xref: /qemu/target/arm/cpu.c (revision 75ac231c)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 static vaddr arm_cpu_get_pc(CPUState *cs)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     if (is_a64(env)) {
69         return env->pc;
70     } else {
71         return env->regs[15];
72     }
73 }
74 
75 #ifdef CONFIG_TCG
76 void arm_cpu_synchronize_from_tb(CPUState *cs,
77                                  const TranslationBlock *tb)
78 {
79     /* The program counter is always up to date with TARGET_TB_PCREL. */
80     if (!TARGET_TB_PCREL) {
81         CPUARMState *env = cs->env_ptr;
82         /*
83          * It's OK to look at env for the current mode here, because it's
84          * never possible for an AArch64 TB to chain to an AArch32 TB.
85          */
86         if (is_a64(env)) {
87             env->pc = tb_pc(tb);
88         } else {
89             env->regs[15] = tb_pc(tb);
90         }
91     }
92 }
93 
94 static void arm_restore_state_to_opc(CPUState *cs,
95                                      const TranslationBlock *tb,
96                                      const uint64_t *data)
97 {
98     CPUARMState *env = cs->env_ptr;
99 
100     if (is_a64(env)) {
101         if (TARGET_TB_PCREL) {
102             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
103         } else {
104             env->pc = data[0];
105         }
106         env->condexec_bits = 0;
107         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
108     } else {
109         if (TARGET_TB_PCREL) {
110             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
111         } else {
112             env->regs[15] = data[0];
113         }
114         env->condexec_bits = data[1];
115         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
116     }
117 }
118 #endif /* CONFIG_TCG */
119 
120 static bool arm_cpu_has_work(CPUState *cs)
121 {
122     ARMCPU *cpu = ARM_CPU(cs);
123 
124     return (cpu->power_state != PSCI_OFF)
125         && cs->interrupt_request &
126         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
127          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
128          | CPU_INTERRUPT_EXITTB);
129 }
130 
131 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
132                                  void *opaque)
133 {
134     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
135 
136     entry->hook = hook;
137     entry->opaque = opaque;
138 
139     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
140 }
141 
142 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
143                                  void *opaque)
144 {
145     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
146 
147     entry->hook = hook;
148     entry->opaque = opaque;
149 
150     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
151 }
152 
153 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
154 {
155     /* Reset a single ARMCPRegInfo register */
156     ARMCPRegInfo *ri = value;
157     ARMCPU *cpu = opaque;
158 
159     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
160         return;
161     }
162 
163     if (ri->resetfn) {
164         ri->resetfn(&cpu->env, ri);
165         return;
166     }
167 
168     /* A zero offset is never possible as it would be regs[0]
169      * so we use it to indicate that reset is being handled elsewhere.
170      * This is basically only used for fields in non-core coprocessors
171      * (like the pxa2xx ones).
172      */
173     if (!ri->fieldoffset) {
174         return;
175     }
176 
177     if (cpreg_field_is_64bit(ri)) {
178         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
179     } else {
180         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
181     }
182 }
183 
184 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
185 {
186     /* Purely an assertion check: we've already done reset once,
187      * so now check that running the reset for the cpreg doesn't
188      * change its value. This traps bugs where two different cpregs
189      * both try to reset the same state field but to different values.
190      */
191     ARMCPRegInfo *ri = value;
192     ARMCPU *cpu = opaque;
193     uint64_t oldvalue, newvalue;
194 
195     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
196         return;
197     }
198 
199     oldvalue = read_raw_cp_reg(&cpu->env, ri);
200     cp_reg_reset(key, value, opaque);
201     newvalue = read_raw_cp_reg(&cpu->env, ri);
202     assert(oldvalue == newvalue);
203 }
204 
205 static void arm_cpu_reset(DeviceState *dev)
206 {
207     CPUState *s = CPU(dev);
208     ARMCPU *cpu = ARM_CPU(s);
209     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
210     CPUARMState *env = &cpu->env;
211 
212     acc->parent_reset(dev);
213 
214     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
215 
216     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
217     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
218 
219     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
220     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
221     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
222     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
223 
224     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
225 
226     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
227         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
228     }
229 
230     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
231         /* 64 bit CPUs always start in 64 bit mode */
232         env->aarch64 = true;
233 #if defined(CONFIG_USER_ONLY)
234         env->pstate = PSTATE_MODE_EL0t;
235         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
236         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
237         /* Enable all PAC keys.  */
238         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
239                                   SCTLR_EnDA | SCTLR_EnDB);
240         /* Trap on btype=3 for PACIxSP. */
241         env->cp15.sctlr_el[1] |= SCTLR_BT0;
242         /* and to the FP/Neon instructions */
243         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
244                                          CPACR_EL1, FPEN, 3);
245         /* and to the SVE instructions, with default vector length */
246         if (cpu_isar_feature(aa64_sve, cpu)) {
247             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248                                              CPACR_EL1, ZEN, 3);
249             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
250         }
251         /* and for SME instructions, with default vector length, and TPIDR2 */
252         if (cpu_isar_feature(aa64_sme, cpu)) {
253             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
254             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
255                                              CPACR_EL1, SMEN, 3);
256             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
257             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
258                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
259                                                  SMCR, FA64, 1);
260             }
261         }
262         /*
263          * Enable 48-bit address space (TODO: take reserved_va into account).
264          * Enable TBI0 but not TBI1.
265          * Note that this must match useronly_clean_ptr.
266          */
267         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
268 
269         /* Enable MTE */
270         if (cpu_isar_feature(aa64_mte, cpu)) {
271             /* Enable tag access, but leave TCF0 as No Effect (0). */
272             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
273             /*
274              * Exclude all tags, so that tag 0 is always used.
275              * This corresponds to Linux current->thread.gcr_incl = 0.
276              *
277              * Set RRND, so that helper_irg() will generate a seed later.
278              * Here in cpu_reset(), the crypto subsystem has not yet been
279              * initialized.
280              */
281             env->cp15.gcr_el1 = 0x1ffff;
282         }
283         /*
284          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
285          * This is not yet exposed from the Linux kernel in any way.
286          */
287         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
288 #else
289         /* Reset into the highest available EL */
290         if (arm_feature(env, ARM_FEATURE_EL3)) {
291             env->pstate = PSTATE_MODE_EL3h;
292         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
293             env->pstate = PSTATE_MODE_EL2h;
294         } else {
295             env->pstate = PSTATE_MODE_EL1h;
296         }
297 
298         /* Sample rvbar at reset.  */
299         env->cp15.rvbar = cpu->rvbar_prop;
300         env->pc = env->cp15.rvbar;
301 #endif
302     } else {
303 #if defined(CONFIG_USER_ONLY)
304         /* Userspace expects access to cp10 and cp11 for FP/Neon */
305         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
306                                          CPACR, CP10, 3);
307         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
308                                          CPACR, CP11, 3);
309 #endif
310     }
311 
312 #if defined(CONFIG_USER_ONLY)
313     env->uncached_cpsr = ARM_CPU_MODE_USR;
314     /* For user mode we must enable access to coprocessors */
315     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
316     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
317         env->cp15.c15_cpar = 3;
318     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
319         env->cp15.c15_cpar = 1;
320     }
321 #else
322 
323     /*
324      * If the highest available EL is EL2, AArch32 will start in Hyp
325      * mode; otherwise it starts in SVC. Note that if we start in
326      * AArch64 then these values in the uncached_cpsr will be ignored.
327      */
328     if (arm_feature(env, ARM_FEATURE_EL2) &&
329         !arm_feature(env, ARM_FEATURE_EL3)) {
330         env->uncached_cpsr = ARM_CPU_MODE_HYP;
331     } else {
332         env->uncached_cpsr = ARM_CPU_MODE_SVC;
333     }
334     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
335 
336     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
337      * executing as AArch32 then check if highvecs are enabled and
338      * adjust the PC accordingly.
339      */
340     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
341         env->regs[15] = 0xFFFF0000;
342     }
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_M)) {
348 #ifndef CONFIG_USER_ONLY
349         uint32_t initial_msp; /* Loaded from 0x0 */
350         uint32_t initial_pc; /* Loaded from 0x4 */
351         uint8_t *rom;
352         uint32_t vecbase;
353 #endif
354 
355         if (cpu_isar_feature(aa32_lob, cpu)) {
356             /*
357              * LTPSIZE is constant 4 if MVE not implemented, and resets
358              * to an UNKNOWN value if MVE is implemented. We choose to
359              * always reset to 4.
