xref: /qemu/target/arm/cpu.c (revision 4d7dd4ed)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 
52 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
53 {
54     ARMCPU *cpu = ARM_CPU(cs);
55     CPUARMState *env = &cpu->env;
56 
57     if (is_a64(env)) {
58         env->pc = value;
59         env->thumb = false;
60     } else {
61         env->regs[15] = value & ~1;
62         env->thumb = value & 1;
63     }
64 }
65 
66 static vaddr arm_cpu_get_pc(CPUState *cs)
67 {
68     ARMCPU *cpu = ARM_CPU(cs);
69     CPUARMState *env = &cpu->env;
70 
71     if (is_a64(env)) {
72         return env->pc;
73     } else {
74         return env->regs[15];
75     }
76 }
77 
78 #ifdef CONFIG_TCG
79 void arm_cpu_synchronize_from_tb(CPUState *cs,
80                                  const TranslationBlock *tb)
81 {
82     /* The program counter is always up to date with CF_PCREL. */
83     if (!(tb_cflags(tb) & CF_PCREL)) {
84         CPUARMState *env = cpu_env(cs);
85         /*
86          * It's OK to look at env for the current mode here, because it's
87          * never possible for an AArch64 TB to chain to an AArch32 TB.
88          */
89         if (is_a64(env)) {
90             env->pc = tb->pc;
91         } else {
92             env->regs[15] = tb->pc;
93         }
94     }
95 }
96 
97 void arm_restore_state_to_opc(CPUState *cs,
98                               const TranslationBlock *tb,
99                               const uint64_t *data)
100 {
101     CPUARMState *env = cpu_env(cs);
102 
103     if (is_a64(env)) {
104         if (tb_cflags(tb) & CF_PCREL) {
105             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
106         } else {
107             env->pc = data[0];
108         }
109         env->condexec_bits = 0;
110         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
111     } else {
112         if (tb_cflags(tb) & CF_PCREL) {
113             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
114         } else {
115             env->regs[15] = data[0];
116         }
117         env->condexec_bits = data[1];
118         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
119     }
120 }
121 #endif /* CONFIG_TCG */
122 
123 static bool arm_cpu_has_work(CPUState *cs)
124 {
125     ARMCPU *cpu = ARM_CPU(cs);
126 
127     return (cpu->power_state != PSCI_OFF)
128         && cs->interrupt_request &
129         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
130          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
131          | CPU_INTERRUPT_EXITTB);
132 }
133 
134 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
135                                  void *opaque)
136 {
137     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
138 
139     entry->hook = hook;
140     entry->opaque = opaque;
141 
142     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
143 }
144 
145 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
146                                  void *opaque)
147 {
148     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
149 
150     entry->hook = hook;
151     entry->opaque = opaque;
152 
153     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
154 }
155 
156 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
157 {
158     /* Reset a single ARMCPRegInfo register */
159     ARMCPRegInfo *ri = value;
160     ARMCPU *cpu = opaque;
161 
162     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
163         return;
164     }
165 
166     if (ri->resetfn) {
167         ri->resetfn(&cpu->env, ri);
168         return;
169     }
170 
171     /* A zero offset is never possible as it would be regs[0]
172      * so we use it to indicate that reset is being handled elsewhere.
173      * This is basically only used for fields in non-core coprocessors
174      * (like the pxa2xx ones).
175      */
176     if (!ri->fieldoffset) {
177         return;
178     }
179 
180     if (cpreg_field_is_64bit(ri)) {
181         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
182     } else {
183         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
184     }
185 }
186 
187 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
188 {
189     /* Purely an assertion check: we've already done reset once,
190      * so now check that running the reset for the cpreg doesn't
191      * change its value. This traps bugs where two different cpregs
192      * both try to reset the same state field but to different values.
193      */
194     ARMCPRegInfo *ri = value;
195     ARMCPU *cpu = opaque;
196     uint64_t oldvalue, newvalue;
197 
198     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
199         return;
200     }
201 
202     oldvalue = read_raw_cp_reg(&cpu->env, ri);
203     cp_reg_reset(key, value, opaque);
204     newvalue = read_raw_cp_reg(&cpu->env, ri);
205     assert(oldvalue == newvalue);
206 }
207 
208 static void arm_cpu_reset_hold(Object *obj)
209 {
210     CPUState *s = CPU(obj);
211     ARMCPU *cpu = ARM_CPU(s);
212     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
213     CPUARMState *env = &cpu->env;
214 
215     if (acc->parent_phases.hold) {
216         acc->parent_phases.hold(obj);
217     }
218 
219     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
220 
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
222     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
223 
224     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
225     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
226     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
227     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
228 
229     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
230 
231     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
232         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
233     }
234 
235     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
236         /* 64 bit CPUs always start in 64 bit mode */
237         env->aarch64 = true;
238 #if defined(CONFIG_USER_ONLY)
239         env->pstate = PSTATE_MODE_EL0t;
240         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
241         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
242         /* Enable all PAC keys.  */
243         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
244                                   SCTLR_EnDA | SCTLR_EnDB);
245         /* Trap on btype=3 for PACIxSP. */
246         env->cp15.sctlr_el[1] |= SCTLR_BT0;
247         /* Trap on implementation defined registers. */
248         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
249             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
250         }
251         /* and to the FP/Neon instructions */
252         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
253                                          CPACR_EL1, FPEN, 3);
254         /* and to the SVE instructions, with default vector length */
255         if (cpu_isar_feature(aa64_sve, cpu)) {
256             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257                                              CPACR_EL1, ZEN, 3);
258             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
259         }
260         /* and for SME instructions, with default vector length, and TPIDR2 */
261         if (cpu_isar_feature(aa64_sme, cpu)) {
262             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
263             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
264                                              CPACR_EL1, SMEN, 3);
265             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
266             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
267                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
268                                                  SMCR, FA64, 1);
269             }
270         }
271         /*
272          * Enable 48-bit address space (TODO: take reserved_va into account).
273          * Enable TBI0 but not TBI1.
274          * Note that this must match useronly_clean_ptr.
275          */
276         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
277 
278         /* Enable MTE */
279         if (cpu_isar_feature(aa64_mte, cpu)) {
280             /* Enable tag access, but leave TCF0 as No Effect (0). */
281             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
282             /*
283              * Exclude all tags, so that tag 0 is always used.
284              * This corresponds to Linux current->thread.gcr_incl = 0.
285              *
286              * Set RRND, so that helper_irg() will generate a seed later.
287              * Here in cpu_reset(), the crypto subsystem has not yet been
288              * initialized.
289              */
290             env->cp15.gcr_el1 = 0x1ffff;
291         }
292         /*
293          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
294          * This is not yet exposed from the Linux kernel in any way.
295          */
296         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
297         /* Disable access to Debug Communication Channel (DCC). */
298         env->cp15.mdscr_el1 |= 1 << 12;
299 #else
300         /* Reset into the highest available EL */
301         if (arm_feature(env, ARM_FEATURE_EL3)) {
302             env->pstate = PSTATE_MODE_EL3h;
303         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
304             env->pstate = PSTATE_MODE_EL2h;
305         } else {
306             env->pstate = PSTATE_MODE_EL1h;
307         }
308 
309         /* Sample rvbar at reset.  */
310         env->cp15.rvbar = cpu->rvbar_prop;
311         env->pc = env->cp15.rvbar;
312 #endif
313     } else {
314 #if defined(CONFIG_USER_ONLY)
315         /* Userspace expects access to cp10 and cp11 for FP/Neon */
316         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
317                                          CPACR, CP10, 3);
318         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
319                                          CPACR, CP11, 3);
320 #endif
321         if (arm_feature(env, ARM_FEATURE_V8)) {
322             env->cp15.rvbar = cpu->rvbar_prop;
323             env->regs[15] = cpu->rvbar_prop;
324         }
325     }
326 
327 #if defined(CONFIG_USER_ONLY)
328     env->uncached_cpsr = ARM_CPU_MODE_USR;
329     /* For user mode we must enable access to coprocessors */
330     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
331     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
332         env->cp15.c15_cpar = 3;
333     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
334         env->cp15.c15_cpar = 1;
335     }
336 #else
337 
338     /*
339      * If the highest available EL is EL2, AArch32 will start in Hyp
340      * mode; otherwise it starts in SVC. Note that if we start in
341      * AArch64 then these values in the uncached_cpsr will be ignored.
342      */
343     if (arm_feature(env, ARM_FEATURE_EL2) &&
344         !arm_feature(env, ARM_FEATURE_EL3)) {
345         env->uncached_cpsr = ARM_CPU_MODE_HYP;
346     } else {
347         env->uncached_cpsr = ARM_CPU_MODE_SVC;
348     }
349     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
350 
351     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
352      * executing as AArch32 then check if highvecs are enabled and
353      * adjust the PC accordingly.
354      */
355     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
356         env->regs[15] = 0xFFFF0000;
357     }
358 
359     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
360 #endif
361 
362     if (arm_feature(env, ARM_FEATURE_M)) {
363 #ifndef CONFIG_USER_ONLY
364         uint32_t initial_msp; /* Loaded from 0x0 */
365         uint32_t initial_pc; /* Loaded from 0x4 */
366         uint8_t *rom;
367         uint32_t vecbase;
368 #endif
369 
370         if (cpu_isar_feature(aa32_lob, cpu)) {
371             /*
372              * LTPSIZE is constant 4 if MVE not implemented, and resets
373              * to an UNKNOWN value if MVE is implemented. We choose to
374              * always reset to 4.
