xref: /qemu/target/arm/cpu.c (revision d201cf7a)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/tcg.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_arm.h"
42 #include "hvf_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
45 
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     CPUARMState *env = &cpu->env;
50 
51     if (is_a64(env)) {
52         env->pc = value;
53         env->thumb = 0;
54     } else {
55         env->regs[15] = value & ~1;
56         env->thumb = value & 1;
57     }
58 }
59 
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62                                  const TranslationBlock *tb)
63 {
64     ARMCPU *cpu = ARM_CPU(cs);
65     CPUARMState *env = &cpu->env;
66 
67     /*
68      * It's OK to look at env for the current mode here, because it's
69      * never possible for an AArch64 TB to chain to an AArch32 TB.
70      */
71     if (is_a64(env)) {
72         env->pc = tb->pc;
73     } else {
74         env->regs[15] = tb->pc;
75     }
76 }
77 #endif /* CONFIG_TCG */
78 
79 static bool arm_cpu_has_work(CPUState *cs)
80 {
81     ARMCPU *cpu = ARM_CPU(cs);
82 
83     return (cpu->power_state != PSCI_OFF)
84         && cs->interrupt_request &
85         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87          | CPU_INTERRUPT_EXITTB);
88 }
89 
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91                                  void *opaque)
92 {
93     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 
95     entry->hook = hook;
96     entry->opaque = opaque;
97 
98     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
99 }
100 
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102                                  void *opaque)
103 {
104     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 
106     entry->hook = hook;
107     entry->opaque = opaque;
108 
109     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
110 }
111 
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 {
114     /* Reset a single ARMCPRegInfo register */
115     ARMCPRegInfo *ri = value;
116     ARMCPU *cpu = opaque;
117 
118     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119         return;
120     }
121 
122     if (ri->resetfn) {
123         ri->resetfn(&cpu->env, ri);
124         return;
125     }
126 
127     /* A zero offset is never possible as it would be regs[0]
128      * so we use it to indicate that reset is being handled elsewhere.
129      * This is basically only used for fields in non-core coprocessors
130      * (like the pxa2xx ones).
131      */
132     if (!ri->fieldoffset) {
133         return;
134     }
135 
136     if (cpreg_field_is_64bit(ri)) {
137         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138     } else {
139         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
140     }
141 }
142 
143 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
144 {
145     /* Purely an assertion check: we've already done reset once,
146      * so now check that running the reset for the cpreg doesn't
147      * change its value. This traps bugs where two different cpregs
148      * both try to reset the same state field but to different values.
149      */
150     ARMCPRegInfo *ri = value;
151     ARMCPU *cpu = opaque;
152     uint64_t oldvalue, newvalue;
153 
154     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155         return;
156     }
157 
158     oldvalue = read_raw_cp_reg(&cpu->env, ri);
159     cp_reg_reset(key, value, opaque);
160     newvalue = read_raw_cp_reg(&cpu->env, ri);
161     assert(oldvalue == newvalue);
162 }
163 
164 static void arm_cpu_reset(DeviceState *dev)
165 {
166     CPUState *s = CPU(dev);
167     ARMCPU *cpu = ARM_CPU(s);
168     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169     CPUARMState *env = &cpu->env;
170 
171     acc->parent_reset(dev);
172 
173     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 
178     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 
183     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 
185     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
187     }
188 
189     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190         /* 64 bit CPUs always start in 64 bit mode */
191         env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193         env->pstate = PSTATE_MODE_EL0t;
194         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196         /* Enable all PAC keys.  */
197         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198                                   SCTLR_EnDA | SCTLR_EnDB);
199         /* and to the FP/Neon instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201         /* and to the SVE instructions */
202         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203         /* with reasonable vector length */
204         if (cpu_isar_feature(aa64_sve, cpu)) {
205             env->vfp.zcr_el[1] =
206                 aarch64_sve_zcr_get_valid_len(cpu, cpu->sve_default_vq - 1);
207         }
208         /*
209          * Enable TBI0 but not TBI1.
210          * Note that this must match useronly_clean_ptr.
211          */
212         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
213 
214         /* Enable MTE */
215         if (cpu_isar_feature(aa64_mte, cpu)) {
216             /* Enable tag access, but leave TCF0 as No Effect (0). */
217             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
218             /*
219              * Exclude all tags, so that tag 0 is always used.
220              * This corresponds to Linux current->thread.gcr_incl = 0.
221              *
222              * Set RRND, so that helper_irg() will generate a seed later.
223              * Here in cpu_reset(), the crypto subsystem has not yet been
224              * initialized.
225              */
226             env->cp15.gcr_el1 = 0x1ffff;
227         }
228 #else
229         /* Reset into the highest available EL */
230         if (arm_feature(env, ARM_FEATURE_EL3)) {
231             env->pstate = PSTATE_MODE_EL3h;
232         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
233             env->pstate = PSTATE_MODE_EL2h;
234         } else {
235             env->pstate = PSTATE_MODE_EL1h;
236         }
237         env->pc = cpu->rvbar;
238 #endif
239     } else {
240 #if defined(CONFIG_USER_ONLY)
241         /* Userspace expects access to cp10 and cp11 for FP/Neon */
242         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
243 #endif
244     }
245 
246 #if defined(CONFIG_USER_ONLY)
247     env->uncached_cpsr = ARM_CPU_MODE_USR;
248     /* For user mode we must enable access to coprocessors */
249     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
250     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
251         env->cp15.c15_cpar = 3;
252     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
253         env->cp15.c15_cpar = 1;
254     }
255 #else
256 
257     /*
258      * If the highest available EL is EL2, AArch32 will start in Hyp
259      * mode; otherwise it starts in SVC. Note that if we start in
260      * AArch64 then these values in the uncached_cpsr will be ignored.
261      */
262     if (arm_feature(env, ARM_FEATURE_EL2) &&
263         !arm_feature(env, ARM_FEATURE_EL3)) {
264         env->uncached_cpsr = ARM_CPU_MODE_HYP;
265     } else {
266         env->uncached_cpsr = ARM_CPU_MODE_SVC;
267     }
268     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
269 
270     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
271      * executing as AArch32 then check if highvecs are enabled and
272      * adjust the PC accordingly.
273      */
274     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
275         env->regs[15] = 0xFFFF0000;
276     }
277 
278     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
279 #endif
280 
281     if (arm_feature(env, ARM_FEATURE_M)) {
282 #ifndef CONFIG_USER_ONLY
283         uint32_t initial_msp; /* Loaded from 0x0 */
284         uint32_t initial_pc; /* Loaded from 0x4 */
285         uint8_t *rom;
286         uint32_t vecbase;
287 #endif
288 
289         if (cpu_isar_feature(aa32_lob, cpu)) {
290             /*
291              * LTPSIZE is constant 4 if MVE not implemented, and resets
292              * to an UNKNOWN value if MVE is implemented. We choose to
293              * always reset to 4.
294              */
295             env->v7m.ltpsize = 4;
296             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
297             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
298             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
299         }
300 
301         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
302             env->v7m.secure = true;
303         } else {
304             /* This bit resets to 0 if security is supported, but 1 if
305              * it is not. The bit is not present in v7M, but we set it
306              * here so we can avoid having to make checks on it conditional
307              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
308              */
309             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
310             /*
311              * Set NSACR to indicate "NS access permitted to everything";
312              * this avoids having to have all the tests of it being
313              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
314              * v8.1M the guest-visible value of NSACR in a CPU without the
315              * Security Extension is 0xcff.
316              */
317             env->v7m.nsacr = 0xcff;
318         }
319 
320         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
321          * that it resets to 1, so QEMU always does that rather than making
322          * it dependent on CPU model. In v8M it is RES1.