360              */
361             env->v7m.ltpsize = 4;
362             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
363             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
364             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
365         }
366 
367         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
368             env->v7m.secure = true;
369         } else {
370             /* This bit resets to 0 if security is supported, but 1 if
371              * it is not. The bit is not present in v7M, but we set it
372              * here so we can avoid having to make checks on it conditional
373              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
374              */
375             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
376             /*
377              * Set NSACR to indicate "NS access permitted to everything";
378              * this avoids having to have all the tests of it being
379              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
380              * v8.1M the guest-visible value of NSACR in a CPU without the
381              * Security Extension is 0xcff.
382              */
383             env->v7m.nsacr = 0xcff;
384         }
385 
386         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
387          * that it resets to 1, so QEMU always does that rather than making
388          * it dependent on CPU model. In v8M it is RES1.
389          */
390         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
391         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
392         if (arm_feature(env, ARM_FEATURE_V8)) {
393             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
394             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
395             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
396         }
397         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
398             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
399             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
400         }
401 
402         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
403             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
404             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
405                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
406         }
407 
408 #ifndef CONFIG_USER_ONLY
409         /* Unlike A/R profile, M profile defines the reset LR value */
410         env->regs[14] = 0xffffffff;
411 
412         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
413         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
414 
415         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
416         vecbase = env->v7m.vecbase[env->v7m.secure];
417         rom = rom_ptr_for_as(s->as, vecbase, 8);
418         if (rom) {
419             /* Address zero is covered by ROM which hasn't yet been
420              * copied into physical memory.
421              */
422             initial_msp = ldl_p(rom);
423             initial_pc = ldl_p(rom + 4);
424         } else {
425             /* Address zero not covered by a ROM blob, or the ROM blob
426              * is in non-modifiable memory and this is a second reset after
427              * it got copied into memory. In the latter case, rom_ptr
428              * will return a NULL pointer and we should use ldl_phys instead.
429              */
430             initial_msp = ldl_phys(s->as, vecbase);
431             initial_pc = ldl_phys(s->as, vecbase + 4);
432         }
433 
434         qemu_log_mask(CPU_LOG_INT,
435                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
436                       initial_msp, initial_pc);
437 
438         env->regs[13] = initial_msp & 0xFFFFFFFC;
439         env->regs[15] = initial_pc & ~1;
440         env->thumb = initial_pc & 1;
441 #else
442         /*
443          * For user mode we run non-secure and with access to the FPU.
444          * The FPU context is active (ie does not need further setup)
445          * and is owned by non-secure.
446          */
447         env->v7m.secure = false;
448         env->v7m.nsacr = 0xcff;
449         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
450         env->v7m.fpccr[M_REG_S] &=
451             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
452         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
453 #endif
454     }
455 
456     /* M profile requires that reset clears the exclusive monitor;
457      * A profile does not, but clearing it makes more sense than having it
458      * set with an exclusive access on address zero.
459      */
460     arm_clear_exclusive(env);
461 
462     if (arm_feature(env, ARM_FEATURE_PMSA)) {
463         if (cpu->pmsav7_dregion > 0) {
464             if (arm_feature(env, ARM_FEATURE_V8)) {
465                 memset(env->pmsav8.rbar[M_REG_NS], 0,
466                        sizeof(*env->pmsav8.rbar[M_REG_NS])
467                        * cpu->pmsav7_dregion);
468                 memset(env->pmsav8.rlar[M_REG_NS], 0,
469                        sizeof(*env->pmsav8.rlar[M_REG_NS])
470                        * cpu->pmsav7_dregion);
471                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
472                     memset(env->pmsav8.rbar[M_REG_S], 0,
473                            sizeof(*env->pmsav8.rbar[M_REG_S])
474                            * cpu->pmsav7_dregion);
475                     memset(env->pmsav8.rlar[M_REG_S], 0,
476                            sizeof(*env->pmsav8.rlar[M_REG_S])
477                            * cpu->pmsav7_dregion);
478                 }
479             } else if (arm_feature(env, ARM_FEATURE_V7)) {
480                 memset(env->pmsav7.drbar, 0,
481                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
482                 memset(env->pmsav7.drsr, 0,
483                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
484                 memset(env->pmsav7.dracr, 0,
485                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
486             }
487         }
488         env->pmsav7.rnr[M_REG_NS] = 0;
489         env->pmsav7.rnr[M_REG_S] = 0;
490         env->pmsav8.mair0[M_REG_NS] = 0;
491         env->pmsav8.mair0[M_REG_S] = 0;
492         env->pmsav8.mair1[M_REG_NS] = 0;
493         env->pmsav8.mair1[M_REG_S] = 0;
494     }
495 
496     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
497         if (cpu->sau_sregion > 0) {
498             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
499             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
500         }
501         env->sau.rnr = 0;
502         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
503          * the Cortex-M33 does.
504          */
505         env->sau.ctrl = 0;
506     }
507 
508     set_flush_to_zero(1, &env->vfp.standard_fp_status);
509     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
510     set_default_nan_mode(1, &env->vfp.standard_fp_status);
511     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
512     set_float_detect_tininess(float_tininess_before_rounding,
513                               &env->vfp.fp_status);
514     set_float_detect_tininess(float_tininess_before_rounding,
515                               &env->vfp.standard_fp_status);
516     set_float_detect_tininess(float_tininess_before_rounding,
517                               &env->vfp.fp_status_f16);
518     set_float_detect_tininess(float_tininess_before_rounding,
519                               &env->vfp.standard_fp_status_f16);
520 #ifndef CONFIG_USER_ONLY
521     if (kvm_enabled()) {
522         kvm_arm_reset_vcpu(cpu);
523     }
524 #endif
525 
526     hw_breakpoint_update_all(cpu);
527     hw_watchpoint_update_all(cpu);
528     arm_rebuild_hflags(env);
529 }
530 
531 #ifndef CONFIG_USER_ONLY
532 
533 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
534                                      unsigned int target_el,
535                                      unsigned int cur_el, bool secure,
536                                      uint64_t hcr_el2)
537 {
538     CPUARMState *env = cs->env_ptr;
539     bool pstate_unmasked;
540     bool unmasked = false;
541 
542     /*
543      * Don't take exceptions if they target a lower EL.
544      * This check should catch any exceptions that would not be taken
545      * but left pending.
546      */
547     if (cur_el > target_el) {
548         return false;
549     }
550 
551     switch (excp_idx) {
552     case EXCP_FIQ:
553         pstate_unmasked = !(env->daif & PSTATE_F);
554         break;
555 
556     case EXCP_IRQ:
557         pstate_unmasked = !(env->daif & PSTATE_I);
558         break;
559 
560     case EXCP_VFIQ:
561         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
562             /* VFIQs are only taken when hypervized.  */
563             return false;
564         }
565         return !(env->daif & PSTATE_F);
566     case EXCP_VIRQ:
567         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
568             /* VIRQs are only taken when hypervized.  */
569             return false;
570         }
571         return !(env->daif & PSTATE_I);
572     case EXCP_VSERR:
573         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
574             /* VIRQs are only taken when hypervized.  */
575             return false;
576         }
577         return !(env->daif & PSTATE_A);
578     default:
579         g_assert_not_reached();
580     }
581 
582     /*
583      * Use the target EL, current execution state and SCR/HCR settings to
584      * determine whether the corresponding CPSR bit is used to mask the
585      * interrupt.
586      */
587     if ((target_el > cur_el) && (target_el != 1)) {
588         /* Exceptions targeting a higher EL may not be maskable */
589         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
590             switch (target_el) {
591             case 2:
592                 /*
593                  * According to ARM DDI 0487H.a, an interrupt can be masked
594                  * when HCR_E2H and HCR_TGE are both set regardless of the
595                  * current Security state. Note that we need to revisit this
596                  * part again once we need to support NMI.
597                  */
598                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
599                         unmasked = true;
600                 }
601                 break;
602             case 3:
603                 /* Interrupt cannot be masked when the target EL is 3 */
604                 unmasked = true;
605                 break;
606             default:
607                 g_assert_not_reached();
608             }
609         } else {
610             /*
611              * The old 32-bit-only environment has a more complicated
612              * masking setup. HCR and SCR bits not only affect interrupt
613              * routing but also change the behaviour of masking.