375              */
376             env->v7m.ltpsize = 4;
377             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
378             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
379             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
380         }
381 
382         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383             env->v7m.secure = true;
384         } else {
385             /* This bit resets to 0 if security is supported, but 1 if
386              * it is not. The bit is not present in v7M, but we set it
387              * here so we can avoid having to make checks on it conditional
388              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
389              */
390             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
391             /*
392              * Set NSACR to indicate "NS access permitted to everything";
393              * this avoids having to have all the tests of it being
394              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
395              * v8.1M the guest-visible value of NSACR in a CPU without the
396              * Security Extension is 0xcff.
397              */
398             env->v7m.nsacr = 0xcff;
399         }
400 
401         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
402          * that it resets to 1, so QEMU always does that rather than making
403          * it dependent on CPU model. In v8M it is RES1.
404          */
405         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
406         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
407         if (arm_feature(env, ARM_FEATURE_V8)) {
408             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
409             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
411         }
412         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
413             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
415         }
416 
417         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
418             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
419             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
420                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
421         }
422 
423 #ifndef CONFIG_USER_ONLY
424         /* Unlike A/R profile, M profile defines the reset LR value */
425         env->regs[14] = 0xffffffff;
426 
427         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
428         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
429 
430         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
431         vecbase = env->v7m.vecbase[env->v7m.secure];
432         rom = rom_ptr_for_as(s->as, vecbase, 8);
433         if (rom) {
434             /* Address zero is covered by ROM which hasn't yet been
435              * copied into physical memory.
436              */
437             initial_msp = ldl_p(rom);
438             initial_pc = ldl_p(rom + 4);
439         } else {
440             /* Address zero not covered by a ROM blob, or the ROM blob
441              * is in non-modifiable memory and this is a second reset after
442              * it got copied into memory. In the latter case, rom_ptr
443              * will return a NULL pointer and we should use ldl_phys instead.
444              */
445             initial_msp = ldl_phys(s->as, vecbase);
446             initial_pc = ldl_phys(s->as, vecbase + 4);
447         }
448 
449         qemu_log_mask(CPU_LOG_INT,
450                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
451                       initial_msp, initial_pc);
452 
453         env->regs[13] = initial_msp & 0xFFFFFFFC;
454         env->regs[15] = initial_pc & ~1;
455         env->thumb = initial_pc & 1;
456 #else
457         /*
458          * For user mode we run non-secure and with access to the FPU.
459          * The FPU context is active (ie does not need further setup)
460          * and is owned by non-secure.
461          */
462         env->v7m.secure = false;
463         env->v7m.nsacr = 0xcff;
464         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
465         env->v7m.fpccr[M_REG_S] &=
466             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
467         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
468 #endif
469     }
470 
471     /* M profile requires that reset clears the exclusive monitor;
472      * A profile does not, but clearing it makes more sense than having it
473      * set with an exclusive access on address zero.
474      */
475     arm_clear_exclusive(env);
476 
477     if (arm_feature(env, ARM_FEATURE_PMSA)) {
478         if (cpu->pmsav7_dregion > 0) {
479             if (arm_feature(env, ARM_FEATURE_V8)) {
480                 memset(env->pmsav8.rbar[M_REG_NS], 0,
481                        sizeof(*env->pmsav8.rbar[M_REG_NS])
482                        * cpu->pmsav7_dregion);
483                 memset(env->pmsav8.rlar[M_REG_NS], 0,
484                        sizeof(*env->pmsav8.rlar[M_REG_NS])
485                        * cpu->pmsav7_dregion);
486                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
487                     memset(env->pmsav8.rbar[M_REG_S], 0,
488                            sizeof(*env->pmsav8.rbar[M_REG_S])
489                            * cpu->pmsav7_dregion);
490                     memset(env->pmsav8.rlar[M_REG_S], 0,
491                            sizeof(*env->pmsav8.rlar[M_REG_S])
492                            * cpu->pmsav7_dregion);
493                 }
494             } else if (arm_feature(env, ARM_FEATURE_V7)) {
495                 memset(env->pmsav7.drbar, 0,
496                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
497                 memset(env->pmsav7.drsr, 0,
498                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
499                 memset(env->pmsav7.dracr, 0,
500                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
501             }
502         }
503 
504         if (cpu->pmsav8r_hdregion > 0) {
505             memset(env->pmsav8.hprbar, 0,
506                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
507             memset(env->pmsav8.hprlar, 0,
508                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
509         }
510 
511         env->pmsav7.rnr[M_REG_NS] = 0;
512         env->pmsav7.rnr[M_REG_S] = 0;
513         env->pmsav8.mair0[M_REG_NS] = 0;
514         env->pmsav8.mair0[M_REG_S] = 0;
515         env->pmsav8.mair1[M_REG_NS] = 0;
516         env->pmsav8.mair1[M_REG_S] = 0;
517     }
518 
519     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
520         if (cpu->sau_sregion > 0) {
521             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
522             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
523         }
524         env->sau.rnr = 0;
525         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
526          * the Cortex-M33 does.
527          */
528         env->sau.ctrl = 0;
529     }
530 
531     set_flush_to_zero(1, &env->vfp.standard_fp_status);
532     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
533     set_default_nan_mode(1, &env->vfp.standard_fp_status);
534     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
535     set_float_detect_tininess(float_tininess_before_rounding,
536                               &env->vfp.fp_status);
537     set_float_detect_tininess(float_tininess_before_rounding,
538                               &env->vfp.standard_fp_status);
539     set_float_detect_tininess(float_tininess_before_rounding,
540                               &env->vfp.fp_status_f16);
541     set_float_detect_tininess(float_tininess_before_rounding,
542                               &env->vfp.standard_fp_status_f16);
543 #ifndef CONFIG_USER_ONLY
544     if (kvm_enabled()) {
545         kvm_arm_reset_vcpu(cpu);
546     }
547 #endif
548 
549     if (tcg_enabled()) {
550         hw_breakpoint_update_all(cpu);
551         hw_watchpoint_update_all(cpu);
552 
553         arm_rebuild_hflags(env);
554     }
555 }
556 
557 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
558 {
559     ARMCPU *cpu = ARM_CPU(cpustate);
560     CPUARMState *env = &cpu->env;
561     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
562     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
563 
564     /*
565      * Check we have the EL we're aiming for. If that is the
566      * highest implemented EL, then cpu_reset has already done
567      * all the work.
568      */
569     switch (target_el) {
570     case 3:
571         assert(have_el3);
572         return;
573     case 2:
574         assert(have_el2);
575         if (!have_el3) {
576             return;
577         }
578         break;
579     case 1:
580         if (!have_el3 && !have_el2) {
581             return;
582         }
583         break;
584     default:
585         g_assert_not_reached();
586     }
587 
588     if (have_el3) {
589         /*
590          * Set the EL3 state so code can run at EL2. This should match
591          * the requirements set by Linux in its booting spec.
592          */
593         if (env->aarch64) {
594             env->cp15.scr_el3 |= SCR_RW;
595             if (cpu_isar_feature(aa64_pauth, cpu)) {
596                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
597             }
598             if (cpu_isar_feature(aa64_mte, cpu)) {
599                 env->cp15.scr_el3 |= SCR_ATA;
600             }
601             if (cpu_isar_feature(aa64_sve, cpu)) {
602                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
603                 env->vfp.zcr_el[3] = 0xf;
604             }
605             if (cpu_isar_feature(aa64_sme, cpu)) {
606                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
607                 env->cp15.scr_el3 |= SCR_ENTP2;
608                 env->vfp.smcr_el[3] = 0xf;
609             }
610             if (cpu_isar_feature(aa64_hcx, cpu)) {
611                 env->cp15.scr_el3 |= SCR_HXEN;
612             }
613             if (cpu_isar_feature(aa64_fgt, cpu)) {
614                 env->cp15.scr_el3 |= SCR_FGTEN;
615             }
616         }
617 
618         if (target_el == 2) {
619             /* If the guest is at EL2 then Linux expects the HVC insn to work */
620             env->cp15.scr_el3 |= SCR_HCE;
621         }
622 
623         /* Put CPU into non-secure state */
624         env->cp15.scr_el3 |= SCR_NS;
625         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
626         env->cp15.nsacr |= 3 << 10;
627     }
628 
629     if (have_el2 && target_el < 2) {
630         /* Set EL2 state so code can run at EL1. */
631         if (env->aarch64) {
632             env->cp15.hcr_el2 |= HCR_RW;
633         }
634     }
635 
636     /* Set the CPU to the desired state */
637     if (env->aarch64) {
638         env->pstate = aarch64_pstate_mode(target_el, true);
639     } else {
640         static const uint32_t mode_for_el[] = {
641             0,
642             ARM_CPU_MODE_SVC,
643             ARM_CPU_MODE_HYP,
644             ARM_CPU_MODE_SVC,
645         };
646 
647         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
648     }
649 }
650 
651 
652 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
653 
654 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
655                                      unsigned int target_el,
656                                      unsigned int cur_el, bool secure,
657                                      uint64_t hcr_el2)
658 {
659     CPUARMState *env = cpu_env(cs);
660     bool pstate_unmasked;
661     bool unmasked = false;
662 
663     /*
664      * Don't take exceptions if they target a lower EL.
665      * This check should catch any exceptions that would not be taken
666      * but left pending.
