav8.mair0[M_REG_S] = 0;
371         env->pmsav8.mair1[M_REG_NS] = 0;
372         env->pmsav8.mair1[M_REG_S] = 0;
373     }
374 
375     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
376         if (cpu->sau_sregion > 0) {
377             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
378             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
379         }
380         env->sau.rnr = 0;
381         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
382          * the Cortex-M33 does.
383          */
384         env->sau.ctrl = 0;
385     }
386 
387     set_flush_to_zero(1, &env->vfp.standard_fp_status);
388     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
389     set_default_nan_mode(1, &env->vfp.standard_fp_status);
390     set_float_detect_tininess(float_tininess_before_rounding,
391                               &env->vfp.fp_status);
392     set_float_detect_tininess(float_tininess_before_rounding,
393                               &env->vfp.standard_fp_status);
394     set_float_detect_tininess(float_tininess_before_rounding,
395                               &env->vfp.fp_status_f16);
396 #ifndef CONFIG_USER_ONLY
397     if (kvm_enabled()) {
398         kvm_arm_reset_vcpu(cpu);
399     }
400 #endif
401 
402     hw_breakpoint_update_all(cpu);
403     hw_watchpoint_update_all(cpu);
404     arm_rebuild_hflags(env);
405 }
406 
407 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
408                                      unsigned int target_el,
409                                      unsigned int cur_el, bool secure,
410                                      uint64_t hcr_el2)
411 {
412     CPUARMState *env = cs->env_ptr;
413     bool pstate_unmasked;
414     bool unmasked = false;
415 
416     /*
417      * Don't take exceptions if they target a lower EL.
418      * This check should catch any exceptions that would not be taken
419      * but left pending.
420      */
421     if (cur_el > target_el) {
422         return false;
423     }
424 
425     switch (excp_idx) {
426     case EXCP_FIQ:
427         pstate_unmasked = !(env->daif & PSTATE_F);
428         break;
429 
430     case EXCP_IRQ:
431         pstate_unmasked = !(env->daif & PSTATE_I);
432         break;
433 
434     case EXCP_VFIQ:
435         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
436             /* VFIQs are only taken when hypervized and non-secure.  */
437             return false;
438         }
439         return !(env->daif & PSTATE_F);
440     case EXCP_VIRQ:
441         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
442             /* VIRQs are only taken when hypervized and non-secure.  */
443             return false;
444         }
445         return !(env->daif & PSTATE_I);
446     default:
447         g_assert_not_reached();
448     }
449 
450     /*
451      * Use the target EL, current execution state and SCR/HCR settings to
452      * determine whether the corresponding CPSR bit is used to mask the
453      * interrupt.
454      */
455     if ((target_el > cur_el) && (target_el != 1)) {
456         /* Exceptions targeting a higher EL may not be maskable */
457         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
458             /*
459              * 64-bit masking rules are simple: exceptions to EL3
460              * can't be masked, and exceptions to EL2 can only be
461              * masked from Secure state. The HCR and SCR settings
462              * don't affect the masking logic, only the interrupt routing.
463              */
464             if (target_el == 3 || !secure) {
465                 unmasked = true;
466             }
467         } else {
468             /*
469              * The old 32-bit-only environment has a more complicated
470              * masking setup. HCR and SCR bits not only affect interrupt
471              * routing but also change the behaviour of masking.
472              */
473             bool hcr, scr;
474 
475             switch (excp_idx) {
476             case EXCP_FIQ:
477                 /*
478                  * If FIQs are routed to EL3 or EL2 then there are cases where
479                  * we override the CPSR.F in determining if the exception is
480                  * masked or not. If neither of these are set then we fall back
481                  * to the CPSR.F setting otherwise we further assess the state
482                  * below.
483                  */
484                 hcr = hcr_el2 & HCR_FMO;
485                 scr = (env->cp15.scr_el3 & SCR_FIQ);
486 
487                 /*
488                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
489                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
490                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
491                  * when non-secure but only when FIQs are only routed to EL3.
492                  */
493                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
494                 break;
495             case EXCP_IRQ:
496                 /*
497                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
498                  * we may override the CPSR.I masking when in non-secure state.
499                  * The SCR.IRQ setting has already been taken into consideration
500                  * when setting the target EL, so it does not have a further
501                  * affect here.
502                  */
503                 hcr = hcr_el2 & HCR_IMO;
504                 scr = false;
505                 break;
506             default:
507                 g_assert_not_reached();
508             }
509 
510             if ((scr || hcr) && !secure) {
511                 unmasked = true;
512             }
513         }
514     }
515 
516     /*
517      * The PSTATE bits only mask the interrupt if we have not overriden the
518      * ability above.
519      */
520     return unmasked || pstate_unmasked;
521 }
522 
523 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
524 {
525     CPUClass *cc = CPU_GET_CLASS(cs);
526     CPUARMState *env = cs->env_ptr;
527     uint32_t cur_el = arm_current_el(env);
528     bool secure = arm_is_secure(env);
529     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
530     uint32_t target_el;
531     uint32_t excp_idx;
532 
533     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
534 
535     if (interrupt_request & CPU_INTERRUPT_FIQ) {
536         excp_idx = EXCP_FIQ;
537         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
538         if (arm_excp_unmasked(cs, excp_idx, target_el,
539                               cur_el, secure, hcr_el2)) {
540             goto found;
541         }
542     }
543     if (interrupt_request & CPU_INTERRUPT_HARD) {
544         excp_idx = EXCP_IRQ;
545         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
546         if (arm_excp_unmasked(cs, excp_idx, target_el,
547                               cur_el, secure, hcr_el2)) {
548             goto found;
549         }
550     }
551     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
552         excp_idx = EXCP_VIRQ;
553         target_el = 1;
554         if (arm_excp_unmasked(cs, excp_idx, target_el,
555                               cur_el, secure, hcr_el2)) {
556             goto found;
557         }
558     }
559     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
560         excp_idx = EXCP_VFIQ;
561         target_el = 1;
562         if (arm_excp_unmasked(cs, excp_idx, target_el,
563                               cur_el, secure, hcr_el2)) {
564             goto found;
565         }
566     }
567     return false;
568 
569  found:
570     cs->exception_index = excp_idx;
571     env->exception.target_el = target_el;
572     cc->do_interrupt(cs);
573     return true;
574 }
575 
576 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
577 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
578 {
579     CPUClass *cc = CPU_GET_CLASS(cs);
580     ARMCPU *cpu = ARM_CPU(cs);
581     CPUARMState *env = &cpu->env;
582     bool ret = false;
583 
584     /* ARMv7-M interrupt masking works differently than -A or -R.
585      * There is no FIQ/IRQ distinction. Instead of I and F bits
586      * masking FIQ and IRQ interrupts, an exception is taken only
587      * if it is higher priority than the current execution priority
588      * (which depends on state like BASEPRI, FAULTMASK and the
589      * currently active exception).
590      */
591     if (interrupt_request & CPU_INTERRUPT_HARD
592         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
593         cs->exception_index = EXCP_IRQ;
594         cc->do_interrupt(cs);
595         ret = true;
596     }
597     return ret;
598 }
599 #endif
600 
601 void arm_cpu_update_virq(ARMCPU *cpu)
602 {
603     /*
604      * Update the interrupt level for VIRQ, which is the logical OR of
605      * the HCR_EL2.VI bit and the input line level from the GIC.
606      */
607     CPUARMState *env = &cpu->env;
608     CPUState *cs = CPU(cpu);
609 
610     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
611         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
612 
613     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
614         if (new_state) {
615             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
616         } else {
617             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
618         }
619     }
620 }
621 
622 void arm_cpu_update_vfiq(ARMCPU *cpu)
623 {
624     /*
625      * Update the interrupt level for VFIQ, which is the logical OR of
626      * the HCR_EL2.VF bit and the input line level from the GIC.
627      */
628     CPUARMState *env = &cpu->env;
629     CPUState *cs = CPU(cpu);
630 
631     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
632         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
633 
634     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
635         if (new_state) {
636             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
637         } else {
638             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
639         }
640     }
641 }
642 
643 #ifndef CONFIG_USER_ONLY
644 static void arm_cpu_set_irq(void *opaque, int irq, int level)
645 {
646     ARMCPU *cpu = opaque;
647     CPUARMState *env = &cpu->env;
648     CPUState *cs = CPU(cpu);
649     static const int mask[] = {
650         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
651         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
652         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
653         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
654     };
655 
656     if (level) {
657         env->irq_line_state |= mask[irq];
658     } else {
659         env->irq_line_state &= ~mask[irq];
660     }
661 
662     switch (irq) {
663     case ARM_CPU_VIRQ:
664         assert(arm_feature(env, ARM_FEATURE_EL2));
665         arm_cpu_update_virq(cpu);
666         break;
667     case ARM_CPU_VFIQ:
668         assert(arm_feature(env, ARM_FEATURE_EL2));
669         arm_cpu_update_vfiq(cpu);
670         break;
671     case ARM_CPU_IRQ:
672     case ARM_CPU_FIQ:
673         if (level) {
674             cpu_interrupt(cs, mask[irq]);
675         } else {
676             cpu_reset_interrupt(cs, mask[irq]);
677         }
678         break;
679     default:
680         g_assert_not_reached();
681     }
682 }
683 
684 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
685 {
686 #ifdef CONFIG_KVM
687     ARMCPU *cpu = opaque;
688     CPUARMState *env = &cpu->env;
689     CPUState *cs = CPU(cpu);
690     uint32_t linestate_bit;
691     int irq_id;
692 
693     switch (irq) {
694     case ARM_CPU_IRQ:
695         irq_id = KVM_ARM_IRQ_CPU_IRQ;
696         linestate_bit = CPU_INTERRUPT_HARD;
697         break;
698     case ARM_CPU_FIQ:
699         irq_id = KVM_ARM_IRQ_CPU_FIQ;
700         linestate_bit = CPU_INTERRUPT_FIQ;
701         break;
702     default:
703         g_assert_not_reached();
704     }
705 
706     if (level) {
707         env->irq_line_state |= linestate_bit;
708     } else {
709         env->irq_line_state &= ~linestate_bit;
710     }
711     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
712 #endif
713 }
714 
715 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
716 {
717     ARMCPU *cpu = ARM_CPU(cs);
718     CPUARMState *env = &cpu->env;
719 
720     cpu_synchronize_state(cs);
721     return arm_cpu_data_is_big_endian(env);
722 }
723 
724 #endif
725 
726 static inline void set_feature(CPUARMState *env, int feature)
727 {
728     env->features |= 1ULL << feature;
729 }
730 
731 static inline void unset_feature(CPUARMState *env, int feature)
732 {
733     env->features &= ~(1ULL << feature);
734 }
735 
736 static int
737 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
738 {
739   return print_insn_arm(pc | 1, info);
740 }
741 
742 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
743 {
744     ARMCPU *ac = ARM_CPU(cpu);
745     CPUARMState *env = &ac->env;
746     bool sctlr_b;
747 
748     if (is_a64(env)) {
749         /* We might not be compiled with the A64 disassembler
750          * because it needs a C++ compiler. Leave print_insn
751          * unset in this case to use the caller default behaviour.