614              */
615             bool hcr, scr;
616 
617             switch (excp_idx) {
618             case EXCP_FIQ:
619                 /*
620                  * If FIQs are routed to EL3 or EL2 then there are cases where
621                  * we override the CPSR.F in determining if the exception is
622                  * masked or not. If neither of these are set then we fall back
623                  * to the CPSR.F setting otherwise we further assess the state
624                  * below.
625                  */
626                 hcr = hcr_el2 & HCR_FMO;
627                 scr = (env->cp15.scr_el3 & SCR_FIQ);
628 
629                 /*
630                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
631                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
632                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
633                  * when non-secure but only when FIQs are only routed to EL3.
634                  */
635                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
636                 break;
637             case EXCP_IRQ:
638                 /*
639                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
640                  * we may override the CPSR.I masking when in non-secure state.
641                  * The SCR.IRQ setting has already been taken into consideration
642                  * when setting the target EL, so it does not have a further
643                  * affect here.
644                  */
645                 hcr = hcr_el2 & HCR_IMO;
646                 scr = false;
647                 break;
648             default:
649                 g_assert_not_reached();
650             }
651 
652             if ((scr || hcr) && !secure) {
653                 unmasked = true;
654             }
655         }
656     }
657 
658     /*
659      * The PSTATE bits only mask the interrupt if we have not overriden the
660      * ability above.
661      */
662     return unmasked || pstate_unmasked;
663 }
664 
665 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
666 {
667     CPUClass *cc = CPU_GET_CLASS(cs);
668     CPUARMState *env = cs->env_ptr;
669     uint32_t cur_el = arm_current_el(env);
670     bool secure = arm_is_secure(env);
671     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
672     uint32_t target_el;
673     uint32_t excp_idx;
674 
675     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
676 
677     if (interrupt_request & CPU_INTERRUPT_FIQ) {
678         excp_idx = EXCP_FIQ;
679         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
680         if (arm_excp_unmasked(cs, excp_idx, target_el,
681                               cur_el, secure, hcr_el2)) {
682             goto found;
683         }
684     }
685     if (interrupt_request & CPU_INTERRUPT_HARD) {
686         excp_idx = EXCP_IRQ;
687         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
688         if (arm_excp_unmasked(cs, excp_idx, target_el,
689                               cur_el, secure, hcr_el2)) {
690             goto found;
691         }
692     }
693     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
694         excp_idx = EXCP_VIRQ;
695         target_el = 1;
696         if (arm_excp_unmasked(cs, excp_idx, target_el,
697                               cur_el, secure, hcr_el2)) {
698             goto found;
699         }
700     }
701     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
702         excp_idx = EXCP_VFIQ;
703         target_el = 1;
704         if (arm_excp_unmasked(cs, excp_idx, target_el,
705                               cur_el, secure, hcr_el2)) {
706             goto found;
707         }
708     }
709     if (interrupt_request & CPU_INTERRUPT_VSERR) {
710         excp_idx = EXCP_VSERR;
711         target_el = 1;
712         if (arm_excp_unmasked(cs, excp_idx, target_el,
713                               cur_el, secure, hcr_el2)) {
714             /* Taking a virtual abort clears HCR_EL2.VSE */
715             env->cp15.hcr_el2 &= ~HCR_VSE;
716             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
717             goto found;
718         }
719     }
720     return false;
721 
722  found:
723     cs->exception_index = excp_idx;
724     env->exception.target_el = target_el;
725     cc->tcg_ops->do_interrupt(cs);
726     return true;
727 }
728 #endif /* !CONFIG_USER_ONLY */
729 
730 void arm_cpu_update_virq(ARMCPU *cpu)
731 {
732     /*
733      * Update the interrupt level for VIRQ, which is the logical OR of
734      * the HCR_EL2.VI bit and the input line level from the GIC.
735      */
736     CPUARMState *env = &cpu->env;
737     CPUState *cs = CPU(cpu);
738 
739     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
740         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
741 
742     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
743         if (new_state) {
744             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
745         } else {
746             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
747         }
748     }
749 }
750 
751 void arm_cpu_update_vfiq(ARMCPU *cpu)
752 {
753     /*
754      * Update the interrupt level for VFIQ, which is the logical OR of
755      * the HCR_EL2.VF bit and the input line level from the GIC.
756      */
757     CPUARMState *env = &cpu->env;
758     CPUState *cs = CPU(cpu);
759 
760     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
761         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
762 
763     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
764         if (new_state) {
765             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
766         } else {
767             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
768         }
769     }
770 }
771 
772 void arm_cpu_update_vserr(ARMCPU *cpu)
773 {
774     /*
775      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
776      */
777     CPUARMState *env = &cpu->env;
778     CPUState *cs = CPU(cpu);
779 
780     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
781 
782     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
783         if (new_state) {
784             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
785         } else {
786             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
787         }
788     }
789 }
790 
791 #ifndef CONFIG_USER_ONLY
792 static void arm_cpu_set_irq(void *opaque, int irq, int level)
793 {
794     ARMCPU *cpu = opaque;
795     CPUARMState *env = &cpu->env;
796     CPUState *cs = CPU(cpu);
797     static const int mask[] = {
798         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
799         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
800         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
801         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
802     };
803 
804     if (!arm_feature(env, ARM_FEATURE_EL2) &&
805         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
806         /*
807          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
808          * have EL2 support we don't care. (Unless the guest is doing something
809          * silly this will only be calls saying "level is still 0".)
810          */
811         return;
812     }
813 
814     if (level) {
815         env->irq_line_state |= mask[irq];
816     } else {
817         env->irq_line_state &= ~mask[irq];
818     }
819 
820     switch (irq) {
821     case ARM_CPU_VIRQ:
822         arm_cpu_update_virq(cpu);
823         break;
824     case ARM_CPU_VFIQ:
825         arm_cpu_update_vfiq(cpu);
826         break;
827     case ARM_CPU_IRQ:
828     case ARM_CPU_FIQ:
829         if (level) {
830             cpu_interrupt(cs, mask[irq]);
831         } else {
832             cpu_reset_interrupt(cs, mask[irq]);
833         }
834         break;
835     default:
836         g_assert_not_reached();
837     }
838 }
839 
840 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
841 {
842 #ifdef CONFIG_KVM
843     ARMCPU *cpu = opaque;
844     CPUARMState *env = &cpu->env;
845     CPUState *cs = CPU(cpu);
846     uint32_t linestate_bit;
847     int irq_id;
848 
849     switch (irq) {
850     case ARM_CPU_IRQ:
851         irq_id = KVM_ARM_IRQ_CPU_IRQ;
852         linestate_bit = CPU_INTERRUPT_HARD;
853         break;
854     case ARM_CPU_FIQ:
855         irq_id = KVM_ARM_IRQ_CPU_FIQ;
856         linestate_bit = CPU_INTERRUPT_FIQ;
857         break;
858     default:
859         g_assert_not_reached();
860     }
861 
862     if (level) {
863         env->irq_line_state |= linestate_bit;
864     } else {
865         env->irq_line_state &= ~linestate_bit;
866     }
867     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
868 #endif
869 }
870 
871 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
872 {
873     ARMCPU *cpu = ARM_CPU(cs);
874     CPUARMState *env = &cpu->env;
875 
876     cpu_synchronize_state(cs);
877     return arm_cpu_data_is_big_endian(env);
878 }
879 
880 #endif
881 
882 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
883 {
884     ARMCPU *ac = ARM_CPU(cpu);
885     CPUARMState *env = &ac->env;
886     bool sctlr_b;
887 
888     if (is_a64(env)) {
889         info->cap_arch = CS_ARCH_ARM64;
890         info->cap_insn_unit = 4;
891         info->cap_insn_split = 4;
892     } else {
893         int cap_mode;
894         if (env->thumb) {
895             info->cap_insn_unit = 2;
896             info->cap_insn_split = 4;
897             cap_mode = CS_MODE_THUMB;
898         } else {
899             info->cap_insn_unit = 4;
900             info->cap_insn_split = 4;
901             cap_mode = CS_MODE_ARM;
902         }
903         if (arm_feature(env, ARM_FEATURE_V8)) {
904             cap_mode |= CS_MODE_V8;
905         }
906         if (arm_feature(env, ARM_FEATURE_M)) {
907             cap_mode |= CS_MODE_MCLASS;
908         }
909         info->cap_arch = CS_ARCH_ARM;
910         info->cap_mode = cap_mode;
911     }
912 
913     sctlr_b = arm_sctlr_b(env);
914     if (bswap_code(sctlr_b)) {
915 #if TARGET_BIG_ENDIAN
916         info->endian = BFD_ENDIAN_LITTLE;
