xref: /qemu/target/arm/cpu.c (revision 52581c71)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/hw_accel.h"
43 #include "kvm_arm.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
46 #include "cpregs.h"
47 
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
49 {
50     ARMCPU *cpu = ARM_CPU(cs);
51     CPUARMState *env = &cpu->env;
52 
53     if (is_a64(env)) {
54         env->pc = value;
55         env->thumb = false;
56     } else {
57         env->regs[15] = value & ~1;
58         env->thumb = value & 1;
59     }
60 }
61 
62 #ifdef CONFIG_TCG
63 void arm_cpu_synchronize_from_tb(CPUState *cs,
64                                  const TranslationBlock *tb)
65 {
66     ARMCPU *cpu = ARM_CPU(cs);
67     CPUARMState *env = &cpu->env;
68 
69     /*
70      * It's OK to look at env for the current mode here, because it's
71      * never possible for an AArch64 TB to chain to an AArch32 TB.
72      */
73     if (is_a64(env)) {
74         env->pc = tb->pc;
75     } else {
76         env->regs[15] = tb->pc;
77     }
78 }
79 #endif /* CONFIG_TCG */
80 
81 static bool arm_cpu_has_work(CPUState *cs)
82 {
83     ARMCPU *cpu = ARM_CPU(cs);
84 
85     return (cpu->power_state != PSCI_OFF)
86         && cs->interrupt_request &
87         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
88          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
89          | CPU_INTERRUPT_EXITTB);
90 }
91 
92 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
93                                  void *opaque)
94 {
95     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
96 
97     entry->hook = hook;
98     entry->opaque = opaque;
99 
100     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
101 }
102 
103 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
104                                  void *opaque)
105 {
106     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
107 
108     entry->hook = hook;
109     entry->opaque = opaque;
110 
111     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
112 }
113 
114 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
115 {
116     /* Reset a single ARMCPRegInfo register */
117     ARMCPRegInfo *ri = value;
118     ARMCPU *cpu = opaque;
119 
120     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
121         return;
122     }
123 
124     if (ri->resetfn) {
125         ri->resetfn(&cpu->env, ri);
126         return;
127     }
128 
129     /* A zero offset is never possible as it would be regs[0]
130      * so we use it to indicate that reset is being handled elsewhere.
131      * This is basically only used for fields in non-core coprocessors
132      * (like the pxa2xx ones).
133      */
134     if (!ri->fieldoffset) {
135         return;
136     }
137 
138     if (cpreg_field_is_64bit(ri)) {
139         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
140     } else {
141         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
142     }
143 }
144 
145 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
146 {
147     /* Purely an assertion check: we've already done reset once,
148      * so now check that running the reset for the cpreg doesn't
149      * change its value. This traps bugs where two different cpregs
150      * both try to reset the same state field but to different values.
151      */
152     ARMCPRegInfo *ri = value;
153     ARMCPU *cpu = opaque;
154     uint64_t oldvalue, newvalue;
155 
156     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
157         return;
158     }
159 
160     oldvalue = read_raw_cp_reg(&cpu->env, ri);
161     cp_reg_reset(key, value, opaque);
162     newvalue = read_raw_cp_reg(&cpu->env, ri);
163     assert(oldvalue == newvalue);
164 }
165 
166 static void arm_cpu_reset(DeviceState *dev)
167 {
168     CPUState *s = CPU(dev);
169     ARMCPU *cpu = ARM_CPU(s);
170     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
171     CPUARMState *env = &cpu->env;
172 
173     acc->parent_reset(dev);
174 
175     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
176 
177     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
178     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
179 
180     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
181     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
182     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
183     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
184 
185     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
186 
187     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
188         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
189     }
190 
191     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
192         /* 64 bit CPUs always start in 64 bit mode */
193         env->aarch64 = true;
194 #if defined(CONFIG_USER_ONLY)
195         env->pstate = PSTATE_MODE_EL0t;
196         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
197         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
198         /* Enable all PAC keys.  */
199         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
200                                   SCTLR_EnDA | SCTLR_EnDB);
201         /* Trap on btype=3 for PACIxSP. */
202         env->cp15.sctlr_el[1] |= SCTLR_BT0;
203         /* and to the FP/Neon instructions */
204         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
205         /* and to the SVE instructions */
206         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
207         /* with reasonable vector length */
208         if (cpu_isar_feature(aa64_sve, cpu)) {
209             env->vfp.zcr_el[1] =
210                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
211         }
212         /*
213          * Enable 48-bit address space (TODO: take reserved_va into account).
214          * Enable TBI0 but not TBI1.
215          * Note that this must match useronly_clean_ptr.
216          */
217         env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
218 
219         /* Enable MTE */
220         if (cpu_isar_feature(aa64_mte, cpu)) {
221             /* Enable tag access, but leave TCF0 as No Effect (0). */
222             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
223             /*
224              * Exclude all tags, so that tag 0 is always used.
225              * This corresponds to Linux current->thread.gcr_incl = 0.
226              *
227              * Set RRND, so that helper_irg() will generate a seed later.
228              * Here in cpu_reset(), the crypto subsystem has not yet been
229              * initialized.
230              */
231             env->cp15.gcr_el1 = 0x1ffff;
232         }
233         /*
234          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
235          * This is not yet exposed from the Linux kernel in any way.
236          */
237         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
238 #else
239         /* Reset into the highest available EL */
240         if (arm_feature(env, ARM_FEATURE_EL3)) {
241             env->pstate = PSTATE_MODE_EL3h;
242         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
243             env->pstate = PSTATE_MODE_EL2h;
244         } else {
245             env->pstate = PSTATE_MODE_EL1h;
246         }
247 
248         /* Sample rvbar at reset.  */
249         env->cp15.rvbar = cpu->rvbar_prop;
250         env->pc = env->cp15.rvbar;
251 #endif
252     } else {
253 #if defined(CONFIG_USER_ONLY)
254         /* Userspace expects access to cp10 and cp11 for FP/Neon */
255         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
256 #endif
257     }
258 
259 #if defined(CONFIG_USER_ONLY)
260     env->uncached_cpsr = ARM_CPU_MODE_USR;
261     /* For user mode we must enable access to coprocessors */
262     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
263     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
264         env->cp15.c15_cpar = 3;
265     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
266         env->cp15.c15_cpar = 1;
267     }
268 #else
269 
270     /*
271      * If the highest available EL is EL2, AArch32 will start in Hyp
272      * mode; otherwise it starts in SVC. Note that if we start in
273      * AArch64 then these values in the uncached_cpsr will be ignored.
274      */
275     if (arm_feature(env, ARM_FEATURE_EL2) &&
276         !arm_feature(env, ARM_FEATURE_EL3)) {
277         env->uncached_cpsr = ARM_CPU_MODE_HYP;
278     } else {
279         env->uncached_cpsr = ARM_CPU_MODE_SVC;
280     }
281     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
282 
283     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
284      * executing as AArch32 then check if highvecs are enabled and
285      * adjust the PC accordingly.
286      */
287     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
288         env->regs[15] = 0xFFFF0000;
289     }
290 
291     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
292 #endif
293 
294     if (arm_feature(env, ARM_FEATURE_M)) {
295 #ifndef CONFIG_USER_ONLY
296         uint32_t initial_msp; /* Loaded from 0x0 */
297         uint32_t initial_pc; /* Loaded from 0x4 */
298         uint8_t *rom;
299         uint32_t vecbase;
300 #endif
301 
302         if (cpu_isar_feature(aa32_lob, cpu)) {
303             /*
304              * LTPSIZE is constant 4 if MVE not implemented, and resets
305              * to an UNKNOWN value if MVE is implemented. We choose to
306              * always reset to 4.
307              */
308             env->v7m.ltpsize = 4;
309             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
310             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
311             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
312         }
313 
314         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
315             env->v7m.secure = true;
316         } else {
317             /* This bit resets to 0 if security is supported, but 1 if
318              * it is not. The bit is not present in v7M, but we set it
319              * here so we can avoid having to make checks on it conditional
320              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
321              */
322             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
323             /*
324              * Set NSACR to indicate "NS access permitted to everything";
325              * this avoids having to have all the tests of it being
326              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
327              * v8.1M the guest-visible value of NSACR in a CPU without the
328              * Security Extension is 0xcff.
