xref: /qemu/target/arm/cpu.c (revision dc293f60)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #ifdef CONFIG_TCG
30 #include "hw/core/tcg-cpu-ops.h"
31 #endif /* CONFIG_TCG */
32 #include "internals.h"
33 #include "exec/exec-all.h"
34 #include "hw/qdev-properties.h"
35 #if !defined(CONFIG_USER_ONLY)
36 #include "hw/loader.h"
37 #include "hw/boards.h"
38 #endif
39 #include "sysemu/sysemu.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/hw_accel.h"
42 #include "kvm_arm.h"
43 #include "disas/capstone.h"
44 #include "fpu/softfloat.h"
45 
46 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
47 {
48     ARMCPU *cpu = ARM_CPU(cs);
49     CPUARMState *env = &cpu->env;
50 
51     if (is_a64(env)) {
52         env->pc = value;
53         env->thumb = 0;
54     } else {
55         env->regs[15] = value & ~1;
56         env->thumb = value & 1;
57     }
58 }
59 
60 #ifdef CONFIG_TCG
61 void arm_cpu_synchronize_from_tb(CPUState *cs,
62                                  const TranslationBlock *tb)
63 {
64     ARMCPU *cpu = ARM_CPU(cs);
65     CPUARMState *env = &cpu->env;
66 
67     /*
68      * It's OK to look at env for the current mode here, because it's
69      * never possible for an AArch64 TB to chain to an AArch32 TB.
70      */
71     if (is_a64(env)) {
72         env->pc = tb->pc;
73     } else {
74         env->regs[15] = tb->pc;
75     }
76 }
77 #endif /* CONFIG_TCG */
78 
79 static bool arm_cpu_has_work(CPUState *cs)
80 {
81     ARMCPU *cpu = ARM_CPU(cs);
82 
83     return (cpu->power_state != PSCI_OFF)
84         && cs->interrupt_request &
85         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
86          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
87          | CPU_INTERRUPT_EXITTB);
88 }
89 
90 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
91                                  void *opaque)
92 {
93     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
94 
95     entry->hook = hook;
96     entry->opaque = opaque;
97 
98     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
99 }
100 
101 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
102                                  void *opaque)
103 {
104     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
105 
106     entry->hook = hook;
107     entry->opaque = opaque;
108 
109     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
110 }
111 
112 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
113 {
114     /* Reset a single ARMCPRegInfo register */
115     ARMCPRegInfo *ri = value;
116     ARMCPU *cpu = opaque;
117 
118     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
119         return;
120     }
121 
122     if (ri->resetfn) {
123         ri->resetfn(&cpu->env, ri);
124         return;
125     }
126 
127     /* A zero offset is never possible as it would be regs[0]
128      * so we use it to indicate that reset is being handled elsewhere.
129      * This is basically only used for fields in non-core coprocessors
130      * (like the pxa2xx ones).
131      */
132     if (!ri->fieldoffset) {
133         return;
134     }
135 
136     if (cpreg_field_is_64bit(ri)) {
137         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
138     } else {
139         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
140     }
141 }
142 
143 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
144 {
145     /* Purely an assertion check: we've already done reset once,
146      * so now check that running the reset for the cpreg doesn't
147      * change its value. This traps bugs where two different cpregs
148      * both try to reset the same state field but to different values.
149      */
150     ARMCPRegInfo *ri = value;
151     ARMCPU *cpu = opaque;
152     uint64_t oldvalue, newvalue;
153 
154     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
155         return;
156     }
157 
158     oldvalue = read_raw_cp_reg(&cpu->env, ri);
159     cp_reg_reset(key, value, opaque);
160     newvalue = read_raw_cp_reg(&cpu->env, ri);
161     assert(oldvalue == newvalue);
162 }
163 
164 static void arm_cpu_reset(DeviceState *dev)
165 {
166     CPUState *s = CPU(dev);
167     ARMCPU *cpu = ARM_CPU(s);
168     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
169     CPUARMState *env = &cpu->env;
170 
171     acc->parent_reset(dev);
172 
173     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
174 
175     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
176     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
177 
178     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
179     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
180     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
181     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
182 
183     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
184 
185     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
186         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
187     }
188 
189     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
190         /* 64 bit CPUs always start in 64 bit mode */
191         env->aarch64 = 1;
192 #if defined(CONFIG_USER_ONLY)
193         env->pstate = PSTATE_MODE_EL0t;
194         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
195         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
196         /* Enable all PAC keys.  */
197         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
198                                   SCTLR_EnDA | SCTLR_EnDB);
199         /* and to the FP/Neon instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
201         /* and to the SVE instructions */
202         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
203         /* with reasonable vector length */
204         if (cpu_isar_feature(aa64_sve, cpu)) {
205             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
206         }
207         /*
208          * Enable TBI0 but not TBI1.
209          * Note that this must match useronly_clean_ptr.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (1ULL << 37);
212 
213         /* Enable MTE */
214         if (cpu_isar_feature(aa64_mte, cpu)) {
215             /* Enable tag access, but leave TCF0 as No Effect (0). */
216             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
217             /*
218              * Exclude all tags, so that tag 0 is always used.
219              * This corresponds to Linux current->thread.gcr_incl = 0.
220              *
221              * Set RRND, so that helper_irg() will generate a seed later.
222              * Here in cpu_reset(), the crypto subsystem has not yet been
223              * initialized.
224              */
225             env->cp15.gcr_el1 = 0x1ffff;
226         }
227 #else
228         /* Reset into the highest available EL */
229         if (arm_feature(env, ARM_FEATURE_EL3)) {
230             env->pstate = PSTATE_MODE_EL3h;
231         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
232             env->pstate = PSTATE_MODE_EL2h;
233         } else {
234             env->pstate = PSTATE_MODE_EL1h;
235         }
236         env->pc = cpu->rvbar;
237 #endif
238     } else {
239 #if defined(CONFIG_USER_ONLY)
240         /* Userspace expects access to cp10 and cp11 for FP/Neon */
241         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
242 #endif
243     }
244 
245 #if defined(CONFIG_USER_ONLY)
246     env->uncached_cpsr = ARM_CPU_MODE_USR;
247     /* For user mode we must enable access to coprocessors */
248     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
249     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
250         env->cp15.c15_cpar = 3;
251     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
252         env->cp15.c15_cpar = 1;
253     }
254 #else
255 
256     /*
257      * If the highest available EL is EL2, AArch32 will start in Hyp
258      * mode; otherwise it starts in SVC. Note that if we start in
259      * AArch64 then these values in the uncached_cpsr will be ignored.
260      */
261     if (arm_feature(env, ARM_FEATURE_EL2) &&
262         !arm_feature(env, ARM_FEATURE_EL3)) {
263         env->uncached_cpsr = ARM_CPU_MODE_HYP;
264     } else {
265         env->uncached_cpsr = ARM_CPU_MODE_SVC;
266     }
267     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
268 
269     if (arm_feature(env, ARM_FEATURE_M)) {
270         uint32_t initial_msp; /* Loaded from 0x0 */
271         uint32_t initial_pc; /* Loaded from 0x4 */
272         uint8_t *rom;
273         uint32_t vecbase;
274 
275         if (cpu_isar_feature(aa32_lob, cpu)) {
276             /*
277              * LTPSIZE is constant 4 if MVE not implemented, and resets
278              * to an UNKNOWN value if MVE is implemented. We choose to
279              * always reset to 4.
280              */
281             env->v7m.ltpsize = 4;
282             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
283             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
284             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
285         }
286 
287         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
288             env->v7m.secure = true;
289         } else {
290             /* This bit resets to 0 if security is supported, but 1 if
291              * it is not. The bit is not present in v7M, but we set it
292              * here so we can avoid having to make checks on it conditional
293              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
294              */
295             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
296             /*
297              * Set NSACR to indicate "NS access permitted to everything";
298              * this avoids having to have all the tests of it being
299              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
300              * v8.1M the guest-visible value of NSACR in a CPU without the
301              * Security Extension is 0xcff.