667      */
668     if (cur_el > target_el) {
669         return false;
670     }
671 
672     switch (excp_idx) {
673     case EXCP_FIQ:
674         pstate_unmasked = !(env->daif & PSTATE_F);
675         break;
676 
677     case EXCP_IRQ:
678         pstate_unmasked = !(env->daif & PSTATE_I);
679         break;
680 
681     case EXCP_VFIQ:
682         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
683             /* VFIQs are only taken when hypervized.  */
684             return false;
685         }
686         return !(env->daif & PSTATE_F);
687     case EXCP_VIRQ:
688         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
689             /* VIRQs are only taken when hypervized.  */
690             return false;
691         }
692         return !(env->daif & PSTATE_I);
693     case EXCP_VSERR:
694         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
695             /* VIRQs are only taken when hypervized.  */
696             return false;
697         }
698         return !(env->daif & PSTATE_A);
699     default:
700         g_assert_not_reached();
701     }
702 
703     /*
704      * Use the target EL, current execution state and SCR/HCR settings to
705      * determine whether the corresponding CPSR bit is used to mask the
706      * interrupt.
707      */
708     if ((target_el > cur_el) && (target_el != 1)) {
709         /* Exceptions targeting a higher EL may not be maskable */
710         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
711             switch (target_el) {
712             case 2:
713                 /*
714                  * According to ARM DDI 0487H.a, an interrupt can be masked
715                  * when HCR_E2H and HCR_TGE are both set regardless of the
716                  * current Security state. Note that we need to revisit this
717                  * part again once we need to support NMI.
718                  */
719                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
720                         unmasked = true;
721                 }
722                 break;
723             case 3:
724                 /* Interrupt cannot be masked when the target EL is 3 */
725                 unmasked = true;
726                 break;
727             default:
728                 g_assert_not_reached();
729             }
730         } else {
731             /*
732              * The old 32-bit-only environment has a more complicated
733              * masking setup. HCR and SCR bits not only affect interrupt
734              * routing but also change the behaviour of masking.
735              */
736             bool hcr, scr;
737 
738             switch (excp_idx) {
739             case EXCP_FIQ:
740                 /*
741                  * If FIQs are routed to EL3 or EL2 then there are cases where
742                  * we override the CPSR.F in determining if the exception is
743                  * masked or not. If neither of these are set then we fall back
744                  * to the CPSR.F setting otherwise we further assess the state
745                  * below.
746                  */
747                 hcr = hcr_el2 & HCR_FMO;
748                 scr = (env->cp15.scr_el3 & SCR_FIQ);
749 
750                 /*
751                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
752                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
753                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
754                  * when non-secure but only when FIQs are only routed to EL3.
755                  */
756                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
757                 break;
758             case EXCP_IRQ:
759                 /*
760                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
761                  * we may override the CPSR.I masking when in non-secure state.
762                  * The SCR.IRQ setting has already been taken into consideration
763                  * when setting the target EL, so it does not have a further
764                  * affect here.
765                  */
766                 hcr = hcr_el2 & HCR_IMO;
767                 scr = false;
768                 break;
769             default:
770                 g_assert_not_reached();
771             }
772 
773             if ((scr || hcr) && !secure) {
774                 unmasked = true;
775             }
776         }
777     }
778 
779     /*
780      * The PSTATE bits only mask the interrupt if we have not overridden the
781      * ability above.
782      */
783     return unmasked || pstate_unmasked;
784 }
785 
786 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
787 {
788     CPUClass *cc = CPU_GET_CLASS(cs);
789     CPUARMState *env = cpu_env(cs);
790     uint32_t cur_el = arm_current_el(env);
791     bool secure = arm_is_secure(env);
792     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
793     uint32_t target_el;
794     uint32_t excp_idx;
795 
796     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
797 
798     if (interrupt_request & CPU_INTERRUPT_FIQ) {
799         excp_idx = EXCP_FIQ;
800         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
801         if (arm_excp_unmasked(cs, excp_idx, target_el,
802                               cur_el, secure, hcr_el2)) {
803             goto found;
804         }
805     }
806     if (interrupt_request & CPU_INTERRUPT_HARD) {
807         excp_idx = EXCP_IRQ;
808         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
809         if (arm_excp_unmasked(cs, excp_idx, target_el,
810                               cur_el, secure, hcr_el2)) {
811             goto found;
812         }
813     }
814     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
815         excp_idx = EXCP_VIRQ;
816         target_el = 1;
817         if (arm_excp_unmasked(cs, excp_idx, target_el,
818                               cur_el, secure, hcr_el2)) {
819             goto found;
820         }
821     }
822     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
823         excp_idx = EXCP_VFIQ;
824         target_el = 1;
825         if (arm_excp_unmasked(cs, excp_idx, target_el,
826                               cur_el, secure, hcr_el2)) {
827             goto found;
828         }
829     }
830     if (interrupt_request & CPU_INTERRUPT_VSERR) {
831         excp_idx = EXCP_VSERR;
832         target_el = 1;
833         if (arm_excp_unmasked(cs, excp_idx, target_el,
834                               cur_el, secure, hcr_el2)) {
835             /* Taking a virtual abort clears HCR_EL2.VSE */
836             env->cp15.hcr_el2 &= ~HCR_VSE;
837             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
838             goto found;
839         }
840     }
841     return false;
842 
843  found:
844     cs->exception_index = excp_idx;
845     env->exception.target_el = target_el;
846     cc->tcg_ops->do_interrupt(cs);
847     return true;
848 }
849 
850 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
851 
852 void arm_cpu_update_virq(ARMCPU *cpu)
853 {
854     /*
855      * Update the interrupt level for VIRQ, which is the logical OR of
856      * the HCR_EL2.VI bit and the input line level from the GIC.
857      */
858     CPUARMState *env = &cpu->env;
859     CPUState *cs = CPU(cpu);
860 
861     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
862         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
863 
864     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
865         if (new_state) {
866             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
867         } else {
868             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
869         }
870     }
871 }
872 
873 void arm_cpu_update_vfiq(ARMCPU *cpu)
874 {
875     /*
876      * Update the interrupt level for VFIQ, which is the logical OR of
877      * the HCR_EL2.VF bit and the input line level from the GIC.
878      */
879     CPUARMState *env = &cpu->env;
880     CPUState *cs = CPU(cpu);
881 
882     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
883         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
884 
885     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
886         if (new_state) {
887             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
888         } else {
889             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
890         }
891     }
892 }
893 
894 void arm_cpu_update_vserr(ARMCPU *cpu)
895 {
896     /*
897      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
898      */
899     CPUARMState *env = &cpu->env;
900     CPUState *cs = CPU(cpu);
901 
902     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
903 
904     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
905         if (new_state) {
906             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
907         } else {
908             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
909         }
910     }
911 }
912 
913 #ifndef CONFIG_USER_ONLY
914 static void arm_cpu_set_irq(void *opaque, int irq, int level)
915 {
916     ARMCPU *cpu = opaque;
917     CPUARMState *env = &cpu->env;
918     CPUState *cs = CPU(cpu);
919     static const int mask[] = {
920         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
921         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
922         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
923         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
924     };
925 
926     if (!arm_feature(env, ARM_FEATURE_EL2) &&
927         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
928         /*
929          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
930          * have EL2 support we don't care. (Unless the guest is doing something
931          * silly this will only be calls saying "level is still 0".)
