xref: /qemu/target/arm/cpu.c (revision dfa6ba6b)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
48 
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 {
51     ARMCPU *cpu = ARM_CPU(cs);
52     CPUARMState *env = &cpu->env;
53 
54     if (is_a64(env)) {
55         env->pc = value;
56         env->thumb = false;
57     } else {
58         env->regs[15] = value & ~1;
59         env->thumb = value & 1;
60     }
61 }
62 
63 static vaddr arm_cpu_get_pc(CPUState *cs)
64 {
65     ARMCPU *cpu = ARM_CPU(cs);
66     CPUARMState *env = &cpu->env;
67 
68     if (is_a64(env)) {
69         return env->pc;
70     } else {
71         return env->regs[15];
72     }
73 }
74 
75 #ifdef CONFIG_TCG
76 void arm_cpu_synchronize_from_tb(CPUState *cs,
77                                  const TranslationBlock *tb)
78 {
79     /* The program counter is always up to date with TARGET_TB_PCREL. */
80     if (!TARGET_TB_PCREL) {
81         CPUARMState *env = cs->env_ptr;
82         /*
83          * It's OK to look at env for the current mode here, because it's
84          * never possible for an AArch64 TB to chain to an AArch32 TB.
85          */
86         if (is_a64(env)) {
87             env->pc = tb_pc(tb);
88         } else {
89             env->regs[15] = tb_pc(tb);
90         }
91     }
92 }
93 
94 void arm_restore_state_to_opc(CPUState *cs,
95                               const TranslationBlock *tb,
96                               const uint64_t *data)
97 {
98     CPUARMState *env = cs->env_ptr;
99 
100     if (is_a64(env)) {
101         if (TARGET_TB_PCREL) {
102             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
103         } else {
104             env->pc = data[0];
105         }
106         env->condexec_bits = 0;
107         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
108     } else {
109         if (TARGET_TB_PCREL) {
110             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
111         } else {
112             env->regs[15] = data[0];
113         }
114         env->condexec_bits = data[1];
115         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
116     }
117 }
118 #endif /* CONFIG_TCG */
119 
120 static bool arm_cpu_has_work(CPUState *cs)
121 {
122     ARMCPU *cpu = ARM_CPU(cs);
123 
124     return (cpu->power_state != PSCI_OFF)
125         && cs->interrupt_request &
126         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
127          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
128          | CPU_INTERRUPT_EXITTB);
129 }
130 
131 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
132                                  void *opaque)
133 {
134     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
135 
136     entry->hook = hook;
137     entry->opaque = opaque;
138 
139     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
140 }
141 
142 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
143                                  void *opaque)
144 {
145     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
146 
147     entry->hook = hook;
148     entry->opaque = opaque;
149 
150     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
151 }
152 
153 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
154 {
155     /* Reset a single ARMCPRegInfo register */
156     ARMCPRegInfo *ri = value;
157     ARMCPU *cpu = opaque;
158 
159     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
160         return;
161     }
162 
163     if (ri->resetfn) {
164         ri->resetfn(&cpu->env, ri);
165         return;
166     }
167 
168     /* A zero offset is never possible as it would be regs[0]
169      * so we use it to indicate that reset is being handled elsewhere.
170      * This is basically only used for fields in non-core coprocessors
171      * (like the pxa2xx ones).
172      */
173     if (!ri->fieldoffset) {
174         return;
175     }
176 
177     if (cpreg_field_is_64bit(ri)) {
178         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
179     } else {
180         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
181     }
182 }
183 
184 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
185 {
186     /* Purely an assertion check: we've already done reset once,
187      * so now check that running the reset for the cpreg doesn't
188      * change its value. This traps bugs where two different cpregs
189      * both try to reset the same state field but to different values.
190      */
191     ARMCPRegInfo *ri = value;
192     ARMCPU *cpu = opaque;
193     uint64_t oldvalue, newvalue;
194 
195     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
196         return;
197     }
198 
199     oldvalue = read_raw_cp_reg(&cpu->env, ri);
200     cp_reg_reset(key, value, opaque);
201     newvalue = read_raw_cp_reg(&cpu->env, ri);
202     assert(oldvalue == newvalue);
203 }
204 
205 static void arm_cpu_reset(DeviceState *dev)
206 {
207     CPUState *s = CPU(dev);
208     ARMCPU *cpu = ARM_CPU(s);
209     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
210     CPUARMState *env = &cpu->env;
211 
212     acc->parent_reset(dev);
213 
214     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
215 
216     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
217     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
218 
219     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
220     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
221     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
222     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
223 
224     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
225 
226     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
227         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
228     }
229 
230     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
231         /* 64 bit CPUs always start in 64 bit mode */
232         env->aarch64 = true;
233 #if defined(CONFIG_USER_ONLY)
234         env->pstate = PSTATE_MODE_EL0t;
235         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
236         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
237         /* Enable all PAC keys.  */
238         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
239                                   SCTLR_EnDA | SCTLR_EnDB);
240         /* Trap on btype=3 for PACIxSP. */
241         env->cp15.sctlr_el[1] |= SCTLR_BT0;
242         /* and to the FP/Neon instructions */
243         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
244                                          CPACR_EL1, FPEN, 3);
245         /* and to the SVE instructions, with default vector length */
246         if (cpu_isar_feature(aa64_sve, cpu)) {
247             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248                                              CPACR_EL1, ZEN, 3);
249             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
250         }
251         /* and for SME instructions, with default vector length, and TPIDR2 */
252         if (cpu_isar_feature(aa64_sme, cpu)) {
253             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
254             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
255                                              CPACR_EL1, SMEN, 3);
256             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
257             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
258                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
259                                                  SMCR, FA64, 1);
260             }
261         }
262         /*
263          * Enable 48-bit address space (TODO: take reserved_va into account).
264          * Enable TBI0 but not TBI1.
265          * Note that this must match useronly_clean_ptr.
266          */
267         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
268 
269         /* Enable MTE */
270         if (cpu_isar_feature(aa64_mte, cpu)) {
271             /* Enable tag access, but leave TCF0 as No Effect (0). */
272             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
273             /*
274              * Exclude all tags, so that tag 0 is always used.
275              * This corresponds to Linux current->thread.gcr_incl = 0.
276              *
277              * Set RRND, so that helper_irg() will generate a seed later.
278              * Here in cpu_reset(), the crypto subsystem has not yet been
279              * initialized.
280              */
281             env->cp15.gcr_el1 = 0x1ffff;
282         }
283         /*
284          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
285          * This is not yet exposed from the Linux kernel in any way.
286          */
287         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
288 #else
289         /* Reset into the highest available EL */
290         if (arm_feature(env, ARM_FEATURE_EL3)) {
291             env->pstate = PSTATE_MODE_EL3h;
292         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
293             env->pstate = PSTATE_MODE_EL2h;
294         } else {
295             env->pstate = PSTATE_MODE_EL1h;
296         }
297 
298         /* Sample rvbar at reset.  */
299         env->cp15.rvbar = cpu->rvbar_prop;
300         env->pc = env->cp15.rvbar;
301 #endif
302     } else {
303 #if defined(CONFIG_USER_ONLY)
304         /* Userspace expects access to cp10 and cp11 for FP/Neon */
305         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
306                                          CPACR, CP10, 3);
307         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
308                                          CPACR, CP11, 3);
309 #endif
310     }
311 
312 #if defined(CONFIG_USER_ONLY)
313     env->uncached_cpsr = ARM_CPU_MODE_USR;
314     /* For user mode we must enable access to coprocessors */
315     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
316     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
317         env->cp15.c15_cpar = 3;
318     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
319         env->cp15.c15_cpar = 1;
320     }
321 #else
322 
323     /*
324      * If the highest available EL is EL2, AArch32 will start in Hyp
325      * mode; otherwise it starts in SVC. Note that if we start in
326      * AArch64 then these values in the uncached_cpsr will be ignored.
327      */
328     if (arm_feature(env, ARM_FEATURE_EL2) &&
329         !arm_feature(env, ARM_FEATURE_EL3)) {
330         env->uncached_cpsr = ARM_CPU_MODE_HYP;
331     } else {
332         env->uncached_cpsr = ARM_CPU_MODE_SVC;
333     }
334     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
335 
336     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
337      * executing as AArch32 then check if highvecs are enabled and
338      * adjust the PC accordingly.