917 #else
918         info->endian = BFD_ENDIAN_BIG;
919 #endif
920     }
921     info->flags &= ~INSN_ARM_BE32;
922 #ifndef CONFIG_USER_ONLY
923     if (sctlr_b) {
924         info->flags |= INSN_ARM_BE32;
925     }
926 #endif
927 }
928 
929 #ifdef TARGET_AARCH64
930 
931 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
932 {
933     ARMCPU *cpu = ARM_CPU(cs);
934     CPUARMState *env = &cpu->env;
935     uint32_t psr = pstate_read(env);
936     int i;
937     int el = arm_current_el(env);
938     const char *ns_status;
939     bool sve;
940 
941     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
942     for (i = 0; i < 32; i++) {
943         if (i == 31) {
944             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
945         } else {
946             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
947                          (i + 2) % 3 ? " " : "\n");
948         }
949     }
950 
951     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
952         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
953     } else {
954         ns_status = "";
955     }
956     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
957                  psr,
958                  psr & PSTATE_N ? 'N' : '-',
959                  psr & PSTATE_Z ? 'Z' : '-',
960                  psr & PSTATE_C ? 'C' : '-',
961                  psr & PSTATE_V ? 'V' : '-',
962                  ns_status,
963                  el,
964                  psr & PSTATE_SP ? 'h' : 't');
965 
966     if (cpu_isar_feature(aa64_sme, cpu)) {
967         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
968                      env->svcr,
969                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
970                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
971     }
972     if (cpu_isar_feature(aa64_bti, cpu)) {
973         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
974     }
975     if (!(flags & CPU_DUMP_FPU)) {
976         qemu_fprintf(f, "\n");
977         return;
978     }
979     if (fp_exception_el(env, el) != 0) {
980         qemu_fprintf(f, "    FPU disabled\n");
981         return;
982     }
983     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
984                  vfp_get_fpcr(env), vfp_get_fpsr(env));
985 
986     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
987         sve = sme_exception_el(env, el) == 0;
988     } else if (cpu_isar_feature(aa64_sve, cpu)) {
989         sve = sve_exception_el(env, el) == 0;
990     } else {
991         sve = false;
992     }
993 
994     if (sve) {
995         int j, zcr_len = sve_vqm1_for_el(env, el);
996 
997         for (i = 0; i <= FFR_PRED_NUM; i++) {
998             bool eol;
999             if (i == FFR_PRED_NUM) {
1000                 qemu_fprintf(f, "FFR=");
1001                 /* It's last, so end the line.  */
1002                 eol = true;
1003             } else {
1004                 qemu_fprintf(f, "P%02d=", i);
1005                 switch (zcr_len) {
1006                 case 0:
1007                     eol = i % 8 == 7;
1008                     break;
1009                 case 1:
1010                     eol = i % 6 == 5;
1011                     break;
1012                 case 2:
1013                 case 3:
1014                     eol = i % 3 == 2;
1015                     break;
1016                 default:
1017                     /* More than one quadword per predicate.  */
1018                     eol = true;
1019                     break;
1020                 }
1021             }
1022             for (j = zcr_len / 4; j >= 0; j--) {
1023                 int digits;
1024                 if (j * 4 + 4 <= zcr_len + 1) {
1025                     digits = 16;
1026                 } else {
1027                     digits = (zcr_len % 4 + 1) * 4;
1028                 }
1029                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1030                              env->vfp.pregs[i].p[j],
1031                              j ? ":" : eol ? "\n" : " ");
1032             }
1033         }
1034 
1035         for (i = 0; i < 32; i++) {
1036             if (zcr_len == 0) {
1037                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1038                              i, env->vfp.zregs[i].d[1],
1039                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1040             } else if (zcr_len == 1) {
1041                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1042                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1043                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1044                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1045             } else {
1046                 for (j = zcr_len; j >= 0; j--) {
1047                     bool odd = (zcr_len - j) % 2 != 0;
1048                     if (j == zcr_len) {
1049                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1050                     } else if (!odd) {
1051                         if (j > 0) {
1052                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1053                         } else {
1054                             qemu_fprintf(f, "     [%x]=", j);
1055                         }
1056                     }
1057                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1058                                  env->vfp.zregs[i].d[j * 2 + 1],
1059                                  env->vfp.zregs[i].d[j * 2],
1060                                  odd || j == 0 ? "\n" : ":");
1061                 }
1062             }
1063         }
1064     } else {
1065         for (i = 0; i < 32; i++) {
1066             uint64_t *q = aa64_vfp_qreg(env, i);
1067             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1068                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1069         }
1070     }
1071 }
1072 
1073 #else
1074 
1075 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1076 {
1077     g_assert_not_reached();
1078 }
1079 
1080 #endif
1081 
1082 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1083 {
1084     ARMCPU *cpu = ARM_CPU(cs);
1085     CPUARMState *env = &cpu->env;
1086     int i;
1087 
1088     if (is_a64(env)) {
1089         aarch64_cpu_dump_state(cs, f, flags);
1090         return;
1091     }
1092 
1093     for (i = 0; i < 16; i++) {
1094         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1095         if ((i % 4) == 3) {
1096             qemu_fprintf(f, "\n");
1097         } else {
1098             qemu_fprintf(f, " ");
1099         }
1100     }
1101 
1102     if (arm_feature(env, ARM_FEATURE_M)) {
1103         uint32_t xpsr = xpsr_read(env);
1104         const char *mode;
1105         const char *ns_status = "";
1106 
1107         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1108             ns_status = env->v7m.secure ? "S " : "NS ";
1109         }
1110 
1111         if (xpsr & XPSR_EXCP) {
1112             mode = "handler";
1113         } else {
1114             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1115                 mode = "unpriv-thread";
1116             } else {
1117                 mode = "priv-thread";
1118             }
1119         }
1120 
1121         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1122                      xpsr,
1123                      xpsr & XPSR_N ? 'N' : '-',
1124                      xpsr & XPSR_Z ? 'Z' : '-',
1125                      xpsr & XPSR_C ? 'C' : '-',
1126                      xpsr & XPSR_V ? 'V' : '-',
1127                      xpsr & XPSR_T ? 'T' : 'A',
1128                      ns_status,
1129                      mode);
1130     } else {
1131         uint32_t psr = cpsr_read(env);
1132         const char *ns_status = "";
1133 
1134         if (arm_feature(env, ARM_FEATURE_EL3) &&
1135             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1136             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1137         }
1138 
1139         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1140                      psr,
1141                      psr & CPSR_N ? 'N' : '-',
1142                      psr & CPSR_Z ? 'Z' : '-',
1143                      psr & CPSR_C ? 'C' : '-',
1144                      psr & CPSR_V ? 'V' : '-',
1145                      psr & CPSR_T ? 'T' : 'A',
1146                      ns_status,
1147                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1148     }
1149 
1150     if (flags & CPU_DUMP_FPU) {
1151         int numvfpregs = 0;
1152         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1153             numvfpregs = 32;
1154         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1155             numvfpregs = 16;
1156         }
1157         for (i = 0; i < numvfpregs; i++) {
1158             uint64_t v = *aa32_vfp_dreg(env, i);
1159             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1160                          i * 2, (uint32_t)v,
1161                          i * 2 + 1, (uint32_t)(v >> 32),
1162                          i, v);
1163         }
1164         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1165         if (cpu_isar_feature(aa32_mve, cpu)) {
1166             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1167         }
1168     }
1169 }
1170 
1171 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1172 {
1173     uint32_t Aff1 = idx / clustersz;
1174     uint32_t Aff0 = idx % clustersz;
1175     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1176 }
1177 
1178 static void arm_cpu_initfn(Object *obj)
1179 {
1180     ARMCPU *cpu = ARM_CPU(obj);
1181 
1182     cpu_set_cpustate_pointers(cpu);
1183     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1184                                          NULL, g_free);
1185 
1186     QLIST_INIT(&cpu->pre_el_change_hooks);
1187     QLIST_INIT(&cpu->el_change_hooks);
1188 
1189 #ifdef CONFIG_USER_ONLY
1190 # ifdef TARGET_AARCH64
1191     /*
1192      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1193      * These values were chosen to fit within the default signal frame.
