xref: /qemu/target/arm/cpu.c (revision bb509d94)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50 
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53     ARMCPU *cpu = ARM_CPU(cs);
54     CPUARMState *env = &cpu->env;
55 
56     if (is_a64(env)) {
57         env->pc = value;
58         env->thumb = false;
59     } else {
60         env->regs[15] = value & ~1;
61         env->thumb = value & 1;
62     }
63 }
64 
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     if (is_a64(env)) {
71         return env->pc;
72     } else {
73         return env->regs[15];
74     }
75 }
76 
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79                                  const TranslationBlock *tb)
80 {
81     /* The program counter is always up to date with TARGET_TB_PCREL. */
82     if (!TARGET_TB_PCREL) {
83         CPUARMState *env = cs->env_ptr;
84         /*
85          * It's OK to look at env for the current mode here, because it's
86          * never possible for an AArch64 TB to chain to an AArch32 TB.
87          */
88         if (is_a64(env)) {
89             env->pc = tb_pc(tb);
90         } else {
91             env->regs[15] = tb_pc(tb);
92         }
93     }
94 }
95 
96 void arm_restore_state_to_opc(CPUState *cs,
97                               const TranslationBlock *tb,
98                               const uint64_t *data)
99 {
100     CPUARMState *env = cs->env_ptr;
101 
102     if (is_a64(env)) {
103         if (TARGET_TB_PCREL) {
104             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105         } else {
106             env->pc = data[0];
107         }
108         env->condexec_bits = 0;
109         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110     } else {
111         if (TARGET_TB_PCREL) {
112             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113         } else {
114             env->regs[15] = data[0];
115         }
116         env->condexec_bits = data[1];
117         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118     }
119 }
120 #endif /* CONFIG_TCG */
121 
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124     ARMCPU *cpu = ARM_CPU(cs);
125 
126     return (cpu->power_state != PSCI_OFF)
127         && cs->interrupt_request &
128         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130          | CPU_INTERRUPT_EXITTB);
131 }
132 
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134                                  void *opaque)
135 {
136     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137 
138     entry->hook = hook;
139     entry->opaque = opaque;
140 
141     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143 
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145                                  void *opaque)
146 {
147     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148 
149     entry->hook = hook;
150     entry->opaque = opaque;
151 
152     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154 
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157     /* Reset a single ARMCPRegInfo register */
158     ARMCPRegInfo *ri = value;
159     ARMCPU *cpu = opaque;
160 
161     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162         return;
163     }
164 
165     if (ri->resetfn) {
166         ri->resetfn(&cpu->env, ri);
167         return;
168     }
169 
170     /* A zero offset is never possible as it would be regs[0]
171      * so we use it to indicate that reset is being handled elsewhere.
172      * This is basically only used for fields in non-core coprocessors
173      * (like the pxa2xx ones).
174      */
175     if (!ri->fieldoffset) {
176         return;
177     }
178 
179     if (cpreg_field_is_64bit(ri)) {
180         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181     } else {
182         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183     }
184 }
185 
186 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
187 {
188     /* Purely an assertion check: we've already done reset once,
189      * so now check that running the reset for the cpreg doesn't
190      * change its value. This traps bugs where two different cpregs
191      * both try to reset the same state field but to different values.
192      */
193     ARMCPRegInfo *ri = value;
194     ARMCPU *cpu = opaque;
195     uint64_t oldvalue, newvalue;
196 
197     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198         return;
199     }
200 
201     oldvalue = read_raw_cp_reg(&cpu->env, ri);
202     cp_reg_reset(key, value, opaque);
203     newvalue = read_raw_cp_reg(&cpu->env, ri);
204     assert(oldvalue == newvalue);
205 }
206 
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209     CPUState *s = CPU(obj);
210     ARMCPU *cpu = ARM_CPU(s);
211     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212     CPUARMState *env = &cpu->env;
213 
214     if (acc->parent_phases.hold) {
215         acc->parent_phases.hold(obj);
216     }
217 
218     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219 
220     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222 
223     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227 
228     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229 
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232     }
233 
234     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235         /* 64 bit CPUs always start in 64 bit mode */
236         env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238         env->pstate = PSTATE_MODE_EL0t;
239         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241         /* Enable all PAC keys.  */
242         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243                                   SCTLR_EnDA | SCTLR_EnDB);
244         /* Trap on btype=3 for PACIxSP. */
245         env->cp15.sctlr_el[1] |= SCTLR_BT0;
246         /* and to the FP/Neon instructions */
247         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248                                          CPACR_EL1, FPEN, 3);
249         /* and to the SVE instructions, with default vector length */
250         if (cpu_isar_feature(aa64_sve, cpu)) {
251             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252                                              CPACR_EL1, ZEN, 3);
253             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254         }
255         /* and for SME instructions, with default vector length, and TPIDR2 */
256         if (cpu_isar_feature(aa64_sme, cpu)) {
257             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259                                              CPACR_EL1, SMEN, 3);
260             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263                                                  SMCR, FA64, 1);
264             }
265         }
266         /*
267          * Enable 48-bit address space (TODO: take reserved_va into account).
268          * Enable TBI0 but not TBI1.
269          * Note that this must match useronly_clean_ptr.
270          */
271         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272 
273         /* Enable MTE */
274         if (cpu_isar_feature(aa64_mte, cpu)) {
275             /* Enable tag access, but leave TCF0 as No Effect (0). */
276             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277             /*
278              * Exclude all tags, so that tag 0 is always used.
279              * This corresponds to Linux current->thread.gcr_incl = 0.
280              *
281              * Set RRND, so that helper_irg() will generate a seed later.
282              * Here in cpu_reset(), the crypto subsystem has not yet been
283              * initialized.
284              */
285             env->cp15.gcr_el1 = 0x1ffff;
286         }
287         /*
288          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289          * This is not yet exposed from the Linux kernel in any way.
290          */
291         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292 #else
293         /* Reset into the highest available EL */
294         if (arm_feature(env, ARM_FEATURE_EL3)) {
295             env->pstate = PSTATE_MODE_EL3h;
296         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
297             env->pstate = PSTATE_MODE_EL2h;
298         } else {
299             env->pstate = PSTATE_MODE_EL1h;
300         }
301 
302         /* Sample rvbar at reset.  */
303         env->cp15.rvbar = cpu->rvbar_prop;
304         env->pc = env->cp15.rvbar;
305 #endif
306     } else {
307 #if defined(CONFIG_USER_ONLY)
308         /* Userspace expects access to cp10 and cp11 for FP/Neon */
309         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
310                                          CPACR, CP10, 3);
311         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312                                          CPACR, CP11, 3);
313 #endif
314         if (arm_feature(env, ARM_FEATURE_V8)) {
315             env->cp15.rvbar = cpu->rvbar_prop;
316             env->regs[15] = cpu->rvbar_prop;
317         }
318     }
319 
320 #if defined(CONFIG_USER_ONLY)
321     env->uncached_cpsr = ARM_CPU_MODE_USR;
322     /* For user mode we must enable access to coprocessors */
323     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
324     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
325         env->cp15.c15_cpar = 3;
326     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
327         env->cp15.c15_cpar = 1;
328     }
329 #else
330 
331     /*
332      * If the highest available EL is EL2, AArch32 will start in Hyp
333      * mode; otherwise it starts in SVC. Note that if we start in
334      * AArch64 then these values in the uncached_cpsr will be ignored.
335      */
336     if (arm_feature(env, ARM_FEATURE_EL2) &&
337         !arm_feature(env, ARM_FEATURE_EL3)) {
338         env->uncached_cpsr = ARM_CPU_MODE_HYP;
339     } else {
340         env->uncached_cpsr = ARM_CPU_MODE_SVC;
341     }
342     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
343 
344     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
345      * executing as AArch32 then check if highvecs are enabled and
346      * adjust the PC accordingly.
347      */
348     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
349         env->regs[15] = 0xFFFF0000;
350     }
351 
352     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
353 #endif
354 
355     if (arm_feature(env, ARM_FEATURE_M)) {
356 #ifndef CONFIG_USER_ONLY
357         uint32_t initial_msp; /* Loaded from 0x0 */
358         uint32_t initial_pc; /* Loaded from 0x4 */
359         uint8_t *rom;
360         uint32_t vecbase;
361 #endif
362 
363         if (cpu_isar_feature(aa32_lob, cpu)) {
364             /*
365              * LTPSIZE is constant 4 if MVE not implemented, and resets
366              * to an UNKNOWN value if MVE is implemented. We choose to
367              * always reset to 4.