339      */
340     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
341         env->regs[15] = 0xFFFF0000;
342     }
343 
344     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
345 #endif
346 
347     if (arm_feature(env, ARM_FEATURE_M)) {
348 #ifndef CONFIG_USER_ONLY
349         uint32_t initial_msp; /* Loaded from 0x0 */
350         uint32_t initial_pc; /* Loaded from 0x4 */
351         uint8_t *rom;
352         uint32_t vecbase;
353 #endif
354 
355         if (cpu_isar_feature(aa32_lob, cpu)) {
356             /*
357              * LTPSIZE is constant 4 if MVE not implemented, and resets
358              * to an UNKNOWN value if MVE is implemented. We choose to
359              * always reset to 4.
360              */
361             env->v7m.ltpsize = 4;
362             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
363             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
364             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
365         }
366 
367         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
368             env->v7m.secure = true;
369         } else {
370             /* This bit resets to 0 if security is supported, but 1 if
371              * it is not. The bit is not present in v7M, but we set it
372              * here so we can avoid having to make checks on it conditional
373              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
374              */
375             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
376             /*
377              * Set NSACR to indicate "NS access permitted to everything";
378              * this avoids having to have all the tests of it being
379              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
380              * v8.1M the guest-visible value of NSACR in a CPU without the
381              * Security Extension is 0xcff.
382              */
383             env->v7m.nsacr = 0xcff;
384         }
385 
386         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
387          * that it resets to 1, so QEMU always does that rather than making
388          * it dependent on CPU model. In v8M it is RES1.
389          */
390         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
391         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
392         if (arm_feature(env, ARM_FEATURE_V8)) {
393             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
394             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
395             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
396         }
397         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
398             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
399             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
400         }
401 
402         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
403             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
404             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
405                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
406         }
407 
408 #ifndef CONFIG_USER_ONLY
409         /* Unlike A/R profile, M profile defines the reset LR value */
410         env->regs[14] = 0xffffffff;
411 
412         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
413         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
414 
415         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
416         vecbase = env->v7m.vecbase[env->v7m.secure];
417         rom = rom_ptr_for_as(s->as, vecbase, 8);
418         if (rom) {
419             /* Address zero is covered by ROM which hasn't yet been
420              * copied into physical memory.
421              */
422             initial_msp = ldl_p(rom);
423             initial_pc = ldl_p(rom + 4);
424         } else {
425             /* Address zero not covered by a ROM blob, or the ROM blob
426              * is in non-modifiable memory and this is a second reset after
427              * it got copied into memory. In the latter case, rom_ptr
428              * will return a NULL pointer and we should use ldl_phys instead.
429              */
430             initial_msp = ldl_phys(s->as, vecbase);
431             initial_pc = ldl_phys(s->as, vecbase + 4);
432         }
433 
434         qemu_log_mask(CPU_LOG_INT,
435                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
436                       initial_msp, initial_pc);
437 
438         env->regs[13] = initial_msp & 0xFFFFFFFC;
439         env->regs[15] = initial_pc & ~1;
440         env->thumb = initial_pc & 1;
441 #else
442         /*
443          * For user mode we run non-secure and with access to the FPU.
444          * The FPU context is active (ie does not need further setup)
445          * and is owned by non-secure.
446          */
447         env->v7m.secure = false;
448         env->v7m.nsacr = 0xcff;
449         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
450         env->v7m.fpccr[M_REG_S] &=
451             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
452         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
453 #endif
454     }
455 
456     /* M profile requires that reset clears the exclusive monitor;
457      * A profile does not, but clearing it makes more sense than having it
458      * set with an exclusive access on address zero.
459      */
460     arm_clear_exclusive(env);
461 
462     if (arm_feature(env, ARM_FEATURE_PMSA)) {
463         if (cpu->pmsav7_dregion > 0) {
464             if (arm_feature(env, ARM_FEATURE_V8)) {
465                 memset(env->pmsav8.rbar[M_REG_NS], 0,
466                        sizeof(*env->pmsav8.rbar[M_REG_NS])
467                        * cpu->pmsav7_dregion);
468                 memset(env->pmsav8.rlar[M_REG_NS], 0,
469                        sizeof(*env->pmsav8.rlar[M_REG_NS])
470                        * cpu->pmsav7_dregion);
471                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
472                     memset(env->pmsav8.rbar[M_REG_S], 0,
473                            sizeof(*env->pmsav8.rbar[M_REG_S])
474                            * cpu->pmsav7_dregion);
475                     memset(env->pmsav8.rlar[M_REG_S], 0,
476                            sizeof(*env->pmsav8.rlar[M_REG_S])
477                            * cpu->pmsav7_dregion);
478                 }
479             } else if (arm_feature(env, ARM_FEATURE_V7)) {
480                 memset(env->pmsav7.drbar, 0,
481                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
482                 memset(env->pmsav7.drsr, 0,
483                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
484                 memset(env->pmsav7.dracr, 0,
485                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
486             }
487         }
488         env->pmsav7.rnr[M_REG_NS] = 0;
489         env->pmsav7.rnr[M_REG_S] = 0;
490         env->pmsav8.mair0[M_REG_NS] = 0;
491         env->pmsav8.mair0[M_REG_S] = 0;
492         env->pmsav8.mair1[M_REG_NS] = 0;
493         env->pmsav8.mair1[M_REG_S] = 0;
494     }
495 
496     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
497         if (cpu->sau_sregion > 0) {
498             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
499             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
500         }
501         env->sau.rnr = 0;
502         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
503          * the Cortex-M33 does.
504          */
505         env->sau.ctrl = 0;
506     }
507 
508     set_flush_to_zero(1, &env->vfp.standard_fp_status);
509     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
510     set_default_nan_mode(1, &env->vfp.standard_fp_status);
511     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
512     set_float_detect_tininess(float_tininess_before_rounding,
513                               &env->vfp.fp_status);
514     set_float_detect_tininess(float_tininess_before_rounding,
515                               &env->vfp.standard_fp_status);
516     set_float_detect_tininess(float_tininess_before_rounding,
517                               &env->vfp.fp_status_f16);
518     set_float_detect_tininess(float_tininess_before_rounding,
519                               &env->vfp.standard_fp_status_f16);
520 #ifndef CONFIG_USER_ONLY
521     if (kvm_enabled()) {
522         kvm_arm_reset_vcpu(cpu);
523     }
524 #endif
525 
526     hw_breakpoint_update_all(cpu);
527     hw_watchpoint_update_all(cpu);
528     arm_rebuild_hflags(env);
529 }
530 
531 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
532 
533 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
534                                      unsigned int target_el,
535                                      unsigned int cur_el, bool secure,
536                                      uint64_t hcr_el2)
537 {
538     CPUARMState *env = cs->env_ptr;
539     bool pstate_unmasked;
540     bool unmasked = false;
541 
542     /*
543      * Don't take exceptions if they target a lower EL.
544      * This check should catch any exceptions that would not be taken
545      * but left pending.
546      */
547     if (cur_el > target_el) {
548         return false;
549     }
550 
551     switch (excp_idx) {
552     case EXCP_FIQ:
553         pstate_unmasked = !(env->daif & PSTATE_F);
554         break;
555 
556     case EXCP_IRQ:
557         pstate_unmasked = !(env->daif & PSTATE_I);
558         break;
559 
560     case EXCP_VFIQ:
561         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
562             /* VFIQs are only taken when hypervized.  */
563             return false;
564         }
565         return !(env->daif & PSTATE_F);
566     case EXCP_VIRQ:
567         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
568             /* VIRQs are only taken when hypervized.  */
569             return false;
570         }
571         return !(env->daif & PSTATE_I);
572     case EXCP_VSERR:
573         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
574             /* VIRQs are only taken when hypervized.  */
575             return false;
576         }
577         return !(env->daif & PSTATE_A);
578     default:
579         g_assert_not_reached();
580     }
581 
582     /*
583      * Use the target EL, current execution state and SCR/HCR settings to
584      * determine whether the corresponding CPSR bit is used to mask the
585      * interrupt.
586      */
587     if ((target_el > cur_el) && (target_el != 1)) {
588         /* Exceptions targeting a higher EL may not be maskable */
589         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
590             switch (target_el) {
591             case 2:
592                 /*
593                  * According to ARM DDI 0487H.a, an interrupt can be masked
594                  * when HCR_E2H and HCR_TGE are both set regardless of the
595                  * current Security state. Note that we need to revisit this
596                  * part again once we need to support NMI.
