xref: /qemu/target/arm/cpu.c (revision 8063396b)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
178 
179     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181     }
182 
183     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184         /* 64 bit CPUs always start in 64 bit mode */
185         env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187         env->pstate = PSTATE_MODE_EL0t;
188         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190         /* Enable all PAC keys.  */
191         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192                                   SCTLR_EnDA | SCTLR_EnDB);
193         /* and to the FP/Neon instructions */
194         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195         /* and to the SVE instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197         /* with reasonable vector length */
198         if (cpu_isar_feature(aa64_sve, cpu)) {
199             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
200         }
201         /*
202          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
203          * turning on both here will produce smaller code and otherwise
204          * make no difference to the user-level emulation.
205          *
206          * In sve_probe_page, we assume that this is set.
207          * Do not modify this without other changes.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259             env->v7m.secure = true;
260         } else {
261             /* This bit resets to 0 if security is supported, but 1 if
262              * it is not. The bit is not present in v7M, but we set it
263              * here so we can avoid having to make checks on it conditional
264              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265              */
266             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267             /*
268              * Set NSACR to indicate "NS access permitted to everything";
269              * this avoids having to have all the tests of it being
270              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
271              * v8.1M the guest-visible value of NSACR in a CPU without the
272              * Security Extension is 0xcff.
273              */
274             env->v7m.nsacr = 0xcff;
275         }
276 
277         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
278          * that it resets to 1, so QEMU always does that rather than making
279          * it dependent on CPU model. In v8M it is RES1.
280          */
281         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
282         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
283         if (arm_feature(env, ARM_FEATURE_V8)) {
284             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
285             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
286             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
287         }
288         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
289             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
290             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
291         }
292 
293         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
294             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
295             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
296                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
297         }
298         /* Unlike A/R profile, M profile defines the reset LR value */
299         env->regs[14] = 0xffffffff;
300 
301         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
302 
303         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
304         vecbase = env->v7m.vecbase[env->v7m.secure];
305         rom = rom_ptr(vecbase, 8);
306         if (rom) {
307             /* Address zero is covered by ROM which hasn't yet been
308              * copied into physical memory.
309              */
310             initial_msp = ldl_p(rom);
311             initial_pc = ldl_p(rom + 4);
312         } else {
313             /* Address zero not covered by a ROM blob, or the ROM blob
314              * is in non-modifiable memory and this is a second reset after
315              * it got copied into memory. In the latter case, rom_ptr
316              * will return a NULL pointer and we should use ldl_phys instead.
317              */
318             initial_msp = ldl_phys(s->as, vecbase);
319             initial_pc = ldl_phys(s->as, vecbase + 4);
320         }
321 
322         env->regs[13] = initial_msp & 0xFFFFFFFC;
323         env->regs[15] = initial_pc & ~1;
324         env->thumb = initial_pc & 1;
325     }
326 
327     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
328      * executing as AArch32 then check if highvecs are enabled and
329      * adjust the PC accordingly.
330      */
331     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
332         env->regs[15] = 0xFFFF0000;
333     }
334 
335     /* M profile requires that reset clears the exclusive monitor;
336      * A profile does not, but clearing it makes more sense than having it
337      * set with an exclusive access on address zero.
338      */
339     arm_clear_exclusive(env);
340 
341     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
342 #endif
343 
344     if (arm_feature(env, ARM_FEATURE_PMSA)) {
345         if (cpu->pmsav7_dregion > 0) {
346             if (arm_feature(env, ARM_FEATURE_V8)) {
347                 memset(env->pmsav8.rbar[M_REG_NS], 0,
348                        sizeof(*env->pmsav8.rbar[M_REG_NS])
349                        * cpu->pmsav7_dregion);
350                 memset(env->pmsav8.rlar[M_REG_NS], 0,
351                        sizeof(*env->pmsav8.rlar[M_REG_NS])
352                        * cpu->pmsav7_dregion);
353                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
354                     memset(env->pmsav8.rbar[M_REG_S], 0,
355                            sizeof(*env->pmsav8.rbar[M_REG_S])
356                            * cpu->pmsav7_dregion);
357                     memset(env->pmsav8.rlar[M_REG_S], 0,
358                            sizeof(*env->pmsav8.rlar[M_REG_S])
359                            * cpu->pmsav7_dregion);
360                 }
361             } else if (arm_feature(env, ARM_FEATURE_V7)) {
362                 memset(env->pmsav7.drbar, 0,
363                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
364                 memset(env->pmsav7.drsr, 0,
365                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
366                 memset(env->pmsav7.dracr, 0,
367                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
368             }
369         }
370         env->pmsav7.rnr[M_REG_NS] = 0;
371         env->pmsav7.rnr[M_REG_S] = 0;
372         env->pmsav8.mair0[M_REG_NS] = 0;
373         env->pmsav8.mair0[M_REG_S] = 0;
374         env->pmsav8.mair1[M_REG_NS] = 0;
375         env->pmsav8.mair1[M_REG_S] = 0;
376     }
377 
378     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
379         if (cpu->sau_sregion > 0) {
380             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
381             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
382         }
383         env->sau.rnr = 0;
384         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
385          * the Cortex-M33 does.
386          */
387         env->sau.ctrl = 0;
388     }
389 
390     set_flush_to_zero(1, &env->vfp.standard_fp_status);
391     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
392     set_default_nan_mode(1, &env->vfp.standard_fp_status);
393     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
394     set_float_detect_tininess(float_tininess_before_rounding,
395                               &env->vfp.fp_status);
396     set_float_detect_tininess(float_tininess_before_rounding,
397                               &env->vfp.standard_fp_status);
398     set_float_detect_tininess(float_tininess_before_rounding,
399                               &env->vfp.fp_status_f16);
400     set_float_detect_tininess(float_tininess_before_rounding,
401                               &env->vfp.standard_fp_status_f16);
402 #ifndef CONFIG_USER_ONLY
403     if (kvm_enabled()) {
404         kvm_arm_reset_vcpu(cpu);
405     }
406 #endif
407 
408     hw_breakpoint_update_all(cpu);
409     hw_watchpoint_update_all(cpu);
410     arm_rebuild_hflags(env);
411 }
412 
413 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
414                                      unsigned int target_el,
415                                      unsigned int cur_el, bool secure,
416                                      uint64_t hcr_el2)
417 {
418     CPUARMState *env = cs->env_ptr;
419     bool pstate_unmasked;
420     bool unmasked = false;
421 
422     /*
423      * Don't take exceptions if they target a lower EL.
424      * This check should catch any exceptions that would not be taken
425      * but left pending.
426      */
427     if (cur_el > target_el) {
428         return false;
429     }
430 
431     switch (excp_idx) {
432     case EXCP_FIQ:
433         pstate_unmasked = !(env->daif & PSTATE_F);
434         break;
435 
436     case EXCP_IRQ:
437         pstate_unmasked = !(env->daif & PSTATE_I);
438         break;
439 
440     case EXCP_VFIQ:
441         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
442             /* VFIQs are only taken when hypervized and non-secure.  */
443             return false;
444         }
445         return !(env->daif & PSTATE_F);
446     case EXCP_VIRQ:
447         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
448             /* VIRQs are only taken when hypervized and non-secure.  */
449             return false;
450         }
451         return !(env->daif & PSTATE_I);
452     default:
453         g_assert_not_reached();
454     }
455 
456     /*
457      * Use the target EL, current execution state and SCR/HCR settings to
458      * determine whether the corresponding CPSR bit is used to mask the
459      * interrupt.
460      */
461     if ((target_el > cur_el) && (target_el != 1)) {
462         /* Exceptions targeting a higher EL may not be maskable */
463         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
464             /*
465              * 64-bit masking rules are simple: exceptions to EL3
466              * can't be masked, and exceptions to EL2 can only be
467              * masked from Secure state. The HCR and SCR settings
468              * don't affect the masking logic, only the interrupt routing.
469              */
470             if (target_el == 3 || !secure) {
471                 unmasked = true;
472             }
473         } else {
474             /*
475              * The old 32-bit-only environment has a more complicated
476              * masking setup. HCR and SCR bits not only affect interrupt
477              * routing but also change the behaviour of masking.