302              */
303             env->v7m.nsacr = 0xcff;
304         }
305 
306         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
307          * that it resets to 1, so QEMU always does that rather than making
308          * it dependent on CPU model. In v8M it is RES1.
309          */
310         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
311         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
312         if (arm_feature(env, ARM_FEATURE_V8)) {
313             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
314             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
315             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
316         }
317         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
318             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
319             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
320         }
321 
322         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
323             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
324             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
325                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
326         }
327         /* Unlike A/R profile, M profile defines the reset LR value */
328         env->regs[14] = 0xffffffff;
329 
330         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
331 
332         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
333         vecbase = env->v7m.vecbase[env->v7m.secure];
334         rom = rom_ptr(vecbase, 8);
335         if (rom) {
336             /* Address zero is covered by ROM which hasn't yet been
337              * copied into physical memory.
338              */
339             initial_msp = ldl_p(rom);
340             initial_pc = ldl_p(rom + 4);
341         } else {
342             /* Address zero not covered by a ROM blob, or the ROM blob
343              * is in non-modifiable memory and this is a second reset after
344              * it got copied into memory. In the latter case, rom_ptr
345              * will return a NULL pointer and we should use ldl_phys instead.
346              */
347             initial_msp = ldl_phys(s->as, vecbase);
348             initial_pc = ldl_phys(s->as, vecbase + 4);
349         }
350 
351         env->regs[13] = initial_msp & 0xFFFFFFFC;
352         env->regs[15] = initial_pc & ~1;
353         env->thumb = initial_pc & 1;
354     }
355 
356     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
357      * executing as AArch32 then check if highvecs are enabled and
358      * adjust the PC accordingly.
359      */
360     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
361         env->regs[15] = 0xFFFF0000;
362     }
363 
364     /* M profile requires that reset clears the exclusive monitor;
365      * A profile does not, but clearing it makes more sense than having it
366      * set with an exclusive access on address zero.
367      */
368     arm_clear_exclusive(env);
369 
370     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
371 #endif
372 
373     if (arm_feature(env, ARM_FEATURE_PMSA)) {
374         if (cpu->pmsav7_dregion > 0) {
375             if (arm_feature(env, ARM_FEATURE_V8)) {
376                 memset(env->pmsav8.rbar[M_REG_NS], 0,
377                        sizeof(*env->pmsav8.rbar[M_REG_NS])
378                        * cpu->pmsav7_dregion);
379                 memset(env->pmsav8.rlar[M_REG_NS], 0,
380                        sizeof(*env->pmsav8.rlar[M_REG_NS])
381                        * cpu->pmsav7_dregion);
382                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
383                     memset(env->pmsav8.rbar[M_REG_S], 0,
384                            sizeof(*env->pmsav8.rbar[M_REG_S])
385                            * cpu->pmsav7_dregion);
386                     memset(env->pmsav8.rlar[M_REG_S], 0,
387                            sizeof(*env->pmsav8.rlar[M_REG_S])
388                            * cpu->pmsav7_dregion);
389                 }
390             } else if (arm_feature(env, ARM_FEATURE_V7)) {
391                 memset(env->pmsav7.drbar, 0,
392                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
393                 memset(env->pmsav7.drsr, 0,
394                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
395                 memset(env->pmsav7.dracr, 0,
396                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
397             }
398         }
399         env->pmsav7.rnr[M_REG_NS] = 0;
400         env->pmsav7.rnr[M_REG_S] = 0;
401         env->pmsav8.mair0[M_REG_NS] = 0;
402         env->pmsav8.mair0[M_REG_S] = 0;
403         env->pmsav8.mair1[M_REG_NS] = 0;
404         env->pmsav8.mair1[M_REG_S] = 0;
405     }
406 
407     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
408         if (cpu->sau_sregion > 0) {
409             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
410             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
411         }
412         env->sau.rnr = 0;
413         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
414          * the Cortex-M33 does.
415          */
416         env->sau.ctrl = 0;
417     }
418 
419     set_flush_to_zero(1, &env->vfp.standard_fp_status);
420     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
421     set_default_nan_mode(1, &env->vfp.standard_fp_status);
422     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
423     set_float_detect_tininess(float_tininess_before_rounding,
424                               &env->vfp.fp_status);
425     set_float_detect_tininess(float_tininess_before_rounding,
426                               &env->vfp.standard_fp_status);
427     set_float_detect_tininess(float_tininess_before_rounding,
428                               &env->vfp.fp_status_f16);
429     set_float_detect_tininess(float_tininess_before_rounding,
430                               &env->vfp.standard_fp_status_f16);
431 #ifndef CONFIG_USER_ONLY
432     if (kvm_enabled()) {
433         kvm_arm_reset_vcpu(cpu);
434     }
435 #endif
436 
437     hw_breakpoint_update_all(cpu);
438     hw_watchpoint_update_all(cpu);
439     arm_rebuild_hflags(env);
440 }
441 
442 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
443                                      unsigned int target_el,
444                                      unsigned int cur_el, bool secure,
445                                      uint64_t hcr_el2)
446 {
447     CPUARMState *env = cs->env_ptr;
448     bool pstate_unmasked;
449     bool unmasked = false;
450 
451     /*
452      * Don't take exceptions if they target a lower EL.
453      * This check should catch any exceptions that would not be taken
454      * but left pending.
455      */
456     if (cur_el > target_el) {
457         return false;
458     }
459 
460     switch (excp_idx) {
461     case EXCP_FIQ:
462         pstate_unmasked = !(env->daif & PSTATE_F);
463         break;
464 
465     case EXCP_IRQ:
466         pstate_unmasked = !(env->daif & PSTATE_I);
467         break;
468 
469     case EXCP_VFIQ:
470         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
471             /* VFIQs are only taken when hypervized.  */
472             return false;
473         }
474         return !(env->daif & PSTATE_F);
475     case EXCP_VIRQ:
476         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
477             /* VIRQs are only taken when hypervized.  */
478             return false;
479         }
480         return !(env->daif & PSTATE_I);
481     default:
482         g_assert_not_reached();
483     }
484 
485     /*
486      * Use the target EL, current execution state and SCR/HCR settings to
487      * determine whether the corresponding CPSR bit is used to mask the
488      * interrupt.
489      */
490     if ((target_el > cur_el) && (target_el != 1)) {
491         /* Exceptions targeting a higher EL may not be maskable */
492         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
493             /*
494              * 64-bit masking rules are simple: exceptions to EL3
495              * can't be masked, and exceptions to EL2 can only be
496              * masked from Secure state. The HCR and SCR settings
497              * don't affect the masking logic, only the interrupt routing.
498              */
499             if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
500                 unmasked = true;
501             }
502         } else {
503             /*
504              * The old 32-bit-only environment has a more complicated
505              * masking setup. HCR and SCR bits not only affect interrupt
506              * routing but also change the behaviour of masking.
507              */
508             bool hcr, scr;
509 
510             switch (excp_idx) {
511             case EXCP_FIQ:
512                 /*
513                  * If FIQs are routed to EL3 or EL2 then there are cases where
514                  * we override the CPSR.F in determining if the exception is
515                  * masked or not. If neither of these are set then we fall back
516                  * to the CPSR.F setting otherwise we further assess the state
517                  * below.
518                  */
519                 hcr = hcr_el2 & HCR_FMO;
520                 scr = (env->cp15.scr_el3 & SCR_FIQ);
521 
522                 /*
523                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
524                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
525                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
526                  * when non-secure but only when FIQs are only routed to EL3.