597                  */
598                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
599                         unmasked = true;
600                 }
601                 break;
602             case 3:
603                 /* Interrupt cannot be masked when the target EL is 3 */
604                 unmasked = true;
605                 break;
606             default:
607                 g_assert_not_reached();
608             }
609         } else {
610             /*
611              * The old 32-bit-only environment has a more complicated
612              * masking setup. HCR and SCR bits not only affect interrupt
613              * routing but also change the behaviour of masking.
614              */
615             bool hcr, scr;
616 
617             switch (excp_idx) {
618             case EXCP_FIQ:
619                 /*
620                  * If FIQs are routed to EL3 or EL2 then there are cases where
621                  * we override the CPSR.F in determining if the exception is
622                  * masked or not. If neither of these are set then we fall back
623                  * to the CPSR.F setting otherwise we further assess the state
624                  * below.
625                  */
626                 hcr = hcr_el2 & HCR_FMO;
627                 scr = (env->cp15.scr_el3 & SCR_FIQ);
628 
629                 /*
630                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
631                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
632                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
633                  * when non-secure but only when FIQs are only routed to EL3.
634                  */
635                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
636                 break;
637             case EXCP_IRQ:
638                 /*
639                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
640                  * we may override the CPSR.I masking when in non-secure state.
641                  * The SCR.IRQ setting has already been taken into consideration
642                  * when setting the target EL, so it does not have a further
643                  * affect here.
644                  */
645                 hcr = hcr_el2 & HCR_IMO;
646                 scr = false;
647                 break;
648             default:
649                 g_assert_not_reached();
650             }
651 
652             if ((scr || hcr) && !secure) {
653                 unmasked = true;
654             }
655         }
656     }
657 
658     /*
659      * The PSTATE bits only mask the interrupt if we have not overriden the
660      * ability above.
661      */
662     return unmasked || pstate_unmasked;
663 }
664 
665 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
666 {
667     CPUClass *cc = CPU_GET_CLASS(cs);
668     CPUARMState *env = cs->env_ptr;
669     uint32_t cur_el = arm_current_el(env);
670     bool secure = arm_is_secure(env);
671     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
672     uint32_t target_el;
673     uint32_t excp_idx;
674 
675     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
676 
677     if (interrupt_request & CPU_INTERRUPT_FIQ) {
678         excp_idx = EXCP_FIQ;
679         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
680         if (arm_excp_unmasked(cs, excp_idx, target_el,
681                               cur_el, secure, hcr_el2)) {
682             goto found;
683         }
684     }
685     if (interrupt_request & CPU_INTERRUPT_HARD) {
686         excp_idx = EXCP_IRQ;
687         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
688         if (arm_excp_unmasked(cs, excp_idx, target_el,
689                               cur_el, secure, hcr_el2)) {
690             goto found;
691         }
692     }
693     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
694         excp_idx = EXCP_VIRQ;
695         target_el = 1;
696         if (arm_excp_unmasked(cs, excp_idx, target_el,
697                               cur_el, secure, hcr_el2)) {
698             goto found;
699         }
700     }
701     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
702         excp_idx = EXCP_VFIQ;
703         target_el = 1;
704         if (arm_excp_unmasked(cs, excp_idx, target_el,
705                               cur_el, secure, hcr_el2)) {
706             goto found;
707         }
708     }
709     if (interrupt_request & CPU_INTERRUPT_VSERR) {
710         excp_idx = EXCP_VSERR;
711         target_el = 1;
712         if (arm_excp_unmasked(cs, excp_idx, target_el,
713                               cur_el, secure, hcr_el2)) {
714             /* Taking a virtual abort clears HCR_EL2.VSE */
715             env->cp15.hcr_el2 &= ~HCR_VSE;
716             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
717             goto found;
718         }
719     }
720     return false;
721 
722  found:
723     cs->exception_index = excp_idx;
724     env->exception.target_el = target_el;
725     cc->tcg_ops->do_interrupt(cs);
726     return true;
727 }
728 
729 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
730 
731 void arm_cpu_update_virq(ARMCPU *cpu)
732 {
733     /*
734      * Update the interrupt level for VIRQ, which is the logical OR of
735      * the HCR_EL2.VI bit and the input line level from the GIC.
736      */
737     CPUARMState *env = &cpu->env;
738     CPUState *cs = CPU(cpu);
739 
740     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
741         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
742 
743     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
744         if (new_state) {
745             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
746         } else {
747             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
748         }
749     }
750 }
751 
752 void arm_cpu_update_vfiq(ARMCPU *cpu)
753 {
754     /*
755      * Update the interrupt level for VFIQ, which is the logical OR of
756      * the HCR_EL2.VF bit and the input line level from the GIC.
757      */
758     CPUARMState *env = &cpu->env;
759     CPUState *cs = CPU(cpu);
760 
761     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
762         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
763 
764     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
765         if (new_state) {
766             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
767         } else {
768             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
769         }
770     }
771 }
772 
773 void arm_cpu_update_vserr(ARMCPU *cpu)
774 {
775     /*
776      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
777      */
778     CPUARMState *env = &cpu->env;
779     CPUState *cs = CPU(cpu);
780 
781     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
782 
783     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
784         if (new_state) {
785             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
786         } else {
787             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
788         }
789     }
790 }
791 
792 #ifndef CONFIG_USER_ONLY
793 static void arm_cpu_set_irq(void *opaque, int irq, int level)
794 {
795     ARMCPU *cpu = opaque;
796     CPUARMState *env = &cpu->env;
797     CPUState *cs = CPU(cpu);
798     static const int mask[] = {
799         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
800         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
801         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
802         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
803     };
804 
805     if (!arm_feature(env, ARM_FEATURE_EL2) &&
806         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
807         /*
808          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
809          * have EL2 support we don't care. (Unless the guest is doing something
810          * silly this will only be calls saying "level is still 0".)
811          */
812         return;
813     }
814 
815     if (level) {
816         env->irq_line_state |= mask[irq];
817     } else {
818         env->irq_line_state &= ~mask[irq];
819     }
820 
821     switch (irq) {
822     case ARM_CPU_VIRQ:
823         arm_cpu_update_virq(cpu);
824         break;
825     case ARM_CPU_VFIQ:
826         arm_cpu_update_vfiq(cpu);
827         break;
828     case ARM_CPU_IRQ:
829     case ARM_CPU_FIQ:
830         if (level) {
831             cpu_interrupt(cs, mask[irq]);
832         } else {
833             cpu_reset_interrupt(cs, mask[irq]);
834         }
835         break;
836     default:
837         g_assert_not_reached();
838     }
839 }
840 
841 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
842 {
843 #ifdef CONFIG_KVM
844     ARMCPU *cpu = opaque;
845     CPUARMState *env = &cpu->env;
846     CPUState *cs = CPU(cpu);
847     uint32_t linestate_bit;
848     int irq_id;
849 
850     switch (irq) {
851     case ARM_CPU_IRQ:
852         irq_id = KVM_ARM_IRQ_CPU_IRQ;
853         linestate_bit = CPU_INTERRUPT_HARD;
854         break;
855     case ARM_CPU_FIQ:
856         irq_id = KVM_ARM_IRQ_CPU_FIQ;
857         linestate_bit = CPU_INTERRUPT_FIQ;
858         break;
859     default:
860         g_assert_not_reached();
861     }
862 
863     if (level) {
864         env->irq_line_state |= linestate_bit;
865     } else {
866         env->irq_line_state &= ~linestate_bit;
867     }
868     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
869 #endif
870 }
871 
872 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
873 {
874     ARMCPU *cpu = ARM_CPU(cs);
875     CPUARMState *env = &cpu->env;
876 
877     cpu_synchronize_state(cs);
878     return arm_cpu_data_is_big_endian(env);
879 }
880 
881 #endif
882 
883 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
884 {
885     ARMCPU *ac = ARM_CPU(cpu);
886     CPUARMState *env = &ac->env;
887     bool sctlr_b;
888 
889     if (is_a64(env)) {
890         info->cap_arch = CS_ARCH_ARM64;
891         info->cap_insn_unit = 4;
892         info->cap_insn_split = 4;
893     } else {
894         int cap_mode;
895         if (env->thumb) {
896             info->cap_insn_unit = 2;
897             info->cap_insn_split = 4;
898             cap_mode = CS_MODE_THUMB;
899         } else {
900             info->cap_insn_unit = 4;
901             info->cap_insn_split = 4;
902             cap_mode = CS_MODE_ARM;
903         }
904         if (arm_feature(env, ARM_FEATURE_V8)) {
