xref: /qemu/target/arm/cpu.c (revision b30d1886)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36 
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40 
41     cpu->env.regs[15] = value;
42 }
43 
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47 
48     return !cpu->powered_off
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54 
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63 
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69 
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73 
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78 
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87 
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94 
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105 
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109 
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115 
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122 
123     acc->parent_reset(s);
124 
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126 
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129 
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134 
135     cpu->powered_off = cpu->start_powered_off;
136     s->halted = cpu->start_powered_off;
137 
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141 
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168 
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182 
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187 
188         /* For M profile we store FAULTMASK and PRIMASK in the
189          * PSTATE F and I bits; these are both clear at reset.
190          */
191         env->daif &= ~(PSTATE_I | PSTATE_F);
192 
193         /* The reset value of this bit is IMPDEF, but ARM recommends
194          * that it resets to 1, so QEMU always does that rather than making
195          * it dependent on CPU model.
196          */
197         env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
198 
199         /* Unlike A/R profile, M profile defines the reset LR value */
200         env->regs[14] = 0xffffffff;
201 
202         /* Load the initial SP and PC from the vector table at address 0 */
203         rom = rom_ptr(0);
204         if (rom) {
205             /* Address zero is covered by ROM which hasn't yet been
206              * copied into physical memory.
207              */
208             initial_msp = ldl_p(rom);
209             initial_pc = ldl_p(rom + 4);
210         } else {
211             /* Address zero not covered by a ROM blob, or the ROM blob
212              * is in non-modifiable memory and this is a second reset after
213              * it got copied into memory. In the latter case, rom_ptr
214              * will return a NULL pointer and we should use ldl_phys instead.
215              */
216             initial_msp = ldl_phys(s->as, 0);
217             initial_pc = ldl_phys(s->as, 4);
218         }
219 
220         env->regs[13] = initial_msp & 0xFFFFFFFC;
221         env->regs[15] = initial_pc & ~1;
222         env->thumb = initial_pc & 1;
223     }
224 
225     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
226      * executing as AArch32 then check if highvecs are enabled and
227      * adjust the PC accordingly.
228      */
229     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
230         env->regs[15] = 0xFFFF0000;
231     }
232 
233     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
234 #endif
235     set_flush_to_zero(1, &env->vfp.standard_fp_status);
236     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
237     set_default_nan_mode(1, &env->vfp.standard_fp_status);
238     set_float_detect_tininess(float_tininess_before_rounding,
239                               &env->vfp.fp_status);
240     set_float_detect_tininess(float_tininess_before_rounding,
241                               &env->vfp.standard_fp_status);
242 #ifndef CONFIG_USER_ONLY
243     if (kvm_enabled()) {
244         kvm_arm_reset_vcpu(cpu);
245     }
246 #endif
247 
248     hw_breakpoint_update_all(cpu);
249     hw_watchpoint_update_all(cpu);
250 }
251 
252 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
253 {
254     CPUClass *cc = CPU_GET_CLASS(cs);
255     CPUARMState *env = cs->env_ptr;
256     uint32_t cur_el = arm_current_el(env);
257     bool secure = arm_is_secure(env);
258     uint32_t target_el;
259     uint32_t excp_idx;
260     bool ret = false;
261 
262     if (interrupt_request & CPU_INTERRUPT_FIQ) {
263         excp_idx = EXCP_FIQ;
264         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
265         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
266             cs->exception_index = excp_idx;
267             env->exception.target_el = target_el;
268             cc->do_interrupt(cs);
269             ret = true;
270         }
271     }
272     if (interrupt_request & CPU_INTERRUPT_HARD) {
273         excp_idx = EXCP_IRQ;
274         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
275         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
276             cs->exception_index = excp_idx;
277             env->exception.target_el = target_el;
278             cc->do_interrupt(cs);
279             ret = true;
280         }
281     }
282     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
283         excp_idx = EXCP_VIRQ;
284         target_el = 1;
285         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
286             cs->exception_index = excp_idx;
287             env->exception.target_el = target_el;
288             cc->do_interrupt(cs);
289             ret = true;
290         }
291     }
292     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
293         excp_idx = EXCP_VFIQ;
294         target_el = 1;
295         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
296             cs->exception_index = excp_idx;
297             env->exception.target_el = target_el;
298             cc->do_interrupt(cs);
299             ret = true;
300         }
301     }
302 
303     return ret;
304 }
305 
306 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
307 static void arm_v7m_unassigned_access(CPUState *cpu, hwaddr addr,
308                                       bool is_write, bool is_exec, int opaque,
309                                       unsigned size)
310 {
311     ARMCPU *arm = ARM_CPU(cpu);
312     CPUARMState *env = &arm->env;
313 
314     /* ARMv7-M interrupt return works by loading a magic value into the PC.
315      * On real hardware the load causes the return to occur.  The qemu
316      * implementation performs the jump normally, then does the exception
317      * return by throwing a special exception when when the CPU tries to
318      * execute code at the magic address.
319      */
320     if (env->v7m.exception != 0 && addr >= 0xfffffff0 && is_exec) {
321         cpu->exception_index = EXCP_EXCEPTION_EXIT;
322         cpu_loop_exit(cpu);
323     }
324 
325     /* In real hardware an attempt to access parts of the address space
326      * with nothing there will usually cause an external abort.
327      * However our QEMU board models are often missing device models where
328      * the guest can boot anyway with the default read-as-zero/writes-ignored
329      * behaviour that you get without a QEMU unassigned_access hook.
330      * So just return here to retain that default behaviour.
331      */
332 }
333 
334 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
335 {
336     CPUClass *cc = CPU_GET_CLASS(cs);
337     ARMCPU *cpu = ARM_CPU(cs);
338     CPUARMState *env = &cpu->env;
339     bool ret = false;
340 
341 
342     if (interrupt_request & CPU_INTERRUPT_FIQ
343         && !(env->daif & PSTATE_F)) {
344         cs->exception_index = EXCP_FIQ;
345         cc->do_interrupt(cs);
346         ret = true;
347     }
348     /* ARMv7-M interrupt return works by loading a magic value
349      * into the PC.  On real hardware the load causes the
350      * return to occur.  The qemu implementation performs the
351      * jump normally, then does the exception return when the
352      * CPU tries to execute code at the magic address.
353      * This will cause the magic PC value to be pushed to
354      * the stack if an interrupt occurred at the wrong time.
355      * We avoid this by disabling interrupts when
356      * pc contains a magic address.