527                  */
528                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
529                 break;
530             case EXCP_IRQ:
531                 /*
532                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
533                  * we may override the CPSR.I masking when in non-secure state.
534                  * The SCR.IRQ setting has already been taken into consideration
535                  * when setting the target EL, so it does not have a further
536                  * affect here.
537                  */
538                 hcr = hcr_el2 & HCR_IMO;
539                 scr = false;
540                 break;
541             default:
542                 g_assert_not_reached();
543             }
544 
545             if ((scr || hcr) && !secure) {
546                 unmasked = true;
547             }
548         }
549     }
550 
551     /*
552      * The PSTATE bits only mask the interrupt if we have not overriden the
553      * ability above.
554      */
555     return unmasked || pstate_unmasked;
556 }
557 
558 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
559 {
560     CPUClass *cc = CPU_GET_CLASS(cs);
561     CPUARMState *env = cs->env_ptr;
562     uint32_t cur_el = arm_current_el(env);
563     bool secure = arm_is_secure(env);
564     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
565     uint32_t target_el;
566     uint32_t excp_idx;
567 
568     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
569 
570     if (interrupt_request & CPU_INTERRUPT_FIQ) {
571         excp_idx = EXCP_FIQ;
572         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
573         if (arm_excp_unmasked(cs, excp_idx, target_el,
574                               cur_el, secure, hcr_el2)) {
575             goto found;
576         }
577     }
578     if (interrupt_request & CPU_INTERRUPT_HARD) {
579         excp_idx = EXCP_IRQ;
580         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
581         if (arm_excp_unmasked(cs, excp_idx, target_el,
582                               cur_el, secure, hcr_el2)) {
583             goto found;
584         }
585     }
586     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
587         excp_idx = EXCP_VIRQ;
588         target_el = 1;
589         if (arm_excp_unmasked(cs, excp_idx, target_el,
590                               cur_el, secure, hcr_el2)) {
591             goto found;
592         }
593     }
594     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
595         excp_idx = EXCP_VFIQ;
596         target_el = 1;
597         if (arm_excp_unmasked(cs, excp_idx, target_el,
598                               cur_el, secure, hcr_el2)) {
599             goto found;
600         }
601     }
602     return false;
603 
604  found:
605     cs->exception_index = excp_idx;
606     env->exception.target_el = target_el;
607     cc->tcg_ops->do_interrupt(cs);
608     return true;
609 }
610 
611 void arm_cpu_update_virq(ARMCPU *cpu)
612 {
613     /*
614      * Update the interrupt level for VIRQ, which is the logical OR of
615      * the HCR_EL2.VI bit and the input line level from the GIC.
616      */
617     CPUARMState *env = &cpu->env;
618     CPUState *cs = CPU(cpu);
619 
620     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
621         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
622 
623     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
624         if (new_state) {
625             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
626         } else {
627             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
628         }
629     }
630 }
631 
632 void arm_cpu_update_vfiq(ARMCPU *cpu)
633 {
634     /*
635      * Update the interrupt level for VFIQ, which is the logical OR of
636      * the HCR_EL2.VF bit and the input line level from the GIC.
637      */
638     CPUARMState *env = &cpu->env;
639     CPUState *cs = CPU(cpu);
640 
641     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
642         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
643 
644     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
645         if (new_state) {
646             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
647         } else {
648             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
649         }
650     }
651 }
652 
653 #ifndef CONFIG_USER_ONLY
654 static void arm_cpu_set_irq(void *opaque, int irq, int level)
655 {
656     ARMCPU *cpu = opaque;
657     CPUARMState *env = &cpu->env;
658     CPUState *cs = CPU(cpu);
659     static const int mask[] = {
660         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
661         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
662         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
663         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
664     };
665 
666     if (level) {
667         env->irq_line_state |= mask[irq];
668     } else {
669         env->irq_line_state &= ~mask[irq];
670     }
671 
672     switch (irq) {
673     case ARM_CPU_VIRQ:
674         assert(arm_feature(env, ARM_FEATURE_EL2));
675         arm_cpu_update_virq(cpu);
676         break;
677     case ARM_CPU_VFIQ:
678         assert(arm_feature(env, ARM_FEATURE_EL2));
679         arm_cpu_update_vfiq(cpu);
680         break;
681     case ARM_CPU_IRQ:
682     case ARM_CPU_FIQ:
683         if (level) {
684             cpu_interrupt(cs, mask[irq]);
685         } else {
686             cpu_reset_interrupt(cs, mask[irq]);
687         }
688         break;
689     default:
690         g_assert_not_reached();
691     }
692 }
693 
694 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
695 {
696 #ifdef CONFIG_KVM
697     ARMCPU *cpu = opaque;
698     CPUARMState *env = &cpu->env;
699     CPUState *cs = CPU(cpu);
700     uint32_t linestate_bit;
701     int irq_id;
702 
703     switch (irq) {
704     case ARM_CPU_IRQ:
705         irq_id = KVM_ARM_IRQ_CPU_IRQ;
706         linestate_bit = CPU_INTERRUPT_HARD;
707         break;
708     case ARM_CPU_FIQ:
709         irq_id = KVM_ARM_IRQ_CPU_FIQ;
710         linestate_bit = CPU_INTERRUPT_FIQ;
711         break;
712     default:
713         g_assert_not_reached();
714     }
715 
716     if (level) {
717         env->irq_line_state |= linestate_bit;
718     } else {
719         env->irq_line_state &= ~linestate_bit;
720     }
721     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
722 #endif
723 }
724 
725 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
726 {
727     ARMCPU *cpu = ARM_CPU(cs);
728     CPUARMState *env = &cpu->env;
729 
730     cpu_synchronize_state(cs);
731     return arm_cpu_data_is_big_endian(env);
732 }
733 
734 #endif
735 
736 static int
737 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
738 {
739   return print_insn_arm(pc | 1, info);
740 }
741 
742 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
743 {
744     ARMCPU *ac = ARM_CPU(cpu);
745     CPUARMState *env = &ac->env;
746     bool sctlr_b;
747 
748     if (is_a64(env)) {
749         /* We might not be compiled with the A64 disassembler
750          * because it needs a C++ compiler. Leave print_insn
751          * unset in this case to use the caller default behaviour.