905             cap_mode |= CS_MODE_V8;
906         }
907         if (arm_feature(env, ARM_FEATURE_M)) {
908             cap_mode |= CS_MODE_MCLASS;
909         }
910         info->cap_arch = CS_ARCH_ARM;
911         info->cap_mode = cap_mode;
912     }
913 
914     sctlr_b = arm_sctlr_b(env);
915     if (bswap_code(sctlr_b)) {
916 #if TARGET_BIG_ENDIAN
917         info->endian = BFD_ENDIAN_LITTLE;
918 #else
919         info->endian = BFD_ENDIAN_BIG;
920 #endif
921     }
922     info->flags &= ~INSN_ARM_BE32;
923 #ifndef CONFIG_USER_ONLY
924     if (sctlr_b) {
925         info->flags |= INSN_ARM_BE32;
926     }
927 #endif
928 }
929 
930 #ifdef TARGET_AARCH64
931 
932 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
933 {
934     ARMCPU *cpu = ARM_CPU(cs);
935     CPUARMState *env = &cpu->env;
936     uint32_t psr = pstate_read(env);
937     int i;
938     int el = arm_current_el(env);
939     const char *ns_status;
940     bool sve;
941 
942     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
943     for (i = 0; i < 32; i++) {
944         if (i == 31) {
945             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
946         } else {
947             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
948                          (i + 2) % 3 ? " " : "\n");
949         }
950     }
951 
952     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
953         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
954     } else {
955         ns_status = "";
956     }
957     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
958                  psr,
959                  psr & PSTATE_N ? 'N' : '-',
960                  psr & PSTATE_Z ? 'Z' : '-',
961                  psr & PSTATE_C ? 'C' : '-',
962                  psr & PSTATE_V ? 'V' : '-',
963                  ns_status,
964                  el,
965                  psr & PSTATE_SP ? 'h' : 't');
966 
967     if (cpu_isar_feature(aa64_sme, cpu)) {
968         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
969                      env->svcr,
970                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
971                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
972     }
973     if (cpu_isar_feature(aa64_bti, cpu)) {
974         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
975     }
976     if (!(flags & CPU_DUMP_FPU)) {
977         qemu_fprintf(f, "\n");
978         return;
979     }
980     if (fp_exception_el(env, el) != 0) {
981         qemu_fprintf(f, "    FPU disabled\n");
982         return;
983     }
984     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
985                  vfp_get_fpcr(env), vfp_get_fpsr(env));
986 
987     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
988         sve = sme_exception_el(env, el) == 0;
989     } else if (cpu_isar_feature(aa64_sve, cpu)) {
990         sve = sve_exception_el(env, el) == 0;
991     } else {
992         sve = false;
993     }
994 
995     if (sve) {
996         int j, zcr_len = sve_vqm1_for_el(env, el);
997 
998         for (i = 0; i <= FFR_PRED_NUM; i++) {
999             bool eol;
1000             if (i == FFR_PRED_NUM) {
1001                 qemu_fprintf(f, "FFR=");
1002                 /* It's last, so end the line.  */
1003                 eol = true;
1004             } else {
1005                 qemu_fprintf(f, "P%02d=", i);
1006                 switch (zcr_len) {
1007                 case 0:
1008                     eol = i % 8 == 7;
1009                     break;
1010                 case 1:
1011                     eol = i % 6 == 5;
1012                     break;
1013                 case 2:
1014                 case 3:
1015                     eol = i % 3 == 2;
1016                     break;
1017                 default:
1018                     /* More than one quadword per predicate.  */
1019                     eol = true;
1020                     break;
1021                 }
1022             }
1023             for (j = zcr_len / 4; j >= 0; j--) {
1024                 int digits;
1025                 if (j * 4 + 4 <= zcr_len + 1) {
1026                     digits = 16;
1027                 } else {
1028                     digits = (zcr_len % 4 + 1) * 4;
1029                 }
1030                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1031                              env->vfp.pregs[i].p[j],
1032                              j ? ":" : eol ? "\n" : " ");
1033             }
1034         }
1035 
1036         for (i = 0; i < 32; i++) {
1037             if (zcr_len == 0) {
1038                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1039                              i, env->vfp.zregs[i].d[1],
1040                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1041             } else if (zcr_len == 1) {
1042                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1043                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1044                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1045                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1046             } else {
1047                 for (j = zcr_len; j >= 0; j--) {
1048                     bool odd = (zcr_len - j) % 2 != 0;
1049                     if (j == zcr_len) {
1050                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1051                     } else if (!odd) {
1052                         if (j > 0) {
1053                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1054                         } else {
1055                             qemu_fprintf(f, "     [%x]=", j);
1056                         }
1057                     }
1058                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1059                                  env->vfp.zregs[i].d[j * 2 + 1],
1060                                  env->vfp.zregs[i].d[j * 2],
1061                                  odd || j == 0 ? "\n" : ":");
1062                 }
1063             }
1064         }
1065     } else {
1066         for (i = 0; i < 32; i++) {
1067             uint64_t *q = aa64_vfp_qreg(env, i);
1068             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1069                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1070         }
1071     }
1072 }
1073 
1074 #else
1075 
1076 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1077 {
1078     g_assert_not_reached();
1079 }
1080 
1081 #endif
1082 
1083 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1084 {
1085     ARMCPU *cpu = ARM_CPU(cs);
1086     CPUARMState *env = &cpu->env;
1087     int i;
1088 
1089     if (is_a64(env)) {
1090         aarch64_cpu_dump_state(cs, f, flags);
1091         return;
1092     }
1093 
1094     for (i = 0; i < 16; i++) {
1095         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1096         if ((i % 4) == 3) {
1097             qemu_fprintf(f, "\n");
1098         } else {
1099             qemu_fprintf(f, " ");
1100         }
1101     }
1102 
1103     if (arm_feature(env, ARM_FEATURE_M)) {
1104         uint32_t xpsr = xpsr_read(env);
1105         const char *mode;
1106         const char *ns_status = "";
1107 
1108         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1109             ns_status = env->v7m.secure ? "S " : "NS ";
1110         }
1111 
1112         if (xpsr & XPSR_EXCP) {
1113             mode = "handler";
1114         } else {
1115             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1116                 mode = "unpriv-thread";
1117             } else {
1118                 mode = "priv-thread";
1119             }
1120         }
1121 
1122         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1123                      xpsr,
1124                      xpsr & XPSR_N ? 'N' : '-',
1125                      xpsr & XPSR_Z ? 'Z' : '-',
1126                      xpsr & XPSR_C ? 'C' : '-',
1127                      xpsr & XPSR_V ? 'V' : '-',
1128                      xpsr & XPSR_T ? 'T' : 'A',
1129                      ns_status,
1130                      mode);
1131     } else {
1132         uint32_t psr = cpsr_read(env);
1133         const char *ns_status = "";
1134 
1135         if (arm_feature(env, ARM_FEATURE_EL3) &&
1136             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1137             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1138         }
1139 
1140         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1141                      psr,
1142                      psr & CPSR_N ? 'N' : '-',
1143                      psr & CPSR_Z ? 'Z' : '-',
1144                      psr & CPSR_C ? 'C' : '-',
1145                      psr & CPSR_V ? 'V' : '-',
1146                      psr & CPSR_T ? 'T' : 'A',
1147                      ns_status,
1148                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1149     }
1150 
1151     if (flags & CPU_DUMP_FPU) {
1152         int numvfpregs = 0;
1153         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1154             numvfpregs = 32;
1155         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1156             numvfpregs = 16;
1157         }
1158         for (i = 0; i < numvfpregs; i++) {
1159             uint64_t v = *aa32_vfp_dreg(env, i);
1160             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1161                          i * 2, (uint32_t)v,
1162                          i * 2 + 1, (uint32_t)(v >> 32),
1163                          i, v);
1164         }
1165         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1166         if (cpu_isar_feature(aa32_mve, cpu)) {
1167             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1168         }
1169     }
1170 }
1171 
1172 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1173 {
1174     uint32_t Aff1 = idx / clustersz;
1175     uint32_t Aff0 = idx % clustersz;
1176     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1177 }
1178 
1179 static void arm_cpu_initfn(Object *obj)
1180 {
1181     ARMCPU *cpu = ARM_CPU(obj);
1182 
1183     cpu_set_cpustate_pointers(cpu);
1184     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1185                                          NULL, g_free);
1186 
1187     QLIST_INIT(&cpu->pre_el_change_hooks);
1188     QLIST_INIT(&cpu->el_change_hooks);
1189 
1190 #ifdef CONFIG_USER_ONLY
1191 # ifdef TARGET_AARCH64
1192     /*
1193      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1194      * These values were chosen to fit within the default signal frame.
