xref: /qemu/target/arm/cpu.c (revision 73b49878)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "cpu-features.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #ifdef CONFIG_TCG
41 #include "hw/intc/armv7m_nvic.h"
42 #endif /* CONFIG_TCG */
43 #endif /* !CONFIG_USER_ONLY */
44 #include "sysemu/tcg.h"
45 #include "sysemu/qtest.h"
46 #include "sysemu/hw_accel.h"
47 #include "kvm_arm.h"
48 #include "disas/capstone.h"
49 #include "fpu/softfloat.h"
50 #include "cpregs.h"
51 #include "target/arm/cpu-qom.h"
52 #include "target/arm/gtimer.h"
53 
54 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
55 {
56     ARMCPU *cpu = ARM_CPU(cs);
57     CPUARMState *env = &cpu->env;
58 
59     if (is_a64(env)) {
60         env->pc = value;
61         env->thumb = false;
62     } else {
63         env->regs[15] = value & ~1;
64         env->thumb = value & 1;
65     }
66 }
67 
68 static vaddr arm_cpu_get_pc(CPUState *cs)
69 {
70     ARMCPU *cpu = ARM_CPU(cs);
71     CPUARMState *env = &cpu->env;
72 
73     if (is_a64(env)) {
74         return env->pc;
75     } else {
76         return env->regs[15];
77     }
78 }
79 
80 #ifdef CONFIG_TCG
81 void arm_cpu_synchronize_from_tb(CPUState *cs,
82                                  const TranslationBlock *tb)
83 {
84     /* The program counter is always up to date with CF_PCREL. */
85     if (!(tb_cflags(tb) & CF_PCREL)) {
86         CPUARMState *env = cpu_env(cs);
87         /*
88          * It's OK to look at env for the current mode here, because it's
89          * never possible for an AArch64 TB to chain to an AArch32 TB.
90          */
91         if (is_a64(env)) {
92             env->pc = tb->pc;
93         } else {
94             env->regs[15] = tb->pc;
95         }
96     }
97 }
98 
99 void arm_restore_state_to_opc(CPUState *cs,
100                               const TranslationBlock *tb,
101                               const uint64_t *data)
102 {
103     CPUARMState *env = cpu_env(cs);
104 
105     if (is_a64(env)) {
106         if (tb_cflags(tb) & CF_PCREL) {
107             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
108         } else {
109             env->pc = data[0];
110         }
111         env->condexec_bits = 0;
112         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
113     } else {
114         if (tb_cflags(tb) & CF_PCREL) {
115             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
116         } else {
117             env->regs[15] = data[0];
118         }
119         env->condexec_bits = data[1];
120         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
121     }
122 }
123 #endif /* CONFIG_TCG */
124 
125 static bool arm_cpu_has_work(CPUState *cs)
126 {
127     ARMCPU *cpu = ARM_CPU(cs);
128 
129     return (cpu->power_state != PSCI_OFF)
130         && cs->interrupt_request &
131         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
132          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
133          | CPU_INTERRUPT_EXITTB);
134 }
135 
136 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
137                                  void *opaque)
138 {
139     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
140 
141     entry->hook = hook;
142     entry->opaque = opaque;
143 
144     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
145 }
146 
147 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
148                                  void *opaque)
149 {
150     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
151 
152     entry->hook = hook;
153     entry->opaque = opaque;
154 
155     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
156 }
157 
158 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
159 {
160     /* Reset a single ARMCPRegInfo register */
161     ARMCPRegInfo *ri = value;
162     ARMCPU *cpu = opaque;
163 
164     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
165         return;
166     }
167 
168     if (ri->resetfn) {
169         ri->resetfn(&cpu->env, ri);
170         return;
171     }
172 
173     /* A zero offset is never possible as it would be regs[0]
174      * so we use it to indicate that reset is being handled elsewhere.
175      * This is basically only used for fields in non-core coprocessors
176      * (like the pxa2xx ones).
177      */
178     if (!ri->fieldoffset) {
179         return;
180     }
181 
182     if (cpreg_field_is_64bit(ri)) {
183         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
184     } else {
185         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
186     }
187 }
188 
189 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
190 {
191     /* Purely an assertion check: we've already done reset once,
192      * so now check that running the reset for the cpreg doesn't
193      * change its value. This traps bugs where two different cpregs
194      * both try to reset the same state field but to different values.
195      */
196     ARMCPRegInfo *ri = value;
197     ARMCPU *cpu = opaque;
198     uint64_t oldvalue, newvalue;
199 
200     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
201         return;
202     }
203 
204     oldvalue = read_raw_cp_reg(&cpu->env, ri);
205     cp_reg_reset(key, value, opaque);
206     newvalue = read_raw_cp_reg(&cpu->env, ri);
207     assert(oldvalue == newvalue);
208 }
209 
210 static void arm_cpu_reset_hold(Object *obj)
211 {
212     CPUState *s = CPU(obj);
213     ARMCPU *cpu = ARM_CPU(s);
214     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
215     CPUARMState *env = &cpu->env;
216 
217     if (acc->parent_phases.hold) {
218         acc->parent_phases.hold(obj);
219     }
220 
221     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
222 
223     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
224     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
225 
226     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
227     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
228     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
229     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
230 
231     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
232 
233     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
234         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
235     }
236 
237     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
238         /* 64 bit CPUs always start in 64 bit mode */
239         env->aarch64 = true;
240 #if defined(CONFIG_USER_ONLY)
241         env->pstate = PSTATE_MODE_EL0t;
242         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
243         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
244         /* Enable all PAC keys.  */
245         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
246                                   SCTLR_EnDA | SCTLR_EnDB);
247         /* Trap on btype=3 for PACIxSP. */
248         env->cp15.sctlr_el[1] |= SCTLR_BT0;
249         /* Trap on implementation defined registers. */
250         if (cpu_isar_feature(aa64_tidcp1, cpu)) {
251             env->cp15.sctlr_el[1] |= SCTLR_TIDCP;
252         }
253         /* and to the FP/Neon instructions */
254         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
255                                          CPACR_EL1, FPEN, 3);
256         /* and to the SVE instructions, with default vector length */
257         if (cpu_isar_feature(aa64_sve, cpu)) {
258             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259                                              CPACR_EL1, ZEN, 3);
260             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
261         }
262         /* and for SME instructions, with default vector length, and TPIDR2 */
263         if (cpu_isar_feature(aa64_sme, cpu)) {
264             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
265             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
266                                              CPACR_EL1, SMEN, 3);
267             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
268             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
269                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
270                                                  SMCR, FA64, 1);
271             }
272         }
273         /*
274          * Enable 48-bit address space (TODO: take reserved_va into account).
275          * Enable TBI0 but not TBI1.
276          * Note that this must match useronly_clean_ptr.
277          */
278         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
279 
280         /* Enable MTE */
281         if (cpu_isar_feature(aa64_mte, cpu)) {
282             /* Enable tag access, but leave TCF0 as No Effect (0). */
283             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
284             /*
285              * Exclude all tags, so that tag 0 is always used.
286              * This corresponds to Linux current->thread.gcr_incl = 0.
287              *
288              * Set RRND, so that helper_irg() will generate a seed later.
289              * Here in cpu_reset(), the crypto subsystem has not yet been
290              * initialized.
291              */
292             env->cp15.gcr_el1 = 0x1ffff;
293         }
294         /*
295          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
296          * This is not yet exposed from the Linux kernel in any way.
297          */
298         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
299         /* Disable access to Debug Communication Channel (DCC). */
300         env->cp15.mdscr_el1 |= 1 << 12;
301         /* Enable FEAT_MOPS */
302         env->cp15.sctlr_el[1] |= SCTLR_MSCEN;
303 #else
304         /* Reset into the highest available EL */
305         if (arm_feature(env, ARM_FEATURE_EL3)) {
306             env->pstate = PSTATE_MODE_EL3h;
307         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
308             env->pstate = PSTATE_MODE_EL2h;
309         } else {
310             env->pstate = PSTATE_MODE_EL1h;
311         }
312 
313         /* Sample rvbar at reset.  */
314         env->cp15.rvbar = cpu->rvbar_prop;
315         env->pc = env->cp15.rvbar;
316 #endif
317     } else {
318 #if defined(CONFIG_USER_ONLY)
319         /* Userspace expects access to cp10 and cp11 for FP/Neon */
320         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
321                                          CPACR, CP10, 3);
322         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
323                                          CPACR, CP11, 3);
324 #endif
325         if (arm_feature(env, ARM_FEATURE_V8)) {
326             env->cp15.rvbar = cpu->rvbar_prop;
327             env->regs[15] = cpu->rvbar_prop;
328         }
329     }
330 
331 #if defined(CONFIG_USER_ONLY)
332     env->uncached_cpsr = ARM_CPU_MODE_USR;
333     /* For user mode we must enable access to coprocessors */
334     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
335     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
336         env->cp15.c15_cpar = 3;
337     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
338         env->cp15.c15_cpar = 1;
339     }
340 #else
341 
342     /*
343      * If the highest available EL is EL2, AArch32 will start in Hyp
344      * mode; otherwise it starts in SVC. Note that if we start in
345      * AArch64 then these values in the uncached_cpsr will be ignored.
346      */
347     if (arm_feature(env, ARM_FEATURE_EL2) &&
348         !arm_feature(env, ARM_FEATURE_EL3)) {
349         env->uncached_cpsr = ARM_CPU_MODE_HYP;
350     } else {
351         env->uncached_cpsr = ARM_CPU_MODE_SVC;
352     }
353     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
354 
355     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
356      * executing as AArch32 then check if highvecs are enabled and
357      * adjust the PC accordingly.