752          */
753 #if defined(CONFIG_ARM_A64_DIS)
754         info->print_insn = print_insn_arm_a64;
755 #endif
756         info->cap_arch = CS_ARCH_ARM64;
757         info->cap_insn_unit = 4;
758         info->cap_insn_split = 4;
759     } else {
760         int cap_mode;
761         if (env->thumb) {
762             info->print_insn = print_insn_thumb1;
763             info->cap_insn_unit = 2;
764             info->cap_insn_split = 4;
765             cap_mode = CS_MODE_THUMB;
766         } else {
767             info->print_insn = print_insn_arm;
768             info->cap_insn_unit = 4;
769             info->cap_insn_split = 4;
770             cap_mode = CS_MODE_ARM;
771         }
772         if (arm_feature(env, ARM_FEATURE_V8)) {
773             cap_mode |= CS_MODE_V8;
774         }
775         if (arm_feature(env, ARM_FEATURE_M)) {
776             cap_mode |= CS_MODE_MCLASS;
777         }
778         info->cap_arch = CS_ARCH_ARM;
779         info->cap_mode = cap_mode;
780     }
781 
782     sctlr_b = arm_sctlr_b(env);
783     if (bswap_code(sctlr_b)) {
784 #ifdef TARGET_WORDS_BIGENDIAN
785         info->endian = BFD_ENDIAN_LITTLE;
786 #else
787         info->endian = BFD_ENDIAN_BIG;
788 #endif
789     }
790     info->flags &= ~INSN_ARM_BE32;
791 #ifndef CONFIG_USER_ONLY
792     if (sctlr_b) {
793         info->flags |= INSN_ARM_BE32;
794     }
795 #endif
796 }
797 
798 #ifdef TARGET_AARCH64
799 
800 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
801 {
802     ARMCPU *cpu = ARM_CPU(cs);
803     CPUARMState *env = &cpu->env;
804     uint32_t psr = pstate_read(env);
805     int i;
806     int el = arm_current_el(env);
807     const char *ns_status;
808 
809     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810     for (i = 0; i < 32; i++) {
811         if (i == 31) {
812             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813         } else {
814             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815                          (i + 2) % 3 ? " " : "\n");
816         }
817     }
818 
819     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821     } else {
822         ns_status = "";
823     }
824     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825                  psr,
826                  psr & PSTATE_N ? 'N' : '-',
827                  psr & PSTATE_Z ? 'Z' : '-',
828                  psr & PSTATE_C ? 'C' : '-',
829                  psr & PSTATE_V ? 'V' : '-',
830                  ns_status,
831                  el,
832                  psr & PSTATE_SP ? 'h' : 't');
833 
834     if (cpu_isar_feature(aa64_bti, cpu)) {
835         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
836     }
837     if (!(flags & CPU_DUMP_FPU)) {
838         qemu_fprintf(f, "\n");
839         return;
840     }
841     if (fp_exception_el(env, el) != 0) {
842         qemu_fprintf(f, "    FPU disabled\n");
843         return;
844     }
845     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
846                  vfp_get_fpcr(env), vfp_get_fpsr(env));
847 
848     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849         int j, zcr_len = sve_zcr_len_for_el(env, el);
850 
851         for (i = 0; i <= FFR_PRED_NUM; i++) {
852             bool eol;
853             if (i == FFR_PRED_NUM) {
854                 qemu_fprintf(f, "FFR=");
855                 /* It's last, so end the line.  */
856                 eol = true;
857             } else {
858                 qemu_fprintf(f, "P%02d=", i);
859                 switch (zcr_len) {
860                 case 0:
861                     eol = i % 8 == 7;
862                     break;
863                 case 1:
864                     eol = i % 6 == 5;
865                     break;
866                 case 2:
867                 case 3:
868                     eol = i % 3 == 2;
869                     break;
870                 default:
871                     /* More than one quadword per predicate.  */
872                     eol = true;
873                     break;
874                 }
875             }
876             for (j = zcr_len / 4; j >= 0; j--) {
877                 int digits;
878                 if (j * 4 + 4 <= zcr_len + 1) {
879                     digits = 16;
880                 } else {
881                     digits = (zcr_len % 4 + 1) * 4;
882                 }
883                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884                              env->vfp.pregs[i].p[j],
885                              j ? ":" : eol ? "\n" : " ");
886             }
887         }
888 
889         for (i = 0; i < 32; i++) {
890             if (zcr_len == 0) {
891                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892                              i, env->vfp.zregs[i].d[1],
893                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894             } else if (zcr_len == 1) {
895                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896                              ":%016" PRIx64 ":%016" PRIx64 "\n",
897                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899             } else {
900                 for (j = zcr_len; j >= 0; j--) {
901                     bool odd = (zcr_len - j) % 2 != 0;
902                     if (j == zcr_len) {
903                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904                     } else if (!odd) {
905                         if (j > 0) {
906                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
907                         } else {
908                             qemu_fprintf(f, "     [%x]=", j);
909                         }
910                     }
911                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912                                  env->vfp.zregs[i].d[j * 2 + 1],
913                                  env->vfp.zregs[i].d[j * 2],
914                                  odd || j == 0 ? "\n" : ":");
915                 }
916             }
917         }
918     } else {
919         for (i = 0; i < 32; i++) {
920             uint64_t *q = aa64_vfp_qreg(env, i);
921             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922                          i, q[1], q[0], (i & 1 ? "\n" : " "));
923         }
924     }
925 }
926 
927 #else
928 
929 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
930 {
931     g_assert_not_reached();
932 }
933 
934 #endif
935 
936 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
937 {
938     ARMCPU *cpu = ARM_CPU(cs);
939     CPUARMState *env = &cpu->env;
940     int i;
941 
942     if (is_a64(env)) {
943         aarch64_cpu_dump_state(cs, f, flags);
944         return;
945     }
946 
947     for (i = 0; i < 16; i++) {
948         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949         if ((i % 4) == 3) {
950             qemu_fprintf(f, "\n");
951         } else {
952             qemu_fprintf(f, " ");
953         }
954     }
955 
956     if (arm_feature(env, ARM_FEATURE_M)) {
957         uint32_t xpsr = xpsr_read(env);
958         const char *mode;
959         const char *ns_status = "";
960 
961         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962             ns_status = env->v7m.secure ? "S " : "NS ";
963         }
964 
965         if (xpsr & XPSR_EXCP) {
966             mode = "handler";
967         } else {
968             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969                 mode = "unpriv-thread";
970             } else {
971                 mode = "priv-thread";
972             }
973         }
974 
975         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976                      xpsr,
977                      xpsr & XPSR_N ? 'N' : '-',
978                      xpsr & XPSR_Z ? 'Z' : '-',
979                      xpsr & XPSR_C ? 'C' : '-',
980                      xpsr & XPSR_V ? 'V' : '-',
981                      xpsr & XPSR_T ? 'T' : 'A',
982                      ns_status,
983                      mode);
984     } else {
985         uint32_t psr = cpsr_read(env);
986         const char *ns_status = "";
987 
988         if (arm_feature(env, ARM_FEATURE_EL3) &&
989             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
991         }
992 
993         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994                      psr,
995                      psr & CPSR_N ? 'N' : '-',
996                      psr & CPSR_Z ? 'Z' : '-',
997                      psr & CPSR_C ? 'C' : '-',
998                      psr & CPSR_V ? 'V' : '-',
999                      psr & CPSR_T ? 'T' : 'A',
1000                      ns_status,
1001                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1002     }
1003 
1004     if (flags & CPU_DUMP_FPU) {
1005         int numvfpregs = 0;
1006         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007             numvfpregs = 32;
1008         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009             numvfpregs = 16;
1010         }
1011         for (i = 0; i < numvfpregs; i++) {
1012             uint64_t v = *aa32_vfp_dreg(env, i);
1013             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014                          i * 2, (uint32_t)v,
1015                          i * 2 + 1, (uint32_t)(v >> 32),
1016                          i, v);
1017         }
1018         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1019     }
1020 }
1021 
1022 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023 {
1024     uint32_t Aff1 = idx / clustersz;
1025     uint32_t Aff0 = idx % clustersz;
1026     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1027 }
1028 
1029 static void cpreg_hashtable_data_destroy(gpointer data)
1030 {
1031     /*
1032      * Destroy function for cpu->cp_regs hashtable data entries.
1033      * We must free the name string because it was g_strdup()ed in
1034      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035      * from r->name because we know we definitely allocated it.
1036      */
1037     ARMCPRegInfo *r = data;
1038 
1039     g_free((void *)r->name);
1040     g_free(r);
1041 }
1042 
1043 static void arm_cpu_initfn(Object *obj)
1044 {
1045     ARMCPU *cpu = ARM_CPU(obj);
1046 
1047     cpu_set_cpustate_pointers(cpu);
1048     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049                                          g_free, cpreg_hashtable_data_destroy);
1050 
1051     QLIST_INIT(&cpu->pre_el_change_hooks);
1052     QLIST_INIT(&cpu->el_change_hooks);
1053 
1054 #ifndef CONFIG_USER_ONLY
1055     /* Our inbound IRQ and FIQ lines */
1056     if (kvm_enabled()) {
1057         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058          * the same interface as non-KVM CPUs.
1059          */
1060         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061     } else {
1062         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1063     }
1064 
1065     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066                        ARRAY_SIZE(cpu->gt_timer_outputs));
1067 
1068     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069                              "gicv3-maintenance-interrupt", 1);
1070     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071                              "pmu-interrupt", 1);
1072 #endif
1073 
1074     /* DTB consumers generally don't in fact care what the 'compatible'
1075      * string is, so always provide some string and trust that a hypothetical
1076      * picky DTB consumer will also provide a helpful error message.