1195      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1196      * and our corresponding cpu property.
1197      */
1198     cpu->sve_default_vq = 4;
1199     cpu->sme_default_vq = 2;
1200 # endif
1201 #else
1202     /* Our inbound IRQ and FIQ lines */
1203     if (kvm_enabled()) {
1204         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1205          * the same interface as non-KVM CPUs.
1206          */
1207         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1208     } else {
1209         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1210     }
1211 
1212     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1213                        ARRAY_SIZE(cpu->gt_timer_outputs));
1214 
1215     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1216                              "gicv3-maintenance-interrupt", 1);
1217     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1218                              "pmu-interrupt", 1);
1219 #endif
1220 
1221     /* DTB consumers generally don't in fact care what the 'compatible'
1222      * string is, so always provide some string and trust that a hypothetical
1223      * picky DTB consumer will also provide a helpful error message.
1224      */
1225     cpu->dtb_compatible = "qemu,unknown";
1226     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1227     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1228 
1229     if (tcg_enabled() || hvf_enabled()) {
1230         /* TCG and HVF implement PSCI 1.1 */
1231         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1232     }
1233 }
1234 
1235 static Property arm_cpu_gt_cntfrq_property =
1236             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1237                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1238 
1239 static Property arm_cpu_reset_cbar_property =
1240             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1241 
1242 static Property arm_cpu_reset_hivecs_property =
1243             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1244 
1245 #ifndef CONFIG_USER_ONLY
1246 static Property arm_cpu_has_el2_property =
1247             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1248 
1249 static Property arm_cpu_has_el3_property =
1250             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1251 #endif
1252 
1253 static Property arm_cpu_cfgend_property =
1254             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1255 
1256 static Property arm_cpu_has_vfp_property =
1257             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1258 
1259 static Property arm_cpu_has_neon_property =
1260             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1261 
1262 static Property arm_cpu_has_dsp_property =
1263             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1264 
1265 static Property arm_cpu_has_mpu_property =
1266             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1267 
1268 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1269  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1270  * the right value for that particular CPU type, and we don't want
1271  * to override that with an incorrect constant value.
1272  */
1273 static Property arm_cpu_pmsav7_dregion_property =
1274             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1275                                            pmsav7_dregion,
1276                                            qdev_prop_uint32, uint32_t);
1277 
1278 static bool arm_get_pmu(Object *obj, Error **errp)
1279 {
1280     ARMCPU *cpu = ARM_CPU(obj);
1281 
1282     return cpu->has_pmu;
1283 }
1284 
1285 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1286 {
1287     ARMCPU *cpu = ARM_CPU(obj);
1288 
1289     if (value) {
1290         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1291             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1292             return;
1293         }
1294         set_feature(&cpu->env, ARM_FEATURE_PMU);
1295     } else {
1296         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1297     }
1298     cpu->has_pmu = value;
1299 }
1300 
1301 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1302 {
1303     /*
1304      * The exact approach to calculating guest ticks is:
1305      *
1306      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1307      *              NANOSECONDS_PER_SECOND);
1308      *
1309      * We don't do that. Rather we intentionally use integer division
1310      * truncation below and in the caller for the conversion of host monotonic
1311      * time to guest ticks to provide the exact inverse for the semantics of
1312      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1313      * it loses precision when representing frequencies where
1314      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1315      * provide an exact inverse leads to scheduling timers with negative
1316      * periods, which in turn leads to sticky behaviour in the guest.
1317      *
1318      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1319      * cannot become zero.
1320      */
1321     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1322       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1323 }
1324 
1325 void arm_cpu_post_init(Object *obj)
1326 {
1327     ARMCPU *cpu = ARM_CPU(obj);
1328 
1329     /* M profile implies PMSA. We have to do this here rather than
1330      * in realize with the other feature-implication checks because
1331      * we look at the PMSA bit to see if we should add some properties.
1332      */
1333     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1334         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1335     }
1336 
1337     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1338         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1339         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1340     }
1341 
1342     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1343         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1344     }
1345 
1346     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1347         object_property_add_uint64_ptr(obj, "rvbar",
1348                                        &cpu->rvbar_prop,
1349                                        OBJ_PROP_FLAG_READWRITE);
1350     }
1351 
1352 #ifndef CONFIG_USER_ONLY
1353     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1354         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1355          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1356          */
1357         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1358 
1359         object_property_add_link(obj, "secure-memory",
1360                                  TYPE_MEMORY_REGION,
1361                                  (Object **)&cpu->secure_memory,
1362                                  qdev_prop_allow_set_link_before_realize,
1363                                  OBJ_PROP_LINK_STRONG);
1364     }
1365 
1366     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1367         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1368     }
1369 #endif
1370 
1371     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1372         cpu->has_pmu = true;
1373         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1374     }
1375 
1376     /*
1377      * Allow user to turn off VFP and Neon support, but only for TCG --
1378      * KVM does not currently allow us to lie to the guest about its
1379      * ID/feature registers, so the guest always sees what the host has.
1380      */
1381     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1382         ? cpu_isar_feature(aa64_fp_simd, cpu)
1383         : cpu_isar_feature(aa32_vfp, cpu)) {
1384         cpu->has_vfp = true;
1385         if (!kvm_enabled()) {
1386             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1387         }
1388     }
1389 
1390     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1391         cpu->has_neon = true;
1392         if (!kvm_enabled()) {
1393             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1394         }
1395     }
1396 
1397     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1398         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1399         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1400     }
1401 
1402     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1403         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1404         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1405             qdev_property_add_static(DEVICE(obj),
1406                                      &arm_cpu_pmsav7_dregion_property);
1407         }
1408     }
1409 
1410     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1411         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1412                                  qdev_prop_allow_set_link_before_realize,
1413                                  OBJ_PROP_LINK_STRONG);
1414         /*
1415          * M profile: initial value of the Secure VTOR. We can't just use
1416          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1417          * the property to be set after realize.
1418          */
1419         object_property_add_uint32_ptr(obj, "init-svtor",
1420                                        &cpu->init_svtor,
1421                                        OBJ_PROP_FLAG_READWRITE);
1422     }
1423     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1424         /*
1425          * Initial value of the NS VTOR (for cores without the Security
1426          * extension, this is the only VTOR)
1427          */
1428         object_property_add_uint32_ptr(obj, "init-nsvtor",
1429                                        &cpu->init_nsvtor,
1430                                        OBJ_PROP_FLAG_READWRITE);
1431     }
1432 
1433     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1434     object_property_add_uint32_ptr(obj, "psci-conduit",
1435                                    &cpu->psci_conduit,
1436                                    OBJ_PROP_FLAG_READWRITE);
1437 
1438     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1439 
1440     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1441         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1442     }
1443 
1444     if (kvm_enabled()) {
1445         kvm_arm_add_vcpu_properties(obj);
1446     }
1447 
1448 #ifndef CONFIG_USER_ONLY
1449     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1450         cpu_isar_feature(aa64_mte, cpu)) {
1451         object_property_add_link(obj, "tag-memory",
1452                                  TYPE_MEMORY_REGION,
1453                                  (Object **)&cpu->tag_memory,
1454                                  qdev_prop_allow_set_link_before_realize,
1455                                  OBJ_PROP_LINK_STRONG);
1456 
1457         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1458             object_property_add_link(obj, "secure-tag-memory",
1459                                      TYPE_MEMORY_REGION,
1460                                      (Object **)&cpu->secure_tag_memory,
1461                                      qdev_prop_allow_set_link_before_realize,
1462                                      OBJ_PROP_LINK_STRONG);
1463         }
1464     }
1465 #endif
1466 }
1467 
1468 static void arm_cpu_finalizefn(Object *obj)
1469 {
1470     ARMCPU *cpu = ARM_CPU(obj);
1471     ARMELChangeHook *hook, *next;
1472 
1473     g_hash_table_destroy(cpu->cp_regs);
1474 
1475     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1476         QLIST_REMOVE(hook, node);
1477         g_free(hook);
1478     }
1479     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1480         QLIST_REMOVE(hook, node);
1481         g_free(hook);
1482     }
1483 #ifndef CONFIG_USER_ONLY
1484     if (cpu->pmu_timer) {
1485         timer_free(cpu->pmu_timer);
1486     }
1487 #endif
1488 }
1489 
1490 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1491 {
1492     Error *local_err = NULL;
1493 
1494 #ifdef TARGET_AARCH64
1495     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1496         arm_cpu_sve_finalize(cpu, &local_err);
1497         if (local_err != NULL) {
1498             error_propagate(errp, local_err);
1499             return;
1500         }
1501 
1502         arm_cpu_sme_finalize(cpu, &local_err);
1503         if (local_err != NULL) {
1504             error_propagate(errp, local_err);
1505             return;
1506         }
1507 
1508         arm_cpu_pauth_finalize(cpu, &local_err);
1509         if (local_err != NULL) {
1510             error_propagate(errp, local_err);
1511             return;
1512         }
1513 
1514         arm_cpu_lpa2_finalize(cpu, &local_err);
1515         if (local_err != NULL) {
1516             error_propagate(errp, local_err);
1517             return;
1518         }
1519     }
1520 #endif
1521 
1522     if (kvm_enabled()) {
1523         kvm_arm_steal_time_finalize(cpu, &local_err);
1524         if (local_err != NULL) {
1525             error_propagate(errp, local_err);
1526             return;
1527         }
1528     }
1529 }
1530 
1531 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1532 {
1533     CPUState *cs = CPU(dev);
1534     ARMCPU *cpu = ARM_CPU(dev);
1535     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1536     CPUARMState *env = &cpu->env;
1537     int pagebits;
1538     Error *local_err = NULL;
1539     bool no_aa32 = false;
1540 
1541     /* If we needed to query the host kernel for the CPU features
1542      * then it's possible that might have failed in the initfn, but
1543      * this is the first point where we can report it.