368              */
369             env->v7m.ltpsize = 4;
370             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
371             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
372             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
373         }
374 
375         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
376             env->v7m.secure = true;
377         } else {
378             /* This bit resets to 0 if security is supported, but 1 if
379              * it is not. The bit is not present in v7M, but we set it
380              * here so we can avoid having to make checks on it conditional
381              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
382              */
383             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
384             /*
385              * Set NSACR to indicate "NS access permitted to everything";
386              * this avoids having to have all the tests of it being
387              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
388              * v8.1M the guest-visible value of NSACR in a CPU without the
389              * Security Extension is 0xcff.
390              */
391             env->v7m.nsacr = 0xcff;
392         }
393 
394         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
395          * that it resets to 1, so QEMU always does that rather than making
396          * it dependent on CPU model. In v8M it is RES1.
397          */
398         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
399         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
400         if (arm_feature(env, ARM_FEATURE_V8)) {
401             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
402             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
403             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
404         }
405         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
406             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
407             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
408         }
409 
410         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
411             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
412             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
413                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
414         }
415 
416 #ifndef CONFIG_USER_ONLY
417         /* Unlike A/R profile, M profile defines the reset LR value */
418         env->regs[14] = 0xffffffff;
419 
420         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
421         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
422 
423         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
424         vecbase = env->v7m.vecbase[env->v7m.secure];
425         rom = rom_ptr_for_as(s->as, vecbase, 8);
426         if (rom) {
427             /* Address zero is covered by ROM which hasn't yet been
428              * copied into physical memory.
429              */
430             initial_msp = ldl_p(rom);
431             initial_pc = ldl_p(rom + 4);
432         } else {
433             /* Address zero not covered by a ROM blob, or the ROM blob
434              * is in non-modifiable memory and this is a second reset after
435              * it got copied into memory. In the latter case, rom_ptr
436              * will return a NULL pointer and we should use ldl_phys instead.
437              */
438             initial_msp = ldl_phys(s->as, vecbase);
439             initial_pc = ldl_phys(s->as, vecbase + 4);
440         }
441 
442         qemu_log_mask(CPU_LOG_INT,
443                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
444                       initial_msp, initial_pc);
445 
446         env->regs[13] = initial_msp & 0xFFFFFFFC;
447         env->regs[15] = initial_pc & ~1;
448         env->thumb = initial_pc & 1;
449 #else
450         /*
451          * For user mode we run non-secure and with access to the FPU.
452          * The FPU context is active (ie does not need further setup)
453          * and is owned by non-secure.
454          */
455         env->v7m.secure = false;
456         env->v7m.nsacr = 0xcff;
457         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
458         env->v7m.fpccr[M_REG_S] &=
459             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
460         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
461 #endif
462     }
463 
464     /* M profile requires that reset clears the exclusive monitor;
465      * A profile does not, but clearing it makes more sense than having it
466      * set with an exclusive access on address zero.
467      */
468     arm_clear_exclusive(env);
469 
470     if (arm_feature(env, ARM_FEATURE_PMSA)) {
471         if (cpu->pmsav7_dregion > 0) {
472             if (arm_feature(env, ARM_FEATURE_V8)) {
473                 memset(env->pmsav8.rbar[M_REG_NS], 0,
474                        sizeof(*env->pmsav8.rbar[M_REG_NS])
475                        * cpu->pmsav7_dregion);
476                 memset(env->pmsav8.rlar[M_REG_NS], 0,
477                        sizeof(*env->pmsav8.rlar[M_REG_NS])
478                        * cpu->pmsav7_dregion);
479                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
480                     memset(env->pmsav8.rbar[M_REG_S], 0,
481                            sizeof(*env->pmsav8.rbar[M_REG_S])
482                            * cpu->pmsav7_dregion);
483                     memset(env->pmsav8.rlar[M_REG_S], 0,
484                            sizeof(*env->pmsav8.rlar[M_REG_S])
485                            * cpu->pmsav7_dregion);
486                 }
487             } else if (arm_feature(env, ARM_FEATURE_V7)) {
488                 memset(env->pmsav7.drbar, 0,
489                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
490                 memset(env->pmsav7.drsr, 0,
491                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
492                 memset(env->pmsav7.dracr, 0,
493                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
494             }
495         }
496 
497         if (cpu->pmsav8r_hdregion > 0) {
498             memset(env->pmsav8.hprbar, 0,
499                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
500             memset(env->pmsav8.hprlar, 0,
501                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
502         }
503 
504         env->pmsav7.rnr[M_REG_NS] = 0;
505         env->pmsav7.rnr[M_REG_S] = 0;
506         env->pmsav8.mair0[M_REG_NS] = 0;
507         env->pmsav8.mair0[M_REG_S] = 0;
508         env->pmsav8.mair1[M_REG_NS] = 0;
509         env->pmsav8.mair1[M_REG_S] = 0;
510     }
511 
512     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
513         if (cpu->sau_sregion > 0) {
514             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
515             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
516         }
517         env->sau.rnr = 0;
518         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
519          * the Cortex-M33 does.
520          */
521         env->sau.ctrl = 0;
522     }
523 
524     set_flush_to_zero(1, &env->vfp.standard_fp_status);
525     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
526     set_default_nan_mode(1, &env->vfp.standard_fp_status);
527     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
528     set_float_detect_tininess(float_tininess_before_rounding,
529                               &env->vfp.fp_status);
530     set_float_detect_tininess(float_tininess_before_rounding,
531                               &env->vfp.standard_fp_status);
532     set_float_detect_tininess(float_tininess_before_rounding,
533                               &env->vfp.fp_status_f16);
534     set_float_detect_tininess(float_tininess_before_rounding,
535                               &env->vfp.standard_fp_status_f16);
536 #ifndef CONFIG_USER_ONLY
537     if (kvm_enabled()) {
538         kvm_arm_reset_vcpu(cpu);
539     }
540 #endif
541 
542     if (tcg_enabled()) {
543         hw_breakpoint_update_all(cpu);
544         hw_watchpoint_update_all(cpu);
545 
546         arm_rebuild_hflags(env);
547     }
548 }
549 
550 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
551 
552 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
553                                      unsigned int target_el,
554                                      unsigned int cur_el, bool secure,
555                                      uint64_t hcr_el2)
556 {
557     CPUARMState *env = cs->env_ptr;
558     bool pstate_unmasked;
559     bool unmasked = false;
560 
561     /*
562      * Don't take exceptions if they target a lower EL.
563      * This check should catch any exceptions that would not be taken
564      * but left pending.
565      */
566     if (cur_el > target_el) {
567         return false;
568     }
569 
570     switch (excp_idx) {
571     case EXCP_FIQ:
572         pstate_unmasked = !(env->daif & PSTATE_F);
573         break;
574 
575     case EXCP_IRQ:
576         pstate_unmasked = !(env->daif & PSTATE_I);
577         break;
578 
579     case EXCP_VFIQ:
580         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
581             /* VFIQs are only taken when hypervized.  */
582             return false;
583         }
584         return !(env->daif & PSTATE_F);
585     case EXCP_VIRQ:
586         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
587             /* VIRQs are only taken when hypervized.  */
588             return false;
589         }
590         return !(env->daif & PSTATE_I);
591     case EXCP_VSERR:
592         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
593             /* VIRQs are only taken when hypervized.  */
594             return false;
595         }
596         return !(env->daif & PSTATE_A);
597     default:
598         g_assert_not_reached();
599     }
600 
601     /*
602      * Use the target EL, current execution state and SCR/HCR settings to
603      * determine whether the corresponding CPSR bit is used to mask the
604      * interrupt.
605      */
606     if ((target_el > cur_el) && (target_el != 1)) {
607         /* Exceptions targeting a higher EL may not be maskable */
608         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
609             switch (target_el) {
610             case 2:
611                 /*
612                  * According to ARM DDI 0487H.a, an interrupt can be masked
613                  * when HCR_E2H and HCR_TGE are both set regardless of the
614                  * current Security state. Note that we need to revisit this
615                  * part again once we need to support NMI.
616                  */
617                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
618                         unmasked = true;
619                 }
620                 break;
621             case 3:
622                 /* Interrupt cannot be masked when the target EL is 3 */
623                 unmasked = true;
624                 break;
625             default:
626                 g_assert_not_reached();
627             }
628         } else {
629             /*
630              * The old 32-bit-only environment has a more complicated
631              * masking setup. HCR and SCR bits not only affect interrupt
632              * routing but also change the behaviour of masking.