323          */
324         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
325         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
326         if (arm_feature(env, ARM_FEATURE_V8)) {
327             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
328             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
329             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
330         }
331         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
332             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
333             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
334         }
335 
336         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
337             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
338             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
339                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
340         }
341 
342 #ifndef CONFIG_USER_ONLY
343         /* Unlike A/R profile, M profile defines the reset LR value */
344         env->regs[14] = 0xffffffff;
345 
346         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
347         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
348 
349         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
350         vecbase = env->v7m.vecbase[env->v7m.secure];
351         rom = rom_ptr_for_as(s->as, vecbase, 8);
352         if (rom) {
353             /* Address zero is covered by ROM which hasn't yet been
354              * copied into physical memory.
355              */
356             initial_msp = ldl_p(rom);
357             initial_pc = ldl_p(rom + 4);
358         } else {
359             /* Address zero not covered by a ROM blob, or the ROM blob
360              * is in non-modifiable memory and this is a second reset after
361              * it got copied into memory. In the latter case, rom_ptr
362              * will return a NULL pointer and we should use ldl_phys instead.
363              */
364             initial_msp = ldl_phys(s->as, vecbase);
365             initial_pc = ldl_phys(s->as, vecbase + 4);
366         }
367 
368         env->regs[13] = initial_msp & 0xFFFFFFFC;
369         env->regs[15] = initial_pc & ~1;
370         env->thumb = initial_pc & 1;
371 #else
372         /*
373          * For user mode we run non-secure and with access to the FPU.
374          * The FPU context is active (ie does not need further setup)
375          * and is owned by non-secure.
376          */
377         env->v7m.secure = false;
378         env->v7m.nsacr = 0xcff;
379         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
380         env->v7m.fpccr[M_REG_S] &=
381             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
382         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
383 #endif
384     }
385 
386     /* M profile requires that reset clears the exclusive monitor;
387      * A profile does not, but clearing it makes more sense than having it
388      * set with an exclusive access on address zero.
389      */
390     arm_clear_exclusive(env);
391 
392     if (arm_feature(env, ARM_FEATURE_PMSA)) {
393         if (cpu->pmsav7_dregion > 0) {
394             if (arm_feature(env, ARM_FEATURE_V8)) {
395                 memset(env->pmsav8.rbar[M_REG_NS], 0,
396                        sizeof(*env->pmsav8.rbar[M_REG_NS])
397                        * cpu->pmsav7_dregion);
398                 memset(env->pmsav8.rlar[M_REG_NS], 0,
399                        sizeof(*env->pmsav8.rlar[M_REG_NS])
400                        * cpu->pmsav7_dregion);
401                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
402                     memset(env->pmsav8.rbar[M_REG_S], 0,
403                            sizeof(*env->pmsav8.rbar[M_REG_S])
404                            * cpu->pmsav7_dregion);
405                     memset(env->pmsav8.rlar[M_REG_S], 0,
406                            sizeof(*env->pmsav8.rlar[M_REG_S])
407                            * cpu->pmsav7_dregion);
408                 }
409             } else if (arm_feature(env, ARM_FEATURE_V7)) {
410                 memset(env->pmsav7.drbar, 0,
411                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
412                 memset(env->pmsav7.drsr, 0,
413                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
414                 memset(env->pmsav7.dracr, 0,
415                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
416             }
417         }
418         env->pmsav7.rnr[M_REG_NS] = 0;
419         env->pmsav7.rnr[M_REG_S] = 0;
420         env->pmsav8.mair0[M_REG_NS] = 0;
421         env->pmsav8.mair0[M_REG_S] = 0;
422         env->pmsav8.mair1[M_REG_NS] = 0;
423         env->pmsav8.mair1[M_REG_S] = 0;
424     }
425 
426     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
427         if (cpu->sau_sregion > 0) {
428             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
429             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
430         }
431         env->sau.rnr = 0;
432         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
433          * the Cortex-M33 does.
434          */
435         env->sau.ctrl = 0;
436     }
437 
438     set_flush_to_zero(1, &env->vfp.standard_fp_status);
439     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
440     set_default_nan_mode(1, &env->vfp.standard_fp_status);
441     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
442     set_float_detect_tininess(float_tininess_before_rounding,
443                               &env->vfp.fp_status);
444     set_float_detect_tininess(float_tininess_before_rounding,
445                               &env->vfp.standard_fp_status);
446     set_float_detect_tininess(float_tininess_before_rounding,
447                               &env->vfp.fp_status_f16);
448     set_float_detect_tininess(float_tininess_before_rounding,
449                               &env->vfp.standard_fp_status_f16);
450 #ifndef CONFIG_USER_ONLY
451     if (kvm_enabled()) {
452         kvm_arm_reset_vcpu(cpu);
453     }
454 #endif
455 
456     hw_breakpoint_update_all(cpu);
457     hw_watchpoint_update_all(cpu);
458     arm_rebuild_hflags(env);
459 }
460 
461 #ifndef CONFIG_USER_ONLY
462 
463 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
464                                      unsigned int target_el,
465                                      unsigned int cur_el, bool secure,
466                                      uint64_t hcr_el2)
467 {
468     CPUARMState *env = cs->env_ptr;
469     bool pstate_unmasked;
470     bool unmasked = false;
471 
472     /*
473      * Don't take exceptions if they target a lower EL.
474      * This check should catch any exceptions that would not be taken
475      * but left pending.
476      */
477     if (cur_el > target_el) {
478         return false;
479     }
480 
481     switch (excp_idx) {
482     case EXCP_FIQ:
483         pstate_unmasked = !(env->daif & PSTATE_F);
484         break;
485 
486     case EXCP_IRQ:
487         pstate_unmasked = !(env->daif & PSTATE_I);
488         break;
489 
490     case EXCP_VFIQ:
491         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
492             /* VFIQs are only taken when hypervized.  */
493             return false;
494         }
495         return !(env->daif & PSTATE_F);
496     case EXCP_VIRQ:
497         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
498             /* VIRQs are only taken when hypervized.  */
499             return false;
500         }
501         return !(env->daif & PSTATE_I);
502     default:
503         g_assert_not_reached();
504     }
505 
506     /*
507      * Use the target EL, current execution state and SCR/HCR settings to
508      * determine whether the corresponding CPSR bit is used to mask the
509      * interrupt.
510      */
511     if ((target_el > cur_el) && (target_el != 1)) {
512         /* Exceptions targeting a higher EL may not be maskable */
513         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
514             /*
515              * 64-bit masking rules are simple: exceptions to EL3
516              * can't be masked, and exceptions to EL2 can only be
517              * masked from Secure state. The HCR and SCR settings
518              * don't affect the masking logic, only the interrupt routing.
519              */
520             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
521                 unmasked = true;
522             }
523         } else {
524             /*
525              * The old 32-bit-only environment has a more complicated
526              * masking setup. HCR and SCR bits not only affect interrupt
527              * routing but also change the behaviour of masking.
528              */
529             bool hcr, scr;
530 
531             switch (excp_idx) {
532             case EXCP_FIQ:
533                 /*
534                  * If FIQs are routed to EL3 or EL2 then there are cases where
535                  * we override the CPSR.F in determining if the exception is
536                  * masked or not. If neither of these are set then we fall back
537                  * to the CPSR.F setting otherwise we further assess the state
538                  * below.
539                  */
540                 hcr = hcr_el2 & HCR_FMO;
541                 scr = (env->cp15.scr_el3 & SCR_FIQ);
542 
543                 /*
544                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
545                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
546                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
547                  * when non-secure but only when FIQs are only routed to EL3.
548                  */
549                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
550                 break;
551             case EXCP_IRQ:
552                 /*
553                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
554                  * we may override the CPSR.I masking when in non-secure state.
555                  * The SCR.IRQ setting has already been taken into consideration
556                  * when setting the target EL, so it does not have a further
557                  * affect here.
558                  */
559                 hcr = hcr_el2 & HCR_IMO;
560                 scr = false;
561                 break;
562             default:
563                 g_assert_not_reached();
564             }
565 
566             if ((scr || hcr) && !secure) {
567                 unmasked = true;
568             }
569         }
570     }
571 
572     /*
573      * The PSTATE bits only mask the interrupt if we have not overriden the
574      * ability above.