358      */
359     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
360         env->regs[15] = 0xFFFF0000;
361     }
362 
363     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
364 #endif
365 
366     if (arm_feature(env, ARM_FEATURE_M)) {
367 #ifndef CONFIG_USER_ONLY
368         uint32_t initial_msp; /* Loaded from 0x0 */
369         uint32_t initial_pc; /* Loaded from 0x4 */
370         uint8_t *rom;
371         uint32_t vecbase;
372 #endif
373 
374         if (cpu_isar_feature(aa32_lob, cpu)) {
375             /*
376              * LTPSIZE is constant 4 if MVE not implemented, and resets
377              * to an UNKNOWN value if MVE is implemented. We choose to
378              * always reset to 4.
379              */
380             env->v7m.ltpsize = 4;
381             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
382             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
383             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
384         }
385 
386         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
387             env->v7m.secure = true;
388         } else {
389             /* This bit resets to 0 if security is supported, but 1 if
390              * it is not. The bit is not present in v7M, but we set it
391              * here so we can avoid having to make checks on it conditional
392              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
393              */
394             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
395             /*
396              * Set NSACR to indicate "NS access permitted to everything";
397              * this avoids having to have all the tests of it being
398              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
399              * v8.1M the guest-visible value of NSACR in a CPU without the
400              * Security Extension is 0xcff.
401              */
402             env->v7m.nsacr = 0xcff;
403         }
404 
405         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
406          * that it resets to 1, so QEMU always does that rather than making
407          * it dependent on CPU model. In v8M it is RES1.
408          */
409         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
410         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
411         if (arm_feature(env, ARM_FEATURE_V8)) {
412             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
413             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
414             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
415         }
416         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
417             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
418             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
419         }
420 
421         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
422             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
423             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
424                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
425         }
426 
427 #ifndef CONFIG_USER_ONLY
428         /* Unlike A/R profile, M profile defines the reset LR value */
429         env->regs[14] = 0xffffffff;
430 
431         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
432         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
433 
434         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
435         vecbase = env->v7m.vecbase[env->v7m.secure];
436         rom = rom_ptr_for_as(s->as, vecbase, 8);
437         if (rom) {
438             /* Address zero is covered by ROM which hasn't yet been
439              * copied into physical memory.
440              */
441             initial_msp = ldl_p(rom);
442             initial_pc = ldl_p(rom + 4);
443         } else {
444             /* Address zero not covered by a ROM blob, or the ROM blob
445              * is in non-modifiable memory and this is a second reset after
446              * it got copied into memory. In the latter case, rom_ptr
447              * will return a NULL pointer and we should use ldl_phys instead.
448              */
449             initial_msp = ldl_phys(s->as, vecbase);
450             initial_pc = ldl_phys(s->as, vecbase + 4);
451         }
452 
453         qemu_log_mask(CPU_LOG_INT,
454                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
455                       initial_msp, initial_pc);
456 
457         env->regs[13] = initial_msp & 0xFFFFFFFC;
458         env->regs[15] = initial_pc & ~1;
459         env->thumb = initial_pc & 1;
460 #else
461         /*
462          * For user mode we run non-secure and with access to the FPU.
463          * The FPU context is active (ie does not need further setup)
464          * and is owned by non-secure.
465          */
466         env->v7m.secure = false;
467         env->v7m.nsacr = 0xcff;
468         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
469         env->v7m.fpccr[M_REG_S] &=
470             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
471         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
472 #endif
473     }
474 
475     /* M profile requires that reset clears the exclusive monitor;
476      * A profile does not, but clearing it makes more sense than having it
477      * set with an exclusive access on address zero.
478      */
479     arm_clear_exclusive(env);
480 
481     if (arm_feature(env, ARM_FEATURE_PMSA)) {
482         if (cpu->pmsav7_dregion > 0) {
483             if (arm_feature(env, ARM_FEATURE_V8)) {
484                 memset(env->pmsav8.rbar[M_REG_NS], 0,
485                        sizeof(*env->pmsav8.rbar[M_REG_NS])
486                        * cpu->pmsav7_dregion);
487                 memset(env->pmsav8.rlar[M_REG_NS], 0,
488                        sizeof(*env->pmsav8.rlar[M_REG_NS])
489                        * cpu->pmsav7_dregion);
490                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
491                     memset(env->pmsav8.rbar[M_REG_S], 0,
492                            sizeof(*env->pmsav8.rbar[M_REG_S])
493                            * cpu->pmsav7_dregion);
494                     memset(env->pmsav8.rlar[M_REG_S], 0,
495                            sizeof(*env->pmsav8.rlar[M_REG_S])
496                            * cpu->pmsav7_dregion);
497                 }
498             } else if (arm_feature(env, ARM_FEATURE_V7)) {
499                 memset(env->pmsav7.drbar, 0,
500                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
501                 memset(env->pmsav7.drsr, 0,
502                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
503                 memset(env->pmsav7.dracr, 0,
504                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
505             }
506         }
507 
508         if (cpu->pmsav8r_hdregion > 0) {
509             memset(env->pmsav8.hprbar, 0,
510                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
511             memset(env->pmsav8.hprlar, 0,
512                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
513         }
514 
515         env->pmsav7.rnr[M_REG_NS] = 0;
516         env->pmsav7.rnr[M_REG_S] = 0;
517         env->pmsav8.mair0[M_REG_NS] = 0;
518         env->pmsav8.mair0[M_REG_S] = 0;
519         env->pmsav8.mair1[M_REG_NS] = 0;
520         env->pmsav8.mair1[M_REG_S] = 0;
521     }
522 
523     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
524         if (cpu->sau_sregion > 0) {
525             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
526             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
527         }
528         env->sau.rnr = 0;
529         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
530          * the Cortex-M33 does.
531          */
532         env->sau.ctrl = 0;
533     }
534 
535     set_flush_to_zero(1, &env->vfp.standard_fp_status);
536     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
537     set_default_nan_mode(1, &env->vfp.standard_fp_status);
538     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
539     set_float_detect_tininess(float_tininess_before_rounding,
540                               &env->vfp.fp_status);
541     set_float_detect_tininess(float_tininess_before_rounding,
542                               &env->vfp.standard_fp_status);
543     set_float_detect_tininess(float_tininess_before_rounding,
544                               &env->vfp.fp_status_f16);
545     set_float_detect_tininess(float_tininess_before_rounding,
546                               &env->vfp.standard_fp_status_f16);
547 #ifndef CONFIG_USER_ONLY
548     if (kvm_enabled()) {
549         kvm_arm_reset_vcpu(cpu);
550     }
551 #endif
552 
553     if (tcg_enabled()) {
554         hw_breakpoint_update_all(cpu);
555         hw_watchpoint_update_all(cpu);
556 
557         arm_rebuild_hflags(env);
558     }
559 }
560 
561 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el)
562 {
563     ARMCPU *cpu = ARM_CPU(cpustate);
564     CPUARMState *env = &cpu->env;
565     bool have_el3 = arm_feature(env, ARM_FEATURE_EL3);
566     bool have_el2 = arm_feature(env, ARM_FEATURE_EL2);
567 
568     /*
569      * Check we have the EL we're aiming for. If that is the
570      * highest implemented EL, then cpu_reset has already done
571      * all the work.
572      */
573     switch (target_el) {
574     case 3:
575         assert(have_el3);
576         return;
577     case 2:
578         assert(have_el2);
579         if (!have_el3) {
580             return;
581         }
582         break;
583     case 1:
584         if (!have_el3 && !have_el2) {
585             return;
586         }
587         break;
588     default:
589         g_assert_not_reached();
590     }
591 
592     if (have_el3) {
593         /*
594          * Set the EL3 state so code can run at EL2. This should match
595          * the requirements set by Linux in its booting spec.
596          */
597         if (env->aarch64) {
598             env->cp15.scr_el3 |= SCR_RW;
599             if (cpu_isar_feature(aa64_pauth, cpu)) {
600                 env->cp15.scr_el3 |= SCR_API | SCR_APK;
601             }
602             if (cpu_isar_feature(aa64_mte, cpu)) {
603                 env->cp15.scr_el3 |= SCR_ATA;
604             }
605             if (cpu_isar_feature(aa64_sve, cpu)) {
606                 env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
607                 env->vfp.zcr_el[3] = 0xf;
608             }
609             if (cpu_isar_feature(aa64_sme, cpu)) {
610                 env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
611                 env->cp15.scr_el3 |= SCR_ENTP2;
612                 env->vfp.smcr_el[3] = 0xf;
613             }
614             if (cpu_isar_feature(aa64_hcx, cpu)) {
615                 env->cp15.scr_el3 |= SCR_HXEN;
616             }
617             if (cpu_isar_feature(aa64_fgt, cpu)) {
618                 env->cp15.scr_el3 |= SCR_FGTEN;
619             }
620         }
621 
622         if (target_el == 2) {
623             /* If the guest is at EL2 then Linux expects the HVC insn to work */
624             env->cp15.scr_el3 |= SCR_HCE;
625         }
626 
627         /* Put CPU into non-secure state */
628         env->cp15.scr_el3 |= SCR_NS;
629         /* Set NSACR.{CP11,CP10} so NS can access the FPU */
630         env->cp15.nsacr |= 3 << 10;
631     }
632 
633     if (have_el2 && target_el < 2) {
634         /* Set EL2 state so code can run at EL1. */
635         if (env->aarch64) {
636             env->cp15.hcr_el2 |= HCR_RW;
637         }
638     }
639 
640     /* Set the CPU to the desired state */
641     if (env->aarch64) {
642         env->pstate = aarch64_pstate_mode(target_el, true);
643     } else {
644         static const uint32_t mode_for_el[] = {
645             0,
646             ARM_CPU_MODE_SVC,
647             ARM_CPU_MODE_HYP,
648             ARM_CPU_MODE_SVC,
649         };
650 
651         cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw);
652     }
653 }
654 
655 
656 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
657 
658 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
659                                      unsigned int target_el,
660                                      unsigned int cur_el, bool secure,
661                                      uint64_t hcr_el2)
662 {
663     CPUARMState *env = cpu_env(cs);
664     bool pstate_unmasked;
665     bool unmasked = false;
666 
667     /*
668      * Don't take exceptions if they target a lower EL.