357      */
358     if (interrupt_request & CPU_INTERRUPT_HARD
359         && !(env->daif & PSTATE_I)
360         && (env->regs[15] < 0xfffffff0)) {
361         cs->exception_index = EXCP_IRQ;
362         cc->do_interrupt(cs);
363         ret = true;
364     }
365     return ret;
366 }
367 #endif
368 
369 #ifndef CONFIG_USER_ONLY
370 static void arm_cpu_set_irq(void *opaque, int irq, int level)
371 {
372     ARMCPU *cpu = opaque;
373     CPUARMState *env = &cpu->env;
374     CPUState *cs = CPU(cpu);
375     static const int mask[] = {
376         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
377         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
378         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
379         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
380     };
381 
382     switch (irq) {
383     case ARM_CPU_VIRQ:
384     case ARM_CPU_VFIQ:
385         assert(arm_feature(env, ARM_FEATURE_EL2));
386         /* fall through */
387     case ARM_CPU_IRQ:
388     case ARM_CPU_FIQ:
389         if (level) {
390             cpu_interrupt(cs, mask[irq]);
391         } else {
392             cpu_reset_interrupt(cs, mask[irq]);
393         }
394         break;
395     default:
396         g_assert_not_reached();
397     }
398 }
399 
400 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
401 {
402 #ifdef CONFIG_KVM
403     ARMCPU *cpu = opaque;
404     CPUState *cs = CPU(cpu);
405     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
406 
407     switch (irq) {
408     case ARM_CPU_IRQ:
409         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
410         break;
411     case ARM_CPU_FIQ:
412         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
413         break;
414     default:
415         g_assert_not_reached();
416     }
417     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
418     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
419 #endif
420 }
421 
422 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
423 {
424     ARMCPU *cpu = ARM_CPU(cs);
425     CPUARMState *env = &cpu->env;
426 
427     cpu_synchronize_state(cs);
428     return arm_cpu_data_is_big_endian(env);
429 }
430 
431 #endif
432 
433 static inline void set_feature(CPUARMState *env, int feature)
434 {
435     env->features |= 1ULL << feature;
436 }
437 
438 static inline void unset_feature(CPUARMState *env, int feature)
439 {
440     env->features &= ~(1ULL << feature);
441 }
442 
443 static int
444 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
445 {
446   return print_insn_arm(pc | 1, info);
447 }
448 
449 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
450                                 int length, struct disassemble_info *info)
451 {
452     assert(info->read_memory_inner_func);
453     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
454 
455     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
456         assert(info->endian == BFD_ENDIAN_LITTLE);
457         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
458                                             info);
459     } else {
460         return info->read_memory_inner_func(memaddr, b, length, info);
461     }
462 }
463 
464 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
465 {
466     ARMCPU *ac = ARM_CPU(cpu);
467     CPUARMState *env = &ac->env;
468 
469     if (is_a64(env)) {
470         /* We might not be compiled with the A64 disassembler
471          * because it needs a C++ compiler. Leave print_insn
472          * unset in this case to use the caller default behaviour.
473          */
474 #if defined(CONFIG_ARM_A64_DIS)
475         info->print_insn = print_insn_arm_a64;
476 #endif
477     } else if (env->thumb) {
478         info->print_insn = print_insn_thumb1;
479     } else {
480         info->print_insn = print_insn_arm;
481     }
482     if (bswap_code(arm_sctlr_b(env))) {
483 #ifdef TARGET_WORDS_BIGENDIAN
484         info->endian = BFD_ENDIAN_LITTLE;
485 #else
486         info->endian = BFD_ENDIAN_BIG;
487 #endif
488     }
489     if (info->read_memory_inner_func == NULL) {
490         info->read_memory_inner_func = info->read_memory_func;
491         info->read_memory_func = arm_read_memory_func;
492     }
493     info->flags &= ~INSN_ARM_BE32;
494     if (arm_sctlr_b(env)) {
495         info->flags |= INSN_ARM_BE32;
496     }
497 }
498 
499 static void arm_cpu_initfn(Object *obj)
500 {
501     CPUState *cs = CPU(obj);
502     ARMCPU *cpu = ARM_CPU(obj);
503     static bool inited;
504 
505     cs->env_ptr = &cpu->env;
506     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
507                                          g_free, g_free);
508 
509 #ifndef CONFIG_USER_ONLY
510     /* Our inbound IRQ and FIQ lines */
511     if (kvm_enabled()) {
512         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
513          * the same interface as non-KVM CPUs.
514          */
515         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
516     } else {
517         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
518     }
519 
520     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
521                                                 arm_gt_ptimer_cb, cpu);
522     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
523                                                 arm_gt_vtimer_cb, cpu);
524     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
525                                                 arm_gt_htimer_cb, cpu);
526     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
527                                                 arm_gt_stimer_cb, cpu);
528     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
529                        ARRAY_SIZE(cpu->gt_timer_outputs));
530 
531     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
532                              "gicv3-maintenance-interrupt", 1);
533 #endif
534 
535     /* DTB consumers generally don't in fact care what the 'compatible'
536      * string is, so always provide some string and trust that a hypothetical
537      * picky DTB consumer will also provide a helpful error message.
538      */
539     cpu->dtb_compatible = "qemu,unknown";
540     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
541     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
542 
543     if (tcg_enabled()) {
544         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
545         if (!inited) {
546             inited = true;
547             arm_translate_init();
548         }
549     }
550 }
551 
552 static Property arm_cpu_reset_cbar_property =
553             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
554 
555 static Property arm_cpu_reset_hivecs_property =
556             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
557 
558 static Property arm_cpu_rvbar_property =
559             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
560 
561 static Property arm_cpu_has_el2_property =
562             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
563 
564 static Property arm_cpu_has_el3_property =
565             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
566 
567 static Property arm_cpu_cfgend_property =
568             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
569 
570 /* use property name "pmu" to match other archs and virt tools */
571 static Property arm_cpu_has_pmu_property =
572             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
573 
574 static Property arm_cpu_has_mpu_property =
575             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
576 
577 static Property arm_cpu_pmsav7_dregion_property =
578             DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
579 
580 static void arm_cpu_post_init(Object *obj)
581 {
582     ARMCPU *cpu = ARM_CPU(obj);
583 
584     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
585         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
586         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
587                                  &error_abort);
588     }
589 
590     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
591         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
592                                  &error_abort);
593     }
594 
595     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
596         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
597                                  &error_abort);
598     }
599 
600     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
601         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
602          * prevent "has_el3" from existing on CPUs which cannot support EL3.