1544      */
1545     if (cpu->host_cpu_probe_failed) {
1546         if (!kvm_enabled() && !hvf_enabled()) {
1547             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1548         } else {
1549             error_setg(errp, "Failed to retrieve host CPU features");
1550         }
1551         return;
1552     }
1553 
1554 #ifndef CONFIG_USER_ONLY
1555     /* The NVIC and M-profile CPU are two halves of a single piece of
1556      * hardware; trying to use one without the other is a command line
1557      * error and will result in segfaults if not caught here.
1558      */
1559     if (arm_feature(env, ARM_FEATURE_M)) {
1560         if (!env->nvic) {
1561             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1562             return;
1563         }
1564     } else {
1565         if (env->nvic) {
1566             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1567             return;
1568         }
1569     }
1570 
1571     if (!tcg_enabled() && !qtest_enabled()) {
1572         /*
1573          * We assume that no accelerator except TCG (and the "not really an
1574          * accelerator" qtest) can handle these features, because Arm hardware
1575          * virtualization can't virtualize them.
1576          *
1577          * Catch all the cases which might cause us to create more than one
1578          * address space for the CPU (otherwise we will assert() later in
1579          * cpu_address_space_init()).
1580          */
1581         if (arm_feature(env, ARM_FEATURE_M)) {
1582             error_setg(errp,
1583                        "Cannot enable %s when using an M-profile guest CPU",
1584                        current_accel_name());
1585             return;
1586         }
1587         if (cpu->has_el3) {
1588             error_setg(errp,
1589                        "Cannot enable %s when guest CPU has EL3 enabled",
1590                        current_accel_name());
1591             return;
1592         }
1593         if (cpu->tag_memory) {
1594             error_setg(errp,
1595                        "Cannot enable %s when guest CPUs has MTE enabled",
1596                        current_accel_name());
1597             return;
1598         }
1599     }
1600 
1601     {
1602         uint64_t scale;
1603 
1604         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1605             if (!cpu->gt_cntfrq_hz) {
1606                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1607                            cpu->gt_cntfrq_hz);
1608                 return;
1609             }
1610             scale = gt_cntfrq_period_ns(cpu);
1611         } else {
1612             scale = GTIMER_SCALE;
1613         }
1614 
1615         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1616                                                arm_gt_ptimer_cb, cpu);
1617         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1618                                                arm_gt_vtimer_cb, cpu);
1619         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1620                                               arm_gt_htimer_cb, cpu);
1621         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1622                                               arm_gt_stimer_cb, cpu);
1623         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1624                                                   arm_gt_hvtimer_cb, cpu);
1625     }
1626 #endif
1627 
1628     cpu_exec_realizefn(cs, &local_err);
1629     if (local_err != NULL) {
1630         error_propagate(errp, local_err);
1631         return;
1632     }
1633 
1634     arm_cpu_finalize_features(cpu, &local_err);
1635     if (local_err != NULL) {
1636         error_propagate(errp, local_err);
1637         return;
1638     }
1639 
1640     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1641         cpu->has_vfp != cpu->has_neon) {
1642         /*
1643          * This is an architectural requirement for AArch64; AArch32 is
1644          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1645          */
1646         error_setg(errp,
1647                    "AArch64 CPUs must have both VFP and Neon or neither");
1648         return;
1649     }
1650 
1651     if (!cpu->has_vfp) {
1652         uint64_t t;
1653         uint32_t u;
1654 
1655         t = cpu->isar.id_aa64isar1;
1656         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1657         cpu->isar.id_aa64isar1 = t;
1658 
1659         t = cpu->isar.id_aa64pfr0;
1660         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1661         cpu->isar.id_aa64pfr0 = t;
1662 
1663         u = cpu->isar.id_isar6;
1664         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1665         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1666         cpu->isar.id_isar6 = u;
1667 
1668         u = cpu->isar.mvfr0;
1669         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1670         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1671         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1672         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1673         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1674         if (!arm_feature(env, ARM_FEATURE_M)) {
1675             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1676             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1677         }
1678         cpu->isar.mvfr0 = u;
1679 
1680         u = cpu->isar.mvfr1;
1681         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1682         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1683         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1684         if (arm_feature(env, ARM_FEATURE_M)) {
1685             u = FIELD_DP32(u, MVFR1, FP16, 0);
1686         }
1687         cpu->isar.mvfr1 = u;
1688 
1689         u = cpu->isar.mvfr2;
1690         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1691         cpu->isar.mvfr2 = u;
1692     }
1693 
1694     if (!cpu->has_neon) {
1695         uint64_t t;
1696         uint32_t u;
1697 
1698         unset_feature(env, ARM_FEATURE_NEON);
1699 
1700         t = cpu->isar.id_aa64isar0;
1701         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1702         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1703         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1704         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1705         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1706         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1707         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1708         cpu->isar.id_aa64isar0 = t;
1709 
1710         t = cpu->isar.id_aa64isar1;
1711         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1712         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1713         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1714         cpu->isar.id_aa64isar1 = t;
1715 
1716         t = cpu->isar.id_aa64pfr0;
1717         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1718         cpu->isar.id_aa64pfr0 = t;
1719 
1720         u = cpu->isar.id_isar5;
1721         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1722         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1723         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1724         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1725         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1726         cpu->isar.id_isar5 = u;
1727 
1728         u = cpu->isar.id_isar6;
1729         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1730         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1731         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1732         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1733         cpu->isar.id_isar6 = u;
1734 
1735         if (!arm_feature(env, ARM_FEATURE_M)) {
1736             u = cpu->isar.mvfr1;
1737             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1738             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1739             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1740             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1741             cpu->isar.mvfr1 = u;
1742 
1743             u = cpu->isar.mvfr2;
1744             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1745             cpu->isar.mvfr2 = u;
1746         }
1747     }
1748 
1749     if (!cpu->has_neon && !cpu->has_vfp) {
1750         uint64_t t;
1751         uint32_t u;
1752 
1753         t = cpu->isar.id_aa64isar0;
1754         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1755         cpu->isar.id_aa64isar0 = t;
1756 
1757         t = cpu->isar.id_aa64isar1;
1758         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1759         cpu->isar.id_aa64isar1 = t;
1760 
1761         u = cpu->isar.mvfr0;
1762         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1763         cpu->isar.mvfr0 = u;
1764 
1765         /* Despite the name, this field covers both VFP and Neon */
1766         u = cpu->isar.mvfr1;
1767         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1768         cpu->isar.mvfr1 = u;
1769     }
1770 
1771     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1772         uint32_t u;
1773 
1774         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1775 
1776         u = cpu->isar.id_isar1;
1777         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1778         cpu->isar.id_isar1 = u;
1779 
1780         u = cpu->isar.id_isar2;
1781         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1782         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1783         cpu->isar.id_isar2 = u;
1784 
1785         u = cpu->isar.id_isar3;
1786         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1787         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1788         cpu->isar.id_isar3 = u;
1789     }
1790 
1791     /* Some features automatically imply others: */
1792     if (arm_feature(env, ARM_FEATURE_V8)) {
1793         if (arm_feature(env, ARM_FEATURE_M)) {
1794             set_feature(env, ARM_FEATURE_V7);
1795         } else {
1796             set_feature(env, ARM_FEATURE_V7VE);
1797         }
1798     }
1799 
1800     /*
1801      * There exist AArch64 cpus without AArch32 support.  When KVM
1802      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1803      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1804      * As a general principle, we also do not make ID register
1805      * consistency checks anywhere unless using TCG, because only
1806      * for TCG would a consistency-check failure be a QEMU bug.
