xref: /qemu/target/arm/cpu.c (revision e1ecf8c8)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 /* CPUClass::reset() */
159 static void arm_cpu_reset(CPUState *s)
160 {
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(s);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
178     s->halted = cpu->start_powered_off;
179 
180     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
181         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182     }
183 
184     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
185         /* 64 bit CPUs always start in 64 bit mode */
186         env->aarch64 = 1;
187 #if defined(CONFIG_USER_ONLY)
188         env->pstate = PSTATE_MODE_EL0t;
189         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
190         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
191         /* Enable all PAC keys.  */
192         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
193                                   SCTLR_EnDA | SCTLR_EnDB);
194         /* Enable all PAC instructions */
195         env->cp15.hcr_el2 |= HCR_API;
196         env->cp15.scr_el3 |= SCR_API;
197         /* and to the FP/Neon instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
199         /* and to the SVE instructions */
200         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
201         env->cp15.cptr_el[3] |= CPTR_EZ;
202         /* with maximum vector length */
203         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
204         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
205         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
206         /*
207          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
208          * turning on both here will produce smaller code and otherwise
209          * make no difference to the user-level emulation.
210          */
211         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
212 #else
213         /* Reset into the highest available EL */
214         if (arm_feature(env, ARM_FEATURE_EL3)) {
215             env->pstate = PSTATE_MODE_EL3h;
216         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
217             env->pstate = PSTATE_MODE_EL2h;
218         } else {
219             env->pstate = PSTATE_MODE_EL1h;
220         }
221         env->pc = cpu->rvbar;
222 #endif
223     } else {
224 #if defined(CONFIG_USER_ONLY)
225         /* Userspace expects access to cp10 and cp11 for FP/Neon */
226         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
227 #endif
228     }
229 
230 #if defined(CONFIG_USER_ONLY)
231     env->uncached_cpsr = ARM_CPU_MODE_USR;
232     /* For user mode we must enable access to coprocessors */
233     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
234     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
235         env->cp15.c15_cpar = 3;
236     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
237         env->cp15.c15_cpar = 1;
238     }
239 #else
240 
241     /*
242      * If the highest available EL is EL2, AArch32 will start in Hyp
243      * mode; otherwise it starts in SVC. Note that if we start in
244      * AArch64 then these values in the uncached_cpsr will be ignored.
245      */
246     if (arm_feature(env, ARM_FEATURE_EL2) &&
247         !arm_feature(env, ARM_FEATURE_EL3)) {
248         env->uncached_cpsr = ARM_CPU_MODE_HYP;
249     } else {
250         env->uncached_cpsr = ARM_CPU_MODE_SVC;
251     }
252     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
253 
254     if (arm_feature(env, ARM_FEATURE_M)) {
255         uint32_t initial_msp; /* Loaded from 0x0 */
256         uint32_t initial_pc; /* Loaded from 0x4 */
257         uint8_t *rom;
258         uint32_t vecbase;
259 
260         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
261             env->v7m.secure = true;
262         } else {
263             /* This bit resets to 0 if security is supported, but 1 if
264              * it is not. The bit is not present in v7M, but we set it
265              * here so we can avoid having to make checks on it conditional
266              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
267              */
268             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269             /*
270              * Set NSACR to indicate "NS access permitted to everything";
271              * this avoids having to have all the tests of it being
272              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
273              * v8.1M the guest-visible value of NSACR in a CPU without the
274              * Security Extension is 0xcff.
275              */
276             env->v7m.nsacr = 0xcff;
277         }
278 
279         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
280          * that it resets to 1, so QEMU always does that rather than making
281          * it dependent on CPU model. In v8M it is RES1.