603          */
604         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
605                                  &error_abort);
606 
607 #ifndef CONFIG_USER_ONLY
608         object_property_add_link(obj, "secure-memory",
609                                  TYPE_MEMORY_REGION,
610                                  (Object **)&cpu->secure_memory,
611                                  qdev_prop_allow_set_link_before_realize,
612                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
613                                  &error_abort);
614 #endif
615     }
616 
617     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
618         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
619                                  &error_abort);
620     }
621 
622     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
623         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
624                                  &error_abort);
625     }
626 
627     if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
628         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
629                                  &error_abort);
630         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
631             qdev_property_add_static(DEVICE(obj),
632                                      &arm_cpu_pmsav7_dregion_property,
633                                      &error_abort);
634         }
635     }
636 
637     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
638                              &error_abort);
639 }
640 
641 static void arm_cpu_finalizefn(Object *obj)
642 {
643     ARMCPU *cpu = ARM_CPU(obj);
644     g_hash_table_destroy(cpu->cp_regs);
645 }
646 
647 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
648 {
649     CPUState *cs = CPU(dev);
650     ARMCPU *cpu = ARM_CPU(dev);
651     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
652     CPUARMState *env = &cpu->env;
653     int pagebits;
654     Error *local_err = NULL;
655 
656     cpu_exec_realizefn(cs, &local_err);
657     if (local_err != NULL) {
658         error_propagate(errp, local_err);
659         return;
660     }
661 
662     /* Some features automatically imply others: */
663     if (arm_feature(env, ARM_FEATURE_V8)) {
664         set_feature(env, ARM_FEATURE_V7);
665         set_feature(env, ARM_FEATURE_ARM_DIV);
666         set_feature(env, ARM_FEATURE_LPAE);
667     }
668     if (arm_feature(env, ARM_FEATURE_V7)) {
669         set_feature(env, ARM_FEATURE_VAPA);
670         set_feature(env, ARM_FEATURE_THUMB2);
671         set_feature(env, ARM_FEATURE_MPIDR);
672         if (!arm_feature(env, ARM_FEATURE_M)) {
673             set_feature(env, ARM_FEATURE_V6K);
674         } else {
675             set_feature(env, ARM_FEATURE_V6);
676         }
677 
678         /* Always define VBAR for V7 CPUs even if it doesn't exist in
679          * non-EL3 configs. This is needed by some legacy boards.
680          */
681         set_feature(env, ARM_FEATURE_VBAR);
682     }
683     if (arm_feature(env, ARM_FEATURE_V6K)) {
684         set_feature(env, ARM_FEATURE_V6);
685         set_feature(env, ARM_FEATURE_MVFR);
686     }
687     if (arm_feature(env, ARM_FEATURE_V6)) {
688         set_feature(env, ARM_FEATURE_V5);
689         if (!arm_feature(env, ARM_FEATURE_M)) {
690             set_feature(env, ARM_FEATURE_AUXCR);
691         }
692     }
693     if (arm_feature(env, ARM_FEATURE_V5)) {
694         set_feature(env, ARM_FEATURE_V4T);
695     }
696     if (arm_feature(env, ARM_FEATURE_M)) {
697         set_feature(env, ARM_FEATURE_THUMB_DIV);
698     }
699     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
700         set_feature(env, ARM_FEATURE_THUMB_DIV);
701     }
702     if (arm_feature(env, ARM_FEATURE_VFP4)) {
703         set_feature(env, ARM_FEATURE_VFP3);
704         set_feature(env, ARM_FEATURE_VFP_FP16);
705     }
706     if (arm_feature(env, ARM_FEATURE_VFP3)) {
707         set_feature(env, ARM_FEATURE_VFP);
708     }
709     if (arm_feature(env, ARM_FEATURE_LPAE)) {
710         set_feature(env, ARM_FEATURE_V7MP);
711         set_feature(env, ARM_FEATURE_PXN);
712     }
713     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
714         set_feature(env, ARM_FEATURE_CBAR);
715     }
716     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
717         !arm_feature(env, ARM_FEATURE_M)) {
718         set_feature(env, ARM_FEATURE_THUMB_DSP);
719     }
720 
721     if (arm_feature(env, ARM_FEATURE_V7) &&
722         !arm_feature(env, ARM_FEATURE_M) &&
723         !arm_feature(env, ARM_FEATURE_MPU)) {
724         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
725          * can use 4K pages.
726          */
727         pagebits = 12;
728     } else {
729         /* For CPUs which might have tiny 1K pages, or which have an
730          * MPU and might have small region sizes, stick with 1K pages.
731          */
732         pagebits = 10;
733     }
734     if (!set_preferred_target_page_bits(pagebits)) {
735         /* This can only ever happen for hotplugging a CPU, or if
736          * the board code incorrectly creates a CPU which it has
737          * promised via minimum_page_size that it will not.
738          */
739         error_setg(errp, "This CPU requires a smaller page size than the "
740                    "system is using");
741         return;
742     }
743 
744     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
745      * We don't support setting cluster ID ([16..23]) (known as Aff2
746      * in later ARM ARM versions), or any of the higher affinity level fields,
747      * so these bits always RAZ.
748      */
749     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
750         uint32_t Aff1 = cs->cpu_index / ARM_DEFAULT_CPUS_PER_CLUSTER;
751         uint32_t Aff0 = cs->cpu_index % ARM_DEFAULT_CPUS_PER_CLUSTER;
752         cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
753     }
754 
755     if (cpu->reset_hivecs) {
756             cpu->reset_sctlr |= (1 << 13);
757     }
758 
759     if (cpu->cfgend) {
760         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
761             cpu->reset_sctlr |= SCTLR_EE;
762         } else {
763             cpu->reset_sctlr |= SCTLR_B;
764         }
765     }
766 
767     if (!cpu->has_el3) {
768         /* If the has_el3 CPU property is disabled then we need to disable the
769          * feature.
770          */
771         unset_feature(env, ARM_FEATURE_EL3);
772 
773         /* Disable the security extension feature bits in the processor feature
774          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
775          */
776         cpu->id_pfr1 &= ~0xf0;
777         cpu->id_aa64pfr0 &= ~0xf000;
778     }
779 
780     if (!cpu->has_el2) {
781         unset_feature(env, ARM_FEATURE_EL2);
782     }
783 
784     if (!cpu->has_pmu) {
785         cpu->has_pmu = false;
786         unset_feature(env, ARM_FEATURE_PMU);
787     }
788 
789     if (!arm_feature(env, ARM_FEATURE_EL2)) {
790         /* Disable the hypervisor feature bits in the processor feature
791          * registers if we don't have EL2. These are id_pfr1[15:12] and
792          * id_aa64pfr0_el1[11:8].