633              */
634             bool hcr, scr;
635 
636             switch (excp_idx) {
637             case EXCP_FIQ:
638                 /*
639                  * If FIQs are routed to EL3 or EL2 then there are cases where
640                  * we override the CPSR.F in determining if the exception is
641                  * masked or not. If neither of these are set then we fall back
642                  * to the CPSR.F setting otherwise we further assess the state
643                  * below.
644                  */
645                 hcr = hcr_el2 & HCR_FMO;
646                 scr = (env->cp15.scr_el3 & SCR_FIQ);
647 
648                 /*
649                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
650                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
651                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
652                  * when non-secure but only when FIQs are only routed to EL3.
653                  */
654                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
655                 break;
656             case EXCP_IRQ:
657                 /*
658                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
659                  * we may override the CPSR.I masking when in non-secure state.
660                  * The SCR.IRQ setting has already been taken into consideration
661                  * when setting the target EL, so it does not have a further
662                  * affect here.
663                  */
664                 hcr = hcr_el2 & HCR_IMO;
665                 scr = false;
666                 break;
667             default:
668                 g_assert_not_reached();
669             }
670 
671             if ((scr || hcr) && !secure) {
672                 unmasked = true;
673             }
674         }
675     }
676 
677     /*
678      * The PSTATE bits only mask the interrupt if we have not overriden the
679      * ability above.
680      */
681     return unmasked || pstate_unmasked;
682 }
683 
684 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
685 {
686     CPUClass *cc = CPU_GET_CLASS(cs);
687     CPUARMState *env = cs->env_ptr;
688     uint32_t cur_el = arm_current_el(env);
689     bool secure = arm_is_secure(env);
690     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
691     uint32_t target_el;
692     uint32_t excp_idx;
693 
694     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
695 
696     if (interrupt_request & CPU_INTERRUPT_FIQ) {
697         excp_idx = EXCP_FIQ;
698         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
699         if (arm_excp_unmasked(cs, excp_idx, target_el,
700                               cur_el, secure, hcr_el2)) {
701             goto found;
702         }
703     }
704     if (interrupt_request & CPU_INTERRUPT_HARD) {
705         excp_idx = EXCP_IRQ;
706         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
707         if (arm_excp_unmasked(cs, excp_idx, target_el,
708                               cur_el, secure, hcr_el2)) {
709             goto found;
710         }
711     }
712     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
713         excp_idx = EXCP_VIRQ;
714         target_el = 1;
715         if (arm_excp_unmasked(cs, excp_idx, target_el,
716                               cur_el, secure, hcr_el2)) {
717             goto found;
718         }
719     }
720     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
721         excp_idx = EXCP_VFIQ;
722         target_el = 1;
723         if (arm_excp_unmasked(cs, excp_idx, target_el,
724                               cur_el, secure, hcr_el2)) {
725             goto found;
726         }
727     }
728     if (interrupt_request & CPU_INTERRUPT_VSERR) {
729         excp_idx = EXCP_VSERR;
730         target_el = 1;
731         if (arm_excp_unmasked(cs, excp_idx, target_el,
732                               cur_el, secure, hcr_el2)) {
733             /* Taking a virtual abort clears HCR_EL2.VSE */
734             env->cp15.hcr_el2 &= ~HCR_VSE;
735             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
736             goto found;
737         }
738     }
739     return false;
740 
741  found:
742     cs->exception_index = excp_idx;
743     env->exception.target_el = target_el;
744     cc->tcg_ops->do_interrupt(cs);
745     return true;
746 }
747 
748 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
749 
750 void arm_cpu_update_virq(ARMCPU *cpu)
751 {
752     /*
753      * Update the interrupt level for VIRQ, which is the logical OR of
754      * the HCR_EL2.VI bit and the input line level from the GIC.
755      */
756     CPUARMState *env = &cpu->env;
757     CPUState *cs = CPU(cpu);
758 
759     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
760         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
761 
762     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
763         if (new_state) {
764             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
765         } else {
766             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
767         }
768     }
769 }
770 
771 void arm_cpu_update_vfiq(ARMCPU *cpu)
772 {
773     /*
774      * Update the interrupt level for VFIQ, which is the logical OR of
775      * the HCR_EL2.VF bit and the input line level from the GIC.
776      */
777     CPUARMState *env = &cpu->env;
778     CPUState *cs = CPU(cpu);
779 
780     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
781         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
782 
783     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
784         if (new_state) {
785             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
786         } else {
787             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
788         }
789     }
790 }
791 
792 void arm_cpu_update_vserr(ARMCPU *cpu)
793 {
794     /*
795      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
796      */
797     CPUARMState *env = &cpu->env;
798     CPUState *cs = CPU(cpu);
799 
800     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
801 
802     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
803         if (new_state) {
804             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
805         } else {
806             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
807         }
808     }
809 }
810 
811 #ifndef CONFIG_USER_ONLY
812 static void arm_cpu_set_irq(void *opaque, int irq, int level)
813 {
814     ARMCPU *cpu = opaque;
815     CPUARMState *env = &cpu->env;
816     CPUState *cs = CPU(cpu);
817     static const int mask[] = {
818         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
819         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
820         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
821         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
822     };
823 
824     if (!arm_feature(env, ARM_FEATURE_EL2) &&
825         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
826         /*
827          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
828          * have EL2 support we don't care. (Unless the guest is doing something
829          * silly this will only be calls saying "level is still 0".)
830          */
831         return;
832     }
833 
834     if (level) {
835         env->irq_line_state |= mask[irq];
836     } else {
837         env->irq_line_state &= ~mask[irq];
838     }
839 
840     switch (irq) {
841     case ARM_CPU_VIRQ:
842         arm_cpu_update_virq(cpu);
843         break;
844     case ARM_CPU_VFIQ:
845         arm_cpu_update_vfiq(cpu);
846         break;
847     case ARM_CPU_IRQ:
848     case ARM_CPU_FIQ:
849         if (level) {
850             cpu_interrupt(cs, mask[irq]);
851         } else {
852             cpu_reset_interrupt(cs, mask[irq]);
853         }
854         break;
855     default:
856         g_assert_not_reached();
857     }
858 }
859 
860 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
861 {
862 #ifdef CONFIG_KVM
863     ARMCPU *cpu = opaque;
864     CPUARMState *env = &cpu->env;
865     CPUState *cs = CPU(cpu);
866     uint32_t linestate_bit;
867     int irq_id;
868 
869     switch (irq) {
870     case ARM_CPU_IRQ:
871         irq_id = KVM_ARM_IRQ_CPU_IRQ;
872         linestate_bit = CPU_INTERRUPT_HARD;
873         break;
874     case ARM_CPU_FIQ:
875         irq_id = KVM_ARM_IRQ_CPU_FIQ;
876         linestate_bit = CPU_INTERRUPT_FIQ;
877         break;
878     default:
879         g_assert_not_reached();
880     }
881 
882     if (level) {
883         env->irq_line_state |= linestate_bit;
884     } else {
885         env->irq_line_state &= ~linestate_bit;
886     }
887     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
888 #endif
889 }
890 
891 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
892 {
893     ARMCPU *cpu = ARM_CPU(cs);
894     CPUARMState *env = &cpu->env;
895 
896     cpu_synchronize_state(cs);
897     return arm_cpu_data_is_big_endian(env);
898 }
899 
900 #endif
901 
902 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
903 {
904     ARMCPU *ac = ARM_CPU(cpu);
905     CPUARMState *env = &ac->env;
906     bool sctlr_b;
907 
908     if (is_a64(env)) {
909         info->cap_arch = CS_ARCH_ARM64;
910         info->cap_insn_unit = 4;
911         info->cap_insn_split = 4;
912     } else {
913         int cap_mode;
914         if (env->thumb) {
915             info->cap_insn_unit = 2;
916             info->cap_insn_split = 4;
917             cap_mode = CS_MODE_THUMB;
918         } else {
919             info->cap_insn_unit = 4;
920             info->cap_insn_split = 4;
921             cap_mode = CS_MODE_ARM;
922         }
923         if (arm_feature(env, ARM_FEATURE_V8)) {
924             cap_mode |= CS_MODE_V8;
925         }
926         if (arm_feature(env, ARM_FEATURE_M)) {
927             cap_mode |= CS_MODE_MCLASS;
928         }
929         info->cap_arch = CS_ARCH_ARM;
930         info->cap_mode = cap_mode;
931     }
932 
933     sctlr_b = arm_sctlr_b(env);
934     if (bswap_code(sctlr_b)) {
935 #if TARGET_BIG_ENDIAN
936         info->endian = BFD_ENDIAN_LITTLE;
937 #else
938         info->endian = BFD_ENDIAN_BIG;