752          */
753 #if defined(CONFIG_ARM_A64_DIS)
754         info->print_insn = print_insn_arm_a64;
755 #endif
756         info->cap_arch = CS_ARCH_ARM64;
757         info->cap_insn_unit = 4;
758         info->cap_insn_split = 4;
759     } else {
760         int cap_mode;
761         if (env->thumb) {
762             info->print_insn = print_insn_thumb1;
763             info->cap_insn_unit = 2;
764             info->cap_insn_split = 4;
765             cap_mode = CS_MODE_THUMB;
766         } else {
767             info->print_insn = print_insn_arm;
768             info->cap_insn_unit = 4;
769             info->cap_insn_split = 4;
770             cap_mode = CS_MODE_ARM;
771         }
772         if (arm_feature(env, ARM_FEATURE_V8)) {
773             cap_mode |= CS_MODE_V8;
774         }
775         if (arm_feature(env, ARM_FEATURE_M)) {
776             cap_mode |= CS_MODE_MCLASS;
777         }
778         info->cap_arch = CS_ARCH_ARM;
779         info->cap_mode = cap_mode;
780     }
781 
782     sctlr_b = arm_sctlr_b(env);
783     if (bswap_code(sctlr_b)) {
784 #ifdef TARGET_WORDS_BIGENDIAN
785         info->endian = BFD_ENDIAN_LITTLE;
786 #else
787         info->endian = BFD_ENDIAN_BIG;
788 #endif
789     }
790     info->flags &= ~INSN_ARM_BE32;
791 #ifndef CONFIG_USER_ONLY
792     if (sctlr_b) {
793         info->flags |= INSN_ARM_BE32;
794     }
795 #endif
796 }
797 
798 #ifdef TARGET_AARCH64
799 
800 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
801 {
802     ARMCPU *cpu = ARM_CPU(cs);
803     CPUARMState *env = &cpu->env;
804     uint32_t psr = pstate_read(env);
805     int i;
806     int el = arm_current_el(env);
807     const char *ns_status;
808 
809     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
810     for (i = 0; i < 32; i++) {
811         if (i == 31) {
812             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
813         } else {
814             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
815                          (i + 2) % 3 ? " " : "\n");
816         }
817     }
818 
819     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
820         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
821     } else {
822         ns_status = "";
823     }
824     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
825                  psr,
826                  psr & PSTATE_N ? 'N' : '-',
827                  psr & PSTATE_Z ? 'Z' : '-',
828                  psr & PSTATE_C ? 'C' : '-',
829                  psr & PSTATE_V ? 'V' : '-',
830                  ns_status,
831                  el,
832                  psr & PSTATE_SP ? 'h' : 't');
833 
834     if (cpu_isar_feature(aa64_bti, cpu)) {
835         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
836     }
837     if (!(flags & CPU_DUMP_FPU)) {
838         qemu_fprintf(f, "\n");
839         return;
840     }
841     if (fp_exception_el(env, el) != 0) {
842         qemu_fprintf(f, "    FPU disabled\n");
843         return;
844     }
845     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
846                  vfp_get_fpcr(env), vfp_get_fpsr(env));
847 
848     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
849         int j, zcr_len = sve_zcr_len_for_el(env, el);
850 
851         for (i = 0; i <= FFR_PRED_NUM; i++) {
852             bool eol;
853             if (i == FFR_PRED_NUM) {
854                 qemu_fprintf(f, "FFR=");
855                 /* It's last, so end the line.  */
856                 eol = true;
857             } else {
858                 qemu_fprintf(f, "P%02d=", i);
859                 switch (zcr_len) {
860                 case 0:
861                     eol = i % 8 == 7;
862                     break;
863                 case 1:
864                     eol = i % 6 == 5;
865                     break;
866                 case 2:
867                 case 3:
868                     eol = i % 3 == 2;
869                     break;
870                 default:
871                     /* More than one quadword per predicate.  */
872                     eol = true;
873                     break;
874                 }
875             }
876             for (j = zcr_len / 4; j >= 0; j--) {
877                 int digits;
878                 if (j * 4 + 4 <= zcr_len + 1) {
879                     digits = 16;
880                 } else {
881                     digits = (zcr_len % 4 + 1) * 4;
882                 }
883                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
884                              env->vfp.pregs[i].p[j],
885                              j ? ":" : eol ? "\n" : " ");
886             }
887         }
888 
889         for (i = 0; i < 32; i++) {
890             if (zcr_len == 0) {
891                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
892                              i, env->vfp.zregs[i].d[1],
893                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
894             } else if (zcr_len == 1) {
895                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
896                              ":%016" PRIx64 ":%016" PRIx64 "\n",
897                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
898                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
899             } else {
900                 for (j = zcr_len; j >= 0; j--) {
901                     bool odd = (zcr_len - j) % 2 != 0;
902                     if (j == zcr_len) {
903                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
904                     } else if (!odd) {
905                         if (j > 0) {
906                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
907                         } else {
908                             qemu_fprintf(f, "     [%x]=", j);
909                         }
910                     }
911                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
912                                  env->vfp.zregs[i].d[j * 2 + 1],
913                                  env->vfp.zregs[i].d[j * 2],
914                                  odd || j == 0 ? "\n" : ":");
915                 }
916             }
917         }
918     } else {
919         for (i = 0; i < 32; i++) {
920             uint64_t *q = aa64_vfp_qreg(env, i);
921             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
922                          i, q[1], q[0], (i & 1 ? "\n" : " "));
923         }
924     }
925 }
926 
927 #else
928 
929 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
930 {
931     g_assert_not_reached();
932 }
933 
934 #endif
935 
936 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
937 {
938     ARMCPU *cpu = ARM_CPU(cs);
939     CPUARMState *env = &cpu->env;
940     int i;
941 
942     if (is_a64(env)) {
943         aarch64_cpu_dump_state(cs, f, flags);
944         return;
945     }
946 
947     for (i = 0; i < 16; i++) {
948         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
949         if ((i % 4) == 3) {
950             qemu_fprintf(f, "\n");
951         } else {
952             qemu_fprintf(f, " ");
953         }
954     }
955 
956     if (arm_feature(env, ARM_FEATURE_M)) {
957         uint32_t xpsr = xpsr_read(env);
958         const char *mode;
959         const char *ns_status = "";
960 
961         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
962             ns_status = env->v7m.secure ? "S " : "NS ";
963         }
964 
965         if (xpsr & XPSR_EXCP) {
966             mode = "handler";
967         } else {
968             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
969                 mode = "unpriv-thread";
970             } else {
971                 mode = "priv-thread";
972             }
973         }
974 
975         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
976                      xpsr,
977                      xpsr & XPSR_N ? 'N' : '-',
978                      xpsr & XPSR_Z ? 'Z' : '-',
979                      xpsr & XPSR_C ? 'C' : '-',
980                      xpsr & XPSR_V ? 'V' : '-',
981                      xpsr & XPSR_T ? 'T' : 'A',
982                      ns_status,
983                      mode);
984     } else {
985         uint32_t psr = cpsr_read(env);
986         const char *ns_status = "";
987 
988         if (arm_feature(env, ARM_FEATURE_EL3) &&
989             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
990             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
991         }
992 
993         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
994                      psr,
995                      psr & CPSR_N ? 'N' : '-',
996                      psr & CPSR_Z ? 'Z' : '-',
997                      psr & CPSR_C ? 'C' : '-',
998                      psr & CPSR_V ? 'V' : '-',
999                      psr & CPSR_T ? 'T' : 'A',
1000                      ns_status,
1001                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1002     }
1003 
1004     if (flags & CPU_DUMP_FPU) {
1005         int numvfpregs = 0;
1006         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1007             numvfpregs = 32;
1008         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1009             numvfpregs = 16;
1010         }
1011         for (i = 0; i < numvfpregs; i++) {
1012             uint64_t v = *aa32_vfp_dreg(env, i);
1013             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1014                          i * 2, (uint32_t)v,
1015                          i * 2 + 1, (uint32_t)(v >> 32),
1016                          i, v);
1017         }
1018         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1019     }
1020 }
1021 
1022 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1023 {
1024     uint32_t Aff1 = idx / clustersz;
1025     uint32_t Aff0 = idx % clustersz;
1026     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1027 }
1028 
1029 static void cpreg_hashtable_data_destroy(gpointer data)
1030 {
1031     /*
1032      * Destroy function for cpu->cp_regs hashtable data entries.
1033      * We must free the name string because it was g_strdup()ed in
1034      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1035      * from r->name because we know we definitely allocated it.
1036      */
1037     ARMCPRegInfo *r = data;
1038 
1039     g_free((void *)r->name);
1040     g_free(r);
1041 }
1042 
1043 static void arm_cpu_initfn(Object *obj)
1044 {
1045     ARMCPU *cpu = ARM_CPU(obj);
1046 
1047     cpu_set_cpustate_pointers(cpu);
1048     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1049                                          g_free, cpreg_hashtable_data_destroy);
1050 
1051     QLIST_INIT(&cpu->pre_el_change_hooks);
1052     QLIST_INIT(&cpu->el_change_hooks);
1053 
1054 #ifndef CONFIG_USER_ONLY
1055     /* Our inbound IRQ and FIQ lines */
1056     if (kvm_enabled()) {
1057         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1058          * the same interface as non-KVM CPUs.