793          */
794         cpu->id_aa64pfr0 &= ~0xf00;
795         cpu->id_pfr1 &= ~0xf000;
796     }
797 
798     if (!cpu->has_mpu) {
799         unset_feature(env, ARM_FEATURE_MPU);
800     }
801 
802     if (arm_feature(env, ARM_FEATURE_MPU) &&
803         arm_feature(env, ARM_FEATURE_V7)) {
804         uint32_t nr = cpu->pmsav7_dregion;
805 
806         if (nr > 0xff) {
807             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
808             return;
809         }
810 
811         if (nr) {
812             env->pmsav7.drbar = g_new0(uint32_t, nr);
813             env->pmsav7.drsr = g_new0(uint32_t, nr);
814             env->pmsav7.dracr = g_new0(uint32_t, nr);
815         }
816     }
817 
818     if (arm_feature(env, ARM_FEATURE_EL3)) {
819         set_feature(env, ARM_FEATURE_VBAR);
820     }
821 
822     register_cp_regs_for_features(cpu);
823     arm_cpu_register_gdb_regs_for_features(cpu);
824 
825     init_cpreg_list(cpu);
826 
827 #ifndef CONFIG_USER_ONLY
828     if (cpu->has_el3) {
829         cs->num_ases = 2;
830     } else {
831         cs->num_ases = 1;
832     }
833 
834     if (cpu->has_el3) {
835         AddressSpace *as;
836 
837         if (!cpu->secure_memory) {
838             cpu->secure_memory = cs->memory;
839         }
840         as = address_space_init_shareable(cpu->secure_memory,
841                                           "cpu-secure-memory");
842         cpu_address_space_init(cs, as, ARMASIdx_S);
843     }
844     cpu_address_space_init(cs,
845                            address_space_init_shareable(cs->memory,
846                                                         "cpu-memory"),
847                            ARMASIdx_NS);
848 #endif
849 
850     qemu_init_vcpu(cs);
851     cpu_reset(cs);
852 
853     acc->parent_realize(dev, errp);
854 }
855 
856 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
857 {
858     ObjectClass *oc;
859     char *typename;
860     char **cpuname;
861 
862     if (!cpu_model) {
863         return NULL;
864     }
865 
866     cpuname = g_strsplit(cpu_model, ",", 1);
867     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
868     oc = object_class_by_name(typename);
869     g_strfreev(cpuname);
870     g_free(typename);
871     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
872         object_class_is_abstract(oc)) {
873         return NULL;
874     }
875     return oc;
876 }
877 
878 /* CPU models. These are not needed for the AArch64 linux-user build. */
879 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
880 
881 static void arm926_initfn(Object *obj)
882 {
883     ARMCPU *cpu = ARM_CPU(obj);
884 
885     cpu->dtb_compatible = "arm,arm926";
886     set_feature(&cpu->env, ARM_FEATURE_V5);
887     set_feature(&cpu->env, ARM_FEATURE_VFP);
888     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
889     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
890     cpu->midr = 0x41069265;
891     cpu->reset_fpsid = 0x41011090;
892     cpu->ctr = 0x1dd20d2;
893     cpu->reset_sctlr = 0x00090078;
894 }
895 
896 static void arm946_initfn(Object *obj)
897 {
898     ARMCPU *cpu = ARM_CPU(obj);
899 
900     cpu->dtb_compatible = "arm,arm946";
901     set_feature(&cpu->env, ARM_FEATURE_V5);
902     set_feature(&cpu->env, ARM_FEATURE_MPU);
903     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
904     cpu->midr = 0x41059461;
905     cpu->ctr = 0x0f004006;
906     cpu->reset_sctlr = 0x00000078;
907 }
908 
909 static void arm1026_initfn(Object *obj)
910 {
911     ARMCPU *cpu = ARM_CPU(obj);
912 
913     cpu->dtb_compatible = "arm,arm1026";
914     set_feature(&cpu->env, ARM_FEATURE_V5);
915     set_feature(&cpu->env, ARM_FEATURE_VFP);
916     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
917     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
918     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
919     cpu->midr = 0x4106a262;
920     cpu->reset_fpsid = 0x410110a0;
921     cpu->ctr = 0x1dd20d2;
922     cpu->reset_sctlr = 0x00090078;
923     cpu->reset_auxcr = 1;
924     {
925         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
926         ARMCPRegInfo ifar = {
927             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
928             .access = PL1_RW,
929             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
930             .resetvalue = 0
931         };
932         define_one_arm_cp_reg(cpu, &ifar);
933     }
934 }
935 
936 static void arm1136_r2_initfn(Object *obj)
937 {
938     ARMCPU *cpu = ARM_CPU(obj);
939     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
940      * older core than plain "arm1136". In particular this does not
941      * have the v6K features.
942      * These ID register values are correct for 1136 but may be wrong
943      * for 1136_r2 (in particular r0p2 does not actually implement most
944      * of the ID registers).
945      */
946 
947     cpu->dtb_compatible = "arm,arm1136";
948     set_feature(&cpu->env, ARM_FEATURE_V6);
949     set_feature(&cpu->env, ARM_FEATURE_VFP);
950     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
951     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
952     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
953     cpu->midr = 0x4107b362;
954     cpu->reset_fpsid = 0x410120b4;
955     cpu->mvfr0 = 0x11111111;
956     cpu->mvfr1 = 0x00000000;
957     cpu->ctr = 0x1dd20d2;
958     cpu->reset_sctlr = 0x00050078;
959     cpu->id_pfr0 = 0x111;
960     cpu->id_pfr1 = 0x1;
961     cpu->id_dfr0 = 0x2;
962     cpu->id_afr0 = 0x3;
963     cpu->id_mmfr0 = 0x01130003;
964     cpu->id_mmfr1 = 0x10030302;
965     cpu->id_mmfr2 = 0x01222110;
966     cpu->id_isar0 = 0x00140011;
967     cpu->id_isar1 = 0x12002111;
968     cpu->id_isar2 = 0x11231111;
969     cpu->id_isar3 = 0x01102131;
970     cpu->id_isar4 = 0x141;
971     cpu->reset_auxcr = 7;
972 }
973 
974 static void arm1136_initfn(Object *obj)
975 {
976     ARMCPU *cpu = ARM_CPU(obj);
977 
978     cpu->dtb_compatible = "arm,arm1136";
979     set_feature(&cpu->env, ARM_FEATURE_V6K);
980     set_feature(&cpu->env, ARM_FEATURE_V6);
981     set_feature(&cpu->env, ARM_FEATURE_VFP);
982     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
983     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
984     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
985     cpu->midr = 0x4117b363;
986     cpu->reset_fpsid = 0x410120b4;
987     cpu->mvfr0 = 0x11111111;
988     cpu->mvfr1 = 0x00000000;
989     cpu->ctr = 0x1dd20d2;
990     cpu->reset_sctlr = 0x00050078;
991     cpu->id_pfr0 = 0x111;
992     cpu->id_pfr1 = 0x1;
993     cpu->id_dfr0 = 0x2;
994     cpu->id_afr0 = 0x3;
995     cpu->id_mmfr0 = 0x01130003;
996     cpu->id_mmfr1 = 0x10030302;
997     cpu->id_mmfr2 = 0x01222110;
998     cpu->id_isar0 = 0x00140011;
999     cpu->id_isar1 = 0x12002111;
1000     cpu->id_isar2 = 0x11231111;
1001     cpu->id_isar3 = 0x01102131;
1002     cpu->id_isar4 = 0x141;
1003     cpu->reset_auxcr = 7;
1004 }
1005 
1006 static void arm1176_initfn(Object *obj)
1007 {
1008     ARMCPU *cpu = ARM_CPU(obj);
1009 
1010     cpu->dtb_compatible = "arm,arm1176";
1011     set_feature(&cpu->env, ARM_FEATURE_V6K);
1012     set_feature(&cpu->env, ARM_FEATURE_VFP);
1013     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1014     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1015     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1016     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1017     set_feature(&cpu->env, ARM_FEATURE_EL3);
1018     cpu->midr = 0x410fb767;
1019     cpu->reset_fpsid = 0x410120b5;
1020     cpu->mvfr0 = 0x11111111;
1021     cpu->mvfr1 = 0x00000000;
1022     cpu->ctr = 0x1dd20d2;
1023     cpu->reset_sctlr = 0x00050078;
1024     cpu->id_pfr0 = 0x111;
1025     cpu->id_pfr1 = 0x11;
1026     cpu->id_dfr0 = 0x33;