282          */
283         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
284         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
285         if (arm_feature(env, ARM_FEATURE_V8)) {
286             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
287             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
288             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
289         }
290         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
291             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
292             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
293         }
294 
295         if (arm_feature(env, ARM_FEATURE_VFP)) {
296             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
297             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
298                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
299         }
300         /* Unlike A/R profile, M profile defines the reset LR value */
301         env->regs[14] = 0xffffffff;
302 
303         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
304 
305         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
306         vecbase = env->v7m.vecbase[env->v7m.secure];
307         rom = rom_ptr(vecbase, 8);
308         if (rom) {
309             /* Address zero is covered by ROM which hasn't yet been
310              * copied into physical memory.
311              */
312             initial_msp = ldl_p(rom);
313             initial_pc = ldl_p(rom + 4);
314         } else {
315             /* Address zero not covered by a ROM blob, or the ROM blob
316              * is in non-modifiable memory and this is a second reset after
317              * it got copied into memory. In the latter case, rom_ptr
318              * will return a NULL pointer and we should use ldl_phys instead.
319              */
320             initial_msp = ldl_phys(s->as, vecbase);
321             initial_pc = ldl_phys(s->as, vecbase + 4);
322         }
323 
324         env->regs[13] = initial_msp & 0xFFFFFFFC;
325         env->regs[15] = initial_pc & ~1;
326         env->thumb = initial_pc & 1;
327     }
328 
329     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
330      * executing as AArch32 then check if highvecs are enabled and
331      * adjust the PC accordingly.
332      */
333     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
334         env->regs[15] = 0xFFFF0000;
335     }
336 
337     /* M profile requires that reset clears the exclusive monitor;
338      * A profile does not, but clearing it makes more sense than having it
339      * set with an exclusive access on address zero.
340      */
341     arm_clear_exclusive(env);
342 
343     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
344 #endif
345 
346     if (arm_feature(env, ARM_FEATURE_PMSA)) {
347         if (cpu->pmsav7_dregion > 0) {
348             if (arm_feature(env, ARM_FEATURE_V8)) {
349                 memset(env->pmsav8.rbar[M_REG_NS], 0,
350                        sizeof(*env->pmsav8.rbar[M_REG_NS])
351                        * cpu->pmsav7_dregion);
352                 memset(env->pmsav8.rlar[M_REG_NS], 0,
353                        sizeof(*env->pmsav8.rlar[M_REG_NS])
354                        * cpu->pmsav7_dregion);
355                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
356                     memset(env->pmsav8.rbar[M_REG_S], 0,
357                            sizeof(*env->pmsav8.rbar[M_REG_S])
358                            * cpu->pmsav7_dregion);
359                     memset(env->pmsav8.rlar[M_REG_S], 0,
360                            sizeof(*env->pmsav8.rlar[M_REG_S])
361                            * cpu->pmsav7_dregion);
362                 }
363             } else if (arm_feature(env, ARM_FEATURE_V7)) {
364                 memset(env->pmsav7.drbar, 0,
365                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
366                 memset(env->pmsav7.drsr, 0,
367                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
368                 memset(env->pmsav7.dracr, 0,
369                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
370             }
371         }
372         env->pmsav7.rnr[M_REG_NS] = 0;
373         env->pmsav7.rnr[M_REG_S] = 0;
374         env->pmsav8.mair0[M_REG_NS] = 0;
375         env->pmsav8.mair0[M_REG_S] = 0;
376         env->pmsav8.mair1[M_REG_NS] = 0;
377         env->pmsav8.mair1[M_REG_S] = 0;
378     }
379 
380     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
381         if (cpu->sau_sregion > 0) {
382             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
383             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
384         }
385         env->sau.rnr = 0;
386         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
387          * the Cortex-M33 does.
