xref: /qemu/target/arm/cpu.c (revision 590102e7)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50 
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53     ARMCPU *cpu = ARM_CPU(cs);
54     CPUARMState *env = &cpu->env;
55 
56     if (is_a64(env)) {
57         env->pc = value;
58         env->thumb = false;
59     } else {
60         env->regs[15] = value & ~1;
61         env->thumb = value & 1;
62     }
63 }
64 
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     if (is_a64(env)) {
71         return env->pc;
72     } else {
73         return env->regs[15];
74     }
75 }
76 
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79                                  const TranslationBlock *tb)
80 {
81     /* The program counter is always up to date with CF_PCREL. */
82     if (!(tb_cflags(tb) & CF_PCREL)) {
83         CPUARMState *env = cs->env_ptr;
84         /*
85          * It's OK to look at env for the current mode here, because it's
86          * never possible for an AArch64 TB to chain to an AArch32 TB.
87          */
88         if (is_a64(env)) {
89             env->pc = tb->pc;
90         } else {
91             env->regs[15] = tb->pc;
92         }
93     }
94 }
95 
96 void arm_restore_state_to_opc(CPUState *cs,
97                               const TranslationBlock *tb,
98                               const uint64_t *data)
99 {
100     CPUARMState *env = cs->env_ptr;
101 
102     if (is_a64(env)) {
103         if (tb_cflags(tb) & CF_PCREL) {
104             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105         } else {
106             env->pc = data[0];
107         }
108         env->condexec_bits = 0;
109         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110     } else {
111         if (tb_cflags(tb) & CF_PCREL) {
112             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113         } else {
114             env->regs[15] = data[0];
115         }
116         env->condexec_bits = data[1];
117         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118     }
119 }
120 #endif /* CONFIG_TCG */
121 
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124     ARMCPU *cpu = ARM_CPU(cs);
125 
126     return (cpu->power_state != PSCI_OFF)
127         && cs->interrupt_request &
128         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130          | CPU_INTERRUPT_EXITTB);
131 }
132 
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134                                  void *opaque)
135 {
136     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137 
138     entry->hook = hook;
139     entry->opaque = opaque;
140 
141     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143 
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145                                  void *opaque)
146 {
147     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148 
149     entry->hook = hook;
150     entry->opaque = opaque;
151 
152     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154 
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157     /* Reset a single ARMCPRegInfo register */
158     ARMCPRegInfo *ri = value;
159     ARMCPU *cpu = opaque;
160 
161     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162         return;
163     }
164 
165     if (ri->resetfn) {
166         ri->resetfn(&cpu->env, ri);
167         return;
168     }
169 
170     /* A zero offset is never possible as it would be regs[0]
171      * so we use it to indicate that reset is being handled elsewhere.
172      * This is basically only used for fields in non-core coprocessors
173      * (like the pxa2xx ones).
174      */
175     if (!ri->fieldoffset) {
176         return;
177     }
178 
179     if (cpreg_field_is_64bit(ri)) {
180         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181     } else {
182         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183     }
184 }
185 
186 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
187 {
188     /* Purely an assertion check: we've already done reset once,
189      * so now check that running the reset for the cpreg doesn't
190      * change its value. This traps bugs where two different cpregs
191      * both try to reset the same state field but to different values.
192      */
193     ARMCPRegInfo *ri = value;
194     ARMCPU *cpu = opaque;
195     uint64_t oldvalue, newvalue;
196 
197     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198         return;
199     }
200 
201     oldvalue = read_raw_cp_reg(&cpu->env, ri);
202     cp_reg_reset(key, value, opaque);
203     newvalue = read_raw_cp_reg(&cpu->env, ri);
204     assert(oldvalue == newvalue);
205 }
206 
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209     CPUState *s = CPU(obj);
210     ARMCPU *cpu = ARM_CPU(s);
211     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212     CPUARMState *env = &cpu->env;
213 
214     if (acc->parent_phases.hold) {
215         acc->parent_phases.hold(obj);
216     }
217 
218     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219 
220     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222 
223     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227 
228     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229 
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232     }
233 
234     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235         /* 64 bit CPUs always start in 64 bit mode */
236         env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238         env->pstate = PSTATE_MODE_EL0t;
239         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241         /* Enable all PAC keys.  */
242         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243                                   SCTLR_EnDA | SCTLR_EnDB);
244         /* Trap on btype=3 for PACIxSP. */
245         env->cp15.sctlr_el[1] |= SCTLR_BT0;
246         /* Trap on implementation defined registers. */
247         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
248             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
249         }
250         /* and to the FP/Neon instructions */
251         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252                                          CPACR_EL1, FPEN, 3);
253         /* and to the SVE instructions, with default vector length */
254         if (cpu_isar_feature(aa64_sve, cpu)) {
255             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
256                                              CPACR_EL1, ZEN, 3);
257             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
258         }
259         /* and for SME instructions, with default vector length, and TPIDR2 */
260         if (cpu_isar_feature(aa64_sme, cpu)) {
261             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
262             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
263                                              CPACR_EL1, SMEN, 3);
264             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
265             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
266                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
267                                                  SMCR, FA64, 1);
268             }
269         }
270         /*
271          * Enable 48-bit address space (TODO: take reserved_va into account).
272          * Enable TBI0 but not TBI1.
273          * Note that this must match useronly_clean_ptr.
274          */
275         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
276 
277         /* Enable MTE */
278         if (cpu_isar_feature(aa64_mte, cpu)) {
279             /* Enable tag access, but leave TCF0 as No Effect (0). */
280             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
281             /*
282              * Exclude all tags, so that tag 0 is always used.
283              * This corresponds to Linux current->thread.gcr_incl = 0.
284              *
285              * Set RRND, so that helper_irg() will generate a seed later.
286              * Here in cpu_reset(), the crypto subsystem has not yet been
287              * initialized.
288              */
289             env->cp15.gcr_el1 = 0x1ffff;
290         }
291         /*
292          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
293          * This is not yet exposed from the Linux kernel in any way.
294          */
295         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
296         /* Disable access to Debug Communication Channel (DCC). */
297         env->cp15.mdscr_el1 |= 1 << 12;
298 #else
299         /* Reset into the highest available EL */
300         if (arm_feature(env, ARM_FEATURE_EL3)) {
301             env->pstate = PSTATE_MODE_EL3h;
302         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
303             env->pstate = PSTATE_MODE_EL2h;
304         } else {
305             env->pstate = PSTATE_MODE_EL1h;
306         }
307 
308         /* Sample rvbar at reset.  */
309         env->cp15.rvbar = cpu->rvbar_prop;
310         env->pc = env->cp15.rvbar;
311 #endif
312     } else {
313 #if defined(CONFIG_USER_ONLY)
314         /* Userspace expects access to cp10 and cp11 for FP/Neon */
315         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
316                                          CPACR, CP10, 3);
317         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
318                                          CPACR, CP11, 3);
319 #endif
320         if (arm_feature(env, ARM_FEATURE_V8)) {
321             env->cp15.rvbar = cpu->rvbar_prop;
322             env->regs[15] = cpu->rvbar_prop;
323         }
324     }
325 
326 #if defined(CONFIG_USER_ONLY)
327     env->uncached_cpsr = ARM_CPU_MODE_USR;
328     /* For user mode we must enable access to coprocessors */
329     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
330     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
331         env->cp15.c15_cpar = 3;
332     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
333         env->cp15.c15_cpar = 1;
334     }
335 #else
336 
337     /*
338      * If the highest available EL is EL2, AArch32 will start in Hyp
339      * mode; otherwise it starts in SVC. Note that if we start in
340      * AArch64 then these values in the uncached_cpsr will be ignored.
341      */
342     if (arm_feature(env, ARM_FEATURE_EL2) &&
343         !arm_feature(env, ARM_FEATURE_EL3)) {
344         env->uncached_cpsr = ARM_CPU_MODE_HYP;
345     } else {
346         env->uncached_cpsr = ARM_CPU_MODE_SVC;
347     }
348     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
349 
350     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
351      * executing as AArch32 then check if highvecs are enabled and
352      * adjust the PC accordingly.
353      */
354     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
355         env->regs[15] = 0xFFFF0000;
356     }
357 
358     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
359 #endif
360 
361     if (arm_feature(env, ARM_FEATURE_M)) {
362 #ifndef CONFIG_USER_ONLY
363         uint32_t initial_msp; /* Loaded from 0x0 */
364         uint32_t initial_pc; /* Loaded from 0x4 */
365         uint8_t *rom;
366         uint32_t vecbase;
367 #endif
368 
369         if (cpu_isar_feature(aa32_lob, cpu)) {
370             /*
371              * LTPSIZE is constant 4 if MVE not implemented, and resets
372              * to an UNKNOWN value if MVE is implemented. We choose to
373              * always reset to 4.