1077      */
1078     cpu->dtb_compatible = "qemu,unknown";
1079     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1081 
1082     if (tcg_enabled()) {
1083         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1084     }
1085 }
1086 
1087 static Property arm_cpu_gt_cntfrq_property =
1088             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090 
1091 static Property arm_cpu_reset_cbar_property =
1092             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1093 
1094 static Property arm_cpu_reset_hivecs_property =
1095             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096 
1097 static Property arm_cpu_rvbar_property =
1098             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101 static Property arm_cpu_has_el2_property =
1102             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103 
1104 static Property arm_cpu_has_el3_property =
1105             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106 #endif
1107 
1108 static Property arm_cpu_cfgend_property =
1109             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110 
1111 static Property arm_cpu_has_vfp_property =
1112             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113 
1114 static Property arm_cpu_has_neon_property =
1115             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116 
1117 static Property arm_cpu_has_dsp_property =
1118             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119 
1120 static Property arm_cpu_has_mpu_property =
1121             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122 
1123 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125  * the right value for that particular CPU type, and we don't want
1126  * to override that with an incorrect constant value.
1127  */
1128 static Property arm_cpu_pmsav7_dregion_property =
1129             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130                                            pmsav7_dregion,
1131                                            qdev_prop_uint32, uint32_t);
1132 
1133 static bool arm_get_pmu(Object *obj, Error **errp)
1134 {
1135     ARMCPU *cpu = ARM_CPU(obj);
1136 
1137     return cpu->has_pmu;
1138 }
1139 
1140 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141 {
1142     ARMCPU *cpu = ARM_CPU(obj);
1143 
1144     if (value) {
1145         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1146             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147             return;
1148         }
1149         set_feature(&cpu->env, ARM_FEATURE_PMU);
1150     } else {
1151         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152     }
1153     cpu->has_pmu = value;
1154 }
1155 
1156 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1157                                void *opaque, Error **errp)
1158 {
1159     ARMCPU *cpu = ARM_CPU(obj);
1160 
1161     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1162 }
1163 
1164 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1165                                void *opaque, Error **errp)
1166 {
1167     ARMCPU *cpu = ARM_CPU(obj);
1168 
1169     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1170 }
1171 
1172 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1173 {
1174     /*
1175      * The exact approach to calculating guest ticks is:
1176      *
1177      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1178      *              NANOSECONDS_PER_SECOND);
1179      *
1180      * We don't do that. Rather we intentionally use integer division
1181      * truncation below and in the caller for the conversion of host monotonic
1182      * time to guest ticks to provide the exact inverse for the semantics of
1183      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1184      * it loses precision when representing frequencies where
1185      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1186      * provide an exact inverse leads to scheduling timers with negative
1187      * periods, which in turn leads to sticky behaviour in the guest.
1188      *
1189      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1190      * cannot become zero.
1191      */
1192     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1193       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1194 }
1195 
1196 void arm_cpu_post_init(Object *obj)
1197 {
1198     ARMCPU *cpu = ARM_CPU(obj);
1199 
1200     /* M profile implies PMSA. We have to do this here rather than
1201      * in realize with the other feature-implication checks because
1202      * we look at the PMSA bit to see if we should add some properties.
1203      */
1204     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1205         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1206     }
1207 
1208     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1209         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1210         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1211     }
1212 
1213     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1214         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1215     }
1216 
1217     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1218         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1219     }
1220 
1221 #ifndef CONFIG_USER_ONLY
1222     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1223         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1224          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1225          */
1226         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1227 
1228         object_property_add_link(obj, "secure-memory",
1229                                  TYPE_MEMORY_REGION,
1230                                  (Object **)&cpu->secure_memory,
1231                                  qdev_prop_allow_set_link_before_realize,
1232                                  OBJ_PROP_LINK_STRONG,
1233                                  &error_abort);
1234     }
1235 
1236     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1237         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1238     }
1239 #endif
1240 
1241     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1242         cpu->has_pmu = true;
1243         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1244                                  &error_abort);
1245     }
1246 
1247     /*
1248      * Allow user to turn off VFP and Neon support, but only for TCG --
1249      * KVM does not currently allow us to lie to the guest about its
1250      * ID/feature registers, so the guest always sees what the host has.
1251      */
1252     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1253         ? cpu_isar_feature(aa64_fp_simd, cpu)
1254         : cpu_isar_feature(aa32_vfp, cpu)) {
1255         cpu->has_vfp = true;
1256         if (!kvm_enabled()) {
1257             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1258         }
1259     }
1260 
1261     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1262         cpu->has_neon = true;
1263         if (!kvm_enabled()) {
1264             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1265         }
1266     }
1267 
1268     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1269         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1270         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1271     }
1272 
1273     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1274         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1275         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1276             qdev_property_add_static(DEVICE(obj),
1277                                      &arm_cpu_pmsav7_dregion_property);
1278         }
1279     }
1280 
1281     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1282         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1283                                  qdev_prop_allow_set_link_before_realize,
1284                                  OBJ_PROP_LINK_STRONG,
1285                                  &error_abort);
1286         /*
1287          * M profile: initial value of the Secure VTOR. We can't just use
1288          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1289          * the property to be set after realize.
1290          */
1291         object_property_add(obj, "init-svtor", "uint32",
1292                             arm_get_init_svtor, arm_set_init_svtor,
1293                             NULL, NULL, &error_abort);
1294     }
1295 
1296     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1297 
1298     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1299         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1300     }
1301 }
1302 
1303 static void arm_cpu_finalizefn(Object *obj)
1304 {
1305     ARMCPU *cpu = ARM_CPU(obj);
1306     ARMELChangeHook *hook, *next;
1307 
1308     g_hash_table_destroy(cpu->cp_regs);
1309 
1310     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1311         QLIST_REMOVE(hook, node);
1312         g_free(hook);
1313     }
1314     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1315         QLIST_REMOVE(hook, node);
1316         g_free(hook);
1317     }
1318 #ifndef CONFIG_USER_ONLY
1319     if (cpu->pmu_timer) {
1320         timer_del(cpu->pmu_timer);
1321         timer_deinit(cpu->pmu_timer);
1322         timer_free(cpu->pmu_timer);
1323     }
1324 #endif
1325 }
1326 
1327 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1328 {
1329     Error *local_err = NULL;
1330 
1331     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1332         arm_cpu_sve_finalize(cpu, &local_err);
1333         if (local_err != NULL) {
1334             error_propagate(errp, local_err);
1335             return;
1336         }
1337     }
1338 }
1339 
1340 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1341 {
1342     CPUState *cs = CPU(dev);
1343     ARMCPU *cpu = ARM_CPU(dev);
1344     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1345     CPUARMState *env = &cpu->env;
1346     int pagebits;
1347     Error *local_err = NULL;
1348     bool no_aa32 = false;
1349 
1350     /* If we needed to query the host kernel for the CPU features
1351      * then it's possible that might have failed in the initfn, but
1352      * this is the first point where we can report it.
1353      */
1354     if (cpu->host_cpu_probe_failed) {
1355         if (!kvm_enabled()) {
1356             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1357         } else {
1358             error_setg(errp, "Failed to retrieve host CPU features");
1359         }
1360         return;
1361     }
1362 
1363 #ifndef CONFIG_USER_ONLY
1364     /* The NVIC and M-profile CPU are two halves of a single piece of
1365      * hardware; trying to use one without the other is a command line
1366      * error and will result in segfaults if not caught here.
1367      */
1368     if (arm_feature(env, ARM_FEATURE_M)) {
1369         if (!env->nvic) {
1370             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1371             return;
1372         }
1373     } else {
1374         if (env->nvic) {
1375             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1376             return;
1377         }
1378     }
1379 
1380     {
1381         uint64_t scale;
1382 
1383         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1384             if (!cpu->gt_cntfrq_hz) {
1385                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1386                            cpu->gt_cntfrq_hz);
1387                 return;
1388             }
1389             scale = gt_cntfrq_period_ns(cpu);
1390         } else {
1391             scale = GTIMER_SCALE;
1392         }
1393 
1394         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1395                                                arm_gt_ptimer_cb, cpu);
1396         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1397                                                arm_gt_vtimer_cb, cpu);
1398         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1399                                               arm_gt_htimer_cb, cpu);
1400         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1401                                               arm_gt_stimer_cb, cpu);
1402         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1403                                                   arm_gt_hvtimer_cb, cpu);
1404     }
1405 #endif
1406 
1407     cpu_exec_realizefn(cs, &local_err);
1408     if (local_err != NULL) {
1409         error_propagate(errp, local_err);
1410         return;
1411     }
1412 
1413     arm_cpu_finalize_features(cpu, &local_err);
1414     if (local_err != NULL) {
1415         error_propagate(errp, local_err);
1416         return;
1417     }
1418 
1419     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1420         cpu->has_vfp != cpu->has_neon) {
1421         /*
1422          * This is an architectural requirement for AArch64; AArch32 is
1423          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1424          */
1425         error_setg(errp,
1426                    "AArch64 CPUs must have both VFP and Neon or neither");
1427         return;
1428     }
1429 
1430     if (!cpu->has_vfp) {
1431         uint64_t t;
1432         uint32_t u;
1433 
1434         t = cpu->isar.id_aa64isar1;
1435         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1436         cpu->isar.id_aa64isar1 = t;
1437 
1438         t = cpu->isar.id_aa64pfr0;
1439         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1440         cpu->isar.id_aa64pfr0 = t;
1441 
1442         u = cpu->isar.id_isar6;
1443         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1444         cpu->isar.id_isar6 = u;
1445 
1446         u = cpu->isar.mvfr0;
1447         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1448         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1449         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1450         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1451         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1452         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1453         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1454         cpu->isar.mvfr0 = u;
1455 
1456         u = cpu->isar.mvfr1;
1457         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1458         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1459         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1460         cpu->isar.mvfr1 = u;
1461 
1462         u = cpu->isar.mvfr2;
1463         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1464         cpu->isar.mvfr2 = u;
1465     }
1466 
1467     if (!cpu->has_neon) {
1468         uint64_t t;
1469         uint32_t u;
1470 
1471         unset_feature(env, ARM_FEATURE_NEON);
1472 
1473         t = cpu->isar.id_aa64isar0;
1474         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1475         cpu->isar.id_aa64isar0 = t;
1476 
1477         t = cpu->isar.id_aa64isar1;
1478         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1479         cpu->isar.id_aa64isar1 = t;
1480 
1481         t = cpu->isar.id_aa64pfr0;
1482         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1483         cpu->isar.id_aa64pfr0 = t;
1484 
1485         u = cpu->isar.id_isar5;
1486         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1487         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1488         cpu->isar.id_isar5 = u;
1489 
1490         u = cpu->isar.id_isar6;
1491         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1492         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1493         cpu->isar.id_isar6 = u;
1494 
1495         u = cpu->isar.mvfr1;
1496         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1497         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1498         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1499         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1500         cpu->isar.mvfr1 = u;
1501 
1502         u = cpu->isar.mvfr2;
1503         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1504         cpu->isar.mvfr2 = u;
1505     }
1506 
1507     if (!cpu->has_neon && !cpu->has_vfp) {
1508         uint64_t t;
1509         uint32_t u;
1510 
1511         t = cpu->isar.id_aa64isar0;
1512         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1513         cpu->isar.id_aa64isar0 = t;
1514 
1515         t = cpu->isar.id_aa64isar1;
1516         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1517         cpu->isar.id_aa64isar1 = t;
1518 
1519         u = cpu->isar.mvfr0;
1520         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1521         cpu->isar.mvfr0 = u;
1522 
1523         /* Despite the name, this field covers both VFP and Neon */
1524         u = cpu->isar.mvfr1;
1525         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1526         cpu->isar.mvfr1 = u;
1527     }
1528 
1529     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1530         uint32_t u;
1531 
1532         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1533 
1534         u = cpu->isar.id_isar1;
1535         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1536         cpu->isar.id_isar1 = u;
1537 
1538         u = cpu->isar.id_isar2;
1539         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1540         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1541         cpu->isar.id_isar2 = u;
1542 
1543         u = cpu->isar.id_isar3;
1544         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1545         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1546         cpu->isar.id_isar3 = u;
1547     }
1548 
1549     /* Some features automatically imply others: */
1550     if (arm_feature(env, ARM_FEATURE_V8)) {
1551         if (arm_feature(env, ARM_FEATURE_M)) {
1552             set_feature(env, ARM_FEATURE_V7);
1553         } else {
1554             set_feature(env, ARM_FEATURE_V7VE);
1555         }
1556     }
1557 
1558     /*
1559      * There exist AArch64 cpus without AArch32 support.  When KVM
1560      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1561      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1562      * As a general principle, we also do not make ID register
1563      * consistency checks anywhere unless using TCG, because only
1564      * for TCG would a consistency-check failure be a QEMU bug.