575      */
576     return unmasked || pstate_unmasked;
577 }
578 
579 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
580 {
581     CPUClass *cc = CPU_GET_CLASS(cs);
582     CPUARMState *env = cs->env_ptr;
583     uint32_t cur_el = arm_current_el(env);
584     bool secure = arm_is_secure(env);
585     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
586     uint32_t target_el;
587     uint32_t excp_idx;
588 
589     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
590 
591     if (interrupt_request & CPU_INTERRUPT_FIQ) {
592         excp_idx = EXCP_FIQ;
593         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
594         if (arm_excp_unmasked(cs, excp_idx, target_el,
595                               cur_el, secure, hcr_el2)) {
596             goto found;
597         }
598     }
599     if (interrupt_request & CPU_INTERRUPT_HARD) {
600         excp_idx = EXCP_IRQ;
601         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
602         if (arm_excp_unmasked(cs, excp_idx, target_el,
603                               cur_el, secure, hcr_el2)) {
604             goto found;
605         }
606     }
607     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
608         excp_idx = EXCP_VIRQ;
609         target_el = 1;
610         if (arm_excp_unmasked(cs, excp_idx, target_el,
611                               cur_el, secure, hcr_el2)) {
612             goto found;
613         }
614     }
615     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
616         excp_idx = EXCP_VFIQ;
617         target_el = 1;
618         if (arm_excp_unmasked(cs, excp_idx, target_el,
619                               cur_el, secure, hcr_el2)) {
620             goto found;
621         }
622     }
623     return false;
624 
625  found:
626     cs->exception_index = excp_idx;
627     env->exception.target_el = target_el;
628     cc->tcg_ops->do_interrupt(cs);
629     return true;
630 }
631 #endif /* !CONFIG_USER_ONLY */
632 
633 void arm_cpu_update_virq(ARMCPU *cpu)
634 {
635     /*
636      * Update the interrupt level for VIRQ, which is the logical OR of
637      * the HCR_EL2.VI bit and the input line level from the GIC.
638      */
639     CPUARMState *env = &cpu->env;
640     CPUState *cs = CPU(cpu);
641 
642     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
643         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
644 
645     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
646         if (new_state) {
647             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
648         } else {
649             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
650         }
651     }
652 }
653 
654 void arm_cpu_update_vfiq(ARMCPU *cpu)
655 {
656     /*
657      * Update the interrupt level for VFIQ, which is the logical OR of
658      * the HCR_EL2.VF bit and the input line level from the GIC.
659      */
660     CPUARMState *env = &cpu->env;
661     CPUState *cs = CPU(cpu);
662 
663     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
664         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
665 
666     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
667         if (new_state) {
668             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
669         } else {
670             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
671         }
672     }
673 }
674 
675 #ifndef CONFIG_USER_ONLY
676 static void arm_cpu_set_irq(void *opaque, int irq, int level)
677 {
678     ARMCPU *cpu = opaque;
679     CPUARMState *env = &cpu->env;
680     CPUState *cs = CPU(cpu);
681     static const int mask[] = {
682         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
683         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
684         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
685         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
686     };
687 
688     if (level) {
689         env->irq_line_state |= mask[irq];
690     } else {
691         env->irq_line_state &= ~mask[irq];
692     }
693 
694     switch (irq) {
695     case ARM_CPU_VIRQ:
696         assert(arm_feature(env, ARM_FEATURE_EL2));
697         arm_cpu_update_virq(cpu);
698         break;
699     case ARM_CPU_VFIQ:
700         assert(arm_feature(env, ARM_FEATURE_EL2));
701         arm_cpu_update_vfiq(cpu);
702         break;
703     case ARM_CPU_IRQ:
704     case ARM_CPU_FIQ:
705         if (level) {
706             cpu_interrupt(cs, mask[irq]);
707         } else {
708             cpu_reset_interrupt(cs, mask[irq]);
709         }
710         break;
711     default:
712         g_assert_not_reached();
713     }
714 }
715 
716 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
717 {
718 #ifdef CONFIG_KVM
719     ARMCPU *cpu = opaque;
720     CPUARMState *env = &cpu->env;
721     CPUState *cs = CPU(cpu);
722     uint32_t linestate_bit;
723     int irq_id;
724 
725     switch (irq) {
726     case ARM_CPU_IRQ:
727         irq_id = KVM_ARM_IRQ_CPU_IRQ;
728         linestate_bit = CPU_INTERRUPT_HARD;
729         break;
730     case ARM_CPU_FIQ:
731         irq_id = KVM_ARM_IRQ_CPU_FIQ;
732         linestate_bit = CPU_INTERRUPT_FIQ;
733         break;
734     default:
735         g_assert_not_reached();
736     }
737 
738     if (level) {
739         env->irq_line_state |= linestate_bit;
740     } else {
741         env->irq_line_state &= ~linestate_bit;
742     }
743     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
744 #endif
745 }
746 
747 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
748 {
749     ARMCPU *cpu = ARM_CPU(cs);
750     CPUARMState *env = &cpu->env;
751 
752     cpu_synchronize_state(cs);
753     return arm_cpu_data_is_big_endian(env);
754 }
755 
756 #endif
757 
758 static int
759 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
760 {
761   return print_insn_arm(pc | 1, info);
762 }
763 
764 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
765 {
766     ARMCPU *ac = ARM_CPU(cpu);
767     CPUARMState *env = &ac->env;
768     bool sctlr_b;
769 
770     if (is_a64(env)) {
771         /* We might not be compiled with the A64 disassembler
772          * because it needs a C++ compiler. Leave print_insn
773          * unset in this case to use the caller default behaviour.
774          */
775 #if defined(CONFIG_ARM_A64_DIS)
776         info->print_insn = print_insn_arm_a64;
777 #endif
778         info->cap_arch = CS_ARCH_ARM64;
779         info->cap_insn_unit = 4;
780         info->cap_insn_split = 4;
781     } else {
782         int cap_mode;
783         if (env->thumb) {
784             info->print_insn = print_insn_thumb1;
785             info->cap_insn_unit = 2;
786             info->cap_insn_split = 4;
787             cap_mode = CS_MODE_THUMB;
788         } else {
789             info->print_insn = print_insn_arm;
790             info->cap_insn_unit = 4;
791             info->cap_insn_split = 4;
792             cap_mode = CS_MODE_ARM;
793         }
794         if (arm_feature(env, ARM_FEATURE_V8)) {
795             cap_mode |= CS_MODE_V8;
796         }
797         if (arm_feature(env, ARM_FEATURE_M)) {
798             cap_mode |= CS_MODE_MCLASS;
799         }
800         info->cap_arch = CS_ARCH_ARM;
801         info->cap_mode = cap_mode;
802     }
803 
804     sctlr_b = arm_sctlr_b(env);
805     if (bswap_code(sctlr_b)) {
806 #ifdef TARGET_WORDS_BIGENDIAN
807         info->endian = BFD_ENDIAN_LITTLE;
808 #else
809         info->endian = BFD_ENDIAN_BIG;
810 #endif
811     }
812     info->flags &= ~INSN_ARM_BE32;
813 #ifndef CONFIG_USER_ONLY
814     if (sctlr_b) {
815         info->flags |= INSN_ARM_BE32;
816     }
817 #endif
818 }
819 
820 #ifdef TARGET_AARCH64
821 
822 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
823 {
824     ARMCPU *cpu = ARM_CPU(cs);
825     CPUARMState *env = &cpu->env;
826     uint32_t psr = pstate_read(env);
827     int i;
828     int el = arm_current_el(env);
829     const char *ns_status;
830 
831     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
832     for (i = 0; i < 32; i++) {
833         if (i == 31) {
834             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
835         } else {
836             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
837                          (i + 2) % 3 ? " " : "\n");
838         }
839     }
840 
841     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
842         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
843     } else {
844         ns_status = "";
845     }
846     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
847                  psr,
848                  psr & PSTATE_N ? 'N' : '-',
849                  psr & PSTATE_Z ? 'Z' : '-',
850                  psr & PSTATE_C ? 'C' : '-',
851                  psr & PSTATE_V ? 'V' : '-',
852                  ns_status,
853                  el,
854                  psr & PSTATE_SP ? 'h' : 't');
855 
856     if (cpu_isar_feature(aa64_bti, cpu)) {
857         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
858     }
859     if (!(flags & CPU_DUMP_FPU)) {
860         qemu_fprintf(f, "\n");
861         return;
862     }
863     if (fp_exception_el(env, el) != 0) {
864         qemu_fprintf(f, "    FPU disabled\n");
865         return;
866     }