932          */
933         return;
934     }
935 
936     if (level) {
937         env->irq_line_state |= mask[irq];
938     } else {
939         env->irq_line_state &= ~mask[irq];
940     }
941 
942     switch (irq) {
943     case ARM_CPU_VIRQ:
944         arm_cpu_update_virq(cpu);
945         break;
946     case ARM_CPU_VFIQ:
947         arm_cpu_update_vfiq(cpu);
948         break;
949     case ARM_CPU_IRQ:
950     case ARM_CPU_FIQ:
951         if (level) {
952             cpu_interrupt(cs, mask[irq]);
953         } else {
954             cpu_reset_interrupt(cs, mask[irq]);
955         }
956         break;
957     default:
958         g_assert_not_reached();
959     }
960 }
961 
962 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
963 {
964 #ifdef CONFIG_KVM
965     ARMCPU *cpu = opaque;
966     CPUARMState *env = &cpu->env;
967     CPUState *cs = CPU(cpu);
968     uint32_t linestate_bit;
969     int irq_id;
970 
971     switch (irq) {
972     case ARM_CPU_IRQ:
973         irq_id = KVM_ARM_IRQ_CPU_IRQ;
974         linestate_bit = CPU_INTERRUPT_HARD;
975         break;
976     case ARM_CPU_FIQ:
977         irq_id = KVM_ARM_IRQ_CPU_FIQ;
978         linestate_bit = CPU_INTERRUPT_FIQ;
979         break;
980     default:
981         g_assert_not_reached();
982     }
983 
984     if (level) {
985         env->irq_line_state |= linestate_bit;
986     } else {
987         env->irq_line_state &= ~linestate_bit;
988     }
989     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
990 #endif
991 }
992 
993 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
994 {
995     ARMCPU *cpu = ARM_CPU(cs);
996     CPUARMState *env = &cpu->env;
997 
998     cpu_synchronize_state(cs);
999     return arm_cpu_data_is_big_endian(env);
1000 }
1001 
1002 #endif
1003 
1004 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1005 {
1006     ARMCPU *ac = ARM_CPU(cpu);
1007     CPUARMState *env = &ac->env;
1008     bool sctlr_b;
1009 
1010     if (is_a64(env)) {
1011         info->cap_arch = CS_ARCH_ARM64;
1012         info->cap_insn_unit = 4;
1013         info->cap_insn_split = 4;
1014     } else {
1015         int cap_mode;
1016         if (env->thumb) {
1017             info->cap_insn_unit = 2;
1018             info->cap_insn_split = 4;
1019             cap_mode = CS_MODE_THUMB;
1020         } else {
1021             info->cap_insn_unit = 4;
1022             info->cap_insn_split = 4;
1023             cap_mode = CS_MODE_ARM;
1024         }
1025         if (arm_feature(env, ARM_FEATURE_V8)) {
1026             cap_mode |= CS_MODE_V8;
1027         }
1028         if (arm_feature(env, ARM_FEATURE_M)) {
1029             cap_mode |= CS_MODE_MCLASS;
1030         }
1031         info->cap_arch = CS_ARCH_ARM;
1032         info->cap_mode = cap_mode;
1033     }
1034 
1035     sctlr_b = arm_sctlr_b(env);
1036     if (bswap_code(sctlr_b)) {
1037 #if TARGET_BIG_ENDIAN
1038         info->endian = BFD_ENDIAN_LITTLE;
1039 #else
1040         info->endian = BFD_ENDIAN_BIG;
1041 #endif
1042     }
1043     info->flags &= ~INSN_ARM_BE32;
1044 #ifndef CONFIG_USER_ONLY
1045     if (sctlr_b) {
1046         info->flags |= INSN_ARM_BE32;
1047     }
1048 #endif
1049 }
1050 
1051 #ifdef TARGET_AARCH64
1052 
1053 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1054 {
1055     ARMCPU *cpu = ARM_CPU(cs);
1056     CPUARMState *env = &cpu->env;
1057     uint32_t psr = pstate_read(env);
1058     int i, j;
1059     int el = arm_current_el(env);
1060     const char *ns_status;
1061     bool sve;
1062 
1063     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1064     for (i = 0; i < 32; i++) {
1065         if (i == 31) {
1066             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1067         } else {
1068             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1069                          (i + 2) % 3 ? " " : "\n");
1070         }
1071     }
1072 
1073     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1074         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1075     } else {
1076         ns_status = "";
1077     }
1078     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1079                  psr,
1080                  psr & PSTATE_N ? 'N' : '-',
1081                  psr & PSTATE_Z ? 'Z' : '-',
1082                  psr & PSTATE_C ? 'C' : '-',
1083                  psr & PSTATE_V ? 'V' : '-',
1084                  ns_status,
1085                  el,
1086                  psr & PSTATE_SP ? 'h' : 't');
1087 
1088     if (cpu_isar_feature(aa64_sme, cpu)) {
1089         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1090                      env->svcr,
1091                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1092                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1093     }
1094     if (cpu_isar_feature(aa64_bti, cpu)) {
1095         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1096     }
1097     if (!(flags & CPU_DUMP_FPU)) {
1098         qemu_fprintf(f, "\n");
1099         return;
1100     }
1101     if (fp_exception_el(env, el) != 0) {
1102         qemu_fprintf(f, "    FPU disabled\n");
1103         return;
1104     }
1105     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1106                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1107 
1108     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1109         sve = sme_exception_el(env, el) == 0;
1110     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1111         sve = sve_exception_el(env, el) == 0;
1112     } else {
1113         sve = false;
1114     }
1115 
1116     if (sve) {
1117         int zcr_len = sve_vqm1_for_el(env, el);
1118 
1119         for (i = 0; i <= FFR_PRED_NUM; i++) {
1120             bool eol;
1121             if (i == FFR_PRED_NUM) {
1122                 qemu_fprintf(f, "FFR=");
1123                 /* It's last, so end the line.  */
1124                 eol = true;
1125             } else {
1126                 qemu_fprintf(f, "P%02d=", i);
1127                 switch (zcr_len) {
1128                 case 0:
1129                     eol = i % 8 == 7;
1130                     break;
1131                 case 1:
1132                     eol = i % 6 == 5;
1133                     break;
1134                 case 2:
1135                 case 3:
1136                     eol = i % 3 == 2;
1137                     break;
1138                 default:
1139                     /* More than one quadword per predicate.  */
1140                     eol = true;
1141                     break;
1142                 }
1143             }
1144             for (j = zcr_len / 4; j >= 0; j--) {
1145                 int digits;
1146                 if (j * 4 + 4 <= zcr_len + 1) {
1147                     digits = 16;
1148                 } else {
1149                     digits = (zcr_len % 4 + 1) * 4;
1150                 }
1151                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1152                              env->vfp.pregs[i].p[j],
1153                              j ? ":" : eol ? "\n" : " ");
1154             }
1155         }
1156 
1157         if (zcr_len == 0) {
1158             /*
1159              * With vl=16, there are only 37 columns per register,
1160              * so output two registers per line.
1161              */
1162             for (i = 0; i < 32; i++) {
1163                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1164                              i, env->vfp.zregs[i].d[1],
1165                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1166             }
1167         } else {
1168             for (i = 0; i < 32; i++) {
1169                 qemu_fprintf(f, "Z%02d=", i);
1170                 for (j = zcr_len; j >= 0; j--) {
1171                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1172                                  env->vfp.zregs[i].d[j * 2 + 1],
1173                                  env->vfp.zregs[i].d[j * 2 + 0],
1174                                  j ? ":" : "\n");
1175                 }
1176             }
1177         }
1178     } else {
1179         for (i = 0; i < 32; i++) {
1180             uint64_t *q = aa64_vfp_qreg(env, i);
1181             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1182                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1183         }
1184     }
1185 
1186     if (cpu_isar_feature(aa64_sme, cpu) &&
1187         FIELD_EX64(env->svcr, SVCR, ZA) &&
1188         sme_exception_el(env, el) == 0) {
1189         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1190         int svl = (zcr_len + 1) * 16;
1191         int svl_lg10 = svl < 100 ? 2 : 3;
1192 
1193         for (i = 0; i < svl; i++) {
1194             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1195             for (j = zcr_len; j >= 0; --j) {
1196                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1197                              env->zarray[i].d[2 * j + 1],
1198                              env->zarray[i].d[2 * j],
1199                              j ? ':' : '\n');
1200             }
1201         }
1202     }
1203 }
1204 
1205 #else
1206 
1207 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1208 {
1209     g_assert_not_reached();
1210 }
1211 
1212 #endif
1213 
1214 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1215 {
1216     ARMCPU *cpu = ARM_CPU(cs);
1217     CPUARMState *env = &cpu->env;
1218     int i;
1219 
1220     if (is_a64(env)) {
1221         aarch64_cpu_dump_state(cs, f, flags);
1222         return;
1223     }
1224 
1225     for (i = 0; i < 16; i++) {
1226         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1227         if ((i % 4) == 3) {
1228             qemu_fprintf(f, "\n");
1229         } else {
1230             qemu_fprintf(f, " ");
1231         }
1232     }
1233 
1234     if (arm_feature(env, ARM_FEATURE_M)) {
1235         uint32_t xpsr = xpsr_read(env);
1236         const char *mode;
1237         const char *ns_status = "";
1238 
1239         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1240             ns_status = env->v7m.secure ? "S " : "NS ";
1241         }
1242 
1243         if (xpsr & XPSR_EXCP) {
1244             mode = "handler";
1245         } else {
1246             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1247                 mode = "unpriv-thread";
1248             } else {
1249                 mode = "priv-thread";
1250             }
1251         }
1252 
1253         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1254                      xpsr,
1255                      xpsr & XPSR_N ? 'N' : '-',
1256                      xpsr & XPSR_Z ? 'Z' : '-',
1257                      xpsr & XPSR_C ? 'C' : '-',
1258                      xpsr & XPSR_V ? 'V' : '-',
1259                      xpsr & XPSR_T ? 'T' : 'A',
1260                      ns_status,
1261                      mode);
1262     } else {
1263         uint32_t psr = cpsr_read(env);
1264         const char *ns_status = "";
1265 
1266         if (arm_feature(env, ARM_FEATURE_EL3) &&
1267             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1268             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1269         }
1270 
1271         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1272                      psr,
1273                      psr & CPSR_N ? 'N' : '-',
1274                      psr & CPSR_Z ? 'Z' : '-',
1275                      psr & CPSR_C ? 'C' : '-',
1276                      psr & CPSR_V ? 'V' : '-',
1277                      psr & CPSR_T ? 'T' : 'A',
1278                      ns_status,
1279                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1280     }
1281 
1282     if (flags & CPU_DUMP_FPU) {
1283         int numvfpregs = 0;
1284         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1285             numvfpregs = 32;
1286         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1287             numvfpregs = 16;
1288         }
1289         for (i = 0; i < numvfpregs; i++) {
1290             uint64_t v = *aa32_vfp_dreg(env, i);
1291             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1292                          i * 2, (uint32_t)v,
1293                          i * 2 + 1, (uint32_t)(v >> 32),
1294                          i, v);
1295         }
1296         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1297         if (cpu_isar_feature(aa32_mve, cpu)) {
1298             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1299         }
1300     }
1301 }
1302 
1303 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1304 {
1305     uint32_t Aff1 = idx / clustersz;
1306     uint32_t Aff0 = idx % clustersz;
1307     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1308 }
1309 
1310 static void arm_cpu_initfn(Object *obj)
1311 {
1312     ARMCPU *cpu = ARM_CPU(obj);
1313 
1314     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1315                                          NULL, g_free);
1316 
1317     QLIST_INIT(&cpu->pre_el_change_hooks);
1318     QLIST_INIT(&cpu->el_change_hooks);
1319 
1320 #ifdef CONFIG_USER_ONLY
1321 # ifdef TARGET_AARCH64
1322     /*
1323      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1324      * These values were chosen to fit within the default signal frame.