669      * This check should catch any exceptions that would not be taken
670      * but left pending.
671      */
672     if (cur_el > target_el) {
673         return false;
674     }
675 
676     switch (excp_idx) {
677     case EXCP_FIQ:
678         pstate_unmasked = !(env->daif & PSTATE_F);
679         break;
680 
681     case EXCP_IRQ:
682         pstate_unmasked = !(env->daif & PSTATE_I);
683         break;
684 
685     case EXCP_VFIQ:
686         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
687             /* VFIQs are only taken when hypervized.  */
688             return false;
689         }
690         return !(env->daif & PSTATE_F);
691     case EXCP_VIRQ:
692         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
693             /* VIRQs are only taken when hypervized.  */
694             return false;
695         }
696         return !(env->daif & PSTATE_I);
697     case EXCP_VSERR:
698         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
699             /* VIRQs are only taken when hypervized.  */
700             return false;
701         }
702         return !(env->daif & PSTATE_A);
703     default:
704         g_assert_not_reached();
705     }
706 
707     /*
708      * Use the target EL, current execution state and SCR/HCR settings to
709      * determine whether the corresponding CPSR bit is used to mask the
710      * interrupt.
711      */
712     if ((target_el > cur_el) && (target_el != 1)) {
713         /* Exceptions targeting a higher EL may not be maskable */
714         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
715             switch (target_el) {
716             case 2:
717                 /*
718                  * According to ARM DDI 0487H.a, an interrupt can be masked
719                  * when HCR_E2H and HCR_TGE are both set regardless of the
720                  * current Security state. Note that we need to revisit this
721                  * part again once we need to support NMI.
722                  */
723                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
724                         unmasked = true;
725                 }
726                 break;
727             case 3:
728                 /* Interrupt cannot be masked when the target EL is 3 */
729                 unmasked = true;
730                 break;
731             default:
732                 g_assert_not_reached();
733             }
734         } else {
735             /*
736              * The old 32-bit-only environment has a more complicated
737              * masking setup. HCR and SCR bits not only affect interrupt
738              * routing but also change the behaviour of masking.
739              */
740             bool hcr, scr;
741 
742             switch (excp_idx) {
743             case EXCP_FIQ:
744                 /*
745                  * If FIQs are routed to EL3 or EL2 then there are cases where
746                  * we override the CPSR.F in determining if the exception is
747                  * masked or not. If neither of these are set then we fall back
748                  * to the CPSR.F setting otherwise we further assess the state
749                  * below.
750                  */
751                 hcr = hcr_el2 & HCR_FMO;
752                 scr = (env->cp15.scr_el3 & SCR_FIQ);
753 
754                 /*
755                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
756                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
757                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
758                  * when non-secure but only when FIQs are only routed to EL3.
759                  */
760                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
761                 break;
762             case EXCP_IRQ:
763                 /*
764                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
765                  * we may override the CPSR.I masking when in non-secure state.
766                  * The SCR.IRQ setting has already been taken into consideration
767                  * when setting the target EL, so it does not have a further
768                  * affect here.
769                  */
770                 hcr = hcr_el2 & HCR_IMO;
771                 scr = false;
772                 break;
773             default:
774                 g_assert_not_reached();
775             }
776 
777             if ((scr || hcr) && !secure) {
778                 unmasked = true;
779             }
780         }
781     }
782 
783     /*
784      * The PSTATE bits only mask the interrupt if we have not overridden the
785      * ability above.
786      */
787     return unmasked || pstate_unmasked;
788 }
789 
790 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
791 {
792     CPUClass *cc = CPU_GET_CLASS(cs);
793     CPUARMState *env = cpu_env(cs);
794     uint32_t cur_el = arm_current_el(env);
795     bool secure = arm_is_secure(env);
796     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
797     uint32_t target_el;
798     uint32_t excp_idx;
799 
800     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
801 
802     if (interrupt_request & CPU_INTERRUPT_FIQ) {
803         excp_idx = EXCP_FIQ;
804         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
805         if (arm_excp_unmasked(cs, excp_idx, target_el,
806                               cur_el, secure, hcr_el2)) {
807             goto found;
808         }
809     }
810     if (interrupt_request & CPU_INTERRUPT_HARD) {
811         excp_idx = EXCP_IRQ;
812         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
813         if (arm_excp_unmasked(cs, excp_idx, target_el,
814                               cur_el, secure, hcr_el2)) {
815             goto found;
816         }
817     }
818     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
819         excp_idx = EXCP_VIRQ;
820         target_el = 1;
821         if (arm_excp_unmasked(cs, excp_idx, target_el,
822                               cur_el, secure, hcr_el2)) {
823             goto found;
824         }
825     }
826     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
827         excp_idx = EXCP_VFIQ;
828         target_el = 1;
829         if (arm_excp_unmasked(cs, excp_idx, target_el,
830                               cur_el, secure, hcr_el2)) {
831             goto found;
832         }
833     }
834     if (interrupt_request & CPU_INTERRUPT_VSERR) {
835         excp_idx = EXCP_VSERR;
836         target_el = 1;
837         if (arm_excp_unmasked(cs, excp_idx, target_el,
838                               cur_el, secure, hcr_el2)) {
839             /* Taking a virtual abort clears HCR_EL2.VSE */
840             env->cp15.hcr_el2 &= ~HCR_VSE;
841             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
842             goto found;
843         }
844     }
845     return false;
846 
847  found:
848     cs->exception_index = excp_idx;
849     env->exception.target_el = target_el;
850     cc->tcg_ops->do_interrupt(cs);
851     return true;
852 }
853 
854 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
855 
856 void arm_cpu_update_virq(ARMCPU *cpu)
857 {
858     /*
859      * Update the interrupt level for VIRQ, which is the logical OR of
860      * the HCR_EL2.VI bit and the input line level from the GIC.
861      */
862     CPUARMState *env = &cpu->env;
863     CPUState *cs = CPU(cpu);
864 
865     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
866         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
867 
868     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
869         if (new_state) {
870             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
871         } else {
872             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
873         }
874     }
875 }
876 
877 void arm_cpu_update_vfiq(ARMCPU *cpu)
878 {
879     /*
880      * Update the interrupt level for VFIQ, which is the logical OR of
881      * the HCR_EL2.VF bit and the input line level from the GIC.
882      */
883     CPUARMState *env = &cpu->env;
884     CPUState *cs = CPU(cpu);
885 
886     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
887         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
888 
889     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
890         if (new_state) {
891             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
892         } else {
893             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
894         }
895     }
896 }
897 
898 void arm_cpu_update_vserr(ARMCPU *cpu)
899 {
900     /*
901      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
902      */
903     CPUARMState *env = &cpu->env;
904     CPUState *cs = CPU(cpu);
905 
906     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
907 
908     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
909         if (new_state) {
910             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
911         } else {
912             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
913         }
914     }
915 }
916 
917 #ifndef CONFIG_USER_ONLY
918 static void arm_cpu_set_irq(void *opaque, int irq, int level)
919 {
920     ARMCPU *cpu = opaque;
921     CPUARMState *env = &cpu->env;
922     CPUState *cs = CPU(cpu);
923     static const int mask[] = {
924         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
925         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
926         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
927         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
928     };
929 
930     if (!arm_feature(env, ARM_FEATURE_EL2) &&
931         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
932         /*
933          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
934          * have EL2 support we don't care. (Unless the guest is doing something
935          * silly this will only be calls saying "level is still 0".)