867     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
868                  vfp_get_fpcr(env), vfp_get_fpsr(env));
869 
870     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
871         int j, zcr_len = sve_zcr_len_for_el(env, el);
872 
873         for (i = 0; i <= FFR_PRED_NUM; i++) {
874             bool eol;
875             if (i == FFR_PRED_NUM) {
876                 qemu_fprintf(f, "FFR=");
877                 /* It's last, so end the line.  */
878                 eol = true;
879             } else {
880                 qemu_fprintf(f, "P%02d=", i);
881                 switch (zcr_len) {
882                 case 0:
883                     eol = i % 8 == 7;
884                     break;
885                 case 1:
886                     eol = i % 6 == 5;
887                     break;
888                 case 2:
889                 case 3:
890                     eol = i % 3 == 2;
891                     break;
892                 default:
893                     /* More than one quadword per predicate.  */
894                     eol = true;
895                     break;
896                 }
897             }
898             for (j = zcr_len / 4; j >= 0; j--) {
899                 int digits;
900                 if (j * 4 + 4 <= zcr_len + 1) {
901                     digits = 16;
902                 } else {
903                     digits = (zcr_len % 4 + 1) * 4;
904                 }
905                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
906                              env->vfp.pregs[i].p[j],
907                              j ? ":" : eol ? "\n" : " ");
908             }
909         }
910 
911         for (i = 0; i < 32; i++) {
912             if (zcr_len == 0) {
913                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
914                              i, env->vfp.zregs[i].d[1],
915                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
916             } else if (zcr_len == 1) {
917                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
918                              ":%016" PRIx64 ":%016" PRIx64 "\n",
919                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
920                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
921             } else {
922                 for (j = zcr_len; j >= 0; j--) {
923                     bool odd = (zcr_len - j) % 2 != 0;
924                     if (j == zcr_len) {
925                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
926                     } else if (!odd) {
927                         if (j > 0) {
928                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
929                         } else {
930                             qemu_fprintf(f, "     [%x]=", j);
931                         }
932                     }
933                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
934                                  env->vfp.zregs[i].d[j * 2 + 1],
935                                  env->vfp.zregs[i].d[j * 2],
936                                  odd || j == 0 ? "\n" : ":");
937                 }
938             }
939         }
940     } else {
941         for (i = 0; i < 32; i++) {
942             uint64_t *q = aa64_vfp_qreg(env, i);
943             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
944                          i, q[1], q[0], (i & 1 ? "\n" : " "));
945         }
946     }
947 }
948 
949 #else
950 
951 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
952 {
953     g_assert_not_reached();
954 }
955 
956 #endif
957 
958 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
959 {
960     ARMCPU *cpu = ARM_CPU(cs);
961     CPUARMState *env = &cpu->env;
962     int i;
963 
964     if (is_a64(env)) {
965         aarch64_cpu_dump_state(cs, f, flags);
966         return;
967     }
968 
969     for (i = 0; i < 16; i++) {
970         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
971         if ((i % 4) == 3) {
972             qemu_fprintf(f, "\n");
973         } else {
974             qemu_fprintf(f, " ");
975         }
976     }
977 
978     if (arm_feature(env, ARM_FEATURE_M)) {
979         uint32_t xpsr = xpsr_read(env);
980         const char *mode;
981         const char *ns_status = "";
982 
983         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
984             ns_status = env->v7m.secure ? "S " : "NS ";
985         }
986 
987         if (xpsr & XPSR_EXCP) {
988             mode = "handler";
989         } else {
990             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
991                 mode = "unpriv-thread";
992             } else {
993                 mode = "priv-thread";
994             }
995         }
996 
997         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
998                      xpsr,
999                      xpsr & XPSR_N ? 'N' : '-',
1000                      xpsr & XPSR_Z ? 'Z' : '-',
1001                      xpsr & XPSR_C ? 'C' : '-',
1002                      xpsr & XPSR_V ? 'V' : '-',
1003                      xpsr & XPSR_T ? 'T' : 'A',
1004                      ns_status,
1005                      mode);
1006     } else {
1007         uint32_t psr = cpsr_read(env);
1008         const char *ns_status = "";
1009 
1010         if (arm_feature(env, ARM_FEATURE_EL3) &&
1011             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1012             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1013         }
1014 
1015         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1016                      psr,
1017                      psr & CPSR_N ? 'N' : '-',
1018                      psr & CPSR_Z ? 'Z' : '-',
1019                      psr & CPSR_C ? 'C' : '-',
1020                      psr & CPSR_V ? 'V' : '-',
1021                      psr & CPSR_T ? 'T' : 'A',
1022                      ns_status,
1023                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1024     }
1025 
1026     if (flags & CPU_DUMP_FPU) {
1027         int numvfpregs = 0;
1028         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1029             numvfpregs = 32;
1030         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1031             numvfpregs = 16;
1032         }
1033         for (i = 0; i < numvfpregs; i++) {
1034             uint64_t v = *aa32_vfp_dreg(env, i);
1035             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1036                          i * 2, (uint32_t)v,
1037                          i * 2 + 1, (uint32_t)(v >> 32),
1038                          i, v);
1039         }
1040         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1041         if (cpu_isar_feature(aa32_mve, cpu)) {
1042             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1043         }
1044     }
1045 }
1046 
1047 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1048 {
1049     uint32_t Aff1 = idx / clustersz;
1050     uint32_t Aff0 = idx % clustersz;
1051     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1052 }
1053 
1054 static void cpreg_hashtable_data_destroy(gpointer data)
1055 {
1056     /*
1057      * Destroy function for cpu->cp_regs hashtable data entries.
1058      * We must free the name string because it was g_strdup()ed in
1059      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1060      * from r->name because we know we definitely allocated it.
1061      */
1062     ARMCPRegInfo *r = data;
1063 
1064     g_free((void *)r->name);
1065     g_free(r);
1066 }
1067 
1068 static void arm_cpu_initfn(Object *obj)
1069 {
1070     ARMCPU *cpu = ARM_CPU(obj);
1071 
1072     cpu_set_cpustate_pointers(cpu);
1073     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1074                                          g_free, cpreg_hashtable_data_destroy);
1075 
1076     QLIST_INIT(&cpu->pre_el_change_hooks);
1077     QLIST_INIT(&cpu->el_change_hooks);
1078 
1079 #ifdef CONFIG_USER_ONLY
1080 # ifdef TARGET_AARCH64
1081     /*
1082      * The linux kernel defaults to 512-bit vectors, when sve is supported.
1083      * See documentation for /proc/sys/abi/sve_default_vector_length, and
1084      * our corresponding sve-default-vector-length cpu property.
1085      */
1086     cpu->sve_default_vq = 4;
1087 # endif
1088 #else
1089     /* Our inbound IRQ and FIQ lines */
1090     if (kvm_enabled()) {
1091         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1092          * the same interface as non-KVM CPUs.
1093          */
1094         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1095     } else {
1096         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1097     }
1098 
1099     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1100                        ARRAY_SIZE(cpu->gt_timer_outputs));
1101 
1102     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1103                              "gicv3-maintenance-interrupt", 1);
1104     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1105                              "pmu-interrupt", 1);
1106 #endif
1107 
1108     /* DTB consumers generally don't in fact care what the 'compatible'
1109      * string is, so always provide some string and trust that a hypothetical
1110      * picky DTB consumer will also provide a helpful error message.