1194      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1195      * and our corresponding cpu property.
1196      */
1197     cpu->sve_default_vq = 4;
1198     cpu->sme_default_vq = 2;
1199 # endif
1200 #else
1201     /* Our inbound IRQ and FIQ lines */
1202     if (kvm_enabled()) {
1203         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1204          * the same interface as non-KVM CPUs.
1205          */
1206         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1207     } else {
1208         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1209     }
1210 
1211     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1212                        ARRAY_SIZE(cpu->gt_timer_outputs));
1213 
1214     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1215                              "gicv3-maintenance-interrupt", 1);
1216     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1217                              "pmu-interrupt", 1);
1218 #endif
1219 
1220     /* DTB consumers generally don't in fact care what the 'compatible'
1221      * string is, so always provide some string and trust that a hypothetical
1222      * picky DTB consumer will also provide a helpful error message.
1223      */
1224     cpu->dtb_compatible = "qemu,unknown";
1225     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1226     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1227 
1228     if (tcg_enabled() || hvf_enabled()) {
1229         /* TCG and HVF implement PSCI 1.1 */
1230         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1231     }
1232 }
1233 
1234 static Property arm_cpu_gt_cntfrq_property =
1235             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1236                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1237 
1238 static Property arm_cpu_reset_cbar_property =
1239             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1240 
1241 static Property arm_cpu_reset_hivecs_property =
1242             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1243 
1244 #ifndef CONFIG_USER_ONLY
1245 static Property arm_cpu_has_el2_property =
1246             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1247 
1248 static Property arm_cpu_has_el3_property =
1249             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1250 #endif
1251 
1252 static Property arm_cpu_cfgend_property =
1253             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1254 
1255 static Property arm_cpu_has_vfp_property =
1256             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1257 
1258 static Property arm_cpu_has_neon_property =
1259             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1260 
1261 static Property arm_cpu_has_dsp_property =
1262             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1263 
1264 static Property arm_cpu_has_mpu_property =
1265             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1266 
1267 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1268  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1269  * the right value for that particular CPU type, and we don't want
1270  * to override that with an incorrect constant value.
1271  */
1272 static Property arm_cpu_pmsav7_dregion_property =
1273             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1274                                            pmsav7_dregion,
1275                                            qdev_prop_uint32, uint32_t);
1276 
1277 static bool arm_get_pmu(Object *obj, Error **errp)
1278 {
1279     ARMCPU *cpu = ARM_CPU(obj);
1280 
1281     return cpu->has_pmu;
1282 }
1283 
1284 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1285 {
1286     ARMCPU *cpu = ARM_CPU(obj);
1287 
1288     if (value) {
1289         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1290             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1291             return;
1292         }
1293         set_feature(&cpu->env, ARM_FEATURE_PMU);
1294     } else {
1295         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1296     }
1297     cpu->has_pmu = value;
1298 }
1299 
1300 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1301 {
1302     /*
1303      * The exact approach to calculating guest ticks is:
1304      *
1305      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1306      *              NANOSECONDS_PER_SECOND);
1307      *
1308      * We don't do that. Rather we intentionally use integer division
1309      * truncation below and in the caller for the conversion of host monotonic
1310      * time to guest ticks to provide the exact inverse for the semantics of
1311      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1312      * it loses precision when representing frequencies where
1313      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1314      * provide an exact inverse leads to scheduling timers with negative
1315      * periods, which in turn leads to sticky behaviour in the guest.
1316      *
1317      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1318      * cannot become zero.
1319      */
1320     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1321       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1322 }
1323 
1324 void arm_cpu_post_init(Object *obj)
1325 {
1326     ARMCPU *cpu = ARM_CPU(obj);
1327 
1328     /* M profile implies PMSA. We have to do this here rather than
1329      * in realize with the other feature-implication checks because
1330      * we look at the PMSA bit to see if we should add some properties.
1331      */
1332     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1333         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1334     }
1335 
1336     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1337         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1338         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1339     }
1340 
1341     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1342         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1343     }
1344 
1345     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1346         object_property_add_uint64_ptr(obj, "rvbar",
1347                                        &cpu->rvbar_prop,
1348                                        OBJ_PROP_FLAG_READWRITE);
1349     }
1350 
1351 #ifndef CONFIG_USER_ONLY
1352     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1353         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1354          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1355          */
1356         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1357 
1358         object_property_add_link(obj, "secure-memory",
1359                                  TYPE_MEMORY_REGION,
1360                                  (Object **)&cpu->secure_memory,
1361                                  qdev_prop_allow_set_link_before_realize,
1362                                  OBJ_PROP_LINK_STRONG);
1363     }
1364 
1365     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1366         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1367     }
1368 #endif
1369 
1370     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1371         cpu->has_pmu = true;
1372         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1373     }
1374 
1375     /*
1376      * Allow user to turn off VFP and Neon support, but only for TCG --
1377      * KVM does not currently allow us to lie to the guest about its
1378      * ID/feature registers, so the guest always sees what the host has.
1379      */
1380     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1381         ? cpu_isar_feature(aa64_fp_simd, cpu)
1382         : cpu_isar_feature(aa32_vfp, cpu)) {
1383         cpu->has_vfp = true;
1384         if (!kvm_enabled()) {
1385             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1386         }
1387     }
1388 
1389     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1390         cpu->has_neon = true;
1391         if (!kvm_enabled()) {
1392             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1393         }
1394     }
1395 
1396     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1397         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1398         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1399     }
1400 
1401     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1402         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1403         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1404             qdev_property_add_static(DEVICE(obj),
1405                                      &arm_cpu_pmsav7_dregion_property);
1406         }
1407     }
1408 
1409     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1410         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1411                                  qdev_prop_allow_set_link_before_realize,
1412                                  OBJ_PROP_LINK_STRONG);
1413         /*
1414          * M profile: initial value of the Secure VTOR. We can't just use
1415          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1416          * the property to be set after realize.
1417          */
1418         object_property_add_uint32_ptr(obj, "init-svtor",
1419                                        &cpu->init_svtor,
1420                                        OBJ_PROP_FLAG_READWRITE);
1421     }
1422     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1423         /*
1424          * Initial value of the NS VTOR (for cores without the Security
1425          * extension, this is the only VTOR)
1426          */
1427         object_property_add_uint32_ptr(obj, "init-nsvtor",
1428                                        &cpu->init_nsvtor,
1429                                        OBJ_PROP_FLAG_READWRITE);
1430     }
1431 
1432     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1433     object_property_add_uint32_ptr(obj, "psci-conduit",
1434                                    &cpu->psci_conduit,
1435                                    OBJ_PROP_FLAG_READWRITE);
1436 
1437     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1438 
1439     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1440         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1441     }
1442 
1443     if (kvm_enabled()) {
1444         kvm_arm_add_vcpu_properties(obj);
1445     }
1446 
1447 #ifndef CONFIG_USER_ONLY
1448     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1449         cpu_isar_feature(aa64_mte, cpu)) {
1450         object_property_add_link(obj, "tag-memory",
1451                                  TYPE_MEMORY_REGION,
1452                                  (Object **)&cpu->tag_memory,
1453                                  qdev_prop_allow_set_link_before_realize,
1454                                  OBJ_PROP_LINK_STRONG);
1455 
1456         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1457             object_property_add_link(obj, "secure-tag-memory",
1458                                      TYPE_MEMORY_REGION,
1459                                      (Object **)&cpu->secure_tag_memory,
1460                                      qdev_prop_allow_set_link_before_realize,
1461                                      OBJ_PROP_LINK_STRONG);
1462         }
1463     }
1464 #endif
1465 }
1466 
1467 static void arm_cpu_finalizefn(Object *obj)
1468 {
1469     ARMCPU *cpu = ARM_CPU(obj);
1470     ARMELChangeHook *hook, *next;
1471 
1472     g_hash_table_destroy(cpu->cp_regs);
1473 
1474     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1475         QLIST_REMOVE(hook, node);
1476         g_free(hook);
1477     }
1478     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1479         QLIST_REMOVE(hook, node);
1480         g_free(hook);
1481     }
1482 #ifndef CONFIG_USER_ONLY
1483     if (cpu->pmu_timer) {
1484         timer_free(cpu->pmu_timer);
1485     }
1486 #endif
1487 }
1488 
1489 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1490 {
1491     Error *local_err = NULL;
1492 
1493 #ifdef TARGET_AARCH64
1494     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1495         arm_cpu_sve_finalize(cpu, &local_err);
1496         if (local_err != NULL) {
1497             error_propagate(errp, local_err);
1498             return;
1499         }
1500 
1501         arm_cpu_sme_finalize(cpu, &local_err);
1502         if (local_err != NULL) {
1503             error_propagate(errp, local_err);
1504             return;
1505         }
1506 
1507         arm_cpu_pauth_finalize(cpu, &local_err);
1508         if (local_err != NULL) {
1509             error_propagate(errp, local_err);
1510             return;
1511         }
1512 
1513         arm_cpu_lpa2_finalize(cpu, &local_err);
1514         if (local_err != NULL) {
1515             error_propagate(errp, local_err);
1516             return;
1517         }
1518     }
1519 #endif
1520 
1521     if (kvm_enabled()) {
1522         kvm_arm_steal_time_finalize(cpu, &local_err);
1523         if (local_err != NULL) {
1524             error_propagate(errp, local_err);
1525             return;
1526         }
1527     }
1528 }
1529 
1530 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1531 {
1532     CPUState *cs = CPU(dev);
1533     ARMCPU *cpu = ARM_CPU(dev);
1534     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1535     CPUARMState *env = &cpu->env;
1536     int pagebits;
1537     Error *local_err = NULL;
1538     bool no_aa32 = false;
1539 
1540     /* If we needed to query the host kernel for the CPU features
1541      * then it's possible that might have failed in the initfn, but
1542      * this is the first point where we can report it.