936          */
937         return;
938     }
939 
940     if (level) {
941         env->irq_line_state |= mask[irq];
942     } else {
943         env->irq_line_state &= ~mask[irq];
944     }
945 
946     switch (irq) {
947     case ARM_CPU_VIRQ:
948         arm_cpu_update_virq(cpu);
949         break;
950     case ARM_CPU_VFIQ:
951         arm_cpu_update_vfiq(cpu);
952         break;
953     case ARM_CPU_IRQ:
954     case ARM_CPU_FIQ:
955         if (level) {
956             cpu_interrupt(cs, mask[irq]);
957         } else {
958             cpu_reset_interrupt(cs, mask[irq]);
959         }
960         break;
961     default:
962         g_assert_not_reached();
963     }
964 }
965 
966 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
967 {
968 #ifdef CONFIG_KVM
969     ARMCPU *cpu = opaque;
970     CPUARMState *env = &cpu->env;
971     CPUState *cs = CPU(cpu);
972     uint32_t linestate_bit;
973     int irq_id;
974 
975     switch (irq) {
976     case ARM_CPU_IRQ:
977         irq_id = KVM_ARM_IRQ_CPU_IRQ;
978         linestate_bit = CPU_INTERRUPT_HARD;
979         break;
980     case ARM_CPU_FIQ:
981         irq_id = KVM_ARM_IRQ_CPU_FIQ;
982         linestate_bit = CPU_INTERRUPT_FIQ;
983         break;
984     default:
985         g_assert_not_reached();
986     }
987 
988     if (level) {
989         env->irq_line_state |= linestate_bit;
990     } else {
991         env->irq_line_state &= ~linestate_bit;
992     }
993     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
994 #endif
995 }
996 
997 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
998 {
999     ARMCPU *cpu = ARM_CPU(cs);
1000     CPUARMState *env = &cpu->env;
1001 
1002     cpu_synchronize_state(cs);
1003     return arm_cpu_data_is_big_endian(env);
1004 }
1005 
1006 #endif
1007 
1008 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
1009 {
1010     ARMCPU *ac = ARM_CPU(cpu);
1011     CPUARMState *env = &ac->env;
1012     bool sctlr_b;
1013 
1014     if (is_a64(env)) {
1015         info->cap_arch = CS_ARCH_ARM64;
1016         info->cap_insn_unit = 4;
1017         info->cap_insn_split = 4;
1018     } else {
1019         int cap_mode;
1020         if (env->thumb) {
1021             info->cap_insn_unit = 2;
1022             info->cap_insn_split = 4;
1023             cap_mode = CS_MODE_THUMB;
1024         } else {
1025             info->cap_insn_unit = 4;
1026             info->cap_insn_split = 4;
1027             cap_mode = CS_MODE_ARM;
1028         }
1029         if (arm_feature(env, ARM_FEATURE_V8)) {
1030             cap_mode |= CS_MODE_V8;
1031         }
1032         if (arm_feature(env, ARM_FEATURE_M)) {
1033             cap_mode |= CS_MODE_MCLASS;
1034         }
1035         info->cap_arch = CS_ARCH_ARM;
1036         info->cap_mode = cap_mode;
1037     }
1038 
1039     sctlr_b = arm_sctlr_b(env);
1040     if (bswap_code(sctlr_b)) {
1041 #if TARGET_BIG_ENDIAN
1042         info->endian = BFD_ENDIAN_LITTLE;
1043 #else
1044         info->endian = BFD_ENDIAN_BIG;
1045 #endif
1046     }
1047     info->flags &= ~INSN_ARM_BE32;
1048 #ifndef CONFIG_USER_ONLY
1049     if (sctlr_b) {
1050         info->flags |= INSN_ARM_BE32;
1051     }
1052 #endif
1053 }
1054 
1055 #ifdef TARGET_AARCH64
1056 
1057 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1058 {
1059     ARMCPU *cpu = ARM_CPU(cs);
1060     CPUARMState *env = &cpu->env;
1061     uint32_t psr = pstate_read(env);
1062     int i, j;
1063     int el = arm_current_el(env);
1064     uint64_t hcr = arm_hcr_el2_eff(env);
1065     const char *ns_status;
1066     bool sve;
1067 
1068     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
1069     for (i = 0; i < 32; i++) {
1070         if (i == 31) {
1071             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
1072         } else {
1073             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
1074                          (i + 2) % 3 ? " " : "\n");
1075         }
1076     }
1077 
1078     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
1079         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1080     } else {
1081         ns_status = "";
1082     }
1083     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
1084                  psr,
1085                  psr & PSTATE_N ? 'N' : '-',
1086                  psr & PSTATE_Z ? 'Z' : '-',
1087                  psr & PSTATE_C ? 'C' : '-',
1088                  psr & PSTATE_V ? 'V' : '-',
1089                  ns_status,
1090                  el,
1091                  psr & PSTATE_SP ? 'h' : 't');
1092 
1093     if (cpu_isar_feature(aa64_sme, cpu)) {
1094         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
1095                      env->svcr,
1096                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
1097                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
1098     }
1099     if (cpu_isar_feature(aa64_bti, cpu)) {
1100         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
1101     }
1102     qemu_fprintf(f, "%s%s%s",
1103                  (hcr & HCR_NV) ? " NV" : "",
1104                  (hcr & HCR_NV1) ? " NV1" : "",
1105                  (hcr & HCR_NV2) ? " NV2" : "");
1106     if (!(flags & CPU_DUMP_FPU)) {
1107         qemu_fprintf(f, "\n");
1108         return;
1109     }
1110     if (fp_exception_el(env, el) != 0) {
1111         qemu_fprintf(f, "    FPU disabled\n");
1112         return;
1113     }
1114     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1115                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1116 
1117     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1118         sve = sme_exception_el(env, el) == 0;
1119     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1120         sve = sve_exception_el(env, el) == 0;
1121     } else {
1122         sve = false;
1123     }
1124 
1125     if (sve) {
1126         int zcr_len = sve_vqm1_for_el(env, el);
1127 
1128         for (i = 0; i <= FFR_PRED_NUM; i++) {
1129             bool eol;
1130             if (i == FFR_PRED_NUM) {
1131                 qemu_fprintf(f, "FFR=");
1132                 /* It's last, so end the line.  */
1133                 eol = true;
1134             } else {
1135                 qemu_fprintf(f, "P%02d=", i);
1136                 switch (zcr_len) {
1137                 case 0:
1138                     eol = i % 8 == 7;
1139                     break;
1140                 case 1:
1141                     eol = i % 6 == 5;
1142                     break;
1143                 case 2:
1144                 case 3:
1145                     eol = i % 3 == 2;
1146                     break;
1147                 default:
1148                     /* More than one quadword per predicate.  */
1149                     eol = true;
1150                     break;
1151                 }
1152             }
1153             for (j = zcr_len / 4; j >= 0; j--) {
1154                 int digits;
1155                 if (j * 4 + 4 <= zcr_len + 1) {
1156                     digits = 16;
1157                 } else {
1158                     digits = (zcr_len % 4 + 1) * 4;
1159                 }
1160                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1161                              env->vfp.pregs[i].p[j],
1162                              j ? ":" : eol ? "\n" : " ");
1163             }
1164         }
1165 
1166         if (zcr_len == 0) {
1167             /*
1168              * With vl=16, there are only 37 columns per register,
1169              * so output two registers per line.
1170              */
1171             for (i = 0; i < 32; i++) {
1172                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1173                              i, env->vfp.zregs[i].d[1],
1174                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1175             }
1176         } else {
1177             for (i = 0; i < 32; i++) {
1178                 qemu_fprintf(f, "Z%02d=", i);
1179                 for (j = zcr_len; j >= 0; j--) {
1180                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1181                                  env->vfp.zregs[i].d[j * 2 + 1],
1182                                  env->vfp.zregs[i].d[j * 2 + 0],
1183                                  j ? ":" : "\n");
1184                 }
1185             }
1186         }
1187     } else {
1188         for (i = 0; i < 32; i++) {
1189             uint64_t *q = aa64_vfp_qreg(env, i);
1190             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1191                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1192         }
1193     }
1194 
1195     if (cpu_isar_feature(aa64_sme, cpu) &&
1196         FIELD_EX64(env->svcr, SVCR, ZA) &&
1197         sme_exception_el(env, el) == 0) {
1198         int zcr_len = sve_vqm1_for_el_sm(env, el, true);
1199         int svl = (zcr_len + 1) * 16;
1200         int svl_lg10 = svl < 100 ? 2 : 3;
1201 
1202         for (i = 0; i < svl; i++) {
1203             qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i);
1204             for (j = zcr_len; j >= 0; --j) {
1205                 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c",
1206                              env->zarray[i].d[2 * j + 1],
1207                              env->zarray[i].d[2 * j],
1208                              j ? ':' : '\n');
1209             }
1210         }
1211     }
1212 }
1213 
1214 #else
1215 
1216 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1217 {
1218     g_assert_not_reached();
1219 }
1220 
1221 #endif
1222 
1223 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1224 {
1225     ARMCPU *cpu = ARM_CPU(cs);
1226     CPUARMState *env = &cpu->env;
1227     int i;
1228 
1229     if (is_a64(env)) {
1230         aarch64_cpu_dump_state(cs, f, flags);
1231         return;
1232     }
1233 
1234     for (i = 0; i < 16; i++) {
1235         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1236         if ((i % 4) == 3) {
1237             qemu_fprintf(f, "\n");
1238         } else {
1239             qemu_fprintf(f, " ");
1240         }
1241     }
1242 
1243     if (arm_feature(env, ARM_FEATURE_M)) {
1244         uint32_t xpsr = xpsr_read(env);
1245         const char *mode;
1246         const char *ns_status = "";
1247 
1248         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1249             ns_status = env->v7m.secure ? "S " : "NS ";
1250         }
1251 
1252         if (xpsr & XPSR_EXCP) {
1253             mode = "handler";
1254         } else {
1255             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1256                 mode = "unpriv-thread";
1257             } else {
1258                 mode = "priv-thread";
1259             }
1260         }
1261 
1262         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1263                      xpsr,
1264                      xpsr & XPSR_N ? 'N' : '-',
1265                      xpsr & XPSR_Z ? 'Z' : '-',
1266                      xpsr & XPSR_C ? 'C' : '-',
1267                      xpsr & XPSR_V ? 'V' : '-',
1268                      xpsr & XPSR_T ? 'T' : 'A',
1269                      ns_status,
1270                      mode);
1271     } else {
1272         uint32_t psr = cpsr_read(env);
1273         const char *ns_status = "";
1274 
1275         if (arm_feature(env, ARM_FEATURE_EL3) &&
1276             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1277             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1278         }
1279 
1280         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1281                      psr,
1282                      psr & CPSR_N ? 'N' : '-',
1283                      psr & CPSR_Z ? 'Z' : '-',
1284                      psr & CPSR_C ? 'C' : '-',
1285                      psr & CPSR_V ? 'V' : '-',
1286                      psr & CPSR_T ? 'T' : 'A',
1287                      ns_status,
1288                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1289     }
1290 
1291     if (flags & CPU_DUMP_FPU) {
1292         int numvfpregs = 0;
1293         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1294             numvfpregs = 32;
1295         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1296             numvfpregs = 16;
1297         }
1298         for (i = 0; i < numvfpregs; i++) {
1299             uint64_t v = *aa32_vfp_dreg(env, i);
1300             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1301                          i * 2, (uint32_t)v,
1302                          i * 2 + 1, (uint32_t)(v >> 32),
1303                          i, v);
1304         }
1305         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1306         if (cpu_isar_feature(aa32_mve, cpu)) {
1307             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1308         }
1309     }
1310 }
1311 
1312 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz)
1313 {
1314     uint32_t Aff1 = idx / clustersz;
1315     uint32_t Aff0 = idx % clustersz;
1316     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1317 }
1318 
1319 uint64_t arm_cpu_mp_affinity(ARMCPU *cpu)
1320 {
1321     return cpu->mp_affinity;
1322 }
1323 
1324 static void arm_cpu_initfn(Object *obj)
1325 {
1326     ARMCPU *cpu = ARM_CPU(obj);
1327 
1328     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1329                                          NULL, g_free);
1330 
1331     QLIST_INIT(&cpu->pre_el_change_hooks);
1332     QLIST_INIT(&cpu->el_change_hooks);
1333 
1334 #ifdef CONFIG_USER_ONLY
1335 # ifdef TARGET_AARCH64
1336     /*
1337      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1338      * These values were chosen to fit within the default signal frame.
