xref: /qemu/target/arm/cpu.c (revision d0fb9657)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "disas/capstone.h"
43 #include "fpu/softfloat.h"
44 
45 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
46 {
47     ARMCPU *cpu = ARM_CPU(cs);
48     CPUARMState *env = &cpu->env;
49 
50     if (is_a64(env)) {
51         env->pc = value;
52         env->thumb = 0;
53     } else {
54         env->regs[15] = value & ~1;
55         env->thumb = value & 1;
56     }
57 }
58 
59 #ifdef CONFIG_TCG
60 void arm_cpu_synchronize_from_tb(CPUState *cs,
61                                  const TranslationBlock *tb)
62 {
63     ARMCPU *cpu = ARM_CPU(cs);
64     CPUARMState *env = &cpu->env;
65 
66     /*
67      * It's OK to look at env for the current mode here, because it's
68      * never possible for an AArch64 TB to chain to an AArch32 TB.
69      */
70     if (is_a64(env)) {
71         env->pc = tb->pc;
72     } else {
73         env->regs[15] = tb->pc;
74     }
75 }
76 #endif /* CONFIG_TCG */
77 
78 static bool arm_cpu_has_work(CPUState *cs)
79 {
80     ARMCPU *cpu = ARM_CPU(cs);
81 
82     return (cpu->power_state != PSCI_OFF)
83         && cs->interrupt_request &
84         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
85          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
86          | CPU_INTERRUPT_EXITTB);
87 }
88 
89 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
90                                  void *opaque)
91 {
92     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
93 
94     entry->hook = hook;
95     entry->opaque = opaque;
96 
97     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
98 }
99 
100 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
101                                  void *opaque)
102 {
103     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
104 
105     entry->hook = hook;
106     entry->opaque = opaque;
107 
108     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
109 }
110 
111 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
112 {
113     /* Reset a single ARMCPRegInfo register */
114     ARMCPRegInfo *ri = value;
115     ARMCPU *cpu = opaque;
116 
117     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
118         return;
119     }
120 
121     if (ri->resetfn) {
122         ri->resetfn(&cpu->env, ri);
123         return;
124     }
125 
126     /* A zero offset is never possible as it would be regs[0]
127      * so we use it to indicate that reset is being handled elsewhere.
128      * This is basically only used for fields in non-core coprocessors
129      * (like the pxa2xx ones).
130      */
131     if (!ri->fieldoffset) {
132         return;
133     }
134 
135     if (cpreg_field_is_64bit(ri)) {
136         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
137     } else {
138         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
139     }
140 }
141 
142 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
143 {
144     /* Purely an assertion check: we've already done reset once,
145      * so now check that running the reset for the cpreg doesn't
146      * change its value. This traps bugs where two different cpregs
147      * both try to reset the same state field but to different values.
148      */
149     ARMCPRegInfo *ri = value;
150     ARMCPU *cpu = opaque;
151     uint64_t oldvalue, newvalue;
152 
153     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
154         return;
155     }
156 
157     oldvalue = read_raw_cp_reg(&cpu->env, ri);
158     cp_reg_reset(key, value, opaque);
159     newvalue = read_raw_cp_reg(&cpu->env, ri);
160     assert(oldvalue == newvalue);
161 }
162 
163 static void arm_cpu_reset(DeviceState *dev)
164 {
165     CPUState *s = CPU(dev);
166     ARMCPU *cpu = ARM_CPU(s);
167     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
168     CPUARMState *env = &cpu->env;
169 
170     acc->parent_reset(dev);
171 
172     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
173 
174     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
176 
177     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
178     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
179     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
180     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
181 
182     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
183 
184     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
185         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
186     }
187 
188     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
189         /* 64 bit CPUs always start in 64 bit mode */
190         env->aarch64 = 1;
191 #if defined(CONFIG_USER_ONLY)
192         env->pstate = PSTATE_MODE_EL0t;
193         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
194         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
195         /* Enable all PAC keys.  */
196         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
197                                   SCTLR_EnDA | SCTLR_EnDB);
198         /* and to the FP/Neon instructions */
199         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
200         /* and to the SVE instructions */
201         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
202         /* with reasonable vector length */
203         if (cpu_isar_feature(aa64_sve, cpu)) {
204             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
205         }
206         /*
207          * Enable TBI0 but not TBI1.
208          * Note that this must match useronly_clean_ptr.
209          */
210         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
211 
212         /* Enable MTE */
213         if (cpu_isar_feature(aa64_mte, cpu)) {
214             /* Enable tag access, but leave TCF0 as No Effect (0). */
215             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
216             /*
217              * Exclude all tags, so that tag 0 is always used.
218              * This corresponds to Linux current->thread.gcr_incl = 0.
219              *
220              * Set RRND, so that helper_irg() will generate a seed later.
221              * Here in cpu_reset(), the crypto subsystem has not yet been
222              * initialized.
223              */
224             env->cp15.gcr_el1 = 0x1ffff;
225         }
226 #else
227         /* Reset into the highest available EL */
228         if (arm_feature(env, ARM_FEATURE_EL3)) {
229             env->pstate = PSTATE_MODE_EL3h;
230         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
231             env->pstate = PSTATE_MODE_EL2h;
232         } else {
233             env->pstate = PSTATE_MODE_EL1h;
234         }
235         env->pc = cpu->rvbar;
236 #endif
237     } else {
238 #if defined(CONFIG_USER_ONLY)
239         /* Userspace expects access to cp10 and cp11 for FP/Neon */
240         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
241 #endif
242     }
243 
244 #if defined(CONFIG_USER_ONLY)
245     env->uncached_cpsr = ARM_CPU_MODE_USR;
246     /* For user mode we must enable access to coprocessors */
247     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
248     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
249         env->cp15.c15_cpar = 3;
250     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
251         env->cp15.c15_cpar = 1;
252     }
253 #else
254 
255     /*
256      * If the highest available EL is EL2, AArch32 will start in Hyp
257      * mode; otherwise it starts in SVC. Note that if we start in
258      * AArch64 then these values in the uncached_cpsr will be ignored.
259      */
260     if (arm_feature(env, ARM_FEATURE_EL2) &&
261         !arm_feature(env, ARM_FEATURE_EL3)) {
262         env->uncached_cpsr = ARM_CPU_MODE_HYP;
263     } else {
264         env->uncached_cpsr = ARM_CPU_MODE_SVC;
265     }
266     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
267 
268     if (arm_feature(env, ARM_FEATURE_M)) {
269         uint32_t initial_msp; /* Loaded from 0x0 */
270         uint32_t initial_pc; /* Loaded from 0x4 */
271         uint8_t *rom;
272         uint32_t vecbase;
273 
274         if (cpu_isar_feature(aa32_lob, cpu)) {
275             /*
276              * LTPSIZE is constant 4 if MVE not implemented, and resets
277              * to an UNKNOWN value if MVE is implemented. We choose to
278              * always reset to 4.
279              */
280             env->v7m.ltpsize = 4;
281             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
282             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
283             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
284         }
285 
286         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
287             env->v7m.secure = true;
288         } else {
289             /* This bit resets to 0 if security is supported, but 1 if
290              * it is not. The bit is not present in v7M, but we set it
291              * here so we can avoid having to make checks on it conditional
292              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
293              */
294             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
295             /*
296              * Set NSACR to indicate "NS access permitted to everything";
297              * this avoids having to have all the tests of it being
298              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
299              * v8.1M the guest-visible value of NSACR in a CPU without the
300              * Security Extension is 0xcff.
301              */
302             env->v7m.nsacr = 0xcff;
303         }
304 
305         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
306          * that it resets to 1, so QEMU always does that rather than making
307          * it dependent on CPU model. In v8M it is RES1.