388          */
389         env->sau.ctrl = 0;
390     }
391 
392     set_flush_to_zero(1, &env->vfp.standard_fp_status);
393     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
394     set_default_nan_mode(1, &env->vfp.standard_fp_status);
395     set_float_detect_tininess(float_tininess_before_rounding,
396                               &env->vfp.fp_status);
397     set_float_detect_tininess(float_tininess_before_rounding,
398                               &env->vfp.standard_fp_status);
399     set_float_detect_tininess(float_tininess_before_rounding,
400                               &env->vfp.fp_status_f16);
401 #ifndef CONFIG_USER_ONLY
402     if (kvm_enabled()) {
403         kvm_arm_reset_vcpu(cpu);
404     }
405 #endif
406 
407     hw_breakpoint_update_all(cpu);
408     hw_watchpoint_update_all(cpu);
409 }
410 
411 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
412 {
413     CPUClass *cc = CPU_GET_CLASS(cs);
414     CPUARMState *env = cs->env_ptr;
415     uint32_t cur_el = arm_current_el(env);
416     bool secure = arm_is_secure(env);
417     uint32_t target_el;
418     uint32_t excp_idx;
419     bool ret = false;
420 
421     if (interrupt_request & CPU_INTERRUPT_FIQ) {
422         excp_idx = EXCP_FIQ;
423         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425             cs->exception_index = excp_idx;
426             env->exception.target_el = target_el;
427             cc->do_interrupt(cs);
428             ret = true;
429         }
430     }
431     if (interrupt_request & CPU_INTERRUPT_HARD) {
432         excp_idx = EXCP_IRQ;
433         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
434         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435             cs->exception_index = excp_idx;
436             env->exception.target_el = target_el;
437             cc->do_interrupt(cs);
438             ret = true;
439         }
440     }
441     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
442         excp_idx = EXCP_VIRQ;
443         target_el = 1;
444         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445             cs->exception_index = excp_idx;
446             env->exception.target_el = target_el;
447             cc->do_interrupt(cs);
448             ret = true;
449         }
450     }
451     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
452         excp_idx = EXCP_VFIQ;
453         target_el = 1;
454         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
455             cs->exception_index = excp_idx;
456             env->exception.target_el = target_el;
457             cc->do_interrupt(cs);
458             ret = true;
459         }
460     }
461 
462     return ret;
463 }
464 
465 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
466 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
467 {
468     CPUClass *cc = CPU_GET_CLASS(cs);
469     ARMCPU *cpu = ARM_CPU(cs);
470     CPUARMState *env = &cpu->env;
471     bool ret = false;
472 
473     /* ARMv7-M interrupt masking works differently than -A or -R.
474      * There is no FIQ/IRQ distinction. Instead of I and F bits
475      * masking FIQ and IRQ interrupts, an exception is taken only
476      * if it is higher priority than the current execution priority
477      * (which depends on state like BASEPRI, FAULTMASK and the
478      * currently active exception).
479      */
480     if (interrupt_request & CPU_INTERRUPT_HARD
481         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
482         cs->exception_index = EXCP_IRQ;
483         cc->do_interrupt(cs);
484         ret = true;
485     }
486     return ret;
487 }
488 #endif
489 
490 void arm_cpu_update_virq(ARMCPU *cpu)
491 {
492     /*
493      * Update the interrupt level for VIRQ, which is the logical OR of
494      * the HCR_EL2.VI bit and the input line level from the GIC.
495      */
496     CPUARMState *env = &cpu->env;
497     CPUState *cs = CPU(cpu);
498 
499     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
500         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
501 
502     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
503         if (new_state) {
504             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
505         } else {
506             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
507         }
508     }
509 }
510 
511 void arm_cpu_update_vfiq(ARMCPU *cpu)
512 {
513     /*
514      * Update the interrupt level for VFIQ, which is the logical OR of
515      * the HCR_EL2.VF bit and the input line level from the GIC.