478              */
479             bool hcr, scr;
480 
481             switch (excp_idx) {
482             case EXCP_FIQ:
483                 /*
484                  * If FIQs are routed to EL3 or EL2 then there are cases where
485                  * we override the CPSR.F in determining if the exception is
486                  * masked or not. If neither of these are set then we fall back
487                  * to the CPSR.F setting otherwise we further assess the state
488                  * below.
489                  */
490                 hcr = hcr_el2 & HCR_FMO;
491                 scr = (env->cp15.scr_el3 & SCR_FIQ);
492 
493                 /*
494                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
495                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
496                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
497                  * when non-secure but only when FIQs are only routed to EL3.
498                  */
499                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
500                 break;
501             case EXCP_IRQ:
502                 /*
503                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
504                  * we may override the CPSR.I masking when in non-secure state.
505                  * The SCR.IRQ setting has already been taken into consideration
506                  * when setting the target EL, so it does not have a further
507                  * affect here.
508                  */
509                 hcr = hcr_el2 & HCR_IMO;
510                 scr = false;
511                 break;
512             default:
513                 g_assert_not_reached();
514             }
515 
516             if ((scr || hcr) && !secure) {
517                 unmasked = true;
518             }
519         }
520     }
521 
522     /*
523      * The PSTATE bits only mask the interrupt if we have not overriden the
524      * ability above.
525      */
526     return unmasked || pstate_unmasked;
527 }
528 
529 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
530 {
531     CPUClass *cc = CPU_GET_CLASS(cs);
532     CPUARMState *env = cs->env_ptr;
533     uint32_t cur_el = arm_current_el(env);
534     bool secure = arm_is_secure(env);
535     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
536     uint32_t target_el;
537     uint32_t excp_idx;
538 
539     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
540 
541     if (interrupt_request & CPU_INTERRUPT_FIQ) {
542         excp_idx = EXCP_FIQ;
543         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
544         if (arm_excp_unmasked(cs, excp_idx, target_el,
545                               cur_el, secure, hcr_el2)) {
546             goto found;
547         }
548     }
549     if (interrupt_request & CPU_INTERRUPT_HARD) {
550         excp_idx = EXCP_IRQ;
551         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
552         if (arm_excp_unmasked(cs, excp_idx, target_el,
553                               cur_el, secure, hcr_el2)) {
554             goto found;
555         }
556     }
557     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
558         excp_idx = EXCP_VIRQ;
559         target_el = 1;
560         if (arm_excp_unmasked(cs, excp_idx, target_el,
561                               cur_el, secure, hcr_el2)) {
562             goto found;
563         }
564     }
565     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
566         excp_idx = EXCP_VFIQ;
567         target_el = 1;
568         if (arm_excp_unmasked(cs, excp_idx, target_el,
569                               cur_el, secure, hcr_el2)) {
570             goto found;
571         }
572     }
573     return false;
574 
575  found:
576     cs->exception_index = excp_idx;
577     env->exception.target_el = target_el;
578     cc->do_interrupt(cs);
579     return true;
580 }
581 
582 void arm_cpu_update_virq(ARMCPU *cpu)
583 {
584     /*
585      * Update the interrupt level for VIRQ, which is the logical OR of
586      * the HCR_EL2.VI bit and the input line level from the GIC.
587      */
588     CPUARMState *env = &cpu->env;
589     CPUState *cs = CPU(cpu);
590 
591     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
592         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
593 
594     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
595         if (new_state) {
596             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
597         } else {
598             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
599         }
600     }
601 }
602 
603 void arm_cpu_update_vfiq(ARMCPU *cpu)
604 {
605     /*
606      * Update the interrupt level for VFIQ, which is the logical OR of
607      * the HCR_EL2.VF bit and the input line level from the GIC.
608      */
609     CPUARMState *env = &cpu->env;
610     CPUState *cs = CPU(cpu);
611 
612     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
613         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
614 
615     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
616         if (new_state) {
617             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
618         } else {
619             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
620         }
621     }
622 }
623 
624 #ifndef CONFIG_USER_ONLY
625 static void arm_cpu_set_irq(void *opaque, int irq, int level)
626 {
627     ARMCPU *cpu = opaque;
628     CPUARMState *env = &cpu->env;
629     CPUState *cs = CPU(cpu);
630     static const int mask[] = {
631         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
632         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
633         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
634         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
635     };
636 
637     if (level) {
638         env->irq_line_state |= mask[irq];
639     } else {
640         env->irq_line_state &= ~mask[irq];
641     }
642 
643     switch (irq) {
644     case ARM_CPU_VIRQ:
645         assert(arm_feature(env, ARM_FEATURE_EL2));
646         arm_cpu_update_virq(cpu);
647         break;
648     case ARM_CPU_VFIQ:
649         assert(arm_feature(env, ARM_FEATURE_EL2));
650         arm_cpu_update_vfiq(cpu);
651         break;
652     case ARM_CPU_IRQ:
653     case ARM_CPU_FIQ:
654         if (level) {
655             cpu_interrupt(cs, mask[irq]);
656         } else {
657             cpu_reset_interrupt(cs, mask[irq]);
658         }
659         break;
660     default:
661         g_assert_not_reached();
662     }
663 }
664 
665 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
666 {
667 #ifdef CONFIG_KVM
668     ARMCPU *cpu = opaque;
669     CPUARMState *env = &cpu->env;
670     CPUState *cs = CPU(cpu);
671     uint32_t linestate_bit;
672     int irq_id;
673 
674     switch (irq) {
675     case ARM_CPU_IRQ:
676         irq_id = KVM_ARM_IRQ_CPU_IRQ;
677         linestate_bit = CPU_INTERRUPT_HARD;
678         break;
679     case ARM_CPU_FIQ:
680         irq_id = KVM_ARM_IRQ_CPU_FIQ;
681         linestate_bit = CPU_INTERRUPT_FIQ;
682         break;
683     default:
684         g_assert_not_reached();
685     }
686 
687     if (level) {
688         env->irq_line_state |= linestate_bit;
689     } else {
690         env->irq_line_state &= ~linestate_bit;
691     }
692     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
693 #endif
694 }
695 
696 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
697 {
698     ARMCPU *cpu = ARM_CPU(cs);
699     CPUARMState *env = &cpu->env;
700 
701     cpu_synchronize_state(cs);
702     return arm_cpu_data_is_big_endian(env);
703 }
704 
705 #endif
706 
707 static int
708 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
709 {
710   return print_insn_arm(pc | 1, info);
711 }
712 
713 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
714 {
715     ARMCPU *ac = ARM_CPU(cpu);
716     CPUARMState *env = &ac->env;
717     bool sctlr_b;
718 
719     if (is_a64(env)) {
720         /* We might not be compiled with the A64 disassembler
721          * because it needs a C++ compiler. Leave print_insn
722          * unset in this case to use the caller default behaviour.