1111      */
1112     cpu->dtb_compatible = "qemu,unknown";
1113     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1114     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1115 
1116     if (tcg_enabled() || hvf_enabled()) {
1117         cpu->psci_version = 2; /* TCG and HVF implement PSCI 0.2 */
1118     }
1119 }
1120 
1121 static Property arm_cpu_gt_cntfrq_property =
1122             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1123                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1124 
1125 static Property arm_cpu_reset_cbar_property =
1126             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1127 
1128 static Property arm_cpu_reset_hivecs_property =
1129             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1130 
1131 static Property arm_cpu_rvbar_property =
1132             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1133 
1134 #ifndef CONFIG_USER_ONLY
1135 static Property arm_cpu_has_el2_property =
1136             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1137 
1138 static Property arm_cpu_has_el3_property =
1139             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1140 #endif
1141 
1142 static Property arm_cpu_cfgend_property =
1143             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1144 
1145 static Property arm_cpu_has_vfp_property =
1146             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1147 
1148 static Property arm_cpu_has_neon_property =
1149             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1150 
1151 static Property arm_cpu_has_dsp_property =
1152             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1153 
1154 static Property arm_cpu_has_mpu_property =
1155             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1156 
1157 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1158  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1159  * the right value for that particular CPU type, and we don't want
1160  * to override that with an incorrect constant value.
1161  */
1162 static Property arm_cpu_pmsav7_dregion_property =
1163             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1164                                            pmsav7_dregion,
1165                                            qdev_prop_uint32, uint32_t);
1166 
1167 static bool arm_get_pmu(Object *obj, Error **errp)
1168 {
1169     ARMCPU *cpu = ARM_CPU(obj);
1170 
1171     return cpu->has_pmu;
1172 }
1173 
1174 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1175 {
1176     ARMCPU *cpu = ARM_CPU(obj);
1177 
1178     if (value) {
1179         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1180             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1181             return;
1182         }
1183         set_feature(&cpu->env, ARM_FEATURE_PMU);
1184     } else {
1185         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1186     }
1187     cpu->has_pmu = value;
1188 }
1189 
1190 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1191 {
1192     /*
1193      * The exact approach to calculating guest ticks is:
1194      *
1195      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1196      *              NANOSECONDS_PER_SECOND);
1197      *
1198      * We don't do that. Rather we intentionally use integer division
1199      * truncation below and in the caller for the conversion of host monotonic
1200      * time to guest ticks to provide the exact inverse for the semantics of
1201      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1202      * it loses precision when representing frequencies where
1203      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1204      * provide an exact inverse leads to scheduling timers with negative
1205      * periods, which in turn leads to sticky behaviour in the guest.
1206      *
1207      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1208      * cannot become zero.
1209      */
1210     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1211       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1212 }
1213 
1214 void arm_cpu_post_init(Object *obj)
1215 {
1216     ARMCPU *cpu = ARM_CPU(obj);
1217 
1218     /* M profile implies PMSA. We have to do this here rather than
1219      * in realize with the other feature-implication checks because
1220      * we look at the PMSA bit to see if we should add some properties.
1221      */
1222     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1223         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1224     }
1225 
1226     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1227         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1228         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1229     }
1230 
1231     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1232         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1233     }
1234 
1235     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1236         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1237     }
1238 
1239 #ifndef CONFIG_USER_ONLY
1240     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1241         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1242          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1243          */
1244         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1245 
1246         object_property_add_link(obj, "secure-memory",
1247                                  TYPE_MEMORY_REGION,
1248                                  (Object **)&cpu->secure_memory,
1249                                  qdev_prop_allow_set_link_before_realize,
1250                                  OBJ_PROP_LINK_STRONG);
1251     }
1252 
1253     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1254         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1255     }
1256 #endif
1257 
1258     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1259         cpu->has_pmu = true;
1260         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1261     }
1262 
1263     /*
1264      * Allow user to turn off VFP and Neon support, but only for TCG --
1265      * KVM does not currently allow us to lie to the guest about its
1266      * ID/feature registers, so the guest always sees what the host has.
1267      */
1268     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1269         ? cpu_isar_feature(aa64_fp_simd, cpu)
1270         : cpu_isar_feature(aa32_vfp, cpu)) {
1271         cpu->has_vfp = true;
1272         if (!kvm_enabled()) {
1273             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1274         }
1275     }
1276 
1277     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1278         cpu->has_neon = true;
1279         if (!kvm_enabled()) {
1280             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1281         }
1282     }
1283 
1284     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1285         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1286         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1287     }
1288 
1289     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1290         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1291         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1292             qdev_property_add_static(DEVICE(obj),
1293                                      &arm_cpu_pmsav7_dregion_property);
1294         }
1295     }
1296 
1297     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1298         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1299                                  qdev_prop_allow_set_link_before_realize,
1300                                  OBJ_PROP_LINK_STRONG);
1301         /*
1302          * M profile: initial value of the Secure VTOR. We can't just use
1303          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1304          * the property to be set after realize.
1305          */
1306         object_property_add_uint32_ptr(obj, "init-svtor",
1307                                        &cpu->init_svtor,
1308                                        OBJ_PROP_FLAG_READWRITE);
1309     }
1310     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1311         /*
1312          * Initial value of the NS VTOR (for cores without the Security
1313          * extension, this is the only VTOR)
1314          */
1315         object_property_add_uint32_ptr(obj, "init-nsvtor",
1316                                        &cpu->init_nsvtor,
1317                                        OBJ_PROP_FLAG_READWRITE);
1318     }
1319 
1320     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1321     object_property_add_uint32_ptr(obj, "psci-conduit",
1322                                    &cpu->psci_conduit,
1323                                    OBJ_PROP_FLAG_READWRITE);
1324 
1325     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1326 
1327     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1328         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1329     }
1330 
1331     if (kvm_enabled()) {
1332         kvm_arm_add_vcpu_properties(obj);
1333     }
1334 
1335 #ifndef CONFIG_USER_ONLY
1336     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1337         cpu_isar_feature(aa64_mte, cpu)) {
1338         object_property_add_link(obj, "tag-memory",
1339                                  TYPE_MEMORY_REGION,
1340                                  (Object **)&cpu->tag_memory,
1341                                  qdev_prop_allow_set_link_before_realize,
1342                                  OBJ_PROP_LINK_STRONG);
1343 
1344         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1345             object_property_add_link(obj, "secure-tag-memory",
1346                                      TYPE_MEMORY_REGION,
1347                                      (Object **)&cpu->secure_tag_memory,
1348                                      qdev_prop_allow_set_link_before_realize,
1349                                      OBJ_PROP_LINK_STRONG);
1350         }
1351     }
1352 #endif
1353 }
1354 
1355 static void arm_cpu_finalizefn(Object *obj)
1356 {
1357     ARMCPU *cpu = ARM_CPU(obj);
1358     ARMELChangeHook *hook, *next;
1359 
1360     g_hash_table_destroy(cpu->cp_regs);
1361 
1362     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1363         QLIST_REMOVE(hook, node);
1364         g_free(hook);
1365     }
1366     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1367         QLIST_REMOVE(hook, node);
1368         g_free(hook);
1369     }
1370 #ifndef CONFIG_USER_ONLY
1371     if (cpu->pmu_timer) {
1372         timer_free(cpu->pmu_timer);
1373     }
1374 #endif
1375 }
1376 
1377 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1378 {
1379     Error *local_err = NULL;
1380 
1381     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1382         arm_cpu_sve_finalize(cpu, &local_err);
1383         if (local_err != NULL) {
1384             error_propagate(errp, local_err);
1385             return;
1386         }
1387 
1388         arm_cpu_pauth_finalize(cpu, &local_err);
1389         if (local_err != NULL) {
1390             error_propagate(errp, local_err);
1391             return;
1392         }
1393     }
1394 
1395     if (kvm_enabled()) {
1396         kvm_arm_steal_time_finalize(cpu, &local_err);
1397         if (local_err != NULL) {
1398             error_propagate(errp, local_err);
1399             return;
1400         }
1401     }
1402 }
1403 
1404 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1405 {
1406     CPUState *cs = CPU(dev);
1407     ARMCPU *cpu = ARM_CPU(dev);
1408     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1409     CPUARMState *env = &cpu->env;
1410     int pagebits;
1411     Error *local_err = NULL;
1412     bool no_aa32 = false;
1413 
1414     /* If we needed to query the host kernel for the CPU features
1415      * then it's possible that might have failed in the initfn, but
1416      * this is the first point where we can report it.