308          */
309         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
310         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
311         if (arm_feature(env, ARM_FEATURE_V8)) {
312             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
313             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
314             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315         }
316         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
317             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
318             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319         }
320 
321         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
322             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
323             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
324                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
325         }
326         /* Unlike A/R profile, M profile defines the reset LR value */
327         env->regs[14] = 0xffffffff;
328 
329         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
330 
331         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
332         vecbase = env->v7m.vecbase[env->v7m.secure];
333         rom = rom_ptr_for_as(s->as, vecbase, 8);
334         if (rom) {
335             /* Address zero is covered by ROM which hasn't yet been
336              * copied into physical memory.
337              */
338             initial_msp = ldl_p(rom);
339             initial_pc = ldl_p(rom + 4);
340         } else {
341             /* Address zero not covered by a ROM blob, or the ROM blob
342              * is in non-modifiable memory and this is a second reset after
343              * it got copied into memory. In the latter case, rom_ptr
344              * will return a NULL pointer and we should use ldl_phys instead.
345              */
346             initial_msp = ldl_phys(s->as, vecbase);
347             initial_pc = ldl_phys(s->as, vecbase + 4);
348         }
349 
350         env->regs[13] = initial_msp & 0xFFFFFFFC;
351         env->regs[15] = initial_pc & ~1;
352         env->thumb = initial_pc & 1;
353     }
354 
355     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
356      * executing as AArch32 then check if highvecs are enabled and
357      * adjust the PC accordingly.
358      */
359     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
360         env->regs[15] = 0xFFFF0000;
361     }
362 
363     /* M profile requires that reset clears the exclusive monitor;
364      * A profile does not, but clearing it makes more sense than having it
365      * set with an exclusive access on address zero.
366      */
367     arm_clear_exclusive(env);
368 
369     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
370 #endif
371 
372     if (arm_feature(env, ARM_FEATURE_PMSA)) {
373         if (cpu->pmsav7_dregion > 0) {
374             if (arm_feature(env, ARM_FEATURE_V8)) {
375                 memset(env->pmsav8.rbar[M_REG_NS], 0,
376                        sizeof(*env->pmsav8.rbar[M_REG_NS])
377                        * cpu->pmsav7_dregion);
378                 memset(env->pmsav8.rlar[M_REG_NS], 0,
379                        sizeof(*env->pmsav8.rlar[M_REG_NS])
380                        * cpu->pmsav7_dregion);
381                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
382                     memset(env->pmsav8.rbar[M_REG_S], 0,
383                            sizeof(*env->pmsav8.rbar[M_REG_S])
384                            * cpu->pmsav7_dregion);
385                     memset(env->pmsav8.rlar[M_REG_S], 0,
386                            sizeof(*env->pmsav8.rlar[M_REG_S])
387                            * cpu->pmsav7_dregion);
388                 }
389             } else if (arm_feature(env, ARM_FEATURE_V7)) {
390                 memset(env->pmsav7.drbar, 0,
391                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
392                 memset(env->pmsav7.drsr, 0,
393                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
394                 memset(env->pmsav7.dracr, 0,
395                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
396             }
397         }
398         env->pmsav7.rnr[M_REG_NS] = 0;
399         env->pmsav7.rnr[M_REG_S] = 0;
400         env->pmsav8.mair0[M_REG_NS] = 0;
401         env->pmsav8.mair0[M_REG_S] = 0;
402         env->pmsav8.mair1[M_REG_NS] = 0;
403         env->pmsav8.mair1[M_REG_S] = 0;
404     }
405 
406     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
407         if (cpu->sau_sregion > 0) {
408             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
409             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
410         }
411         env->sau.rnr = 0;
412         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
413          * the Cortex-M33 does.
414          */
415         env->sau.ctrl = 0;
416     }
417 
418     set_flush_to_zero(1, &env->vfp.standard_fp_status);
419     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
420     set_default_nan_mode(1, &env->vfp.standard_fp_status);
421     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
422     set_float_detect_tininess(float_tininess_before_rounding,
423                               &env->vfp.fp_status);
424     set_float_detect_tininess(float_tininess_before_rounding,
425                               &env->vfp.standard_fp_status);
426     set_float_detect_tininess(float_tininess_before_rounding,
427                               &env->vfp.fp_status_f16);
428     set_float_detect_tininess(float_tininess_before_rounding,
429                               &env->vfp.standard_fp_status_f16);
430 #ifndef CONFIG_USER_ONLY
431     if (kvm_enabled()) {
432         kvm_arm_reset_vcpu(cpu);
433     }
434 #endif
435 
436     hw_breakpoint_update_all(cpu);
437     hw_watchpoint_update_all(cpu);
438     arm_rebuild_hflags(env);
439 }
440 
441 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
442                                      unsigned int target_el,
443                                      unsigned int cur_el, bool secure,
444                                      uint64_t hcr_el2)
445 {
446     CPUARMState *env = cs->env_ptr;
447     bool pstate_unmasked;
448     bool unmasked = false;
449 
450     /*
451      * Don't take exceptions if they target a lower EL.
452      * This check should catch any exceptions that would not be taken
453      * but left pending.
454      */
455     if (cur_el > target_el) {
456         return false;
457     }
458 
459     switch (excp_idx) {
460     case EXCP_FIQ:
461         pstate_unmasked = !(env->daif & PSTATE_F);
462         break;
463 
464     case EXCP_IRQ:
465         pstate_unmasked = !(env->daif & PSTATE_I);
466         break;
467 
468     case EXCP_VFIQ:
469         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
470             /* VFIQs are only taken when hypervized.  */
471             return false;
472         }
473         return !(env->daif & PSTATE_F);
474     case EXCP_VIRQ:
475         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
476             /* VIRQs are only taken when hypervized.  */
477             return false;
478         }
479         return !(env->daif & PSTATE_I);
480     default:
481         g_assert_not_reached();
482     }
483 
484     /*
485      * Use the target EL, current execution state and SCR/HCR settings to
486      * determine whether the corresponding CPSR bit is used to mask the
487      * interrupt.
488      */
489     if ((target_el > cur_el) && (target_el != 1)) {
490         /* Exceptions targeting a higher EL may not be maskable */
491         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
492             /*
493              * 64-bit masking rules are simple: exceptions to EL3
494              * can't be masked, and exceptions to EL2 can only be
495              * masked from Secure state. The HCR and SCR settings
496              * don't affect the masking logic, only the interrupt routing.
497              */
498             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
499                 unmasked = true;
500             }
501         } else {
502             /*
503              * The old 32-bit-only environment has a more complicated
504              * masking setup. HCR and SCR bits not only affect interrupt
505              * routing but also change the behaviour of masking.
506              */
507             bool hcr, scr;
508 
509             switch (excp_idx) {
510             case EXCP_FIQ:
511                 /*
512                  * If FIQs are routed to EL3 or EL2 then there are cases where
513                  * we override the CPSR.F in determining if the exception is
514                  * masked or not. If neither of these are set then we fall back
515                  * to the CPSR.F setting otherwise we further assess the state
516                  * below.
517                  */
518                 hcr = hcr_el2 & HCR_FMO;
519                 scr = (env->cp15.scr_el3 & SCR_FIQ);
520 
521                 /*
522                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
523                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
524                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
525                  * when non-secure but only when FIQs are only routed to EL3.
526                  */
527                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
528                 break;
529             case EXCP_IRQ:
530                 /*
531                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
532                  * we may override the CPSR.I masking when in non-secure state.
533                  * The SCR.IRQ setting has already been taken into consideration
534                  * when setting the target EL, so it does not have a further
535                  * affect here.