723          */
724 #if defined(CONFIG_ARM_A64_DIS)
725         info->print_insn = print_insn_arm_a64;
726 #endif
727         info->cap_arch = CS_ARCH_ARM64;
728         info->cap_insn_unit = 4;
729         info->cap_insn_split = 4;
730     } else {
731         int cap_mode;
732         if (env->thumb) {
733             info->print_insn = print_insn_thumb1;
734             info->cap_insn_unit = 2;
735             info->cap_insn_split = 4;
736             cap_mode = CS_MODE_THUMB;
737         } else {
738             info->print_insn = print_insn_arm;
739             info->cap_insn_unit = 4;
740             info->cap_insn_split = 4;
741             cap_mode = CS_MODE_ARM;
742         }
743         if (arm_feature(env, ARM_FEATURE_V8)) {
744             cap_mode |= CS_MODE_V8;
745         }
746         if (arm_feature(env, ARM_FEATURE_M)) {
747             cap_mode |= CS_MODE_MCLASS;
748         }
749         info->cap_arch = CS_ARCH_ARM;
750         info->cap_mode = cap_mode;
751     }
752 
753     sctlr_b = arm_sctlr_b(env);
754     if (bswap_code(sctlr_b)) {
755 #ifdef TARGET_WORDS_BIGENDIAN
756         info->endian = BFD_ENDIAN_LITTLE;
757 #else
758         info->endian = BFD_ENDIAN_BIG;
759 #endif
760     }
761     info->flags &= ~INSN_ARM_BE32;
762 #ifndef CONFIG_USER_ONLY
763     if (sctlr_b) {
764         info->flags |= INSN_ARM_BE32;
765     }
766 #endif
767 }
768 
769 #ifdef TARGET_AARCH64
770 
771 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
772 {
773     ARMCPU *cpu = ARM_CPU(cs);
774     CPUARMState *env = &cpu->env;
775     uint32_t psr = pstate_read(env);
776     int i;
777     int el = arm_current_el(env);
778     const char *ns_status;
779 
780     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
781     for (i = 0; i < 32; i++) {
782         if (i == 31) {
783             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
784         } else {
785             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
786                          (i + 2) % 3 ? " " : "\n");
787         }
788     }
789 
790     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
791         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
792     } else {
793         ns_status = "";
794     }
795     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
796                  psr,
797                  psr & PSTATE_N ? 'N' : '-',
798                  psr & PSTATE_Z ? 'Z' : '-',
799                  psr & PSTATE_C ? 'C' : '-',
800                  psr & PSTATE_V ? 'V' : '-',
801                  ns_status,
802                  el,
803                  psr & PSTATE_SP ? 'h' : 't');
804 
805     if (cpu_isar_feature(aa64_bti, cpu)) {
806         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
807     }
808     if (!(flags & CPU_DUMP_FPU)) {
809         qemu_fprintf(f, "\n");
810         return;
811     }
812     if (fp_exception_el(env, el) != 0) {
813         qemu_fprintf(f, "    FPU disabled\n");
814         return;
815     }
816     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
817                  vfp_get_fpcr(env), vfp_get_fpsr(env));
818 
819     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
820         int j, zcr_len = sve_zcr_len_for_el(env, el);
821 
822         for (i = 0; i <= FFR_PRED_NUM; i++) {
823             bool eol;
824             if (i == FFR_PRED_NUM) {
825                 qemu_fprintf(f, "FFR=");
826                 /* It's last, so end the line.  */
827                 eol = true;
828             } else {
829                 qemu_fprintf(f, "P%02d=", i);
830                 switch (zcr_len) {
831                 case 0:
832                     eol = i % 8 == 7;
833                     break;
834                 case 1:
835                     eol = i % 6 == 5;
836                     break;
837                 case 2:
838                 case 3:
839                     eol = i % 3 == 2;
840                     break;
841                 default:
842                     /* More than one quadword per predicate.  */
843                     eol = true;
844                     break;
845                 }
846             }
847             for (j = zcr_len / 4; j >= 0; j--) {
848                 int digits;
849                 if (j * 4 + 4 <= zcr_len + 1) {
850                     digits = 16;
851                 } else {
852                     digits = (zcr_len % 4 + 1) * 4;
853                 }
854                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
855                              env->vfp.pregs[i].p[j],
856                              j ? ":" : eol ? "\n" : " ");
857             }
858         }
859 
860         for (i = 0; i < 32; i++) {
861             if (zcr_len == 0) {
862                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
863                              i, env->vfp.zregs[i].d[1],
864                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
865             } else if (zcr_len == 1) {
866                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
867                              ":%016" PRIx64 ":%016" PRIx64 "\n",
868                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
869                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
870             } else {
871                 for (j = zcr_len; j >= 0; j--) {
872                     bool odd = (zcr_len - j) % 2 != 0;
873                     if (j == zcr_len) {
874                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
875                     } else if (!odd) {
876                         if (j > 0) {
877                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
878                         } else {
879                             qemu_fprintf(f, "     [%x]=", j);
880                         }
881                     }
882                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
883                                  env->vfp.zregs[i].d[j * 2 + 1],
884                                  env->vfp.zregs[i].d[j * 2],
885                                  odd || j == 0 ? "\n" : ":");
886                 }
887             }
888         }
889     } else {
890         for (i = 0; i < 32; i++) {
891             uint64_t *q = aa64_vfp_qreg(env, i);
892             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
893                          i, q[1], q[0], (i & 1 ? "\n" : " "));
894         }
895     }
896 }
897 
898 #else
899 
900 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
901 {
902     g_assert_not_reached();
903 }
904 
905 #endif
906 
907 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
908 {
909     ARMCPU *cpu = ARM_CPU(cs);
910     CPUARMState *env = &cpu->env;
911     int i;
912 
913     if (is_a64(env)) {
914         aarch64_cpu_dump_state(cs, f, flags);
915         return;
916     }
917 
918     for (i = 0; i < 16; i++) {
919         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
920         if ((i % 4) == 3) {
921             qemu_fprintf(f, "\n");
922         } else {
923             qemu_fprintf(f, " ");
924         }
925     }
926 
927     if (arm_feature(env, ARM_FEATURE_M)) {
928         uint32_t xpsr = xpsr_read(env);
929         const char *mode;
930         const char *ns_status = "";
931 
932         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
933             ns_status = env->v7m.secure ? "S " : "NS ";
934         }
935 
936         if (xpsr & XPSR_EXCP) {
937             mode = "handler";
938         } else {
939             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
940                 mode = "unpriv-thread";
941             } else {
942                 mode = "priv-thread";
943             }
944         }
945 
946         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
947                      xpsr,
948                      xpsr & XPSR_N ? 'N' : '-',
949                      xpsr & XPSR_Z ? 'Z' : '-',
950                      xpsr & XPSR_C ? 'C' : '-',
951                      xpsr & XPSR_V ? 'V' : '-',
952                      xpsr & XPSR_T ? 'T' : 'A',
953                      ns_status,
954                      mode);
955     } else {
956         uint32_t psr = cpsr_read(env);
957         const char *ns_status = "";
958 
959         if (arm_feature(env, ARM_FEATURE_EL3) &&
960             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
961             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
962         }
963 
964         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
965                      psr,
966                      psr & CPSR_N ? 'N' : '-',
967                      psr & CPSR_Z ? 'Z' : '-',
968                      psr & CPSR_C ? 'C' : '-',
969                      psr & CPSR_V ? 'V' : '-',
970                      psr & CPSR_T ? 'T' : 'A',
971                      ns_status,
972                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
973     }
974 
975     if (flags & CPU_DUMP_FPU) {
976         int numvfpregs = 0;
977         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
978             numvfpregs = 32;
979         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
980             numvfpregs = 16;
981         }
982         for (i = 0; i < numvfpregs; i++) {
983             uint64_t v = *aa32_vfp_dreg(env, i);
984             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
985                          i * 2, (uint32_t)v,
986                          i * 2 + 1, (uint32_t)(v >> 32),
987                          i, v);
988         }
989         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
990     }
991 }
992 
993 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
994 {
995     uint32_t Aff1 = idx / clustersz;
996     uint32_t Aff0 = idx % clustersz;
997     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
998 }
999 
1000 static void cpreg_hashtable_data_destroy(gpointer data)
1001 {
1002     /*
1003      * Destroy function for cpu->cp_regs hashtable data entries.
1004      * We must free the name string because it was g_strdup()ed in
1005      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1006      * from r->name because we know we definitely allocated it.
1007      */
1008     ARMCPRegInfo *r = data;
1009 
1010     g_free((void *)r->name);
1011     g_free(r);
1012 }
1013 
1014 static void arm_cpu_initfn(Object *obj)
1015 {
1016     ARMCPU *cpu = ARM_CPU(obj);
1017 
1018     cpu_set_cpustate_pointers(cpu);
1019     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1020                                          g_free, cpreg_hashtable_data_destroy);
1021 
1022     QLIST_INIT(&cpu->pre_el_change_hooks);
1023     QLIST_INIT(&cpu->el_change_hooks);
1024 
1025 #ifndef CONFIG_USER_ONLY
1026     /* Our inbound IRQ and FIQ lines */
1027     if (kvm_enabled()) {
1028         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1029          * the same interface as non-KVM CPUs.