374              */
375             env->v7m.ltpsize = 4;
376             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
377             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
378             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
379         }
380 
381         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382             env->v7m.secure = true;
383         } else {
384             /* This bit resets to 0 if security is supported, but 1 if
385              * it is not. The bit is not present in v7M, but we set it
386              * here so we can avoid having to make checks on it conditional
387              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
388              */
389             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
390             /*
391              * Set NSACR to indicate "NS access permitted to everything";
392              * this avoids having to have all the tests of it being
393              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
394              * v8.1M the guest-visible value of NSACR in a CPU without the
395              * Security Extension is 0xcff.
396              */
397             env->v7m.nsacr = 0xcff;
398         }
399 
400         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
401          * that it resets to 1, so QEMU always does that rather than making
402          * it dependent on CPU model. In v8M it is RES1.
403          */
404         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
405         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
406         if (arm_feature(env, ARM_FEATURE_V8)) {
407             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
408             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
409             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
410         }
411         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
412             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
413             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
414         }
415 
416         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
417             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
418             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
419                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
420         }
421 
422 #ifndef CONFIG_USER_ONLY
423         /* Unlike A/R profile, M profile defines the reset LR value */
424         env->regs[14] = 0xffffffff;
425 
426         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
427         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
428 
429         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
430         vecbase = env->v7m.vecbase[env->v7m.secure];
431         rom = rom_ptr_for_as(s->as, vecbase, 8);
432         if (rom) {
433             /* Address zero is covered by ROM which hasn't yet been
434              * copied into physical memory.
435              */
436             initial_msp = ldl_p(rom);
437             initial_pc = ldl_p(rom + 4);
438         } else {
439             /* Address zero not covered by a ROM blob, or the ROM blob
440              * is in non-modifiable memory and this is a second reset after
441              * it got copied into memory. In the latter case, rom_ptr
442              * will return a NULL pointer and we should use ldl_phys instead.
443              */
444             initial_msp = ldl_phys(s->as, vecbase);
445             initial_pc = ldl_phys(s->as, vecbase + 4);
446         }
447 
448         qemu_log_mask(CPU_LOG_INT,
449                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
450                       initial_msp, initial_pc);
451 
452         env->regs[13] = initial_msp & 0xFFFFFFFC;
453         env->regs[15] = initial_pc & ~1;
454         env->thumb = initial_pc & 1;
455 #else
456         /*
457          * For user mode we run non-secure and with access to the FPU.
458          * The FPU context is active (ie does not need further setup)
459          * and is owned by non-secure.
460          */
461         env->v7m.secure = false;
462         env->v7m.nsacr = 0xcff;
463         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
464         env->v7m.fpccr[M_REG_S] &=
465             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
466         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
467 #endif
468     }
469 
470     /* M profile requires that reset clears the exclusive monitor;
471      * A profile does not, but clearing it makes more sense than having it
472      * set with an exclusive access on address zero.
473      */
474     arm_clear_exclusive(env);
475 
476     if (arm_feature(env, ARM_FEATURE_PMSA)) {
477         if (cpu->pmsav7_dregion > 0) {
478             if (arm_feature(env, ARM_FEATURE_V8)) {
479                 memset(env->pmsav8.rbar[M_REG_NS], 0,
480                        sizeof(*env->pmsav8.rbar[M_REG_NS])
481                        * cpu->pmsav7_dregion);
482                 memset(env->pmsav8.rlar[M_REG_NS], 0,
483                        sizeof(*env->pmsav8.rlar[M_REG_NS])
484                        * cpu->pmsav7_dregion);
485                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
486                     memset(env->pmsav8.rbar[M_REG_S], 0,
487                            sizeof(*env->pmsav8.rbar[M_REG_S])
488                            * cpu->pmsav7_dregion);
489                     memset(env->pmsav8.rlar[M_REG_S], 0,
490                            sizeof(*env->pmsav8.rlar[M_REG_S])
491                            * cpu->pmsav7_dregion);
492                 }
493             } else if (arm_feature(env, ARM_FEATURE_V7)) {
494                 memset(env->pmsav7.drbar, 0,
495                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
496                 memset(env->pmsav7.drsr, 0,
497                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
498                 memset(env->pmsav7.dracr, 0,
499                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
500             }
501         }
502 
503         if (cpu->pmsav8r_hdregion > 0) {
504             memset(env->pmsav8.hprbar, 0,
505                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
506             memset(env->pmsav8.hprlar, 0,
507                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
508         }
509 
510         env->pmsav7.rnr[M_REG_NS] = 0;
511         env->pmsav7.rnr[M_REG_S] = 0;
512         env->pmsav8.mair0[M_REG_NS] = 0;
513         env->pmsav8.mair0[M_REG_S] = 0;
514         env->pmsav8.mair1[M_REG_NS] = 0;
515         env->pmsav8.mair1[M_REG_S] = 0;
516     }
517 
518     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
519         if (cpu->sau_sregion > 0) {
520             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
521             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
522         }
523         env->sau.rnr = 0;
524         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
525          * the Cortex-M33 does.
526          */
527         env->sau.ctrl = 0;
528     }
529 
530     set_flush_to_zero(1, &env->vfp.standard_fp_status);
531     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
532     set_default_nan_mode(1, &env->vfp.standard_fp_status);
533     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
534     set_float_detect_tininess(float_tininess_before_rounding,
535                               &env->vfp.fp_status);
536     set_float_detect_tininess(float_tininess_before_rounding,
537                               &env->vfp.standard_fp_status);
538     set_float_detect_tininess(float_tininess_before_rounding,
539                               &env->vfp.fp_status_f16);
540     set_float_detect_tininess(float_tininess_before_rounding,
541                               &env->vfp.standard_fp_status_f16);
542 #ifndef CONFIG_USER_ONLY
543     if (kvm_enabled()) {
544         kvm_arm_reset_vcpu(cpu);
545     }
546 #endif
547 
548     if (tcg_enabled()) {
549         hw_breakpoint_update_all(cpu);
550         hw_watchpoint_update_all(cpu);
551 
552         arm_rebuild_hflags(env);
553     }
554 }
555 
556 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
557 
558 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
559                                      unsigned int target_el,
560                                      unsigned int cur_el, bool secure,
561                                      uint64_t hcr_el2)
562 {
563     CPUARMState *env = cs->env_ptr;
564     bool pstate_unmasked;
565     bool unmasked = false;
566 
567     /*
568      * Don't take exceptions if they target a lower EL.
569      * This check should catch any exceptions that would not be taken
570      * but left pending.
571      */
572     if (cur_el > target_el) {
573         return false;
574     }
575 
576     switch (excp_idx) {
577     case EXCP_FIQ:
578         pstate_unmasked = !(env->daif & PSTATE_F);
579         break;
580 
581     case EXCP_IRQ:
582         pstate_unmasked = !(env->daif & PSTATE_I);
583         break;
584 
585     case EXCP_VFIQ:
586         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
587             /* VFIQs are only taken when hypervized.  */
588             return false;
589         }
590         return !(env->daif & PSTATE_F);
591     case EXCP_VIRQ:
592         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
593             /* VIRQs are only taken when hypervized.  */
594             return false;
595         }
596         return !(env->daif & PSTATE_I);
597     case EXCP_VSERR:
598         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
599             /* VIRQs are only taken when hypervized.  */
600             return false;
601         }
602         return !(env->daif & PSTATE_A);
603     default:
604         g_assert_not_reached();
605     }
606 
607     /*
608      * Use the target EL, current execution state and SCR/HCR settings to
609      * determine whether the corresponding CPSR bit is used to mask the
610      * interrupt.
611      */
612     if ((target_el > cur_el) && (target_el != 1)) {
613         /* Exceptions targeting a higher EL may not be maskable */
614         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
615             switch (target_el) {
616             case 2:
617                 /*
618                  * According to ARM DDI 0487H.a, an interrupt can be masked
619                  * when HCR_E2H and HCR_TGE are both set regardless of the
620                  * current Security state. Note that we need to revisit this
621                  * part again once we need to support NMI.
622                  */
623                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
624                         unmasked = true;
625                 }
626                 break;
627             case 3:
628                 /* Interrupt cannot be masked when the target EL is 3 */
629                 unmasked = true;
630                 break;
631             default:
632                 g_assert_not_reached();
633             }
634         } else {
635             /*
636              * The old 32-bit-only environment has a more complicated
637              * masking setup. HCR and SCR bits not only affect interrupt
638              * routing but also change the behaviour of masking.
639              */
640             bool hcr, scr;
641 
642             switch (excp_idx) {
643             case EXCP_FIQ:
644                 /*
645                  * If FIQs are routed to EL3 or EL2 then there are cases where
646                  * we override the CPSR.F in determining if the exception is
647                  * masked or not. If neither of these are set then we fall back
648                  * to the CPSR.F setting otherwise we further assess the state
649                  * below.
650                  */
651                 hcr = hcr_el2 & HCR_FMO;
652                 scr = (env->cp15.scr_el3 & SCR_FIQ);
653 
654                 /*
655                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
656                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
657                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
658                  * when non-secure but only when FIQs are only routed to EL3.
659                  */
660                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
661                 break;
662             case EXCP_IRQ:
663                 /*
664                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
665                  * we may override the CPSR.I masking when in non-secure state.