1339      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1340      * and our corresponding cpu property.
1341      */
1342     cpu->sve_default_vq = 4;
1343     cpu->sme_default_vq = 2;
1344 # endif
1345 #else
1346     /* Our inbound IRQ and FIQ lines */
1347     if (kvm_enabled()) {
1348         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1349          * the same interface as non-KVM CPUs.
1350          */
1351         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1352     } else {
1353         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1354     }
1355 
1356     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1357                        ARRAY_SIZE(cpu->gt_timer_outputs));
1358 
1359     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1360                              "gicv3-maintenance-interrupt", 1);
1361     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1362                              "pmu-interrupt", 1);
1363 #endif
1364 
1365     /* DTB consumers generally don't in fact care what the 'compatible'
1366      * string is, so always provide some string and trust that a hypothetical
1367      * picky DTB consumer will also provide a helpful error message.
1368      */
1369     cpu->dtb_compatible = "qemu,unknown";
1370     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1371     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1372 
1373     if (tcg_enabled() || hvf_enabled()) {
1374         /* TCG and HVF implement PSCI 1.1 */
1375         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1376     }
1377 }
1378 
1379 static Property arm_cpu_gt_cntfrq_property =
1380             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1381                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1382 
1383 static Property arm_cpu_reset_cbar_property =
1384             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1385 
1386 static Property arm_cpu_reset_hivecs_property =
1387             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1388 
1389 #ifndef CONFIG_USER_ONLY
1390 static Property arm_cpu_has_el2_property =
1391             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1392 
1393 static Property arm_cpu_has_el3_property =
1394             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1395 #endif
1396 
1397 static Property arm_cpu_cfgend_property =
1398             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1399 
1400 static Property arm_cpu_has_vfp_property =
1401             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1402 
1403 static Property arm_cpu_has_vfp_d32_property =
1404             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1405 
1406 static Property arm_cpu_has_neon_property =
1407             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1408 
1409 static Property arm_cpu_has_dsp_property =
1410             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1411 
1412 static Property arm_cpu_has_mpu_property =
1413             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1414 
1415 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1416  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1417  * the right value for that particular CPU type, and we don't want
1418  * to override that with an incorrect constant value.
1419  */
1420 static Property arm_cpu_pmsav7_dregion_property =
1421             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1422                                            pmsav7_dregion,
1423                                            qdev_prop_uint32, uint32_t);
1424 
1425 static bool arm_get_pmu(Object *obj, Error **errp)
1426 {
1427     ARMCPU *cpu = ARM_CPU(obj);
1428 
1429     return cpu->has_pmu;
1430 }
1431 
1432 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1433 {
1434     ARMCPU *cpu = ARM_CPU(obj);
1435 
1436     if (value) {
1437         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1438             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1439             return;
1440         }
1441         set_feature(&cpu->env, ARM_FEATURE_PMU);
1442     } else {
1443         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1444     }
1445     cpu->has_pmu = value;
1446 }
1447 
1448 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1449 {
1450     /*
1451      * The exact approach to calculating guest ticks is:
1452      *
1453      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1454      *              NANOSECONDS_PER_SECOND);
1455      *
1456      * We don't do that. Rather we intentionally use integer division
1457      * truncation below and in the caller for the conversion of host monotonic
1458      * time to guest ticks to provide the exact inverse for the semantics of
1459      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1460      * it loses precision when representing frequencies where
1461      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1462      * provide an exact inverse leads to scheduling timers with negative
1463      * periods, which in turn leads to sticky behaviour in the guest.
1464      *
1465      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1466      * cannot become zero.
1467      */
1468     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1469       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1470 }
1471 
1472 static void arm_cpu_propagate_feature_implications(ARMCPU *cpu)
1473 {
1474     CPUARMState *env = &cpu->env;
1475     bool no_aa32 = false;
1476 
1477     /*
1478      * Some features automatically imply others: set the feature
1479      * bits explicitly for these cases.
1480      */
1481 
1482     if (arm_feature(env, ARM_FEATURE_M)) {
1483         set_feature(env, ARM_FEATURE_PMSA);
1484     }
1485 
1486     if (arm_feature(env, ARM_FEATURE_V8)) {
1487         if (arm_feature(env, ARM_FEATURE_M)) {
1488             set_feature(env, ARM_FEATURE_V7);
1489         } else {
1490             set_feature(env, ARM_FEATURE_V7VE);
1491         }
1492     }
1493 
1494     /*
1495      * There exist AArch64 cpus without AArch32 support.  When KVM
1496      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1497      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1498      * As a general principle, we also do not make ID register
1499      * consistency checks anywhere unless using TCG, because only
1500      * for TCG would a consistency-check failure be a QEMU bug.
1501      */
1502     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1503         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1504     }
1505 
1506     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1507         /*
1508          * v7 Virtualization Extensions. In real hardware this implies
1509          * EL2 and also the presence of the Security Extensions.
1510          * For QEMU, for backwards-compatibility we implement some
1511          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1512          * include the various other features that V7VE implies.
1513          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1514          * Security Extensions is ARM_FEATURE_EL3.
1515          */
1516         assert(!tcg_enabled() || no_aa32 ||
1517                cpu_isar_feature(aa32_arm_div, cpu));
1518         set_feature(env, ARM_FEATURE_LPAE);
1519         set_feature(env, ARM_FEATURE_V7);
1520     }
1521     if (arm_feature(env, ARM_FEATURE_V7)) {
1522         set_feature(env, ARM_FEATURE_VAPA);
1523         set_feature(env, ARM_FEATURE_THUMB2);
1524         set_feature(env, ARM_FEATURE_MPIDR);
1525         if (!arm_feature(env, ARM_FEATURE_M)) {
1526             set_feature(env, ARM_FEATURE_V6K);
1527         } else {
1528             set_feature(env, ARM_FEATURE_V6);
1529         }
1530 
1531         /*
1532          * Always define VBAR for V7 CPUs even if it doesn't exist in
1533          * non-EL3 configs. This is needed by some legacy boards.
1534          */
1535         set_feature(env, ARM_FEATURE_VBAR);
1536     }
1537     if (arm_feature(env, ARM_FEATURE_V6K)) {
1538         set_feature(env, ARM_FEATURE_V6);
1539         set_feature(env, ARM_FEATURE_MVFR);
1540     }
1541     if (arm_feature(env, ARM_FEATURE_V6)) {
1542         set_feature(env, ARM_FEATURE_V5);
1543         if (!arm_feature(env, ARM_FEATURE_M)) {
1544             assert(!tcg_enabled() || no_aa32 ||
1545                    cpu_isar_feature(aa32_jazelle, cpu));
1546             set_feature(env, ARM_FEATURE_AUXCR);
1547         }
1548     }
1549     if (arm_feature(env, ARM_FEATURE_V5)) {
1550         set_feature(env, ARM_FEATURE_V4T);
1551     }
1552     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1553         set_feature(env, ARM_FEATURE_V7MP);
1554     }
1555     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1556         set_feature(env, ARM_FEATURE_CBAR);
1557     }
1558     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1559         !arm_feature(env, ARM_FEATURE_M)) {
1560         set_feature(env, ARM_FEATURE_THUMB_DSP);
1561     }
1562 }
1563 
1564 void arm_cpu_post_init(Object *obj)
1565 {
1566     ARMCPU *cpu = ARM_CPU(obj);
1567 
1568     /*
1569      * Some features imply others. Figure this out now, because we
1570      * are going to look at the feature bits in deciding which
1571      * properties to add.
1572      */
1573     arm_cpu_propagate_feature_implications(cpu);
1574 
1575     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1576         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1577         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1578     }
1579 
1580     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1581         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1582     }
1583 
1584     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1585         object_property_add_uint64_ptr(obj, "rvbar",
1586                                        &cpu->rvbar_prop,
1587                                        OBJ_PROP_FLAG_READWRITE);
1588     }
1589 
1590 #ifndef CONFIG_USER_ONLY
1591     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1592         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1593          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1594          */
1595         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1596 
1597         object_property_add_link(obj, "secure-memory",
1598                                  TYPE_MEMORY_REGION,
1599                                  (Object **)&cpu->secure_memory,
1600                                  qdev_prop_allow_set_link_before_realize,
1601                                  OBJ_PROP_LINK_STRONG);
1602     }
1603 
1604     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1605         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1606     }
1607 #endif
1608 
1609     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1610         cpu->has_pmu = true;
1611         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1612     }
1613 
1614     /*
1615      * Allow user to turn off VFP and Neon support, but only for TCG --
1616      * KVM does not currently allow us to lie to the guest about its
1617      * ID/feature registers, so the guest always sees what the host has.
1618      */
1619     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1620         if (cpu_isar_feature(aa64_fp_simd, cpu)) {
1621             cpu->has_vfp = true;
1622             cpu->has_vfp_d32 = true;
1623             if (tcg_enabled() || qtest_enabled()) {
1624                 qdev_property_add_static(DEVICE(obj),
1625                                          &arm_cpu_has_vfp_property);
1626             }
1627         }
1628     } else if (cpu_isar_feature(aa32_vfp, cpu)) {
1629         cpu->has_vfp = true;
1630         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1631             cpu->has_vfp_d32 = true;
1632             /*
1633              * The permitted values of the SIMDReg bits [3:0] on
1634              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1635              * make sure that has_vfp_d32 can not be set to false.