329              */
330             env->v7m.nsacr = 0xcff;
331         }
332 
333         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
334          * that it resets to 1, so QEMU always does that rather than making
335          * it dependent on CPU model. In v8M it is RES1.
336          */
337         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
338         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
339         if (arm_feature(env, ARM_FEATURE_V8)) {
340             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
341             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
342             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
343         }
344         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
345             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
346             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
347         }
348 
349         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
350             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
351             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
352                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
353         }
354 
355 #ifndef CONFIG_USER_ONLY
356         /* Unlike A/R profile, M profile defines the reset LR value */
357         env->regs[14] = 0xffffffff;
358 
359         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
360         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
361 
362         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
363         vecbase = env->v7m.vecbase[env->v7m.secure];
364         rom = rom_ptr_for_as(s->as, vecbase, 8);
365         if (rom) {
366             /* Address zero is covered by ROM which hasn't yet been
367              * copied into physical memory.
368              */
369             initial_msp = ldl_p(rom);
370             initial_pc = ldl_p(rom + 4);
371         } else {
372             /* Address zero not covered by a ROM blob, or the ROM blob
373              * is in non-modifiable memory and this is a second reset after
374              * it got copied into memory. In the latter case, rom_ptr
375              * will return a NULL pointer and we should use ldl_phys instead.
376              */
377             initial_msp = ldl_phys(s->as, vecbase);
378             initial_pc = ldl_phys(s->as, vecbase + 4);
379         }
380 
381         qemu_log_mask(CPU_LOG_INT,
382                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
383                       initial_msp, initial_pc);
384 
385         env->regs[13] = initial_msp & 0xFFFFFFFC;
386         env->regs[15] = initial_pc & ~1;
387         env->thumb = initial_pc & 1;
388 #else
389         /*
390          * For user mode we run non-secure and with access to the FPU.
391          * The FPU context is active (ie does not need further setup)
392          * and is owned by non-secure.
393          */
394         env->v7m.secure = false;
395         env->v7m.nsacr = 0xcff;
396         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
397         env->v7m.fpccr[M_REG_S] &=
398             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
399         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
400 #endif
401     }
402 
403     /* M profile requires that reset clears the exclusive monitor;
404      * A profile does not, but clearing it makes more sense than having it
405      * set with an exclusive access on address zero.
406      */
407     arm_clear_exclusive(env);
408 
409     if (arm_feature(env, ARM_FEATURE_PMSA)) {
410         if (cpu->pmsav7_dregion > 0) {
411             if (arm_feature(env, ARM_FEATURE_V8)) {
412                 memset(env->pmsav8.rbar[M_REG_NS], 0,
413                        sizeof(*env->pmsav8.rbar[M_REG_NS])
414                        * cpu->pmsav7_dregion);
415                 memset(env->pmsav8.rlar[M_REG_NS], 0,
416                        sizeof(*env->pmsav8.rlar[M_REG_NS])
417                        * cpu->pmsav7_dregion);
418                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
419                     memset(env->pmsav8.rbar[M_REG_S], 0,
420                            sizeof(*env->pmsav8.rbar[M_REG_S])
421                            * cpu->pmsav7_dregion);
422                     memset(env->pmsav8.rlar[M_REG_S], 0,
423                            sizeof(*env->pmsav8.rlar[M_REG_S])
424                            * cpu->pmsav7_dregion);
425                 }
426             } else if (arm_feature(env, ARM_FEATURE_V7)) {
427                 memset(env->pmsav7.drbar, 0,
428                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
429                 memset(env->pmsav7.drsr, 0,
430                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
431                 memset(env->pmsav7.dracr, 0,
432                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
433             }
434         }
435         env->pmsav7.rnr[M_REG_NS] = 0;
436         env->pmsav7.rnr[M_REG_S] = 0;
437         env->pmsav8.mair0[M_REG_NS] = 0;
438         env->pmsav8.mair0[M_REG_S] = 0;
439         env->pmsav8.mair1[M_REG_NS] = 0;
440         env->pmsav8.mair1[M_REG_S] = 0;
441     }
442 
443     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
444         if (cpu->sau_sregion > 0) {
445             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
446             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
447         }
448         env->sau.rnr = 0;
449         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
450          * the Cortex-M33 does.
451          */
452         env->sau.ctrl = 0;
453     }
454 
455     set_flush_to_zero(1, &env->vfp.standard_fp_status);
456     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
457     set_default_nan_mode(1, &env->vfp.standard_fp_status);
458     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
459     set_float_detect_tininess(float_tininess_before_rounding,
460                               &env->vfp.fp_status);
461     set_float_detect_tininess(float_tininess_before_rounding,
462                               &env->vfp.standard_fp_status);
463     set_float_detect_tininess(float_tininess_before_rounding,
464                               &env->vfp.fp_status_f16);
465     set_float_detect_tininess(float_tininess_before_rounding,
466                               &env->vfp.standard_fp_status_f16);
467 #ifndef CONFIG_USER_ONLY
468     if (kvm_enabled()) {
469         kvm_arm_reset_vcpu(cpu);
470     }
471 #endif
472 
473     hw_breakpoint_update_all(cpu);
474     hw_watchpoint_update_all(cpu);
475     arm_rebuild_hflags(env);
476 }
477 
478 #ifndef CONFIG_USER_ONLY
479 
480 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
481                                      unsigned int target_el,
482                                      unsigned int cur_el, bool secure,
483                                      uint64_t hcr_el2)
484 {
485     CPUARMState *env = cs->env_ptr;
486     bool pstate_unmasked;
487     bool unmasked = false;
488 
489     /*
490      * Don't take exceptions if they target a lower EL.
491      * This check should catch any exceptions that would not be taken
492      * but left pending.
493      */
494     if (cur_el > target_el) {
495         return false;
496     }
497 
498     switch (excp_idx) {
499     case EXCP_FIQ:
500         pstate_unmasked = !(env->daif & PSTATE_F);
501         break;
502 
503     case EXCP_IRQ:
504         pstate_unmasked = !(env->daif & PSTATE_I);
505         break;
506 
507     case EXCP_VFIQ:
508         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
509             /* VFIQs are only taken when hypervized.  */
510             return false;
511         }
512         return !(env->daif & PSTATE_F);
513     case EXCP_VIRQ:
514         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
515             /* VIRQs are only taken when hypervized.  */
516             return false;
517         }
518         return !(env->daif & PSTATE_I);
519     case EXCP_VSERR:
520         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
521             /* VIRQs are only taken when hypervized.  */
522             return false;
523         }
524         return !(env->daif & PSTATE_A);
525     default:
526         g_assert_not_reached();
527     }
528 
529     /*
530      * Use the target EL, current execution state and SCR/HCR settings to
531      * determine whether the corresponding CPSR bit is used to mask the
532      * interrupt.
533      */
534     if ((target_el > cur_el) && (target_el != 1)) {
535         /* Exceptions targeting a higher EL may not be maskable */
536         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
537             /*
538              * 64-bit masking rules are simple: exceptions to EL3
539              * can't be masked, and exceptions to EL2 can only be
540              * masked from Secure state. The HCR and SCR settings
541              * don't affect the masking logic, only the interrupt routing.
542              */
543             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
544                 unmasked = true;
545             }
546         } else {
547             /*
548              * The old 32-bit-only environment has a more complicated
549              * masking setup. HCR and SCR bits not only affect interrupt
550              * routing but also change the behaviour of masking.
551              */
552             bool hcr, scr;
553 
554             switch (excp_idx) {
555             case EXCP_FIQ:
556                 /*
557                  * If FIQs are routed to EL3 or EL2 then there are cases where
558                  * we override the CPSR.F in determining if the exception is
559                  * masked or not. If neither of these are set then we fall back
560                  * to the CPSR.F setting otherwise we further assess the state
561                  * below.