536                  */
537                 hcr = hcr_el2 & HCR_IMO;
538                 scr = false;
539                 break;
540             default:
541                 g_assert_not_reached();
542             }
543 
544             if ((scr || hcr) && !secure) {
545                 unmasked = true;
546             }
547         }
548     }
549 
550     /*
551      * The PSTATE bits only mask the interrupt if we have not overriden the
552      * ability above.
553      */
554     return unmasked || pstate_unmasked;
555 }
556 
557 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
558 {
559     CPUClass *cc = CPU_GET_CLASS(cs);
560     CPUARMState *env = cs->env_ptr;
561     uint32_t cur_el = arm_current_el(env);
562     bool secure = arm_is_secure(env);
563     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
564     uint32_t target_el;
565     uint32_t excp_idx;
566 
567     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
568 
569     if (interrupt_request & CPU_INTERRUPT_FIQ) {
570         excp_idx = EXCP_FIQ;
571         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
572         if (arm_excp_unmasked(cs, excp_idx, target_el,
573                               cur_el, secure, hcr_el2)) {
574             goto found;
575         }
576     }
577     if (interrupt_request & CPU_INTERRUPT_HARD) {
578         excp_idx = EXCP_IRQ;
579         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
580         if (arm_excp_unmasked(cs, excp_idx, target_el,
581                               cur_el, secure, hcr_el2)) {
582             goto found;
583         }
584     }
585     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
586         excp_idx = EXCP_VIRQ;
587         target_el = 1;
588         if (arm_excp_unmasked(cs, excp_idx, target_el,
589                               cur_el, secure, hcr_el2)) {
590             goto found;
591         }
592     }
593     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
594         excp_idx = EXCP_VFIQ;
595         target_el = 1;
596         if (arm_excp_unmasked(cs, excp_idx, target_el,
597                               cur_el, secure, hcr_el2)) {
598             goto found;
599         }
600     }
601     return false;
602 
603  found:
604     cs->exception_index = excp_idx;
605     env->exception.target_el = target_el;
606     cc->tcg_ops->do_interrupt(cs);
607     return true;
608 }
609 
610 void arm_cpu_update_virq(ARMCPU *cpu)
611 {
612     /*
613      * Update the interrupt level for VIRQ, which is the logical OR of
614      * the HCR_EL2.VI bit and the input line level from the GIC.
615      */
616     CPUARMState *env = &cpu->env;
617     CPUState *cs = CPU(cpu);
618 
619     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
620         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
621 
622     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
623         if (new_state) {
624             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
625         } else {
626             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
627         }
628     }
629 }
630 
631 void arm_cpu_update_vfiq(ARMCPU *cpu)
632 {
633     /*
634      * Update the interrupt level for VFIQ, which is the logical OR of
635      * the HCR_EL2.VF bit and the input line level from the GIC.
636      */
637     CPUARMState *env = &cpu->env;
638     CPUState *cs = CPU(cpu);
639 
640     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
641         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
642 
643     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
644         if (new_state) {
645             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
646         } else {
647             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
648         }
649     }
650 }
651 
652 #ifndef CONFIG_USER_ONLY
653 static void arm_cpu_set_irq(void *opaque, int irq, int level)
654 {
655     ARMCPU *cpu = opaque;
656     CPUARMState *env = &cpu->env;
657     CPUState *cs = CPU(cpu);
658     static const int mask[] = {
659         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
660         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
661         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
662         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
663     };
664 
665     if (level) {
666         env->irq_line_state |= mask[irq];
667     } else {
668         env->irq_line_state &= ~mask[irq];
669     }
670 
671     switch (irq) {
672     case ARM_CPU_VIRQ:
673         assert(arm_feature(env, ARM_FEATURE_EL2));
674         arm_cpu_update_virq(cpu);
675         break;
676     case ARM_CPU_VFIQ:
677         assert(arm_feature(env, ARM_FEATURE_EL2));
678         arm_cpu_update_vfiq(cpu);
679         break;
680     case ARM_CPU_IRQ:
681     case ARM_CPU_FIQ:
682         if (level) {
683             cpu_interrupt(cs, mask[irq]);
684         } else {
685             cpu_reset_interrupt(cs, mask[irq]);
686         }
687         break;
688     default:
689         g_assert_not_reached();
690     }
691 }
692 
693 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
694 {
695 #ifdef CONFIG_KVM
696     ARMCPU *cpu = opaque;
697     CPUARMState *env = &cpu->env;
698     CPUState *cs = CPU(cpu);
699     uint32_t linestate_bit;
700     int irq_id;
701 
702     switch (irq) {
703     case ARM_CPU_IRQ:
704         irq_id = KVM_ARM_IRQ_CPU_IRQ;
705         linestate_bit = CPU_INTERRUPT_HARD;
706         break;
707     case ARM_CPU_FIQ:
708         irq_id = KVM_ARM_IRQ_CPU_FIQ;
709         linestate_bit = CPU_INTERRUPT_FIQ;
710         break;
711     default:
712         g_assert_not_reached();
713     }
714 
715     if (level) {
716         env->irq_line_state |= linestate_bit;
717     } else {
718         env->irq_line_state &= ~linestate_bit;
719     }
720     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
721 #endif
722 }
723 
724 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
725 {
726     ARMCPU *cpu = ARM_CPU(cs);
727     CPUARMState *env = &cpu->env;
728 
729     cpu_synchronize_state(cs);
730     return arm_cpu_data_is_big_endian(env);
731 }
732 
733 #endif
734 
735 static int
736 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
737 {
738   return print_insn_arm(pc | 1, info);
739 }
740 
741 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
742 {
743     ARMCPU *ac = ARM_CPU(cpu);
744     CPUARMState *env = &ac->env;
745     bool sctlr_b;
746 
747     if (is_a64(env)) {
748         /* We might not be compiled with the A64 disassembler
749          * because it needs a C++ compiler. Leave print_insn
750          * unset in this case to use the caller default behaviour.