1636              */
1637             if ((tcg_enabled() || qtest_enabled())
1638                 && !(arm_feature(&cpu->env, ARM_FEATURE_V8)
1639                      && !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1640                 qdev_property_add_static(DEVICE(obj),
1641                                          &arm_cpu_has_vfp_d32_property);
1642             }
1643         }
1644     }
1645 
1646     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1647         cpu->has_neon = true;
1648         if (!kvm_enabled()) {
1649             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1650         }
1651     }
1652 
1653     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1654         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1655         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1656     }
1657 
1658     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1659         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1660         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1661             qdev_property_add_static(DEVICE(obj),
1662                                      &arm_cpu_pmsav7_dregion_property);
1663         }
1664     }
1665 
1666     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1667         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1668                                  qdev_prop_allow_set_link_before_realize,
1669                                  OBJ_PROP_LINK_STRONG);
1670         /*
1671          * M profile: initial value of the Secure VTOR. We can't just use
1672          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1673          * the property to be set after realize.
1674          */
1675         object_property_add_uint32_ptr(obj, "init-svtor",
1676                                        &cpu->init_svtor,
1677                                        OBJ_PROP_FLAG_READWRITE);
1678     }
1679     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1680         /*
1681          * Initial value of the NS VTOR (for cores without the Security
1682          * extension, this is the only VTOR)
1683          */
1684         object_property_add_uint32_ptr(obj, "init-nsvtor",
1685                                        &cpu->init_nsvtor,
1686                                        OBJ_PROP_FLAG_READWRITE);
1687     }
1688 
1689     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1690     object_property_add_uint32_ptr(obj, "psci-conduit",
1691                                    &cpu->psci_conduit,
1692                                    OBJ_PROP_FLAG_READWRITE);
1693 
1694     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1695 
1696     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1697         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1698     }
1699 
1700     if (kvm_enabled()) {
1701         kvm_arm_add_vcpu_properties(cpu);
1702     }
1703 
1704 #ifndef CONFIG_USER_ONLY
1705     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1706         cpu_isar_feature(aa64_mte, cpu)) {
1707         object_property_add_link(obj, "tag-memory",
1708                                  TYPE_MEMORY_REGION,
1709                                  (Object **)&cpu->tag_memory,
1710                                  qdev_prop_allow_set_link_before_realize,
1711                                  OBJ_PROP_LINK_STRONG);
1712 
1713         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1714             object_property_add_link(obj, "secure-tag-memory",
1715                                      TYPE_MEMORY_REGION,
1716                                      (Object **)&cpu->secure_tag_memory,
1717                                      qdev_prop_allow_set_link_before_realize,
1718                                      OBJ_PROP_LINK_STRONG);
1719         }
1720     }
1721 #endif
1722 }
1723 
1724 static void arm_cpu_finalizefn(Object *obj)
1725 {
1726     ARMCPU *cpu = ARM_CPU(obj);
1727     ARMELChangeHook *hook, *next;
1728 
1729     g_hash_table_destroy(cpu->cp_regs);
1730 
1731     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1732         QLIST_REMOVE(hook, node);
1733         g_free(hook);
1734     }
1735     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1736         QLIST_REMOVE(hook, node);
1737         g_free(hook);
1738     }
1739 #ifndef CONFIG_USER_ONLY
1740     if (cpu->pmu_timer) {
1741         timer_free(cpu->pmu_timer);
1742     }
1743 #endif
1744 }
1745 
1746 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1747 {
1748     Error *local_err = NULL;
1749 
1750 #ifdef TARGET_AARCH64
1751     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1752         arm_cpu_sve_finalize(cpu, &local_err);
1753         if (local_err != NULL) {
1754             error_propagate(errp, local_err);
1755             return;
1756         }
1757 
1758         /*
1759          * FEAT_SME is not architecturally dependent on FEAT_SVE (unless
1760          * FEAT_SME_FA64 is present). However our implementation currently
1761          * assumes it, so if the user asked for sve=off then turn off SME also.
1762          * (KVM doesn't currently support SME at all.)
1763          */
1764         if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) {
1765             object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort);
1766         }
1767 
1768         arm_cpu_sme_finalize(cpu, &local_err);
1769         if (local_err != NULL) {
1770             error_propagate(errp, local_err);
1771             return;
1772         }
1773 
1774         arm_cpu_pauth_finalize(cpu, &local_err);
1775         if (local_err != NULL) {
1776             error_propagate(errp, local_err);
1777             return;
1778         }
1779 
1780         arm_cpu_lpa2_finalize(cpu, &local_err);
1781         if (local_err != NULL) {
1782             error_propagate(errp, local_err);
1783             return;
1784         }
1785     }
1786 #endif
1787 
1788     if (kvm_enabled()) {
1789         kvm_arm_steal_time_finalize(cpu, &local_err);
1790         if (local_err != NULL) {
1791             error_propagate(errp, local_err);
1792             return;
1793         }
1794     }
1795 }
1796 
1797 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1798 {
1799     CPUState *cs = CPU(dev);
1800     ARMCPU *cpu = ARM_CPU(dev);
1801     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1802     CPUARMState *env = &cpu->env;
1803     int pagebits;
1804     Error *local_err = NULL;
1805 
1806 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
1807     /* Use pc-relative instructions in system-mode */
1808     cs->tcg_cflags |= CF_PCREL;
1809 #endif
1810 
1811     /* If we needed to query the host kernel for the CPU features
1812      * then it's possible that might have failed in the initfn, but
1813      * this is the first point where we can report it.
1814      */
1815     if (cpu->host_cpu_probe_failed) {
1816         if (!kvm_enabled() && !hvf_enabled()) {
1817             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1818         } else {
1819             error_setg(errp, "Failed to retrieve host CPU features");
1820         }
1821         return;
1822     }
1823 
1824 #ifndef CONFIG_USER_ONLY
1825     /* The NVIC and M-profile CPU are two halves of a single piece of
1826      * hardware; trying to use one without the other is a command line
1827      * error and will result in segfaults if not caught here.
1828      */
1829     if (arm_feature(env, ARM_FEATURE_M)) {
1830         if (!env->nvic) {
1831             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1832             return;
1833         }
1834     } else {
1835         if (env->nvic) {
1836             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1837             return;
1838         }
1839     }
1840 
1841     if (!tcg_enabled() && !qtest_enabled()) {
1842         /*
1843          * We assume that no accelerator except TCG (and the "not really an
1844          * accelerator" qtest) can handle these features, because Arm hardware
1845          * virtualization can't virtualize them.
1846          *
1847          * Catch all the cases which might cause us to create more than one
1848          * address space for the CPU (otherwise we will assert() later in
1849          * cpu_address_space_init()).
1850          */
1851         if (arm_feature(env, ARM_FEATURE_M)) {
1852             error_setg(errp,
1853                        "Cannot enable %s when using an M-profile guest CPU",
1854                        current_accel_name());
1855             return;
1856         }
1857         if (cpu->has_el3) {
1858             error_setg(errp,
1859                        "Cannot enable %s when guest CPU has EL3 enabled",
1860                        current_accel_name());
1861             return;
1862         }
1863         if (cpu->tag_memory) {
1864             error_setg(errp,
1865                        "Cannot enable %s when guest CPUs has MTE enabled",
1866                        current_accel_name());
1867             return;
1868         }
1869     }
1870 
1871     {
1872         uint64_t scale;
1873 
1874         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1875             if (!cpu->gt_cntfrq_hz) {
1876                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1877                            cpu->gt_cntfrq_hz);
1878                 return;
1879             }
1880             scale = gt_cntfrq_period_ns(cpu);
1881         } else {
1882             scale = GTIMER_SCALE;
1883         }
1884 
1885         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1886                                                arm_gt_ptimer_cb, cpu);
1887         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1888                                                arm_gt_vtimer_cb, cpu);
1889         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1890                                               arm_gt_htimer_cb, cpu);
1891         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1892                                               arm_gt_stimer_cb, cpu);
1893         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1894                                                   arm_gt_hvtimer_cb, cpu);
1895     }
1896 #endif
1897 
1898     cpu_exec_realizefn(cs, &local_err);
1899     if (local_err != NULL) {
1900         error_propagate(errp, local_err);
1901         return;
1902     }
1903 
1904     arm_cpu_finalize_features(cpu, &local_err);
1905     if (local_err != NULL) {
1906         error_propagate(errp, local_err);
1907         return;
1908     }
1909 
1910 #ifdef CONFIG_USER_ONLY
1911     /*
1912      * User mode relies on IC IVAU instructions to catch modification of
1913      * dual-mapped code.
1914      *
1915      * Clear CTR_EL0.DIC to ensure that software that honors these flags uses
1916      * IC IVAU even if the emulated processor does not normally require it.