1030          */
1031         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1032     } else {
1033         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1034     }
1035 
1036     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1037                        ARRAY_SIZE(cpu->gt_timer_outputs));
1038 
1039     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1040                              "gicv3-maintenance-interrupt", 1);
1041     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1042                              "pmu-interrupt", 1);
1043 #endif
1044 
1045     /* DTB consumers generally don't in fact care what the 'compatible'
1046      * string is, so always provide some string and trust that a hypothetical
1047      * picky DTB consumer will also provide a helpful error message.
1048      */
1049     cpu->dtb_compatible = "qemu,unknown";
1050     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1051     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1052 
1053     if (tcg_enabled()) {
1054         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1055     }
1056 }
1057 
1058 static Property arm_cpu_gt_cntfrq_property =
1059             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1060                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1061 
1062 static Property arm_cpu_reset_cbar_property =
1063             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1064 
1065 static Property arm_cpu_reset_hivecs_property =
1066             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1067 
1068 static Property arm_cpu_rvbar_property =
1069             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1070 
1071 #ifndef CONFIG_USER_ONLY
1072 static Property arm_cpu_has_el2_property =
1073             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1074 
1075 static Property arm_cpu_has_el3_property =
1076             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1077 #endif
1078 
1079 static Property arm_cpu_cfgend_property =
1080             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1081 
1082 static Property arm_cpu_has_vfp_property =
1083             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1084 
1085 static Property arm_cpu_has_neon_property =
1086             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1087 
1088 static Property arm_cpu_has_dsp_property =
1089             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1090 
1091 static Property arm_cpu_has_mpu_property =
1092             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1093 
1094 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1095  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1096  * the right value for that particular CPU type, and we don't want
1097  * to override that with an incorrect constant value.
1098  */
1099 static Property arm_cpu_pmsav7_dregion_property =
1100             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1101                                            pmsav7_dregion,
1102                                            qdev_prop_uint32, uint32_t);
1103 
1104 static bool arm_get_pmu(Object *obj, Error **errp)
1105 {
1106     ARMCPU *cpu = ARM_CPU(obj);
1107 
1108     return cpu->has_pmu;
1109 }
1110 
1111 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1112 {
1113     ARMCPU *cpu = ARM_CPU(obj);
1114 
1115     if (value) {
1116         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1117             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1118             return;
1119         }
1120         set_feature(&cpu->env, ARM_FEATURE_PMU);
1121     } else {
1122         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1123     }
1124     cpu->has_pmu = value;
1125 }
1126 
1127 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1128 {
1129     /*
1130      * The exact approach to calculating guest ticks is:
1131      *
1132      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1133      *              NANOSECONDS_PER_SECOND);
1134      *
1135      * We don't do that. Rather we intentionally use integer division
1136      * truncation below and in the caller for the conversion of host monotonic
1137      * time to guest ticks to provide the exact inverse for the semantics of
1138      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1139      * it loses precision when representing frequencies where
1140      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1141      * provide an exact inverse leads to scheduling timers with negative
1142      * periods, which in turn leads to sticky behaviour in the guest.
1143      *
1144      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1145      * cannot become zero.
1146      */
1147     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1148       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1149 }
1150 
1151 void arm_cpu_post_init(Object *obj)
1152 {
1153     ARMCPU *cpu = ARM_CPU(obj);
1154 
1155     /* M profile implies PMSA. We have to do this here rather than
1156      * in realize with the other feature-implication checks because
1157      * we look at the PMSA bit to see if we should add some properties.
1158      */
1159     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1160         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1161     }
1162 
1163     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1164         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1165         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1166     }
1167 
1168     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1169         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1170     }
1171 
1172     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1173         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1174     }
1175 
1176 #ifndef CONFIG_USER_ONLY
1177     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1178         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1179          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1180          */
1181         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1182 
1183         object_property_add_link(obj, "secure-memory",
1184                                  TYPE_MEMORY_REGION,
1185                                  (Object **)&cpu->secure_memory,
1186                                  qdev_prop_allow_set_link_before_realize,
1187                                  OBJ_PROP_LINK_STRONG);
1188     }
1189 
1190     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1191         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1192     }
1193 #endif
1194 
1195     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1196         cpu->has_pmu = true;
1197         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1198     }
1199 
1200     /*
1201      * Allow user to turn off VFP and Neon support, but only for TCG --
1202      * KVM does not currently allow us to lie to the guest about its
1203      * ID/feature registers, so the guest always sees what the host has.
1204      */
1205     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1206         ? cpu_isar_feature(aa64_fp_simd, cpu)
1207         : cpu_isar_feature(aa32_vfp, cpu)) {
1208         cpu->has_vfp = true;
1209         if (!kvm_enabled()) {
1210             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1211         }
1212     }
1213 
1214     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1215         cpu->has_neon = true;
1216         if (!kvm_enabled()) {
1217             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1218         }
1219     }
1220 
1221     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1222         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1223         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1224     }
1225 
1226     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1227         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1228         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1229             qdev_property_add_static(DEVICE(obj),
1230                                      &arm_cpu_pmsav7_dregion_property);
1231         }
1232     }
1233 
1234     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1235         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1236                                  qdev_prop_allow_set_link_before_realize,
1237                                  OBJ_PROP_LINK_STRONG);
1238         /*
1239          * M profile: initial value of the Secure VTOR. We can't just use
1240          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1241          * the property to be set after realize.
1242          */
1243         object_property_add_uint32_ptr(obj, "init-svtor",
1244                                        &cpu->init_svtor,
1245                                        OBJ_PROP_FLAG_READWRITE);
1246     }
1247 
1248     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1249 
1250     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1251         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1252     }
1253 
1254     if (kvm_enabled()) {
1255         kvm_arm_add_vcpu_properties(obj);
1256     }
1257 
1258 #ifndef CONFIG_USER_ONLY
1259     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1260         cpu_isar_feature(aa64_mte, cpu)) {
1261         object_property_add_link(obj, "tag-memory",
1262                                  TYPE_MEMORY_REGION,
1263                                  (Object **)&cpu->tag_memory,
1264                                  qdev_prop_allow_set_link_before_realize,
1265                                  OBJ_PROP_LINK_STRONG);
1266 
1267         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1268             object_property_add_link(obj, "secure-tag-memory",
1269                                      TYPE_MEMORY_REGION,
1270                                      (Object **)&cpu->secure_tag_memory,
1271                                      qdev_prop_allow_set_link_before_realize,
1272                                      OBJ_PROP_LINK_STRONG);
1273         }
1274     }
1275 #endif
1276 }
1277 
1278 static void arm_cpu_finalizefn(Object *obj)
1279 {
1280     ARMCPU *cpu = ARM_CPU(obj);
1281     ARMELChangeHook *hook, *next;
1282 
1283     g_hash_table_destroy(cpu->cp_regs);
1284 
1285     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1286         QLIST_REMOVE(hook, node);
1287         g_free(hook);
1288     }
1289     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1290         QLIST_REMOVE(hook, node);
1291         g_free(hook);
1292     }
1293 #ifndef CONFIG_USER_ONLY
1294     if (cpu->pmu_timer) {
1295         timer_del(cpu->pmu_timer);
1296         timer_deinit(cpu->pmu_timer);
1297         timer_free(cpu->pmu_timer);
1298     }
1299 #endif
1300 }
1301 
1302 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1303 {
1304     Error *local_err = NULL;
1305 
1306     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1307         arm_cpu_sve_finalize(cpu, &local_err);
1308         if (local_err != NULL) {
1309             error_propagate(errp, local_err);
1310             return;
1311         }
1312     }
1313 }
1314 
1315 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1316 {
1317     CPUState *cs = CPU(dev);
1318     ARMCPU *cpu = ARM_CPU(dev);
1319     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1320     CPUARMState *env = &cpu->env;
1321     int pagebits;
1322     Error *local_err = NULL;
1323     bool no_aa32 = false;
1324 
1325     /* If we needed to query the host kernel for the CPU features
1326      * then it's possible that might have failed in the initfn, but
1327      * this is the first point where we can report it.
1328      */
1329     if (cpu->host_cpu_probe_failed) {
1330         if (!kvm_enabled()) {
1331             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1332         } else {
1333             error_setg(errp, "Failed to retrieve host CPU features");
1334         }
1335         return;
1336     }
1337 
1338 #ifndef CONFIG_USER_ONLY
1339     /* The NVIC and M-profile CPU are two halves of a single piece of
1340      * hardware; trying to use one without the other is a command line
1341      * error and will result in segfaults if not caught here.