1807      */
1808     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1809         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1810     }
1811 
1812     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1813         /* v7 Virtualization Extensions. In real hardware this implies
1814          * EL2 and also the presence of the Security Extensions.
1815          * For QEMU, for backwards-compatibility we implement some
1816          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1817          * include the various other features that V7VE implies.
1818          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1819          * Security Extensions is ARM_FEATURE_EL3.
1820          */
1821         assert(!tcg_enabled() || no_aa32 ||
1822                cpu_isar_feature(aa32_arm_div, cpu));
1823         set_feature(env, ARM_FEATURE_LPAE);
1824         set_feature(env, ARM_FEATURE_V7);
1825     }
1826     if (arm_feature(env, ARM_FEATURE_V7)) {
1827         set_feature(env, ARM_FEATURE_VAPA);
1828         set_feature(env, ARM_FEATURE_THUMB2);
1829         set_feature(env, ARM_FEATURE_MPIDR);
1830         if (!arm_feature(env, ARM_FEATURE_M)) {
1831             set_feature(env, ARM_FEATURE_V6K);
1832         } else {
1833             set_feature(env, ARM_FEATURE_V6);
1834         }
1835 
1836         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1837          * non-EL3 configs. This is needed by some legacy boards.
1838          */
1839         set_feature(env, ARM_FEATURE_VBAR);
1840     }
1841     if (arm_feature(env, ARM_FEATURE_V6K)) {
1842         set_feature(env, ARM_FEATURE_V6);
1843         set_feature(env, ARM_FEATURE_MVFR);
1844     }
1845     if (arm_feature(env, ARM_FEATURE_V6)) {
1846         set_feature(env, ARM_FEATURE_V5);
1847         if (!arm_feature(env, ARM_FEATURE_M)) {
1848             assert(!tcg_enabled() || no_aa32 ||
1849                    cpu_isar_feature(aa32_jazelle, cpu));
1850             set_feature(env, ARM_FEATURE_AUXCR);
1851         }
1852     }
1853     if (arm_feature(env, ARM_FEATURE_V5)) {
1854         set_feature(env, ARM_FEATURE_V4T);
1855     }
1856     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1857         set_feature(env, ARM_FEATURE_V7MP);
1858     }
1859     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1860         set_feature(env, ARM_FEATURE_CBAR);
1861     }
1862     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1863         !arm_feature(env, ARM_FEATURE_M)) {
1864         set_feature(env, ARM_FEATURE_THUMB_DSP);
1865     }
1866 
1867     /*
1868      * We rely on no XScale CPU having VFP so we can use the same bits in the
1869      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1870      */
1871     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1872            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1873            !arm_feature(env, ARM_FEATURE_XSCALE));
1874 
1875     if (arm_feature(env, ARM_FEATURE_V7) &&
1876         !arm_feature(env, ARM_FEATURE_M) &&
1877         !arm_feature(env, ARM_FEATURE_PMSA)) {
1878         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1879          * can use 4K pages.
1880          */
1881         pagebits = 12;
1882     } else {
1883         /* For CPUs which might have tiny 1K pages, or which have an
1884          * MPU and might have small region sizes, stick with 1K pages.
1885          */
1886         pagebits = 10;
1887     }
1888     if (!set_preferred_target_page_bits(pagebits)) {
1889         /* This can only ever happen for hotplugging a CPU, or if
1890          * the board code incorrectly creates a CPU which it has
1891          * promised via minimum_page_size that it will not.
1892          */
1893         error_setg(errp, "This CPU requires a smaller page size than the "
1894                    "system is using");
1895         return;
1896     }
1897 
1898     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1899      * We don't support setting cluster ID ([16..23]) (known as Aff2
1900      * in later ARM ARM versions), or any of the higher affinity level fields,
1901      * so these bits always RAZ.
1902      */
1903     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1904         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1905                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1906     }
1907 
1908     if (cpu->reset_hivecs) {
1909             cpu->reset_sctlr |= (1 << 13);
1910     }
1911 
1912     if (cpu->cfgend) {
1913         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1914             cpu->reset_sctlr |= SCTLR_EE;
1915         } else {
1916             cpu->reset_sctlr |= SCTLR_B;
1917         }
1918     }
1919 
1920     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1921         /* If the has_el3 CPU property is disabled then we need to disable the
1922          * feature.
1923          */
1924         unset_feature(env, ARM_FEATURE_EL3);
1925 
1926         /*
1927          * Disable the security extension feature bits in the processor
1928          * feature registers as well.
1929          */
1930         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1931         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1932         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1933                                            ID_AA64PFR0, EL3, 0);
1934     }
1935 
1936     if (!cpu->has_el2) {
1937         unset_feature(env, ARM_FEATURE_EL2);
1938     }
1939 
1940     if (!cpu->has_pmu) {
1941         unset_feature(env, ARM_FEATURE_PMU);
1942     }
1943     if (arm_feature(env, ARM_FEATURE_PMU)) {
1944         pmu_init(cpu);
1945 
1946         if (!kvm_enabled()) {
1947             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1948             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1949         }
1950 
1951 #ifndef CONFIG_USER_ONLY
1952         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1953                 cpu);
1954 #endif
1955     } else {
1956         cpu->isar.id_aa64dfr0 =
1957             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1958         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1959         cpu->pmceid0 = 0;
1960         cpu->pmceid1 = 0;
1961     }
1962 
1963     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1964         /*
1965          * Disable the hypervisor feature bits in the processor feature
1966          * registers if we don't have EL2.
1967          */
1968         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1969                                            ID_AA64PFR0, EL2, 0);
1970         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1971                                        ID_PFR1, VIRTUALIZATION, 0);
1972     }
1973 
1974 #ifndef CONFIG_USER_ONLY
1975     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1976         /*
1977          * Disable the MTE feature bits if we do not have tag-memory
1978          * provided by the machine.
1979          */
1980         cpu->isar.id_aa64pfr1 =
1981             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1982     }
1983 #endif
1984 
1985     if (tcg_enabled()) {
1986         /*
1987          * Don't report the Statistical Profiling Extension in the ID
1988          * registers, because TCG doesn't implement it yet (not even a
1989          * minimal stub version) and guests will fall over when they
1990          * try to access the non-existent system registers for it.
1991          */
1992         cpu->isar.id_aa64dfr0 =
1993             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
1994     }
1995 
1996     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1997      * to false or by setting pmsav7-dregion to 0.
1998      */
1999     if (!cpu->has_mpu) {
2000         cpu->pmsav7_dregion = 0;
2001     }
2002     if (cpu->pmsav7_dregion == 0) {
2003         cpu->has_mpu = false;
2004     }
2005 
2006     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2007         arm_feature(env, ARM_FEATURE_V7)) {
2008         uint32_t nr = cpu->pmsav7_dregion;
2009 
2010         if (nr > 0xff) {
2011             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2012             return;
2013         }
2014 
2015         if (nr) {
2016             if (arm_feature(env, ARM_FEATURE_V8)) {
2017                 /* PMSAv8 */
2018                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2019                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2020                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2021                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2022                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2023                 }
2024             } else {
2025                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2026                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2027                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2028             }
2029         }
2030     }
2031 
2032     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2033         uint32_t nr = cpu->sau_sregion;
2034 
2035         if (nr > 0xff) {
2036             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2037             return;
2038         }
2039 
2040         if (nr) {
2041             env->sau.rbar = g_new0(uint32_t, nr);
2042             env->sau.rlar = g_new0(uint32_t, nr);
2043         }
2044     }
2045 
2046     if (arm_feature(env, ARM_FEATURE_EL3)) {
2047         set_feature(env, ARM_FEATURE_VBAR);
2048     }
2049 
2050     register_cp_regs_for_features(cpu);
2051     arm_cpu_register_gdb_regs_for_features(cpu);
2052 
2053     init_cpreg_list(cpu);
2054 
2055 #ifndef CONFIG_USER_ONLY
2056     MachineState *ms = MACHINE(qdev_get_machine());
2057     unsigned int smp_cpus = ms->smp.cpus;
2058     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2059 
2060     /*
2061      * We must set cs->num_ases to the final value before
2062      * the first call to cpu_address_space_init.