751          */
752 #if defined(CONFIG_ARM_A64_DIS)
753         info->print_insn = print_insn_arm_a64;
754 #endif
755         info->cap_arch = CS_ARCH_ARM64;
756         info->cap_insn_unit = 4;
757         info->cap_insn_split = 4;
758     } else {
759         int cap_mode;
760         if (env->thumb) {
761             info->print_insn = print_insn_thumb1;
762             info->cap_insn_unit = 2;
763             info->cap_insn_split = 4;
764             cap_mode = CS_MODE_THUMB;
765         } else {
766             info->print_insn = print_insn_arm;
767             info->cap_insn_unit = 4;
768             info->cap_insn_split = 4;
769             cap_mode = CS_MODE_ARM;
770         }
771         if (arm_feature(env, ARM_FEATURE_V8)) {
772             cap_mode |= CS_MODE_V8;
773         }
774         if (arm_feature(env, ARM_FEATURE_M)) {
775             cap_mode |= CS_MODE_MCLASS;
776         }
777         info->cap_arch = CS_ARCH_ARM;
778         info->cap_mode = cap_mode;
779     }
780 
781     sctlr_b = arm_sctlr_b(env);
782     if (bswap_code(sctlr_b)) {
783 #ifdef TARGET_WORDS_BIGENDIAN
784         info->endian = BFD_ENDIAN_LITTLE;
785 #else
786         info->endian = BFD_ENDIAN_BIG;
787 #endif
788     }
789     info->flags &= ~INSN_ARM_BE32;
790 #ifndef CONFIG_USER_ONLY
791     if (sctlr_b) {
792         info->flags |= INSN_ARM_BE32;
793     }
794 #endif
795 }
796 
797 #ifdef TARGET_AARCH64
798 
799 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
800 {
801     ARMCPU *cpu = ARM_CPU(cs);
802     CPUARMState *env = &cpu->env;
803     uint32_t psr = pstate_read(env);
804     int i;
805     int el = arm_current_el(env);
806     const char *ns_status;
807 
808     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
809     for (i = 0; i < 32; i++) {
810         if (i == 31) {
811             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
812         } else {
813             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
814                          (i + 2) % 3 ? " " : "\n");
815         }
816     }
817 
818     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
819         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
820     } else {
821         ns_status = "";
822     }
823     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
824                  psr,
825                  psr & PSTATE_N ? 'N' : '-',
826                  psr & PSTATE_Z ? 'Z' : '-',
827                  psr & PSTATE_C ? 'C' : '-',
828                  psr & PSTATE_V ? 'V' : '-',
829                  ns_status,
830                  el,
831                  psr & PSTATE_SP ? 'h' : 't');
832 
833     if (cpu_isar_feature(aa64_bti, cpu)) {
834         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
835     }
836     if (!(flags & CPU_DUMP_FPU)) {
837         qemu_fprintf(f, "\n");
838         return;
839     }
840     if (fp_exception_el(env, el) != 0) {
841         qemu_fprintf(f, "    FPU disabled\n");
842         return;
843     }
844     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
845                  vfp_get_fpcr(env), vfp_get_fpsr(env));
846 
847     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
848         int j, zcr_len = sve_zcr_len_for_el(env, el);
849 
850         for (i = 0; i <= FFR_PRED_NUM; i++) {
851             bool eol;
852             if (i == FFR_PRED_NUM) {
853                 qemu_fprintf(f, "FFR=");
854                 /* It's last, so end the line.  */
855                 eol = true;
856             } else {
857                 qemu_fprintf(f, "P%02d=", i);
858                 switch (zcr_len) {
859                 case 0:
860                     eol = i % 8 == 7;
861                     break;
862                 case 1:
863                     eol = i % 6 == 5;
864                     break;
865                 case 2:
866                 case 3:
867                     eol = i % 3 == 2;
868                     break;
869                 default:
870                     /* More than one quadword per predicate.  */
871                     eol = true;
872                     break;
873                 }
874             }
875             for (j = zcr_len / 4; j >= 0; j--) {
876                 int digits;
877                 if (j * 4 + 4 <= zcr_len + 1) {
878                     digits = 16;
879                 } else {
880                     digits = (zcr_len % 4 + 1) * 4;
881                 }
882                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
883                              env->vfp.pregs[i].p[j],
884                              j ? ":" : eol ? "\n" : " ");
885             }
886         }
887 
888         for (i = 0; i < 32; i++) {
889             if (zcr_len == 0) {
890                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
891                              i, env->vfp.zregs[i].d[1],
892                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
893             } else if (zcr_len == 1) {
894                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
895                              ":%016" PRIx64 ":%016" PRIx64 "\n",
896                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
897                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
898             } else {
899                 for (j = zcr_len; j >= 0; j--) {
900                     bool odd = (zcr_len - j) % 2 != 0;
901                     if (j == zcr_len) {
902                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
903                     } else if (!odd) {
904                         if (j > 0) {
905                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
906                         } else {
907                             qemu_fprintf(f, "     [%x]=", j);
908                         }
909                     }
910                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
911                                  env->vfp.zregs[i].d[j * 2 + 1],
912                                  env->vfp.zregs[i].d[j * 2],
913                                  odd || j == 0 ? "\n" : ":");
914                 }
915             }
916         }
917     } else {
918         for (i = 0; i < 32; i++) {
919             uint64_t *q = aa64_vfp_qreg(env, i);
920             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
921                          i, q[1], q[0], (i & 1 ? "\n" : " "));
922         }
923     }
924 }
925 
926 #else
927 
928 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
929 {
930     g_assert_not_reached();
931 }
932 
933 #endif
934 
935 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
936 {
937     ARMCPU *cpu = ARM_CPU(cs);
938     CPUARMState *env = &cpu->env;
939     int i;
940 
941     if (is_a64(env)) {
942         aarch64_cpu_dump_state(cs, f, flags);
943         return;
944     }
945 
946     for (i = 0; i < 16; i++) {
947         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
948         if ((i % 4) == 3) {
949             qemu_fprintf(f, "\n");
950         } else {
951             qemu_fprintf(f, " ");
952         }
953     }
954 
955     if (arm_feature(env, ARM_FEATURE_M)) {
956         uint32_t xpsr = xpsr_read(env);
957         const char *mode;
958         const char *ns_status = "";
959 
960         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
961             ns_status = env->v7m.secure ? "S " : "NS ";
962         }
963 
964         if (xpsr & XPSR_EXCP) {
965             mode = "handler";
966         } else {
967             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
968                 mode = "unpriv-thread";
969             } else {
970                 mode = "priv-thread";
971             }
972         }
973 
974         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
975                      xpsr,
976                      xpsr & XPSR_N ? 'N' : '-',
977                      xpsr & XPSR_Z ? 'Z' : '-',
978                      xpsr & XPSR_C ? 'C' : '-',
979                      xpsr & XPSR_V ? 'V' : '-',
980                      xpsr & XPSR_T ? 'T' : 'A',
981                      ns_status,
982                      mode);
983     } else {
984         uint32_t psr = cpsr_read(env);
985         const char *ns_status = "";
986 
987         if (arm_feature(env, ARM_FEATURE_EL3) &&
988             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
989             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
990         }
991 
992         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
993                      psr,
994                      psr & CPSR_N ? 'N' : '-',
995                      psr & CPSR_Z ? 'Z' : '-',
996                      psr & CPSR_C ? 'C' : '-',
997                      psr & CPSR_V ? 'V' : '-',
998                      psr & CPSR_T ? 'T' : 'A',
999                      ns_status,
1000                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1001     }
1002 
1003     if (flags & CPU_DUMP_FPU) {
1004         int numvfpregs = 0;
1005         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1006             numvfpregs = 32;
1007         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1008             numvfpregs = 16;
1009         }
1010         for (i = 0; i < numvfpregs; i++) {
1011             uint64_t v = *aa32_vfp_dreg(env, i);
1012             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1013                          i * 2, (uint32_t)v,
1014                          i * 2 + 1, (uint32_t)(v >> 32),
1015                          i, v);
1016         }
1017         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1018     }
1019 }
1020 
1021 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1022 {
1023     uint32_t Aff1 = idx / clustersz;
1024     uint32_t Aff0 = idx % clustersz;
1025     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1026 }
1027 
1028 static void cpreg_hashtable_data_destroy(gpointer data)
1029 {
1030     /*
1031      * Destroy function for cpu->cp_regs hashtable data entries.
1032      * We must free the name string because it was g_strdup()ed in
1033      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1034      * from r->name because we know we definitely allocated it.
1035      */
1036     ARMCPRegInfo *r = data;
1037 
1038     g_free((void *)r->name);
1039     g_free(r);
1040 }
1041 
1042 static void arm_cpu_initfn(Object *obj)
1043 {
1044     ARMCPU *cpu = ARM_CPU(obj);
1045 
1046     cpu_set_cpustate_pointers(cpu);
1047     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1048                                          g_free, cpreg_hashtable_data_destroy);
1049 
1050     QLIST_INIT(&cpu->pre_el_change_hooks);
1051     QLIST_INIT(&cpu->el_change_hooks);
1052 
1053 #ifndef CONFIG_USER_ONLY
1054     /* Our inbound IRQ and FIQ lines */
1055     if (kvm_enabled()) {
1056         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1057          * the same interface as non-KVM CPUs.
1058          */
1059         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1060     } else {
1061         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1062     }
1063 
1064     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1065                        ARRAY_SIZE(cpu->gt_timer_outputs));
1066 
1067     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1068                              "gicv3-maintenance-interrupt", 1);
1069     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1070                              "pmu-interrupt", 1);
1071 #endif
1072 
1073     /* DTB consumers generally don't in fact care what the 'compatible'
1074      * string is, so always provide some string and trust that a hypothetical
1075      * picky DTB consumer will also provide a helpful error message.