562                  */
563                 hcr = hcr_el2 & HCR_FMO;
564                 scr = (env->cp15.scr_el3 & SCR_FIQ);
565 
566                 /*
567                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
568                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
569                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
570                  * when non-secure but only when FIQs are only routed to EL3.
571                  */
572                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
573                 break;
574             case EXCP_IRQ:
575                 /*
576                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
577                  * we may override the CPSR.I masking when in non-secure state.
578                  * The SCR.IRQ setting has already been taken into consideration
579                  * when setting the target EL, so it does not have a further
580                  * affect here.
581                  */
582                 hcr = hcr_el2 & HCR_IMO;
583                 scr = false;
584                 break;
585             default:
586                 g_assert_not_reached();
587             }
588 
589             if ((scr || hcr) && !secure) {
590                 unmasked = true;
591             }
592         }
593     }
594 
595     /*
596      * The PSTATE bits only mask the interrupt if we have not overriden the
597      * ability above.
598      */
599     return unmasked || pstate_unmasked;
600 }
601 
602 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
603 {
604     CPUClass *cc = CPU_GET_CLASS(cs);
605     CPUARMState *env = cs->env_ptr;
606     uint32_t cur_el = arm_current_el(env);
607     bool secure = arm_is_secure(env);
608     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
609     uint32_t target_el;
610     uint32_t excp_idx;
611 
612     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
613 
614     if (interrupt_request & CPU_INTERRUPT_FIQ) {
615         excp_idx = EXCP_FIQ;
616         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
617         if (arm_excp_unmasked(cs, excp_idx, target_el,
618                               cur_el, secure, hcr_el2)) {
619             goto found;
620         }
621     }
622     if (interrupt_request & CPU_INTERRUPT_HARD) {
623         excp_idx = EXCP_IRQ;
624         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
625         if (arm_excp_unmasked(cs, excp_idx, target_el,
626                               cur_el, secure, hcr_el2)) {
627             goto found;
628         }
629     }
630     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
631         excp_idx = EXCP_VIRQ;
632         target_el = 1;
633         if (arm_excp_unmasked(cs, excp_idx, target_el,
634                               cur_el, secure, hcr_el2)) {
635             goto found;
636         }
637     }
638     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
639         excp_idx = EXCP_VFIQ;
640         target_el = 1;
641         if (arm_excp_unmasked(cs, excp_idx, target_el,
642                               cur_el, secure, hcr_el2)) {
643             goto found;
644         }
645     }
646     if (interrupt_request & CPU_INTERRUPT_VSERR) {
647         excp_idx = EXCP_VSERR;
648         target_el = 1;
649         if (arm_excp_unmasked(cs, excp_idx, target_el,
650                               cur_el, secure, hcr_el2)) {
651             /* Taking a virtual abort clears HCR_EL2.VSE */
652             env->cp15.hcr_el2 &= ~HCR_VSE;
653             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
654             goto found;
655         }
656     }
657     return false;
658 
659  found:
660     cs->exception_index = excp_idx;
661     env->exception.target_el = target_el;
662     cc->tcg_ops->do_interrupt(cs);
663     return true;
664 }
665 #endif /* !CONFIG_USER_ONLY */
666 
667 void arm_cpu_update_virq(ARMCPU *cpu)
668 {
669     /*
670      * Update the interrupt level for VIRQ, which is the logical OR of
671      * the HCR_EL2.VI bit and the input line level from the GIC.
672      */
673     CPUARMState *env = &cpu->env;
674     CPUState *cs = CPU(cpu);
675 
676     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
677         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
678 
679     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
680         if (new_state) {
681             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
682         } else {
683             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
684         }
685     }
686 }
687 
688 void arm_cpu_update_vfiq(ARMCPU *cpu)
689 {
690     /*
691      * Update the interrupt level for VFIQ, which is the logical OR of
692      * the HCR_EL2.VF bit and the input line level from the GIC.
693      */
694     CPUARMState *env = &cpu->env;
695     CPUState *cs = CPU(cpu);
696 
697     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
698         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
699 
700     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
701         if (new_state) {
702             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
703         } else {
704             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
705         }
706     }
707 }
708 
709 void arm_cpu_update_vserr(ARMCPU *cpu)
710 {
711     /*
712      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
713      */
714     CPUARMState *env = &cpu->env;
715     CPUState *cs = CPU(cpu);
716 
717     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
718 
719     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
720         if (new_state) {
721             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
722         } else {
723             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
724         }
725     }
726 }
727 
728 #ifndef CONFIG_USER_ONLY
729 static void arm_cpu_set_irq(void *opaque, int irq, int level)
730 {
731     ARMCPU *cpu = opaque;
732     CPUARMState *env = &cpu->env;
733     CPUState *cs = CPU(cpu);
734     static const int mask[] = {
735         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
736         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
737         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
738         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
739     };
740 
741     if (!arm_feature(env, ARM_FEATURE_EL2) &&
742         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
743         /*
744          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
745          * have EL2 support we don't care. (Unless the guest is doing something
746          * silly this will only be calls saying "level is still 0".)
747          */
748         return;
749     }
750 
751     if (level) {
752         env->irq_line_state |= mask[irq];
753     } else {
754         env->irq_line_state &= ~mask[irq];
755     }
756 
757     switch (irq) {
758     case ARM_CPU_VIRQ:
759         arm_cpu_update_virq(cpu);
760         break;
761     case ARM_CPU_VFIQ:
762         arm_cpu_update_vfiq(cpu);
763         break;
764     case ARM_CPU_IRQ:
765     case ARM_CPU_FIQ:
766         if (level) {
767             cpu_interrupt(cs, mask[irq]);
768         } else {
769             cpu_reset_interrupt(cs, mask[irq]);
770         }
771         break;
772     default:
773         g_assert_not_reached();
774     }
775 }
776 
777 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
778 {
779 #ifdef CONFIG_KVM
780     ARMCPU *cpu = opaque;
781     CPUARMState *env = &cpu->env;
782     CPUState *cs = CPU(cpu);
783     uint32_t linestate_bit;
784     int irq_id;
785 
786     switch (irq) {
787     case ARM_CPU_IRQ:
788         irq_id = KVM_ARM_IRQ_CPU_IRQ;
789         linestate_bit = CPU_INTERRUPT_HARD;
790         break;
791     case ARM_CPU_FIQ:
792         irq_id = KVM_ARM_IRQ_CPU_FIQ;
793         linestate_bit = CPU_INTERRUPT_FIQ;
794         break;
795     default:
796         g_assert_not_reached();
797     }
798 
799     if (level) {
800         env->irq_line_state |= linestate_bit;
801     } else {
802         env->irq_line_state &= ~linestate_bit;
803     }
804     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
805 #endif
806 }
807 
808 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
809 {
810     ARMCPU *cpu = ARM_CPU(cs);
811     CPUARMState *env = &cpu->env;
812 
813     cpu_synchronize_state(cs);
814     return arm_cpu_data_is_big_endian(env);
815 }
816 
817 #endif
818 
819 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
820 {
821     ARMCPU *ac = ARM_CPU(cpu);
822     CPUARMState *env = &ac->env;
823     bool sctlr_b;
824 
825     if (is_a64(env)) {
826         /* We might not be compiled with the A64 disassembler
827          * because it needs a C++ compiler. Leave print_insn
828          * unset in this case to use the caller default behaviour.