1342      */
1343     if (arm_feature(env, ARM_FEATURE_M)) {
1344         if (!env->nvic) {
1345             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1346             return;
1347         }
1348     } else {
1349         if (env->nvic) {
1350             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1351             return;
1352         }
1353     }
1354 
1355     {
1356         uint64_t scale;
1357 
1358         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1359             if (!cpu->gt_cntfrq_hz) {
1360                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1361                            cpu->gt_cntfrq_hz);
1362                 return;
1363             }
1364             scale = gt_cntfrq_period_ns(cpu);
1365         } else {
1366             scale = GTIMER_SCALE;
1367         }
1368 
1369         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1370                                                arm_gt_ptimer_cb, cpu);
1371         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1372                                                arm_gt_vtimer_cb, cpu);
1373         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1374                                               arm_gt_htimer_cb, cpu);
1375         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1376                                               arm_gt_stimer_cb, cpu);
1377         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1378                                                   arm_gt_hvtimer_cb, cpu);
1379     }
1380 #endif
1381 
1382     cpu_exec_realizefn(cs, &local_err);
1383     if (local_err != NULL) {
1384         error_propagate(errp, local_err);
1385         return;
1386     }
1387 
1388     arm_cpu_finalize_features(cpu, &local_err);
1389     if (local_err != NULL) {
1390         error_propagate(errp, local_err);
1391         return;
1392     }
1393 
1394     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1395         cpu->has_vfp != cpu->has_neon) {
1396         /*
1397          * This is an architectural requirement for AArch64; AArch32 is
1398          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1399          */
1400         error_setg(errp,
1401                    "AArch64 CPUs must have both VFP and Neon or neither");
1402         return;
1403     }
1404 
1405     if (!cpu->has_vfp) {
1406         uint64_t t;
1407         uint32_t u;
1408 
1409         t = cpu->isar.id_aa64isar1;
1410         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1411         cpu->isar.id_aa64isar1 = t;
1412 
1413         t = cpu->isar.id_aa64pfr0;
1414         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1415         cpu->isar.id_aa64pfr0 = t;
1416 
1417         u = cpu->isar.id_isar6;
1418         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1419         cpu->isar.id_isar6 = u;
1420 
1421         u = cpu->isar.mvfr0;
1422         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1423         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1424         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1425         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1426         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1427         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1428         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1429         cpu->isar.mvfr0 = u;
1430 
1431         u = cpu->isar.mvfr1;
1432         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1433         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1434         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1435         cpu->isar.mvfr1 = u;
1436 
1437         u = cpu->isar.mvfr2;
1438         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1439         cpu->isar.mvfr2 = u;
1440     }
1441 
1442     if (!cpu->has_neon) {
1443         uint64_t t;
1444         uint32_t u;
1445 
1446         unset_feature(env, ARM_FEATURE_NEON);
1447 
1448         t = cpu->isar.id_aa64isar0;
1449         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1450         cpu->isar.id_aa64isar0 = t;
1451 
1452         t = cpu->isar.id_aa64isar1;
1453         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1454         cpu->isar.id_aa64isar1 = t;
1455 
1456         t = cpu->isar.id_aa64pfr0;
1457         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1458         cpu->isar.id_aa64pfr0 = t;
1459 
1460         u = cpu->isar.id_isar5;
1461         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1462         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1463         cpu->isar.id_isar5 = u;
1464 
1465         u = cpu->isar.id_isar6;
1466         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1467         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1468         cpu->isar.id_isar6 = u;
1469 
1470         u = cpu->isar.mvfr1;
1471         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1472         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1473         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1474         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1475         cpu->isar.mvfr1 = u;
1476 
1477         u = cpu->isar.mvfr2;
1478         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1479         cpu->isar.mvfr2 = u;
1480     }
1481 
1482     if (!cpu->has_neon && !cpu->has_vfp) {
1483         uint64_t t;
1484         uint32_t u;
1485 
1486         t = cpu->isar.id_aa64isar0;
1487         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1488         cpu->isar.id_aa64isar0 = t;
1489 
1490         t = cpu->isar.id_aa64isar1;
1491         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1492         cpu->isar.id_aa64isar1 = t;
1493 
1494         u = cpu->isar.mvfr0;
1495         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1496         cpu->isar.mvfr0 = u;
1497 
1498         /* Despite the name, this field covers both VFP and Neon */
1499         u = cpu->isar.mvfr1;
1500         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1501         cpu->isar.mvfr1 = u;
1502     }
1503 
1504     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1505         uint32_t u;
1506 
1507         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1508 
1509         u = cpu->isar.id_isar1;
1510         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1511         cpu->isar.id_isar1 = u;
1512 
1513         u = cpu->isar.id_isar2;
1514         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1515         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1516         cpu->isar.id_isar2 = u;
1517 
1518         u = cpu->isar.id_isar3;
1519         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1520         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1521         cpu->isar.id_isar3 = u;
1522     }
1523 
1524     /* Some features automatically imply others: */
1525     if (arm_feature(env, ARM_FEATURE_V8)) {
1526         if (arm_feature(env, ARM_FEATURE_M)) {
1527             set_feature(env, ARM_FEATURE_V7);
1528         } else {
1529             set_feature(env, ARM_FEATURE_V7VE);
1530         }
1531     }
1532 
1533     /*
1534      * There exist AArch64 cpus without AArch32 support.  When KVM
1535      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1536      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1537      * As a general principle, we also do not make ID register
1538      * consistency checks anywhere unless using TCG, because only
1539      * for TCG would a consistency-check failure be a QEMU bug.
1540      */
1541     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1542         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1543     }
1544 
1545     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1546         /* v7 Virtualization Extensions. In real hardware this implies
1547          * EL2 and also the presence of the Security Extensions.
1548          * For QEMU, for backwards-compatibility we implement some
1549          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1550          * include the various other features that V7VE implies.
1551          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1552          * Security Extensions is ARM_FEATURE_EL3.
1553          */
1554         assert(!tcg_enabled() || no_aa32 ||
1555                cpu_isar_feature(aa32_arm_div, cpu));
1556         set_feature(env, ARM_FEATURE_LPAE);
1557         set_feature(env, ARM_FEATURE_V7);
1558     }
1559     if (arm_feature(env, ARM_FEATURE_V7)) {
1560         set_feature(env, ARM_FEATURE_VAPA);
1561         set_feature(env, ARM_FEATURE_THUMB2);
1562         set_feature(env, ARM_FEATURE_MPIDR);
1563         if (!arm_feature(env, ARM_FEATURE_M)) {
1564             set_feature(env, ARM_FEATURE_V6K);
1565         } else {
1566             set_feature(env, ARM_FEATURE_V6);
1567         }
1568 
1569         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1570          * non-EL3 configs. This is needed by some legacy boards.
1571          */
1572         set_feature(env, ARM_FEATURE_VBAR);
1573     }
1574     if (arm_feature(env, ARM_FEATURE_V6K)) {
1575         set_feature(env, ARM_FEATURE_V6);
1576         set_feature(env, ARM_FEATURE_MVFR);
1577     }
1578     if (arm_feature(env, ARM_FEATURE_V6)) {
1579         set_feature(env, ARM_FEATURE_V5);
1580         if (!arm_feature(env, ARM_FEATURE_M)) {
1581             assert(!tcg_enabled() || no_aa32 ||
1582                    cpu_isar_feature(aa32_jazelle, cpu));
1583             set_feature(env, ARM_FEATURE_AUXCR);
1584         }
1585     }
1586     if (arm_feature(env, ARM_FEATURE_V5)) {
1587         set_feature(env, ARM_FEATURE_V4T);
1588     }
1589     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1590         set_feature(env, ARM_FEATURE_V7MP);
1591         set_feature(env, ARM_FEATURE_PXN);
1592     }
1593     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1594         set_feature(env, ARM_FEATURE_CBAR);
1595     }
1596     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1597         !arm_feature(env, ARM_FEATURE_M)) {
1598         set_feature(env, ARM_FEATURE_THUMB_DSP);
1599     }
1600 
1601     /*
1602      * We rely on no XScale CPU having VFP so we can use the same bits in the
1603      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1604      */
1605     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1606            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1607            !arm_feature(env, ARM_FEATURE_XSCALE));
1608 
1609     if (arm_feature(env, ARM_FEATURE_V7) &&
1610         !arm_feature(env, ARM_FEATURE_M) &&
1611         !arm_feature(env, ARM_FEATURE_PMSA)) {
1612         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1613          * can use 4K pages.