1027     cpu->id_afr0 = 0;
1028     cpu->id_mmfr0 = 0x01130003;
1029     cpu->id_mmfr1 = 0x10030302;
1030     cpu->id_mmfr2 = 0x01222100;
1031     cpu->id_isar0 = 0x0140011;
1032     cpu->id_isar1 = 0x12002111;
1033     cpu->id_isar2 = 0x11231121;
1034     cpu->id_isar3 = 0x01102131;
1035     cpu->id_isar4 = 0x01141;
1036     cpu->reset_auxcr = 7;
1037 }
1038 
1039 static void arm11mpcore_initfn(Object *obj)
1040 {
1041     ARMCPU *cpu = ARM_CPU(obj);
1042 
1043     cpu->dtb_compatible = "arm,arm11mpcore";
1044     set_feature(&cpu->env, ARM_FEATURE_V6K);
1045     set_feature(&cpu->env, ARM_FEATURE_VFP);
1046     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1047     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1048     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1049     cpu->midr = 0x410fb022;
1050     cpu->reset_fpsid = 0x410120b4;
1051     cpu->mvfr0 = 0x11111111;
1052     cpu->mvfr1 = 0x00000000;
1053     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1054     cpu->id_pfr0 = 0x111;
1055     cpu->id_pfr1 = 0x1;
1056     cpu->id_dfr0 = 0;
1057     cpu->id_afr0 = 0x2;
1058     cpu->id_mmfr0 = 0x01100103;
1059     cpu->id_mmfr1 = 0x10020302;
1060     cpu->id_mmfr2 = 0x01222000;
1061     cpu->id_isar0 = 0x00100011;
1062     cpu->id_isar1 = 0x12002111;
1063     cpu->id_isar2 = 0x11221011;
1064     cpu->id_isar3 = 0x01102131;
1065     cpu->id_isar4 = 0x141;
1066     cpu->reset_auxcr = 1;
1067 }
1068 
1069 static void cortex_m3_initfn(Object *obj)
1070 {
1071     ARMCPU *cpu = ARM_CPU(obj);
1072     set_feature(&cpu->env, ARM_FEATURE_V7);
1073     set_feature(&cpu->env, ARM_FEATURE_M);
1074     cpu->midr = 0x410fc231;
1075 }
1076 
1077 static void cortex_m4_initfn(Object *obj)
1078 {
1079     ARMCPU *cpu = ARM_CPU(obj);
1080 
1081     set_feature(&cpu->env, ARM_FEATURE_V7);
1082     set_feature(&cpu->env, ARM_FEATURE_M);
1083     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1084     cpu->midr = 0x410fc240; /* r0p0 */
1085 }
1086 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1087 {
1088     CPUClass *cc = CPU_CLASS(oc);
1089 
1090 #ifndef CONFIG_USER_ONLY
1091     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1092 #endif
1093 
1094     cc->do_unassigned_access = arm_v7m_unassigned_access;
1095     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1096 }
1097 
1098 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1099     /* Dummy the TCM region regs for the moment */
1100     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1101       .access = PL1_RW, .type = ARM_CP_CONST },
1102     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1103       .access = PL1_RW, .type = ARM_CP_CONST },
1104     REGINFO_SENTINEL
1105 };
1106 
1107 static void cortex_r5_initfn(Object *obj)
1108 {
1109     ARMCPU *cpu = ARM_CPU(obj);
1110 
1111     set_feature(&cpu->env, ARM_FEATURE_V7);
1112     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1113     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1114     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1115     set_feature(&cpu->env, ARM_FEATURE_MPU);
1116     cpu->midr = 0x411fc153; /* r1p3 */
1117     cpu->id_pfr0 = 0x0131;
1118     cpu->id_pfr1 = 0x001;
1119     cpu->id_dfr0 = 0x010400;
1120     cpu->id_afr0 = 0x0;
1121     cpu->id_mmfr0 = 0x0210030;
1122     cpu->id_mmfr1 = 0x00000000;
1123     cpu->id_mmfr2 = 0x01200000;
1124     cpu->id_mmfr3 = 0x0211;
1125     cpu->id_isar0 = 0x2101111;
1126     cpu->id_isar1 = 0x13112111;
1127     cpu->id_isar2 = 0x21232141;
1128     cpu->id_isar3 = 0x01112131;
1129     cpu->id_isar4 = 0x0010142;
1130     cpu->id_isar5 = 0x0;
1131     cpu->mp_is_up = true;
1132     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1133 }
1134 
1135 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1136     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1137       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1138     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1139       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1140     REGINFO_SENTINEL
1141 };
1142 
1143 static void cortex_a8_initfn(Object *obj)
1144 {
1145     ARMCPU *cpu = ARM_CPU(obj);
1146 
1147     cpu->dtb_compatible = "arm,cortex-a8";
1148     set_feature(&cpu->env, ARM_FEATURE_V7);
1149     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1150     set_feature(&cpu->env, ARM_FEATURE_NEON);
1151     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1152     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1153     set_feature(&cpu->env, ARM_FEATURE_EL3);
1154     cpu->midr = 0x410fc080;
1155     cpu->reset_fpsid = 0x410330c0;
1156     cpu->mvfr0 = 0x11110222;
1157     cpu->mvfr1 = 0x00011111;
1158     cpu->ctr = 0x82048004;
1159     cpu->reset_sctlr = 0x00c50078;
1160     cpu->id_pfr0 = 0x1031;
1161     cpu->id_pfr1 = 0x11;
1162     cpu->id_dfr0 = 0x400;
1163     cpu->id_afr0 = 0;
1164     cpu->id_mmfr0 = 0x31100003;
1165     cpu->id_mmfr1 = 0x20000000;
1166     cpu->id_mmfr2 = 0x01202000;
1167     cpu->id_mmfr3 = 0x11;
1168     cpu->id_isar0 = 0x00101111;
1169     cpu->id_isar1 = 0x12112111;
1170     cpu->id_isar2 = 0x21232031;
1171     cpu->id_isar3 = 0x11112131;
1172     cpu->id_isar4 = 0x00111142;
1173     cpu->dbgdidr = 0x15141000;
1174     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1175     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1176     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1177     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1178     cpu->reset_auxcr = 2;
1179     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1180 }
1181 
1182 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1183     /* power_control should be set to maximum latency. Again,
1184      * default to 0 and set by private hook
1185      */
1186     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1187       .access = PL1_RW, .resetvalue = 0,
1188       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1189     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1190       .access = PL1_RW, .resetvalue = 0,
1191       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1192     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1193       .access = PL1_RW, .resetvalue = 0,
1194       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1195     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1196       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1197     /* TLB lockdown control */
1198     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1199       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1200     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1201       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1202     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1203       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1204     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1205       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1206     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1207       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1208     REGINFO_SENTINEL
1209 };
1210 
1211 static void cortex_a9_initfn(Object *obj)
1212 {
1213     ARMCPU *cpu = ARM_CPU(obj);
1214 
1215     cpu->dtb_compatible = "arm,cortex-a9";
1216     set_feature(&cpu->env, ARM_FEATURE_V7);
1217     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1218     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1219     set_feature(&cpu->env, ARM_FEATURE_NEON);
1220     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1221     set_feature(&cpu->env, ARM_FEATURE_EL3);
1222     /* Note that A9 supports the MP extensions even for
1223      * A9UP and single-core A9MP (which are both different
1224      * and valid configurations; we don't model A9UP).