939 #endif
940     }
941     info->flags &= ~INSN_ARM_BE32;
942 #ifndef CONFIG_USER_ONLY
943     if (sctlr_b) {
944         info->flags |= INSN_ARM_BE32;
945     }
946 #endif
947 }
948 
949 #ifdef TARGET_AARCH64
950 
951 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
952 {
953     ARMCPU *cpu = ARM_CPU(cs);
954     CPUARMState *env = &cpu->env;
955     uint32_t psr = pstate_read(env);
956     int i;
957     int el = arm_current_el(env);
958     const char *ns_status;
959     bool sve;
960 
961     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
962     for (i = 0; i < 32; i++) {
963         if (i == 31) {
964             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
965         } else {
966             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
967                          (i + 2) % 3 ? " " : "\n");
968         }
969     }
970 
971     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
972         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
973     } else {
974         ns_status = "";
975     }
976     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
977                  psr,
978                  psr & PSTATE_N ? 'N' : '-',
979                  psr & PSTATE_Z ? 'Z' : '-',
980                  psr & PSTATE_C ? 'C' : '-',
981                  psr & PSTATE_V ? 'V' : '-',
982                  ns_status,
983                  el,
984                  psr & PSTATE_SP ? 'h' : 't');
985 
986     if (cpu_isar_feature(aa64_sme, cpu)) {
987         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
988                      env->svcr,
989                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
990                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
991     }
992     if (cpu_isar_feature(aa64_bti, cpu)) {
993         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
994     }
995     if (!(flags & CPU_DUMP_FPU)) {
996         qemu_fprintf(f, "\n");
997         return;
998     }
999     if (fp_exception_el(env, el) != 0) {
1000         qemu_fprintf(f, "    FPU disabled\n");
1001         return;
1002     }
1003     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1004                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1005 
1006     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1007         sve = sme_exception_el(env, el) == 0;
1008     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1009         sve = sve_exception_el(env, el) == 0;
1010     } else {
1011         sve = false;
1012     }
1013 
1014     if (sve) {
1015         int j, zcr_len = sve_vqm1_for_el(env, el);
1016 
1017         for (i = 0; i <= FFR_PRED_NUM; i++) {
1018             bool eol;
1019             if (i == FFR_PRED_NUM) {
1020                 qemu_fprintf(f, "FFR=");
1021                 /* It's last, so end the line.  */
1022                 eol = true;
1023             } else {
1024                 qemu_fprintf(f, "P%02d=", i);
1025                 switch (zcr_len) {
1026                 case 0:
1027                     eol = i % 8 == 7;
1028                     break;
1029                 case 1:
1030                     eol = i % 6 == 5;
1031                     break;
1032                 case 2:
1033                 case 3:
1034                     eol = i % 3 == 2;
1035                     break;
1036                 default:
1037                     /* More than one quadword per predicate.  */
1038                     eol = true;
1039                     break;
1040                 }
1041             }
1042             for (j = zcr_len / 4; j >= 0; j--) {
1043                 int digits;
1044                 if (j * 4 + 4 <= zcr_len + 1) {
1045                     digits = 16;
1046                 } else {
1047                     digits = (zcr_len % 4 + 1) * 4;
1048                 }
1049                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1050                              env->vfp.pregs[i].p[j],
1051                              j ? ":" : eol ? "\n" : " ");
1052             }
1053         }
1054 
1055         for (i = 0; i < 32; i++) {
1056             if (zcr_len == 0) {
1057                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1058                              i, env->vfp.zregs[i].d[1],
1059                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1060             } else if (zcr_len == 1) {
1061                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1062                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1063                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1064                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1065             } else {
1066                 for (j = zcr_len; j >= 0; j--) {
1067                     bool odd = (zcr_len - j) % 2 != 0;
1068                     if (j == zcr_len) {
1069                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1070                     } else if (!odd) {
1071                         if (j > 0) {
1072                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1073                         } else {
1074                             qemu_fprintf(f, "     [%x]=", j);
1075                         }
1076                     }
1077                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1078                                  env->vfp.zregs[i].d[j * 2 + 1],
1079                                  env->vfp.zregs[i].d[j * 2],
1080                                  odd || j == 0 ? "\n" : ":");
1081                 }
1082             }
1083         }
1084     } else {
1085         for (i = 0; i < 32; i++) {
1086             uint64_t *q = aa64_vfp_qreg(env, i);
1087             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1088                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1089         }
1090     }
1091 }
1092 
1093 #else
1094 
1095 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1096 {
1097     g_assert_not_reached();
1098 }
1099 
1100 #endif
1101 
1102 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1103 {
1104     ARMCPU *cpu = ARM_CPU(cs);
1105     CPUARMState *env = &cpu->env;
1106     int i;
1107 
1108     if (is_a64(env)) {
1109         aarch64_cpu_dump_state(cs, f, flags);
1110         return;
1111     }
1112 
1113     for (i = 0; i < 16; i++) {
1114         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1115         if ((i % 4) == 3) {
1116             qemu_fprintf(f, "\n");
1117         } else {
1118             qemu_fprintf(f, " ");
1119         }
1120     }
1121 
1122     if (arm_feature(env, ARM_FEATURE_M)) {
1123         uint32_t xpsr = xpsr_read(env);
1124         const char *mode;
1125         const char *ns_status = "";
1126 
1127         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1128             ns_status = env->v7m.secure ? "S " : "NS ";
1129         }
1130 
1131         if (xpsr & XPSR_EXCP) {
1132             mode = "handler";
1133         } else {
1134             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1135                 mode = "unpriv-thread";
1136             } else {
1137                 mode = "priv-thread";
1138             }
1139         }
1140 
1141         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1142                      xpsr,
1143                      xpsr & XPSR_N ? 'N' : '-',
1144                      xpsr & XPSR_Z ? 'Z' : '-',
1145                      xpsr & XPSR_C ? 'C' : '-',
1146                      xpsr & XPSR_V ? 'V' : '-',
1147                      xpsr & XPSR_T ? 'T' : 'A',
1148                      ns_status,
1149                      mode);
1150     } else {
1151         uint32_t psr = cpsr_read(env);
1152         const char *ns_status = "";
1153 
1154         if (arm_feature(env, ARM_FEATURE_EL3) &&
1155             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1156             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1157         }
1158 
1159         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1160                      psr,
1161                      psr & CPSR_N ? 'N' : '-',
1162                      psr & CPSR_Z ? 'Z' : '-',
1163                      psr & CPSR_C ? 'C' : '-',
1164                      psr & CPSR_V ? 'V' : '-',
1165                      psr & CPSR_T ? 'T' : 'A',
1166                      ns_status,
1167                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1168     }
1169 
1170     if (flags & CPU_DUMP_FPU) {
1171         int numvfpregs = 0;
1172         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1173             numvfpregs = 32;
1174         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1175             numvfpregs = 16;
1176         }
1177         for (i = 0; i < numvfpregs; i++) {
1178             uint64_t v = *aa32_vfp_dreg(env, i);
1179             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1180                          i * 2, (uint32_t)v,
1181                          i * 2 + 1, (uint32_t)(v >> 32),
1182                          i, v);
1183         }
1184         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1185         if (cpu_isar_feature(aa32_mve, cpu)) {
1186             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1187         }
1188     }
1189 }
1190 
1191 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1192 {
1193     uint32_t Aff1 = idx / clustersz;
1194     uint32_t Aff0 = idx % clustersz;
1195     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1196 }
1197 
1198 static void arm_cpu_initfn(Object *obj)
1199 {
1200     ARMCPU *cpu = ARM_CPU(obj);
1201 
1202     cpu_set_cpustate_pointers(cpu);
1203     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1204                                          NULL, g_free);
1205 
1206     QLIST_INIT(&cpu->pre_el_change_hooks);
1207     QLIST_INIT(&cpu->el_change_hooks);
1208 
1209 #ifdef CONFIG_USER_ONLY
1210 # ifdef TARGET_AARCH64
1211     /*
1212      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1213      * These values were chosen to fit within the default signal frame.
1214      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1215      * and our corresponding cpu property.