1076      */
1077     cpu->dtb_compatible = "qemu,unknown";
1078     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1079     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1080 
1081     if (tcg_enabled()) {
1082         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1083     }
1084 }
1085 
1086 static Property arm_cpu_gt_cntfrq_property =
1087             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1088                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1089 
1090 static Property arm_cpu_reset_cbar_property =
1091             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1092 
1093 static Property arm_cpu_reset_hivecs_property =
1094             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1095 
1096 static Property arm_cpu_rvbar_property =
1097             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1098 
1099 #ifndef CONFIG_USER_ONLY
1100 static Property arm_cpu_has_el2_property =
1101             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1102 
1103 static Property arm_cpu_has_el3_property =
1104             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1105 #endif
1106 
1107 static Property arm_cpu_cfgend_property =
1108             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1109 
1110 static Property arm_cpu_has_vfp_property =
1111             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1112 
1113 static Property arm_cpu_has_neon_property =
1114             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1115 
1116 static Property arm_cpu_has_dsp_property =
1117             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1118 
1119 static Property arm_cpu_has_mpu_property =
1120             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1121 
1122 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1123  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1124  * the right value for that particular CPU type, and we don't want
1125  * to override that with an incorrect constant value.
1126  */
1127 static Property arm_cpu_pmsav7_dregion_property =
1128             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1129                                            pmsav7_dregion,
1130                                            qdev_prop_uint32, uint32_t);
1131 
1132 static bool arm_get_pmu(Object *obj, Error **errp)
1133 {
1134     ARMCPU *cpu = ARM_CPU(obj);
1135 
1136     return cpu->has_pmu;
1137 }
1138 
1139 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1140 {
1141     ARMCPU *cpu = ARM_CPU(obj);
1142 
1143     if (value) {
1144         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1145             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1146             return;
1147         }
1148         set_feature(&cpu->env, ARM_FEATURE_PMU);
1149     } else {
1150         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1151     }
1152     cpu->has_pmu = value;
1153 }
1154 
1155 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1156 {
1157     /*
1158      * The exact approach to calculating guest ticks is:
1159      *
1160      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1161      *              NANOSECONDS_PER_SECOND);
1162      *
1163      * We don't do that. Rather we intentionally use integer division
1164      * truncation below and in the caller for the conversion of host monotonic
1165      * time to guest ticks to provide the exact inverse for the semantics of
1166      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1167      * it loses precision when representing frequencies where
1168      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1169      * provide an exact inverse leads to scheduling timers with negative
1170      * periods, which in turn leads to sticky behaviour in the guest.
1171      *
1172      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1173      * cannot become zero.
1174      */
1175     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1176       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1177 }
1178 
1179 void arm_cpu_post_init(Object *obj)
1180 {
1181     ARMCPU *cpu = ARM_CPU(obj);
1182 
1183     /* M profile implies PMSA. We have to do this here rather than
1184      * in realize with the other feature-implication checks because
1185      * we look at the PMSA bit to see if we should add some properties.
1186      */
1187     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1188         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1189     }
1190 
1191     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1192         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1193         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1194     }
1195 
1196     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1197         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1198     }
1199 
1200     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1201         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1202     }
1203 
1204 #ifndef CONFIG_USER_ONLY
1205     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1206         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1207          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1208          */
1209         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1210 
1211         object_property_add_link(obj, "secure-memory",
1212                                  TYPE_MEMORY_REGION,
1213                                  (Object **)&cpu->secure_memory,
1214                                  qdev_prop_allow_set_link_before_realize,
1215                                  OBJ_PROP_LINK_STRONG);
1216     }
1217 
1218     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1219         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1220     }
1221 #endif
1222 
1223     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1224         cpu->has_pmu = true;
1225         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1226     }
1227 
1228     /*
1229      * Allow user to turn off VFP and Neon support, but only for TCG --
1230      * KVM does not currently allow us to lie to the guest about its
1231      * ID/feature registers, so the guest always sees what the host has.
1232      */
1233     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1234         ? cpu_isar_feature(aa64_fp_simd, cpu)
1235         : cpu_isar_feature(aa32_vfp, cpu)) {
1236         cpu->has_vfp = true;
1237         if (!kvm_enabled()) {
1238             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1239         }
1240     }
1241 
1242     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1243         cpu->has_neon = true;
1244         if (!kvm_enabled()) {
1245             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1246         }
1247     }
1248 
1249     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1250         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1251         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1252     }
1253 
1254     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1255         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1256         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1257             qdev_property_add_static(DEVICE(obj),
1258                                      &arm_cpu_pmsav7_dregion_property);
1259         }
1260     }
1261 
1262     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1263         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1264                                  qdev_prop_allow_set_link_before_realize,
1265                                  OBJ_PROP_LINK_STRONG);
1266         /*
1267          * M profile: initial value of the Secure VTOR. We can't just use
1268          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1269          * the property to be set after realize.
1270          */
1271         object_property_add_uint32_ptr(obj, "init-svtor",
1272                                        &cpu->init_svtor,
1273                                        OBJ_PROP_FLAG_READWRITE);
1274     }
1275 
1276     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1277 
1278     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1279         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1280     }
1281 
1282     if (kvm_enabled()) {
1283         kvm_arm_add_vcpu_properties(obj);
1284     }
1285 
1286 #ifndef CONFIG_USER_ONLY
1287     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1288         cpu_isar_feature(aa64_mte, cpu)) {
1289         object_property_add_link(obj, "tag-memory",
1290                                  TYPE_MEMORY_REGION,
1291                                  (Object **)&cpu->tag_memory,
1292                                  qdev_prop_allow_set_link_before_realize,
1293                                  OBJ_PROP_LINK_STRONG);
1294 
1295         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1296             object_property_add_link(obj, "secure-tag-memory",
1297                                      TYPE_MEMORY_REGION,
1298                                      (Object **)&cpu->secure_tag_memory,
1299                                      qdev_prop_allow_set_link_before_realize,
1300                                      OBJ_PROP_LINK_STRONG);
1301         }
1302     }
1303 #endif
1304 }
1305 
1306 static void arm_cpu_finalizefn(Object *obj)
1307 {
1308     ARMCPU *cpu = ARM_CPU(obj);
1309     ARMELChangeHook *hook, *next;
1310 
1311     g_hash_table_destroy(cpu->cp_regs);
1312 
1313     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1314         QLIST_REMOVE(hook, node);
1315         g_free(hook);
1316     }
1317     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1318         QLIST_REMOVE(hook, node);
1319         g_free(hook);
1320     }
1321 #ifndef CONFIG_USER_ONLY
1322     if (cpu->pmu_timer) {
1323         timer_free(cpu->pmu_timer);
1324     }
1325 #endif
1326 }
1327 
1328 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1329 {
1330     Error *local_err = NULL;
1331 
1332     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1333         arm_cpu_sve_finalize(cpu, &local_err);
1334         if (local_err != NULL) {
1335             error_propagate(errp, local_err);
1336             return;
1337         }
1338 
1339         /*
1340          * KVM does not support modifications to this feature.
1341          * We have not registered the cpu properties when KVM
1342          * is in use, so the user will not be able to set them.