829          */
830 #if defined(CONFIG_ARM_A64_DIS)
831         info->print_insn = print_insn_arm_a64;
832 #endif
833         info->cap_arch = CS_ARCH_ARM64;
834         info->cap_insn_unit = 4;
835         info->cap_insn_split = 4;
836     } else {
837         int cap_mode;
838         if (env->thumb) {
839             info->cap_insn_unit = 2;
840             info->cap_insn_split = 4;
841             cap_mode = CS_MODE_THUMB;
842         } else {
843             info->cap_insn_unit = 4;
844             info->cap_insn_split = 4;
845             cap_mode = CS_MODE_ARM;
846         }
847         if (arm_feature(env, ARM_FEATURE_V8)) {
848             cap_mode |= CS_MODE_V8;
849         }
850         if (arm_feature(env, ARM_FEATURE_M)) {
851             cap_mode |= CS_MODE_MCLASS;
852         }
853         info->cap_arch = CS_ARCH_ARM;
854         info->cap_mode = cap_mode;
855     }
856 
857     sctlr_b = arm_sctlr_b(env);
858     if (bswap_code(sctlr_b)) {
859 #if TARGET_BIG_ENDIAN
860         info->endian = BFD_ENDIAN_LITTLE;
861 #else
862         info->endian = BFD_ENDIAN_BIG;
863 #endif
864     }
865     info->flags &= ~INSN_ARM_BE32;
866 #ifndef CONFIG_USER_ONLY
867     if (sctlr_b) {
868         info->flags |= INSN_ARM_BE32;
869     }
870 #endif
871 }
872 
873 #ifdef TARGET_AARCH64
874 
875 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
876 {
877     ARMCPU *cpu = ARM_CPU(cs);
878     CPUARMState *env = &cpu->env;
879     uint32_t psr = pstate_read(env);
880     int i;
881     int el = arm_current_el(env);
882     const char *ns_status;
883 
884     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
885     for (i = 0; i < 32; i++) {
886         if (i == 31) {
887             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
888         } else {
889             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
890                          (i + 2) % 3 ? " " : "\n");
891         }
892     }
893 
894     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
895         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
896     } else {
897         ns_status = "";
898     }
899     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
900                  psr,
901                  psr & PSTATE_N ? 'N' : '-',
902                  psr & PSTATE_Z ? 'Z' : '-',
903                  psr & PSTATE_C ? 'C' : '-',
904                  psr & PSTATE_V ? 'V' : '-',
905                  ns_status,
906                  el,
907                  psr & PSTATE_SP ? 'h' : 't');
908 
909     if (cpu_isar_feature(aa64_bti, cpu)) {
910         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
911     }
912     if (!(flags & CPU_DUMP_FPU)) {
913         qemu_fprintf(f, "\n");
914         return;
915     }
916     if (fp_exception_el(env, el) != 0) {
917         qemu_fprintf(f, "    FPU disabled\n");
918         return;
919     }
920     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
921                  vfp_get_fpcr(env), vfp_get_fpsr(env));
922 
923     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
924         int j, zcr_len = sve_zcr_len_for_el(env, el);
925 
926         for (i = 0; i <= FFR_PRED_NUM; i++) {
927             bool eol;
928             if (i == FFR_PRED_NUM) {
929                 qemu_fprintf(f, "FFR=");
930                 /* It's last, so end the line.  */
931                 eol = true;
932             } else {
933                 qemu_fprintf(f, "P%02d=", i);
934                 switch (zcr_len) {
935                 case 0:
936                     eol = i % 8 == 7;
937                     break;
938                 case 1:
939                     eol = i % 6 == 5;
940                     break;
941                 case 2:
942                 case 3:
943                     eol = i % 3 == 2;
944                     break;
945                 default:
946                     /* More than one quadword per predicate.  */
947                     eol = true;
948                     break;
949                 }
950             }
951             for (j = zcr_len / 4; j >= 0; j--) {
952                 int digits;
953                 if (j * 4 + 4 <= zcr_len + 1) {
954                     digits = 16;
955                 } else {
956                     digits = (zcr_len % 4 + 1) * 4;
957                 }
958                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
959                              env->vfp.pregs[i].p[j],
960                              j ? ":" : eol ? "\n" : " ");
961             }
962         }
963 
964         for (i = 0; i < 32; i++) {
965             if (zcr_len == 0) {
966                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
967                              i, env->vfp.zregs[i].d[1],
968                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
969             } else if (zcr_len == 1) {
970                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
971                              ":%016" PRIx64 ":%016" PRIx64 "\n",
972                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
973                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
974             } else {
975                 for (j = zcr_len; j >= 0; j--) {
976                     bool odd = (zcr_len - j) % 2 != 0;
977                     if (j == zcr_len) {
978                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
979                     } else if (!odd) {
980                         if (j > 0) {
981                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
982                         } else {
983                             qemu_fprintf(f, "     [%x]=", j);
984                         }
985                     }
986                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
987                                  env->vfp.zregs[i].d[j * 2 + 1],
988                                  env->vfp.zregs[i].d[j * 2],
989                                  odd || j == 0 ? "\n" : ":");
990                 }
991             }
992         }
993     } else {
994         for (i = 0; i < 32; i++) {
995             uint64_t *q = aa64_vfp_qreg(env, i);
996             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
997                          i, q[1], q[0], (i & 1 ? "\n" : " "));
998         }
999     }
1000 }
1001 
1002 #else
1003 
1004 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1005 {
1006     g_assert_not_reached();
1007 }
1008 
1009 #endif
1010 
1011 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1012 {
1013     ARMCPU *cpu = ARM_CPU(cs);
1014     CPUARMState *env = &cpu->env;
1015     int i;
1016 
1017     if (is_a64(env)) {
1018         aarch64_cpu_dump_state(cs, f, flags);
1019         return;
1020     }
1021 
1022     for (i = 0; i < 16; i++) {
1023         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1024         if ((i % 4) == 3) {
1025             qemu_fprintf(f, "\n");
1026         } else {
1027             qemu_fprintf(f, " ");
1028         }
1029     }
1030 
1031     if (arm_feature(env, ARM_FEATURE_M)) {
1032         uint32_t xpsr = xpsr_read(env);
1033         const char *mode;
1034         const char *ns_status = "";
1035 
1036         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1037             ns_status = env->v7m.secure ? "S " : "NS ";
1038         }
1039 
1040         if (xpsr & XPSR_EXCP) {
1041             mode = "handler";
1042         } else {
1043             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1044                 mode = "unpriv-thread";
1045             } else {
1046                 mode = "priv-thread";
1047             }
1048         }
1049 
1050         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1051                      xpsr,
1052                      xpsr & XPSR_N ? 'N' : '-',
1053                      xpsr & XPSR_Z ? 'Z' : '-',
1054                      xpsr & XPSR_C ? 'C' : '-',
1055                      xpsr & XPSR_V ? 'V' : '-',
1056                      xpsr & XPSR_T ? 'T' : 'A',
1057                      ns_status,
1058                      mode);
1059     } else {
1060         uint32_t psr = cpsr_read(env);
1061         const char *ns_status = "";
1062 
1063         if (arm_feature(env, ARM_FEATURE_EL3) &&
1064             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1065             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1066         }
1067 
1068         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1069                      psr,
1070                      psr & CPSR_N ? 'N' : '-',
1071                      psr & CPSR_Z ? 'Z' : '-',
1072                      psr & CPSR_C ? 'C' : '-',
1073                      psr & CPSR_V ? 'V' : '-',
1074                      psr & CPSR_T ? 'T' : 'A',
1075                      ns_status,
1076                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1077     }
1078 
1079     if (flags & CPU_DUMP_FPU) {
1080         int numvfpregs = 0;
1081         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1082             numvfpregs = 32;
1083         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1084             numvfpregs = 16;
1085         }
1086         for (i = 0; i < numvfpregs; i++) {
1087             uint64_t v = *aa32_vfp_dreg(env, i);
1088             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1089                          i * 2, (uint32_t)v,
1090                          i * 2 + 1, (uint32_t)(v >> 32),
1091                          i, v);
1092         }
1093         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1094         if (cpu_isar_feature(aa32_mve, cpu)) {
1095             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1096         }
1097     }
1098 }
1099 
1100 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1101 {
1102     uint32_t Aff1 = idx / clustersz;
1103     uint32_t Aff0 = idx % clustersz;
1104     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1105 }
1106 
1107 static void arm_cpu_initfn(Object *obj)
1108 {
1109     ARMCPU *cpu = ARM_CPU(obj);
1110 
1111     cpu_set_cpustate_pointers(cpu);
1112     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1113                                          NULL, g_free);
1114 
1115     QLIST_INIT(&cpu->pre_el_change_hooks);
1116     QLIST_INIT(&cpu->el_change_hooks);
1117 
1118 #ifdef CONFIG_USER_ONLY
1119 # ifdef TARGET_AARCH64
1120     /*
1121      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1122      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1123      * our corresponding sve-default-vector-length cpu property.