1059          */
1060         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1061     } else {
1062         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1063     }
1064 
1065     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1066                        ARRAY_SIZE(cpu->gt_timer_outputs));
1067 
1068     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1069                              "gicv3-maintenance-interrupt", 1);
1070     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1071                              "pmu-interrupt", 1);
1072 #endif
1073 
1074     /* DTB consumers generally don't in fact care what the 'compatible'
1075      * string is, so always provide some string and trust that a hypothetical
1076      * picky DTB consumer will also provide a helpful error message.
1077      */
1078     cpu->dtb_compatible = "qemu,unknown";
1079     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1080     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1081 
1082     if (tcg_enabled()) {
1083         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1084     }
1085 }
1086 
1087 static Property arm_cpu_gt_cntfrq_property =
1088             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1089                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1090 
1091 static Property arm_cpu_reset_cbar_property =
1092             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1093 
1094 static Property arm_cpu_reset_hivecs_property =
1095             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1096 
1097 static Property arm_cpu_rvbar_property =
1098             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101 static Property arm_cpu_has_el2_property =
1102             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1103 
1104 static Property arm_cpu_has_el3_property =
1105             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1106 #endif
1107 
1108 static Property arm_cpu_cfgend_property =
1109             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1110 
1111 static Property arm_cpu_has_vfp_property =
1112             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1113 
1114 static Property arm_cpu_has_neon_property =
1115             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1116 
1117 static Property arm_cpu_has_dsp_property =
1118             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1119 
1120 static Property arm_cpu_has_mpu_property =
1121             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1122 
1123 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1124  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1125  * the right value for that particular CPU type, and we don't want
1126  * to override that with an incorrect constant value.
1127  */
1128 static Property arm_cpu_pmsav7_dregion_property =
1129             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1130                                            pmsav7_dregion,
1131                                            qdev_prop_uint32, uint32_t);
1132 
1133 static bool arm_get_pmu(Object *obj, Error **errp)
1134 {
1135     ARMCPU *cpu = ARM_CPU(obj);
1136 
1137     return cpu->has_pmu;
1138 }
1139 
1140 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1141 {
1142     ARMCPU *cpu = ARM_CPU(obj);
1143 
1144     if (value) {
1145         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1146             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1147             return;
1148         }
1149         set_feature(&cpu->env, ARM_FEATURE_PMU);
1150     } else {
1151         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1152     }
1153     cpu->has_pmu = value;
1154 }
1155 
1156 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1157 {
1158     /*
1159      * The exact approach to calculating guest ticks is:
1160      *
1161      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1162      *              NANOSECONDS_PER_SECOND);
1163      *
1164      * We don't do that. Rather we intentionally use integer division
1165      * truncation below and in the caller for the conversion of host monotonic
1166      * time to guest ticks to provide the exact inverse for the semantics of
1167      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1168      * it loses precision when representing frequencies where
1169      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1170      * provide an exact inverse leads to scheduling timers with negative
1171      * periods, which in turn leads to sticky behaviour in the guest.
1172      *
1173      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1174      * cannot become zero.
1175      */
1176     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1177       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1178 }
1179 
1180 void arm_cpu_post_init(Object *obj)
1181 {
1182     ARMCPU *cpu = ARM_CPU(obj);
1183 
1184     /* M profile implies PMSA. We have to do this here rather than
1185      * in realize with the other feature-implication checks because
1186      * we look at the PMSA bit to see if we should add some properties.
1187      */
1188     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1189         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1190     }
1191 
1192     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1193         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1194         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1195     }
1196 
1197     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1198         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1199     }
1200 
1201     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1202         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1203     }
1204 
1205 #ifndef CONFIG_USER_ONLY
1206     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1207         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1208          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1209          */
1210         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1211 
1212         object_property_add_link(obj, "secure-memory",
1213                                  TYPE_MEMORY_REGION,
1214                                  (Object **)&cpu->secure_memory,
1215                                  qdev_prop_allow_set_link_before_realize,
1216                                  OBJ_PROP_LINK_STRONG);
1217     }
1218 
1219     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1220         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1221     }
1222 #endif
1223 
1224     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1225         cpu->has_pmu = true;
1226         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1227     }
1228 
1229     /*
1230      * Allow user to turn off VFP and Neon support, but only for TCG --
1231      * KVM does not currently allow us to lie to the guest about its
1232      * ID/feature registers, so the guest always sees what the host has.
1233      */
1234     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1235         ? cpu_isar_feature(aa64_fp_simd, cpu)
1236         : cpu_isar_feature(aa32_vfp, cpu)) {
1237         cpu->has_vfp = true;
1238         if (!kvm_enabled()) {
1239             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1240         }
1241     }
1242 
1243     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1244         cpu->has_neon = true;
1245         if (!kvm_enabled()) {
1246             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1247         }
1248     }
1249 
1250     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1251         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1252         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1253     }
1254 
1255     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1256         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1257         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1258             qdev_property_add_static(DEVICE(obj),
1259                                      &arm_cpu_pmsav7_dregion_property);
1260         }
1261     }
1262 
1263     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1264         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1265                                  qdev_prop_allow_set_link_before_realize,
1266                                  OBJ_PROP_LINK_STRONG);
1267         /*
1268          * M profile: initial value of the Secure VTOR. We can't just use
1269          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1270          * the property to be set after realize.
1271          */
1272         object_property_add_uint32_ptr(obj, "init-svtor",
1273                                        &cpu->init_svtor,
1274                                        OBJ_PROP_FLAG_READWRITE);
1275     }
1276 
1277     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1278 
1279     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1280         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1281     }
1282 
1283     if (kvm_enabled()) {
1284         kvm_arm_add_vcpu_properties(obj);
1285     }
1286 
1287 #ifndef CONFIG_USER_ONLY
1288     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1289         cpu_isar_feature(aa64_mte, cpu)) {
1290         object_property_add_link(obj, "tag-memory",
1291                                  TYPE_MEMORY_REGION,
1292                                  (Object **)&cpu->tag_memory,
1293                                  qdev_prop_allow_set_link_before_realize,
1294                                  OBJ_PROP_LINK_STRONG);
1295 
1296         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1297             object_property_add_link(obj, "secure-tag-memory",
1298                                      TYPE_MEMORY_REGION,
1299                                      (Object **)&cpu->secure_tag_memory,
1300                                      qdev_prop_allow_set_link_before_realize,
1301                                      OBJ_PROP_LINK_STRONG);
1302         }
1303     }
1304 #endif
1305 }
1306 
1307 static void arm_cpu_finalizefn(Object *obj)
1308 {
1309     ARMCPU *cpu = ARM_CPU(obj);
1310     ARMELChangeHook *hook, *next;
1311 
1312     g_hash_table_destroy(cpu->cp_regs);
1313 
1314     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1315         QLIST_REMOVE(hook, node);
1316         g_free(hook);
1317     }
1318     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1319         QLIST_REMOVE(hook, node);
1320         g_free(hook);
1321     }
1322 #ifndef CONFIG_USER_ONLY
1323     if (cpu->pmu_timer) {
1324         timer_free(cpu->pmu_timer);
1325     }
1326 #endif
1327 }
1328 
1329 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1330 {
1331     Error *local_err = NULL;
1332 
1333     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1334         arm_cpu_sve_finalize(cpu, &local_err);
1335         if (local_err != NULL) {
1336             error_propagate(errp, local_err);
1337             return;
1338         }
1339 
1340         /*
1341          * KVM does not support modifications to this feature.
1342          * We have not registered the cpu properties when KVM
1343          * is in use, so the user will not be able to set them.