2063      */
2064     if (cpu->tag_memory != NULL) {
2065         cs->num_ases = 3 + has_secure;
2066     } else {
2067         cs->num_ases = 1 + has_secure;
2068     }
2069 
2070     if (has_secure) {
2071         if (!cpu->secure_memory) {
2072             cpu->secure_memory = cs->memory;
2073         }
2074         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2075                                cpu->secure_memory);
2076     }
2077 
2078     if (cpu->tag_memory != NULL) {
2079         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2080                                cpu->tag_memory);
2081         if (has_secure) {
2082             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2083                                    cpu->secure_tag_memory);
2084         }
2085     }
2086 
2087     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2088 
2089     /* No core_count specified, default to smp_cpus. */
2090     if (cpu->core_count == -1) {
2091         cpu->core_count = smp_cpus;
2092     }
2093 #endif
2094 
2095     if (tcg_enabled()) {
2096         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2097 
2098         /*
2099          * We only support DCZ blocklen that fits on one page.
2100          *
2101          * Architectually this is always true.  However TARGET_PAGE_SIZE
2102          * is variable and, for compatibility with -machine virt-2.7,
2103          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2104          * But even then, while the largest architectural DCZ blocklen
2105          * is 2KiB, no cpu actually uses such a large blocklen.
2106          */
2107         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2108 
2109         /*
2110          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2111          * both nibbles of each byte storing tag data may be written at once.
2112          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2113          */
2114         if (cpu_isar_feature(aa64_mte, cpu)) {
2115             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2116         }
2117     }
2118 
2119     qemu_init_vcpu(cs);
2120     cpu_reset(cs);
2121 
2122     acc->parent_realize(dev, errp);
2123 }
2124 
2125 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2126 {
2127     ObjectClass *oc;
2128     char *typename;
2129     char **cpuname;
2130     const char *cpunamestr;
2131 
2132     cpuname = g_strsplit(cpu_model, ",", 1);
2133     cpunamestr = cpuname[0];
2134 #ifdef CONFIG_USER_ONLY
2135     /* For backwards compatibility usermode emulation allows "-cpu any",
2136      * which has the same semantics as "-cpu max".
2137      */
2138     if (!strcmp(cpunamestr, "any")) {
2139         cpunamestr = "max";
2140     }
2141 #endif
2142     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2143     oc = object_class_by_name(typename);
2144     g_strfreev(cpuname);
2145     g_free(typename);
2146     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2147         object_class_is_abstract(oc)) {
2148         return NULL;
2149     }
2150     return oc;
2151 }
2152 
2153 static Property arm_cpu_properties[] = {
2154     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2155     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2156                         mp_affinity, ARM64_AFFINITY_INVALID),
2157     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2158     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2159     DEFINE_PROP_END_OF_LIST()
2160 };
2161 
2162 static gchar *arm_gdb_arch_name(CPUState *cs)
2163 {
2164     ARMCPU *cpu = ARM_CPU(cs);
2165     CPUARMState *env = &cpu->env;
2166 
2167     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2168         return g_strdup("iwmmxt");
2169     }
2170     return g_strdup("arm");
2171 }
2172 
2173 #ifndef CONFIG_USER_ONLY
2174 #include "hw/core/sysemu-cpu-ops.h"
2175 
2176 static const struct SysemuCPUOps arm_sysemu_ops = {
2177     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2178     .asidx_from_attrs = arm_asidx_from_attrs,
2179     .write_elf32_note = arm_cpu_write_elf32_note,
2180     .write_elf64_note = arm_cpu_write_elf64_note,
2181     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2182     .legacy_vmsd = &vmstate_arm_cpu,
2183 };
2184 #endif
2185 
2186 #ifdef CONFIG_TCG
2187 static const struct TCGCPUOps arm_tcg_ops = {
2188     .initialize = arm_translate_init,
2189     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2190     .debug_excp_handler = arm_debug_excp_handler,
2191     .restore_state_to_opc = arm_restore_state_to_opc,
2192 
2193 #ifdef CONFIG_USER_ONLY
2194     .record_sigsegv = arm_cpu_record_sigsegv,
2195     .record_sigbus = arm_cpu_record_sigbus,
2196 #else
2197     .tlb_fill = arm_cpu_tlb_fill,
2198     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2199     .do_interrupt = arm_cpu_do_interrupt,
2200     .do_transaction_failed = arm_cpu_do_transaction_failed,
2201     .do_unaligned_access = arm_cpu_do_unaligned_access,
2202     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2203     .debug_check_watchpoint = arm_debug_check_watchpoint,
2204     .debug_check_breakpoint = arm_debug_check_breakpoint,
2205 #endif /* !CONFIG_USER_ONLY */
2206 };
2207 #endif /* CONFIG_TCG */
2208 
2209 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2210 {
2211     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2212     CPUClass *cc = CPU_CLASS(acc);
2213     DeviceClass *dc = DEVICE_CLASS(oc);
2214 
2215     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2216                                     &acc->parent_realize);
2217 
2218     device_class_set_props(dc, arm_cpu_properties);
2219     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2220 
2221     cc->class_by_name = arm_cpu_class_by_name;
2222     cc->has_work = arm_cpu_has_work;
2223     cc->dump_state = arm_cpu_dump_state;
2224     cc->set_pc = arm_cpu_set_pc;
2225     cc->get_pc = arm_cpu_get_pc;
2226     cc->gdb_read_register = arm_cpu_gdb_read_register;
2227     cc->gdb_write_register = arm_cpu_gdb_write_register;
2228 #ifndef CONFIG_USER_ONLY
2229     cc->sysemu_ops = &arm_sysemu_ops;
2230 #endif
2231     cc->gdb_num_core_regs = 26;
2232     cc->gdb_core_xml_file = "arm-core.xml";
2233     cc->gdb_arch_name = arm_gdb_arch_name;
2234     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2235     cc->gdb_stop_before_watchpoint = true;
2236     cc->disas_set_info = arm_disas_set_info;
2237 
2238 #ifdef CONFIG_TCG
2239     cc->tcg_ops = &arm_tcg_ops;
2240 #endif /* CONFIG_TCG */
2241 }
2242 
2243 static void arm_cpu_instance_init(Object *obj)
2244 {
2245     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2246 
2247     acc->info->initfn(obj);
2248     arm_cpu_post_init(obj);
2249 }
2250 
2251 static void cpu_register_class_init(ObjectClass *oc, void *data)
2252 {
2253     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2254 
2255     acc->info = data;
2256 }
2257 
2258 void arm_cpu_register(const ARMCPUInfo *info)
2259 {
2260     TypeInfo type_info = {
2261         .parent = TYPE_ARM_CPU,
2262         .instance_size = sizeof(ARMCPU),
2263         .instance_align = __alignof__(ARMCPU),
2264         .instance_init = arm_cpu_instance_init,
2265         .class_size = sizeof(ARMCPUClass),
2266         .class_init = info->class_init ?: cpu_register_class_init,
2267         .class_data = (void *)info,
2268     };
2269 
2270     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2271     type_register(&type_info);
2272     g_free((void *)type_info.name);
2273 }
2274 
2275 static const TypeInfo arm_cpu_type_info = {
2276     .name = TYPE_ARM_CPU,
2277     .parent = TYPE_CPU,
2278     .instance_size = sizeof(ARMCPU),
2279     .instance_align = __alignof__(ARMCPU),
2280     .instance_init = arm_cpu_initfn,
2281     .instance_finalize = arm_cpu_finalizefn,
2282     .abstract = true,
2283     .class_size = sizeof(ARMCPUClass),
2284     .class_init = arm_cpu_class_init,
2285 };
2286 
2287 static void arm_cpu_register_types(void)
2288 {
2289     type_register_static(&arm_cpu_type_info);
2290 }
2291 
2292 type_init(arm_cpu_register_types)
2293