666                  * The SCR.IRQ setting has already been taken into consideration
667                  * when setting the target EL, so it does not have a further
668                  * affect here.
669                  */
670                 hcr = hcr_el2 & HCR_IMO;
671                 scr = false;
672                 break;
673             default:
674                 g_assert_not_reached();
675             }
676 
677             if ((scr || hcr) && !secure) {
678                 unmasked = true;
679             }
680         }
681     }
682 
683     /*
684      * The PSTATE bits only mask the interrupt if we have not overridden the
685      * ability above.
686      */
687     return unmasked || pstate_unmasked;
688 }
689 
690 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
691 {
692     CPUClass *cc = CPU_GET_CLASS(cs);
693     CPUARMState *env = cs->env_ptr;
694     uint32_t cur_el = arm_current_el(env);
695     bool secure = arm_is_secure(env);
696     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
697     uint32_t target_el;
698     uint32_t excp_idx;
699 
700     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
701 
702     if (interrupt_request & CPU_INTERRUPT_FIQ) {
703         excp_idx = EXCP_FIQ;
704         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
705         if (arm_excp_unmasked(cs, excp_idx, target_el,
706                               cur_el, secure, hcr_el2)) {
707             goto found;
708         }
709     }
710     if (interrupt_request & CPU_INTERRUPT_HARD) {
711         excp_idx = EXCP_IRQ;
712         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
713         if (arm_excp_unmasked(cs, excp_idx, target_el,
714                               cur_el, secure, hcr_el2)) {
715             goto found;
716         }
717     }
718     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
719         excp_idx = EXCP_VIRQ;
720         target_el = 1;
721         if (arm_excp_unmasked(cs, excp_idx, target_el,
722                               cur_el, secure, hcr_el2)) {
723             goto found;
724         }
725     }
726     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
727         excp_idx = EXCP_VFIQ;
728         target_el = 1;
729         if (arm_excp_unmasked(cs, excp_idx, target_el,
730                               cur_el, secure, hcr_el2)) {
731             goto found;
732         }
733     }
734     if (interrupt_request & CPU_INTERRUPT_VSERR) {
735         excp_idx = EXCP_VSERR;
736         target_el = 1;
737         if (arm_excp_unmasked(cs, excp_idx, target_el,
738                               cur_el, secure, hcr_el2)) {
739             /* Taking a virtual abort clears HCR_EL2.VSE */
740             env->cp15.hcr_el2 &= ~HCR_VSE;
741             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
742             goto found;
743         }
744     }
745     return false;
746 
747  found:
748     cs->exception_index = excp_idx;
749     env->exception.target_el = target_el;
750     cc->tcg_ops->do_interrupt(cs);
751     return true;
752 }
753 
754 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
755 
756 void arm_cpu_update_virq(ARMCPU *cpu)
757 {
758     /*
759      * Update the interrupt level for VIRQ, which is the logical OR of
760      * the HCR_EL2.VI bit and the input line level from the GIC.
761      */
762     CPUARMState *env = &cpu->env;
763     CPUState *cs = CPU(cpu);
764 
765     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
766         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
767 
768     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
769         if (new_state) {
770             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
771         } else {
772             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
773         }
774     }
775 }
776 
777 void arm_cpu_update_vfiq(ARMCPU *cpu)
778 {
779     /*
780      * Update the interrupt level for VFIQ, which is the logical OR of
781      * the HCR_EL2.VF bit and the input line level from the GIC.
782      */
783     CPUARMState *env = &cpu->env;
784     CPUState *cs = CPU(cpu);
785 
786     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
787         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
788 
789     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
790         if (new_state) {
791             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
792         } else {
793             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
794         }
795     }
796 }
797 
798 void arm_cpu_update_vserr(ARMCPU *cpu)
799 {
800     /*
801      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
802      */
803     CPUARMState *env = &cpu->env;
804     CPUState *cs = CPU(cpu);
805 
806     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
807 
808     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
809         if (new_state) {
810             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
811         } else {
812             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
813         }
814     }
815 }
816 
817 #ifndef CONFIG_USER_ONLY
818 static void arm_cpu_set_irq(void *opaque, int irq, int level)
819 {
820     ARMCPU *cpu = opaque;
821     CPUARMState *env = &cpu->env;
822     CPUState *cs = CPU(cpu);
823     static const int mask[] = {
824         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
825         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
826         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
827         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
828     };
829 
830     if (!arm_feature(env, ARM_FEATURE_EL2) &&
831         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
832         /*
833          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
834          * have EL2 support we don't care. (Unless the guest is doing something
835          * silly this will only be calls saying "level is still 0".)
836          */
837         return;
838     }
839 
840     if (level) {
841         env->irq_line_state |= mask[irq];
842     } else {
843         env->irq_line_state &= ~mask[irq];
844     }
845 
846     switch (irq) {
847     case ARM_CPU_VIRQ:
848         arm_cpu_update_virq(cpu);
849         break;
850     case ARM_CPU_VFIQ:
851         arm_cpu_update_vfiq(cpu);
852         break;
853     case ARM_CPU_IRQ:
854     case ARM_CPU_FIQ:
855         if (level) {
856             cpu_interrupt(cs, mask[irq]);
857         } else {
858             cpu_reset_interrupt(cs, mask[irq]);
859         }
860         break;
861     default:
862         g_assert_not_reached();
863     }
864 }
865 
866 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
867 {
868 #ifdef CONFIG_KVM
869     ARMCPU *cpu = opaque;
870     CPUARMState *env = &cpu->env;
871     CPUState *cs = CPU(cpu);
872     uint32_t linestate_bit;
873     int irq_id;
874 
875     switch (irq) {
876     case ARM_CPU_IRQ:
877         irq_id = KVM_ARM_IRQ_CPU_IRQ;
878         linestate_bit = CPU_INTERRUPT_HARD;
879         break;
880     case ARM_CPU_FIQ:
881         irq_id = KVM_ARM_IRQ_CPU_FIQ;
882         linestate_bit = CPU_INTERRUPT_FIQ;
883         break;
884     default:
885         g_assert_not_reached();
886     }
887 
888     if (level) {
889         env->irq_line_state |= linestate_bit;
890     } else {
891         env->irq_line_state &= ~linestate_bit;
892     }
893     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
894 #endif
895 }
896 
897 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
898 {
899     ARMCPU *cpu = ARM_CPU(cs);
900     CPUARMState *env = &cpu->env;
901 
902     cpu_synchronize_state(cs);
903     return arm_cpu_data_is_big_endian(env);
904 }
905 
906 #endif
907 
908 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
909 {
910     ARMCPU *ac = ARM_CPU(cpu);
911     CPUARMState *env = &ac->env;
912     bool sctlr_b;
913 
914     if (is_a64(env)) {
915         info->cap_arch = CS_ARCH_ARM64;
916         info->cap_insn_unit = 4;
917         info->cap_insn_split = 4;
918     } else {
919         int cap_mode;
920         if (env->thumb) {
921             info->cap_insn_unit = 2;
922             info->cap_insn_split = 4;
923             cap_mode = CS_MODE_THUMB;
924         } else {
925             info->cap_insn_unit = 4;
926             info->cap_insn_split = 4;
927             cap_mode = CS_MODE_ARM;
928         }
929         if (arm_feature(env, ARM_FEATURE_V8)) {
930             cap_mode |= CS_MODE_V8;
931         }
932         if (arm_feature(env, ARM_FEATURE_M)) {
933             cap_mode |= CS_MODE_MCLASS;
934         }
935         info->cap_arch = CS_ARCH_ARM;
936         info->cap_mode = cap_mode;
937     }
938 
939     sctlr_b = arm_sctlr_b(env);
940     if (bswap_code(sctlr_b)) {
941 #if TARGET_BIG_ENDIAN
942         info->endian = BFD_ENDIAN_LITTLE;
943 #else
944         info->endian = BFD_ENDIAN_BIG;
945 #endif
946     }
947     info->flags &= ~INSN_ARM_BE32;
948 #ifndef CONFIG_USER_ONLY
949     if (sctlr_b) {
950         info->flags |= INSN_ARM_BE32;
951     }
952 #endif
953 }
954 
955 #ifdef TARGET_AARCH64
956 
957 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
958 {
959     ARMCPU *cpu = ARM_CPU(cs);
960     CPUARMState *env = &cpu->env;
961     uint32_t psr = pstate_read(env);
962     int i, j;
963     int el = arm_current_el(env);
964     const char *ns_status;
965     bool sve;
966 
967     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
968     for (i = 0; i < 32; i++) {
969         if (i == 31) {
970             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
971         } else {
972             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
973                          (i + 2) % 3 ? " " : "\n");
974         }
975     }
976 
977     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
978         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
979     } else {
980         ns_status = "";
981     }
982     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
983                  psr,
984                  psr & PSTATE_N ? 'N' : '-',
985                  psr & PSTATE_Z ? 'Z' : '-',
986                  psr & PSTATE_C ? 'C' : '-',
987                  psr & PSTATE_V ? 'V' : '-',
988                  ns_status,
989                  el,
990                  psr & PSTATE_SP ? 'h' : 't');
991 
992     if (cpu_isar_feature(aa64_sme, cpu)) {
993         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
994                      env->svcr,
995                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
996                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
997     }
998     if (cpu_isar_feature(aa64_bti, cpu)) {
999         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1000     }
1001     if (!(flags & CPU_DUMP_FPU)) {
1002         qemu_fprintf(f, "\n");
1003         return;
1004     }
1005     if (fp_exception_el(env, el) != 0) {
1006         qemu_fprintf(f, "    FPU disabled\n");
1007         return;
1008     }
1009     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1010                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1011 
1012     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1013         sve = sme_exception_el(env, el) == 0;
1014     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1015         sve = sve_exception_el(env, el) == 0;
1016     } else {
1017         sve = false;
1018     }
1019 
1020     if (sve) {
1021         int zcr_len = sve_vqm1_for_el(env, el);
1022 
1023         for (i = 0; i <= FFR_PRED_NUM; i++) {
1024             bool eol;
1025             if (i == FFR_PRED_NUM) {
1026                 qemu_fprintf(f, "FFR=");
1027                 /* It's last, so end the line.  */
1028                 eol = true;
1029             } else {
1030                 qemu_fprintf(f, "P%02d=", i);
1031                 switch (zcr_len) {
1032                 case 0:
1033                     eol = i % 8 == 7;
1034                     break;
1035                 case 1:
1036                     eol = i % 6 == 5;
1037                     break;
1038                 case 2:
1039                 case 3:
1040                     eol = i % 3 == 2;
1041                     break;
1042                 default:
1043                     /* More than one quadword per predicate.  */
1044                     eol = true;
1045                     break;
1046                 }
1047             }
1048             for (j = zcr_len / 4; j >= 0; j--) {
1049                 int digits;
1050                 if (j * 4 + 4 <= zcr_len + 1) {
1051                     digits = 16;
1052                 } else {
1053                     digits = (zcr_len % 4 + 1) * 4;
1054                 }
1055                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1056                              env->vfp.pregs[i].p[j],
1057                              j ? ":" : eol ? "\n" : " ");
1058             }
1059         }
1060 
1061         if (zcr_len == 0) {
1062             /*
1063              * With vl=16, there are only 37 columns per register,
1064              * so output two registers per line.