1325      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1326      * and our corresponding cpu property.
1327      */
1328     cpu->sve_default_vq = 4;
1329     cpu->sme_default_vq = 2;
1330 # endif
1331 #else
1332     /* Our inbound IRQ and FIQ lines */
1333     if (kvm_enabled()) {
1334         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1335          * the same interface as non-KVM CPUs.
1336          */
1337         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1338     } else {
1339         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1340     }
1341 
1342     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1343                        ARRAY_SIZE(cpu->gt_timer_outputs));
1344 
1345     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1346                              "gicv3-maintenance-interrupt", 1);
1347     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1348                              "pmu-interrupt", 1);
1349 #endif
1350 
1351     /* DTB consumers generally don't in fact care what the 'compatible'
1352      * string is, so always provide some string and trust that a hypothetical
1353      * picky DTB consumer will also provide a helpful error message.
1354      */
1355     cpu->dtb_compatible = "qemu,unknown";
1356     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1357     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1358 
1359     if (tcg_enabled() || hvf_enabled()) {
1360         /* TCG and HVF implement PSCI 1.1 */
1361         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1362     }
1363 }
1364 
1365 static Property arm_cpu_gt_cntfrq_property =
1366             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1367                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1368 
1369 static Property arm_cpu_reset_cbar_property =
1370             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1371 
1372 static Property arm_cpu_reset_hivecs_property =
1373             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1374 
1375 #ifndef CONFIG_USER_ONLY
1376 static Property arm_cpu_has_el2_property =
1377             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1378 
1379 static Property arm_cpu_has_el3_property =
1380             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1381 #endif
1382 
1383 static Property arm_cpu_cfgend_property =
1384             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1385 
1386 static Property arm_cpu_has_vfp_property =
1387             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1388 
1389 static Property arm_cpu_has_vfp_d32_property =
1390             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1391 
1392 static Property arm_cpu_has_neon_property =
1393             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1394 
1395 static Property arm_cpu_has_dsp_property =
1396             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1397 
1398 static Property arm_cpu_has_mpu_property =
1399             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1400 
1401 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1402  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1403  * the right value for that particular CPU type, and we don't want
1404  * to override that with an incorrect constant value.
1405  */
1406 static Property arm_cpu_pmsav7_dregion_property =
1407             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1408                                            pmsav7_dregion,
1409                                            qdev_prop_uint32, uint32_t);
1410 
1411 static bool arm_get_pmu(Object *obj, Error **errp)
1412 {
1413     ARMCPU *cpu = ARM_CPU(obj);
1414 
1415     return cpu->has_pmu;
1416 }
1417 
1418 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1419 {
1420     ARMCPU *cpu = ARM_CPU(obj);
1421 
1422     if (value) {
1423         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1424             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1425             return;
1426         }
1427         set_feature(&cpu->env, ARM_FEATURE_PMU);
1428     } else {
1429         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1430     }
1431     cpu->has_pmu = value;
1432 }
1433 
1434 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1435 {
1436     /*
1437      * The exact approach to calculating guest ticks is:
1438      *
1439      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1440      *              NANOSECONDS_PER_SECOND);
1441      *
1442      * We don't do that. Rather we intentionally use integer division
1443      * truncation below and in the caller for the conversion of host monotonic
1444      * time to guest ticks to provide the exact inverse for the semantics of
1445      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1446      * it loses precision when representing frequencies where
1447      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1448      * provide an exact inverse leads to scheduling timers with negative
1449      * periods, which in turn leads to sticky behaviour in the guest.
1450      *
1451      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1452      * cannot become zero.
1453      */
1454     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1455       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1456 }
1457 
1458 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1459 {
1460     CPUARMState *env = &cpu->env;
1461     bool no_aa32 = false;
1462 
1463     /*
1464      * Some features automatically imply others: set the feature
1465      * bits explicitly for these cases.
1466      */
1467 
1468     if (arm_feature(env, ARM_FEATURE_M)) {
1469         set_feature(env, ARM_FEATURE_PMSA);
1470     }
1471 
1472     if (arm_feature(env, ARM_FEATURE_V8)) {
1473         if (arm_feature(env, ARM_FEATURE_M)) {
1474             set_feature(env, ARM_FEATURE_V7);
1475         } else {
1476             set_feature(env, ARM_FEATURE_V7VE);
1477         }
1478     }
1479 
1480     /*
1481      * There exist AArch64 cpus without AArch32 support.  When KVM
1482      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1483      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1484      * As a general principle, we also do not make ID register
1485      * consistency checks anywhere unless using TCG, because only
1486      * for TCG would a consistency-check failure be a QEMU bug.
1487      */
1488     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1489         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1490     }
1491 
1492     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1493         /*
1494          * v7 Virtualization Extensions. In real hardware this implies
1495          * EL2 and also the presence of the Security Extensions.
1496          * For QEMU, for backwards-compatibility we implement some
1497          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1498          * include the various other features that V7VE implies.
1499          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1500          * Security Extensions is ARM_FEATURE_EL3.
1501          */
1502         assert(!tcg_enabled() || no_aa32 ||
1503                cpu_isar_feature(aa32_arm_div, cpu));
1504         set_feature(env, ARM_FEATURE_LPAE);
1505         set_feature(env, ARM_FEATURE_V7);
1506     }
1507     if (arm_feature(env, ARM_FEATURE_V7)) {
1508         set_feature(env, ARM_FEATURE_VAPA);
1509         set_feature(env, ARM_FEATURE_THUMB2);
1510         set_feature(env, ARM_FEATURE_MPIDR);
1511         if (!arm_feature(env, ARM_FEATURE_M)) {
1512             set_feature(env, ARM_FEATURE_V6K);
1513         } else {
1514             set_feature(env, ARM_FEATURE_V6);
1515         }
1516 
1517         /*
1518          * Always define VBAR for V7 CPUs even if it doesn't exist in
1519          * non-EL3 configs. This is needed by some legacy boards.
1520          */
1521         set_feature(env, ARM_FEATURE_VBAR);
1522     }
1523     if (arm_feature(env, ARM_FEATURE_V6K)) {
1524         set_feature(env, ARM_FEATURE_V6);
1525         set_feature(env, ARM_FEATURE_MVFR);
1526     }
1527     if (arm_feature(env, ARM_FEATURE_V6)) {
1528         set_feature(env, ARM_FEATURE_V5);
1529         if (!arm_feature(env, ARM_FEATURE_M)) {
1530             assert(!tcg_enabled() || no_aa32 ||
1531                    cpu_isar_feature(aa32_jazelle, cpu));
1532             set_feature(env, ARM_FEATURE_AUXCR);
1533         }
1534     }
1535     if (arm_feature(env, ARM_FEATURE_V5)) {
1536         set_feature(env, ARM_FEATURE_V4T);
1537     }
1538     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1539         set_feature(env, ARM_FEATURE_V7MP);
1540     }
1541     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1542         set_feature(env, ARM_FEATURE_CBAR);
1543     }
1544     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1545         !arm_feature(env, ARM_FEATURE_M)) {
1546         set_feature(env, ARM_FEATURE_THUMB_DSP);
1547     }
1548 }
1549 
1550 void arm_cpu_post_init(Object *obj)
1551 {
1552     ARMCPU *cpu = ARM_CPU(obj);
1553 
1554     /*
1555      * Some features imply others. Figure this out now, because we
1556      * are going to look at the feature bits in deciding which
1557      * properties to add.
1558      */
1559     arm_cpu_propagate_feature_implications(cpu);
1560 
1561     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1562         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1563         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1564     }
1565 
1566     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1567         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1568     }
1569 
1570     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571         object_property_add_uint64_ptr(obj, "rvbar",
1572                                        &cpu->rvbar_prop,
1573                                        OBJ_PROP_FLAG_READWRITE);
1574     }
1575 
1576 #ifndef CONFIG_USER_ONLY
1577     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1578         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1579          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1580          */
1581         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1582 
1583         object_property_add_link(obj, "secure-memory",
1584                                  TYPE_MEMORY_REGION,
1585                                  (Object **)&cpu->secure_memory,
1586                                  qdev_prop_allow_set_link_before_realize,
1587                                  OBJ_PROP_LINK_STRONG);
1588     }
1589 
1590     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1591         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1592     }
1593 #endif
1594 
1595     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1596         cpu->has_pmu = true;
1597         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1598     }
1599 
1600     /*
1601      * Allow user to turn off VFP and Neon support, but only for TCG --
1602      * KVM does not currently allow us to lie to the guest about its
1603      * ID/feature registers, so the guest always sees what the host has.
1604      */
1605     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1606         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1607             cpu->has_vfp = true;
1608             cpu->has_vfp_d32 = true;
1609             if (tcg_enabled() || qtest_enabled()) {
1610                 qdev_property_add_static(DEVICE(obj),
1611                                          &arm_cpu_has_vfp_property);
1612             }
1613         }
1614     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1615         cpu->has_vfp = true;
1616         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1617             cpu->has_vfp_d32 = true;
1618             /*
1619              * The permitted values of the SIMDReg bits [3:0] on
1620              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1621              * make sure that has_vfp_d32 can not be set to false.