1917      */
1918     cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0);
1919 #endif
1920 
1921     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1922         cpu->has_vfp != cpu->has_neon) {
1923         /*
1924          * This is an architectural requirement for AArch64; AArch32 is
1925          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1926          */
1927         error_setg(errp,
1928                    "AArch64 CPUs must have both VFP and Neon or neither");
1929         return;
1930     }
1931 
1932     if (cpu->has_vfp_d32 != cpu->has_neon) {
1933         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1934         return;
1935     }
1936 
1937    if (!cpu->has_vfp_d32) {
1938         uint32_t u;
1939 
1940         u = cpu->isar.mvfr0;
1941         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1942         cpu->isar.mvfr0 = u;
1943     }
1944 
1945     if (!cpu->has_vfp) {
1946         uint64_t t;
1947         uint32_t u;
1948 
1949         t = cpu->isar.id_aa64isar1;
1950         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1951         cpu->isar.id_aa64isar1 = t;
1952 
1953         t = cpu->isar.id_aa64pfr0;
1954         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1955         cpu->isar.id_aa64pfr0 = t;
1956 
1957         u = cpu->isar.id_isar6;
1958         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1959         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1960         cpu->isar.id_isar6 = u;
1961 
1962         u = cpu->isar.mvfr0;
1963         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1964         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1965         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1966         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1967         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1968         if (!arm_feature(env, ARM_FEATURE_M)) {
1969             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1970             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1971         }
1972         cpu->isar.mvfr0 = u;
1973 
1974         u = cpu->isar.mvfr1;
1975         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1976         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1977         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1978         if (arm_feature(env, ARM_FEATURE_M)) {
1979             u = FIELD_DP32(u, MVFR1, FP16, 0);
1980         }
1981         cpu->isar.mvfr1 = u;
1982 
1983         u = cpu->isar.mvfr2;
1984         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1985         cpu->isar.mvfr2 = u;
1986     }
1987 
1988     if (!cpu->has_neon) {
1989         uint64_t t;
1990         uint32_t u;
1991 
1992         unset_feature(env, ARM_FEATURE_NEON);
1993 
1994         t = cpu->isar.id_aa64isar0;
1995         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1996         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1997         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1998         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1999         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
2000         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
2001         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
2002         cpu->isar.id_aa64isar0 = t;
2003 
2004         t = cpu->isar.id_aa64isar1;
2005         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
2006         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
2007         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
2008         cpu->isar.id_aa64isar1 = t;
2009 
2010         t = cpu->isar.id_aa64pfr0;
2011         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
2012         cpu->isar.id_aa64pfr0 = t;
2013 
2014         u = cpu->isar.id_isar5;
2015         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
2016         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
2017         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
2018         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
2019         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
2020         cpu->isar.id_isar5 = u;
2021 
2022         u = cpu->isar.id_isar6;
2023         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
2024         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
2025         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
2026         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
2027         cpu->isar.id_isar6 = u;
2028 
2029         if (!arm_feature(env, ARM_FEATURE_M)) {
2030             u = cpu->isar.mvfr1;
2031             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
2032             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
2033             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
2034             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
2035             cpu->isar.mvfr1 = u;
2036 
2037             u = cpu->isar.mvfr2;
2038             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
2039             cpu->isar.mvfr2 = u;
2040         }
2041     }
2042 
2043     if (!cpu->has_neon && !cpu->has_vfp) {
2044         uint64_t t;
2045         uint32_t u;
2046 
2047         t = cpu->isar.id_aa64isar0;
2048         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
2049         cpu->isar.id_aa64isar0 = t;
2050 
2051         t = cpu->isar.id_aa64isar1;
2052         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
2053         cpu->isar.id_aa64isar1 = t;
2054 
2055         u = cpu->isar.mvfr0;
2056         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
2057         cpu->isar.mvfr0 = u;
2058 
2059         /* Despite the name, this field covers both VFP and Neon */
2060         u = cpu->isar.mvfr1;
2061         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
2062         cpu->isar.mvfr1 = u;
2063     }
2064 
2065     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
2066         uint32_t u;
2067 
2068         unset_feature(env, ARM_FEATURE_THUMB_DSP);
2069 
2070         u = cpu->isar.id_isar1;
2071         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
2072         cpu->isar.id_isar1 = u;
2073 
2074         u = cpu->isar.id_isar2;
2075         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
2076         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
2077         cpu->isar.id_isar2 = u;
2078 
2079         u = cpu->isar.id_isar3;
2080         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
2081         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
2082         cpu->isar.id_isar3 = u;
2083     }
2084 
2085 
2086     /*
2087      * We rely on no XScale CPU having VFP so we can use the same bits in the
2088      * TB flags field for VECSTRIDE and XSCALE_CPAR.
2089      */
2090     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
2091            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
2092            !arm_feature(env, ARM_FEATURE_XSCALE));
2093 
2094     if (arm_feature(env, ARM_FEATURE_V7) &&
2095         !arm_feature(env, ARM_FEATURE_M) &&
2096         !arm_feature(env, ARM_FEATURE_PMSA)) {
2097         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
2098          * can use 4K pages.
2099          */
2100         pagebits = 12;
2101     } else {
2102         /* For CPUs which might have tiny 1K pages, or which have an
2103          * MPU and might have small region sizes, stick with 1K pages.
2104          */
2105         pagebits = 10;
2106     }
2107     if (!set_preferred_target_page_bits(pagebits)) {
2108         /* This can only ever happen for hotplugging a CPU, or if
2109          * the board code incorrectly creates a CPU which it has
2110          * promised via minimum_page_size that it will not.
2111          */
2112         error_setg(errp, "This CPU requires a smaller page size than the "
2113                    "system is using");
2114         return;
2115     }
2116 
2117     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
2118      * We don't support setting cluster ID ([16..23]) (known as Aff2
2119      * in later ARM ARM versions), or any of the higher affinity level fields,
2120      * so these bits always RAZ.
2121      */
2122     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
2123         cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index,
2124                                                  ARM_DEFAULT_CPUS_PER_CLUSTER);
2125     }
2126 
2127     if (cpu->reset_hivecs) {
2128             cpu->reset_sctlr |= (1 << 13);
2129     }
2130 
2131     if (cpu->cfgend) {
2132         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
2133             cpu->reset_sctlr |= SCTLR_EE;
2134         } else {
2135             cpu->reset_sctlr |= SCTLR_B;
2136         }
2137     }
2138 
2139     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
2140         /* If the has_el3 CPU property is disabled then we need to disable the
2141          * feature.
2142          */
2143         unset_feature(env, ARM_FEATURE_EL3);
2144 
2145         /*
2146          * Disable the security extension feature bits in the processor
2147          * feature registers as well.
2148          */
2149         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
2150         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
2151         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2152                                            ID_AA64PFR0, EL3, 0);
2153 
2154         /* Disable the realm management extension, which requires EL3. */
2155         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2156                                            ID_AA64PFR0, RME, 0);
2157     }
2158 
2159     if (!cpu->has_el2) {
2160         unset_feature(env, ARM_FEATURE_EL2);
2161     }
2162 
2163     if (!cpu->has_pmu) {
2164         unset_feature(env, ARM_FEATURE_PMU);
2165     }
2166     if (arm_feature(env, ARM_FEATURE_PMU)) {
2167         pmu_init(cpu);
2168 
2169         if (!kvm_enabled()) {
2170             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2171             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2172         }
2173 
2174 #ifndef CONFIG_USER_ONLY
2175         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2176                 cpu);
2177 #endif
2178     } else {
2179         cpu->isar.id_aa64dfr0 =
2180             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2181         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2182         cpu->pmceid0 = 0;
2183         cpu->pmceid1 = 0;
2184     }
2185 
2186     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2187         /*
2188          * Disable the hypervisor feature bits in the processor feature
2189          * registers if we don't have EL2.
2190          */
2191         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2192                                            ID_AA64PFR0, EL2, 0);
2193         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2194                                        ID_PFR1, VIRTUALIZATION, 0);
2195     }
2196 
2197     if (cpu_isar_feature(aa64_mte, cpu)) {
2198         /*
2199          * The architectural range of GM blocksize is 2-6, however qemu
2200          * doesn't support blocksize of 2 (see HELPER(ldgm)).
2201          */
2202         if (tcg_enabled()) {
2203             assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6);
2204         }
2205 
2206 #ifndef CONFIG_USER_ONLY
2207         /*
2208          * If we do not have tag-memory provided by the machine,
2209          * reduce MTE support to instructions enabled at EL0.
2210          * This matches Cortex-A710 BROADCASTMTE input being LOW.
2211          */
2212         if (cpu->tag_memory == NULL) {
2213             cpu->isar.id_aa64pfr1 =
2214                 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1);
2215         }
2216 #endif
2217     }
2218 
2219     if (tcg_enabled()) {
2220         /*
2221          * Don't report some architectural features in the ID registers
2222          * where TCG does not yet implement it (not even a minimal
2223          * stub version). This avoids guests falling over when they
2224          * try to access the non-existent system registers for them.
2225          */
2226         /* FEAT_SPE (Statistical Profiling Extension) */
2227         cpu->isar.id_aa64dfr0 =
2228             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2229         /* FEAT_TRBE (Trace Buffer Extension) */
2230         cpu->isar.id_aa64dfr0 =
2231             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0);
2232         /* FEAT_TRF (Self-hosted Trace Extension) */
2233         cpu->isar.id_aa64dfr0 =
2234             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0);
2235         cpu->isar.id_dfr0 =
2236             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0);
2237         /* Trace Macrocell system register access */
2238         cpu->isar.id_aa64dfr0 =
2239             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0);
2240         cpu->isar.id_dfr0 =
2241             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0);
2242         /* Memory mapped trace */
2243         cpu->isar.id_dfr0 =
2244             FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0);
2245         /* FEAT_AMU (Activity Monitors Extension) */
2246         cpu->isar.id_aa64pfr0 =
2247             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0);
2248         cpu->isar.id_pfr0 =
2249             FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0);
2250         /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */
2251         cpu->isar.id_aa64pfr0 =
2252             FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0);
2253     }
2254 
2255     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2256      * to false or by setting pmsav7-dregion to 0.