1216      */
1217     cpu->sve_default_vq = 4;
1218     cpu->sme_default_vq = 2;
1219 # endif
1220 #else
1221     /* Our inbound IRQ and FIQ lines */
1222     if (kvm_enabled()) {
1223         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1224          * the same interface as non-KVM CPUs.
1225          */
1226         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1227     } else {
1228         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1229     }
1230 
1231     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1232                        ARRAY_SIZE(cpu->gt_timer_outputs));
1233 
1234     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1235                              "gicv3-maintenance-interrupt", 1);
1236     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1237                              "pmu-interrupt", 1);
1238 #endif
1239 
1240     /* DTB consumers generally don't in fact care what the 'compatible'
1241      * string is, so always provide some string and trust that a hypothetical
1242      * picky DTB consumer will also provide a helpful error message.
1243      */
1244     cpu->dtb_compatible = "qemu,unknown";
1245     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1246     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1247 
1248     if (tcg_enabled() || hvf_enabled()) {
1249         /* TCG and HVF implement PSCI 1.1 */
1250         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1251     }
1252 }
1253 
1254 static Property arm_cpu_gt_cntfrq_property =
1255             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1256                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1257 
1258 static Property arm_cpu_reset_cbar_property =
1259             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1260 
1261 static Property arm_cpu_reset_hivecs_property =
1262             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1263 
1264 #ifndef CONFIG_USER_ONLY
1265 static Property arm_cpu_has_el2_property =
1266             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1267 
1268 static Property arm_cpu_has_el3_property =
1269             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1270 #endif
1271 
1272 static Property arm_cpu_cfgend_property =
1273             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1274 
1275 static Property arm_cpu_has_vfp_property =
1276             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1277 
1278 static Property arm_cpu_has_neon_property =
1279             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1280 
1281 static Property arm_cpu_has_dsp_property =
1282             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1283 
1284 static Property arm_cpu_has_mpu_property =
1285             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1286 
1287 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1288  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1289  * the right value for that particular CPU type, and we don't want
1290  * to override that with an incorrect constant value.
1291  */
1292 static Property arm_cpu_pmsav7_dregion_property =
1293             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1294                                            pmsav7_dregion,
1295                                            qdev_prop_uint32, uint32_t);
1296 
1297 static bool arm_get_pmu(Object *obj, Error **errp)
1298 {
1299     ARMCPU *cpu = ARM_CPU(obj);
1300 
1301     return cpu->has_pmu;
1302 }
1303 
1304 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1305 {
1306     ARMCPU *cpu = ARM_CPU(obj);
1307 
1308     if (value) {
1309         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1310             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1311             return;
1312         }
1313         set_feature(&cpu->env, ARM_FEATURE_PMU);
1314     } else {
1315         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1316     }
1317     cpu->has_pmu = value;
1318 }
1319 
1320 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1321 {
1322     /*
1323      * The exact approach to calculating guest ticks is:
1324      *
1325      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1326      *              NANOSECONDS_PER_SECOND);
1327      *
1328      * We don't do that. Rather we intentionally use integer division
1329      * truncation below and in the caller for the conversion of host monotonic
1330      * time to guest ticks to provide the exact inverse for the semantics of
1331      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1332      * it loses precision when representing frequencies where
1333      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1334      * provide an exact inverse leads to scheduling timers with negative
1335      * periods, which in turn leads to sticky behaviour in the guest.
1336      *
1337      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1338      * cannot become zero.
1339      */
1340     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1341       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1342 }
1343 
1344 void arm_cpu_post_init(Object *obj)
1345 {
1346     ARMCPU *cpu = ARM_CPU(obj);
1347 
1348     /* M profile implies PMSA. We have to do this here rather than
1349      * in realize with the other feature-implication checks because
1350      * we look at the PMSA bit to see if we should add some properties.
1351      */
1352     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1353         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1354     }
1355 
1356     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1357         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1358         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1359     }
1360 
1361     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1362         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1363     }
1364 
1365     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1366         object_property_add_uint64_ptr(obj, "rvbar",
1367                                        &cpu->rvbar_prop,
1368                                        OBJ_PROP_FLAG_READWRITE);
1369     }
1370 
1371 #ifndef CONFIG_USER_ONLY
1372     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1373         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1374          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1375          */
1376         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1377 
1378         object_property_add_link(obj, "secure-memory",
1379                                  TYPE_MEMORY_REGION,
1380                                  (Object **)&cpu->secure_memory,
1381                                  qdev_prop_allow_set_link_before_realize,
1382                                  OBJ_PROP_LINK_STRONG);
1383     }
1384 
1385     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1386         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1387     }
1388 #endif
1389 
1390     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1391         cpu->has_pmu = true;
1392         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1393     }
1394 
1395     /*
1396      * Allow user to turn off VFP and Neon support, but only for TCG --
1397      * KVM does not currently allow us to lie to the guest about its
1398      * ID/feature registers, so the guest always sees what the host has.
1399      */
1400     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1401         ? cpu_isar_feature(aa64_fp_simd, cpu)
1402         : cpu_isar_feature(aa32_vfp, cpu)) {
1403         cpu->has_vfp = true;
1404         if (!kvm_enabled()) {
1405             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1406         }
1407     }
1408 
1409     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1410         cpu->has_neon = true;
1411         if (!kvm_enabled()) {
1412             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1413         }
1414     }
1415 
1416     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1417         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1418         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1419     }
1420 
1421     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1422         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1423         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1424             qdev_property_add_static(DEVICE(obj),
1425                                      &arm_cpu_pmsav7_dregion_property);
1426         }
1427     }
1428 
1429     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1430         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1431                                  qdev_prop_allow_set_link_before_realize,
1432                                  OBJ_PROP_LINK_STRONG);
1433         /*
1434          * M profile: initial value of the Secure VTOR. We can't just use
1435          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1436          * the property to be set after realize.
1437          */
1438         object_property_add_uint32_ptr(obj, "init-svtor",
1439                                        &cpu->init_svtor,
1440                                        OBJ_PROP_FLAG_READWRITE);
1441     }
1442     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1443         /*
1444          * Initial value of the NS VTOR (for cores without the Security
1445          * extension, this is the only VTOR)
1446          */
1447         object_property_add_uint32_ptr(obj, "init-nsvtor",
1448                                        &cpu->init_nsvtor,
1449                                        OBJ_PROP_FLAG_READWRITE);
1450     }
1451 
1452     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1453     object_property_add_uint32_ptr(obj, "psci-conduit",
1454                                    &cpu->psci_conduit,
1455                                    OBJ_PROP_FLAG_READWRITE);
1456 
1457     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1458 
1459     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1460         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1461     }
1462 
1463     if (kvm_enabled()) {
1464         kvm_arm_add_vcpu_properties(obj);
1465     }
1466 
1467 #ifndef CONFIG_USER_ONLY
1468     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1469         cpu_isar_feature(aa64_mte, cpu)) {
1470         object_property_add_link(obj, "tag-memory",
1471                                  TYPE_MEMORY_REGION,
1472                                  (Object **)&cpu->tag_memory,
1473                                  qdev_prop_allow_set_link_before_realize,
1474                                  OBJ_PROP_LINK_STRONG);
1475 
1476         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1477             object_property_add_link(obj, "secure-tag-memory",
1478                                      TYPE_MEMORY_REGION,
1479                                      (Object **)&cpu->secure_tag_memory,
1480                                      qdev_prop_allow_set_link_before_realize,
1481                                      OBJ_PROP_LINK_STRONG);
1482         }
1483     }
1484 #endif
1485 }
1486 
1487 static void arm_cpu_finalizefn(Object *obj)
1488 {
1489     ARMCPU *cpu = ARM_CPU(obj);
1490     ARMELChangeHook *hook, *next;
1491 
1492     g_hash_table_destroy(cpu->cp_regs);
1493 
1494     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1495         QLIST_REMOVE(hook, node);
1496         g_free(hook);
1497     }
1498     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1499         QLIST_REMOVE(hook, node);
1500         g_free(hook);
1501     }
1502 #ifndef CONFIG_USER_ONLY
1503     if (cpu->pmu_timer) {
1504         timer_free(cpu->pmu_timer);
1505     }
1506 #endif
1507 }
1508 
1509 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1510 {
1511     Error *local_err = NULL;
1512 
1513 #ifdef TARGET_AARCH64
1514     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1515         arm_cpu_sve_finalize(cpu, &local_err);
1516         if (local_err != NULL) {
1517             error_propagate(errp, local_err);
1518             return;
1519         }
1520 
1521         arm_cpu_sme_finalize(cpu, &local_err);
1522         if (local_err != NULL) {
1523             error_propagate(errp, local_err);
1524             return;
1525         }
1526 
1527         arm_cpu_pauth_finalize(cpu, &local_err);
1528         if (local_err != NULL) {
1529             error_propagate(errp, local_err);
1530             return;
1531         }
1532 
1533         arm_cpu_lpa2_finalize(cpu, &local_err);
1534         if (local_err != NULL) {
1535             error_propagate(errp, local_err);
1536             return;
1537         }
1538     }
1539 #endif
1540 
1541     if (kvm_enabled()) {
1542         kvm_arm_steal_time_finalize(cpu, &local_err);
1543         if (local_err != NULL) {
1544             error_propagate(errp, local_err);
1545             return;
1546         }
1547     }
1548 }
1549 
1550 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1551 {
1552     CPUState *cs = CPU(dev);
1553     ARMCPU *cpu = ARM_CPU(dev);
1554     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1555     CPUARMState *env = &cpu->env;
1556     int pagebits;
1557     Error *local_err = NULL;
1558     bool no_aa32 = false;
1559 
1560     /* If we needed to query the host kernel for the CPU features
1561      * then it's possible that might have failed in the initfn, but
1562      * this is the first point where we can report it.