1065              */
1066             for (i = 0; i < 32; i++) {
1067                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1068                              i, env->vfp.zregs[i].d[1],
1069                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1070             }
1071         } else {
1072             for (i = 0; i < 32; i++) {
1073                 qemu_fprintf(f, "Z%02d=", i);
1074                 for (j = zcr_len; j >= 0; j--) {
1075                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1076                                  env->vfp.zregs[i].d[j * 2 + 1],
1077                                  env->vfp.zregs[i].d[j * 2 + 0],
1078                                  j ? ":" : "\n");
1079                 }
1080             }
1081         }
1082     } else {
1083         for (i = 0; i < 32; i++) {
1084             uint64_t *q = aa64_vfp_qreg(env, i);
1085             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1086                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1087         }
1088     }
1089 
1090     if (cpu_isar_feature(aa64_sme, cpu) &&
1091         FIELD_EX64(env->svcr, SVCR, ZA) &&
1092         sme_exception_el(env, el) == 0) {
1093         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1094         int svl = (zcr_len + 1) * 16;
1095         int svl_lg10 = svl < 100 ? 2 : 3;
1096 
1097         for (i = 0; i < svl; i++) {
1098             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1099             for (j = zcr_len; j >= 0; --j) {
1100                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1101                              env->zarray[i].d[2 * j + 1],
1102                              env->zarray[i].d[2 * j],
1103                              j ? ':' : '\n');
1104             }
1105         }
1106     }
1107 }
1108 
1109 #else
1110 
1111 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1112 {
1113     g_assert_not_reached();
1114 }
1115 
1116 #endif
1117 
1118 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1119 {
1120     ARMCPU *cpu = ARM_CPU(cs);
1121     CPUARMState *env = &cpu->env;
1122     int i;
1123 
1124     if (is_a64(env)) {
1125         aarch64_cpu_dump_state(cs, f, flags);
1126         return;
1127     }
1128 
1129     for (i = 0; i < 16; i++) {
1130         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1131         if ((i % 4) == 3) {
1132             qemu_fprintf(f, "\n");
1133         } else {
1134             qemu_fprintf(f, " ");
1135         }
1136     }
1137 
1138     if (arm_feature(env, ARM_FEATURE_M)) {
1139         uint32_t xpsr = xpsr_read(env);
1140         const char *mode;
1141         const char *ns_status = "";
1142 
1143         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1144             ns_status = env->v7m.secure ? "S " : "NS ";
1145         }
1146 
1147         if (xpsr & XPSR_EXCP) {
1148             mode = "handler";
1149         } else {
1150             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1151                 mode = "unpriv-thread";
1152             } else {
1153                 mode = "priv-thread";
1154             }
1155         }
1156 
1157         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1158                      xpsr,
1159                      xpsr & XPSR_N ? 'N' : '-',
1160                      xpsr & XPSR_Z ? 'Z' : '-',
1161                      xpsr & XPSR_C ? 'C' : '-',
1162                      xpsr & XPSR_V ? 'V' : '-',
1163                      xpsr & XPSR_T ? 'T' : 'A',
1164                      ns_status,
1165                      mode);
1166     } else {
1167         uint32_t psr = cpsr_read(env);
1168         const char *ns_status = "";
1169 
1170         if (arm_feature(env, ARM_FEATURE_EL3) &&
1171             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1172             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1173         }
1174 
1175         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1176                      psr,
1177                      psr & CPSR_N ? 'N' : '-',
1178                      psr & CPSR_Z ? 'Z' : '-',
1179                      psr & CPSR_C ? 'C' : '-',
1180                      psr & CPSR_V ? 'V' : '-',
1181                      psr & CPSR_T ? 'T' : 'A',
1182                      ns_status,
1183                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1184     }
1185 
1186     if (flags & CPU_DUMP_FPU) {
1187         int numvfpregs = 0;
1188         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1189             numvfpregs = 32;
1190         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1191             numvfpregs = 16;
1192         }
1193         for (i = 0; i < numvfpregs; i++) {
1194             uint64_t v = *aa32_vfp_dreg(env, i);
1195             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1196                          i * 2, (uint32_t)v,
1197                          i * 2 + 1, (uint32_t)(v >> 32),
1198                          i, v);
1199         }
1200         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1201         if (cpu_isar_feature(aa32_mve, cpu)) {
1202             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1203         }
1204     }
1205 }
1206 
1207 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1208 {
1209     uint32_t Aff1 = idx / clustersz;
1210     uint32_t Aff0 = idx % clustersz;
1211     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1212 }
1213 
1214 static void arm_cpu_initfn(Object *obj)
1215 {
1216     ARMCPU *cpu = ARM_CPU(obj);
1217 
1218     cpu_set_cpustate_pointers(cpu);
1219     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1220                                          NULL, g_free);
1221 
1222     QLIST_INIT(&cpu->pre_el_change_hooks);
1223     QLIST_INIT(&cpu->el_change_hooks);
1224 
1225 #ifdef CONFIG_USER_ONLY
1226 # ifdef TARGET_AARCH64
1227     /*
1228      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1229      * These values were chosen to fit within the default signal frame.
1230      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1231      * and our corresponding cpu property.
1232      */
1233     cpu->sve_default_vq = 4;
1234     cpu->sme_default_vq = 2;
1235 # endif
1236 #else
1237     /* Our inbound IRQ and FIQ lines */
1238     if (kvm_enabled()) {
1239         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1240          * the same interface as non-KVM CPUs.
1241          */
1242         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1243     } else {
1244         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1245     }
1246 
1247     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1248                        ARRAY_SIZE(cpu->gt_timer_outputs));
1249 
1250     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1251                              "gicv3-maintenance-interrupt", 1);
1252     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1253                              "pmu-interrupt", 1);
1254 #endif
1255 
1256     /* DTB consumers generally don't in fact care what the 'compatible'
1257      * string is, so always provide some string and trust that a hypothetical
1258      * picky DTB consumer will also provide a helpful error message.
1259      */
1260     cpu->dtb_compatible = "qemu,unknown";
1261     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1262     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1263 
1264     if (tcg_enabled() || hvf_enabled()) {
1265         /* TCG and HVF implement PSCI 1.1 */
1266         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1267     }
1268 }
1269 
1270 static Property arm_cpu_gt_cntfrq_property =
1271             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1272                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1273 
1274 static Property arm_cpu_reset_cbar_property =
1275             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1276 
1277 static Property arm_cpu_reset_hivecs_property =
1278             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1279 
1280 #ifndef CONFIG_USER_ONLY
1281 static Property arm_cpu_has_el2_property =
1282             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1283 
1284 static Property arm_cpu_has_el3_property =
1285             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1286 #endif
1287 
1288 static Property arm_cpu_cfgend_property =
1289             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1290 
1291 static Property arm_cpu_has_vfp_property =
1292             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1293 
1294 static Property arm_cpu_has_vfp_d32_property =
1295             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1296 
1297 static Property arm_cpu_has_neon_property =
1298             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1299 
1300 static Property arm_cpu_has_dsp_property =
1301             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1302 
1303 static Property arm_cpu_has_mpu_property =
1304             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1305 
1306 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1307  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1308  * the right value for that particular CPU type, and we don't want
1309  * to override that with an incorrect constant value.