1543      */
1544     if (cpu->host_cpu_probe_failed) {
1545         if (!kvm_enabled() && !hvf_enabled()) {
1546             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1547         } else {
1548             error_setg(errp, "Failed to retrieve host CPU features");
1549         }
1550         return;
1551     }
1552 
1553 #ifndef CONFIG_USER_ONLY
1554     /* The NVIC and M-profile CPU are two halves of a single piece of
1555      * hardware; trying to use one without the other is a command line
1556      * error and will result in segfaults if not caught here.
1557      */
1558     if (arm_feature(env, ARM_FEATURE_M)) {
1559         if (!env->nvic) {
1560             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1561             return;
1562         }
1563     } else {
1564         if (env->nvic) {
1565             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1566             return;
1567         }
1568     }
1569 
1570     if (!tcg_enabled() && !qtest_enabled()) {
1571         /*
1572          * We assume that no accelerator except TCG (and the "not really an
1573          * accelerator" qtest) can handle these features, because Arm hardware
1574          * virtualization can't virtualize them.
1575          *
1576          * Catch all the cases which might cause us to create more than one
1577          * address space for the CPU (otherwise we will assert() later in
1578          * cpu_address_space_init()).
1579          */
1580         if (arm_feature(env, ARM_FEATURE_M)) {
1581             error_setg(errp,
1582                        "Cannot enable %s when using an M-profile guest CPU",
1583                        current_accel_name());
1584             return;
1585         }
1586         if (cpu->has_el3) {
1587             error_setg(errp,
1588                        "Cannot enable %s when guest CPU has EL3 enabled",
1589                        current_accel_name());
1590             return;
1591         }
1592         if (cpu->tag_memory) {
1593             error_setg(errp,
1594                        "Cannot enable %s when guest CPUs has MTE enabled",
1595                        current_accel_name());
1596             return;
1597         }
1598     }
1599 
1600     {
1601         uint64_t scale;
1602 
1603         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1604             if (!cpu->gt_cntfrq_hz) {
1605                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1606                            cpu->gt_cntfrq_hz);
1607                 return;
1608             }
1609             scale = gt_cntfrq_period_ns(cpu);
1610         } else {
1611             scale = GTIMER_SCALE;
1612         }
1613 
1614         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1615                                                arm_gt_ptimer_cb, cpu);
1616         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1617                                                arm_gt_vtimer_cb, cpu);
1618         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1619                                               arm_gt_htimer_cb, cpu);
1620         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1621                                               arm_gt_stimer_cb, cpu);
1622         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1623                                                   arm_gt_hvtimer_cb, cpu);
1624     }
1625 #endif
1626 
1627     cpu_exec_realizefn(cs, &local_err);
1628     if (local_err != NULL) {
1629         error_propagate(errp, local_err);
1630         return;
1631     }
1632 
1633     arm_cpu_finalize_features(cpu, &local_err);
1634     if (local_err != NULL) {
1635         error_propagate(errp, local_err);
1636         return;
1637     }
1638 
1639     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1640         cpu->has_vfp != cpu->has_neon) {
1641         /*
1642          * This is an architectural requirement for AArch64; AArch32 is
1643          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1644          */
1645         error_setg(errp,
1646                    "AArch64 CPUs must have both VFP and Neon or neither");
1647         return;
1648     }
1649 
1650     if (!cpu->has_vfp) {
1651         uint64_t t;
1652         uint32_t u;
1653 
1654         t = cpu->isar.id_aa64isar1;
1655         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1656         cpu->isar.id_aa64isar1 = t;
1657 
1658         t = cpu->isar.id_aa64pfr0;
1659         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1660         cpu->isar.id_aa64pfr0 = t;
1661 
1662         u = cpu->isar.id_isar6;
1663         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1664         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1665         cpu->isar.id_isar6 = u;
1666 
1667         u = cpu->isar.mvfr0;
1668         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1669         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1670         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1671         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1672         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1673         if (!arm_feature(env, ARM_FEATURE_M)) {
1674             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1675             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1676         }
1677         cpu->isar.mvfr0 = u;
1678 
1679         u = cpu->isar.mvfr1;
1680         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1681         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1682         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1683         if (arm_feature(env, ARM_FEATURE_M)) {
1684             u = FIELD_DP32(u, MVFR1, FP16, 0);
1685         }
1686         cpu->isar.mvfr1 = u;
1687 
1688         u = cpu->isar.mvfr2;
1689         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1690         cpu->isar.mvfr2 = u;
1691     }
1692 
1693     if (!cpu->has_neon) {
1694         uint64_t t;
1695         uint32_t u;
1696 
1697         unset_feature(env, ARM_FEATURE_NEON);
1698 
1699         t = cpu->isar.id_aa64isar0;
1700         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1701         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1702         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1703         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1704         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1705         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1706         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1707         cpu->isar.id_aa64isar0 = t;
1708 
1709         t = cpu->isar.id_aa64isar1;
1710         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1711         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1712         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1713         cpu->isar.id_aa64isar1 = t;
1714 
1715         t = cpu->isar.id_aa64pfr0;
1716         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1717         cpu->isar.id_aa64pfr0 = t;
1718 
1719         u = cpu->isar.id_isar5;
1720         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1721         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1722         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1723         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1724         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1725         cpu->isar.id_isar5 = u;
1726 
1727         u = cpu->isar.id_isar6;
1728         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1729         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1730         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1731         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1732         cpu->isar.id_isar6 = u;
1733 
1734         if (!arm_feature(env, ARM_FEATURE_M)) {
1735             u = cpu->isar.mvfr1;
1736             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1737             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1738             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1739             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1740             cpu->isar.mvfr1 = u;
1741 
1742             u = cpu->isar.mvfr2;
1743             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1744             cpu->isar.mvfr2 = u;
1745         }
1746     }
1747 
1748     if (!cpu->has_neon && !cpu->has_vfp) {
1749         uint64_t t;
1750         uint32_t u;
1751 
1752         t = cpu->isar.id_aa64isar0;
1753         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1754         cpu->isar.id_aa64isar0 = t;
1755 
1756         t = cpu->isar.id_aa64isar1;
1757         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1758         cpu->isar.id_aa64isar1 = t;
1759 
1760         u = cpu->isar.mvfr0;
1761         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1762         cpu->isar.mvfr0 = u;
1763 
1764         /* Despite the name, this field covers both VFP and Neon */
1765         u = cpu->isar.mvfr1;
1766         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1767         cpu->isar.mvfr1 = u;
1768     }
1769 
1770     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1771         uint32_t u;
1772 
1773         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1774 
1775         u = cpu->isar.id_isar1;
1776         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1777         cpu->isar.id_isar1 = u;
1778 
1779         u = cpu->isar.id_isar2;
1780         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1781         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1782         cpu->isar.id_isar2 = u;
1783 
1784         u = cpu->isar.id_isar3;
1785         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1786         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1787         cpu->isar.id_isar3 = u;
1788     }
1789 
1790     /* Some features automatically imply others: */
1791     if (arm_feature(env, ARM_FEATURE_V8)) {
1792         if (arm_feature(env, ARM_FEATURE_M)) {
1793             set_feature(env, ARM_FEATURE_V7);
1794         } else {
1795             set_feature(env, ARM_FEATURE_V7VE);
1796         }
1797     }
1798 
1799     /*
1800      * There exist AArch64 cpus without AArch32 support.  When KVM
1801      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1802      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1803      * As a general principle, we also do not make ID register
1804      * consistency checks anywhere unless using TCG, because only
1805      * for TCG would a consistency-check failure be a QEMU bug.