1563      */
1564     if (cpu->host_cpu_probe_failed) {
1565         if (!kvm_enabled() && !hvf_enabled()) {
1566             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1567         } else {
1568             error_setg(errp, "Failed to retrieve host CPU features");
1569         }
1570         return;
1571     }
1572 
1573 #ifndef CONFIG_USER_ONLY
1574     /* The NVIC and M-profile CPU are two halves of a single piece of
1575      * hardware; trying to use one without the other is a command line
1576      * error and will result in segfaults if not caught here.
1577      */
1578     if (arm_feature(env, ARM_FEATURE_M)) {
1579         if (!env->nvic) {
1580             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1581             return;
1582         }
1583     } else {
1584         if (env->nvic) {
1585             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1586             return;
1587         }
1588     }
1589 
1590     if (!tcg_enabled() && !qtest_enabled()) {
1591         /*
1592          * We assume that no accelerator except TCG (and the "not really an
1593          * accelerator" qtest) can handle these features, because Arm hardware
1594          * virtualization can't virtualize them.
1595          *
1596          * Catch all the cases which might cause us to create more than one
1597          * address space for the CPU (otherwise we will assert() later in
1598          * cpu_address_space_init()).
1599          */
1600         if (arm_feature(env, ARM_FEATURE_M)) {
1601             error_setg(errp,
1602                        "Cannot enable %s when using an M-profile guest CPU",
1603                        current_accel_name());
1604             return;
1605         }
1606         if (cpu->has_el3) {
1607             error_setg(errp,
1608                        "Cannot enable %s when guest CPU has EL3 enabled",
1609                        current_accel_name());
1610             return;
1611         }
1612         if (cpu->tag_memory) {
1613             error_setg(errp,
1614                        "Cannot enable %s when guest CPUs has MTE enabled",
1615                        current_accel_name());
1616             return;
1617         }
1618     }
1619 
1620     {
1621         uint64_t scale;
1622 
1623         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1624             if (!cpu->gt_cntfrq_hz) {
1625                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1626                            cpu->gt_cntfrq_hz);
1627                 return;
1628             }
1629             scale = gt_cntfrq_period_ns(cpu);
1630         } else {
1631             scale = GTIMER_SCALE;
1632         }
1633 
1634         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1635                                                arm_gt_ptimer_cb, cpu);
1636         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1637                                                arm_gt_vtimer_cb, cpu);
1638         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1639                                               arm_gt_htimer_cb, cpu);
1640         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1641                                               arm_gt_stimer_cb, cpu);
1642         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1643                                                   arm_gt_hvtimer_cb, cpu);
1644     }
1645 #endif
1646 
1647     cpu_exec_realizefn(cs, &local_err);
1648     if (local_err != NULL) {
1649         error_propagate(errp, local_err);
1650         return;
1651     }
1652 
1653     arm_cpu_finalize_features(cpu, &local_err);
1654     if (local_err != NULL) {
1655         error_propagate(errp, local_err);
1656         return;
1657     }
1658 
1659     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1660         cpu->has_vfp != cpu->has_neon) {
1661         /*
1662          * This is an architectural requirement for AArch64; AArch32 is
1663          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1664          */
1665         error_setg(errp,
1666                    "AArch64 CPUs must have both VFP and Neon or neither");
1667         return;
1668     }
1669 
1670     if (!cpu->has_vfp) {
1671         uint64_t t;
1672         uint32_t u;
1673 
1674         t = cpu->isar.id_aa64isar1;
1675         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1676         cpu->isar.id_aa64isar1 = t;
1677 
1678         t = cpu->isar.id_aa64pfr0;
1679         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1680         cpu->isar.id_aa64pfr0 = t;
1681 
1682         u = cpu->isar.id_isar6;
1683         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1684         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1685         cpu->isar.id_isar6 = u;
1686 
1687         u = cpu->isar.mvfr0;
1688         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1689         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1690         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1691         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1692         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1693         if (!arm_feature(env, ARM_FEATURE_M)) {
1694             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1695             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1696         }
1697         cpu->isar.mvfr0 = u;
1698 
1699         u = cpu->isar.mvfr1;
1700         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1701         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1702         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1703         if (arm_feature(env, ARM_FEATURE_M)) {
1704             u = FIELD_DP32(u, MVFR1, FP16, 0);
1705         }
1706         cpu->isar.mvfr1 = u;
1707 
1708         u = cpu->isar.mvfr2;
1709         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1710         cpu->isar.mvfr2 = u;
1711     }
1712 
1713     if (!cpu->has_neon) {
1714         uint64_t t;
1715         uint32_t u;
1716 
1717         unset_feature(env, ARM_FEATURE_NEON);
1718 
1719         t = cpu->isar.id_aa64isar0;
1720         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1721         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1722         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1723         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1724         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1725         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1726         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1727         cpu->isar.id_aa64isar0 = t;
1728 
1729         t = cpu->isar.id_aa64isar1;
1730         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1731         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1732         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1733         cpu->isar.id_aa64isar1 = t;
1734 
1735         t = cpu->isar.id_aa64pfr0;
1736         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1737         cpu->isar.id_aa64pfr0 = t;
1738 
1739         u = cpu->isar.id_isar5;
1740         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1741         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1742         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1743         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1744         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1745         cpu->isar.id_isar5 = u;
1746 
1747         u = cpu->isar.id_isar6;
1748         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1749         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1750         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1751         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1752         cpu->isar.id_isar6 = u;
1753 
1754         if (!arm_feature(env, ARM_FEATURE_M)) {
1755             u = cpu->isar.mvfr1;
1756             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1757             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1758             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1759             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1760             cpu->isar.mvfr1 = u;
1761 
1762             u = cpu->isar.mvfr2;
1763             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1764             cpu->isar.mvfr2 = u;
1765         }
1766     }
1767 
1768     if (!cpu->has_neon && !cpu->has_vfp) {
1769         uint64_t t;
1770         uint32_t u;
1771 
1772         t = cpu->isar.id_aa64isar0;
1773         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1774         cpu->isar.id_aa64isar0 = t;
1775 
1776         t = cpu->isar.id_aa64isar1;
1777         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1778         cpu->isar.id_aa64isar1 = t;
1779 
1780         u = cpu->isar.mvfr0;
1781         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1782         cpu->isar.mvfr0 = u;
1783 
1784         /* Despite the name, this field covers both VFP and Neon */
1785         u = cpu->isar.mvfr1;
1786         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1787         cpu->isar.mvfr1 = u;
1788     }
1789 
1790     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1791         uint32_t u;
1792 
1793         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1794 
1795         u = cpu->isar.id_isar1;
1796         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1797         cpu->isar.id_isar1 = u;
1798 
1799         u = cpu->isar.id_isar2;
1800         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1801         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1802         cpu->isar.id_isar2 = u;
1803 
1804         u = cpu->isar.id_isar3;
1805         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1806         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1807         cpu->isar.id_isar3 = u;
1808     }
1809 
1810     /* Some features automatically imply others: */
1811     if (arm_feature(env, ARM_FEATURE_V8)) {
1812         if (arm_feature(env, ARM_FEATURE_M)) {
1813             set_feature(env, ARM_FEATURE_V7);
1814         } else {
1815             set_feature(env, ARM_FEATURE_V7VE);
1816         }
1817     }
1818 
1819     /*
1820      * There exist AArch64 cpus without AArch32 support.  When KVM
1821      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1822      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1823      * As a general principle, we also do not make ID register
1824      * consistency checks anywhere unless using TCG, because only
1825      * for TCG would a consistency-check failure be a QEMU bug.