2257      */
2258     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2259         cpu->has_mpu = false;
2260         cpu->pmsav7_dregion = 0;
2261         cpu->pmsav8r_hdregion = 0;
2262     }
2263 
2264     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2265         arm_feature(env, ARM_FEATURE_V7)) {
2266         uint32_t nr = cpu->pmsav7_dregion;
2267 
2268         if (nr > 0xff) {
2269             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2270             return;
2271         }
2272 
2273         if (nr) {
2274             if (arm_feature(env, ARM_FEATURE_V8)) {
2275                 /* PMSAv8 */
2276                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2277                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2278                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2279                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2280                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2281                 }
2282             } else {
2283                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2284                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2285                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2286             }
2287         }
2288 
2289         if (cpu->pmsav8r_hdregion > 0xff) {
2290             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2291                               cpu->pmsav8r_hdregion);
2292             return;
2293         }
2294 
2295         if (cpu->pmsav8r_hdregion) {
2296             env->pmsav8.hprbar = g_new0(uint32_t,
2297                                         cpu->pmsav8r_hdregion);
2298             env->pmsav8.hprlar = g_new0(uint32_t,
2299                                         cpu->pmsav8r_hdregion);
2300         }
2301     }
2302 
2303     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2304         uint32_t nr = cpu->sau_sregion;
2305 
2306         if (nr > 0xff) {
2307             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2308             return;
2309         }
2310 
2311         if (nr) {
2312             env->sau.rbar = g_new0(uint32_t, nr);
2313             env->sau.rlar = g_new0(uint32_t, nr);
2314         }
2315     }
2316 
2317     if (arm_feature(env, ARM_FEATURE_EL3)) {
2318         set_feature(env, ARM_FEATURE_VBAR);
2319     }
2320 
2321 #ifndef CONFIG_USER_ONLY
2322     if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) {
2323         arm_register_el_change_hook(cpu, &gt_rme_post_el_change, 0);
2324     }
2325 #endif
2326 
2327     register_cp_regs_for_features(cpu);
2328     arm_cpu_register_gdb_regs_for_features(cpu);
2329 
2330     init_cpreg_list(cpu);
2331 
2332 #ifndef CONFIG_USER_ONLY
2333     MachineState *ms = MACHINE(qdev_get_machine());
2334     unsigned int smp_cpus = ms->smp.cpus;
2335     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2336 
2337     /*
2338      * We must set cs->num_ases to the final value before
2339      * the first call to cpu_address_space_init.
2340      */
2341     if (cpu->tag_memory != NULL) {
2342         cs->num_ases = 3 + has_secure;
2343     } else {
2344         cs->num_ases = 1 + has_secure;
2345     }
2346 
2347     if (has_secure) {
2348         if (!cpu->secure_memory) {
2349             cpu->secure_memory = cs->memory;
2350         }
2351         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2352                                cpu->secure_memory);
2353     }
2354 
2355     if (cpu->tag_memory != NULL) {
2356         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2357                                cpu->tag_memory);
2358         if (has_secure) {
2359             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2360                                    cpu->secure_tag_memory);
2361         }
2362     }
2363 
2364     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2365 
2366     /* No core_count specified, default to smp_cpus. */
2367     if (cpu->core_count == -1) {
2368         cpu->core_count = smp_cpus;
2369     }
2370 #endif
2371 
2372     if (tcg_enabled()) {
2373         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2374 
2375         /*
2376          * We only support DCZ blocklen that fits on one page.
2377          *
2378          * Architectually this is always true.  However TARGET_PAGE_SIZE
2379          * is variable and, for compatibility with -machine virt-2.7,
2380          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2381          * But even then, while the largest architectural DCZ blocklen
2382          * is 2KiB, no cpu actually uses such a large blocklen.
2383          */
2384         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2385 
2386         /*
2387          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2388          * both nibbles of each byte storing tag data may be written at once.
2389          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2390          */
2391         if (cpu_isar_feature(aa64_mte, cpu)) {
2392             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2393         }
2394     }
2395 
2396     qemu_init_vcpu(cs);
2397     cpu_reset(cs);
2398 
2399     acc->parent_realize(dev, errp);
2400 }
2401 
2402 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2403 {
2404     ObjectClass *oc;
2405     char *typename;
2406     char **cpuname;
2407     const char *cpunamestr;
2408 
2409     cpuname = g_strsplit(cpu_model, ",", 1);
2410     cpunamestr = cpuname[0];
2411 #ifdef CONFIG_USER_ONLY
2412     /* For backwards compatibility usermode emulation allows "-cpu any",
2413      * which has the same semantics as "-cpu max".
2414      */
2415     if (!strcmp(cpunamestr, "any")) {
2416         cpunamestr = "max";
2417     }
2418 #endif
2419     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2420     oc = object_class_by_name(typename);
2421     g_strfreev(cpuname);
2422     g_free(typename);
2423 
2424     return oc;
2425 }
2426 
2427 static Property arm_cpu_properties[] = {
2428     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2429     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2430                         mp_affinity, ARM64_AFFINITY_INVALID),
2431     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2432     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2433     DEFINE_PROP_END_OF_LIST()
2434 };
2435 
2436 static const gchar *arm_gdb_arch_name(CPUState *cs)
2437 {
2438     ARMCPU *cpu = ARM_CPU(cs);
2439     CPUARMState *env = &cpu->env;
2440 
2441     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2442         return "iwmmxt";
2443     }
2444     return "arm";
2445 }
2446 
2447 #ifndef CONFIG_USER_ONLY
2448 #include "hw/core/sysemu-cpu-ops.h"
2449 
2450 static const struct SysemuCPUOps arm_sysemu_ops = {
2451     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2452     .asidx_from_attrs = arm_asidx_from_attrs,
2453     .write_elf32_note = arm_cpu_write_elf32_note,
2454     .write_elf64_note = arm_cpu_write_elf64_note,
2455     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2456     .legacy_vmsd = &vmstate_arm_cpu,
2457 };
2458 #endif
2459 
2460 #ifdef CONFIG_TCG
2461 static const struct TCGCPUOps arm_tcg_ops = {
2462     .initialize = arm_translate_init,
2463     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2464     .debug_excp_handler = arm_debug_excp_handler,
2465     .restore_state_to_opc = arm_restore_state_to_opc,
2466 
2467 #ifdef CONFIG_USER_ONLY
2468     .record_sigsegv = arm_cpu_record_sigsegv,
2469     .record_sigbus = arm_cpu_record_sigbus,
2470 #else
2471     .tlb_fill = arm_cpu_tlb_fill,
2472     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2473     .do_interrupt = arm_cpu_do_interrupt,
2474     .do_transaction_failed = arm_cpu_do_transaction_failed,
2475     .do_unaligned_access = arm_cpu_do_unaligned_access,
2476     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2477     .debug_check_watchpoint = arm_debug_check_watchpoint,
2478     .debug_check_breakpoint = arm_debug_check_breakpoint,
2479 #endif /* !CONFIG_USER_ONLY */
2480 };
2481 #endif /* CONFIG_TCG */
2482 
2483 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2484 {
2485     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2486     CPUClass *cc = CPU_CLASS(acc);
2487     DeviceClass *dc = DEVICE_CLASS(oc);
2488     ResettableClass *rc = RESETTABLE_CLASS(oc);
2489 
2490     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2491                                     &acc->parent_realize);
2492 
2493     device_class_set_props(dc, arm_cpu_properties);
2494 
2495     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2496                                        &acc->parent_phases);
2497 
2498     cc->class_by_name = arm_cpu_class_by_name;
2499     cc->has_work = arm_cpu_has_work;
2500     cc->dump_state = arm_cpu_dump_state;
2501     cc->set_pc = arm_cpu_set_pc;
2502     cc->get_pc = arm_cpu_get_pc;
2503     cc->gdb_read_register = arm_cpu_gdb_read_register;
2504     cc->gdb_write_register = arm_cpu_gdb_write_register;
2505 #ifndef CONFIG_USER_ONLY
2506     cc->sysemu_ops = &arm_sysemu_ops;
2507 #endif
2508     cc->gdb_num_core_regs = 26;
2509     cc->gdb_arch_name = arm_gdb_arch_name;
2510     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2511     cc->gdb_stop_before_watchpoint = true;
2512     cc->disas_set_info = arm_disas_set_info;
2513 
2514 #ifdef CONFIG_TCG
2515     cc->tcg_ops = &arm_tcg_ops;
2516 #endif /* CONFIG_TCG */
2517 }
2518 
2519 static void arm_cpu_instance_init(Object *obj)
2520 {
2521     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2522 
2523     acc->info->initfn(obj);
2524     arm_cpu_post_init(obj);
2525 }
2526 
2527 static void cpu_register_class_init(ObjectClass *oc, void *data)
2528 {
2529     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2530     CPUClass *cc = CPU_CLASS(acc);
2531 
2532     acc->info = data;
2533     cc->gdb_core_xml_file = "arm-core.xml";
2534 }
2535 
2536 void arm_cpu_register(const ARMCPUInfo *info)
2537 {
2538     TypeInfo type_info = {
2539         .parent = TYPE_ARM_CPU,
2540         .instance_init = arm_cpu_instance_init,
2541         .class_init = info->class_init ?: cpu_register_class_init,
2542         .class_data = (void *)info,
2543     };
2544 
2545     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2546     type_register(&type_info);
2547     g_free((void *)type_info.name);
2548 }
2549 
2550 static const TypeInfo arm_cpu_type_info = {
2551     .name = TYPE_ARM_CPU,
2552     .parent = TYPE_CPU,
2553     .instance_size = sizeof(ARMCPU),
2554     .instance_align = __alignof__(ARMCPU),
2555     .instance_init = arm_cpu_initfn,
2556     .instance_finalize = arm_cpu_finalizefn,
2557     .abstract = true,
2558     .class_size = sizeof(ARMCPUClass),
2559     .class_init = arm_cpu_class_init,
2560 };
2561 
2562 static void arm_cpu_register_types(void)
2563 {
2564     type_register_static(&arm_cpu_type_info);
2565 }
2566 
2567 type_init(arm_cpu_register_types)
2568