1310  */
1311 static Property arm_cpu_pmsav7_dregion_property =
1312             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1313                                            pmsav7_dregion,
1314                                            qdev_prop_uint32, uint32_t);
1315 
1316 static bool arm_get_pmu(Object *obj, Error **errp)
1317 {
1318     ARMCPU *cpu = ARM_CPU(obj);
1319 
1320     return cpu->has_pmu;
1321 }
1322 
1323 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1324 {
1325     ARMCPU *cpu = ARM_CPU(obj);
1326 
1327     if (value) {
1328         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1329             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1330             return;
1331         }
1332         set_feature(&cpu->env, ARM_FEATURE_PMU);
1333     } else {
1334         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1335     }
1336     cpu->has_pmu = value;
1337 }
1338 
1339 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1340 {
1341     /*
1342      * The exact approach to calculating guest ticks is:
1343      *
1344      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1345      *              NANOSECONDS_PER_SECOND);
1346      *
1347      * We don't do that. Rather we intentionally use integer division
1348      * truncation below and in the caller for the conversion of host monotonic
1349      * time to guest ticks to provide the exact inverse for the semantics of
1350      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1351      * it loses precision when representing frequencies where
1352      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1353      * provide an exact inverse leads to scheduling timers with negative
1354      * periods, which in turn leads to sticky behaviour in the guest.
1355      *
1356      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1357      * cannot become zero.
1358      */
1359     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1360       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1361 }
1362 
1363 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1364 {
1365     CPUARMState *env = &cpu->env;
1366     bool no_aa32 = false;
1367 
1368     /*
1369      * Some features automatically imply others: set the feature
1370      * bits explicitly for these cases.
1371      */
1372 
1373     if (arm_feature(env, ARM_FEATURE_M)) {
1374         set_feature(env, ARM_FEATURE_PMSA);
1375     }
1376 
1377     if (arm_feature(env, ARM_FEATURE_V8)) {
1378         if (arm_feature(env, ARM_FEATURE_M)) {
1379             set_feature(env, ARM_FEATURE_V7);
1380         } else {
1381             set_feature(env, ARM_FEATURE_V7VE);
1382         }
1383     }
1384 
1385     /*
1386      * There exist AArch64 cpus without AArch32 support.  When KVM
1387      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1388      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1389      * As a general principle, we also do not make ID register
1390      * consistency checks anywhere unless using TCG, because only
1391      * for TCG would a consistency-check failure be a QEMU bug.
1392      */
1393     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1394         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1395     }
1396 
1397     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1398         /*
1399          * v7 Virtualization Extensions. In real hardware this implies
1400          * EL2 and also the presence of the Security Extensions.
1401          * For QEMU, for backwards-compatibility we implement some
1402          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1403          * include the various other features that V7VE implies.
1404          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1405          * Security Extensions is ARM_FEATURE_EL3.
1406          */
1407         assert(!tcg_enabled() || no_aa32 ||
1408                cpu_isar_feature(aa32_arm_div, cpu));
1409         set_feature(env, ARM_FEATURE_LPAE);
1410         set_feature(env, ARM_FEATURE_V7);
1411     }
1412     if (arm_feature(env, ARM_FEATURE_V7)) {
1413         set_feature(env, ARM_FEATURE_VAPA);
1414         set_feature(env, ARM_FEATURE_THUMB2);
1415         set_feature(env, ARM_FEATURE_MPIDR);
1416         if (!arm_feature(env, ARM_FEATURE_M)) {
1417             set_feature(env, ARM_FEATURE_V6K);
1418         } else {
1419             set_feature(env, ARM_FEATURE_V6);
1420         }
1421 
1422         /*
1423          * Always define VBAR for V7 CPUs even if it doesn't exist in
1424          * non-EL3 configs. This is needed by some legacy boards.
1425          */
1426         set_feature(env, ARM_FEATURE_VBAR);
1427     }
1428     if (arm_feature(env, ARM_FEATURE_V6K)) {
1429         set_feature(env, ARM_FEATURE_V6);
1430         set_feature(env, ARM_FEATURE_MVFR);
1431     }
1432     if (arm_feature(env, ARM_FEATURE_V6)) {
1433         set_feature(env, ARM_FEATURE_V5);
1434         if (!arm_feature(env, ARM_FEATURE_M)) {
1435             assert(!tcg_enabled() || no_aa32 ||
1436                    cpu_isar_feature(aa32_jazelle, cpu));
1437             set_feature(env, ARM_FEATURE_AUXCR);
1438         }
1439     }
1440     if (arm_feature(env, ARM_FEATURE_V5)) {
1441         set_feature(env, ARM_FEATURE_V4T);
1442     }
1443     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1444         set_feature(env, ARM_FEATURE_V7MP);
1445     }
1446     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1447         set_feature(env, ARM_FEATURE_CBAR);
1448     }
1449     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1450         !arm_feature(env, ARM_FEATURE_M)) {
1451         set_feature(env, ARM_FEATURE_THUMB_DSP);
1452     }
1453 }
1454 
1455 void arm_cpu_post_init(Object *obj)
1456 {
1457     ARMCPU *cpu = ARM_CPU(obj);
1458 
1459     /*
1460      * Some features imply others. Figure this out now, because we
1461      * are going to look at the feature bits in deciding which
1462      * properties to add.
1463      */
1464     arm_cpu_propagate_feature_implications(cpu);
1465 
1466     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1467         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1468         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1469     }
1470 
1471     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1472         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1473     }
1474 
1475     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1476         object_property_add_uint64_ptr(obj, "rvbar",
1477                                        &cpu->rvbar_prop,
1478                                        OBJ_PROP_FLAG_READWRITE);
1479     }
1480 
1481 #ifndef CONFIG_USER_ONLY
1482     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1483         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1484          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1485          */
1486         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1487 
1488         object_property_add_link(obj, "secure-memory",
1489                                  TYPE_MEMORY_REGION,
1490                                  (Object **)&cpu->secure_memory,
1491                                  qdev_prop_allow_set_link_before_realize,
1492                                  OBJ_PROP_LINK_STRONG);
1493     }
1494 
1495     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1496         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1497     }
1498 #endif
1499 
1500     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1501         cpu->has_pmu = true;
1502         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1503     }
1504 
1505     /*
1506      * Allow user to turn off VFP and Neon support, but only for TCG --
1507      * KVM does not currently allow us to lie to the guest about its
1508      * ID/feature registers, so the guest always sees what the host has.
1509      */
1510     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1511         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1512             cpu->has_vfp = true;
1513             cpu->has_vfp_d32 = true;
1514             if (tcg_enabled() || qtest_enabled()) {
1515                 qdev_property_add_static(DEVICE(obj),
1516                                          &arm_cpu_has_vfp_property);
1517             }
1518         }
1519     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1520         cpu->has_vfp = true;
1521         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1522             cpu->has_vfp_d32 = true;
1523             /*
1524              * The permitted values of the SIMDReg bits [3:0] on
1525              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1526              * make sure that has_vfp_d32 can not be set to false.
1527              */
1528             if ((tcg_enabled() || qtest_enabled())
1529                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1530                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1531                 qdev_property_add_static(DEVICE(obj),
1532                                          &arm_cpu_has_vfp_d32_property);
1533             }
1534         }
1535     }
1536 
1537     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1538         cpu->has_neon = true;
1539         if (!kvm_enabled()) {
1540             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1541         }
1542     }
1543 
1544     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1545         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1546         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1547     }
1548 
1549     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1550         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1551         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1552             qdev_property_add_static(DEVICE(obj),
1553                                      &arm_cpu_pmsav7_dregion_property);
1554         }
1555     }
1556 
1557     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1558         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1559                                  qdev_prop_allow_set_link_before_realize,
1560                                  OBJ_PROP_LINK_STRONG);
1561         /*
1562          * M profile: initial value of the Secure VTOR. We can't just use
1563          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1564          * the property to be set after realize.