1343          */
1344         if (!kvm_enabled()) {
1345             arm_cpu_pauth_finalize(cpu, &local_err);
1346             if (local_err != NULL) {
1347                 error_propagate(errp, local_err);
1348                 return;
1349             }
1350         }
1351     }
1352 
1353     if (kvm_enabled()) {
1354         kvm_arm_steal_time_finalize(cpu, &local_err);
1355         if (local_err != NULL) {
1356             error_propagate(errp, local_err);
1357             return;
1358         }
1359     }
1360 }
1361 
1362 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1363 {
1364     CPUState *cs = CPU(dev);
1365     ARMCPU *cpu = ARM_CPU(dev);
1366     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1367     CPUARMState *env = &cpu->env;
1368     int pagebits;
1369     Error *local_err = NULL;
1370     bool no_aa32 = false;
1371 
1372     /* If we needed to query the host kernel for the CPU features
1373      * then it's possible that might have failed in the initfn, but
1374      * this is the first point where we can report it.
1375      */
1376     if (cpu->host_cpu_probe_failed) {
1377         if (!kvm_enabled()) {
1378             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1379         } else {
1380             error_setg(errp, "Failed to retrieve host CPU features");
1381         }
1382         return;
1383     }
1384 
1385 #ifndef CONFIG_USER_ONLY
1386     /* The NVIC and M-profile CPU are two halves of a single piece of
1387      * hardware; trying to use one without the other is a command line
1388      * error and will result in segfaults if not caught here.
1389      */
1390     if (arm_feature(env, ARM_FEATURE_M)) {
1391         if (!env->nvic) {
1392             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1393             return;
1394         }
1395     } else {
1396         if (env->nvic) {
1397             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1398             return;
1399         }
1400     }
1401 
1402     {
1403         uint64_t scale;
1404 
1405         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1406             if (!cpu->gt_cntfrq_hz) {
1407                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1408                            cpu->gt_cntfrq_hz);
1409                 return;
1410             }
1411             scale = gt_cntfrq_period_ns(cpu);
1412         } else {
1413             scale = GTIMER_SCALE;
1414         }
1415 
1416         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1417                                                arm_gt_ptimer_cb, cpu);
1418         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1419                                                arm_gt_vtimer_cb, cpu);
1420         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1421                                               arm_gt_htimer_cb, cpu);
1422         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1423                                               arm_gt_stimer_cb, cpu);
1424         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1425                                                   arm_gt_hvtimer_cb, cpu);
1426     }
1427 #endif
1428 
1429     cpu_exec_realizefn(cs, &local_err);
1430     if (local_err != NULL) {
1431         error_propagate(errp, local_err);
1432         return;
1433     }
1434 
1435     arm_cpu_finalize_features(cpu, &local_err);
1436     if (local_err != NULL) {
1437         error_propagate(errp, local_err);
1438         return;
1439     }
1440 
1441     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1442         cpu->has_vfp != cpu->has_neon) {
1443         /*
1444          * This is an architectural requirement for AArch64; AArch32 is
1445          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1446          */
1447         error_setg(errp,
1448                    "AArch64 CPUs must have both VFP and Neon or neither");
1449         return;
1450     }
1451 
1452     if (!cpu->has_vfp) {
1453         uint64_t t;
1454         uint32_t u;
1455 
1456         t = cpu->isar.id_aa64isar1;
1457         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1458         cpu->isar.id_aa64isar1 = t;
1459 
1460         t = cpu->isar.id_aa64pfr0;
1461         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1462         cpu->isar.id_aa64pfr0 = t;
1463 
1464         u = cpu->isar.id_isar6;
1465         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1466         cpu->isar.id_isar6 = u;
1467 
1468         u = cpu->isar.mvfr0;
1469         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1470         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1471         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1472         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1473         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1474         if (!arm_feature(env, ARM_FEATURE_M)) {
1475             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1476             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1477         }
1478         cpu->isar.mvfr0 = u;
1479 
1480         u = cpu->isar.mvfr1;
1481         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1482         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1483         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1484         if (arm_feature(env, ARM_FEATURE_M)) {
1485             u = FIELD_DP32(u, MVFR1, FP16, 0);
1486         }
1487         cpu->isar.mvfr1 = u;
1488 
1489         u = cpu->isar.mvfr2;
1490         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1491         cpu->isar.mvfr2 = u;
1492     }
1493 
1494     if (!cpu->has_neon) {
1495         uint64_t t;
1496         uint32_t u;
1497 
1498         unset_feature(env, ARM_FEATURE_NEON);
1499 
1500         t = cpu->isar.id_aa64isar0;
1501         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1502         cpu->isar.id_aa64isar0 = t;
1503 
1504         t = cpu->isar.id_aa64isar1;
1505         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1506         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1507         cpu->isar.id_aa64isar1 = t;
1508 
1509         t = cpu->isar.id_aa64pfr0;
1510         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1511         cpu->isar.id_aa64pfr0 = t;
1512 
1513         u = cpu->isar.id_isar5;
1514         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1515         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1516         cpu->isar.id_isar5 = u;
1517 
1518         u = cpu->isar.id_isar6;
1519         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1520         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1521         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1522         cpu->isar.id_isar6 = u;
1523 
1524         if (!arm_feature(env, ARM_FEATURE_M)) {
1525             u = cpu->isar.mvfr1;
1526             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1527             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1528             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1529             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1530             cpu->isar.mvfr1 = u;
1531 
1532             u = cpu->isar.mvfr2;
1533             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1534             cpu->isar.mvfr2 = u;
1535         }
1536     }
1537 
1538     if (!cpu->has_neon && !cpu->has_vfp) {
1539         uint64_t t;
1540         uint32_t u;
1541 
1542         t = cpu->isar.id_aa64isar0;
1543         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1544         cpu->isar.id_aa64isar0 = t;
1545 
1546         t = cpu->isar.id_aa64isar1;
1547         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1548         cpu->isar.id_aa64isar1 = t;
1549 
1550         u = cpu->isar.mvfr0;
1551         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1552         cpu->isar.mvfr0 = u;
1553 
1554         /* Despite the name, this field covers both VFP and Neon */
1555         u = cpu->isar.mvfr1;
1556         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1557         cpu->isar.mvfr1 = u;
1558     }
1559 
1560     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1561         uint32_t u;
1562 
1563         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1564 
1565         u = cpu->isar.id_isar1;
1566         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1567         cpu->isar.id_isar1 = u;
1568 
1569         u = cpu->isar.id_isar2;
1570         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1571         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1572         cpu->isar.id_isar2 = u;
1573 
1574         u = cpu->isar.id_isar3;
1575         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1576         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1577         cpu->isar.id_isar3 = u;
1578     }
1579 
1580     /* Some features automatically imply others: */
1581     if (arm_feature(env, ARM_FEATURE_V8)) {
1582         if (arm_feature(env, ARM_FEATURE_M)) {
1583             set_feature(env, ARM_FEATURE_V7);
1584         } else {
1585             set_feature(env, ARM_FEATURE_V7VE);
1586         }
1587     }
1588 
1589     /*
1590      * There exist AArch64 cpus without AArch32 support.  When KVM
1591      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1592      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1593      * As a general principle, we also do not make ID register
1594      * consistency checks anywhere unless using TCG, because only
1595      * for TCG would a consistency-check failure be a QEMU bug.
1596      */
1597     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1598         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1599     }
1600 
1601     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1602         /* v7 Virtualization Extensions. In real hardware this implies
1603          * EL2 and also the presence of the Security Extensions.
1604          * For QEMU, for backwards-compatibility we implement some
1605          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1606          * include the various other features that V7VE implies.
1607          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1608          * Security Extensions is ARM_FEATURE_EL3.