1124      */
1125     cpu->sve_default_vq = 4;
1126 # endif
1127 #else
1128     /* Our inbound IRQ and FIQ lines */
1129     if (kvm_enabled()) {
1130         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1131          * the same interface as non-KVM CPUs.
1132          */
1133         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1134     } else {
1135         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1136     }
1137 
1138     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1139                        ARRAY_SIZE(cpu->gt_timer_outputs));
1140 
1141     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1142                              "gicv3-maintenance-interrupt", 1);
1143     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1144                              "pmu-interrupt", 1);
1145 #endif
1146 
1147     /* DTB consumers generally don't in fact care what the 'compatible'
1148      * string is, so always provide some string and trust that a hypothetical
1149      * picky DTB consumer will also provide a helpful error message.
1150      */
1151     cpu->dtb_compatible = "qemu,unknown";
1152     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1153     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1154 
1155     if (tcg_enabled() || hvf_enabled()) {
1156         /* TCG and HVF implement PSCI 1.1 */
1157         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1158     }
1159 }
1160 
1161 static Property arm_cpu_gt_cntfrq_property =
1162             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1163                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1164 
1165 static Property arm_cpu_reset_cbar_property =
1166             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1167 
1168 static Property arm_cpu_reset_hivecs_property =
1169             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1170 
1171 #ifndef CONFIG_USER_ONLY
1172 static Property arm_cpu_has_el2_property =
1173             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1174 
1175 static Property arm_cpu_has_el3_property =
1176             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1177 #endif
1178 
1179 static Property arm_cpu_cfgend_property =
1180             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1181 
1182 static Property arm_cpu_has_vfp_property =
1183             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1184 
1185 static Property arm_cpu_has_neon_property =
1186             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1187 
1188 static Property arm_cpu_has_dsp_property =
1189             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1190 
1191 static Property arm_cpu_has_mpu_property =
1192             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1193 
1194 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1195  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1196  * the right value for that particular CPU type, and we don't want
1197  * to override that with an incorrect constant value.
1198  */
1199 static Property arm_cpu_pmsav7_dregion_property =
1200             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1201                                            pmsav7_dregion,
1202                                            qdev_prop_uint32, uint32_t);
1203 
1204 static bool arm_get_pmu(Object *obj, Error **errp)
1205 {
1206     ARMCPU *cpu = ARM_CPU(obj);
1207 
1208     return cpu->has_pmu;
1209 }
1210 
1211 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1212 {
1213     ARMCPU *cpu = ARM_CPU(obj);
1214 
1215     if (value) {
1216         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1217             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1218             return;
1219         }
1220         set_feature(&cpu->env, ARM_FEATURE_PMU);
1221     } else {
1222         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1223     }
1224     cpu->has_pmu = value;
1225 }
1226 
1227 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1228 {
1229     /*
1230      * The exact approach to calculating guest ticks is:
1231      *
1232      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1233      *              NANOSECONDS_PER_SECOND);
1234      *
1235      * We don't do that. Rather we intentionally use integer division
1236      * truncation below and in the caller for the conversion of host monotonic
1237      * time to guest ticks to provide the exact inverse for the semantics of
1238      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1239      * it loses precision when representing frequencies where
1240      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1241      * provide an exact inverse leads to scheduling timers with negative
1242      * periods, which in turn leads to sticky behaviour in the guest.
1243      *
1244      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1245      * cannot become zero.
1246      */
1247     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1248       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1249 }
1250 
1251 void arm_cpu_post_init(Object *obj)
1252 {
1253     ARMCPU *cpu = ARM_CPU(obj);
1254 
1255     /* M profile implies PMSA. We have to do this here rather than
1256      * in realize with the other feature-implication checks because
1257      * we look at the PMSA bit to see if we should add some properties.
1258      */
1259     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1260         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1261     }
1262 
1263     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1264         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1265         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1266     }
1267 
1268     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1269         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1270     }
1271 
1272     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1273         object_property_add_uint64_ptr(obj, "rvbar",
1274                                        &cpu->rvbar_prop,
1275                                        OBJ_PROP_FLAG_READWRITE);
1276     }
1277 
1278 #ifndef CONFIG_USER_ONLY
1279     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1280         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1281          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1282          */
1283         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1284 
1285         object_property_add_link(obj, "secure-memory",
1286                                  TYPE_MEMORY_REGION,
1287                                  (Object **)&cpu->secure_memory,
1288                                  qdev_prop_allow_set_link_before_realize,
1289                                  OBJ_PROP_LINK_STRONG);
1290     }
1291 
1292     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1293         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1294     }
1295 #endif
1296 
1297     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1298         cpu->has_pmu = true;
1299         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1300     }
1301 
1302     /*
1303      * Allow user to turn off VFP and Neon support, but only for TCG --
1304      * KVM does not currently allow us to lie to the guest about its
1305      * ID/feature registers, so the guest always sees what the host has.
1306      */
1307     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1308         ? cpu_isar_feature(aa64_fp_simd, cpu)
1309         : cpu_isar_feature(aa32_vfp, cpu)) {
1310         cpu->has_vfp = true;
1311         if (!kvm_enabled()) {
1312             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1313         }
1314     }
1315 
1316     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1317         cpu->has_neon = true;
1318         if (!kvm_enabled()) {
1319             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1320         }
1321     }
1322 
1323     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1324         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1325         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1326     }
1327 
1328     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1329         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1330         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1331             qdev_property_add_static(DEVICE(obj),
1332                                      &arm_cpu_pmsav7_dregion_property);
1333         }
1334     }
1335 
1336     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1337         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1338                                  qdev_prop_allow_set_link_before_realize,
1339                                  OBJ_PROP_LINK_STRONG);
1340         /*
1341          * M profile: initial value of the Secure VTOR. We can't just use
1342          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1343          * the property to be set after realize.
1344          */
1345         object_property_add_uint32_ptr(obj, "init-svtor",
1346                                        &cpu->init_svtor,
1347                                        OBJ_PROP_FLAG_READWRITE);
1348     }
1349     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1350         /*
1351          * Initial value of the NS VTOR (for cores without the Security
1352          * extension, this is the only VTOR)
1353          */
1354         object_property_add_uint32_ptr(obj, "init-nsvtor",
1355                                        &cpu->init_nsvtor,
1356                                        OBJ_PROP_FLAG_READWRITE);
1357     }
1358 
1359     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1360     object_property_add_uint32_ptr(obj, "psci-conduit",
1361                                    &cpu->psci_conduit,
1362                                    OBJ_PROP_FLAG_READWRITE);
1363 
1364     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1365 
1366     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1367         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1368     }
1369 
1370     if (kvm_enabled()) {
1371         kvm_arm_add_vcpu_properties(obj);
1372     }
1373 
1374 #ifndef CONFIG_USER_ONLY
1375     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1376         cpu_isar_feature(aa64_mte, cpu)) {
1377         object_property_add_link(obj, "tag-memory",
1378                                  TYPE_MEMORY_REGION,
1379                                  (Object **)&cpu->tag_memory,
1380                                  qdev_prop_allow_set_link_before_realize,
1381                                  OBJ_PROP_LINK_STRONG);
1382 
1383         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1384             object_property_add_link(obj, "secure-tag-memory",
1385                                      TYPE_MEMORY_REGION,
1386                                      (Object **)&cpu->secure_tag_memory,
1387                                      qdev_prop_allow_set_link_before_realize,
1388                                      OBJ_PROP_LINK_STRONG);
1389         }
1390     }
1391 #endif
1392 }
1393 
1394 static void arm_cpu_finalizefn(Object *obj)
1395 {
1396     ARMCPU *cpu = ARM_CPU(obj);
1397     ARMELChangeHook *hook, *next;
1398 
1399     g_hash_table_destroy(cpu->cp_regs);
1400 
1401     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1402         QLIST_REMOVE(hook, node);
1403         g_free(hook);
1404     }
1405     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1406         QLIST_REMOVE(hook, node);
1407         g_free(hook);
1408     }
1409 #ifndef CONFIG_USER_ONLY
1410     if (cpu->pmu_timer) {
1411         timer_free(cpu->pmu_timer);
1412     }
1413 #endif
1414 }
1415 
1416 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1417 {
1418     Error *local_err = NULL;
1419 
1420     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1421         arm_cpu_sve_finalize(cpu, &local_err);
1422         if (local_err != NULL) {
1423             error_propagate(errp, local_err);
1424             return;
1425         }
1426 
1427         arm_cpu_pauth_finalize(cpu, &local_err);
1428         if (local_err != NULL) {
1429             error_propagate(errp, local_err);
1430             return;
1431         }
1432 
1433         arm_cpu_lpa2_finalize(cpu, &local_err);
1434         if (local_err != NULL) {
1435             error_propagate(errp, local_err);
1436             return;
1437         }
1438     }
1439 
1440     if (kvm_enabled()) {
1441         kvm_arm_steal_time_finalize(cpu, &local_err);
1442         if (local_err != NULL) {
1443             error_propagate(errp, local_err);
1444             return;
1445         }
1446     }
1447 }
1448 
1449 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1450 {
1451     CPUState *cs = CPU(dev);
1452     ARMCPU *cpu = ARM_CPU(dev);
1453     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1454     CPUARMState *env = &cpu->env;
1455     int pagebits;
1456     Error *local_err = NULL;
1457     bool no_aa32 = false;
1458 
1459     /* If we needed to query the host kernel for the CPU features
1460      * then it's possible that might have failed in the initfn, but
1461      * this is the first point where we can report it.