1565          */
1566         object_property_add_uint32_ptr(obj, "init-svtor",
1567                                        &cpu->init_svtor,
1568                                        OBJ_PROP_FLAG_READWRITE);
1569     }
1570     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1571         /*
1572          * Initial value of the NS VTOR (for cores without the Security
1573          * extension, this is the only VTOR)
1574          */
1575         object_property_add_uint32_ptr(obj, "init-nsvtor",
1576                                        &cpu->init_nsvtor,
1577                                        OBJ_PROP_FLAG_READWRITE);
1578     }
1579 
1580     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1581     object_property_add_uint32_ptr(obj, "psci-conduit",
1582                                    &cpu->psci_conduit,
1583                                    OBJ_PROP_FLAG_READWRITE);
1584 
1585     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1586 
1587     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1588         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1589     }
1590 
1591     if (kvm_enabled()) {
1592         kvm_arm_add_vcpu_properties(obj);
1593     }
1594 
1595 #ifndef CONFIG_USER_ONLY
1596     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1597         cpu_isar_feature(aa64_mte, cpu)) {
1598         object_property_add_link(obj, "tag-memory",
1599                                  TYPE_MEMORY_REGION,
1600                                  (Object **)&cpu->tag_memory,
1601                                  qdev_prop_allow_set_link_before_realize,
1602                                  OBJ_PROP_LINK_STRONG);
1603 
1604         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1605             object_property_add_link(obj, "secure-tag-memory",
1606                                      TYPE_MEMORY_REGION,
1607                                      (Object **)&cpu->secure_tag_memory,
1608                                      qdev_prop_allow_set_link_before_realize,
1609                                      OBJ_PROP_LINK_STRONG);
1610         }
1611     }
1612 #endif
1613 }
1614 
1615 static void arm_cpu_finalizefn(Object *obj)
1616 {
1617     ARMCPU *cpu = ARM_CPU(obj);
1618     ARMELChangeHook *hook, *next;
1619 
1620     g_hash_table_destroy(cpu->cp_regs);
1621 
1622     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1623         QLIST_REMOVE(hook, node);
1624         g_free(hook);
1625     }
1626     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1627         QLIST_REMOVE(hook, node);
1628         g_free(hook);
1629     }
1630 #ifndef CONFIG_USER_ONLY
1631     if (cpu->pmu_timer) {
1632         timer_free(cpu->pmu_timer);
1633     }
1634 #endif
1635 }
1636 
1637 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1638 {
1639     Error *local_err = NULL;
1640 
1641 #ifdef TARGET_AARCH64
1642     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1643         arm_cpu_sve_finalize(cpu, &local_err);
1644         if (local_err != NULL) {
1645             error_propagate(errp, local_err);
1646             return;
1647         }
1648 
1649         arm_cpu_sme_finalize(cpu, &local_err);
1650         if (local_err != NULL) {
1651             error_propagate(errp, local_err);
1652             return;
1653         }
1654 
1655         arm_cpu_pauth_finalize(cpu, &local_err);
1656         if (local_err != NULL) {
1657             error_propagate(errp, local_err);
1658             return;
1659         }
1660 
1661         arm_cpu_lpa2_finalize(cpu, &local_err);
1662         if (local_err != NULL) {
1663             error_propagate(errp, local_err);
1664             return;
1665         }
1666     }
1667 #endif
1668 
1669     if (kvm_enabled()) {
1670         kvm_arm_steal_time_finalize(cpu, &local_err);
1671         if (local_err != NULL) {
1672             error_propagate(errp, local_err);
1673             return;
1674         }
1675     }
1676 }
1677 
1678 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1679 {
1680     CPUState *cs = CPU(dev);
1681     ARMCPU *cpu = ARM_CPU(dev);
1682     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1683     CPUARMState *env = &cpu->env;
1684     int pagebits;
1685     Error *local_err = NULL;
1686 
1687     /* Use pc-relative instructions in system-mode */
1688 #ifndef CONFIG_USER_ONLY
1689     cs->tcg_cflags |= CF_PCREL;
1690 #endif
1691 
1692     /* If we needed to query the host kernel for the CPU features
1693      * then it's possible that might have failed in the initfn, but
1694      * this is the first point where we can report it.
1695      */
1696     if (cpu->host_cpu_probe_failed) {
1697         if (!kvm_enabled() && !hvf_enabled()) {
1698             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1699         } else {
1700             error_setg(errp, "Failed to retrieve host CPU features");
1701         }
1702         return;
1703     }
1704 
1705 #ifndef CONFIG_USER_ONLY
1706     /* The NVIC and M-profile CPU are two halves of a single piece of
1707      * hardware; trying to use one without the other is a command line
1708      * error and will result in segfaults if not caught here.
1709      */
1710     if (arm_feature(env, ARM_FEATURE_M)) {
1711         if (!env->nvic) {
1712             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1713             return;
1714         }
1715     } else {
1716         if (env->nvic) {
1717             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1718             return;
1719         }
1720     }
1721 
1722     if (!tcg_enabled() && !qtest_enabled()) {
1723         /*
1724          * We assume that no accelerator except TCG (and the "not really an
1725          * accelerator" qtest) can handle these features, because Arm hardware
1726          * virtualization can't virtualize them.
1727          *
1728          * Catch all the cases which might cause us to create more than one
1729          * address space for the CPU (otherwise we will assert() later in
1730          * cpu_address_space_init()).
1731          */
1732         if (arm_feature(env, ARM_FEATURE_M)) {
1733             error_setg(errp,
1734                        "Cannot enable %s when using an M-profile guest CPU",
1735                        current_accel_name());
1736             return;
1737         }
1738         if (cpu->has_el3) {
1739             error_setg(errp,
1740                        "Cannot enable %s when guest CPU has EL3 enabled",
1741                        current_accel_name());
1742             return;
1743         }
1744         if (cpu->tag_memory) {
1745             error_setg(errp,
1746                        "Cannot enable %s when guest CPUs has MTE enabled",
1747                        current_accel_name());
1748             return;
1749         }
1750     }
1751 
1752     {
1753         uint64_t scale;
1754 
1755         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1756             if (!cpu->gt_cntfrq_hz) {
1757                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1758                            cpu->gt_cntfrq_hz);
1759                 return;
1760             }
1761             scale = gt_cntfrq_period_ns(cpu);
1762         } else {
1763             scale = GTIMER_SCALE;
1764         }
1765 
1766         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1767                                                arm_gt_ptimer_cb, cpu);
1768         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1769                                                arm_gt_vtimer_cb, cpu);
1770         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1771                                               arm_gt_htimer_cb, cpu);
1772         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1773                                               arm_gt_stimer_cb, cpu);
1774         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1775                                                   arm_gt_hvtimer_cb, cpu);
1776     }
1777 #endif
1778 
1779     cpu_exec_realizefn(cs, &local_err);
1780     if (local_err != NULL) {
1781         error_propagate(errp, local_err);
1782         return;
1783     }
1784 
1785     arm_cpu_finalize_features(cpu, &local_err);
1786     if (local_err != NULL) {
1787         error_propagate(errp, local_err);
1788         return;
1789     }
1790 
1791 #ifdef CONFIG_USER_ONLY
1792     /*
1793      * User mode relies on IC IVAU instructions to catch modification of
1794      * dual-mapped code.
1795      *
1796      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1797      * IC IVAU even if the emulated processor does not normally require it.