1826      */
1827     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1828         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1829     }
1830 
1831     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1832         /* v7 Virtualization Extensions. In real hardware this implies
1833          * EL2 and also the presence of the Security Extensions.
1834          * For QEMU, for backwards-compatibility we implement some
1835          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1836          * include the various other features that V7VE implies.
1837          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1838          * Security Extensions is ARM_FEATURE_EL3.
1839          */
1840         assert(!tcg_enabled() || no_aa32 ||
1841                cpu_isar_feature(aa32_arm_div, cpu));
1842         set_feature(env, ARM_FEATURE_LPAE);
1843         set_feature(env, ARM_FEATURE_V7);
1844     }
1845     if (arm_feature(env, ARM_FEATURE_V7)) {
1846         set_feature(env, ARM_FEATURE_VAPA);
1847         set_feature(env, ARM_FEATURE_THUMB2);
1848         set_feature(env, ARM_FEATURE_MPIDR);
1849         if (!arm_feature(env, ARM_FEATURE_M)) {
1850             set_feature(env, ARM_FEATURE_V6K);
1851         } else {
1852             set_feature(env, ARM_FEATURE_V6);
1853         }
1854 
1855         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1856          * non-EL3 configs. This is needed by some legacy boards.
1857          */
1858         set_feature(env, ARM_FEATURE_VBAR);
1859     }
1860     if (arm_feature(env, ARM_FEATURE_V6K)) {
1861         set_feature(env, ARM_FEATURE_V6);
1862         set_feature(env, ARM_FEATURE_MVFR);
1863     }
1864     if (arm_feature(env, ARM_FEATURE_V6)) {
1865         set_feature(env, ARM_FEATURE_V5);
1866         if (!arm_feature(env, ARM_FEATURE_M)) {
1867             assert(!tcg_enabled() || no_aa32 ||
1868                    cpu_isar_feature(aa32_jazelle, cpu));
1869             set_feature(env, ARM_FEATURE_AUXCR);
1870         }
1871     }
1872     if (arm_feature(env, ARM_FEATURE_V5)) {
1873         set_feature(env, ARM_FEATURE_V4T);
1874     }
1875     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1876         set_feature(env, ARM_FEATURE_V7MP);
1877     }
1878     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1879         set_feature(env, ARM_FEATURE_CBAR);
1880     }
1881     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1882         !arm_feature(env, ARM_FEATURE_M)) {
1883         set_feature(env, ARM_FEATURE_THUMB_DSP);
1884     }
1885 
1886     /*
1887      * We rely on no XScale CPU having VFP so we can use the same bits in the
1888      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1889      */
1890     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1891            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1892            !arm_feature(env, ARM_FEATURE_XSCALE));
1893 
1894     if (arm_feature(env, ARM_FEATURE_V7) &&
1895         !arm_feature(env, ARM_FEATURE_M) &&
1896         !arm_feature(env, ARM_FEATURE_PMSA)) {
1897         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1898          * can use 4K pages.
1899          */
1900         pagebits = 12;
1901     } else {
1902         /* For CPUs which might have tiny 1K pages, or which have an
1903          * MPU and might have small region sizes, stick with 1K pages.
1904          */
1905         pagebits = 10;
1906     }
1907     if (!set_preferred_target_page_bits(pagebits)) {
1908         /* This can only ever happen for hotplugging a CPU, or if
1909          * the board code incorrectly creates a CPU which it has
1910          * promised via minimum_page_size that it will not.
1911          */
1912         error_setg(errp, "This CPU requires a smaller page size than the "
1913                    "system is using");
1914         return;
1915     }
1916 
1917     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1918      * We don't support setting cluster ID ([16..23]) (known as Aff2
1919      * in later ARM ARM versions), or any of the higher affinity level fields,
1920      * so these bits always RAZ.
1921      */
1922     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1923         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1924                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1925     }
1926 
1927     if (cpu->reset_hivecs) {
1928             cpu->reset_sctlr |= (1 << 13);
1929     }
1930 
1931     if (cpu->cfgend) {
1932         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1933             cpu->reset_sctlr |= SCTLR_EE;
1934         } else {
1935             cpu->reset_sctlr |= SCTLR_B;
1936         }
1937     }
1938 
1939     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1940         /* If the has_el3 CPU property is disabled then we need to disable the
1941          * feature.
1942          */
1943         unset_feature(env, ARM_FEATURE_EL3);
1944 
1945         /*
1946          * Disable the security extension feature bits in the processor
1947          * feature registers as well.
1948          */
1949         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1950         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1951         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1952                                            ID_AA64PFR0, EL3, 0);
1953     }
1954 
1955     if (!cpu->has_el2) {
1956         unset_feature(env, ARM_FEATURE_EL2);
1957     }
1958 
1959     if (!cpu->has_pmu) {
1960         unset_feature(env, ARM_FEATURE_PMU);
1961     }
1962     if (arm_feature(env, ARM_FEATURE_PMU)) {
1963         pmu_init(cpu);
1964 
1965         if (!kvm_enabled()) {
1966             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1967             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1968         }
1969 
1970 #ifndef CONFIG_USER_ONLY
1971         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1972                 cpu);
1973 #endif
1974     } else {
1975         cpu->isar.id_aa64dfr0 =
1976             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1977         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1978         cpu->pmceid0 = 0;
1979         cpu->pmceid1 = 0;
1980     }
1981 
1982     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1983         /*
1984          * Disable the hypervisor feature bits in the processor feature
1985          * registers if we don't have EL2.
1986          */
1987         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1988                                            ID_AA64PFR0, EL2, 0);
1989         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1990                                        ID_PFR1, VIRTUALIZATION, 0);
1991     }
1992 
1993 #ifndef CONFIG_USER_ONLY
1994     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1995         /*
1996          * Disable the MTE feature bits if we do not have tag-memory
1997          * provided by the machine.
1998          */
1999         cpu->isar.id_aa64pfr1 =
2000             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2001     }
2002 #endif
2003 
2004     if (tcg_enabled()) {
2005         /*
2006          * Don't report the Statistical Profiling Extension in the ID
2007          * registers, because TCG doesn't implement it yet (not even a
2008          * minimal stub version) and guests will fall over when they
2009          * try to access the non-existent system registers for it.
2010          */
2011         cpu->isar.id_aa64dfr0 =
2012             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2013     }
2014 
2015     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2016      * to false or by setting pmsav7-dregion to 0.
2017      */
2018     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2019         cpu->has_mpu = false;
2020         cpu->pmsav7_dregion = 0;
2021         cpu->pmsav8r_hdregion = 0;
2022     }
2023 
2024     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2025         arm_feature(env, ARM_FEATURE_V7)) {
2026         uint32_t nr = cpu->pmsav7_dregion;
2027 
2028         if (nr > 0xff) {
2029             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2030             return;
2031         }
2032 
2033         if (nr) {
2034             if (arm_feature(env, ARM_FEATURE_V8)) {
2035                 /* PMSAv8 */
2036                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2037                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2038                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2039                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2040                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2041                 }
2042             } else {
2043                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2044                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2045                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2046             }
2047         }
2048 
2049         if (cpu->pmsav8r_hdregion > 0xff) {
2050             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2051                               cpu->pmsav8r_hdregion);
2052             return;
2053         }
2054 
2055         if (cpu->pmsav8r_hdregion) {
2056             env->pmsav8.hprbar = g_new0(uint32_t,
2057                                         cpu->pmsav8r_hdregion);
2058             env->pmsav8.hprlar = g_new0(uint32_t,
2059                                         cpu->pmsav8r_hdregion);
2060         }
2061     }
2062 
2063     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2064         uint32_t nr = cpu->sau_sregion;
2065 
2066         if (nr > 0xff) {
2067             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2068             return;
2069         }
2070 
2071         if (nr) {
2072             env->sau.rbar = g_new0(uint32_t, nr);
2073             env->sau.rlar = g_new0(uint32_t, nr);
2074         }
2075     }
2076 
2077     if (arm_feature(env, ARM_FEATURE_EL3)) {
2078         set_feature(env, ARM_FEATURE_VBAR);
2079     }
2080 
2081     register_cp_regs_for_features(cpu);
2082     arm_cpu_register_gdb_regs_for_features(cpu);
2083 
2084     init_cpreg_list(cpu);
2085 
2086 #ifndef CONFIG_USER_ONLY
2087     MachineState *ms = MACHINE(qdev_get_machine());
2088     unsigned int smp_cpus = ms->smp.cpus;
2089     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2090 
2091     /*
2092      * We must set cs->num_ases to the final value before
2093      * the first call to cpu_address_space_init.