1225      */
1226     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1227     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1228     cpu->midr = 0x410fc090;
1229     cpu->reset_fpsid = 0x41033090;
1230     cpu->mvfr0 = 0x11110222;
1231     cpu->mvfr1 = 0x01111111;
1232     cpu->ctr = 0x80038003;
1233     cpu->reset_sctlr = 0x00c50078;
1234     cpu->id_pfr0 = 0x1031;
1235     cpu->id_pfr1 = 0x11;
1236     cpu->id_dfr0 = 0x000;
1237     cpu->id_afr0 = 0;
1238     cpu->id_mmfr0 = 0x00100103;
1239     cpu->id_mmfr1 = 0x20000000;
1240     cpu->id_mmfr2 = 0x01230000;
1241     cpu->id_mmfr3 = 0x00002111;
1242     cpu->id_isar0 = 0x00101111;
1243     cpu->id_isar1 = 0x13112111;
1244     cpu->id_isar2 = 0x21232041;
1245     cpu->id_isar3 = 0x11112131;
1246     cpu->id_isar4 = 0x00111142;
1247     cpu->dbgdidr = 0x35141000;
1248     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1249     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1250     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1251     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1252 }
1253 
1254 #ifndef CONFIG_USER_ONLY
1255 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1256 {
1257     /* Linux wants the number of processors from here.
1258      * Might as well set the interrupt-controller bit too.
1259      */
1260     return ((smp_cpus - 1) << 24) | (1 << 23);
1261 }
1262 #endif
1263 
1264 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1265 #ifndef CONFIG_USER_ONLY
1266     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1267       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1268       .writefn = arm_cp_write_ignore, },
1269 #endif
1270     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1271       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1272     REGINFO_SENTINEL
1273 };
1274 
1275 static void cortex_a7_initfn(Object *obj)
1276 {
1277     ARMCPU *cpu = ARM_CPU(obj);
1278 
1279     cpu->dtb_compatible = "arm,cortex-a7";
1280     set_feature(&cpu->env, ARM_FEATURE_V7);
1281     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1282     set_feature(&cpu->env, ARM_FEATURE_NEON);
1283     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1284     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1285     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1286     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1287     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1288     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1289     set_feature(&cpu->env, ARM_FEATURE_EL3);
1290     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1291     cpu->midr = 0x410fc075;
1292     cpu->reset_fpsid = 0x41023075;
1293     cpu->mvfr0 = 0x10110222;
1294     cpu->mvfr1 = 0x11111111;
1295     cpu->ctr = 0x84448003;
1296     cpu->reset_sctlr = 0x00c50078;
1297     cpu->id_pfr0 = 0x00001131;
1298     cpu->id_pfr1 = 0x00011011;
1299     cpu->id_dfr0 = 0x02010555;
1300     cpu->pmceid0 = 0x00000000;
1301     cpu->pmceid1 = 0x00000000;
1302     cpu->id_afr0 = 0x00000000;
1303     cpu->id_mmfr0 = 0x10101105;
1304     cpu->id_mmfr1 = 0x40000000;
1305     cpu->id_mmfr2 = 0x01240000;
1306     cpu->id_mmfr3 = 0x02102211;
1307     cpu->id_isar0 = 0x01101110;
1308     cpu->id_isar1 = 0x13112111;
1309     cpu->id_isar2 = 0x21232041;
1310     cpu->id_isar3 = 0x11112131;
1311     cpu->id_isar4 = 0x10011142;
1312     cpu->dbgdidr = 0x3515f005;
1313     cpu->clidr = 0x0a200023;
1314     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1315     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1316     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1317     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1318 }
1319 
1320 static void cortex_a15_initfn(Object *obj)
1321 {
1322     ARMCPU *cpu = ARM_CPU(obj);
1323 
1324     cpu->dtb_compatible = "arm,cortex-a15";
1325     set_feature(&cpu->env, ARM_FEATURE_V7);
1326     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1327     set_feature(&cpu->env, ARM_FEATURE_NEON);
1328     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1329     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1330     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1331     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1332     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1333     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1334     set_feature(&cpu->env, ARM_FEATURE_EL3);
1335     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1336     cpu->midr = 0x412fc0f1;
1337     cpu->reset_fpsid = 0x410430f0;
1338     cpu->mvfr0 = 0x10110222;
1339     cpu->mvfr1 = 0x11111111;
1340     cpu->ctr = 0x8444c004;
1341     cpu->reset_sctlr = 0x00c50078;
1342     cpu->id_pfr0 = 0x00001131;
1343     cpu->id_pfr1 = 0x00011011;
1344     cpu->id_dfr0 = 0x02010555;
1345     cpu->pmceid0 = 0x0000000;
1346     cpu->pmceid1 = 0x00000000;
1347     cpu->id_afr0 = 0x00000000;
1348     cpu->id_mmfr0 = 0x10201105;
1349     cpu->id_mmfr1 = 0x20000000;
1350     cpu->id_mmfr2 = 0x01240000;
1351     cpu->id_mmfr3 = 0x02102211;
1352     cpu->id_isar0 = 0x02101110;
1353     cpu->id_isar1 = 0x13112111;
1354     cpu->id_isar2 = 0x21232041;
1355     cpu->id_isar3 = 0x11112131;
1356     cpu->id_isar4 = 0x10011142;
1357     cpu->dbgdidr = 0x3515f021;
1358     cpu->clidr = 0x0a200023;
1359     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1360     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1361     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1362     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1363 }
1364 
1365 static void ti925t_initfn(Object *obj)
1366 {
1367     ARMCPU *cpu = ARM_CPU(obj);
1368     set_feature(&cpu->env, ARM_FEATURE_V4T);
1369     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1370     cpu->midr = ARM_CPUID_TI925T;
1371     cpu->ctr = 0x5109149;
1372     cpu->reset_sctlr = 0x00000070;
1373 }
1374 
1375 static void sa1100_initfn(Object *obj)
1376 {
1377     ARMCPU *cpu = ARM_CPU(obj);
1378 
1379     cpu->dtb_compatible = "intel,sa1100";
1380     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1381     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1382     cpu->midr = 0x4401A11B;