1798      */
1799     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1800 #endif
1801 
1802     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1803         cpu->has_vfp != cpu->has_neon) {
1804         /*
1805          * This is an architectural requirement for AArch64; AArch32 is
1806          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1807          */
1808         error_setg(errp,
1809                    "AArch64 CPUs must have both VFP and Neon or neither");
1810         return;
1811     }
1812 
1813     if (cpu->has_vfp_d32 != cpu->has_neon) {
1814         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1815         return;
1816     }
1817 
1818    if (!cpu->has_vfp_d32) {
1819         uint32_t u;
1820 
1821         u = cpu->isar.mvfr0;
1822         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1823         cpu->isar.mvfr0 = u;
1824     }
1825 
1826     if (!cpu->has_vfp) {
1827         uint64_t t;
1828         uint32_t u;
1829 
1830         t = cpu->isar.id_aa64isar1;
1831         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1832         cpu->isar.id_aa64isar1 = t;
1833 
1834         t = cpu->isar.id_aa64pfr0;
1835         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1836         cpu->isar.id_aa64pfr0 = t;
1837 
1838         u = cpu->isar.id_isar6;
1839         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1840         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1841         cpu->isar.id_isar6 = u;
1842 
1843         u = cpu->isar.mvfr0;
1844         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1845         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1846         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1847         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1848         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1849         if (!arm_feature(env, ARM_FEATURE_M)) {
1850             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1851             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1852         }
1853         cpu->isar.mvfr0 = u;
1854 
1855         u = cpu->isar.mvfr1;
1856         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1857         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1858         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1859         if (arm_feature(env, ARM_FEATURE_M)) {
1860             u = FIELD_DP32(u, MVFR1, FP16, 0);
1861         }
1862         cpu->isar.mvfr1 = u;
1863 
1864         u = cpu->isar.mvfr2;
1865         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1866         cpu->isar.mvfr2 = u;
1867     }
1868 
1869     if (!cpu->has_neon) {
1870         uint64_t t;
1871         uint32_t u;
1872 
1873         unset_feature(env, ARM_FEATURE_NEON);
1874 
1875         t = cpu->isar.id_aa64isar0;
1876         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1877         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1878         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1879         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1880         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1881         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1882         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1883         cpu->isar.id_aa64isar0 = t;
1884 
1885         t = cpu->isar.id_aa64isar1;
1886         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1887         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1888         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1889         cpu->isar.id_aa64isar1 = t;
1890 
1891         t = cpu->isar.id_aa64pfr0;
1892         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1893         cpu->isar.id_aa64pfr0 = t;
1894 
1895         u = cpu->isar.id_isar5;
1896         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1897         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1898         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1899         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1900         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1901         cpu->isar.id_isar5 = u;
1902 
1903         u = cpu->isar.id_isar6;
1904         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1905         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1906         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1907         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1908         cpu->isar.id_isar6 = u;
1909 
1910         if (!arm_feature(env, ARM_FEATURE_M)) {
1911             u = cpu->isar.mvfr1;
1912             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1913             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1914             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1915             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1916             cpu->isar.mvfr1 = u;
1917 
1918             u = cpu->isar.mvfr2;
1919             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1920             cpu->isar.mvfr2 = u;
1921         }
1922     }
1923 
1924     if (!cpu->has_neon && !cpu->has_vfp) {
1925         uint64_t t;
1926         uint32_t u;
1927 
1928         t = cpu->isar.id_aa64isar0;
1929         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1930         cpu->isar.id_aa64isar0 = t;
1931 
1932         t = cpu->isar.id_aa64isar1;
1933         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1934         cpu->isar.id_aa64isar1 = t;
1935 
1936         u = cpu->isar.mvfr0;
1937         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1938         cpu->isar.mvfr0 = u;
1939 
1940         /* Despite the name, this field covers both VFP and Neon */
1941         u = cpu->isar.mvfr1;
1942         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1943         cpu->isar.mvfr1 = u;
1944     }
1945 
1946     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1947         uint32_t u;
1948 
1949         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1950 
1951         u = cpu->isar.id_isar1;
1952         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1953         cpu->isar.id_isar1 = u;
1954 
1955         u = cpu->isar.id_isar2;
1956         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1957         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1958         cpu->isar.id_isar2 = u;
1959 
1960         u = cpu->isar.id_isar3;
1961         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1962         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1963         cpu->isar.id_isar3 = u;
1964     }
1965 
1966 
1967     /*
1968      * We rely on no XScale CPU having VFP so we can use the same bits in the
1969      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1970      */
1971     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1972            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1973            !arm_feature(env, ARM_FEATURE_XSCALE));
1974 
1975     if (arm_feature(env, ARM_FEATURE_V7) &&
1976         !arm_feature(env, ARM_FEATURE_M) &&
1977         !arm_feature(env, ARM_FEATURE_PMSA)) {
1978         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1979          * can use 4K pages.
1980          */
1981         pagebits = 12;
1982     } else {
1983         /* For CPUs which might have tiny 1K pages, or which have an
1984          * MPU and might have small region sizes, stick with 1K pages.
1985          */
1986         pagebits = 10;
1987     }
1988     if (!set_preferred_target_page_bits(pagebits)) {
1989         /* This can only ever happen for hotplugging a CPU, or if
1990          * the board code incorrectly creates a CPU which it has
1991          * promised via minimum_page_size that it will not.
1992          */
1993         error_setg(errp, "This CPU requires a smaller page size than the "
1994                    "system is using");
1995         return;
1996     }
1997 
1998     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1999      * We don't support setting cluster ID ([16..23]) (known as Aff2
2000      * in later ARM ARM versions), or any of the higher affinity level fields,
2001      * so these bits always RAZ.
2002      */
2003     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2004         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
2005                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
2006     }
2007 
2008     if (cpu->reset_hivecs) {
2009             cpu->reset_sctlr |= (1 << 13);
2010     }
2011 
2012     if (cpu->cfgend) {
2013         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2014             cpu->reset_sctlr |= SCTLR_EE;
2015         } else {
2016             cpu->reset_sctlr |= SCTLR_B;
2017         }
2018     }
2019 
2020     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2021         /* If the has_el3 CPU property is disabled then we need to disable the
2022          * feature.
2023          */
2024         unset_feature(env, ARM_FEATURE_EL3);
2025 
2026         /*
2027          * Disable the security extension feature bits in the processor
2028          * feature registers as well.
2029          */
2030         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2031         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2032         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2033                                            ID_AA64PFR0, EL3, 0);
2034 
2035         /* Disable the realm management extension, which requires EL3. */
2036         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2037                                            ID_AA64PFR0, RME, 0);
2038     }
2039 
2040     if (!cpu->has_el2) {
2041         unset_feature(env, ARM_FEATURE_EL2);
2042     }
2043 
2044     if (!cpu->has_pmu) {
2045         unset_feature(env, ARM_FEATURE_PMU);
2046     }
2047     if (arm_feature(env, ARM_FEATURE_PMU)) {
2048         pmu_init(cpu);
2049 
2050         if (!kvm_enabled()) {
2051             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2052             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2053         }
2054 
2055 #ifndef CONFIG_USER_ONLY
2056         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2057                 cpu);
2058 #endif
2059     } else {
2060         cpu->isar.id_aa64dfr0 =
2061             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2062         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2063         cpu->pmceid0 = 0;
2064         cpu->pmceid1 = 0;
2065     }
2066 
2067     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2068         /*
2069          * Disable the hypervisor feature bits in the processor feature
2070          * registers if we don't have EL2.
2071          */
2072         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2073                                            ID_AA64PFR0, EL2, 0);
2074         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2075                                        ID_PFR1, VIRTUALIZATION, 0);
2076     }
2077 
2078     if (cpu_isar_feature(aa64_mte, cpu)) {
2079         /*
2080          * The architectural range of GM blocksize is 2-6, however qemu
2081          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2082          */
2083         if (tcg_enabled()) {
2084             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2085         }
2086 
2087 #ifndef CONFIG_USER_ONLY
2088         /*
2089          * If we do not have tag-memory provided by the machine,
2090          * reduce MTE support to instructions enabled at EL0.
2091          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2092          */
2093         if (cpu->tag_memory == NULL) {
2094             cpu->isar.id_aa64pfr1 =
2095                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2096         }
2097 #endif
2098     }
2099 
2100     if (tcg_enabled()) {
2101         /*
2102          * Don't report some architectural features in the ID registers
2103          * where TCG does not yet implement it (not even a minimal
2104          * stub version). This avoids guests falling over when they
2105          * try to access the non-existent system registers for them.
2106          */
2107         /* FEAT_SPE (Statistical Profiling Extension) */
2108         cpu->isar.id_aa64dfr0 =
2109             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2110         /* FEAT_TRBE (Trace Buffer Extension) */
2111         cpu->isar.id_aa64dfr0 =
2112             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2113         /* FEAT_TRF (Self-hosted Trace Extension) */
2114         cpu->isar.id_aa64dfr0 =
2115             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2116         cpu->isar.id_dfr0 =
2117             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2118         /* Trace Macrocell system register access */
2119         cpu->isar.id_aa64dfr0 =
2120             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2121         cpu->isar.id_dfr0 =
2122             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2123         /* Memory mapped trace */
2124         cpu->isar.id_dfr0 =
2125             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2126         /* FEAT_AMU (Activity Monitors Extension) */
2127         cpu->isar.id_aa64pfr0 =
2128             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2129         cpu->isar.id_pfr0 =
2130             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2131         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2132         cpu->isar.id_aa64pfr0 =
2133             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2134         /* FEAT_NV (Nested Virtualization) */
2135         cpu->isar.id_aa64mmfr2 =
2136             FIELD_DP64(cpu->isar.id_aa64mmfr2, ID_AA64MMFR2, NV, 0);
2137     }
2138 
2139     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2140      * to false or by setting pmsav7-dregion to 0.
2141      */
2142     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2143         cpu->has_mpu = false;
2144         cpu->pmsav7_dregion = 0;
2145         cpu->pmsav8r_hdregion = 0;
2146     }
2147 
2148     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2149         arm_feature(env, ARM_FEATURE_V7)) {
2150         uint32_t nr = cpu->pmsav7_dregion;
2151 
2152         if (nr > 0xff) {
2153             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2154             return;
2155         }
2156 
2157         if (nr) {
2158             if (arm_feature(env, ARM_FEATURE_V8)) {
2159                 /* PMSAv8 */
2160                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2161                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2162                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2163                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2164                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2165                 }
2166             } else {
2167                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2168                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2169                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2170             }
2171         }
2172 
2173         if (cpu->pmsav8r_hdregion > 0xff) {
2174             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2175                               cpu->pmsav8r_hdregion);
2176             return;
2177         }
2178 
2179         if (cpu->pmsav8r_hdregion) {
2180             env->pmsav8.hprbar = g_new0(uint32_t,
2181                                         cpu->pmsav8r_hdregion);
2182             env->pmsav8.hprlar = g_new0(uint32_t,
2183                                         cpu->pmsav8r_hdregion);
2184         }
2185     }
2186 
2187     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2188         uint32_t nr = cpu->sau_sregion;
2189 
2190         if (nr > 0xff) {
2191             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2192             return;
2193         }
2194 
2195         if (nr) {
2196             env->sau.rbar = g_new0(uint32_t, nr);
2197             env->sau.rlar = g_new0(uint32_t, nr);
2198         }
2199     }
2200 
2201     if (arm_feature(env, ARM_FEATURE_EL3)) {
2202         set_feature(env, ARM_FEATURE_VBAR);
2203     }
2204 
2205 #ifndef CONFIG_USER_ONLY
2206     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2207         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2208     }
2209 #endif
2210 
2211     register_cp_regs_for_features(cpu);
2212     arm_cpu_register_gdb_regs_for_features(cpu);
2213 
2214     init_cpreg_list(cpu);
2215 
2216 #ifndef CONFIG_USER_ONLY
2217     MachineState *ms = MACHINE(qdev_get_machine());
2218     unsigned int smp_cpus = ms->smp.cpus;
2219     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2220 
2221     /*
2222      * We must set cs->num_ases to the final value before
2223      * the first call to cpu_address_space_init.