2094      */
2095     if (cpu->tag_memory != NULL) {
2096         cs->num_ases = 3 + has_secure;
2097     } else {
2098         cs->num_ases = 1 + has_secure;
2099     }
2100 
2101     if (has_secure) {
2102         if (!cpu->secure_memory) {
2103             cpu->secure_memory = cs->memory;
2104         }
2105         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2106                                cpu->secure_memory);
2107     }
2108 
2109     if (cpu->tag_memory != NULL) {
2110         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2111                                cpu->tag_memory);
2112         if (has_secure) {
2113             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2114                                    cpu->secure_tag_memory);
2115         }
2116     }
2117 
2118     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2119 
2120     /* No core_count specified, default to smp_cpus. */
2121     if (cpu->core_count == -1) {
2122         cpu->core_count = smp_cpus;
2123     }
2124 #endif
2125 
2126     if (tcg_enabled()) {
2127         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2128 
2129         /*
2130          * We only support DCZ blocklen that fits on one page.
2131          *
2132          * Architectually this is always true.  However TARGET_PAGE_SIZE
2133          * is variable and, for compatibility with -machine virt-2.7,
2134          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2135          * But even then, while the largest architectural DCZ blocklen
2136          * is 2KiB, no cpu actually uses such a large blocklen.
2137          */
2138         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2139 
2140         /*
2141          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2142          * both nibbles of each byte storing tag data may be written at once.
2143          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2144          */
2145         if (cpu_isar_feature(aa64_mte, cpu)) {
2146             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2147         }
2148     }
2149 
2150     qemu_init_vcpu(cs);
2151     cpu_reset(cs);
2152 
2153     acc->parent_realize(dev, errp);
2154 }
2155 
2156 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2157 {
2158     ObjectClass *oc;
2159     char *typename;
2160     char **cpuname;
2161     const char *cpunamestr;
2162 
2163     cpuname = g_strsplit(cpu_model, ",", 1);
2164     cpunamestr = cpuname[0];
2165 #ifdef CONFIG_USER_ONLY
2166     /* For backwards compatibility usermode emulation allows "-cpu any",
2167      * which has the same semantics as "-cpu max".
2168      */
2169     if (!strcmp(cpunamestr, "any")) {
2170         cpunamestr = "max";
2171     }
2172 #endif
2173     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2174     oc = object_class_by_name(typename);
2175     g_strfreev(cpuname);
2176     g_free(typename);
2177     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2178         object_class_is_abstract(oc)) {
2179         return NULL;
2180     }
2181     return oc;
2182 }
2183 
2184 static Property arm_cpu_properties[] = {
2185     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2186     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2187                         mp_affinity, ARM64_AFFINITY_INVALID),
2188     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2189     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2190     DEFINE_PROP_END_OF_LIST()
2191 };
2192 
2193 static gchar *arm_gdb_arch_name(CPUState *cs)
2194 {
2195     ARMCPU *cpu = ARM_CPU(cs);
2196     CPUARMState *env = &cpu->env;
2197 
2198     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2199         return g_strdup("iwmmxt");
2200     }
2201     return g_strdup("arm");
2202 }
2203 
2204 #ifndef CONFIG_USER_ONLY
2205 #include "hw/core/sysemu-cpu-ops.h"
2206 
2207 static const struct SysemuCPUOps arm_sysemu_ops = {
2208     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2209     .asidx_from_attrs = arm_asidx_from_attrs,
2210     .write_elf32_note = arm_cpu_write_elf32_note,
2211     .write_elf64_note = arm_cpu_write_elf64_note,
2212     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2213     .legacy_vmsd = &vmstate_arm_cpu,
2214 };
2215 #endif
2216 
2217 #ifdef CONFIG_TCG
2218 static const struct TCGCPUOps arm_tcg_ops = {
2219     .initialize = arm_translate_init,
2220     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2221     .debug_excp_handler = arm_debug_excp_handler,
2222     .restore_state_to_opc = arm_restore_state_to_opc,
2223 
2224 #ifdef CONFIG_USER_ONLY
2225     .record_sigsegv = arm_cpu_record_sigsegv,
2226     .record_sigbus = arm_cpu_record_sigbus,
2227 #else
2228     .tlb_fill = arm_cpu_tlb_fill,
2229     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2230     .do_interrupt = arm_cpu_do_interrupt,
2231     .do_transaction_failed = arm_cpu_do_transaction_failed,
2232     .do_unaligned_access = arm_cpu_do_unaligned_access,
2233     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2234     .debug_check_watchpoint = arm_debug_check_watchpoint,
2235     .debug_check_breakpoint = arm_debug_check_breakpoint,
2236 #endif /* !CONFIG_USER_ONLY */
2237 };
2238 #endif /* CONFIG_TCG */
2239 
2240 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2241 {
2242     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2243     CPUClass *cc = CPU_CLASS(acc);
2244     DeviceClass *dc = DEVICE_CLASS(oc);
2245     ResettableClass *rc = RESETTABLE_CLASS(oc);
2246 
2247     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2248                                     &acc->parent_realize);
2249 
2250     device_class_set_props(dc, arm_cpu_properties);
2251 
2252     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2253                                        &acc->parent_phases);
2254 
2255     cc->class_by_name = arm_cpu_class_by_name;
2256     cc->has_work = arm_cpu_has_work;
2257     cc->dump_state = arm_cpu_dump_state;
2258     cc->set_pc = arm_cpu_set_pc;
2259     cc->get_pc = arm_cpu_get_pc;
2260     cc->gdb_read_register = arm_cpu_gdb_read_register;
2261     cc->gdb_write_register = arm_cpu_gdb_write_register;
2262 #ifndef CONFIG_USER_ONLY
2263     cc->sysemu_ops = &arm_sysemu_ops;
2264 #endif
2265     cc->gdb_num_core_regs = 26;
2266     cc->gdb_core_xml_file = "arm-core.xml";
2267     cc->gdb_arch_name = arm_gdb_arch_name;
2268     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2269     cc->gdb_stop_before_watchpoint = true;
2270     cc->disas_set_info = arm_disas_set_info;
2271 
2272 #ifdef CONFIG_TCG
2273     cc->tcg_ops = &arm_tcg_ops;
2274 #endif /* CONFIG_TCG */
2275 }
2276 
2277 static void arm_cpu_instance_init(Object *obj)
2278 {
2279     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2280 
2281     acc->info->initfn(obj);
2282     arm_cpu_post_init(obj);
2283 }
2284 
2285 static void cpu_register_class_init(ObjectClass *oc, void *data)
2286 {
2287     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2288 
2289     acc->info = data;
2290 }
2291 
2292 void arm_cpu_register(const ARMCPUInfo *info)
2293 {
2294     TypeInfo type_info = {
2295         .parent = TYPE_ARM_CPU,
2296         .instance_size = sizeof(ARMCPU),
2297         .instance_align = __alignof__(ARMCPU),
2298         .instance_init = arm_cpu_instance_init,
2299         .class_size = sizeof(ARMCPUClass),
2300         .class_init = info->class_init ?: cpu_register_class_init,
2301         .class_data = (void *)info,
2302     };
2303 
2304     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2305     type_register(&type_info);
2306     g_free((void *)type_info.name);
2307 }
2308 
2309 static const TypeInfo arm_cpu_type_info = {
2310     .name = TYPE_ARM_CPU,
2311     .parent = TYPE_CPU,
2312     .instance_size = sizeof(ARMCPU),
2313     .instance_align = __alignof__(ARMCPU),
2314     .instance_init = arm_cpu_initfn,
2315     .instance_finalize = arm_cpu_finalizefn,
2316     .abstract = true,
2317     .class_size = sizeof(ARMCPUClass),
2318     .class_init = arm_cpu_class_init,
2319 };
2320 
2321 static void arm_cpu_register_types(void)
2322 {
2323     type_register_static(&arm_cpu_type_info);
2324 }
2325 
2326 type_init(arm_cpu_register_types)
2327