1417      */
1418     if (cpu->host_cpu_probe_failed) {
1419         if (!kvm_enabled() && !hvf_enabled()) {
1420             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1421         } else {
1422             error_setg(errp, "Failed to retrieve host CPU features");
1423         }
1424         return;
1425     }
1426 
1427 #ifndef CONFIG_USER_ONLY
1428     /* The NVIC and M-profile CPU are two halves of a single piece of
1429      * hardware; trying to use one without the other is a command line
1430      * error and will result in segfaults if not caught here.
1431      */
1432     if (arm_feature(env, ARM_FEATURE_M)) {
1433         if (!env->nvic) {
1434             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1435             return;
1436         }
1437     } else {
1438         if (env->nvic) {
1439             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1440             return;
1441         }
1442     }
1443 
1444     if (kvm_enabled()) {
1445         /*
1446          * Catch all the cases which might cause us to create more than one
1447          * address space for the CPU (otherwise we will assert() later in
1448          * cpu_address_space_init()).
1449          */
1450         if (arm_feature(env, ARM_FEATURE_M)) {
1451             error_setg(errp,
1452                        "Cannot enable KVM when using an M-profile guest CPU");
1453             return;
1454         }
1455         if (cpu->has_el3) {
1456             error_setg(errp,
1457                        "Cannot enable KVM when guest CPU has EL3 enabled");
1458             return;
1459         }
1460         if (cpu->tag_memory) {
1461             error_setg(errp,
1462                        "Cannot enable KVM when guest CPUs has MTE enabled");
1463             return;
1464         }
1465     }
1466 
1467     {
1468         uint64_t scale;
1469 
1470         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1471             if (!cpu->gt_cntfrq_hz) {
1472                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1473                            cpu->gt_cntfrq_hz);
1474                 return;
1475             }
1476             scale = gt_cntfrq_period_ns(cpu);
1477         } else {
1478             scale = GTIMER_SCALE;
1479         }
1480 
1481         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1482                                                arm_gt_ptimer_cb, cpu);
1483         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1484                                                arm_gt_vtimer_cb, cpu);
1485         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1486                                               arm_gt_htimer_cb, cpu);
1487         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1488                                               arm_gt_stimer_cb, cpu);
1489         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1490                                                   arm_gt_hvtimer_cb, cpu);
1491     }
1492 #endif
1493 
1494     cpu_exec_realizefn(cs, &local_err);
1495     if (local_err != NULL) {
1496         error_propagate(errp, local_err);
1497         return;
1498     }
1499 
1500     arm_cpu_finalize_features(cpu, &local_err);
1501     if (local_err != NULL) {
1502         error_propagate(errp, local_err);
1503         return;
1504     }
1505 
1506     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1507         cpu->has_vfp != cpu->has_neon) {
1508         /*
1509          * This is an architectural requirement for AArch64; AArch32 is
1510          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1511          */
1512         error_setg(errp,
1513                    "AArch64 CPUs must have both VFP and Neon or neither");
1514         return;
1515     }
1516 
1517     if (!cpu->has_vfp) {
1518         uint64_t t;
1519         uint32_t u;
1520 
1521         t = cpu->isar.id_aa64isar1;
1522         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1523         cpu->isar.id_aa64isar1 = t;
1524 
1525         t = cpu->isar.id_aa64pfr0;
1526         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1527         cpu->isar.id_aa64pfr0 = t;
1528 
1529         u = cpu->isar.id_isar6;
1530         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1531         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1532         cpu->isar.id_isar6 = u;
1533 
1534         u = cpu->isar.mvfr0;
1535         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1536         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1537         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1538         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1539         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1540         if (!arm_feature(env, ARM_FEATURE_M)) {
1541             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1542             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1543         }
1544         cpu->isar.mvfr0 = u;
1545 
1546         u = cpu->isar.mvfr1;
1547         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1548         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1549         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1550         if (arm_feature(env, ARM_FEATURE_M)) {
1551             u = FIELD_DP32(u, MVFR1, FP16, 0);
1552         }
1553         cpu->isar.mvfr1 = u;
1554 
1555         u = cpu->isar.mvfr2;
1556         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1557         cpu->isar.mvfr2 = u;
1558     }
1559 
1560     if (!cpu->has_neon) {
1561         uint64_t t;
1562         uint32_t u;
1563 
1564         unset_feature(env, ARM_FEATURE_NEON);
1565 
1566         t = cpu->isar.id_aa64isar0;
1567         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1568         cpu->isar.id_aa64isar0 = t;
1569 
1570         t = cpu->isar.id_aa64isar1;
1571         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1572         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1573         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1574         cpu->isar.id_aa64isar1 = t;
1575 
1576         t = cpu->isar.id_aa64pfr0;
1577         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1578         cpu->isar.id_aa64pfr0 = t;
1579 
1580         u = cpu->isar.id_isar5;
1581         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1582         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1583         cpu->isar.id_isar5 = u;
1584 
1585         u = cpu->isar.id_isar6;
1586         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1587         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1588         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1589         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1590         cpu->isar.id_isar6 = u;
1591 
1592         if (!arm_feature(env, ARM_FEATURE_M)) {
1593             u = cpu->isar.mvfr1;
1594             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1595             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1596             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1597             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1598             cpu->isar.mvfr1 = u;
1599 
1600             u = cpu->isar.mvfr2;
1601             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1602             cpu->isar.mvfr2 = u;
1603         }
1604     }
1605 
1606     if (!cpu->has_neon && !cpu->has_vfp) {
1607         uint64_t t;
1608         uint32_t u;
1609 
1610         t = cpu->isar.id_aa64isar0;
1611         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1612         cpu->isar.id_aa64isar0 = t;
1613 
1614         t = cpu->isar.id_aa64isar1;
1615         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1616         cpu->isar.id_aa64isar1 = t;
1617 
1618         u = cpu->isar.mvfr0;
1619         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1620         cpu->isar.mvfr0 = u;
1621 
1622         /* Despite the name, this field covers both VFP and Neon */
1623         u = cpu->isar.mvfr1;
1624         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1625         cpu->isar.mvfr1 = u;
1626     }
1627 
1628     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1629         uint32_t u;
1630 
1631         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1632 
1633         u = cpu->isar.id_isar1;
1634         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1635         cpu->isar.id_isar1 = u;
1636 
1637         u = cpu->isar.id_isar2;
1638         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1639         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1640         cpu->isar.id_isar2 = u;
1641 
1642         u = cpu->isar.id_isar3;
1643         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1644         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1645         cpu->isar.id_isar3 = u;
1646     }
1647 
1648     /* Some features automatically imply others: */
1649     if (arm_feature(env, ARM_FEATURE_V8)) {
1650         if (arm_feature(env, ARM_FEATURE_M)) {
1651             set_feature(env, ARM_FEATURE_V7);
1652         } else {
1653             set_feature(env, ARM_FEATURE_V7VE);
1654         }
1655     }
1656 
1657     /*
1658      * There exist AArch64 cpus without AArch32 support.  When KVM
1659      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1660      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1661      * As a general principle, we also do not make ID register
1662      * consistency checks anywhere unless using TCG, because only
1663      * for TCG would a consistency-check failure be a QEMU bug.
1664      */
1665     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1666         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1667     }
1668 
1669     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1670         /* v7 Virtualization Extensions. In real hardware this implies
1671          * EL2 and also the presence of the Security Extensions.
1672          * For QEMU, for backwards-compatibility we implement some
1673          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1674          * include the various other features that V7VE implies.
1675          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1676          * Security Extensions is ARM_FEATURE_EL3.