1565      */
1566     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1567         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1568     }
1569 
1570     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1571         /* v7 Virtualization Extensions. In real hardware this implies
1572          * EL2 and also the presence of the Security Extensions.
1573          * For QEMU, for backwards-compatibility we implement some
1574          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1575          * include the various other features that V7VE implies.
1576          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1577          * Security Extensions is ARM_FEATURE_EL3.
1578          */
1579         assert(!tcg_enabled() || no_aa32 ||
1580                cpu_isar_feature(aa32_arm_div, cpu));
1581         set_feature(env, ARM_FEATURE_LPAE);
1582         set_feature(env, ARM_FEATURE_V7);
1583     }
1584     if (arm_feature(env, ARM_FEATURE_V7)) {
1585         set_feature(env, ARM_FEATURE_VAPA);
1586         set_feature(env, ARM_FEATURE_THUMB2);
1587         set_feature(env, ARM_FEATURE_MPIDR);
1588         if (!arm_feature(env, ARM_FEATURE_M)) {
1589             set_feature(env, ARM_FEATURE_V6K);
1590         } else {
1591             set_feature(env, ARM_FEATURE_V6);
1592         }
1593 
1594         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1595          * non-EL3 configs. This is needed by some legacy boards.
1596          */
1597         set_feature(env, ARM_FEATURE_VBAR);
1598     }
1599     if (arm_feature(env, ARM_FEATURE_V6K)) {
1600         set_feature(env, ARM_FEATURE_V6);
1601         set_feature(env, ARM_FEATURE_MVFR);
1602     }
1603     if (arm_feature(env, ARM_FEATURE_V6)) {
1604         set_feature(env, ARM_FEATURE_V5);
1605         if (!arm_feature(env, ARM_FEATURE_M)) {
1606             assert(!tcg_enabled() || no_aa32 ||
1607                    cpu_isar_feature(aa32_jazelle, cpu));
1608             set_feature(env, ARM_FEATURE_AUXCR);
1609         }
1610     }
1611     if (arm_feature(env, ARM_FEATURE_V5)) {
1612         set_feature(env, ARM_FEATURE_V4T);
1613     }
1614     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1615         set_feature(env, ARM_FEATURE_V7MP);
1616         set_feature(env, ARM_FEATURE_PXN);
1617     }
1618     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1619         set_feature(env, ARM_FEATURE_CBAR);
1620     }
1621     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1622         !arm_feature(env, ARM_FEATURE_M)) {
1623         set_feature(env, ARM_FEATURE_THUMB_DSP);
1624     }
1625 
1626     /*
1627      * We rely on no XScale CPU having VFP so we can use the same bits in the
1628      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1629      */
1630     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1631            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1632            !arm_feature(env, ARM_FEATURE_XSCALE));
1633 
1634     if (arm_feature(env, ARM_FEATURE_V7) &&
1635         !arm_feature(env, ARM_FEATURE_M) &&
1636         !arm_feature(env, ARM_FEATURE_PMSA)) {
1637         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1638          * can use 4K pages.
1639          */
1640         pagebits = 12;
1641     } else {
1642         /* For CPUs which might have tiny 1K pages, or which have an
1643          * MPU and might have small region sizes, stick with 1K pages.
1644          */
1645         pagebits = 10;
1646     }
1647     if (!set_preferred_target_page_bits(pagebits)) {
1648         /* This can only ever happen for hotplugging a CPU, or if
1649          * the board code incorrectly creates a CPU which it has
1650          * promised via minimum_page_size that it will not.
1651          */
1652         error_setg(errp, "This CPU requires a smaller page size than the "
1653                    "system is using");
1654         return;
1655     }
1656 
1657     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1658      * We don't support setting cluster ID ([16..23]) (known as Aff2
1659      * in later ARM ARM versions), or any of the higher affinity level fields,
1660      * so these bits always RAZ.
1661      */
1662     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1663         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1664                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1665     }
1666 
1667     if (cpu->reset_hivecs) {
1668             cpu->reset_sctlr |= (1 << 13);
1669     }
1670 
1671     if (cpu->cfgend) {
1672         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1673             cpu->reset_sctlr |= SCTLR_EE;
1674         } else {
1675             cpu->reset_sctlr |= SCTLR_B;
1676         }
1677     }
1678 
1679     if (!cpu->has_el3) {
1680         /* If the has_el3 CPU property is disabled then we need to disable the
1681          * feature.
1682          */
1683         unset_feature(env, ARM_FEATURE_EL3);
1684 
1685         /* Disable the security extension feature bits in the processor feature
1686          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1687          */
1688         cpu->id_pfr1 &= ~0xf0;
1689         cpu->isar.id_aa64pfr0 &= ~0xf000;
1690     }
1691 
1692     if (!cpu->has_el2) {
1693         unset_feature(env, ARM_FEATURE_EL2);
1694     }
1695 
1696     if (!cpu->has_pmu) {
1697         unset_feature(env, ARM_FEATURE_PMU);
1698     }
1699     if (arm_feature(env, ARM_FEATURE_PMU)) {
1700         pmu_init(cpu);
1701 
1702         if (!kvm_enabled()) {
1703             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1704             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1705         }
1706 
1707 #ifndef CONFIG_USER_ONLY
1708         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1709                 cpu);
1710 #endif
1711     } else {
1712         cpu->isar.id_aa64dfr0 =
1713             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1714         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1715         cpu->pmceid0 = 0;
1716         cpu->pmceid1 = 0;
1717     }
1718 
1719     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1720         /* Disable the hypervisor feature bits in the processor feature
1721          * registers if we don't have EL2. These are id_pfr1[15:12] and
1722          * id_aa64pfr0_el1[11:8].
1723          */
1724         cpu->isar.id_aa64pfr0 &= ~0xf00;
1725         cpu->id_pfr1 &= ~0xf000;
1726     }
1727 
1728     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1729      * to false or by setting pmsav7-dregion to 0.
1730      */
1731     if (!cpu->has_mpu) {
1732         cpu->pmsav7_dregion = 0;
1733     }
1734     if (cpu->pmsav7_dregion == 0) {
1735         cpu->has_mpu = false;
1736     }
1737 
1738     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1739         arm_feature(env, ARM_FEATURE_V7)) {
1740         uint32_t nr = cpu->pmsav7_dregion;
1741 
1742         if (nr > 0xff) {
1743             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1744             return;
1745         }
1746 
1747         if (nr) {
1748             if (arm_feature(env, ARM_FEATURE_V8)) {
1749                 /* PMSAv8 */
1750                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1751                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1752                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1753                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1754                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1755                 }
1756             } else {
1757                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1758                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1759                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1760             }
1761         }
1762     }
1763 
1764     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1765         uint32_t nr = cpu->sau_sregion;
1766 
1767         if (nr > 0xff) {
1768             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1769             return;
1770         }
1771 
1772         if (nr) {
1773             env->sau.rbar = g_new0(uint32_t, nr);
1774             env->sau.rlar = g_new0(uint32_t, nr);
1775         }
1776     }
1777 
1778     if (arm_feature(env, ARM_FEATURE_EL3)) {
1779         set_feature(env, ARM_FEATURE_VBAR);
1780     }
1781 
1782     register_cp_regs_for_features(cpu);
1783     arm_cpu_register_gdb_regs_for_features(cpu);
1784 
1785     init_cpreg_list(cpu);
1786 
1787 #ifndef CONFIG_USER_ONLY
1788     MachineState *ms = MACHINE(qdev_get_machine());
1789     unsigned int smp_cpus = ms->smp.cpus;
1790 
1791     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1792         cs->num_ases = 2;
1793 
1794         if (!cpu->secure_memory) {
1795             cpu->secure_memory = cs->memory;
1796         }
1797         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1798                                cpu->secure_memory);
1799     } else {
1800         cs->num_ases = 1;
1801     }
1802     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1803 
1804     /* No core_count specified, default to smp_cpus. */
1805     if (cpu->core_count == -1) {
1806         cpu->core_count = smp_cpus;
1807     }
1808 #endif
1809 
1810     qemu_init_vcpu(cs);
1811     cpu_reset(cs);
1812 
1813     acc->parent_realize(dev, errp);
1814 }
1815 
1816 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1817 {
1818     ObjectClass *oc;
1819     char *typename;
1820     char **cpuname;
1821     const char *cpunamestr;
1822 
1823     cpuname = g_strsplit(cpu_model, ",", 1);
1824     cpunamestr = cpuname[0];
1825 #ifdef CONFIG_USER_ONLY
1826     /* For backwards compatibility usermode emulation allows "-cpu any",
1827      * which has the same semantics as "-cpu max".