1462      */
1463     if (cpu->host_cpu_probe_failed) {
1464         if (!kvm_enabled() && !hvf_enabled()) {
1465             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1466         } else {
1467             error_setg(errp, "Failed to retrieve host CPU features");
1468         }
1469         return;
1470     }
1471 
1472 #ifndef CONFIG_USER_ONLY
1473     /* The NVIC and M-profile CPU are two halves of a single piece of
1474      * hardware; trying to use one without the other is a command line
1475      * error and will result in segfaults if not caught here.
1476      */
1477     if (arm_feature(env, ARM_FEATURE_M)) {
1478         if (!env->nvic) {
1479             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1480             return;
1481         }
1482     } else {
1483         if (env->nvic) {
1484             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1485             return;
1486         }
1487     }
1488 
1489     if (kvm_enabled()) {
1490         /*
1491          * Catch all the cases which might cause us to create more than one
1492          * address space for the CPU (otherwise we will assert() later in
1493          * cpu_address_space_init()).
1494          */
1495         if (arm_feature(env, ARM_FEATURE_M)) {
1496             error_setg(errp,
1497                        "Cannot enable KVM when using an M-profile guest CPU");
1498             return;
1499         }
1500         if (cpu->has_el3) {
1501             error_setg(errp,
1502                        "Cannot enable KVM when guest CPU has EL3 enabled");
1503             return;
1504         }
1505         if (cpu->tag_memory) {
1506             error_setg(errp,
1507                        "Cannot enable KVM when guest CPUs has MTE enabled");
1508             return;
1509         }
1510     }
1511 
1512     {
1513         uint64_t scale;
1514 
1515         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1516             if (!cpu->gt_cntfrq_hz) {
1517                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1518                            cpu->gt_cntfrq_hz);
1519                 return;
1520             }
1521             scale = gt_cntfrq_period_ns(cpu);
1522         } else {
1523             scale = GTIMER_SCALE;
1524         }
1525 
1526         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1527                                                arm_gt_ptimer_cb, cpu);
1528         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1529                                                arm_gt_vtimer_cb, cpu);
1530         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1531                                               arm_gt_htimer_cb, cpu);
1532         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1533                                               arm_gt_stimer_cb, cpu);
1534         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1535                                                   arm_gt_hvtimer_cb, cpu);
1536     }
1537 #endif
1538 
1539     cpu_exec_realizefn(cs, &local_err);
1540     if (local_err != NULL) {
1541         error_propagate(errp, local_err);
1542         return;
1543     }
1544 
1545     arm_cpu_finalize_features(cpu, &local_err);
1546     if (local_err != NULL) {
1547         error_propagate(errp, local_err);
1548         return;
1549     }
1550 
1551     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1552         cpu->has_vfp != cpu->has_neon) {
1553         /*
1554          * This is an architectural requirement for AArch64; AArch32 is
1555          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1556          */
1557         error_setg(errp,
1558                    "AArch64 CPUs must have both VFP and Neon or neither");
1559         return;
1560     }
1561 
1562     if (!cpu->has_vfp) {
1563         uint64_t t;
1564         uint32_t u;
1565 
1566         t = cpu->isar.id_aa64isar1;
1567         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1568         cpu->isar.id_aa64isar1 = t;
1569 
1570         t = cpu->isar.id_aa64pfr0;
1571         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1572         cpu->isar.id_aa64pfr0 = t;
1573 
1574         u = cpu->isar.id_isar6;
1575         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1576         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1577         cpu->isar.id_isar6 = u;
1578 
1579         u = cpu->isar.mvfr0;
1580         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1581         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1582         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1583         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1584         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1585         if (!arm_feature(env, ARM_FEATURE_M)) {
1586             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1587             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1588         }
1589         cpu->isar.mvfr0 = u;
1590 
1591         u = cpu->isar.mvfr1;
1592         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1593         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1594         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1595         if (arm_feature(env, ARM_FEATURE_M)) {
1596             u = FIELD_DP32(u, MVFR1, FP16, 0);
1597         }
1598         cpu->isar.mvfr1 = u;
1599 
1600         u = cpu->isar.mvfr2;
1601         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1602         cpu->isar.mvfr2 = u;
1603     }
1604 
1605     if (!cpu->has_neon) {
1606         uint64_t t;
1607         uint32_t u;
1608 
1609         unset_feature(env, ARM_FEATURE_NEON);
1610 
1611         t = cpu->isar.id_aa64isar0;
1612         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1613         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1614         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1615         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1616         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1617         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1618         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1619         cpu->isar.id_aa64isar0 = t;
1620 
1621         t = cpu->isar.id_aa64isar1;
1622         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1623         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1624         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1625         cpu->isar.id_aa64isar1 = t;
1626 
1627         t = cpu->isar.id_aa64pfr0;
1628         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1629         cpu->isar.id_aa64pfr0 = t;
1630 
1631         u = cpu->isar.id_isar5;
1632         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1633         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1634         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1635         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1636         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1637         cpu->isar.id_isar5 = u;
1638 
1639         u = cpu->isar.id_isar6;
1640         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1641         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1642         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1643         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1644         cpu->isar.id_isar6 = u;
1645 
1646         if (!arm_feature(env, ARM_FEATURE_M)) {
1647             u = cpu->isar.mvfr1;
1648             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1649             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1650             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1651             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1652             cpu->isar.mvfr1 = u;
1653 
1654             u = cpu->isar.mvfr2;
1655             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1656             cpu->isar.mvfr2 = u;
1657         }
1658     }
1659 
1660     if (!cpu->has_neon && !cpu->has_vfp) {
1661         uint64_t t;
1662         uint32_t u;
1663 
1664         t = cpu->isar.id_aa64isar0;
1665         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1666         cpu->isar.id_aa64isar0 = t;
1667 
1668         t = cpu->isar.id_aa64isar1;
1669         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1670         cpu->isar.id_aa64isar1 = t;
1671 
1672         u = cpu->isar.mvfr0;
1673         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1674         cpu->isar.mvfr0 = u;
1675 
1676         /* Despite the name, this field covers both VFP and Neon */
1677         u = cpu->isar.mvfr1;
1678         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1679         cpu->isar.mvfr1 = u;
1680     }
1681 
1682     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1683         uint32_t u;
1684 
1685         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1686 
1687         u = cpu->isar.id_isar1;
1688         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1689         cpu->isar.id_isar1 = u;
1690 
1691         u = cpu->isar.id_isar2;
1692         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1693         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1694         cpu->isar.id_isar2 = u;
1695 
1696         u = cpu->isar.id_isar3;
1697         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1698         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1699         cpu->isar.id_isar3 = u;
1700     }
1701 
1702     /* Some features automatically imply others: */
1703     if (arm_feature(env, ARM_FEATURE_V8)) {
1704         if (arm_feature(env, ARM_FEATURE_M)) {
1705             set_feature(env, ARM_FEATURE_V7);
1706         } else {
1707             set_feature(env, ARM_FEATURE_V7VE);
1708         }
1709     }
1710 
1711     /*
1712      * There exist AArch64 cpus without AArch32 support.  When KVM
1713      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1714      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1715      * As a general principle, we also do not make ID register
1716      * consistency checks anywhere unless using TCG, because only
1717      * for TCG would a consistency-check failure be a QEMU bug.