1806      */
1807     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1808         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1809     }
1810 
1811     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1812         /* v7 Virtualization Extensions. In real hardware this implies
1813          * EL2 and also the presence of the Security Extensions.
1814          * For QEMU, for backwards-compatibility we implement some
1815          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1816          * include the various other features that V7VE implies.
1817          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1818          * Security Extensions is ARM_FEATURE_EL3.
1819          */
1820         assert(!tcg_enabled() || no_aa32 ||
1821                cpu_isar_feature(aa32_arm_div, cpu));
1822         set_feature(env, ARM_FEATURE_LPAE);
1823         set_feature(env, ARM_FEATURE_V7);
1824     }
1825     if (arm_feature(env, ARM_FEATURE_V7)) {
1826         set_feature(env, ARM_FEATURE_VAPA);
1827         set_feature(env, ARM_FEATURE_THUMB2);
1828         set_feature(env, ARM_FEATURE_MPIDR);
1829         if (!arm_feature(env, ARM_FEATURE_M)) {
1830             set_feature(env, ARM_FEATURE_V6K);
1831         } else {
1832             set_feature(env, ARM_FEATURE_V6);
1833         }
1834 
1835         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1836          * non-EL3 configs. This is needed by some legacy boards.
1837          */
1838         set_feature(env, ARM_FEATURE_VBAR);
1839     }
1840     if (arm_feature(env, ARM_FEATURE_V6K)) {
1841         set_feature(env, ARM_FEATURE_V6);
1842         set_feature(env, ARM_FEATURE_MVFR);
1843     }
1844     if (arm_feature(env, ARM_FEATURE_V6)) {
1845         set_feature(env, ARM_FEATURE_V5);
1846         if (!arm_feature(env, ARM_FEATURE_M)) {
1847             assert(!tcg_enabled() || no_aa32 ||
1848                    cpu_isar_feature(aa32_jazelle, cpu));
1849             set_feature(env, ARM_FEATURE_AUXCR);
1850         }
1851     }
1852     if (arm_feature(env, ARM_FEATURE_V5)) {
1853         set_feature(env, ARM_FEATURE_V4T);
1854     }
1855     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1856         set_feature(env, ARM_FEATURE_V7MP);
1857     }
1858     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1859         set_feature(env, ARM_FEATURE_CBAR);
1860     }
1861     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1862         !arm_feature(env, ARM_FEATURE_M)) {
1863         set_feature(env, ARM_FEATURE_THUMB_DSP);
1864     }
1865 
1866     /*
1867      * We rely on no XScale CPU having VFP so we can use the same bits in the
1868      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1869      */
1870     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1871            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1872            !arm_feature(env, ARM_FEATURE_XSCALE));
1873 
1874     if (arm_feature(env, ARM_FEATURE_V7) &&
1875         !arm_feature(env, ARM_FEATURE_M) &&
1876         !arm_feature(env, ARM_FEATURE_PMSA)) {
1877         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1878          * can use 4K pages.
1879          */
1880         pagebits = 12;
1881     } else {
1882         /* For CPUs which might have tiny 1K pages, or which have an
1883          * MPU and might have small region sizes, stick with 1K pages.
1884          */
1885         pagebits = 10;
1886     }
1887     if (!set_preferred_target_page_bits(pagebits)) {
1888         /* This can only ever happen for hotplugging a CPU, or if
1889          * the board code incorrectly creates a CPU which it has
1890          * promised via minimum_page_size that it will not.
1891          */
1892         error_setg(errp, "This CPU requires a smaller page size than the "
1893                    "system is using");
1894         return;
1895     }
1896 
1897     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1898      * We don't support setting cluster ID ([16..23]) (known as Aff2
1899      * in later ARM ARM versions), or any of the higher affinity level fields,
1900      * so these bits always RAZ.
1901      */
1902     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1903         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1904                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1905     }
1906 
1907     if (cpu->reset_hivecs) {
1908             cpu->reset_sctlr |= (1 << 13);
1909     }
1910 
1911     if (cpu->cfgend) {
1912         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1913             cpu->reset_sctlr |= SCTLR_EE;
1914         } else {
1915             cpu->reset_sctlr |= SCTLR_B;
1916         }
1917     }
1918 
1919     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1920         /* If the has_el3 CPU property is disabled then we need to disable the
1921          * feature.
1922          */
1923         unset_feature(env, ARM_FEATURE_EL3);
1924 
1925         /*
1926          * Disable the security extension feature bits in the processor
1927          * feature registers as well.
1928          */
1929         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1930         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1931         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1932                                            ID_AA64PFR0, EL3, 0);
1933     }
1934 
1935     if (!cpu->has_el2) {
1936         unset_feature(env, ARM_FEATURE_EL2);
1937     }
1938 
1939     if (!cpu->has_pmu) {
1940         unset_feature(env, ARM_FEATURE_PMU);
1941     }
1942     if (arm_feature(env, ARM_FEATURE_PMU)) {
1943         pmu_init(cpu);
1944 
1945         if (!kvm_enabled()) {
1946             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1947             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1948         }
1949 
1950 #ifndef CONFIG_USER_ONLY
1951         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1952                 cpu);
1953 #endif
1954     } else {
1955         cpu->isar.id_aa64dfr0 =
1956             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1957         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1958         cpu->pmceid0 = 0;
1959         cpu->pmceid1 = 0;
1960     }
1961 
1962     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1963         /*
1964          * Disable the hypervisor feature bits in the processor feature
1965          * registers if we don't have EL2.
1966          */
1967         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1968                                            ID_AA64PFR0, EL2, 0);
1969         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1970                                        ID_PFR1, VIRTUALIZATION, 0);
1971     }
1972 
1973 #ifndef CONFIG_USER_ONLY
1974     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1975         /*
1976          * Disable the MTE feature bits if we do not have tag-memory
1977          * provided by the machine.
1978          */
1979         cpu->isar.id_aa64pfr1 =
1980             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1981     }
1982 #endif
1983 
1984     if (tcg_enabled()) {
1985         /*
1986          * Don't report the Statistical Profiling Extension in the ID
1987          * registers, because TCG doesn't implement it yet (not even a
1988          * minimal stub version) and guests will fall over when they
1989          * try to access the non-existent system registers for it.
1990          */
1991         cpu->isar.id_aa64dfr0 =
1992             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
1993     }
1994 
1995     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1996      * to false or by setting pmsav7-dregion to 0.
1997      */
1998     if (!cpu->has_mpu) {
1999         cpu->pmsav7_dregion = 0;
2000     }
2001     if (cpu->pmsav7_dregion == 0) {
2002         cpu->has_mpu = false;
2003     }
2004 
2005     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2006         arm_feature(env, ARM_FEATURE_V7)) {
2007         uint32_t nr = cpu->pmsav7_dregion;
2008 
2009         if (nr > 0xff) {
2010             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2011             return;
2012         }
2013 
2014         if (nr) {
2015             if (arm_feature(env, ARM_FEATURE_V8)) {
2016                 /* PMSAv8 */
2017                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2018                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2019                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2020                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2021                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2022                 }
2023             } else {
2024                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2025                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2026                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2027             }
2028         }
2029     }
2030 
2031     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2032         uint32_t nr = cpu->sau_sregion;
2033 
2034         if (nr > 0xff) {
2035             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2036             return;
2037         }
2038 
2039         if (nr) {
2040             env->sau.rbar = g_new0(uint32_t, nr);
2041             env->sau.rlar = g_new0(uint32_t, nr);
2042         }
2043     }
2044 
2045     if (arm_feature(env, ARM_FEATURE_EL3)) {
2046         set_feature(env, ARM_FEATURE_VBAR);
2047     }
2048 
2049     register_cp_regs_for_features(cpu);
2050     arm_cpu_register_gdb_regs_for_features(cpu);
2051 
2052     init_cpreg_list(cpu);
2053 
2054 #ifndef CONFIG_USER_ONLY
2055     MachineState *ms = MACHINE(qdev_get_machine());
2056     unsigned int smp_cpus = ms->smp.cpus;
2057     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2058 
2059     /*
2060      * We must set cs->num_ases to the final value before
2061      * the first call to cpu_address_space_init.