1383     cpu->reset_sctlr = 0x00000070;
1384 }
1385 
1386 static void sa1110_initfn(Object *obj)
1387 {
1388     ARMCPU *cpu = ARM_CPU(obj);
1389     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1390     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1391     cpu->midr = 0x6901B119;
1392     cpu->reset_sctlr = 0x00000070;
1393 }
1394 
1395 static void pxa250_initfn(Object *obj)
1396 {
1397     ARMCPU *cpu = ARM_CPU(obj);
1398 
1399     cpu->dtb_compatible = "marvell,xscale";
1400     set_feature(&cpu->env, ARM_FEATURE_V5);
1401     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1402     cpu->midr = 0x69052100;
1403     cpu->ctr = 0xd172172;
1404     cpu->reset_sctlr = 0x00000078;
1405 }
1406 
1407 static void pxa255_initfn(Object *obj)
1408 {
1409     ARMCPU *cpu = ARM_CPU(obj);
1410 
1411     cpu->dtb_compatible = "marvell,xscale";
1412     set_feature(&cpu->env, ARM_FEATURE_V5);
1413     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1414     cpu->midr = 0x69052d00;
1415     cpu->ctr = 0xd172172;
1416     cpu->reset_sctlr = 0x00000078;
1417 }
1418 
1419 static void pxa260_initfn(Object *obj)
1420 {
1421     ARMCPU *cpu = ARM_CPU(obj);
1422 
1423     cpu->dtb_compatible = "marvell,xscale";
1424     set_feature(&cpu->env, ARM_FEATURE_V5);
1425     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1426     cpu->midr = 0x69052903;
1427     cpu->ctr = 0xd172172;
1428     cpu->reset_sctlr = 0x00000078;
1429 }
1430 
1431 static void pxa261_initfn(Object *obj)
1432 {
1433     ARMCPU *cpu = ARM_CPU(obj);
1434 
1435     cpu->dtb_compatible = "marvell,xscale";
1436     set_feature(&cpu->env, ARM_FEATURE_V5);
1437     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1438     cpu->midr = 0x69052d05;
1439     cpu->ctr = 0xd172172;
1440     cpu->reset_sctlr = 0x00000078;
1441 }
1442 
1443 static void pxa262_initfn(Object *obj)
1444 {
1445     ARMCPU *cpu = ARM_CPU(obj);
1446 
1447     cpu->dtb_compatible = "marvell,xscale";
1448     set_feature(&cpu->env, ARM_FEATURE_V5);
1449     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1450     cpu->midr = 0x69052d06;
1451     cpu->ctr = 0xd172172;
1452     cpu->reset_sctlr = 0x00000078;
1453 }
1454 
1455 static void pxa270a0_initfn(Object *obj)
1456 {
1457     ARMCPU *cpu = ARM_CPU(obj);
1458 
1459     cpu->dtb_compatible = "marvell,xscale";
1460     set_feature(&cpu->env, ARM_FEATURE_V5);
1461     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1462     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1463     cpu->midr = 0x69054110;
1464     cpu->ctr = 0xd172172;
1465     cpu->reset_sctlr = 0x00000078;
1466 }
1467 
1468 static void pxa270a1_initfn(Object *obj)
1469 {
1470     ARMCPU *cpu = ARM_CPU(obj);
1471 
1472     cpu->dtb_compatible = "marvell,xscale";
1473     set_feature(&cpu->env, ARM_FEATURE_V5);
1474     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1475     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1476     cpu->midr = 0x69054111;
1477     cpu->ctr = 0xd172172;
1478     cpu->reset_sctlr = 0x00000078;
1479 }
1480 
1481 static void pxa270b0_initfn(Object *obj)
1482 {
1483     ARMCPU *cpu = ARM_CPU(obj);
1484 
1485     cpu->dtb_compatible = "marvell,xscale";
1486     set_feature(&cpu->env, ARM_FEATURE_V5);
1487     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1488     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1489     cpu->midr = 0x69054112;
1490     cpu->ctr = 0xd172172;
1491     cpu->reset_sctlr = 0x00000078;
1492 }
1493 
1494 static void pxa270b1_initfn(Object *obj)
1495 {
1496     ARMCPU *cpu = ARM_CPU(obj);
1497 
1498     cpu->dtb_compatible = "marvell,xscale";
1499     set_feature(&cpu->env, ARM_FEATURE_V5);
1500     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1501     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1502     cpu->midr = 0x69054113;
1503     cpu->ctr = 0xd172172;
1504     cpu->reset_sctlr = 0x00000078;
1505 }
1506 
1507 static void pxa270c0_initfn(Object *obj)
1508 {
1509     ARMCPU *cpu = ARM_CPU(obj);
1510 
1511     cpu->dtb_compatible = "marvell,xscale";
1512     set_feature(&cpu->env, ARM_FEATURE_V5);
1513     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1514     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1515     cpu->midr = 0x69054114;
1516     cpu->ctr = 0xd172172;
1517     cpu->reset_sctlr = 0x00000078;
1518 }
1519 
1520 static void pxa270c5_initfn(Object *obj)
1521 {
1522     ARMCPU *cpu = ARM_CPU(obj);
1523 
1524     cpu->dtb_compatible = "marvell,xscale";
1525     set_feature(&cpu->env, ARM_FEATURE_V5);
1526     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1527     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1528     cpu->midr = 0x69054117;
1529     cpu->ctr = 0xd172172;
1530     cpu->reset_sctlr = 0x00000078;
1531 }
1532 
1533 #ifdef CONFIG_USER_ONLY
1534 static void arm_any_initfn(Object *obj)
1535 {
1536     ARMCPU *cpu = ARM_CPU(obj);
1537     set_feature(&cpu->env, ARM_FEATURE_V8);
1538     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1539     set_feature(&cpu->env, ARM_FEATURE_NEON);
1540     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1541     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1542     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1543     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1544     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1545     set_feature(&cpu->env, ARM_FEATURE_CRC);
1546     cpu->midr = 0xffffffff;
1547 }
1548 #endif
1549 
1550 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1551 
1552 typedef struct ARMCPUInfo {
1553     const char *name;
1554     void (*initfn)(Object *obj);
1555     void (*class_init)(ObjectClass *oc, void *data);
1556 } ARMCPUInfo;
1557 
1558 static const ARMCPUInfo arm_cpus[] = {
1559 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1560     { .name = "arm926",      .initfn = arm926_initfn },
1561     { .name = "arm946",      .initfn = arm946_initfn },
1562     { .name = "arm1026",     .initfn = arm1026_initfn },
1563     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1564      * older core than plain "arm1136". In particular this does not
1565      * have the v6K features.