1828      */
1829     if (!strcmp(cpunamestr, "any")) {
1830         cpunamestr = "max";
1831     }
1832 #endif
1833     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1834     oc = object_class_by_name(typename);
1835     g_strfreev(cpuname);
1836     g_free(typename);
1837     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1838         object_class_is_abstract(oc)) {
1839         return NULL;
1840     }
1841     return oc;
1842 }
1843 
1844 /* CPU models. These are not needed for the AArch64 linux-user build. */
1845 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1846 
1847 static void arm926_initfn(Object *obj)
1848 {
1849     ARMCPU *cpu = ARM_CPU(obj);
1850 
1851     cpu->dtb_compatible = "arm,arm926";
1852     set_feature(&cpu->env, ARM_FEATURE_V5);
1853     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1854     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1855     cpu->midr = 0x41069265;
1856     cpu->reset_fpsid = 0x41011090;
1857     cpu->ctr = 0x1dd20d2;
1858     cpu->reset_sctlr = 0x00090078;
1859 
1860     /*
1861      * ARMv5 does not have the ID_ISAR registers, but we can still
1862      * set the field to indicate Jazelle support within QEMU.
1863      */
1864     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1865     /*
1866      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1867      * support even though ARMv5 doesn't have this register.
1868      */
1869     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1870     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1871     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1872 }
1873 
1874 static void arm946_initfn(Object *obj)
1875 {
1876     ARMCPU *cpu = ARM_CPU(obj);
1877 
1878     cpu->dtb_compatible = "arm,arm946";
1879     set_feature(&cpu->env, ARM_FEATURE_V5);
1880     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1881     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1882     cpu->midr = 0x41059461;
1883     cpu->ctr = 0x0f004006;
1884     cpu->reset_sctlr = 0x00000078;
1885 }
1886 
1887 static void arm1026_initfn(Object *obj)
1888 {
1889     ARMCPU *cpu = ARM_CPU(obj);
1890 
1891     cpu->dtb_compatible = "arm,arm1026";
1892     set_feature(&cpu->env, ARM_FEATURE_V5);
1893     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1894     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1895     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1896     cpu->midr = 0x4106a262;
1897     cpu->reset_fpsid = 0x410110a0;
1898     cpu->ctr = 0x1dd20d2;
1899     cpu->reset_sctlr = 0x00090078;
1900     cpu->reset_auxcr = 1;
1901 
1902     /*
1903      * ARMv5 does not have the ID_ISAR registers, but we can still
1904      * set the field to indicate Jazelle support within QEMU.
1905      */
1906     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1907     /*
1908      * Similarly, we need to set MVFR0 fields to enable vfp and short vector
1909      * support even though ARMv5 doesn't have this register.
1910      */
1911     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1912     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSP, 1);
1913     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1914 
1915     {
1916         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1917         ARMCPRegInfo ifar = {
1918             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1919             .access = PL1_RW,
1920             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1921             .resetvalue = 0
1922         };
1923         define_one_arm_cp_reg(cpu, &ifar);
1924     }
1925 }
1926 
1927 static void arm1136_r2_initfn(Object *obj)
1928 {
1929     ARMCPU *cpu = ARM_CPU(obj);
1930     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1931      * older core than plain "arm1136". In particular this does not
1932      * have the v6K features.
1933      * These ID register values are correct for 1136 but may be wrong
1934      * for 1136_r2 (in particular r0p2 does not actually implement most
1935      * of the ID registers).
1936      */
1937 
1938     cpu->dtb_compatible = "arm,arm1136";
1939     set_feature(&cpu->env, ARM_FEATURE_V6);
1940     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1941     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1942     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1943     cpu->midr = 0x4107b362;
1944     cpu->reset_fpsid = 0x410120b4;
1945     cpu->isar.mvfr0 = 0x11111111;
1946     cpu->isar.mvfr1 = 0x00000000;
1947     cpu->ctr = 0x1dd20d2;
1948     cpu->reset_sctlr = 0x00050078;
1949     cpu->id_pfr0 = 0x111;
1950     cpu->id_pfr1 = 0x1;
1951     cpu->isar.id_dfr0 = 0x2;
1952     cpu->id_afr0 = 0x3;
1953     cpu->isar.id_mmfr0 = 0x01130003;
1954     cpu->isar.id_mmfr1 = 0x10030302;
1955     cpu->isar.id_mmfr2 = 0x01222110;
1956     cpu->isar.id_isar0 = 0x00140011;
1957     cpu->isar.id_isar1 = 0x12002111;
1958     cpu->isar.id_isar2 = 0x11231111;
1959     cpu->isar.id_isar3 = 0x01102131;
1960     cpu->isar.id_isar4 = 0x141;
1961     cpu->reset_auxcr = 7;
1962 }
1963 
1964 static void arm1136_initfn(Object *obj)
1965 {
1966     ARMCPU *cpu = ARM_CPU(obj);
1967 
1968     cpu->dtb_compatible = "arm,arm1136";
1969     set_feature(&cpu->env, ARM_FEATURE_V6K);
1970     set_feature(&cpu->env, ARM_FEATURE_V6);
1971     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1972     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1973     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1974     cpu->midr = 0x4117b363;
1975     cpu->reset_fpsid = 0x410120b4;
1976     cpu->isar.mvfr0 = 0x11111111;
1977     cpu->isar.mvfr1 = 0x00000000;
1978     cpu->ctr = 0x1dd20d2;
1979     cpu->reset_sctlr = 0x00050078;
1980     cpu->id_pfr0 = 0x111;
1981     cpu->id_pfr1 = 0x1;
1982     cpu->isar.id_dfr0 = 0x2;
1983     cpu->id_afr0 = 0x3;
1984     cpu->isar.id_mmfr0 = 0x01130003;
1985     cpu->isar.id_mmfr1 = 0x10030302;
1986     cpu->isar.id_mmfr2 = 0x01222110;
1987     cpu->isar.id_isar0 = 0x00140011;
1988     cpu->isar.id_isar1 = 0x12002111;
1989     cpu->isar.id_isar2 = 0x11231111;
1990     cpu->isar.id_isar3 = 0x01102131;
1991     cpu->isar.id_isar4 = 0x141;
1992     cpu->reset_auxcr = 7;
1993 }
1994 
1995 static void arm1176_initfn(Object *obj)
1996 {
1997     ARMCPU *cpu = ARM_CPU(obj);
1998 
1999     cpu->dtb_compatible = "arm,arm1176";
2000     set_feature(&cpu->env, ARM_FEATURE_V6K);
2001     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2002     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2003     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
2004     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
2005     set_feature(&cpu->env, ARM_FEATURE_EL3);
2006     cpu->midr = 0x410fb767;
2007     cpu->reset_fpsid = 0x410120b5;
2008     cpu->isar.mvfr0 = 0x11111111;
2009     cpu->isar.mvfr1 = 0x00000000;
2010     cpu->ctr = 0x1dd20d2;
2011     cpu->reset_sctlr = 0x00050078;
2012     cpu->id_pfr0 = 0x111;
2013     cpu->id_pfr1 = 0x11;
2014     cpu->isar.id_dfr0 = 0x33;
2015     cpu->id_afr0 = 0;
2016     cpu->isar.id_mmfr0 = 0x01130003;
2017     cpu->isar.id_mmfr1 = 0x10030302;
2018     cpu->isar.id_mmfr2 = 0x01222100;
2019     cpu->isar.id_isar0 = 0x0140011;
2020     cpu->isar.id_isar1 = 0x12002111;
2021     cpu->isar.id_isar2 = 0x11231121;
2022     cpu->isar.id_isar3 = 0x01102131;
2023     cpu->isar.id_isar4 = 0x01141;
2024     cpu->reset_auxcr = 7;
2025 }
2026 
2027 static void arm11mpcore_initfn(Object *obj)
2028 {
2029     ARMCPU *cpu = ARM_CPU(obj);
2030 
2031     cpu->dtb_compatible = "arm,arm11mpcore";
2032     set_feature(&cpu->env, ARM_FEATURE_V6K);
2033     set_feature(&cpu->env, ARM_FEATURE_VAPA);
2034     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
2035     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2036     cpu->midr = 0x410fb022;
2037     cpu->reset_fpsid = 0x410120b4;
2038     cpu->isar.mvfr0 = 0x11111111;
2039     cpu->isar.mvfr1 = 0x00000000;
2040     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
2041     cpu->id_pfr0 = 0x111;
2042     cpu->id_pfr1 = 0x1;
2043     cpu->isar.id_dfr0 = 0;
2044     cpu->id_afr0 = 0x2;
2045     cpu->isar.id_mmfr0 = 0x01100103;
2046     cpu->isar.id_mmfr1 = 0x10020302;
2047     cpu->isar.id_mmfr2 = 0x01222000;
2048     cpu->isar.id_isar0 = 0x00100011;
2049     cpu->isar.id_isar1 = 0x12002111;
2050     cpu->isar.id_isar2 = 0x11221011;
2051     cpu->isar.id_isar3 = 0x01102131;
2052     cpu->isar.id_isar4 = 0x141;
2053     cpu->reset_auxcr = 1;
2054 }
2055 
2056 static void cortex_m0_initfn(Object *obj)
2057 {
2058     ARMCPU *cpu = ARM_CPU(obj);
2059     set_feature(&cpu->env, ARM_FEATURE_V6);
2060     set_feature(&cpu->env, ARM_FEATURE_M);
2061 
2062     cpu->midr = 0x410cc200;
2063 }
2064 
2065 static void cortex_m3_initfn(Object *obj)
2066 {
2067     ARMCPU *cpu = ARM_CPU(obj);
2068     set_feature(&cpu->env, ARM_FEATURE_V7);
2069     set_feature(&cpu->env, ARM_FEATURE_M);
2070     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2071     cpu->midr = 0x410fc231;
2072     cpu->pmsav7_dregion = 8;
2073     cpu->id_pfr0 = 0x00000030;
2074     cpu->id_pfr1 = 0x00000200;
2075     cpu->isar.id_dfr0 = 0x00100000;
2076     cpu->id_afr0 = 0x00000000;
2077     cpu->isar.id_mmfr0 = 0x00000030;
2078     cpu->isar.id_mmfr1 = 0x00000000;
2079     cpu->isar.id_mmfr2 = 0x00000000;
2080     cpu->isar.id_mmfr3 = 0x00000000;
2081     cpu->isar.id_isar0 = 0x01141110;
2082     cpu->isar.id_isar1 = 0x02111000;
2083     cpu->isar.id_isar2 = 0x21112231;
2084     cpu->isar.id_isar3 = 0x01111110;
2085     cpu->isar.id_isar4 = 0x01310102;
2086     cpu->isar.id_isar5 = 0x00000000;
2087     cpu->isar.id_isar6 = 0x00000000;
2088 }