2062      */
2063     if (cpu->tag_memory != NULL) {
2064         cs->num_ases = 3 + has_secure;
2065     } else {
2066         cs->num_ases = 1 + has_secure;
2067     }
2068 
2069     if (has_secure) {
2070         if (!cpu->secure_memory) {
2071             cpu->secure_memory = cs->memory;
2072         }
2073         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2074                                cpu->secure_memory);
2075     }
2076 
2077     if (cpu->tag_memory != NULL) {
2078         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2079                                cpu->tag_memory);
2080         if (has_secure) {
2081             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2082                                    cpu->secure_tag_memory);
2083         }
2084     }
2085 
2086     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2087 
2088     /* No core_count specified, default to smp_cpus. */
2089     if (cpu->core_count == -1) {
2090         cpu->core_count = smp_cpus;
2091     }
2092 #endif
2093 
2094     if (tcg_enabled()) {
2095         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2096 
2097         /*
2098          * We only support DCZ blocklen that fits on one page.
2099          *
2100          * Architectually this is always true.  However TARGET_PAGE_SIZE
2101          * is variable and, for compatibility with -machine virt-2.7,
2102          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2103          * But even then, while the largest architectural DCZ blocklen
2104          * is 2KiB, no cpu actually uses such a large blocklen.
2105          */
2106         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2107 
2108         /*
2109          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2110          * both nibbles of each byte storing tag data may be written at once.
2111          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2112          */
2113         if (cpu_isar_feature(aa64_mte, cpu)) {
2114             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2115         }
2116     }
2117 
2118     qemu_init_vcpu(cs);
2119     cpu_reset(cs);
2120 
2121     acc->parent_realize(dev, errp);
2122 }
2123 
2124 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2125 {
2126     ObjectClass *oc;
2127     char *typename;
2128     char **cpuname;
2129     const char *cpunamestr;
2130 
2131     cpuname = g_strsplit(cpu_model, ",", 1);
2132     cpunamestr = cpuname[0];
2133 #ifdef CONFIG_USER_ONLY
2134     /* For backwards compatibility usermode emulation allows "-cpu any",
2135      * which has the same semantics as "-cpu max".
2136      */
2137     if (!strcmp(cpunamestr, "any")) {
2138         cpunamestr = "max";
2139     }
2140 #endif
2141     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2142     oc = object_class_by_name(typename);
2143     g_strfreev(cpuname);
2144     g_free(typename);
2145     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2146         object_class_is_abstract(oc)) {
2147         return NULL;
2148     }
2149     return oc;
2150 }
2151 
2152 static Property arm_cpu_properties[] = {
2153     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2154     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2155                         mp_affinity, ARM64_AFFINITY_INVALID),
2156     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2157     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2158     DEFINE_PROP_END_OF_LIST()
2159 };
2160 
2161 static gchar *arm_gdb_arch_name(CPUState *cs)
2162 {
2163     ARMCPU *cpu = ARM_CPU(cs);
2164     CPUARMState *env = &cpu->env;
2165 
2166     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2167         return g_strdup("iwmmxt");
2168     }
2169     return g_strdup("arm");
2170 }
2171 
2172 #ifndef CONFIG_USER_ONLY
2173 #include "hw/core/sysemu-cpu-ops.h"
2174 
2175 static const struct SysemuCPUOps arm_sysemu_ops = {
2176     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2177     .asidx_from_attrs = arm_asidx_from_attrs,
2178     .write_elf32_note = arm_cpu_write_elf32_note,
2179     .write_elf64_note = arm_cpu_write_elf64_note,
2180     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2181     .legacy_vmsd = &vmstate_arm_cpu,
2182 };
2183 #endif
2184 
2185 #ifdef CONFIG_TCG
2186 static const struct TCGCPUOps arm_tcg_ops = {
2187     .initialize = arm_translate_init,
2188     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2189     .debug_excp_handler = arm_debug_excp_handler,
2190     .restore_state_to_opc = arm_restore_state_to_opc,
2191 
2192 #ifdef CONFIG_USER_ONLY
2193     .record_sigsegv = arm_cpu_record_sigsegv,
2194     .record_sigbus = arm_cpu_record_sigbus,
2195 #else
2196     .tlb_fill = arm_cpu_tlb_fill,
2197     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2198     .do_interrupt = arm_cpu_do_interrupt,
2199     .do_transaction_failed = arm_cpu_do_transaction_failed,
2200     .do_unaligned_access = arm_cpu_do_unaligned_access,
2201     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2202     .debug_check_watchpoint = arm_debug_check_watchpoint,
2203     .debug_check_breakpoint = arm_debug_check_breakpoint,
2204 #endif /* !CONFIG_USER_ONLY */
2205 };
2206 #endif /* CONFIG_TCG */
2207 
2208 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2209 {
2210     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2211     CPUClass *cc = CPU_CLASS(acc);
2212     DeviceClass *dc = DEVICE_CLASS(oc);
2213 
2214     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2215                                     &acc->parent_realize);
2216 
2217     device_class_set_props(dc, arm_cpu_properties);
2218     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2219 
2220     cc->class_by_name = arm_cpu_class_by_name;
2221     cc->has_work = arm_cpu_has_work;
2222     cc->dump_state = arm_cpu_dump_state;
2223     cc->set_pc = arm_cpu_set_pc;
2224     cc->get_pc = arm_cpu_get_pc;
2225     cc->gdb_read_register = arm_cpu_gdb_read_register;
2226     cc->gdb_write_register = arm_cpu_gdb_write_register;
2227 #ifndef CONFIG_USER_ONLY
2228     cc->sysemu_ops = &arm_sysemu_ops;
2229 #endif
2230     cc->gdb_num_core_regs = 26;
2231     cc->gdb_core_xml_file = "arm-core.xml";
2232     cc->gdb_arch_name = arm_gdb_arch_name;
2233     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2234     cc->gdb_stop_before_watchpoint = true;
2235     cc->disas_set_info = arm_disas_set_info;
2236 
2237 #ifdef CONFIG_TCG
2238     cc->tcg_ops = &arm_tcg_ops;
2239 #endif /* CONFIG_TCG */
2240 }
2241 
2242 static void arm_cpu_instance_init(Object *obj)
2243 {
2244     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2245 
2246     acc->info->initfn(obj);
2247     arm_cpu_post_init(obj);
2248 }
2249 
2250 static void cpu_register_class_init(ObjectClass *oc, void *data)
2251 {
2252     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2253 
2254     acc->info = data;
2255 }
2256 
2257 void arm_cpu_register(const ARMCPUInfo *info)
2258 {
2259     TypeInfo type_info = {
2260         .parent = TYPE_ARM_CPU,
2261         .instance_size = sizeof(ARMCPU),
2262         .instance_align = __alignof__(ARMCPU),
2263         .instance_init = arm_cpu_instance_init,
2264         .class_size = sizeof(ARMCPUClass),
2265         .class_init = info->class_init ?: cpu_register_class_init,
2266         .class_data = (void *)info,
2267     };
2268 
2269     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2270     type_register(&type_info);
2271     g_free((void *)type_info.name);
2272 }
2273 
2274 static const TypeInfo arm_cpu_type_info = {
2275     .name = TYPE_ARM_CPU,
2276     .parent = TYPE_CPU,
2277     .instance_size = sizeof(ARMCPU),
2278     .instance_align = __alignof__(ARMCPU),
2279     .instance_init = arm_cpu_initfn,
2280     .instance_finalize = arm_cpu_finalizefn,
2281     .abstract = true,
2282     .class_size = sizeof(ARMCPUClass),
2283     .class_init = arm_cpu_class_init,
2284 };
2285 
2286 static void arm_cpu_register_types(void)
2287 {
2288     type_register_static(&arm_cpu_type_info);
2289 }
2290 
2291 type_init(arm_cpu_register_types)
2292