1614          */
1615         pagebits = 12;
1616     } else {
1617         /* For CPUs which might have tiny 1K pages, or which have an
1618          * MPU and might have small region sizes, stick with 1K pages.
1619          */
1620         pagebits = 10;
1621     }
1622     if (!set_preferred_target_page_bits(pagebits)) {
1623         /* This can only ever happen for hotplugging a CPU, or if
1624          * the board code incorrectly creates a CPU which it has
1625          * promised via minimum_page_size that it will not.
1626          */
1627         error_setg(errp, "This CPU requires a smaller page size than the "
1628                    "system is using");
1629         return;
1630     }
1631 
1632     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1633      * We don't support setting cluster ID ([16..23]) (known as Aff2
1634      * in later ARM ARM versions), or any of the higher affinity level fields,
1635      * so these bits always RAZ.
1636      */
1637     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1638         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1639                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1640     }
1641 
1642     if (cpu->reset_hivecs) {
1643             cpu->reset_sctlr |= (1 << 13);
1644     }
1645 
1646     if (cpu->cfgend) {
1647         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1648             cpu->reset_sctlr |= SCTLR_EE;
1649         } else {
1650             cpu->reset_sctlr |= SCTLR_B;
1651         }
1652     }
1653 
1654     if (!cpu->has_el3) {
1655         /* If the has_el3 CPU property is disabled then we need to disable the
1656          * feature.
1657          */
1658         unset_feature(env, ARM_FEATURE_EL3);
1659 
1660         /* Disable the security extension feature bits in the processor feature
1661          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1662          */
1663         cpu->id_pfr1 &= ~0xf0;
1664         cpu->isar.id_aa64pfr0 &= ~0xf000;
1665     }
1666 
1667     if (!cpu->has_el2) {
1668         unset_feature(env, ARM_FEATURE_EL2);
1669     }
1670 
1671     if (!cpu->has_pmu) {
1672         unset_feature(env, ARM_FEATURE_PMU);
1673     }
1674     if (arm_feature(env, ARM_FEATURE_PMU)) {
1675         pmu_init(cpu);
1676 
1677         if (!kvm_enabled()) {
1678             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1679             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1680         }
1681 
1682 #ifndef CONFIG_USER_ONLY
1683         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1684                 cpu);
1685 #endif
1686     } else {
1687         cpu->isar.id_aa64dfr0 =
1688             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1689         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1690         cpu->pmceid0 = 0;
1691         cpu->pmceid1 = 0;
1692     }
1693 
1694     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1695         /* Disable the hypervisor feature bits in the processor feature
1696          * registers if we don't have EL2. These are id_pfr1[15:12] and
1697          * id_aa64pfr0_el1[11:8].
1698          */
1699         cpu->isar.id_aa64pfr0 &= ~0xf00;
1700         cpu->id_pfr1 &= ~0xf000;
1701     }
1702 
1703 #ifndef CONFIG_USER_ONLY
1704     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1705         /*
1706          * Disable the MTE feature bits if we do not have tag-memory
1707          * provided by the machine.
1708          */
1709         cpu->isar.id_aa64pfr1 =
1710             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1711     }
1712 #endif
1713 
1714     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1715      * to false or by setting pmsav7-dregion to 0.
1716      */
1717     if (!cpu->has_mpu) {
1718         cpu->pmsav7_dregion = 0;
1719     }
1720     if (cpu->pmsav7_dregion == 0) {
1721         cpu->has_mpu = false;
1722     }
1723 
1724     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1725         arm_feature(env, ARM_FEATURE_V7)) {
1726         uint32_t nr = cpu->pmsav7_dregion;
1727 
1728         if (nr > 0xff) {
1729             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1730             return;
1731         }
1732 
1733         if (nr) {
1734             if (arm_feature(env, ARM_FEATURE_V8)) {
1735                 /* PMSAv8 */
1736                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1737                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1738                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1739                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1740                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1741                 }
1742             } else {
1743                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1744                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1745                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1746             }
1747         }
1748     }
1749 
1750     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1751         uint32_t nr = cpu->sau_sregion;
1752 
1753         if (nr > 0xff) {
1754             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1755             return;
1756         }
1757 
1758         if (nr) {
1759             env->sau.rbar = g_new0(uint32_t, nr);
1760             env->sau.rlar = g_new0(uint32_t, nr);
1761         }
1762     }
1763 
1764     if (arm_feature(env, ARM_FEATURE_EL3)) {
1765         set_feature(env, ARM_FEATURE_VBAR);
1766     }
1767 
1768     register_cp_regs_for_features(cpu);
1769     arm_cpu_register_gdb_regs_for_features(cpu);
1770 
1771     init_cpreg_list(cpu);
1772 
1773 #ifndef CONFIG_USER_ONLY
1774     MachineState *ms = MACHINE(qdev_get_machine());
1775     unsigned int smp_cpus = ms->smp.cpus;
1776     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1777 
1778     /*
1779      * We must set cs->num_ases to the final value before
1780      * the first call to cpu_address_space_init.
1781      */
1782     if (cpu->tag_memory != NULL) {
1783         cs->num_ases = 3 + has_secure;
1784     } else {
1785         cs->num_ases = 1 + has_secure;
1786     }
1787 
1788     if (has_secure) {
1789         if (!cpu->secure_memory) {
1790             cpu->secure_memory = cs->memory;
1791         }
1792         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1793                                cpu->secure_memory);
1794     }
1795 
1796     if (cpu->tag_memory != NULL) {
1797         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1798                                cpu->tag_memory);
1799         if (has_secure) {
1800             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1801                                    cpu->secure_tag_memory);
1802         }
1803     }
1804 
1805     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1806 
1807     /* No core_count specified, default to smp_cpus. */
1808     if (cpu->core_count == -1) {
1809         cpu->core_count = smp_cpus;
1810     }
1811 #endif
1812 
1813     if (tcg_enabled()) {
1814         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1815 
1816         /*
1817          * We only support DCZ blocklen that fits on one page.
1818          *
1819          * Architectually this is always true.  However TARGET_PAGE_SIZE
1820          * is variable and, for compatibility with -machine virt-2.7,
1821          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1822          * But even then, while the largest architectural DCZ blocklen
1823          * is 2KiB, no cpu actually uses such a large blocklen.
1824          */
1825         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1826 
1827         /*
1828          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1829          * both nibbles of each byte storing tag data may be written at once.
1830          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1831          */
1832         if (cpu_isar_feature(aa64_mte, cpu)) {
1833             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1834         }
1835     }
1836 
1837     qemu_init_vcpu(cs);
1838     cpu_reset(cs);
1839 
1840     acc->parent_realize(dev, errp);
1841 }
1842 
1843 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1844 {
1845     ObjectClass *oc;
1846     char *typename;
1847     char **cpuname;
1848     const char *cpunamestr;
1849 
1850     cpuname = g_strsplit(cpu_model, ",", 1);
1851     cpunamestr = cpuname[0];
1852 #ifdef CONFIG_USER_ONLY
1853     /* For backwards compatibility usermode emulation allows "-cpu any",
1854      * which has the same semantics as "-cpu max".