1344          */
1345         if (!kvm_enabled()) {
1346             arm_cpu_pauth_finalize(cpu, &local_err);
1347             if (local_err != NULL) {
1348                 error_propagate(errp, local_err);
1349                 return;
1350             }
1351         }
1352     }
1353 
1354     if (kvm_enabled()) {
1355         kvm_arm_steal_time_finalize(cpu, &local_err);
1356         if (local_err != NULL) {
1357             error_propagate(errp, local_err);
1358             return;
1359         }
1360     }
1361 }
1362 
1363 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1364 {
1365     CPUState *cs = CPU(dev);
1366     ARMCPU *cpu = ARM_CPU(dev);
1367     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1368     CPUARMState *env = &cpu->env;
1369     int pagebits;
1370     Error *local_err = NULL;
1371     bool no_aa32 = false;
1372 
1373     /* If we needed to query the host kernel for the CPU features
1374      * then it's possible that might have failed in the initfn, but
1375      * this is the first point where we can report it.
1376      */
1377     if (cpu->host_cpu_probe_failed) {
1378         if (!kvm_enabled()) {
1379             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1380         } else {
1381             error_setg(errp, "Failed to retrieve host CPU features");
1382         }
1383         return;
1384     }
1385 
1386 #ifndef CONFIG_USER_ONLY
1387     /* The NVIC and M-profile CPU are two halves of a single piece of
1388      * hardware; trying to use one without the other is a command line
1389      * error and will result in segfaults if not caught here.
1390      */
1391     if (arm_feature(env, ARM_FEATURE_M)) {
1392         if (!env->nvic) {
1393             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1394             return;
1395         }
1396     } else {
1397         if (env->nvic) {
1398             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1399             return;
1400         }
1401     }
1402 
1403     {
1404         uint64_t scale;
1405 
1406         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1407             if (!cpu->gt_cntfrq_hz) {
1408                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1409                            cpu->gt_cntfrq_hz);
1410                 return;
1411             }
1412             scale = gt_cntfrq_period_ns(cpu);
1413         } else {
1414             scale = GTIMER_SCALE;
1415         }
1416 
1417         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1418                                                arm_gt_ptimer_cb, cpu);
1419         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1420                                                arm_gt_vtimer_cb, cpu);
1421         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1422                                               arm_gt_htimer_cb, cpu);
1423         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1424                                               arm_gt_stimer_cb, cpu);
1425         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1426                                                   arm_gt_hvtimer_cb, cpu);
1427     }
1428 #endif
1429 
1430     cpu_exec_realizefn(cs, &local_err);
1431     if (local_err != NULL) {
1432         error_propagate(errp, local_err);
1433         return;
1434     }
1435 
1436     arm_cpu_finalize_features(cpu, &local_err);
1437     if (local_err != NULL) {
1438         error_propagate(errp, local_err);
1439         return;
1440     }
1441 
1442     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1443         cpu->has_vfp != cpu->has_neon) {
1444         /*
1445          * This is an architectural requirement for AArch64; AArch32 is
1446          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1447          */
1448         error_setg(errp,
1449                    "AArch64 CPUs must have both VFP and Neon or neither");
1450         return;
1451     }
1452 
1453     if (!cpu->has_vfp) {
1454         uint64_t t;
1455         uint32_t u;
1456 
1457         t = cpu->isar.id_aa64isar1;
1458         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1459         cpu->isar.id_aa64isar1 = t;
1460 
1461         t = cpu->isar.id_aa64pfr0;
1462         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1463         cpu->isar.id_aa64pfr0 = t;
1464 
1465         u = cpu->isar.id_isar6;
1466         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1467         cpu->isar.id_isar6 = u;
1468 
1469         u = cpu->isar.mvfr0;
1470         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1471         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1472         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1473         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1474         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1475         if (!arm_feature(env, ARM_FEATURE_M)) {
1476             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1477             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1478         }
1479         cpu->isar.mvfr0 = u;
1480 
1481         u = cpu->isar.mvfr1;
1482         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1483         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1484         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1485         if (arm_feature(env, ARM_FEATURE_M)) {
1486             u = FIELD_DP32(u, MVFR1, FP16, 0);
1487         }
1488         cpu->isar.mvfr1 = u;
1489 
1490         u = cpu->isar.mvfr2;
1491         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1492         cpu->isar.mvfr2 = u;
1493     }
1494 
1495     if (!cpu->has_neon) {
1496         uint64_t t;
1497         uint32_t u;
1498 
1499         unset_feature(env, ARM_FEATURE_NEON);
1500 
1501         t = cpu->isar.id_aa64isar0;
1502         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1503         cpu->isar.id_aa64isar0 = t;
1504 
1505         t = cpu->isar.id_aa64isar1;
1506         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1507         cpu->isar.id_aa64isar1 = t;
1508 
1509         t = cpu->isar.id_aa64pfr0;
1510         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1511         cpu->isar.id_aa64pfr0 = t;
1512 
1513         u = cpu->isar.id_isar5;
1514         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1515         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1516         cpu->isar.id_isar5 = u;
1517 
1518         u = cpu->isar.id_isar6;
1519         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1520         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1521         cpu->isar.id_isar6 = u;
1522 
1523         if (!arm_feature(env, ARM_FEATURE_M)) {
1524             u = cpu->isar.mvfr1;
1525             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1526             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1527             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1528             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1529             cpu->isar.mvfr1 = u;
1530 
1531             u = cpu->isar.mvfr2;
1532             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1533             cpu->isar.mvfr2 = u;
1534         }
1535     }
1536 
1537     if (!cpu->has_neon && !cpu->has_vfp) {
1538         uint64_t t;
1539         uint32_t u;
1540 
1541         t = cpu->isar.id_aa64isar0;
1542         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1543         cpu->isar.id_aa64isar0 = t;
1544 
1545         t = cpu->isar.id_aa64isar1;
1546         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1547         cpu->isar.id_aa64isar1 = t;
1548 
1549         u = cpu->isar.mvfr0;
1550         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1551         cpu->isar.mvfr0 = u;
1552 
1553         /* Despite the name, this field covers both VFP and Neon */
1554         u = cpu->isar.mvfr1;
1555         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1556         cpu->isar.mvfr1 = u;
1557     }
1558 
1559     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1560         uint32_t u;
1561 
1562         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1563 
1564         u = cpu->isar.id_isar1;
1565         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1566         cpu->isar.id_isar1 = u;
1567 
1568         u = cpu->isar.id_isar2;
1569         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1570         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1571         cpu->isar.id_isar2 = u;
1572 
1573         u = cpu->isar.id_isar3;
1574         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1575         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1576         cpu->isar.id_isar3 = u;
1577     }
1578 
1579     /* Some features automatically imply others: */
1580     if (arm_feature(env, ARM_FEATURE_V8)) {
1581         if (arm_feature(env, ARM_FEATURE_M)) {
1582             set_feature(env, ARM_FEATURE_V7);
1583         } else {
1584             set_feature(env, ARM_FEATURE_V7VE);
1585         }
1586     }
1587 
1588     /*
1589      * There exist AArch64 cpus without AArch32 support.  When KVM
1590      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1591      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1592      * As a general principle, we also do not make ID register
1593      * consistency checks anywhere unless using TCG, because only
1594      * for TCG would a consistency-check failure be a QEMU bug.
1595      */
1596     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1597         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1598     }
1599 
1600     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1601         /* v7 Virtualization Extensions. In real hardware this implies
1602          * EL2 and also the presence of the Security Extensions.
1603          * For QEMU, for backwards-compatibility we implement some
1604          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1605          * include the various other features that V7VE implies.
1606          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1607          * Security Extensions is ARM_FEATURE_EL3.