1609          */
1610         assert(!tcg_enabled() || no_aa32 ||
1611                cpu_isar_feature(aa32_arm_div, cpu));
1612         set_feature(env, ARM_FEATURE_LPAE);
1613         set_feature(env, ARM_FEATURE_V7);
1614     }
1615     if (arm_feature(env, ARM_FEATURE_V7)) {
1616         set_feature(env, ARM_FEATURE_VAPA);
1617         set_feature(env, ARM_FEATURE_THUMB2);
1618         set_feature(env, ARM_FEATURE_MPIDR);
1619         if (!arm_feature(env, ARM_FEATURE_M)) {
1620             set_feature(env, ARM_FEATURE_V6K);
1621         } else {
1622             set_feature(env, ARM_FEATURE_V6);
1623         }
1624 
1625         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1626          * non-EL3 configs. This is needed by some legacy boards.
1627          */
1628         set_feature(env, ARM_FEATURE_VBAR);
1629     }
1630     if (arm_feature(env, ARM_FEATURE_V6K)) {
1631         set_feature(env, ARM_FEATURE_V6);
1632         set_feature(env, ARM_FEATURE_MVFR);
1633     }
1634     if (arm_feature(env, ARM_FEATURE_V6)) {
1635         set_feature(env, ARM_FEATURE_V5);
1636         if (!arm_feature(env, ARM_FEATURE_M)) {
1637             assert(!tcg_enabled() || no_aa32 ||
1638                    cpu_isar_feature(aa32_jazelle, cpu));
1639             set_feature(env, ARM_FEATURE_AUXCR);
1640         }
1641     }
1642     if (arm_feature(env, ARM_FEATURE_V5)) {
1643         set_feature(env, ARM_FEATURE_V4T);
1644     }
1645     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1646         set_feature(env, ARM_FEATURE_V7MP);
1647     }
1648     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1649         set_feature(env, ARM_FEATURE_CBAR);
1650     }
1651     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1652         !arm_feature(env, ARM_FEATURE_M)) {
1653         set_feature(env, ARM_FEATURE_THUMB_DSP);
1654     }
1655 
1656     /*
1657      * We rely on no XScale CPU having VFP so we can use the same bits in the
1658      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1659      */
1660     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1661            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1662            !arm_feature(env, ARM_FEATURE_XSCALE));
1663 
1664     if (arm_feature(env, ARM_FEATURE_V7) &&
1665         !arm_feature(env, ARM_FEATURE_M) &&
1666         !arm_feature(env, ARM_FEATURE_PMSA)) {
1667         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1668          * can use 4K pages.
1669          */
1670         pagebits = 12;
1671     } else {
1672         /* For CPUs which might have tiny 1K pages, or which have an
1673          * MPU and might have small region sizes, stick with 1K pages.
1674          */
1675         pagebits = 10;
1676     }
1677     if (!set_preferred_target_page_bits(pagebits)) {
1678         /* This can only ever happen for hotplugging a CPU, or if
1679          * the board code incorrectly creates a CPU which it has
1680          * promised via minimum_page_size that it will not.
1681          */
1682         error_setg(errp, "This CPU requires a smaller page size than the "
1683                    "system is using");
1684         return;
1685     }
1686 
1687     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1688      * We don't support setting cluster ID ([16..23]) (known as Aff2
1689      * in later ARM ARM versions), or any of the higher affinity level fields,
1690      * so these bits always RAZ.
1691      */
1692     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1693         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1694                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1695     }
1696 
1697     if (cpu->reset_hivecs) {
1698             cpu->reset_sctlr |= (1 << 13);
1699     }
1700 
1701     if (cpu->cfgend) {
1702         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1703             cpu->reset_sctlr |= SCTLR_EE;
1704         } else {
1705             cpu->reset_sctlr |= SCTLR_B;
1706         }
1707     }
1708 
1709     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1710         /* If the has_el3 CPU property is disabled then we need to disable the
1711          * feature.
1712          */
1713         unset_feature(env, ARM_FEATURE_EL3);
1714 
1715         /* Disable the security extension feature bits in the processor feature
1716          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1717          */
1718         cpu->isar.id_pfr1 &= ~0xf0;
1719         cpu->isar.id_aa64pfr0 &= ~0xf000;
1720     }
1721 
1722     if (!cpu->has_el2) {
1723         unset_feature(env, ARM_FEATURE_EL2);
1724     }
1725 
1726     if (!cpu->has_pmu) {
1727         unset_feature(env, ARM_FEATURE_PMU);
1728     }
1729     if (arm_feature(env, ARM_FEATURE_PMU)) {
1730         pmu_init(cpu);
1731 
1732         if (!kvm_enabled()) {
1733             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1734             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1735         }
1736 
1737 #ifndef CONFIG_USER_ONLY
1738         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1739                 cpu);
1740 #endif
1741     } else {
1742         cpu->isar.id_aa64dfr0 =
1743             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1744         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1745         cpu->pmceid0 = 0;
1746         cpu->pmceid1 = 0;
1747     }
1748 
1749     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1750         /* Disable the hypervisor feature bits in the processor feature
1751          * registers if we don't have EL2. These are id_pfr1[15:12] and
1752          * id_aa64pfr0_el1[11:8].
1753          */
1754         cpu->isar.id_aa64pfr0 &= ~0xf00;
1755         cpu->isar.id_pfr1 &= ~0xf000;
1756     }
1757 
1758 #ifndef CONFIG_USER_ONLY
1759     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1760         /*
1761          * Disable the MTE feature bits if we do not have tag-memory
1762          * provided by the machine.
1763          */
1764         cpu->isar.id_aa64pfr1 =
1765             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1766     }
1767 #endif
1768 
1769     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1770      * to false or by setting pmsav7-dregion to 0.
1771      */
1772     if (!cpu->has_mpu) {
1773         cpu->pmsav7_dregion = 0;
1774     }
1775     if (cpu->pmsav7_dregion == 0) {
1776         cpu->has_mpu = false;
1777     }
1778 
1779     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1780         arm_feature(env, ARM_FEATURE_V7)) {
1781         uint32_t nr = cpu->pmsav7_dregion;
1782 
1783         if (nr > 0xff) {
1784             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1785             return;
1786         }
1787 
1788         if (nr) {
1789             if (arm_feature(env, ARM_FEATURE_V8)) {
1790                 /* PMSAv8 */
1791                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1792                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1793                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1794                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1795                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1796                 }
1797             } else {
1798                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1799                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1800                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1801             }
1802         }
1803     }
1804 
1805     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1806         uint32_t nr = cpu->sau_sregion;
1807 
1808         if (nr > 0xff) {
1809             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1810             return;
1811         }
1812 
1813         if (nr) {
1814             env->sau.rbar = g_new0(uint32_t, nr);
1815             env->sau.rlar = g_new0(uint32_t, nr);
1816         }
1817     }
1818 
1819     if (arm_feature(env, ARM_FEATURE_EL3)) {
1820         set_feature(env, ARM_FEATURE_VBAR);
1821     }
1822 
1823     register_cp_regs_for_features(cpu);
1824     arm_cpu_register_gdb_regs_for_features(cpu);
1825 
1826     init_cpreg_list(cpu);
1827 
1828 #ifndef CONFIG_USER_ONLY
1829     MachineState *ms = MACHINE(qdev_get_machine());
1830     unsigned int smp_cpus = ms->smp.cpus;
1831     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1832 
1833     /*
1834      * We must set cs->num_ases to the final value before
1835      * the first call to cpu_address_space_init.
1836      */
1837     if (cpu->tag_memory != NULL) {
1838         cs->num_ases = 3 + has_secure;
1839     } else {
1840         cs->num_ases = 1 + has_secure;
1841     }
1842 
1843     if (has_secure) {
1844         if (!cpu->secure_memory) {
1845             cpu->secure_memory = cs->memory;
1846         }
1847         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1848                                cpu->secure_memory);
1849     }
1850 
1851     if (cpu->tag_memory != NULL) {
1852         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1853                                cpu->tag_memory);
1854         if (has_secure) {
1855             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1856                                    cpu->secure_tag_memory);
1857         }
1858     }
1859 
1860     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1861 
1862     /* No core_count specified, default to smp_cpus. */
1863     if (cpu->core_count == -1) {
1864         cpu->core_count = smp_cpus;
1865     }
1866 #endif
1867 
1868     if (tcg_enabled()) {
1869         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1870 
1871         /*
1872          * We only support DCZ blocklen that fits on one page.