1622              */
1623             if ((tcg_enabled() || qtest_enabled())
1624                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1625                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1626                 qdev_property_add_static(DEVICE(obj),
1627                                          &arm_cpu_has_vfp_d32_property);
1628             }
1629         }
1630     }
1631 
1632     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1633         cpu->has_neon = true;
1634         if (!kvm_enabled()) {
1635             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1636         }
1637     }
1638 
1639     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1640         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1641         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1642     }
1643 
1644     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1645         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1646         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1647             qdev_property_add_static(DEVICE(obj),
1648                                      &arm_cpu_pmsav7_dregion_property);
1649         }
1650     }
1651 
1652     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1653         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1654                                  qdev_prop_allow_set_link_before_realize,
1655                                  OBJ_PROP_LINK_STRONG);
1656         /*
1657          * M profile: initial value of the Secure VTOR. We can't just use
1658          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1659          * the property to be set after realize.
1660          */
1661         object_property_add_uint32_ptr(obj, "init-svtor",
1662                                        &cpu->init_svtor,
1663                                        OBJ_PROP_FLAG_READWRITE);
1664     }
1665     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1666         /*
1667          * Initial value of the NS VTOR (for cores without the Security
1668          * extension, this is the only VTOR)
1669          */
1670         object_property_add_uint32_ptr(obj, "init-nsvtor",
1671                                        &cpu->init_nsvtor,
1672                                        OBJ_PROP_FLAG_READWRITE);
1673     }
1674 
1675     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1676     object_property_add_uint32_ptr(obj, "psci-conduit",
1677                                    &cpu->psci_conduit,
1678                                    OBJ_PROP_FLAG_READWRITE);
1679 
1680     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1681 
1682     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1683         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1684     }
1685 
1686     if (kvm_enabled()) {
1687         kvm_arm_add_vcpu_properties(obj);
1688     }
1689 
1690 #ifndef CONFIG_USER_ONLY
1691     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1692         cpu_isar_feature(aa64_mte, cpu)) {
1693         object_property_add_link(obj, "tag-memory",
1694                                  TYPE_MEMORY_REGION,
1695                                  (Object **)&cpu->tag_memory,
1696                                  qdev_prop_allow_set_link_before_realize,
1697                                  OBJ_PROP_LINK_STRONG);
1698 
1699         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1700             object_property_add_link(obj, "secure-tag-memory",
1701                                      TYPE_MEMORY_REGION,
1702                                      (Object **)&cpu->secure_tag_memory,
1703                                      qdev_prop_allow_set_link_before_realize,
1704                                      OBJ_PROP_LINK_STRONG);
1705         }
1706     }
1707 #endif
1708 }
1709 
1710 static void arm_cpu_finalizefn(Object *obj)
1711 {
1712     ARMCPU *cpu = ARM_CPU(obj);
1713     ARMELChangeHook *hook, *next;
1714 
1715     g_hash_table_destroy(cpu->cp_regs);
1716 
1717     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1718         QLIST_REMOVE(hook, node);
1719         g_free(hook);
1720     }
1721     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1722         QLIST_REMOVE(hook, node);
1723         g_free(hook);
1724     }
1725 #ifndef CONFIG_USER_ONLY
1726     if (cpu->pmu_timer) {
1727         timer_free(cpu->pmu_timer);
1728     }
1729 #endif
1730 }
1731 
1732 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1733 {
1734     Error *local_err = NULL;
1735 
1736 #ifdef TARGET_AARCH64
1737     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1738         arm_cpu_sve_finalize(cpu, &local_err);
1739         if (local_err != NULL) {
1740             error_propagate(errp, local_err);
1741             return;
1742         }
1743 
1744         arm_cpu_sme_finalize(cpu, &local_err);
1745         if (local_err != NULL) {
1746             error_propagate(errp, local_err);
1747             return;
1748         }
1749 
1750         arm_cpu_pauth_finalize(cpu, &local_err);
1751         if (local_err != NULL) {
1752             error_propagate(errp, local_err);
1753             return;
1754         }
1755 
1756         arm_cpu_lpa2_finalize(cpu, &local_err);
1757         if (local_err != NULL) {
1758             error_propagate(errp, local_err);
1759             return;
1760         }
1761     }
1762 #endif
1763 
1764     if (kvm_enabled()) {
1765         kvm_arm_steal_time_finalize(cpu, &local_err);
1766         if (local_err != NULL) {
1767             error_propagate(errp, local_err);
1768             return;
1769         }
1770     }
1771 }
1772 
1773 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1774 {
1775     CPUState *cs = CPU(dev);
1776     ARMCPU *cpu = ARM_CPU(dev);
1777     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1778     CPUARMState *env = &cpu->env;
1779     int pagebits;
1780     Error *local_err = NULL;
1781 
1782     /* Use pc-relative instructions in system-mode */
1783 #ifndef CONFIG_USER_ONLY
1784     cs->tcg_cflags |= CF_PCREL;
1785 #endif
1786 
1787     /* If we needed to query the host kernel for the CPU features
1788      * then it's possible that might have failed in the initfn, but
1789      * this is the first point where we can report it.
1790      */
1791     if (cpu->host_cpu_probe_failed) {
1792         if (!kvm_enabled() && !hvf_enabled()) {
1793             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1794         } else {
1795             error_setg(errp, "Failed to retrieve host CPU features");
1796         }
1797         return;
1798     }
1799 
1800 #ifndef CONFIG_USER_ONLY
1801     /* The NVIC and M-profile CPU are two halves of a single piece of
1802      * hardware; trying to use one without the other is a command line
1803      * error and will result in segfaults if not caught here.
1804      */
1805     if (arm_feature(env, ARM_FEATURE_M)) {
1806         if (!env->nvic) {
1807             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1808             return;
1809         }
1810     } else {
1811         if (env->nvic) {
1812             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1813             return;
1814         }
1815     }
1816 
1817     if (!tcg_enabled() && !qtest_enabled()) {
1818         /*
1819          * We assume that no accelerator except TCG (and the "not really an
1820          * accelerator" qtest) can handle these features, because Arm hardware
1821          * virtualization can't virtualize them.
1822          *
1823          * Catch all the cases which might cause us to create more than one
1824          * address space for the CPU (otherwise we will assert() later in
1825          * cpu_address_space_init()).
1826          */
1827         if (arm_feature(env, ARM_FEATURE_M)) {
1828             error_setg(errp,
1829                        "Cannot enable %s when using an M-profile guest CPU",
1830                        current_accel_name());
1831             return;
1832         }
1833         if (cpu->has_el3) {
1834             error_setg(errp,
1835                        "Cannot enable %s when guest CPU has EL3 enabled",
1836                        current_accel_name());
1837             return;
1838         }
1839         if (cpu->tag_memory) {
1840             error_setg(errp,
1841                        "Cannot enable %s when guest CPUs has MTE enabled",
1842                        current_accel_name());
1843             return;
1844         }
1845     }
1846 
1847     {
1848         uint64_t scale;
1849 
1850         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1851             if (!cpu->gt_cntfrq_hz) {
1852                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1853                            cpu->gt_cntfrq_hz);
1854                 return;
1855             }
1856             scale = gt_cntfrq_period_ns(cpu);
1857         } else {
1858             scale = GTIMER_SCALE;
1859         }
1860 
1861         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1862                                                arm_gt_ptimer_cb, cpu);
1863         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1864                                                arm_gt_vtimer_cb, cpu);
1865         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1866                                               arm_gt_htimer_cb, cpu);
1867         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1868                                               arm_gt_stimer_cb, cpu);
1869         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1870                                                   arm_gt_hvtimer_cb, cpu);
1871     }
1872 #endif
1873 
1874     cpu_exec_realizefn(cs, &local_err);
1875     if (local_err != NULL) {
1876         error_propagate(errp, local_err);
1877         return;
1878     }
1879 
1880     arm_cpu_finalize_features(cpu, &local_err);
1881     if (local_err != NULL) {
1882         error_propagate(errp, local_err);
1883         return;
1884     }
1885 
1886 #ifdef CONFIG_USER_ONLY
1887     /*
1888      * User mode relies on IC IVAU instructions to catch modification of
1889      * dual-mapped code.
1890      *
1891      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1892      * IC IVAU even if the emulated processor does not normally require it.