1718      */
1719     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1720         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1721     }
1722 
1723     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1724         /* v7 Virtualization Extensions. In real hardware this implies
1725          * EL2 and also the presence of the Security Extensions.
1726          * For QEMU, for backwards-compatibility we implement some
1727          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1728          * include the various other features that V7VE implies.
1729          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1730          * Security Extensions is ARM_FEATURE_EL3.
1731          */
1732         assert(!tcg_enabled() || no_aa32 ||
1733                cpu_isar_feature(aa32_arm_div, cpu));
1734         set_feature(env, ARM_FEATURE_LPAE);
1735         set_feature(env, ARM_FEATURE_V7);
1736     }
1737     if (arm_feature(env, ARM_FEATURE_V7)) {
1738         set_feature(env, ARM_FEATURE_VAPA);
1739         set_feature(env, ARM_FEATURE_THUMB2);
1740         set_feature(env, ARM_FEATURE_MPIDR);
1741         if (!arm_feature(env, ARM_FEATURE_M)) {
1742             set_feature(env, ARM_FEATURE_V6K);
1743         } else {
1744             set_feature(env, ARM_FEATURE_V6);
1745         }
1746 
1747         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1748          * non-EL3 configs. This is needed by some legacy boards.
1749          */
1750         set_feature(env, ARM_FEATURE_VBAR);
1751     }
1752     if (arm_feature(env, ARM_FEATURE_V6K)) {
1753         set_feature(env, ARM_FEATURE_V6);
1754         set_feature(env, ARM_FEATURE_MVFR);
1755     }
1756     if (arm_feature(env, ARM_FEATURE_V6)) {
1757         set_feature(env, ARM_FEATURE_V5);
1758         if (!arm_feature(env, ARM_FEATURE_M)) {
1759             assert(!tcg_enabled() || no_aa32 ||
1760                    cpu_isar_feature(aa32_jazelle, cpu));
1761             set_feature(env, ARM_FEATURE_AUXCR);
1762         }
1763     }
1764     if (arm_feature(env, ARM_FEATURE_V5)) {
1765         set_feature(env, ARM_FEATURE_V4T);
1766     }
1767     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1768         set_feature(env, ARM_FEATURE_V7MP);
1769     }
1770     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1771         set_feature(env, ARM_FEATURE_CBAR);
1772     }
1773     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1774         !arm_feature(env, ARM_FEATURE_M)) {
1775         set_feature(env, ARM_FEATURE_THUMB_DSP);
1776     }
1777 
1778     /*
1779      * We rely on no XScale CPU having VFP so we can use the same bits in the
1780      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1781      */
1782     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1783            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1784            !arm_feature(env, ARM_FEATURE_XSCALE));
1785 
1786     if (arm_feature(env, ARM_FEATURE_V7) &&
1787         !arm_feature(env, ARM_FEATURE_M) &&
1788         !arm_feature(env, ARM_FEATURE_PMSA)) {
1789         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1790          * can use 4K pages.
1791          */
1792         pagebits = 12;
1793     } else {
1794         /* For CPUs which might have tiny 1K pages, or which have an
1795          * MPU and might have small region sizes, stick with 1K pages.
1796          */
1797         pagebits = 10;
1798     }
1799     if (!set_preferred_target_page_bits(pagebits)) {
1800         /* This can only ever happen for hotplugging a CPU, or if
1801          * the board code incorrectly creates a CPU which it has
1802          * promised via minimum_page_size that it will not.
1803          */
1804         error_setg(errp, "This CPU requires a smaller page size than the "
1805                    "system is using");
1806         return;
1807     }
1808 
1809     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1810      * We don't support setting cluster ID ([16..23]) (known as Aff2
1811      * in later ARM ARM versions), or any of the higher affinity level fields,
1812      * so these bits always RAZ.
1813      */
1814     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1815         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1816                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1817     }
1818 
1819     if (cpu->reset_hivecs) {
1820             cpu->reset_sctlr |= (1 << 13);
1821     }
1822 
1823     if (cpu->cfgend) {
1824         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1825             cpu->reset_sctlr |= SCTLR_EE;
1826         } else {
1827             cpu->reset_sctlr |= SCTLR_B;
1828         }
1829     }
1830 
1831     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1832         /* If the has_el3 CPU property is disabled then we need to disable the
1833          * feature.
1834          */
1835         unset_feature(env, ARM_FEATURE_EL3);
1836 
1837         /*
1838          * Disable the security extension feature bits in the processor
1839          * feature registers as well.
1840          */
1841         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1842         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1843         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1844                                            ID_AA64PFR0, EL3, 0);
1845     }
1846 
1847     if (!cpu->has_el2) {
1848         unset_feature(env, ARM_FEATURE_EL2);
1849     }
1850 
1851     if (!cpu->has_pmu) {
1852         unset_feature(env, ARM_FEATURE_PMU);
1853     }
1854     if (arm_feature(env, ARM_FEATURE_PMU)) {
1855         pmu_init(cpu);
1856 
1857         if (!kvm_enabled()) {
1858             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1859             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1860         }
1861 
1862 #ifndef CONFIG_USER_ONLY
1863         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1864                 cpu);
1865 #endif
1866     } else {
1867         cpu->isar.id_aa64dfr0 =
1868             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1869         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1870         cpu->pmceid0 = 0;
1871         cpu->pmceid1 = 0;
1872     }
1873 
1874     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1875         /*
1876          * Disable the hypervisor feature bits in the processor feature
1877          * registers if we don't have EL2.
1878          */
1879         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1880                                            ID_AA64PFR0, EL2, 0);
1881         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1882                                        ID_PFR1, VIRTUALIZATION, 0);
1883     }
1884 
1885 #ifndef CONFIG_USER_ONLY
1886     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1887         /*
1888          * Disable the MTE feature bits if we do not have tag-memory
1889          * provided by the machine.
1890          */
1891         cpu->isar.id_aa64pfr1 =
1892             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1893     }
1894 #endif
1895 
1896     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1897      * to false or by setting pmsav7-dregion to 0.
1898      */
1899     if (!cpu->has_mpu) {
1900         cpu->pmsav7_dregion = 0;
1901     }
1902     if (cpu->pmsav7_dregion == 0) {
1903         cpu->has_mpu = false;
1904     }
1905 
1906     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1907         arm_feature(env, ARM_FEATURE_V7)) {
1908         uint32_t nr = cpu->pmsav7_dregion;
1909 
1910         if (nr > 0xff) {
1911             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1912             return;
1913         }
1914 
1915         if (nr) {
1916             if (arm_feature(env, ARM_FEATURE_V8)) {
1917                 /* PMSAv8 */
1918                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1919                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1920                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1921                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1922                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1923                 }
1924             } else {
1925                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1926                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1927                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1928             }
1929         }
1930     }
1931 
1932     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1933         uint32_t nr = cpu->sau_sregion;
1934 
1935         if (nr > 0xff) {
1936             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1937             return;
1938         }
1939 
1940         if (nr) {
1941             env->sau.rbar = g_new0(uint32_t, nr);
1942             env->sau.rlar = g_new0(uint32_t, nr);
1943         }
1944     }
1945 
1946     if (arm_feature(env, ARM_FEATURE_EL3)) {
1947         set_feature(env, ARM_FEATURE_VBAR);
1948     }
1949 
1950     register_cp_regs_for_features(cpu);
1951     arm_cpu_register_gdb_regs_for_features(cpu);
1952 
1953     init_cpreg_list(cpu);
1954 
1955 #ifndef CONFIG_USER_ONLY
1956     MachineState *ms = MACHINE(qdev_get_machine());
1957     unsigned int smp_cpus = ms->smp.cpus;
1958     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1959 
1960     /*
1961      * We must set cs->num_ases to the final value before
1962      * the first call to cpu_address_space_init.