1855      */
1856     if (!strcmp(cpunamestr, "any")) {
1857         cpunamestr = "max";
1858     }
1859 #endif
1860     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1861     oc = object_class_by_name(typename);
1862     g_strfreev(cpuname);
1863     g_free(typename);
1864     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1865         object_class_is_abstract(oc)) {
1866         return NULL;
1867     }
1868     return oc;
1869 }
1870 
1871 /* CPU models. These are not needed for the AArch64 linux-user build. */
1872 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1873 
1874 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1875     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1876       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1877     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1878       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1879     REGINFO_SENTINEL
1880 };
1881 
1882 static void cortex_a8_initfn(Object *obj)
1883 {
1884     ARMCPU *cpu = ARM_CPU(obj);
1885 
1886     cpu->dtb_compatible = "arm,cortex-a8";
1887     set_feature(&cpu->env, ARM_FEATURE_V7);
1888     set_feature(&cpu->env, ARM_FEATURE_NEON);
1889     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1890     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1891     set_feature(&cpu->env, ARM_FEATURE_EL3);
1892     cpu->midr = 0x410fc080;
1893     cpu->reset_fpsid = 0x410330c0;
1894     cpu->isar.mvfr0 = 0x11110222;
1895     cpu->isar.mvfr1 = 0x00011111;
1896     cpu->ctr = 0x82048004;
1897     cpu->reset_sctlr = 0x00c50078;
1898     cpu->id_pfr0 = 0x1031;
1899     cpu->id_pfr1 = 0x11;
1900     cpu->isar.id_dfr0 = 0x400;
1901     cpu->id_afr0 = 0;
1902     cpu->isar.id_mmfr0 = 0x31100003;
1903     cpu->isar.id_mmfr1 = 0x20000000;
1904     cpu->isar.id_mmfr2 = 0x01202000;
1905     cpu->isar.id_mmfr3 = 0x11;
1906     cpu->isar.id_isar0 = 0x00101111;
1907     cpu->isar.id_isar1 = 0x12112111;
1908     cpu->isar.id_isar2 = 0x21232031;
1909     cpu->isar.id_isar3 = 0x11112131;
1910     cpu->isar.id_isar4 = 0x00111142;
1911     cpu->isar.dbgdidr = 0x15141000;
1912     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1913     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1914     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1915     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1916     cpu->reset_auxcr = 2;
1917     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1918 }
1919 
1920 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1921     /* power_control should be set to maximum latency. Again,
1922      * default to 0 and set by private hook
1923      */
1924     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1925       .access = PL1_RW, .resetvalue = 0,
1926       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1927     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1928       .access = PL1_RW, .resetvalue = 0,
1929       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1930     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1931       .access = PL1_RW, .resetvalue = 0,
1932       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1933     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1934       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1935     /* TLB lockdown control */
1936     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1937       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1938     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1939       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1940     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1941       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1942     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1943       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1944     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1945       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1946     REGINFO_SENTINEL
1947 };
1948 
1949 static void cortex_a9_initfn(Object *obj)
1950 {
1951     ARMCPU *cpu = ARM_CPU(obj);
1952 
1953     cpu->dtb_compatible = "arm,cortex-a9";
1954     set_feature(&cpu->env, ARM_FEATURE_V7);
1955     set_feature(&cpu->env, ARM_FEATURE_NEON);
1956     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1957     set_feature(&cpu->env, ARM_FEATURE_EL3);
1958     /* Note that A9 supports the MP extensions even for
1959      * A9UP and single-core A9MP (which are both different
1960      * and valid configurations; we don't model A9UP).
1961      */
1962     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1963     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1964     cpu->midr = 0x410fc090;
1965     cpu->reset_fpsid = 0x41033090;
1966     cpu->isar.mvfr0 = 0x11110222;
1967     cpu->isar.mvfr1 = 0x01111111;
1968     cpu->ctr = 0x80038003;
1969     cpu->reset_sctlr = 0x00c50078;
1970     cpu->id_pfr0 = 0x1031;
1971     cpu->id_pfr1 = 0x11;
1972     cpu->isar.id_dfr0 = 0x000;
1973     cpu->id_afr0 = 0;
1974     cpu->isar.id_mmfr0 = 0x00100103;
1975     cpu->isar.id_mmfr1 = 0x20000000;
1976     cpu->isar.id_mmfr2 = 0x01230000;
1977     cpu->isar.id_mmfr3 = 0x00002111;
1978     cpu->isar.id_isar0 = 0x00101111;
1979     cpu->isar.id_isar1 = 0x13112111;
1980     cpu->isar.id_isar2 = 0x21232041;
1981     cpu->isar.id_isar3 = 0x11112131;
1982     cpu->isar.id_isar4 = 0x00111142;
1983     cpu->isar.dbgdidr = 0x35141000;
1984     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1985     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1986     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1987     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1988 }
1989 
1990 #ifndef CONFIG_USER_ONLY
1991 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1992 {
1993     MachineState *ms = MACHINE(qdev_get_machine());
1994 
1995     /* Linux wants the number of processors from here.
1996      * Might as well set the interrupt-controller bit too.
1997      */
1998     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
1999 }
2000 #endif
2001 
2002 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2003 #ifndef CONFIG_USER_ONLY
2004     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2005       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2006       .writefn = arm_cp_write_ignore, },
2007 #endif
2008     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2009       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2010     REGINFO_SENTINEL
2011 };
2012 
2013 static void cortex_a7_initfn(Object *obj)
2014 {
2015     ARMCPU *cpu = ARM_CPU(obj);
2016 
2017     cpu->dtb_compatible = "arm,cortex-a7";
2018     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2019     set_feature(&cpu->env, ARM_FEATURE_NEON);
2020     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2021     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2022     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2023     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2024     set_feature(&cpu->env, ARM_FEATURE_EL2);
2025     set_feature(&cpu->env, ARM_FEATURE_EL3);
2026     set_feature(&cpu->env, ARM_FEATURE_PMU);
2027     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2028     cpu->midr = 0x410fc075;
2029     cpu->reset_fpsid = 0x41023075;
2030     cpu->isar.mvfr0 = 0x10110222;
2031     cpu->isar.mvfr1 = 0x11111111;
2032     cpu->ctr = 0x84448003;
2033     cpu->reset_sctlr = 0x00c50078;
2034     cpu->id_pfr0 = 0x00001131;
2035     cpu->id_pfr1 = 0x00011011;
2036     cpu->isar.id_dfr0 = 0x02010555;
2037     cpu->id_afr0 = 0x00000000;
2038     cpu->isar.id_mmfr0 = 0x10101105;
2039     cpu->isar.id_mmfr1 = 0x40000000;
2040     cpu->isar.id_mmfr2 = 0x01240000;
2041     cpu->isar.id_mmfr3 = 0x02102211;
2042     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2043      * table 4-41 gives 0x02101110, which includes the arm div insns.
2044      */
2045     cpu->isar.id_isar0 = 0x02101110;
2046     cpu->isar.id_isar1 = 0x13112111;
2047     cpu->isar.id_isar2 = 0x21232041;
2048     cpu->isar.id_isar3 = 0x11112131;
2049     cpu->isar.id_isar4 = 0x10011142;
2050     cpu->isar.dbgdidr = 0x3515f005;
2051     cpu->clidr = 0x0a200023;
2052     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2053     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2054     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2055     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2056 }
2057 
2058 static void cortex_a15_initfn(Object *obj)
2059 {
2060     ARMCPU *cpu = ARM_CPU(obj);
2061 
2062     cpu->dtb_compatible = "arm,cortex-a15";
2063     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2064     set_feature(&cpu->env, ARM_FEATURE_NEON);
2065     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2066     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2067     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2068     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2069     set_feature(&cpu->env, ARM_FEATURE_EL2);
2070     set_feature(&cpu->env, ARM_FEATURE_EL3);
2071     set_feature(&cpu->env, ARM_FEATURE_PMU);
2072     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2073     cpu->midr = 0x412fc0f1;
2074     cpu->reset_fpsid = 0x410430f0;
2075     cpu->isar.mvfr0 = 0x10110222;
2076     cpu->isar.mvfr1 = 0x11111111;
2077     cpu->ctr = 0x8444c004;
2078     cpu->reset_sctlr = 0x00c50078;
2079     cpu->id_pfr0 = 0x00001131;
2080     cpu->id_pfr1 = 0x00011011;
2081     cpu->isar.id_dfr0 = 0x02010555;
2082     cpu->id_afr0 = 0x00000000;
2083     cpu->isar.id_mmfr0 = 0x10201105;
2084     cpu->isar.id_mmfr1 = 0x20000000;
2085     cpu->isar.id_mmfr2 = 0x01240000;
2086     cpu->isar.id_mmfr3 = 0x02102211;
2087     cpu->isar.id_isar0 = 0x02101110;
2088     cpu->isar.id_isar1 = 0x13112111;
2089     cpu->isar.id_isar2 = 0x21232041;
2090     cpu->isar.id_isar3 = 0x11112131;
2091     cpu->isar.id_isar4 = 0x10011142;
2092     cpu->isar.dbgdidr = 0x3515f021;
2093     cpu->clidr = 0x0a200023;
2094     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2095     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2096     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2097     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2098 }
2099 
2100 #ifndef TARGET_AARCH64
2101 /*
2102  * -cpu max: a CPU with as many features enabled as our emulation supports.