1566      */
1567     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1568     { .name = "arm1136",     .initfn = arm1136_initfn },
1569     { .name = "arm1176",     .initfn = arm1176_initfn },
1570     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1571     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1572                              .class_init = arm_v7m_class_init },
1573     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1574                              .class_init = arm_v7m_class_init },
1575     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1576     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1577     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1578     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1579     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1580     { .name = "ti925t",      .initfn = ti925t_initfn },
1581     { .name = "sa1100",      .initfn = sa1100_initfn },
1582     { .name = "sa1110",      .initfn = sa1110_initfn },
1583     { .name = "pxa250",      .initfn = pxa250_initfn },
1584     { .name = "pxa255",      .initfn = pxa255_initfn },
1585     { .name = "pxa260",      .initfn = pxa260_initfn },
1586     { .name = "pxa261",      .initfn = pxa261_initfn },
1587     { .name = "pxa262",      .initfn = pxa262_initfn },
1588     /* "pxa270" is an alias for "pxa270-a0" */
1589     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1590     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1591     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1592     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1593     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1594     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1595     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1596 #ifdef CONFIG_USER_ONLY
1597     { .name = "any",         .initfn = arm_any_initfn },
1598 #endif
1599 #endif
1600     { .name = NULL }
1601 };
1602 
1603 static Property arm_cpu_properties[] = {
1604     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1605     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1606     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1607     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1608                         mp_affinity, ARM64_AFFINITY_INVALID),
1609     DEFINE_PROP_END_OF_LIST()
1610 };
1611 
1612 #ifdef CONFIG_USER_ONLY
1613 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1614                                     int mmu_idx)
1615 {
1616     ARMCPU *cpu = ARM_CPU(cs);
1617     CPUARMState *env = &cpu->env;
1618 
1619     env->exception.vaddress = address;
1620     if (rw == 2) {
1621         cs->exception_index = EXCP_PREFETCH_ABORT;
1622     } else {
1623         cs->exception_index = EXCP_DATA_ABORT;
1624     }
1625     return 1;
1626 }
1627 #endif
1628 
1629 static gchar *arm_gdb_arch_name(CPUState *cs)
1630 {
1631     ARMCPU *cpu = ARM_CPU(cs);
1632     CPUARMState *env = &cpu->env;
1633 
1634     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1635         return g_strdup("iwmmxt");
1636     }
1637     return g_strdup("arm");
1638 }
1639 
1640 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1641 {
1642     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1643     CPUClass *cc = CPU_CLASS(acc);
1644     DeviceClass *dc = DEVICE_CLASS(oc);
1645 
1646     acc->parent_realize = dc->realize;
1647     dc->realize = arm_cpu_realizefn;
1648     dc->props = arm_cpu_properties;
1649 
1650     acc->parent_reset = cc->reset;
1651     cc->reset = arm_cpu_reset;
1652 
1653     cc->class_by_name = arm_cpu_class_by_name;
1654     cc->has_work = arm_cpu_has_work;
1655     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1656     cc->dump_state = arm_cpu_dump_state;
1657     cc->set_pc = arm_cpu_set_pc;
1658     cc->gdb_read_register = arm_cpu_gdb_read_register;
1659     cc->gdb_write_register = arm_cpu_gdb_write_register;
1660 #ifdef CONFIG_USER_ONLY
1661     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1662 #else
1663     cc->do_interrupt = arm_cpu_do_interrupt;
1664     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1665     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1666     cc->asidx_from_attrs = arm_asidx_from_attrs;
1667     cc->vmsd = &vmstate_arm_cpu;
1668     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1669     cc->write_elf64_note = arm_cpu_write_elf64_note;
1670     cc->write_elf32_note = arm_cpu_write_elf32_note;
1671 #endif
1672     cc->gdb_num_core_regs = 26;
1673     cc->gdb_core_xml_file = "arm-core.xml";
1674     cc->gdb_arch_name = arm_gdb_arch_name;
1675     cc->gdb_stop_before_watchpoint = true;
1676     cc->debug_excp_handler = arm_debug_excp_handler;
1677     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1678 #if !defined(CONFIG_USER_ONLY)
1679     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1680 #endif
1681 
1682     cc->disas_set_info = arm_disas_set_info;
1683 }
1684 
1685 static void cpu_register(const ARMCPUInfo *info)
1686 {
1687     TypeInfo type_info = {
1688         .parent = TYPE_ARM_CPU,
1689         .instance_size = sizeof(ARMCPU),
1690         .instance_init = info->initfn,
1691         .class_size = sizeof(ARMCPUClass),
1692         .class_init = info->class_init,
1693     };
1694 
1695     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1696     type_register(&type_info);
1697     g_free((void *)type_info.name);
1698 }
1699 
1700 static const TypeInfo arm_cpu_type_info = {
1701     .name = TYPE_ARM_CPU,
1702     .parent = TYPE_CPU,
1703     .instance_size = sizeof(ARMCPU),
1704     .instance_init = arm_cpu_initfn,
1705     .instance_post_init = arm_cpu_post_init,
1706     .instance_finalize = arm_cpu_finalizefn,
1707     .abstract = true,
1708     .class_size = sizeof(ARMCPUClass),
1709     .class_init = arm_cpu_class_init,
1710 };
1711 
1712 static void arm_cpu_register_types(void)
1713 {
1714     const ARMCPUInfo *info = arm_cpus;
1715 
1716     type_register_static(&arm_cpu_type_info);
1717 
1718     while (info->name) {
1719         cpu_register(info);
1720         info++;
1721     }
1722 }
1723 
1724 type_init(arm_cpu_register_types)
1725