1963      */
1964     if (cpu->tag_memory != NULL) {
1965         cs->num_ases = 3 + has_secure;
1966     } else {
1967         cs->num_ases = 1 + has_secure;
1968     }
1969 
1970     if (has_secure) {
1971         if (!cpu->secure_memory) {
1972             cpu->secure_memory = cs->memory;
1973         }
1974         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1975                                cpu->secure_memory);
1976     }
1977 
1978     if (cpu->tag_memory != NULL) {
1979         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1980                                cpu->tag_memory);
1981         if (has_secure) {
1982             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1983                                    cpu->secure_tag_memory);
1984         }
1985     }
1986 
1987     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1988 
1989     /* No core_count specified, default to smp_cpus. */
1990     if (cpu->core_count == -1) {
1991         cpu->core_count = smp_cpus;
1992     }
1993 #endif
1994 
1995     if (tcg_enabled()) {
1996         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1997 
1998         /*
1999          * We only support DCZ blocklen that fits on one page.
2000          *
2001          * Architectually this is always true.  However TARGET_PAGE_SIZE
2002          * is variable and, for compatibility with -machine virt-2.7,
2003          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2004          * But even then, while the largest architectural DCZ blocklen
2005          * is 2KiB, no cpu actually uses such a large blocklen.
2006          */
2007         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2008 
2009         /*
2010          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2011          * both nibbles of each byte storing tag data may be written at once.
2012          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2013          */
2014         if (cpu_isar_feature(aa64_mte, cpu)) {
2015             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2016         }
2017     }
2018 
2019     qemu_init_vcpu(cs);
2020     cpu_reset(cs);
2021 
2022     acc->parent_realize(dev, errp);
2023 }
2024 
2025 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2026 {
2027     ObjectClass *oc;
2028     char *typename;
2029     char **cpuname;
2030     const char *cpunamestr;
2031 
2032     cpuname = g_strsplit(cpu_model, ",", 1);
2033     cpunamestr = cpuname[0];
2034 #ifdef CONFIG_USER_ONLY
2035     /* For backwards compatibility usermode emulation allows "-cpu any",
2036      * which has the same semantics as "-cpu max".
2037      */
2038     if (!strcmp(cpunamestr, "any")) {
2039         cpunamestr = "max";
2040     }
2041 #endif
2042     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2043     oc = object_class_by_name(typename);
2044     g_strfreev(cpuname);
2045     g_free(typename);
2046     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2047         object_class_is_abstract(oc)) {
2048         return NULL;
2049     }
2050     return oc;
2051 }
2052 
2053 static Property arm_cpu_properties[] = {
2054     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2055     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2056                         mp_affinity, ARM64_AFFINITY_INVALID),
2057     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2058     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2059     DEFINE_PROP_END_OF_LIST()
2060 };
2061 
2062 static gchar *arm_gdb_arch_name(CPUState *cs)
2063 {
2064     ARMCPU *cpu = ARM_CPU(cs);
2065     CPUARMState *env = &cpu->env;
2066 
2067     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2068         return g_strdup("iwmmxt");
2069     }
2070     return g_strdup("arm");
2071 }
2072 
2073 #ifndef CONFIG_USER_ONLY
2074 #include "hw/core/sysemu-cpu-ops.h"
2075 
2076 static const struct SysemuCPUOps arm_sysemu_ops = {
2077     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2078     .asidx_from_attrs = arm_asidx_from_attrs,
2079     .write_elf32_note = arm_cpu_write_elf32_note,
2080     .write_elf64_note = arm_cpu_write_elf64_note,
2081     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2082     .legacy_vmsd = &vmstate_arm_cpu,
2083 };
2084 #endif
2085 
2086 #ifdef CONFIG_TCG
2087 static const struct TCGCPUOps arm_tcg_ops = {
2088     .initialize = arm_translate_init,
2089     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2090     .debug_excp_handler = arm_debug_excp_handler,
2091 
2092 #ifdef CONFIG_USER_ONLY
2093     .record_sigsegv = arm_cpu_record_sigsegv,
2094     .record_sigbus = arm_cpu_record_sigbus,
2095 #else
2096     .tlb_fill = arm_cpu_tlb_fill,
2097     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2098     .do_interrupt = arm_cpu_do_interrupt,
2099     .do_transaction_failed = arm_cpu_do_transaction_failed,
2100     .do_unaligned_access = arm_cpu_do_unaligned_access,
2101     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2102     .debug_check_watchpoint = arm_debug_check_watchpoint,
2103     .debug_check_breakpoint = arm_debug_check_breakpoint,
2104 #endif /* !CONFIG_USER_ONLY */
2105 };
2106 #endif /* CONFIG_TCG */
2107 
2108 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2109 {
2110     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2111     CPUClass *cc = CPU_CLASS(acc);
2112     DeviceClass *dc = DEVICE_CLASS(oc);
2113 
2114     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2115                                     &acc->parent_realize);
2116 
2117     device_class_set_props(dc, arm_cpu_properties);
2118     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2119 
2120     cc->class_by_name = arm_cpu_class_by_name;
2121     cc->has_work = arm_cpu_has_work;
2122     cc->dump_state = arm_cpu_dump_state;
2123     cc->set_pc = arm_cpu_set_pc;
2124     cc->gdb_read_register = arm_cpu_gdb_read_register;
2125     cc->gdb_write_register = arm_cpu_gdb_write_register;
2126 #ifndef CONFIG_USER_ONLY
2127     cc->sysemu_ops = &arm_sysemu_ops;
2128 #endif
2129     cc->gdb_num_core_regs = 26;
2130     cc->gdb_core_xml_file = "arm-core.xml";
2131     cc->gdb_arch_name = arm_gdb_arch_name;
2132     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2133     cc->gdb_stop_before_watchpoint = true;
2134     cc->disas_set_info = arm_disas_set_info;
2135 
2136 #ifdef CONFIG_TCG
2137     cc->tcg_ops = &arm_tcg_ops;
2138 #endif /* CONFIG_TCG */
2139 }
2140 
2141 static void arm_cpu_instance_init(Object *obj)
2142 {
2143     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2144 
2145     acc->info->initfn(obj);
2146     arm_cpu_post_init(obj);
2147 }
2148 
2149 static void cpu_register_class_init(ObjectClass *oc, void *data)
2150 {
2151     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2152 
2153     acc->info = data;
2154 }
2155 
2156 void arm_cpu_register(const ARMCPUInfo *info)
2157 {
2158     TypeInfo type_info = {
2159         .parent = TYPE_ARM_CPU,
2160         .instance_size = sizeof(ARMCPU),
2161         .instance_align = __alignof__(ARMCPU),
2162         .instance_init = arm_cpu_instance_init,
2163         .class_size = sizeof(ARMCPUClass),
2164         .class_init = info->class_init ?: cpu_register_class_init,
2165         .class_data = (void *)info,
2166     };
2167 
2168     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2169     type_register(&type_info);
2170     g_free((void *)type_info.name);
2171 }
2172 
2173 static const TypeInfo arm_cpu_type_info = {
2174     .name = TYPE_ARM_CPU,
2175     .parent = TYPE_CPU,
2176     .instance_size = sizeof(ARMCPU),
2177     .instance_align = __alignof__(ARMCPU),
2178     .instance_init = arm_cpu_initfn,
2179     .instance_finalize = arm_cpu_finalizefn,
2180     .abstract = true,
2181     .class_size = sizeof(ARMCPUClass),
2182     .class_init = arm_cpu_class_init,
2183 };
2184 
2185 static void arm_cpu_register_types(void)
2186 {
2187     type_register_static(&arm_cpu_type_info);
2188 }
2189 
2190 type_init(arm_cpu_register_types)
2191