516      */
517     CPUARMState *env = &cpu->env;
518     CPUState *cs = CPU(cpu);
519 
520     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
521         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
522 
523     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
524         if (new_state) {
525             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
526         } else {
527             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
528         }
529     }
530 }
531 
532 #ifndef CONFIG_USER_ONLY
533 static void arm_cpu_set_irq(void *opaque, int irq, int level)
534 {
535     ARMCPU *cpu = opaque;
536     CPUARMState *env = &cpu->env;
537     CPUState *cs = CPU(cpu);
538     static const int mask[] = {
539         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
540         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
541         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
542         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
543     };
544 
545     if (level) {
546         env->irq_line_state |= mask[irq];
547     } else {
548         env->irq_line_state &= ~mask[irq];
549     }
550 
551     switch (irq) {
552     case ARM_CPU_VIRQ:
553         assert(arm_feature(env, ARM_FEATURE_EL2));
554         arm_cpu_update_virq(cpu);
555         break;
556     case ARM_CPU_VFIQ:
557         assert(arm_feature(env, ARM_FEATURE_EL2));
558         arm_cpu_update_vfiq(cpu);
559         break;
560     case ARM_CPU_IRQ:
561     case ARM_CPU_FIQ:
562         if (level) {
563             cpu_interrupt(cs, mask[irq]);
564         } else {
565             cpu_reset_interrupt(cs, mask[irq]);
566         }
567         break;
568     default:
569         g_assert_not_reached();
570     }
571 }
572 
573 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
574 {
575 #ifdef CONFIG_KVM
576     ARMCPU *cpu = opaque;
577     CPUARMState *env = &cpu->env;
578     CPUState *cs = CPU(cpu);
579     uint32_t linestate_bit;
580     int irq_id;
581 
582     switch (irq) {
583     case ARM_CPU_IRQ:
584         irq_id = KVM_ARM_IRQ_CPU_IRQ;
585         linestate_bit = CPU_INTERRUPT_HARD;
586         break;
587     case ARM_CPU_FIQ:
588         irq_id = KVM_ARM_IRQ_CPU_FIQ;
589         linestate_bit = CPU_INTERRUPT_FIQ;
590         break;
591     default:
592         g_assert_not_reached();
593     }
594 
595     if (level) {
596         env->irq_line_state |= linestate_bit;
597     } else {
598         env->irq_line_state &= ~linestate_bit;
599     }
600     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
601 #endif
602 }
603 
604 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
605 {
606     ARMCPU *cpu = ARM_CPU(cs);
607     CPUARMState *env = &cpu->env;
608 
609     cpu_synchronize_state(cs);
610     return arm_cpu_data_is_big_endian(env);
611 }
612 
613 #endif
614 
615 static inline void set_feature(CPUARMState *env, int feature)
616 {
617     env->features |= 1ULL << feature;
618 }
619 
620 static inline void unset_feature(CPUARMState *env, int feature)
621 {
622     env->features &= ~(1ULL << feature);
623 }
624 
625 static int
626 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
627 {
628   return print_insn_arm(pc | 1, info);
629 }
630 
631 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
632 {
633     ARMCPU *ac = ARM_CPU(cpu);
634     CPUARMState *env = &ac->env;
635     bool sctlr_b;
636 
637     if (is_a64(env)) {
638         /* We might not be compiled with the A64 disassembler
639          * because it needs a C++ compiler. Leave print_insn
640          * unset in this case to use the caller default behaviour.