1677          */
1678         assert(!tcg_enabled() || no_aa32 ||
1679                cpu_isar_feature(aa32_arm_div, cpu));
1680         set_feature(env, ARM_FEATURE_LPAE);
1681         set_feature(env, ARM_FEATURE_V7);
1682     }
1683     if (arm_feature(env, ARM_FEATURE_V7)) {
1684         set_feature(env, ARM_FEATURE_VAPA);
1685         set_feature(env, ARM_FEATURE_THUMB2);
1686         set_feature(env, ARM_FEATURE_MPIDR);
1687         if (!arm_feature(env, ARM_FEATURE_M)) {
1688             set_feature(env, ARM_FEATURE_V6K);
1689         } else {
1690             set_feature(env, ARM_FEATURE_V6);
1691         }
1692 
1693         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1694          * non-EL3 configs. This is needed by some legacy boards.
1695          */
1696         set_feature(env, ARM_FEATURE_VBAR);
1697     }
1698     if (arm_feature(env, ARM_FEATURE_V6K)) {
1699         set_feature(env, ARM_FEATURE_V6);
1700         set_feature(env, ARM_FEATURE_MVFR);
1701     }
1702     if (arm_feature(env, ARM_FEATURE_V6)) {
1703         set_feature(env, ARM_FEATURE_V5);
1704         if (!arm_feature(env, ARM_FEATURE_M)) {
1705             assert(!tcg_enabled() || no_aa32 ||
1706                    cpu_isar_feature(aa32_jazelle, cpu));
1707             set_feature(env, ARM_FEATURE_AUXCR);
1708         }
1709     }
1710     if (arm_feature(env, ARM_FEATURE_V5)) {
1711         set_feature(env, ARM_FEATURE_V4T);
1712     }
1713     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1714         set_feature(env, ARM_FEATURE_V7MP);
1715     }
1716     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1717         set_feature(env, ARM_FEATURE_CBAR);
1718     }
1719     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1720         !arm_feature(env, ARM_FEATURE_M)) {
1721         set_feature(env, ARM_FEATURE_THUMB_DSP);
1722     }
1723 
1724     /*
1725      * We rely on no XScale CPU having VFP so we can use the same bits in the
1726      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1727      */
1728     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1729            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1730            !arm_feature(env, ARM_FEATURE_XSCALE));
1731 
1732     if (arm_feature(env, ARM_FEATURE_V7) &&
1733         !arm_feature(env, ARM_FEATURE_M) &&
1734         !arm_feature(env, ARM_FEATURE_PMSA)) {
1735         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1736          * can use 4K pages.
1737          */
1738         pagebits = 12;
1739     } else {
1740         /* For CPUs which might have tiny 1K pages, or which have an
1741          * MPU and might have small region sizes, stick with 1K pages.
1742          */
1743         pagebits = 10;
1744     }
1745     if (!set_preferred_target_page_bits(pagebits)) {
1746         /* This can only ever happen for hotplugging a CPU, or if
1747          * the board code incorrectly creates a CPU which it has
1748          * promised via minimum_page_size that it will not.
1749          */
1750         error_setg(errp, "This CPU requires a smaller page size than the "
1751                    "system is using");
1752         return;
1753     }
1754 
1755     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1756      * We don't support setting cluster ID ([16..23]) (known as Aff2
1757      * in later ARM ARM versions), or any of the higher affinity level fields,
1758      * so these bits always RAZ.
1759      */
1760     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1761         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1762                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1763     }
1764 
1765     if (cpu->reset_hivecs) {
1766             cpu->reset_sctlr |= (1 << 13);
1767     }
1768 
1769     if (cpu->cfgend) {
1770         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1771             cpu->reset_sctlr |= SCTLR_EE;
1772         } else {
1773             cpu->reset_sctlr |= SCTLR_B;
1774         }
1775     }
1776 
1777     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1778         /* If the has_el3 CPU property is disabled then we need to disable the
1779          * feature.
1780          */
1781         unset_feature(env, ARM_FEATURE_EL3);
1782 
1783         /* Disable the security extension feature bits in the processor feature
1784          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1785          */
1786         cpu->isar.id_pfr1 &= ~0xf0;
1787         cpu->isar.id_aa64pfr0 &= ~0xf000;
1788     }
1789 
1790     if (!cpu->has_el2) {
1791         unset_feature(env, ARM_FEATURE_EL2);
1792     }
1793 
1794     if (!cpu->has_pmu) {
1795         unset_feature(env, ARM_FEATURE_PMU);
1796     }
1797     if (arm_feature(env, ARM_FEATURE_PMU)) {
1798         pmu_init(cpu);
1799 
1800         if (!kvm_enabled()) {
1801             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1802             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1803         }
1804 
1805 #ifndef CONFIG_USER_ONLY
1806         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1807                 cpu);
1808 #endif
1809     } else {
1810         cpu->isar.id_aa64dfr0 =
1811             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1812         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1813         cpu->pmceid0 = 0;
1814         cpu->pmceid1 = 0;
1815     }
1816 
1817     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1818         /* Disable the hypervisor feature bits in the processor feature
1819          * registers if we don't have EL2. These are id_pfr1[15:12] and
1820          * id_aa64pfr0_el1[11:8].
1821          */
1822         cpu->isar.id_aa64pfr0 &= ~0xf00;
1823         cpu->isar.id_pfr1 &= ~0xf000;
1824     }
1825 
1826 #ifndef CONFIG_USER_ONLY
1827     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1828         /*
1829          * Disable the MTE feature bits if we do not have tag-memory
1830          * provided by the machine.
1831          */
1832         cpu->isar.id_aa64pfr1 =
1833             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1834     }
1835 #endif
1836 
1837     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1838      * to false or by setting pmsav7-dregion to 0.
1839      */
1840     if (!cpu->has_mpu) {
1841         cpu->pmsav7_dregion = 0;
1842     }
1843     if (cpu->pmsav7_dregion == 0) {
1844         cpu->has_mpu = false;
1845     }
1846 
1847     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1848         arm_feature(env, ARM_FEATURE_V7)) {
1849         uint32_t nr = cpu->pmsav7_dregion;
1850 
1851         if (nr > 0xff) {
1852             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1853             return;
1854         }
1855 
1856         if (nr) {
1857             if (arm_feature(env, ARM_FEATURE_V8)) {
1858                 /* PMSAv8 */
1859                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1860                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1861                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1862                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1863                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1864                 }
1865             } else {
1866                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1867                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1868                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1869             }
1870         }
1871     }
1872 
1873     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1874         uint32_t nr = cpu->sau_sregion;
1875 
1876         if (nr > 0xff) {
1877             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1878             return;
1879         }
1880 
1881         if (nr) {
1882             env->sau.rbar = g_new0(uint32_t, nr);
1883             env->sau.rlar = g_new0(uint32_t, nr);
1884         }
1885     }
1886 
1887     if (arm_feature(env, ARM_FEATURE_EL3)) {
1888         set_feature(env, ARM_FEATURE_VBAR);
1889     }
1890 
1891     register_cp_regs_for_features(cpu);
1892     arm_cpu_register_gdb_regs_for_features(cpu);
1893 
1894     init_cpreg_list(cpu);
1895 
1896 #ifndef CONFIG_USER_ONLY
1897     MachineState *ms = MACHINE(qdev_get_machine());
1898     unsigned int smp_cpus = ms->smp.cpus;
1899     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1900 
1901     /*
1902      * We must set cs->num_ases to the final value before
1903      * the first call to cpu_address_space_init.
1904      */
1905     if (cpu->tag_memory != NULL) {
1906         cs->num_ases = 3 + has_secure;
1907     } else {
1908         cs->num_ases = 1 + has_secure;
1909     }
1910 
1911     if (has_secure) {
1912         if (!cpu->secure_memory) {
1913             cpu->secure_memory = cs->memory;
1914         }
1915         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1916                                cpu->secure_memory);
1917     }
1918 
1919     if (cpu->tag_memory != NULL) {
1920         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1921                                cpu->tag_memory);
1922         if (has_secure) {
1923             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1924                                    cpu->secure_tag_memory);
1925         }
1926     }
1927 
1928     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1929 
1930     /* No core_count specified, default to smp_cpus. */
1931     if (cpu->core_count == -1) {
1932         cpu->core_count = smp_cpus;
1933     }
1934 #endif
1935 
1936     if (tcg_enabled()) {
1937         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1938 
1939         /*
1940          * We only support DCZ blocklen that fits on one page.