2089 
2090 static void cortex_m4_initfn(Object *obj)
2091 {
2092     ARMCPU *cpu = ARM_CPU(obj);
2093 
2094     set_feature(&cpu->env, ARM_FEATURE_V7);
2095     set_feature(&cpu->env, ARM_FEATURE_M);
2096     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2097     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2098     cpu->midr = 0x410fc240; /* r0p0 */
2099     cpu->pmsav7_dregion = 8;
2100     cpu->isar.mvfr0 = 0x10110021;
2101     cpu->isar.mvfr1 = 0x11000011;
2102     cpu->isar.mvfr2 = 0x00000000;
2103     cpu->id_pfr0 = 0x00000030;
2104     cpu->id_pfr1 = 0x00000200;
2105     cpu->isar.id_dfr0 = 0x00100000;
2106     cpu->id_afr0 = 0x00000000;
2107     cpu->isar.id_mmfr0 = 0x00000030;
2108     cpu->isar.id_mmfr1 = 0x00000000;
2109     cpu->isar.id_mmfr2 = 0x00000000;
2110     cpu->isar.id_mmfr3 = 0x00000000;
2111     cpu->isar.id_isar0 = 0x01141110;
2112     cpu->isar.id_isar1 = 0x02111000;
2113     cpu->isar.id_isar2 = 0x21112231;
2114     cpu->isar.id_isar3 = 0x01111110;
2115     cpu->isar.id_isar4 = 0x01310102;
2116     cpu->isar.id_isar5 = 0x00000000;
2117     cpu->isar.id_isar6 = 0x00000000;
2118 }
2119 
2120 static void cortex_m7_initfn(Object *obj)
2121 {
2122     ARMCPU *cpu = ARM_CPU(obj);
2123 
2124     set_feature(&cpu->env, ARM_FEATURE_V7);
2125     set_feature(&cpu->env, ARM_FEATURE_M);
2126     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2127     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2128     cpu->midr = 0x411fc272; /* r1p2 */
2129     cpu->pmsav7_dregion = 8;
2130     cpu->isar.mvfr0 = 0x10110221;
2131     cpu->isar.mvfr1 = 0x12000011;
2132     cpu->isar.mvfr2 = 0x00000040;
2133     cpu->id_pfr0 = 0x00000030;
2134     cpu->id_pfr1 = 0x00000200;
2135     cpu->isar.id_dfr0 = 0x00100000;
2136     cpu->id_afr0 = 0x00000000;
2137     cpu->isar.id_mmfr0 = 0x00100030;
2138     cpu->isar.id_mmfr1 = 0x00000000;
2139     cpu->isar.id_mmfr2 = 0x01000000;
2140     cpu->isar.id_mmfr3 = 0x00000000;
2141     cpu->isar.id_isar0 = 0x01101110;
2142     cpu->isar.id_isar1 = 0x02112000;
2143     cpu->isar.id_isar2 = 0x20232231;
2144     cpu->isar.id_isar3 = 0x01111131;
2145     cpu->isar.id_isar4 = 0x01310132;
2146     cpu->isar.id_isar5 = 0x00000000;
2147     cpu->isar.id_isar6 = 0x00000000;
2148 }
2149 
2150 static void cortex_m33_initfn(Object *obj)
2151 {
2152     ARMCPU *cpu = ARM_CPU(obj);
2153 
2154     set_feature(&cpu->env, ARM_FEATURE_V8);
2155     set_feature(&cpu->env, ARM_FEATURE_M);
2156     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
2157     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
2158     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
2159     cpu->midr = 0x410fd213; /* r0p3 */
2160     cpu->pmsav7_dregion = 16;
2161     cpu->sau_sregion = 8;
2162     cpu->isar.mvfr0 = 0x10110021;
2163     cpu->isar.mvfr1 = 0x11000011;
2164     cpu->isar.mvfr2 = 0x00000040;
2165     cpu->id_pfr0 = 0x00000030;
2166     cpu->id_pfr1 = 0x00000210;
2167     cpu->isar.id_dfr0 = 0x00200000;
2168     cpu->id_afr0 = 0x00000000;
2169     cpu->isar.id_mmfr0 = 0x00101F40;
2170     cpu->isar.id_mmfr1 = 0x00000000;
2171     cpu->isar.id_mmfr2 = 0x01000000;
2172     cpu->isar.id_mmfr3 = 0x00000000;
2173     cpu->isar.id_isar0 = 0x01101110;
2174     cpu->isar.id_isar1 = 0x02212000;
2175     cpu->isar.id_isar2 = 0x20232232;
2176     cpu->isar.id_isar3 = 0x01111131;
2177     cpu->isar.id_isar4 = 0x01310132;
2178     cpu->isar.id_isar5 = 0x00000000;
2179     cpu->isar.id_isar6 = 0x00000000;
2180     cpu->clidr = 0x00000000;
2181     cpu->ctr = 0x8000c000;
2182 }
2183 
2184 static void arm_v7m_class_init(ObjectClass *oc, void *data)
2185 {
2186     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2187     CPUClass *cc = CPU_CLASS(oc);
2188 
2189     acc->info = data;
2190 #ifndef CONFIG_USER_ONLY
2191     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2192 #endif
2193 
2194     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2195 }
2196 
2197 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2198     /* Dummy the TCM region regs for the moment */
2199     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2200       .access = PL1_RW, .type = ARM_CP_CONST },
2201     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2202       .access = PL1_RW, .type = ARM_CP_CONST },
2203     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2204       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2205     REGINFO_SENTINEL
2206 };
2207 
2208 static void cortex_r5_initfn(Object *obj)
2209 {
2210     ARMCPU *cpu = ARM_CPU(obj);
2211 
2212     set_feature(&cpu->env, ARM_FEATURE_V7);
2213     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2214     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2215     set_feature(&cpu->env, ARM_FEATURE_PMU);
2216     cpu->midr = 0x411fc153; /* r1p3 */
2217     cpu->id_pfr0 = 0x0131;
2218     cpu->id_pfr1 = 0x001;
2219     cpu->isar.id_dfr0 = 0x010400;
2220     cpu->id_afr0 = 0x0;
2221     cpu->isar.id_mmfr0 = 0x0210030;
2222     cpu->isar.id_mmfr1 = 0x00000000;
2223     cpu->isar.id_mmfr2 = 0x01200000;
2224     cpu->isar.id_mmfr3 = 0x0211;
2225     cpu->isar.id_isar0 = 0x02101111;
2226     cpu->isar.id_isar1 = 0x13112111;
2227     cpu->isar.id_isar2 = 0x21232141;
2228     cpu->isar.id_isar3 = 0x01112131;
2229     cpu->isar.id_isar4 = 0x0010142;
2230     cpu->isar.id_isar5 = 0x0;
2231     cpu->isar.id_isar6 = 0x0;
2232     cpu->mp_is_up = true;
2233     cpu->pmsav7_dregion = 16;
2234     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2235 }
2236 
2237 static void cortex_r5f_initfn(Object *obj)
2238 {
2239     ARMCPU *cpu = ARM_CPU(obj);
2240 
2241     cortex_r5_initfn(obj);
2242     cpu->isar.mvfr0 = 0x10110221;
2243     cpu->isar.mvfr1 = 0x00000011;
2244 }
2245 
2246 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2247     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2248       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2249     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2250       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2251     REGINFO_SENTINEL
2252 };
2253 
2254 static void cortex_a8_initfn(Object *obj)
2255 {
2256     ARMCPU *cpu = ARM_CPU(obj);
2257 
2258     cpu->dtb_compatible = "arm,cortex-a8";
2259     set_feature(&cpu->env, ARM_FEATURE_V7);
2260     set_feature(&cpu->env, ARM_FEATURE_NEON);
2261     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2262     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2263     set_feature(&cpu->env, ARM_FEATURE_EL3);
2264     cpu->midr = 0x410fc080;
2265     cpu->reset_fpsid = 0x410330c0;
2266     cpu->isar.mvfr0 = 0x11110222;
2267     cpu->isar.mvfr1 = 0x00011111;
2268     cpu->ctr = 0x82048004;
2269     cpu->reset_sctlr = 0x00c50078;
2270     cpu->id_pfr0 = 0x1031;
2271     cpu->id_pfr1 = 0x11;
2272     cpu->isar.id_dfr0 = 0x400;
2273     cpu->id_afr0 = 0;
2274     cpu->isar.id_mmfr0 = 0x31100003;
2275     cpu->isar.id_mmfr1 = 0x20000000;
2276     cpu->isar.id_mmfr2 = 0x01202000;
2277     cpu->isar.id_mmfr3 = 0x11;
2278     cpu->isar.id_isar0 = 0x00101111;
2279     cpu->isar.id_isar1 = 0x12112111;
2280     cpu->isar.id_isar2 = 0x21232031;
2281     cpu->isar.id_isar3 = 0x11112131;
2282     cpu->isar.id_isar4 = 0x00111142;
2283     cpu->isar.dbgdidr = 0x15141000;
2284     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2285     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2286     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2287     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2288     cpu->reset_auxcr = 2;
2289     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2290 }
2291 
2292 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2293     /* power_control should be set to maximum latency. Again,
2294      * default to 0 and set by private hook
2295      */
2296     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2297       .access = PL1_RW, .resetvalue = 0,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2299     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2300       .access = PL1_RW, .resetvalue = 0,
2301       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2302     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2303       .access = PL1_RW, .resetvalue = 0,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2305     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2306       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2307     /* TLB lockdown control */
2308     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2309       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2310     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2311       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2312     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2313       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2314     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2315       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2316     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2317       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2318     REGINFO_SENTINEL
2319 };
2320 
2321 static void cortex_a9_initfn(Object *obj)
2322 {
2323     ARMCPU *cpu = ARM_CPU(obj);
2324 
2325     cpu->dtb_compatible = "arm,cortex-a9";
2326     set_feature(&cpu->env, ARM_FEATURE_V7);
2327     set_feature(&cpu->env, ARM_FEATURE_NEON);
2328     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2329     set_feature(&cpu->env, ARM_FEATURE_EL3);
2330     /* Note that A9 supports the MP extensions even for
2331      * A9UP and single-core A9MP (which are both different
2332      * and valid configurations; we don't model A9UP).