1608          */
1609         assert(!tcg_enabled() || no_aa32 ||
1610                cpu_isar_feature(aa32_arm_div, cpu));
1611         set_feature(env, ARM_FEATURE_LPAE);
1612         set_feature(env, ARM_FEATURE_V7);
1613     }
1614     if (arm_feature(env, ARM_FEATURE_V7)) {
1615         set_feature(env, ARM_FEATURE_VAPA);
1616         set_feature(env, ARM_FEATURE_THUMB2);
1617         set_feature(env, ARM_FEATURE_MPIDR);
1618         if (!arm_feature(env, ARM_FEATURE_M)) {
1619             set_feature(env, ARM_FEATURE_V6K);
1620         } else {
1621             set_feature(env, ARM_FEATURE_V6);
1622         }
1623 
1624         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1625          * non-EL3 configs. This is needed by some legacy boards.
1626          */
1627         set_feature(env, ARM_FEATURE_VBAR);
1628     }
1629     if (arm_feature(env, ARM_FEATURE_V6K)) {
1630         set_feature(env, ARM_FEATURE_V6);
1631         set_feature(env, ARM_FEATURE_MVFR);
1632     }
1633     if (arm_feature(env, ARM_FEATURE_V6)) {
1634         set_feature(env, ARM_FEATURE_V5);
1635         if (!arm_feature(env, ARM_FEATURE_M)) {
1636             assert(!tcg_enabled() || no_aa32 ||
1637                    cpu_isar_feature(aa32_jazelle, cpu));
1638             set_feature(env, ARM_FEATURE_AUXCR);
1639         }
1640     }
1641     if (arm_feature(env, ARM_FEATURE_V5)) {
1642         set_feature(env, ARM_FEATURE_V4T);
1643     }
1644     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1645         set_feature(env, ARM_FEATURE_V7MP);
1646     }
1647     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1648         set_feature(env, ARM_FEATURE_CBAR);
1649     }
1650     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1651         !arm_feature(env, ARM_FEATURE_M)) {
1652         set_feature(env, ARM_FEATURE_THUMB_DSP);
1653     }
1654 
1655     /*
1656      * We rely on no XScale CPU having VFP so we can use the same bits in the
1657      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1658      */
1659     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1660            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1661            !arm_feature(env, ARM_FEATURE_XSCALE));
1662 
1663     if (arm_feature(env, ARM_FEATURE_V7) &&
1664         !arm_feature(env, ARM_FEATURE_M) &&
1665         !arm_feature(env, ARM_FEATURE_PMSA)) {
1666         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1667          * can use 4K pages.
1668          */
1669         pagebits = 12;
1670     } else {
1671         /* For CPUs which might have tiny 1K pages, or which have an
1672          * MPU and might have small region sizes, stick with 1K pages.
1673          */
1674         pagebits = 10;
1675     }
1676     if (!set_preferred_target_page_bits(pagebits)) {
1677         /* This can only ever happen for hotplugging a CPU, or if
1678          * the board code incorrectly creates a CPU which it has
1679          * promised via minimum_page_size that it will not.
1680          */
1681         error_setg(errp, "This CPU requires a smaller page size than the "
1682                    "system is using");
1683         return;
1684     }
1685 
1686     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1687      * We don't support setting cluster ID ([16..23]) (known as Aff2
1688      * in later ARM ARM versions), or any of the higher affinity level fields,
1689      * so these bits always RAZ.
1690      */
1691     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1692         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1693                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1694     }
1695 
1696     if (cpu->reset_hivecs) {
1697             cpu->reset_sctlr |= (1 << 13);
1698     }
1699 
1700     if (cpu->cfgend) {
1701         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1702             cpu->reset_sctlr |= SCTLR_EE;
1703         } else {
1704             cpu->reset_sctlr |= SCTLR_B;
1705         }
1706     }
1707 
1708     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1709         /* If the has_el3 CPU property is disabled then we need to disable the
1710          * feature.
1711          */
1712         unset_feature(env, ARM_FEATURE_EL3);
1713 
1714         /* Disable the security extension feature bits in the processor feature
1715          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1716          */
1717         cpu->isar.id_pfr1 &= ~0xf0;
1718         cpu->isar.id_aa64pfr0 &= ~0xf000;
1719     }
1720 
1721     if (!cpu->has_el2) {
1722         unset_feature(env, ARM_FEATURE_EL2);
1723     }
1724 
1725     if (!cpu->has_pmu) {
1726         unset_feature(env, ARM_FEATURE_PMU);
1727     }
1728     if (arm_feature(env, ARM_FEATURE_PMU)) {
1729         pmu_init(cpu);
1730 
1731         if (!kvm_enabled()) {
1732             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1733             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1734         }
1735 
1736 #ifndef CONFIG_USER_ONLY
1737         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1738                 cpu);
1739 #endif
1740     } else {
1741         cpu->isar.id_aa64dfr0 =
1742             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1743         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1744         cpu->pmceid0 = 0;
1745         cpu->pmceid1 = 0;
1746     }
1747 
1748     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1749         /* Disable the hypervisor feature bits in the processor feature
1750          * registers if we don't have EL2. These are id_pfr1[15:12] and
1751          * id_aa64pfr0_el1[11:8].
1752          */
1753         cpu->isar.id_aa64pfr0 &= ~0xf00;
1754         cpu->isar.id_pfr1 &= ~0xf000;
1755     }
1756 
1757 #ifndef CONFIG_USER_ONLY
1758     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1759         /*
1760          * Disable the MTE feature bits if we do not have tag-memory
1761          * provided by the machine.
1762          */
1763         cpu->isar.id_aa64pfr1 =
1764             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1765     }
1766 #endif
1767 
1768     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1769      * to false or by setting pmsav7-dregion to 0.
1770      */
1771     if (!cpu->has_mpu) {
1772         cpu->pmsav7_dregion = 0;
1773     }
1774     if (cpu->pmsav7_dregion == 0) {
1775         cpu->has_mpu = false;
1776     }
1777 
1778     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1779         arm_feature(env, ARM_FEATURE_V7)) {
1780         uint32_t nr = cpu->pmsav7_dregion;
1781 
1782         if (nr > 0xff) {
1783             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1784             return;
1785         }
1786 
1787         if (nr) {
1788             if (arm_feature(env, ARM_FEATURE_V8)) {
1789                 /* PMSAv8 */
1790                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1791                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1792                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1793                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1794                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1795                 }
1796             } else {
1797                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1798                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1799                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1800             }
1801         }
1802     }
1803 
1804     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1805         uint32_t nr = cpu->sau_sregion;
1806 
1807         if (nr > 0xff) {
1808             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1809             return;
1810         }
1811 
1812         if (nr) {
1813             env->sau.rbar = g_new0(uint32_t, nr);
1814             env->sau.rlar = g_new0(uint32_t, nr);
1815         }
1816     }
1817 
1818     if (arm_feature(env, ARM_FEATURE_EL3)) {
1819         set_feature(env, ARM_FEATURE_VBAR);
1820     }
1821 
1822     register_cp_regs_for_features(cpu);
1823     arm_cpu_register_gdb_regs_for_features(cpu);
1824 
1825     init_cpreg_list(cpu);
1826 
1827 #ifndef CONFIG_USER_ONLY
1828     MachineState *ms = MACHINE(qdev_get_machine());
1829     unsigned int smp_cpus = ms->smp.cpus;
1830     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1831 
1832     /*
1833      * We must set cs->num_ases to the final value before
1834      * the first call to cpu_address_space_init.