1941          *
1942          * Architectually this is always true.  However TARGET_PAGE_SIZE
1943          * is variable and, for compatibility with -machine virt-2.7,
1944          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1945          * But even then, while the largest architectural DCZ blocklen
1946          * is 2KiB, no cpu actually uses such a large blocklen.
1947          */
1948         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1949 
1950         /*
1951          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1952          * both nibbles of each byte storing tag data may be written at once.
1953          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1954          */
1955         if (cpu_isar_feature(aa64_mte, cpu)) {
1956             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1957         }
1958     }
1959 
1960     qemu_init_vcpu(cs);
1961     cpu_reset(cs);
1962 
1963     acc->parent_realize(dev, errp);
1964 }
1965 
1966 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1967 {
1968     ObjectClass *oc;
1969     char *typename;
1970     char **cpuname;
1971     const char *cpunamestr;
1972 
1973     cpuname = g_strsplit(cpu_model, ",", 1);
1974     cpunamestr = cpuname[0];
1975 #ifdef CONFIG_USER_ONLY
1976     /* For backwards compatibility usermode emulation allows "-cpu any",
1977      * which has the same semantics as "-cpu max".
1978      */
1979     if (!strcmp(cpunamestr, "any")) {
1980         cpunamestr = "max";
1981     }
1982 #endif
1983     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1984     oc = object_class_by_name(typename);
1985     g_strfreev(cpuname);
1986     g_free(typename);
1987     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1988         object_class_is_abstract(oc)) {
1989         return NULL;
1990     }
1991     return oc;
1992 }
1993 
1994 static Property arm_cpu_properties[] = {
1995     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1996     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1997                         mp_affinity, ARM64_AFFINITY_INVALID),
1998     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1999     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2000     DEFINE_PROP_END_OF_LIST()
2001 };
2002 
2003 static gchar *arm_gdb_arch_name(CPUState *cs)
2004 {
2005     ARMCPU *cpu = ARM_CPU(cs);
2006     CPUARMState *env = &cpu->env;
2007 
2008     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2009         return g_strdup("iwmmxt");
2010     }
2011     return g_strdup("arm");
2012 }
2013 
2014 #ifndef CONFIG_USER_ONLY
2015 #include "hw/core/sysemu-cpu-ops.h"
2016 
2017 static const struct SysemuCPUOps arm_sysemu_ops = {
2018     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2019     .asidx_from_attrs = arm_asidx_from_attrs,
2020     .write_elf32_note = arm_cpu_write_elf32_note,
2021     .write_elf64_note = arm_cpu_write_elf64_note,
2022     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2023     .legacy_vmsd = &vmstate_arm_cpu,
2024 };
2025 #endif
2026 
2027 #ifdef CONFIG_TCG
2028 static const struct TCGCPUOps arm_tcg_ops = {
2029     .initialize = arm_translate_init,
2030     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2031     .debug_excp_handler = arm_debug_excp_handler,
2032 
2033 #ifdef CONFIG_USER_ONLY
2034     .record_sigsegv = arm_cpu_record_sigsegv,
2035     .record_sigbus = arm_cpu_record_sigbus,
2036 #else
2037     .tlb_fill = arm_cpu_tlb_fill,
2038     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2039     .do_interrupt = arm_cpu_do_interrupt,
2040     .do_transaction_failed = arm_cpu_do_transaction_failed,
2041     .do_unaligned_access = arm_cpu_do_unaligned_access,
2042     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2043     .debug_check_watchpoint = arm_debug_check_watchpoint,
2044     .debug_check_breakpoint = arm_debug_check_breakpoint,
2045 #endif /* !CONFIG_USER_ONLY */
2046 };
2047 #endif /* CONFIG_TCG */
2048 
2049 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2050 {
2051     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2052     CPUClass *cc = CPU_CLASS(acc);
2053     DeviceClass *dc = DEVICE_CLASS(oc);
2054 
2055     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2056                                     &acc->parent_realize);
2057 
2058     device_class_set_props(dc, arm_cpu_properties);
2059     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2060 
2061     cc->class_by_name = arm_cpu_class_by_name;
2062     cc->has_work = arm_cpu_has_work;
2063     cc->dump_state = arm_cpu_dump_state;
2064     cc->set_pc = arm_cpu_set_pc;
2065     cc->gdb_read_register = arm_cpu_gdb_read_register;
2066     cc->gdb_write_register = arm_cpu_gdb_write_register;
2067 #ifndef CONFIG_USER_ONLY
2068     cc->sysemu_ops = &arm_sysemu_ops;
2069 #endif
2070     cc->gdb_num_core_regs = 26;
2071     cc->gdb_core_xml_file = "arm-core.xml";
2072     cc->gdb_arch_name = arm_gdb_arch_name;
2073     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2074     cc->gdb_stop_before_watchpoint = true;
2075     cc->disas_set_info = arm_disas_set_info;
2076 
2077 #ifdef CONFIG_TCG
2078     cc->tcg_ops = &arm_tcg_ops;
2079 #endif /* CONFIG_TCG */
2080 }
2081 
2082 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2083 static void arm_host_initfn(Object *obj)
2084 {
2085     ARMCPU *cpu = ARM_CPU(obj);
2086 
2087 #ifdef CONFIG_KVM
2088     kvm_arm_set_cpu_features_from_host(cpu);
2089     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2090         aarch64_add_sve_properties(obj);
2091         aarch64_add_pauth_properties(obj);
2092     }
2093 #else
2094     hvf_arm_set_cpu_features_from_host(cpu);
2095 #endif
2096     arm_cpu_post_init(obj);
2097 }
2098 
2099 static const TypeInfo host_arm_cpu_type_info = {
2100     .name = TYPE_ARM_HOST_CPU,
2101     .parent = TYPE_AARCH64_CPU,
2102     .instance_init = arm_host_initfn,
2103 };
2104 
2105 #endif
2106 
2107 static void arm_cpu_instance_init(Object *obj)
2108 {
2109     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2110 
2111     acc->info->initfn(obj);
2112     arm_cpu_post_init(obj);
2113 }
2114 
2115 static void cpu_register_class_init(ObjectClass *oc, void *data)
2116 {
2117     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2118 
2119     acc->info = data;
2120 }
2121 
2122 void arm_cpu_register(const ARMCPUInfo *info)
2123 {
2124     TypeInfo type_info = {
2125         .parent = TYPE_ARM_CPU,
2126         .instance_size = sizeof(ARMCPU),
2127         .instance_align = __alignof__(ARMCPU),
2128         .instance_init = arm_cpu_instance_init,
2129         .class_size = sizeof(ARMCPUClass),
2130         .class_init = info->class_init ?: cpu_register_class_init,
2131         .class_data = (void *)info,
2132     };
2133 
2134     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2135     type_register(&type_info);
2136     g_free((void *)type_info.name);
2137 }
2138 
2139 static const TypeInfo arm_cpu_type_info = {
2140     .name = TYPE_ARM_CPU,
2141     .parent = TYPE_CPU,
2142     .instance_size = sizeof(ARMCPU),
2143     .instance_align = __alignof__(ARMCPU),
2144     .instance_init = arm_cpu_initfn,
2145     .instance_finalize = arm_cpu_finalizefn,
2146     .abstract = true,
2147     .class_size = sizeof(ARMCPUClass),
2148     .class_init = arm_cpu_class_init,
2149 };
2150 
2151 static void arm_cpu_register_types(void)
2152 {
2153     type_register_static(&arm_cpu_type_info);
2154 
2155 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
2156     type_register_static(&host_arm_cpu_type_info);
2157 #endif
2158 }
2159 
2160 type_init(arm_cpu_register_types)
2161