2333      */
2334     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2335     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2336     cpu->midr = 0x410fc090;
2337     cpu->reset_fpsid = 0x41033090;
2338     cpu->isar.mvfr0 = 0x11110222;
2339     cpu->isar.mvfr1 = 0x01111111;
2340     cpu->ctr = 0x80038003;
2341     cpu->reset_sctlr = 0x00c50078;
2342     cpu->id_pfr0 = 0x1031;
2343     cpu->id_pfr1 = 0x11;
2344     cpu->isar.id_dfr0 = 0x000;
2345     cpu->id_afr0 = 0;
2346     cpu->isar.id_mmfr0 = 0x00100103;
2347     cpu->isar.id_mmfr1 = 0x20000000;
2348     cpu->isar.id_mmfr2 = 0x01230000;
2349     cpu->isar.id_mmfr3 = 0x00002111;
2350     cpu->isar.id_isar0 = 0x00101111;
2351     cpu->isar.id_isar1 = 0x13112111;
2352     cpu->isar.id_isar2 = 0x21232041;
2353     cpu->isar.id_isar3 = 0x11112131;
2354     cpu->isar.id_isar4 = 0x00111142;
2355     cpu->isar.dbgdidr = 0x35141000;
2356     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2357     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2358     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2359     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2360 }
2361 
2362 #ifndef CONFIG_USER_ONLY
2363 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2364 {
2365     MachineState *ms = MACHINE(qdev_get_machine());
2366 
2367     /* Linux wants the number of processors from here.
2368      * Might as well set the interrupt-controller bit too.
2369      */
2370     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2371 }
2372 #endif
2373 
2374 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2375 #ifndef CONFIG_USER_ONLY
2376     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2377       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2378       .writefn = arm_cp_write_ignore, },
2379 #endif
2380     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2381       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2382     REGINFO_SENTINEL
2383 };
2384 
2385 static void cortex_a7_initfn(Object *obj)
2386 {
2387     ARMCPU *cpu = ARM_CPU(obj);
2388 
2389     cpu->dtb_compatible = "arm,cortex-a7";
2390     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2391     set_feature(&cpu->env, ARM_FEATURE_NEON);
2392     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2393     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2394     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2395     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2396     set_feature(&cpu->env, ARM_FEATURE_EL2);
2397     set_feature(&cpu->env, ARM_FEATURE_EL3);
2398     set_feature(&cpu->env, ARM_FEATURE_PMU);
2399     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2400     cpu->midr = 0x410fc075;
2401     cpu->reset_fpsid = 0x41023075;
2402     cpu->isar.mvfr0 = 0x10110222;
2403     cpu->isar.mvfr1 = 0x11111111;
2404     cpu->ctr = 0x84448003;
2405     cpu->reset_sctlr = 0x00c50078;
2406     cpu->id_pfr0 = 0x00001131;
2407     cpu->id_pfr1 = 0x00011011;
2408     cpu->isar.id_dfr0 = 0x02010555;
2409     cpu->id_afr0 = 0x00000000;
2410     cpu->isar.id_mmfr0 = 0x10101105;
2411     cpu->isar.id_mmfr1 = 0x40000000;
2412     cpu->isar.id_mmfr2 = 0x01240000;
2413     cpu->isar.id_mmfr3 = 0x02102211;
2414     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2415      * table 4-41 gives 0x02101110, which includes the arm div insns.
2416      */
2417     cpu->isar.id_isar0 = 0x02101110;
2418     cpu->isar.id_isar1 = 0x13112111;
2419     cpu->isar.id_isar2 = 0x21232041;
2420     cpu->isar.id_isar3 = 0x11112131;
2421     cpu->isar.id_isar4 = 0x10011142;
2422     cpu->isar.dbgdidr = 0x3515f005;
2423     cpu->clidr = 0x0a200023;
2424     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2425     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2426     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2427     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2428 }
2429 
2430 static void cortex_a15_initfn(Object *obj)
2431 {
2432     ARMCPU *cpu = ARM_CPU(obj);
2433 
2434     cpu->dtb_compatible = "arm,cortex-a15";
2435     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2436     set_feature(&cpu->env, ARM_FEATURE_NEON);
2437     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2438     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2439     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2440     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2441     set_feature(&cpu->env, ARM_FEATURE_EL2);
2442     set_feature(&cpu->env, ARM_FEATURE_EL3);
2443     set_feature(&cpu->env, ARM_FEATURE_PMU);
2444     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2445     cpu->midr = 0x412fc0f1;
2446     cpu->reset_fpsid = 0x410430f0;
2447     cpu->isar.mvfr0 = 0x10110222;
2448     cpu->isar.mvfr1 = 0x11111111;
2449     cpu->ctr = 0x8444c004;
2450     cpu->reset_sctlr = 0x00c50078;
2451     cpu->id_pfr0 = 0x00001131;
2452     cpu->id_pfr1 = 0x00011011;
2453     cpu->isar.id_dfr0 = 0x02010555;
2454     cpu->id_afr0 = 0x00000000;
2455     cpu->isar.id_mmfr0 = 0x10201105;
2456     cpu->isar.id_mmfr1 = 0x20000000;
2457     cpu->isar.id_mmfr2 = 0x01240000;
2458     cpu->isar.id_mmfr3 = 0x02102211;
2459     cpu->isar.id_isar0 = 0x02101110;
2460     cpu->isar.id_isar1 = 0x13112111;
2461     cpu->isar.id_isar2 = 0x21232041;
2462     cpu->isar.id_isar3 = 0x11112131;
2463     cpu->isar.id_isar4 = 0x10011142;
2464     cpu->isar.dbgdidr = 0x3515f021;
2465     cpu->clidr = 0x0a200023;
2466     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2467     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2468     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2469     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2470 }
2471 
2472 static void ti925t_initfn(Object *obj)
2473 {
2474     ARMCPU *cpu = ARM_CPU(obj);
2475     set_feature(&cpu->env, ARM_FEATURE_V4T);
2476     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2477     cpu->midr = ARM_CPUID_TI925T;
2478     cpu->ctr = 0x5109149;
2479     cpu->reset_sctlr = 0x00000070;
2480 }
2481 
2482 static void sa1100_initfn(Object *obj)
2483 {
2484     ARMCPU *cpu = ARM_CPU(obj);
2485 
2486     cpu->dtb_compatible = "intel,sa1100";
2487     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2488     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2489     cpu->midr = 0x4401A11B;
2490     cpu->reset_sctlr = 0x00000070;
2491 }
2492 
2493 static void sa1110_initfn(Object *obj)
2494 {
2495     ARMCPU *cpu = ARM_CPU(obj);
2496     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2497     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2498     cpu->midr = 0x6901B119;
2499     cpu->reset_sctlr = 0x00000070;
2500 }
2501 
2502 static void pxa250_initfn(Object *obj)
2503 {
2504     ARMCPU *cpu = ARM_CPU(obj);
2505 
2506     cpu->dtb_compatible = "marvell,xscale";
2507     set_feature(&cpu->env, ARM_FEATURE_V5);
2508     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2509     cpu->midr = 0x69052100;
2510     cpu->ctr = 0xd172172;
2511     cpu->reset_sctlr = 0x00000078;
2512 }
2513 
2514 static void pxa255_initfn(Object *obj)
2515 {
2516     ARMCPU *cpu = ARM_CPU(obj);
2517 
2518     cpu->dtb_compatible = "marvell,xscale";
2519     set_feature(&cpu->env, ARM_FEATURE_V5);
2520     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2521     cpu->midr = 0x69052d00;
2522     cpu->ctr = 0xd172172;
2523     cpu->reset_sctlr = 0x00000078;
2524 }
2525 
2526 static void pxa260_initfn(Object *obj)
2527 {
2528     ARMCPU *cpu = ARM_CPU(obj);
2529 
2530     cpu->dtb_compatible = "marvell,xscale";
2531     set_feature(&cpu->env, ARM_FEATURE_V5);
2532     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2533     cpu->midr = 0x69052903;
2534     cpu->ctr = 0xd172172;
2535     cpu->reset_sctlr = 0x00000078;
2536 }
2537 
2538 static void pxa261_initfn(Object *obj)
2539 {
2540     ARMCPU *cpu = ARM_CPU(obj);
2541 
2542     cpu->dtb_compatible = "marvell,xscale";
2543     set_feature(&cpu->env, ARM_FEATURE_V5);
2544     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2545     cpu->midr = 0x69052d05;
2546     cpu->ctr = 0xd172172;
2547     cpu->reset_sctlr = 0x00000078;
2548 }
2549 
2550 static void pxa262_initfn(Object *obj)
2551 {
2552     ARMCPU *cpu = ARM_CPU(obj);
2553 
2554     cpu->dtb_compatible = "marvell,xscale";
2555     set_feature(&cpu->env, ARM_FEATURE_V5);
2556     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2557     cpu->midr = 0x69052d06;
2558     cpu->ctr = 0xd172172;
2559     cpu->reset_sctlr = 0x00000078;
2560 }
2561 
2562 static void pxa270a0_initfn(Object *obj)
2563 {
2564     ARMCPU *cpu = ARM_CPU(obj);
2565 
2566     cpu->dtb_compatible = "marvell,xscale";
2567     set_feature(&cpu->env, ARM_FEATURE_V5);
2568     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2569     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2570     cpu->midr = 0x69054110;
2571     cpu->ctr = 0xd172172;
2572     cpu->reset_sctlr = 0x00000078;
2573 }
2574 
2575 static void pxa270a1_initfn(Object *obj)
2576 {
2577     ARMCPU *cpu = ARM_CPU(obj);
2578 
2579     cpu->dtb_compatible = "marvell,xscale";
2580     set_feature(&cpu->env, ARM_FEATURE_V5);
2581     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2582     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2583     cpu->midr = 0x69054111;
2584     cpu->ctr = 0xd172172;
2585     cpu->reset_sctlr = 0x00000078;
2586 }
2587 
2588 static void pxa270b0_initfn(Object *obj)
2589 {
2590     ARMCPU *cpu = ARM_CPU(obj);
2591 
2592     cpu->dtb_compatible = "marvell,xscale";
2593     set_feature(&cpu->env, ARM_FEATURE_V5);
2594     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2595     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2596     cpu->midr = 0x69054112;
2597     cpu->ctr = 0xd172172;
2598     cpu->reset_sctlr = 0x00000078;
2599 }
2600 
2601 static void pxa270b1_initfn(Object *obj)
2602 {
2603     ARMCPU *cpu = ARM_CPU(obj);
2604 
2605     cpu->dtb_compatible = "marvell,xscale";
2606     set_feature(&cpu->env, ARM_FEATURE_V5);
2607     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2608     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2609     cpu->midr = 0x69054113;
2610     cpu->ctr = 0xd172172;
2611     cpu->reset_sctlr = 0x00000078;
2612 }
2613 
2614 static void pxa270c0_initfn(Object *obj)
2615 {
2616     ARMCPU *cpu = ARM_CPU(obj);
2617 
2618     cpu->dtb_compatible = "marvell,xscale";
2619     set_feature(&cpu->env, ARM_FEATURE_V5);
2620     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2621     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2622     cpu->midr = 0x69054114;
2623     cpu->ctr = 0xd172172;
2624     cpu->reset_sctlr = 0x00000078;
2625 }
2626 
2627 static void pxa270c5_initfn(Object *obj)
2628 {
2629     ARMCPU *cpu = ARM_CPU(obj);
2630 
2631     cpu->dtb_compatible = "marvell,xscale";
2632     set_feature(&cpu->env, ARM_FEATURE_V5);
2633     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2634     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2635     cpu->midr = 0x69054117;
2636     cpu->ctr = 0xd172172;
2637     cpu->reset_sctlr = 0x00000078;
2638 }
2639 
2640 #ifndef TARGET_AARCH64
2641 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2642  * otherwise, a CPU with as many features enabled as our emulation supports.