2103  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2104  * this only needs to handle 32 bits, and need not care about KVM.
2105  */
2106 static void arm_max_initfn(Object *obj)
2107 {
2108     ARMCPU *cpu = ARM_CPU(obj);
2109 
2110     cortex_a15_initfn(obj);
2111 
2112     /* old-style VFP short-vector support */
2113     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2114 
2115 #ifdef CONFIG_USER_ONLY
2116     /*
2117      * We don't set these in system emulation mode for the moment,
2118      * since we don't correctly set (all of) the ID registers to
2119      * advertise them.
2120      */
2121     set_feature(&cpu->env, ARM_FEATURE_V8);
2122     {
2123         uint32_t t;
2124 
2125         t = cpu->isar.id_isar5;
2126         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2127         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2128         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2129         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2130         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2131         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2132         cpu->isar.id_isar5 = t;
2133 
2134         t = cpu->isar.id_isar6;
2135         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2136         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2137         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2138         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2139         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2140         cpu->isar.id_isar6 = t;
2141 
2142         t = cpu->isar.mvfr1;
2143         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2144         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2145         cpu->isar.mvfr1 = t;
2146 
2147         t = cpu->isar.mvfr2;
2148         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2149         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2150         cpu->isar.mvfr2 = t;
2151 
2152         t = cpu->isar.id_mmfr3;
2153         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2154         cpu->isar.id_mmfr3 = t;
2155 
2156         t = cpu->isar.id_mmfr4;
2157         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2158         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2159         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2160         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2161         cpu->isar.id_mmfr4 = t;
2162     }
2163 #endif
2164 }
2165 #endif
2166 
2167 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2168 
2169 static const ARMCPUInfo arm_cpus[] = {
2170 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2171     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2172     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2173     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2174     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2175 #ifndef TARGET_AARCH64
2176     { .name = "max",         .initfn = arm_max_initfn },
2177 #endif
2178 #ifdef CONFIG_USER_ONLY
2179     { .name = "any",         .initfn = arm_max_initfn },
2180 #endif
2181 #endif
2182 };
2183 
2184 static Property arm_cpu_properties[] = {
2185     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2186     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2187     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2188                         mp_affinity, ARM64_AFFINITY_INVALID),
2189     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2190     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2191     DEFINE_PROP_END_OF_LIST()
2192 };
2193 
2194 static gchar *arm_gdb_arch_name(CPUState *cs)
2195 {
2196     ARMCPU *cpu = ARM_CPU(cs);
2197     CPUARMState *env = &cpu->env;
2198 
2199     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2200         return g_strdup("iwmmxt");
2201     }
2202     return g_strdup("arm");
2203 }
2204 
2205 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2206 {
2207     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2208     CPUClass *cc = CPU_CLASS(acc);
2209     DeviceClass *dc = DEVICE_CLASS(oc);
2210 
2211     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2212                                     &acc->parent_realize);
2213 
2214     device_class_set_props(dc, arm_cpu_properties);
2215     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2216 
2217     cc->class_by_name = arm_cpu_class_by_name;
2218     cc->has_work = arm_cpu_has_work;
2219     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2220     cc->dump_state = arm_cpu_dump_state;
2221     cc->set_pc = arm_cpu_set_pc;
2222     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2223     cc->gdb_read_register = arm_cpu_gdb_read_register;
2224     cc->gdb_write_register = arm_cpu_gdb_write_register;
2225 #ifndef CONFIG_USER_ONLY
2226     cc->do_interrupt = arm_cpu_do_interrupt;
2227     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2228     cc->asidx_from_attrs = arm_asidx_from_attrs;
2229     cc->vmsd = &vmstate_arm_cpu;
2230     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2231     cc->write_elf64_note = arm_cpu_write_elf64_note;
2232     cc->write_elf32_note = arm_cpu_write_elf32_note;
2233 #endif
2234     cc->gdb_num_core_regs = 26;
2235     cc->gdb_core_xml_file = "arm-core.xml";
2236     cc->gdb_arch_name = arm_gdb_arch_name;
2237     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2238     cc->gdb_stop_before_watchpoint = true;
2239     cc->disas_set_info = arm_disas_set_info;
2240 #ifdef CONFIG_TCG
2241     cc->tcg_initialize = arm_translate_init;
2242     cc->tlb_fill = arm_cpu_tlb_fill;
2243     cc->debug_excp_handler = arm_debug_excp_handler;
2244     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2245     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2246 #if !defined(CONFIG_USER_ONLY)
2247     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2248     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2249 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2250 #endif
2251 }
2252 
2253 #ifdef CONFIG_KVM
2254 static void arm_host_initfn(Object *obj)
2255 {
2256     ARMCPU *cpu = ARM_CPU(obj);
2257 
2258     kvm_arm_set_cpu_features_from_host(cpu);
2259     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2260         aarch64_add_sve_properties(obj);
2261     }
2262     arm_cpu_post_init(obj);
2263 }
2264 
2265 static const TypeInfo host_arm_cpu_type_info = {
2266     .name = TYPE_ARM_HOST_CPU,
2267     .parent = TYPE_AARCH64_CPU,
2268     .instance_init = arm_host_initfn,
2269 };
2270 
2271 #endif
2272 
2273 static void arm_cpu_instance_init(Object *obj)
2274 {
2275     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2276 
2277     acc->info->initfn(obj);
2278     arm_cpu_post_init(obj);
2279 }
2280 
2281 static void cpu_register_class_init(ObjectClass *oc, void *data)
2282 {
2283     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2284 
2285     acc->info = data;
2286 }
2287 
2288 void arm_cpu_register(const ARMCPUInfo *info)
2289 {
2290     TypeInfo type_info = {
2291         .parent = TYPE_ARM_CPU,
2292         .instance_size = sizeof(ARMCPU),
2293         .instance_align = __alignof__(ARMCPU),
2294         .instance_init = arm_cpu_instance_init,
2295         .class_size = sizeof(ARMCPUClass),
2296         .class_init = info->class_init ?: cpu_register_class_init,
2297         .class_data = (void *)info,
2298     };
2299 
2300     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2301     type_register(&type_info);
2302     g_free((void *)type_info.name);
2303 }
2304 
2305 static const TypeInfo arm_cpu_type_info = {
2306     .name = TYPE_ARM_CPU,
2307     .parent = TYPE_CPU,
2308     .instance_size = sizeof(ARMCPU),
2309     .instance_align = __alignof__(ARMCPU),
2310     .instance_init = arm_cpu_initfn,
2311     .instance_finalize = arm_cpu_finalizefn,
2312     .abstract = true,
2313     .class_size = sizeof(ARMCPUClass),
2314     .class_init = arm_cpu_class_init,
2315 };
2316 
2317 static const TypeInfo idau_interface_type_info = {
2318     .name = TYPE_IDAU_INTERFACE,
2319     .parent = TYPE_INTERFACE,
2320     .class_size = sizeof(IDAUInterfaceClass),
2321 };
2322 
2323 static void arm_cpu_register_types(void)
2324 {
2325     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2326 
2327     type_register_static(&arm_cpu_type_info);
2328 
2329 #ifdef CONFIG_KVM
2330     type_register_static(&host_arm_cpu_type_info);
2331 #endif
2332 
2333     if (cpu_count) {
2334         size_t i;
2335 
2336         type_register_static(&idau_interface_type_info);
2337         for (i = 0; i < cpu_count; ++i) {
2338             arm_cpu_register(&arm_cpus[i]);
2339         }
2340     }
2341 }
2342 
2343 type_init(arm_cpu_register_types)
2344