1893      */
1894     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1895 #endif
1896 
1897     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1898         cpu->has_vfp != cpu->has_neon) {
1899         /*
1900          * This is an architectural requirement for AArch64; AArch32 is
1901          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1902          */
1903         error_setg(errp,
1904                    "AArch64 CPUs must have both VFP and Neon or neither");
1905         return;
1906     }
1907 
1908     if (cpu->has_vfp_d32 != cpu->has_neon) {
1909         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1910         return;
1911     }
1912 
1913    if (!cpu->has_vfp_d32) {
1914         uint32_t u;
1915 
1916         u = cpu->isar.mvfr0;
1917         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1918         cpu->isar.mvfr0 = u;
1919     }
1920 
1921     if (!cpu->has_vfp) {
1922         uint64_t t;
1923         uint32_t u;
1924 
1925         t = cpu->isar.id_aa64isar1;
1926         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1927         cpu->isar.id_aa64isar1 = t;
1928 
1929         t = cpu->isar.id_aa64pfr0;
1930         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1931         cpu->isar.id_aa64pfr0 = t;
1932 
1933         u = cpu->isar.id_isar6;
1934         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1935         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1936         cpu->isar.id_isar6 = u;
1937 
1938         u = cpu->isar.mvfr0;
1939         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1940         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1941         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1942         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1943         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1944         if (!arm_feature(env, ARM_FEATURE_M)) {
1945             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1946             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1947         }
1948         cpu->isar.mvfr0 = u;
1949 
1950         u = cpu->isar.mvfr1;
1951         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1952         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1953         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1954         if (arm_feature(env, ARM_FEATURE_M)) {
1955             u = FIELD_DP32(u, MVFR1, FP16, 0);
1956         }
1957         cpu->isar.mvfr1 = u;
1958 
1959         u = cpu->isar.mvfr2;
1960         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1961         cpu->isar.mvfr2 = u;
1962     }
1963 
1964     if (!cpu->has_neon) {
1965         uint64_t t;
1966         uint32_t u;
1967 
1968         unset_feature(env, ARM_FEATURE_NEON);
1969 
1970         t = cpu->isar.id_aa64isar0;
1971         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1972         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1973         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1974         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1975         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1976         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1977         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1978         cpu->isar.id_aa64isar0 = t;
1979 
1980         t = cpu->isar.id_aa64isar1;
1981         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1982         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1983         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1984         cpu->isar.id_aa64isar1 = t;
1985 
1986         t = cpu->isar.id_aa64pfr0;
1987         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1988         cpu->isar.id_aa64pfr0 = t;
1989 
1990         u = cpu->isar.id_isar5;
1991         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1992         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1993         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1994         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1995         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1996         cpu->isar.id_isar5 = u;
1997 
1998         u = cpu->isar.id_isar6;
1999         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2000         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2001         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2002         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2003         cpu->isar.id_isar6 = u;
2004 
2005         if (!arm_feature(env, ARM_FEATURE_M)) {
2006             u = cpu->isar.mvfr1;
2007             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2008             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2009             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2010             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2011             cpu->isar.mvfr1 = u;
2012 
2013             u = cpu->isar.mvfr2;
2014             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2015             cpu->isar.mvfr2 = u;
2016         }
2017     }
2018 
2019     if (!cpu->has_neon && !cpu->has_vfp) {
2020         uint64_t t;
2021         uint32_t u;
2022 
2023         t = cpu->isar.id_aa64isar0;
2024         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2025         cpu->isar.id_aa64isar0 = t;
2026 
2027         t = cpu->isar.id_aa64isar1;
2028         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2029         cpu->isar.id_aa64isar1 = t;
2030 
2031         u = cpu->isar.mvfr0;
2032         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2033         cpu->isar.mvfr0 = u;
2034 
2035         /* Despite the name, this field covers both VFP and Neon */
2036         u = cpu->isar.mvfr1;
2037         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2038         cpu->isar.mvfr1 = u;
2039     }
2040 
2041     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2042         uint32_t u;
2043 
2044         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2045 
2046         u = cpu->isar.id_isar1;
2047         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2048         cpu->isar.id_isar1 = u;
2049 
2050         u = cpu->isar.id_isar2;
2051         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2052         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2053         cpu->isar.id_isar2 = u;
2054 
2055         u = cpu->isar.id_isar3;
2056         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2057         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2058         cpu->isar.id_isar3 = u;
2059     }
2060 
2061 
2062     /*
2063      * We rely on no XScale CPU having VFP so we can use the same bits in the
2064      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2065      */
2066     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2067            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2068            !arm_feature(env, ARM_FEATURE_XSCALE));
2069 
2070     if (arm_feature(env, ARM_FEATURE_V7) &&
2071         !arm_feature(env, ARM_FEATURE_M) &&
2072         !arm_feature(env, ARM_FEATURE_PMSA)) {
2073         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2074          * can use 4K pages.
2075          */
2076         pagebits = 12;
2077     } else {
2078         /* For CPUs which might have tiny 1K pages, or which have an
2079          * MPU and might have small region sizes, stick with 1K pages.
2080          */
2081         pagebits = 10;
2082     }
2083     if (!set_preferred_target_page_bits(pagebits)) {
2084         /* This can only ever happen for hotplugging a CPU, or if
2085          * the board code incorrectly creates a CPU which it has
2086          * promised via minimum_page_size that it will not.
2087          */
2088         error_setg(errp, "This CPU requires a smaller page size than the "
2089                    "system is using");
2090         return;
2091     }
2092 
2093     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2094      * We don't support setting cluster ID ([16..23]) (known as Aff2
2095      * in later ARM ARM versions), or any of the higher affinity level fields,
2096      * so these bits always RAZ.
2097      */
2098     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2099         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2100                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
2101     }
2102 
2103     if (cpu->reset_hivecs) {
2104             cpu->reset_sctlr |= (1 << 13);
2105     }
2106 
2107     if (cpu->cfgend) {
2108         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2109             cpu->reset_sctlr |= SCTLR_EE;
2110         } else {
2111             cpu->reset_sctlr |= SCTLR_B;
2112         }
2113     }
2114 
2115     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2116         /* If the has_el3 CPU property is disabled then we need to disable the
2117          * feature.
2118          */
2119         unset_feature(env, ARM_FEATURE_EL3);
2120 
2121         /*
2122          * Disable the security extension feature bits in the processor
2123          * feature registers as well.
2124          */
2125         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2126         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2127         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2128                                            ID_AA64PFR0, EL3, 0);
2129 
2130         /* Disable the realm management extension, which requires EL3. */
2131         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2132                                            ID_AA64PFR0, RME, 0);
2133     }
2134 
2135     if (!cpu->has_el2) {
2136         unset_feature(env, ARM_FEATURE_EL2);
2137     }
2138 
2139     if (!cpu->has_pmu) {
2140         unset_feature(env, ARM_FEATURE_PMU);
2141     }
2142     if (arm_feature(env, ARM_FEATURE_PMU)) {
2143         pmu_init(cpu);
2144 
2145         if (!kvm_enabled()) {
2146             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2147             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2148         }
2149 
2150 #ifndef CONFIG_USER_ONLY
2151         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2152                 cpu);
2153 #endif
2154     } else {
2155         cpu->isar.id_aa64dfr0 =
2156             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2157         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2158         cpu->pmceid0 = 0;
2159         cpu->pmceid1 = 0;
2160     }
2161 
2162     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2163         /*
2164          * Disable the hypervisor feature bits in the processor feature
2165          * registers if we don't have EL2.
2166          */
2167         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2168                                            ID_AA64PFR0, EL2, 0);
2169         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2170                                        ID_PFR1, VIRTUALIZATION, 0);
2171     }
2172 
2173     if (cpu_isar_feature(aa64_mte, cpu)) {
2174         /*
2175          * The architectural range of GM blocksize is 2-6, however qemu
2176          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2177          */
2178         if (tcg_enabled()) {
2179             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2180         }
2181 
2182 #ifndef CONFIG_USER_ONLY
2183         /*
2184          * If we do not have tag-memory provided by the machine,
2185          * reduce MTE support to instructions enabled at EL0.
2186          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2187          */
2188         if (cpu->tag_memory == NULL) {
2189             cpu->isar.id_aa64pfr1 =
2190                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2191         }
2192 #endif
2193     }
2194 
2195     if (tcg_enabled()) {
2196         /*
2197          * Don't report some architectural features in the ID registers
2198          * where TCG does not yet implement it (not even a minimal
2199          * stub version). This avoids guests falling over when they
2200          * try to access the non-existent system registers for them.
2201          */
2202         /* FEAT_SPE (Statistical Profiling Extension) */
2203         cpu->isar.id_aa64dfr0 =
2204             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2205         /* FEAT_TRBE (Trace Buffer Extension) */
2206         cpu->isar.id_aa64dfr0 =
2207             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2208         /* FEAT_TRF (Self-hosted Trace Extension) */
2209         cpu->isar.id_aa64dfr0 =
2210             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2211         cpu->isar.id_dfr0 =
2212             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2213         /* Trace Macrocell system register access */
2214         cpu->isar.id_aa64dfr0 =
2215             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2216         cpu->isar.id_dfr0 =
2217             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2218         /* Memory mapped trace */
2219         cpu->isar.id_dfr0 =
2220             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2221         /* FEAT_AMU (Activity Monitors Extension) */
2222         cpu->isar.id_aa64pfr0 =
2223             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2224         cpu->isar.id_pfr0 =
2225             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2226         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2227         cpu->isar.id_aa64pfr0 =
2228             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2229         /* FEAT_NV (Nested Virtualization) */
2230         cpu->isar.id_aa64mmfr2 =
2231             FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2232     }
2233 
2234     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2235      * to false or by setting pmsav7-dregion to 0.