2643  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2644  * this only needs to handle 32 bits.
2645  */
2646 static void arm_max_initfn(Object *obj)
2647 {
2648     ARMCPU *cpu = ARM_CPU(obj);
2649 
2650     if (kvm_enabled()) {
2651         kvm_arm_set_cpu_features_from_host(cpu);
2652         kvm_arm_add_vcpu_properties(obj);
2653     } else {
2654         cortex_a15_initfn(obj);
2655 
2656         /* old-style VFP short-vector support */
2657         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2658 
2659 #ifdef CONFIG_USER_ONLY
2660         /* We don't set these in system emulation mode for the moment,
2661          * since we don't correctly set (all of) the ID registers to
2662          * advertise them.
2663          */
2664         set_feature(&cpu->env, ARM_FEATURE_V8);
2665         {
2666             uint32_t t;
2667 
2668             t = cpu->isar.id_isar5;
2669             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2670             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2671             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2672             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2673             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2674             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2675             cpu->isar.id_isar5 = t;
2676 
2677             t = cpu->isar.id_isar6;
2678             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2679             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2680             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2681             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2682             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2683             cpu->isar.id_isar6 = t;
2684 
2685             t = cpu->isar.mvfr1;
2686             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2687             cpu->isar.mvfr1 = t;
2688 
2689             t = cpu->isar.mvfr2;
2690             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2691             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2692             cpu->isar.mvfr2 = t;
2693 
2694             t = cpu->isar.id_mmfr3;
2695             t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2696             cpu->isar.id_mmfr3 = t;
2697 
2698             t = cpu->isar.id_mmfr4;
2699             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2700             t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2701             t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2702             cpu->isar.id_mmfr4 = t;
2703         }
2704 #endif
2705     }
2706 }
2707 #endif
2708 
2709 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2710 
2711 struct ARMCPUInfo {
2712     const char *name;
2713     void (*initfn)(Object *obj);
2714     void (*class_init)(ObjectClass *oc, void *data);
2715 };
2716 
2717 static const ARMCPUInfo arm_cpus[] = {
2718 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2719     { .name = "arm926",      .initfn = arm926_initfn },
2720     { .name = "arm946",      .initfn = arm946_initfn },
2721     { .name = "arm1026",     .initfn = arm1026_initfn },
2722     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2723      * older core than plain "arm1136". In particular this does not
2724      * have the v6K features.
2725      */
2726     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2727     { .name = "arm1136",     .initfn = arm1136_initfn },
2728     { .name = "arm1176",     .initfn = arm1176_initfn },
2729     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2730     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2731                              .class_init = arm_v7m_class_init },
2732     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2733                              .class_init = arm_v7m_class_init },
2734     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2735                              .class_init = arm_v7m_class_init },
2736     { .name = "cortex-m7",   .initfn = cortex_m7_initfn,
2737                              .class_init = arm_v7m_class_init },
2738     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2739                              .class_init = arm_v7m_class_init },
2740     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2741     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2742     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2743     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2744     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2745     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2746     { .name = "ti925t",      .initfn = ti925t_initfn },
2747     { .name = "sa1100",      .initfn = sa1100_initfn },
2748     { .name = "sa1110",      .initfn = sa1110_initfn },
2749     { .name = "pxa250",      .initfn = pxa250_initfn },
2750     { .name = "pxa255",      .initfn = pxa255_initfn },
2751     { .name = "pxa260",      .initfn = pxa260_initfn },
2752     { .name = "pxa261",      .initfn = pxa261_initfn },
2753     { .name = "pxa262",      .initfn = pxa262_initfn },
2754     /* "pxa270" is an alias for "pxa270-a0" */
2755     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2756     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2757     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2758     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2759     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2760     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2761     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2762 #ifndef TARGET_AARCH64
2763     { .name = "max",         .initfn = arm_max_initfn },
2764 #endif
2765 #ifdef CONFIG_USER_ONLY
2766     { .name = "any",         .initfn = arm_max_initfn },
2767 #endif
2768 #endif
2769     { .name = NULL }
2770 };
2771 
2772 static Property arm_cpu_properties[] = {
2773     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2774     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2775     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2776     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2777                         mp_affinity, ARM64_AFFINITY_INVALID),
2778     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2779     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2780     DEFINE_PROP_END_OF_LIST()
2781 };
2782 
2783 static gchar *arm_gdb_arch_name(CPUState *cs)
2784 {
2785     ARMCPU *cpu = ARM_CPU(cs);
2786     CPUARMState *env = &cpu->env;
2787 
2788     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2789         return g_strdup("iwmmxt");
2790     }
2791     return g_strdup("arm");
2792 }
2793 
2794 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2795 {
2796     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2797     CPUClass *cc = CPU_CLASS(acc);
2798     DeviceClass *dc = DEVICE_CLASS(oc);
2799 
2800     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2801                                     &acc->parent_realize);
2802 
2803     device_class_set_props(dc, arm_cpu_properties);
2804     cpu_class_set_parent_reset(cc, arm_cpu_reset, &acc->parent_reset);
2805 
2806     cc->class_by_name = arm_cpu_class_by_name;
2807     cc->has_work = arm_cpu_has_work;
2808     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2809     cc->dump_state = arm_cpu_dump_state;
2810     cc->set_pc = arm_cpu_set_pc;
2811     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2812     cc->gdb_read_register = arm_cpu_gdb_read_register;
2813     cc->gdb_write_register = arm_cpu_gdb_write_register;
2814 #ifndef CONFIG_USER_ONLY
2815     cc->do_interrupt = arm_cpu_do_interrupt;
2816     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2817     cc->asidx_from_attrs = arm_asidx_from_attrs;
2818     cc->vmsd = &vmstate_arm_cpu;
2819     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2820     cc->write_elf64_note = arm_cpu_write_elf64_note;
2821     cc->write_elf32_note = arm_cpu_write_elf32_note;
2822 #endif
2823     cc->gdb_num_core_regs = 26;
2824     cc->gdb_core_xml_file = "arm-core.xml";
2825     cc->gdb_arch_name = arm_gdb_arch_name;
2826     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2827     cc->gdb_stop_before_watchpoint = true;
2828     cc->disas_set_info = arm_disas_set_info;
2829 #ifdef CONFIG_TCG
2830     cc->tcg_initialize = arm_translate_init;
2831     cc->tlb_fill = arm_cpu_tlb_fill;
2832     cc->debug_excp_handler = arm_debug_excp_handler;
2833     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2834 #if !defined(CONFIG_USER_ONLY)
2835     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2836     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2837     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2838 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2839 #endif
2840 }
2841 
2842 #ifdef CONFIG_KVM
2843 static void arm_host_initfn(Object *obj)
2844 {
2845     ARMCPU *cpu = ARM_CPU(obj);
2846 
2847     kvm_arm_set_cpu_features_from_host(cpu);
2848     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2849         aarch64_add_sve_properties(obj);
2850     }
2851     kvm_arm_add_vcpu_properties(obj);
2852     arm_cpu_post_init(obj);
2853 }
2854 
2855 static const TypeInfo host_arm_cpu_type_info = {
2856     .name = TYPE_ARM_HOST_CPU,
2857 #ifdef TARGET_AARCH64
2858     .parent = TYPE_AARCH64_CPU,
2859 #else
2860     .parent = TYPE_ARM_CPU,
2861 #endif
2862     .instance_init = arm_host_initfn,
2863 };
2864 
2865 #endif
2866 
2867 static void arm_cpu_instance_init(Object *obj)
2868 {
2869     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2870 
2871     acc->info->initfn(obj);
2872     arm_cpu_post_init(obj);
2873 }
2874 
2875 static void cpu_register_class_init(ObjectClass *oc, void *data)
2876 {
2877     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2878 
2879     acc->info = data;
2880 }
2881 
2882 static void cpu_register(const ARMCPUInfo *info)
2883 {
2884     TypeInfo type_info = {
2885         .parent = TYPE_ARM_CPU,
2886         .instance_size = sizeof(ARMCPU),
2887         .instance_init = arm_cpu_instance_init,
2888         .class_size = sizeof(ARMCPUClass),
2889         .class_init = info->class_init ?: cpu_register_class_init,
2890         .class_data = (void *)info,
2891     };
2892 
2893     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2894     type_register(&type_info);
2895     g_free((void *)type_info.name);
2896 }
2897 
2898 static const TypeInfo arm_cpu_type_info = {
2899     .name = TYPE_ARM_CPU,
2900     .parent = TYPE_CPU,
2901     .instance_size = sizeof(ARMCPU),
2902     .instance_init = arm_cpu_initfn,
2903     .instance_finalize = arm_cpu_finalizefn,
2904     .abstract = true,
2905     .class_size = sizeof(ARMCPUClass),
2906     .class_init = arm_cpu_class_init,
2907 };
2908 
2909 static const TypeInfo idau_interface_type_info = {
2910     .name = TYPE_IDAU_INTERFACE,
2911     .parent = TYPE_INTERFACE,
2912     .class_size = sizeof(IDAUInterfaceClass),
2913 };
2914 
2915 static void arm_cpu_register_types(void)
2916 {
2917     const ARMCPUInfo *info = arm_cpus;
2918 
2919     type_register_static(&arm_cpu_type_info);
2920     type_register_static(&idau_interface_type_info);
2921 
2922     while (info->name) {
2923         cpu_register(info);
2924         info++;
2925     }
2926 
2927 #ifdef CONFIG_KVM
2928     type_register_static(&host_arm_cpu_type_info);
2929 #endif
2930 }
2931 
2932 type_init(arm_cpu_register_types)
2933