1835      */
1836     if (cpu->tag_memory != NULL) {
1837         cs->num_ases = 3 + has_secure;
1838     } else {
1839         cs->num_ases = 1 + has_secure;
1840     }
1841 
1842     if (has_secure) {
1843         if (!cpu->secure_memory) {
1844             cpu->secure_memory = cs->memory;
1845         }
1846         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1847                                cpu->secure_memory);
1848     }
1849 
1850     if (cpu->tag_memory != NULL) {
1851         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1852                                cpu->tag_memory);
1853         if (has_secure) {
1854             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1855                                    cpu->secure_tag_memory);
1856         }
1857     }
1858 
1859     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1860 
1861     /* No core_count specified, default to smp_cpus. */
1862     if (cpu->core_count == -1) {
1863         cpu->core_count = smp_cpus;
1864     }
1865 #endif
1866 
1867     if (tcg_enabled()) {
1868         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1869 
1870         /*
1871          * We only support DCZ blocklen that fits on one page.
1872          *
1873          * Architectually this is always true.  However TARGET_PAGE_SIZE
1874          * is variable and, for compatibility with -machine virt-2.7,
1875          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1876          * But even then, while the largest architectural DCZ blocklen
1877          * is 2KiB, no cpu actually uses such a large blocklen.
1878          */
1879         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1880 
1881         /*
1882          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1883          * both nibbles of each byte storing tag data may be written at once.
1884          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1885          */
1886         if (cpu_isar_feature(aa64_mte, cpu)) {
1887             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1888         }
1889     }
1890 
1891     qemu_init_vcpu(cs);
1892     cpu_reset(cs);
1893 
1894     acc->parent_realize(dev, errp);
1895 }
1896 
1897 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1898 {
1899     ObjectClass *oc;
1900     char *typename;
1901     char **cpuname;
1902     const char *cpunamestr;
1903 
1904     cpuname = g_strsplit(cpu_model, ",", 1);
1905     cpunamestr = cpuname[0];
1906 #ifdef CONFIG_USER_ONLY
1907     /* For backwards compatibility usermode emulation allows "-cpu any",
1908      * which has the same semantics as "-cpu max".
1909      */
1910     if (!strcmp(cpunamestr, "any")) {
1911         cpunamestr = "max";
1912     }
1913 #endif
1914     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1915     oc = object_class_by_name(typename);
1916     g_strfreev(cpuname);
1917     g_free(typename);
1918     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1919         object_class_is_abstract(oc)) {
1920         return NULL;
1921     }
1922     return oc;
1923 }
1924 
1925 static Property arm_cpu_properties[] = {
1926     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1927     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
1928     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1929                         mp_affinity, ARM64_AFFINITY_INVALID),
1930     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1931     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1932     DEFINE_PROP_END_OF_LIST()
1933 };
1934 
1935 static gchar *arm_gdb_arch_name(CPUState *cs)
1936 {
1937     ARMCPU *cpu = ARM_CPU(cs);
1938     CPUARMState *env = &cpu->env;
1939 
1940     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1941         return g_strdup("iwmmxt");
1942     }
1943     return g_strdup("arm");
1944 }
1945 
1946 #ifdef CONFIG_TCG
1947 static struct TCGCPUOps arm_tcg_ops = {
1948     .initialize = arm_translate_init,
1949     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
1950     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
1951     .tlb_fill = arm_cpu_tlb_fill,
1952     .debug_excp_handler = arm_debug_excp_handler,
1953 
1954 #if !defined(CONFIG_USER_ONLY)
1955     .do_interrupt = arm_cpu_do_interrupt,
1956     .do_transaction_failed = arm_cpu_do_transaction_failed,
1957     .do_unaligned_access = arm_cpu_do_unaligned_access,
1958     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
1959     .debug_check_watchpoint = arm_debug_check_watchpoint,
1960 #endif /* !CONFIG_USER_ONLY */
1961 };
1962 #endif /* CONFIG_TCG */
1963 
1964 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1965 {
1966     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1967     CPUClass *cc = CPU_CLASS(acc);
1968     DeviceClass *dc = DEVICE_CLASS(oc);
1969 
1970     device_class_set_parent_realize(dc, arm_cpu_realizefn,
1971                                     &acc->parent_realize);
1972 
1973     device_class_set_props(dc, arm_cpu_properties);
1974     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
1975 
1976     cc->class_by_name = arm_cpu_class_by_name;
1977     cc->has_work = arm_cpu_has_work;
1978     cc->dump_state = arm_cpu_dump_state;
1979     cc->set_pc = arm_cpu_set_pc;
1980     cc->gdb_read_register = arm_cpu_gdb_read_register;
1981     cc->gdb_write_register = arm_cpu_gdb_write_register;
1982 #ifndef CONFIG_USER_ONLY
1983     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1984     cc->asidx_from_attrs = arm_asidx_from_attrs;
1985     cc->vmsd = &vmstate_arm_cpu;
1986     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1987     cc->write_elf64_note = arm_cpu_write_elf64_note;
1988     cc->write_elf32_note = arm_cpu_write_elf32_note;
1989 #endif
1990     cc->gdb_num_core_regs = 26;
1991     cc->gdb_core_xml_file = "arm-core.xml";
1992     cc->gdb_arch_name = arm_gdb_arch_name;
1993     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
1994     cc->gdb_stop_before_watchpoint = true;
1995     cc->disas_set_info = arm_disas_set_info;
1996 
1997 #ifdef CONFIG_TCG
1998     cc->tcg_ops = &arm_tcg_ops;
1999 #endif /* CONFIG_TCG */
2000 }
2001 
2002 #ifdef CONFIG_KVM
2003 static void arm_host_initfn(Object *obj)
2004 {
2005     ARMCPU *cpu = ARM_CPU(obj);
2006 
2007     kvm_arm_set_cpu_features_from_host(cpu);
2008     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2009         aarch64_add_sve_properties(obj);
2010     }
2011     arm_cpu_post_init(obj);
2012 }
2013 
2014 static const TypeInfo host_arm_cpu_type_info = {
2015     .name = TYPE_ARM_HOST_CPU,
2016     .parent = TYPE_AARCH64_CPU,
2017     .instance_init = arm_host_initfn,
2018 };
2019 
2020 #endif
2021 
2022 static void arm_cpu_instance_init(Object *obj)
2023 {
2024     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2025 
2026     acc->info->initfn(obj);
2027     arm_cpu_post_init(obj);
2028 }
2029 
2030 static void cpu_register_class_init(ObjectClass *oc, void *data)
2031 {
2032     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2033 
2034     acc->info = data;
2035 }
2036 
2037 void arm_cpu_register(const ARMCPUInfo *info)
2038 {
2039     TypeInfo type_info = {
2040         .parent = TYPE_ARM_CPU,
2041         .instance_size = sizeof(ARMCPU),
2042         .instance_align = __alignof__(ARMCPU),
2043         .instance_init = arm_cpu_instance_init,
2044         .class_size = sizeof(ARMCPUClass),
2045         .class_init = info->class_init ?: cpu_register_class_init,
2046         .class_data = (void *)info,
2047     };
2048 
2049     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2050     type_register(&type_info);
2051     g_free((void *)type_info.name);
2052 }
2053 
2054 static const TypeInfo arm_cpu_type_info = {
2055     .name = TYPE_ARM_CPU,
2056     .parent = TYPE_CPU,
2057     .instance_size = sizeof(ARMCPU),
2058     .instance_align = __alignof__(ARMCPU),
2059     .instance_init = arm_cpu_initfn,
2060     .instance_finalize = arm_cpu_finalizefn,
2061     .abstract = true,
2062     .class_size = sizeof(ARMCPUClass),
2063     .class_init = arm_cpu_class_init,
2064 };
2065 
2066 static void arm_cpu_register_types(void)
2067 {
2068     type_register_static(&arm_cpu_type_info);
2069 
2070 #ifdef CONFIG_KVM
2071     type_register_static(&host_arm_cpu_type_info);
2072 #endif
2073 }
2074 
2075 type_init(arm_cpu_register_types)
2076