2236      */
2237     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2238         cpu->has_mpu = false;
2239         cpu->pmsav7_dregion = 0;
2240         cpu->pmsav8r_hdregion = 0;
2241     }
2242 
2243     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2244         arm_feature(env, ARM_FEATURE_V7)) {
2245         uint32_t nr = cpu->pmsav7_dregion;
2246 
2247         if (nr > 0xff) {
2248             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2249             return;
2250         }
2251 
2252         if (nr) {
2253             if (arm_feature(env, ARM_FEATURE_V8)) {
2254                 /* PMSAv8 */
2255                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2256                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2257                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2258                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2259                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2260                 }
2261             } else {
2262                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2263                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2264                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2265             }
2266         }
2267 
2268         if (cpu->pmsav8r_hdregion > 0xff) {
2269             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2270                               cpu->pmsav8r_hdregion);
2271             return;
2272         }
2273 
2274         if (cpu->pmsav8r_hdregion) {
2275             env->pmsav8.hprbar = g_new0(uint32_t,
2276                                         cpu->pmsav8r_hdregion);
2277             env->pmsav8.hprlar = g_new0(uint32_t,
2278                                         cpu->pmsav8r_hdregion);
2279         }
2280     }
2281 
2282     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2283         uint32_t nr = cpu->sau_sregion;
2284 
2285         if (nr > 0xff) {
2286             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2287             return;
2288         }
2289 
2290         if (nr) {
2291             env->sau.rbar = g_new0(uint32_t, nr);
2292             env->sau.rlar = g_new0(uint32_t, nr);
2293         }
2294     }
2295 
2296     if (arm_feature(env, ARM_FEATURE_EL3)) {
2297         set_feature(env, ARM_FEATURE_VBAR);
2298     }
2299 
2300 #ifndef CONFIG_USER_ONLY
2301     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2302         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2303     }
2304 #endif
2305 
2306     register_cp_regs_for_features(cpu);
2307     arm_cpu_register_gdb_regs_for_features(cpu);
2308 
2309     init_cpreg_list(cpu);
2310 
2311 #ifndef CONFIG_USER_ONLY
2312     MachineState *ms = MACHINE(qdev_get_machine());
2313     unsigned int smp_cpus = ms->smp.cpus;
2314     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2315 
2316     /*
2317      * We must set cs->num_ases to the final value before
2318      * the first call to cpu_address_space_init.
2319      */
2320     if (cpu->tag_memory != NULL) {
2321         cs->num_ases = 3 + has_secure;
2322     } else {
2323         cs->num_ases = 1 + has_secure;
2324     }
2325 
2326     if (has_secure) {
2327         if (!cpu->secure_memory) {
2328             cpu->secure_memory = cs->memory;
2329         }
2330         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2331                                cpu->secure_memory);
2332     }
2333 
2334     if (cpu->tag_memory != NULL) {
2335         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2336                                cpu->tag_memory);
2337         if (has_secure) {
2338             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2339                                    cpu->secure_tag_memory);
2340         }
2341     }
2342 
2343     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2344 
2345     /* No core_count specified, default to smp_cpus. */
2346     if (cpu->core_count == -1) {
2347         cpu->core_count = smp_cpus;
2348     }
2349 #endif
2350 
2351     if (tcg_enabled()) {
2352         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2353 
2354         /*
2355          * We only support DCZ blocklen that fits on one page.
2356          *
2357          * Architectually this is always true.  However TARGET_PAGE_SIZE
2358          * is variable and, for compatibility with -machine virt-2.7,
2359          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2360          * But even then, while the largest architectural DCZ blocklen
2361          * is 2KiB, no cpu actually uses such a large blocklen.
2362          */
2363         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2364 
2365         /*
2366          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2367          * both nibbles of each byte storing tag data may be written at once.
2368          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2369          */
2370         if (cpu_isar_feature(aa64_mte, cpu)) {
2371             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2372         }
2373     }
2374 
2375     qemu_init_vcpu(cs);
2376     cpu_reset(cs);
2377 
2378     acc->parent_realize(dev, errp);
2379 }
2380 
2381 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2382 {
2383     ObjectClass *oc;
2384     char *typename;
2385     char **cpuname;
2386     const char *cpunamestr;
2387 
2388     cpuname = g_strsplit(cpu_model, ",", 1);
2389     cpunamestr = cpuname[0];
2390 #ifdef CONFIG_USER_ONLY
2391     /* For backwards compatibility usermode emulation allows "-cpu any",
2392      * which has the same semantics as "-cpu max".
2393      */
2394     if (!strcmp(cpunamestr, "any")) {
2395         cpunamestr = "max";
2396     }
2397 #endif
2398     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2399     oc = object_class_by_name(typename);
2400     g_strfreev(cpuname);
2401     g_free(typename);
2402     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2403         object_class_is_abstract(oc)) {
2404         return NULL;
2405     }
2406     return oc;
2407 }
2408 
2409 static Property arm_cpu_properties[] = {
2410     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2411     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2412                         mp_affinity, ARM64_AFFINITY_INVALID),
2413     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2414     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2415     DEFINE_PROP_END_OF_LIST()
2416 };
2417 
2418 static const gchar *arm_gdb_arch_name(CPUState *cs)
2419 {
2420     ARMCPU *cpu = ARM_CPU(cs);
2421     CPUARMState *env = &cpu->env;
2422 
2423     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2424         return "iwmmxt";
2425     }
2426     return "arm";
2427 }
2428 
2429 #ifndef CONFIG_USER_ONLY
2430 #include "hw/core/sysemu-cpu-ops.h"
2431 
2432 static const struct SysemuCPUOps arm_sysemu_ops = {
2433     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2434     .asidx_from_attrs = arm_asidx_from_attrs,
2435     .write_elf32_note = arm_cpu_write_elf32_note,
2436     .write_elf64_note = arm_cpu_write_elf64_note,
2437     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2438     .legacy_vmsd = &vmstate_arm_cpu,
2439 };
2440 #endif
2441 
2442 #ifdef CONFIG_TCG
2443 static const struct TCGCPUOps arm_tcg_ops = {
2444     .initialize = arm_translate_init,
2445     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2446     .debug_excp_handler = arm_debug_excp_handler,
2447     .restore_state_to_opc = arm_restore_state_to_opc,
2448 
2449 #ifdef CONFIG_USER_ONLY
2450     .record_sigsegv = arm_cpu_record_sigsegv,
2451     .record_sigbus = arm_cpu_record_sigbus,
2452 #else
2453     .tlb_fill = arm_cpu_tlb_fill,
2454     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2455     .do_interrupt = arm_cpu_do_interrupt,
2456     .do_transaction_failed = arm_cpu_do_transaction_failed,
2457     .do_unaligned_access = arm_cpu_do_unaligned_access,
2458     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2459     .debug_check_watchpoint = arm_debug_check_watchpoint,
2460     .debug_check_breakpoint = arm_debug_check_breakpoint,
2461 #endif /* !CONFIG_USER_ONLY */
2462 };
2463 #endif /* CONFIG_TCG */
2464 
2465 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2466 {
2467     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2468     CPUClass *cc = CPU_CLASS(acc);
2469     DeviceClass *dc = DEVICE_CLASS(oc);
2470     ResettableClass *rc = RESETTABLE_CLASS(oc);
2471 
2472     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2473                                     &acc->parent_realize);
2474 
2475     device_class_set_props(dc, arm_cpu_properties);
2476 
2477     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2478                                        &acc->parent_phases);
2479 
2480     cc->class_by_name = arm_cpu_class_by_name;
2481     cc->has_work = arm_cpu_has_work;
2482     cc->dump_state = arm_cpu_dump_state;
2483     cc->set_pc = arm_cpu_set_pc;
2484     cc->get_pc = arm_cpu_get_pc;
2485     cc->gdb_read_register = arm_cpu_gdb_read_register;
2486     cc->gdb_write_register = arm_cpu_gdb_write_register;
2487 #ifndef CONFIG_USER_ONLY
2488     cc->sysemu_ops = &arm_sysemu_ops;
2489 #endif
2490     cc->gdb_num_core_regs = 26;
2491     cc->gdb_arch_name = arm_gdb_arch_name;
2492     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2493     cc->gdb_stop_before_watchpoint = true;
2494     cc->disas_set_info = arm_disas_set_info;
2495 
2496 #ifdef CONFIG_TCG
2497     cc->tcg_ops = &arm_tcg_ops;
2498 #endif /* CONFIG_TCG */
2499 }
2500 
2501 static void arm_cpu_instance_init(Object *obj)
2502 {
2503     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2504 
2505     acc->info->initfn(obj);
2506     arm_cpu_post_init(obj);
2507 }
2508 
2509 static void cpu_register_class_init(ObjectClass *oc, void *data)
2510 {
2511     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2512     CPUClass *cc = CPU_CLASS(acc);
2513 
2514     acc->info = data;
2515     cc->gdb_core_xml_file = "arm-core.xml";
2516 }
2517 
2518 void arm_cpu_register(const ARMCPUInfo *info)
2519 {
2520     TypeInfo type_info = {
2521         .parent = TYPE_ARM_CPU,
2522         .instance_init = arm_cpu_instance_init,
2523         .class_init = info->class_init ?: cpu_register_class_init,
2524         .class_data = (void *)info,
2525     };
2526 
2527     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2528     type_register(&type_info);
2529     g_free((void *)type_info.name);
2530 }
2531 
2532 static const TypeInfo arm_cpu_type_info = {
2533     .name = TYPE_ARM_CPU,
2534     .parent = TYPE_CPU,
2535     .instance_size = sizeof(ARMCPU),
2536     .instance_align = __alignof__(ARMCPU),
2537     .instance_init = arm_cpu_initfn,
2538     .instance_finalize = arm_cpu_finalizefn,
2539     .abstract = true,
2540     .class_size = sizeof(ARMCPUClass),
2541     .class_init = arm_cpu_class_init,
2542 };
2543 
2544 static void arm_cpu_register_types(void)
2545 {
2546     type_register_static(&arm_cpu_type_info);
2547 }
2548 
2549 type_init(arm_cpu_register_types)
2550