1873          *
1874          * Architectually this is always true.  However TARGET_PAGE_SIZE
1875          * is variable and, for compatibility with -machine virt-2.7,
1876          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1877          * But even then, while the largest architectural DCZ blocklen
1878          * is 2KiB, no cpu actually uses such a large blocklen.
1879          */
1880         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1881 
1882         /*
1883          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1884          * both nibbles of each byte storing tag data may be written at once.
1885          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1886          */
1887         if (cpu_isar_feature(aa64_mte, cpu)) {
1888             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1889         }
1890     }
1891 
1892     qemu_init_vcpu(cs);
1893     cpu_reset(cs);
1894 
1895     acc->parent_realize(dev, errp);
1896 }
1897 
1898 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1899 {
1900     ObjectClass *oc;
1901     char *typename;
1902     char **cpuname;
1903     const char *cpunamestr;
1904 
1905     cpuname = g_strsplit(cpu_model, ",", 1);
1906     cpunamestr = cpuname[0];
1907 #ifdef CONFIG_USER_ONLY
1908     /* For backwards compatibility usermode emulation allows "-cpu any",
1909      * which has the same semantics as "-cpu max".
1910      */
1911     if (!strcmp(cpunamestr, "any")) {
1912         cpunamestr = "max";
1913     }
1914 #endif
1915     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1916     oc = object_class_by_name(typename);
1917     g_strfreev(cpuname);
1918     g_free(typename);
1919     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1920         object_class_is_abstract(oc)) {
1921         return NULL;
1922     }
1923     return oc;
1924 }
1925 
1926 static Property arm_cpu_properties[] = {
1927     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1928     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1929     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1930                         mp_affinity, ARM64_AFFINITY_INVALID),
1931     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1932     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1933     DEFINE_PROP_END_OF_LIST()
1934 };
1935 
1936 static gchar *arm_gdb_arch_name(CPUState *cs)
1937 {
1938     ARMCPU *cpu = ARM_CPU(cs);
1939     CPUARMState *env = &cpu->env;
1940 
1941     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1942         return g_strdup("iwmmxt");
1943     }
1944     return g_strdup("arm");
1945 }
1946 
1947 #ifndef CONFIG_USER_ONLY
1948 #include "hw/core/sysemu-cpu-ops.h"
1949 
1950 static const struct SysemuCPUOps arm_sysemu_ops = {
1951     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
1952     .asidx_from_attrs = arm_asidx_from_attrs,
1953     .write_elf32_note = arm_cpu_write_elf32_note,
1954     .write_elf64_note = arm_cpu_write_elf64_note,
1955     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
1956     .legacy_vmsd = &vmstate_arm_cpu,
1957 };
1958 #endif
1959 
1960 #ifdef CONFIG_TCG
1961 static const struct TCGCPUOps arm_tcg_ops = {
1962     .initialize = arm_translate_init,
1963     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1964     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1965     .tlb_fill = arm_cpu_tlb_fill,
1966     .debug_excp_handler = arm_debug_excp_handler,
1967 
1968 #if !defined(CONFIG_USER_ONLY)
1969     .do_interrupt = arm_cpu_do_interrupt,
1970     .do_transaction_failed = arm_cpu_do_transaction_failed,
1971     .do_unaligned_access = arm_cpu_do_unaligned_access,
1972     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1973     .debug_check_watchpoint = arm_debug_check_watchpoint,
1974 #endif /* !CONFIG_USER_ONLY */
1975 };
1976 #endif /* CONFIG_TCG */
1977 
1978 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1979 {
1980     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1981     CPUClass *cc = CPU_CLASS(acc);
1982     DeviceClass *dc = DEVICE_CLASS(oc);
1983 
1984     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1985                                     &acc->parent_realize);
1986 
1987     device_class_set_props(dc, arm_cpu_properties);
1988     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
1989 
1990     cc->class_by_name = arm_cpu_class_by_name;
1991     cc->has_work = arm_cpu_has_work;
1992     cc->dump_state = arm_cpu_dump_state;
1993     cc->set_pc = arm_cpu_set_pc;
1994     cc->gdb_read_register = arm_cpu_gdb_read_register;
1995     cc->gdb_write_register = arm_cpu_gdb_write_register;
1996 #ifndef CONFIG_USER_ONLY
1997     cc->sysemu_ops = &arm_sysemu_ops;
1998 #endif
1999     cc->gdb_num_core_regs = 26;
2000     cc->gdb_core_xml_file = "arm-core.xml";
2001     cc->gdb_arch_name = arm_gdb_arch_name;
2002     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2003     cc->gdb_stop_before_watchpoint = true;
2004     cc->disas_set_info = arm_disas_set_info;
2005 
2006 #ifdef CONFIG_TCG
2007     cc->tcg_ops = &arm_tcg_ops;
2008 #endif /* CONFIG_TCG */
2009 }
2010 
2011 #ifdef CONFIG_KVM
2012 static void arm_host_initfn(Object *obj)
2013 {
2014     ARMCPU *cpu = ARM_CPU(obj);
2015 
2016     kvm_arm_set_cpu_features_from_host(cpu);
2017     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2018         aarch64_add_sve_properties(obj);
2019     }
2020     arm_cpu_post_init(obj);
2021 }
2022 
2023 static const TypeInfo host_arm_cpu_type_info = {
2024     .name = TYPE_ARM_HOST_CPU,
2025     .parent = TYPE_AARCH64_CPU,
2026     .instance_init = arm_host_initfn,
2027 };
2028 
2029 #endif
2030 
2031 static void arm_cpu_instance_init(Object *obj)
2032 {
2033     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2034 
2035     acc->info->initfn(obj);
2036     arm_cpu_post_init(obj);
2037 }
2038 
2039 static void cpu_register_class_init(ObjectClass *oc, void *data)
2040 {
2041     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2042 
2043     acc->info = data;
2044 }
2045 
2046 void arm_cpu_register(const ARMCPUInfo *info)
2047 {
2048     TypeInfo type_info = {
2049         .parent = TYPE_ARM_CPU,
2050         .instance_size = sizeof(ARMCPU),
2051         .instance_align = __alignof__(ARMCPU),
2052         .instance_init = arm_cpu_instance_init,
2053         .class_size = sizeof(ARMCPUClass),
2054         .class_init = info->class_init ?: cpu_register_class_init,
2055         .class_data = (void *)info,
2056     };
2057 
2058     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2059     type_register(&type_info);
2060     g_free((void *)type_info.name);
2061 }
2062 
2063 static const TypeInfo arm_cpu_type_info = {
2064     .name = TYPE_ARM_CPU,
2065     .parent = TYPE_CPU,
2066     .instance_size = sizeof(ARMCPU),
2067     .instance_align = __alignof__(ARMCPU),
2068     .instance_init = arm_cpu_initfn,
2069     .instance_finalize = arm_cpu_finalizefn,
2070     .abstract = true,
2071     .class_size = sizeof(ARMCPUClass),
2072     .class_init = arm_cpu_class_init,
2073 };
2074 
2075 static void arm_cpu_register_types(void)
2076 {
2077     type_register_static(&arm_cpu_type_info);
2078 
2079 #ifdef CONFIG_KVM
2080     type_register_static(&host_arm_cpu_type_info);
2081 #endif
2082 }
2083 
2084 type_init(arm_cpu_register_types)
2085