641          */
642 #if defined(CONFIG_ARM_A64_DIS)
643         info->print_insn = print_insn_arm_a64;
644 #endif
645         info->cap_arch = CS_ARCH_ARM64;
646         info->cap_insn_unit = 4;
647         info->cap_insn_split = 4;
648     } else {
649         int cap_mode;
650         if (env->thumb) {
651             info->print_insn = print_insn_thumb1;
652             info->cap_insn_unit = 2;
653             info->cap_insn_split = 4;
654             cap_mode = CS_MODE_THUMB;
655         } else {
656             info->print_insn = print_insn_arm;
657             info->cap_insn_unit = 4;
658             info->cap_insn_split = 4;
659             cap_mode = CS_MODE_ARM;
660         }
661         if (arm_feature(env, ARM_FEATURE_V8)) {
662             cap_mode |= CS_MODE_V8;
663         }
664         if (arm_feature(env, ARM_FEATURE_M)) {
665             cap_mode |= CS_MODE_MCLASS;
666         }
667         info->cap_arch = CS_ARCH_ARM;
668         info->cap_mode = cap_mode;
669     }
670 
671     sctlr_b = arm_sctlr_b(env);
672     if (bswap_code(sctlr_b)) {
673 #ifdef TARGET_WORDS_BIGENDIAN
674         info->endian = BFD_ENDIAN_LITTLE;
675 #else
676         info->endian = BFD_ENDIAN_BIG;
677 #endif
678     }
679     info->flags &= ~INSN_ARM_BE32;
680 #ifndef CONFIG_USER_ONLY
681     if (sctlr_b) {
682         info->flags |= INSN_ARM_BE32;
683     }
684 #endif
685 }
686 
687 #ifdef TARGET_AARCH64
688 
689 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
690 {
691     ARMCPU *cpu = ARM_CPU(cs);
692     CPUARMState *env = &cpu->env;
693     uint32_t psr = pstate_read(env);
694     int i;
695     int el = arm_current_el(env);
696     const char *ns_status;
697 
698     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
699     for (i = 0; i < 32; i++) {
700         if (i == 31) {
701             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
702         } else {
703             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
704                          (i + 2) % 3 ? " " : "\n");
705         }
706     }
707 
708     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
709         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
710     } else {
711         ns_status = "";
712     }
713     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
714                  psr,
715                  psr & PSTATE_N ? 'N' : '-',
716                  psr & PSTATE_Z ? 'Z' : '-',
717                  psr & PSTATE_C ? 'C' : '-',
718                  psr & PSTATE_V ? 'V' : '-',
719                  ns_status,
720                  el,
721                  psr & PSTATE_SP ? 'h' : 't');
722 
723     if (cpu_isar_feature(aa64_bti, cpu)) {
724         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
725     }
726     if (!(flags & CPU_DUMP_FPU)) {
727         qemu_fprintf(f, "\n");
728         return;
729     }
730     if (fp_exception_el(env, el) != 0) {
731         qemu_fprintf(f, "    FPU disabled\n");
732         return;
733     }
734     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
735                  vfp_get_fpcr(env), vfp_get_fpsr(env));
736 
737     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
738         int j, zcr_len = sve_zcr_len_for_el(env, el);
739 
740         for (i = 0; i <= FFR_PRED_NUM; i++) {
741             bool eol;
742             if (i == FFR_PRED_NUM) {
743                 qemu_fprintf(f, "FFR=");
744                 /* It's last, so end the line.  */
745                 eol = true;
746             } else {
747                 qemu_fprintf(f, "P%02d=", i);
748                 switch (zcr_len) {
749                 case 0:
750                     eol = i % 8 == 7;
751                     break;
752                 case 1:
753                     eol = i % 6 == 5;
754                     break;
755                 case 2:
756                 case 3:
757                     eol = i % 3 == 2;
758                     break;
759                 default:
760                     /* More than one quadword per predicate.  */
761                     eol = true;
762                     break;
763                 }
764             }
765             for (j = zcr_len / 4; j >= 0; j--) {
766                 int digits;
767                 if (j * 4 + 4 <= zcr_len + 1) {
768                     digits = 16;
769                 } else {
770                     digits = (zcr_len % 4 + 1) * 4;
771                 }
772                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
773                              env->vfp.pregs[i].p[j],
774                              j ? ":" : eol ? "\n" : " ");
775             }
776         }
777 
778         for (i = 0; i < 32; i++) {
779             if (zcr_len == 0) {
780                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
781                              i, env->vfp.zregs[i].d[1],
782                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
783             } else if (zcr_len == 1) {
784                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