2224      */
2225     if (cpu->tag_memory != NULL) {
2226         cs->num_ases = 3 + has_secure;
2227     } else {
2228         cs->num_ases = 1 + has_secure;
2229     }
2230 
2231     if (has_secure) {
2232         if (!cpu->secure_memory) {
2233             cpu->secure_memory = cs->memory;
2234         }
2235         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2236                                cpu->secure_memory);
2237     }
2238 
2239     if (cpu->tag_memory != NULL) {
2240         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2241                                cpu->tag_memory);
2242         if (has_secure) {
2243             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2244                                    cpu->secure_tag_memory);
2245         }
2246     }
2247 
2248     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2249 
2250     /* No core_count specified, default to smp_cpus. */
2251     if (cpu->core_count == -1) {
2252         cpu->core_count = smp_cpus;
2253     }
2254 #endif
2255 
2256     if (tcg_enabled()) {
2257         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2258 
2259         /*
2260          * We only support DCZ blocklen that fits on one page.
2261          *
2262          * Architectually this is always true.  However TARGET_PAGE_SIZE
2263          * is variable and, for compatibility with -machine virt-2.7,
2264          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2265          * But even then, while the largest architectural DCZ blocklen
2266          * is 2KiB, no cpu actually uses such a large blocklen.
2267          */
2268         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2269 
2270         /*
2271          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2272          * both nibbles of each byte storing tag data may be written at once.
2273          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2274          */
2275         if (cpu_isar_feature(aa64_mte, cpu)) {
2276             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2277         }
2278     }
2279 
2280     qemu_init_vcpu(cs);
2281     cpu_reset(cs);
2282 
2283     acc->parent_realize(dev, errp);
2284 }
2285 
2286 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2287 {
2288     ObjectClass *oc;
2289     char *typename;
2290     char **cpuname;
2291     const char *cpunamestr;
2292 
2293     cpuname = g_strsplit(cpu_model, ",", 1);
2294     cpunamestr = cpuname[0];
2295 #ifdef CONFIG_USER_ONLY
2296     /* For backwards compatibility usermode emulation allows "-cpu any",
2297      * which has the same semantics as "-cpu max".
2298      */
2299     if (!strcmp(cpunamestr, "any")) {
2300         cpunamestr = "max";
2301     }
2302 #endif
2303     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2304     oc = object_class_by_name(typename);
2305     g_strfreev(cpuname);
2306     g_free(typename);
2307     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2308         object_class_is_abstract(oc)) {
2309         return NULL;
2310     }
2311     return oc;
2312 }
2313 
2314 static Property arm_cpu_properties[] = {
2315     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2316     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2317                         mp_affinity, ARM64_AFFINITY_INVALID),
2318     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2319     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2320     DEFINE_PROP_END_OF_LIST()
2321 };
2322 
2323 static gchar *arm_gdb_arch_name(CPUState *cs)
2324 {
2325     ARMCPU *cpu = ARM_CPU(cs);
2326     CPUARMState *env = &cpu->env;
2327 
2328     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2329         return g_strdup("iwmmxt");
2330     }
2331     return g_strdup("arm");
2332 }
2333 
2334 #ifndef CONFIG_USER_ONLY
2335 #include "hw/core/sysemu-cpu-ops.h"
2336 
2337 static const struct SysemuCPUOps arm_sysemu_ops = {
2338     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2339     .asidx_from_attrs = arm_asidx_from_attrs,
2340     .write_elf32_note = arm_cpu_write_elf32_note,
2341     .write_elf64_note = arm_cpu_write_elf64_note,
2342     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2343     .legacy_vmsd = &vmstate_arm_cpu,
2344 };
2345 #endif
2346 
2347 #ifdef CONFIG_TCG
2348 static const struct TCGCPUOps arm_tcg_ops = {
2349     .initialize = arm_translate_init,
2350     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2351     .debug_excp_handler = arm_debug_excp_handler,
2352     .restore_state_to_opc = arm_restore_state_to_opc,
2353 
2354 #ifdef CONFIG_USER_ONLY
2355     .record_sigsegv = arm_cpu_record_sigsegv,
2356     .record_sigbus = arm_cpu_record_sigbus,
2357 #else
2358     .tlb_fill = arm_cpu_tlb_fill,
2359     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2360     .do_interrupt = arm_cpu_do_interrupt,
2361     .do_transaction_failed = arm_cpu_do_transaction_failed,
2362     .do_unaligned_access = arm_cpu_do_unaligned_access,
2363     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2364     .debug_check_watchpoint = arm_debug_check_watchpoint,
2365     .debug_check_breakpoint = arm_debug_check_breakpoint,
2366 #endif /* !CONFIG_USER_ONLY */
2367 };
2368 #endif /* CONFIG_TCG */
2369 
2370 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2371 {
2372     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2373     CPUClass *cc = CPU_CLASS(acc);
2374     DeviceClass *dc = DEVICE_CLASS(oc);
2375     ResettableClass *rc = RESETTABLE_CLASS(oc);
2376 
2377     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2378                                     &acc->parent_realize);
2379 
2380     device_class_set_props(dc, arm_cpu_properties);
2381 
2382     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2383                                        &acc->parent_phases);
2384 
2385     cc->class_by_name = arm_cpu_class_by_name;
2386     cc->has_work = arm_cpu_has_work;
2387     cc->dump_state = arm_cpu_dump_state;
2388     cc->set_pc = arm_cpu_set_pc;
2389     cc->get_pc = arm_cpu_get_pc;
2390     cc->gdb_read_register = arm_cpu_gdb_read_register;
2391     cc->gdb_write_register = arm_cpu_gdb_write_register;
2392 #ifndef CONFIG_USER_ONLY
2393     cc->sysemu_ops = &arm_sysemu_ops;
2394 #endif
2395     cc->gdb_num_core_regs = 26;
2396     cc->gdb_core_xml_file = "arm-core.xml";
2397     cc->gdb_arch_name = arm_gdb_arch_name;
2398     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2399     cc->gdb_stop_before_watchpoint = true;
2400     cc->disas_set_info = arm_disas_set_info;
2401 
2402 #ifdef CONFIG_TCG
2403     cc->tcg_ops = &arm_tcg_ops;
2404 #endif /* CONFIG_TCG */
2405 }
2406 
2407 static void arm_cpu_instance_init(Object *obj)
2408 {
2409     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2410 
2411     acc->info->initfn(obj);
2412     arm_cpu_post_init(obj);
2413 }
2414 
2415 static void cpu_register_class_init(ObjectClass *oc, void *data)
2416 {
2417     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2418 
2419     acc->info = data;
2420 }
2421 
2422 void arm_cpu_register(const ARMCPUInfo *info)
2423 {
2424     TypeInfo type_info = {
2425         .parent = TYPE_ARM_CPU,
2426         .instance_size = sizeof(ARMCPU),
2427         .instance_align = __alignof__(ARMCPU),
2428         .instance_init = arm_cpu_instance_init,
2429         .class_size = sizeof(ARMCPUClass),
2430         .class_init = info->class_init ?: cpu_register_class_init,
2431         .class_data = (void *)info,
2432     };
2433 
2434     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2435     type_register(&type_info);
2436     g_free((void *)type_info.name);
2437 }
2438 
2439 static const TypeInfo arm_cpu_type_info = {
2440     .name = TYPE_ARM_CPU,
2441     .parent = TYPE_CPU,
2442     .instance_size = sizeof(ARMCPU),
2443     .instance_align = __alignof__(ARMCPU),
2444     .instance_init = arm_cpu_initfn,
2445     .instance_finalize = arm_cpu_finalizefn,
2446     .abstract = true,
2447     .class_size = sizeof(ARMCPUClass),
2448     .class_init = arm_cpu_class_init,
2449 };
2450 
2451 static void arm_cpu_register_types(void)
2452 {
2453     type_register_static(&arm_cpu_type_info);
2454 }
2455 
2456 type_init(arm_cpu_register_types)
2457