785                              ":%016" PRIx64 ":%016" PRIx64 "\n",
786                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
787                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
788             } else {
789                 for (j = zcr_len; j >= 0; j--) {
790                     bool odd = (zcr_len - j) % 2 != 0;
791                     if (j == zcr_len) {
792                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
793                     } else if (!odd) {
794                         if (j > 0) {
795                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
796                         } else {
797                             qemu_fprintf(f, "     [%x]=", j);
798                         }
799                     }
800                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
801                                  env->vfp.zregs[i].d[j * 2 + 1],
802                                  env->vfp.zregs[i].d[j * 2],
803                                  odd || j == 0 ? "\n" : ":");
804                 }
805             }
806         }
807     } else {
808         for (i = 0; i < 32; i++) {
809             uint64_t *q = aa64_vfp_qreg(env, i);
810             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
811                          i, q[1], q[0], (i & 1 ? "\n" : " "));
812         }
813     }
814 }
815 
816 #else
817 
818 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
819 {
820     g_assert_not_reached();
821 }
822 
823 #endif
824 
825 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
826 {
827     ARMCPU *cpu = ARM_CPU(cs);
828     CPUARMState *env = &cpu->env;
829     int i;
830 
831     if (is_a64(env)) {
832         aarch64_cpu_dump_state(cs, f, flags);
833         return;
834     }
835 
836     for (i = 0; i < 16; i++) {
837         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
838         if ((i % 4) == 3) {
839             qemu_fprintf(f, "\n");
840         } else {
841             qemu_fprintf(f, " ");
842         }
843     }
844 
845     if (arm_feature(env, ARM_FEATURE_M)) {
846         uint32_t xpsr = xpsr_read(env);
847         const char *mode;
848         const char *ns_status = "";
849 
850         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
851             ns_status = env->v7m.secure ? "S " : "NS ";
852         }
853 
854         if (xpsr & XPSR_EXCP) {
855             mode = "handler";
856         } else {
857             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
858                 mode = "unpriv-thread";
859             } else {
860                 mode = "priv-thread";
861             }
862         }
863 
864         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
865                      xpsr,
866                      xpsr & XPSR_N ? 'N' : '-',
867                      xpsr & XPSR_Z ? 'Z' : '-',
868                      xpsr & XPSR_C ? 'C' : '-',
869                      xpsr & XPSR_V ? 'V' : '-',
870                      xpsr & XPSR_T ? 'T' : 'A',
871                      ns_status,
872                      mode);
873     } else {
874         uint32_t psr = cpsr_read(env);
875         const char *ns_status = "";
876 
877         if (arm_feature(env, ARM_FEATURE_EL3) &&
878             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
879             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
880         }
881 
882         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
883                      psr,
884                      psr & CPSR_N ? 'N' : '-',
885                      psr & CPSR_Z ? 'Z' : '-',
886                      psr & CPSR_C ? 'C' : '-',
887                      psr & CPSR_V ? 'V' : '-',
888                      psr & CPSR_T ? 'T' : 'A',
889                      ns_status,
890                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
891     }
892 
893     if (flags & CPU_DUMP_FPU) {
894         int numvfpregs = 0;
895         if (arm_feature(env, ARM_FEATURE_VFP)) {
896             numvfpregs += 16;
897         }
898         if (arm_feature(env, ARM_FEATURE_VFP3)) {
899             numvfpregs += 16;
900         }
901         for (i = 0; i < numvfpregs; i++) {
902             uint64_t v = *aa32_vfp_dreg(env, i);
903             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
904                          i * 2, (uint32_t)v,
905                          i * 2 + 1, (uint32_t)(v >> 32),
906                          i, v);
907         }
908         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
909     }
910 }
911 
912 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
913 {
914     uint32_t Aff1 = idx / clustersz;
915     uint32_t Aff0 = idx % clustersz;
916     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
917 }
918 
919 static void cpreg_hashtable_data_destroy(gpointer data)
920 {
921     /*
922      * Destroy function for cpu->cp_regs hashtable data entries.
923      * We must free the name string because it was g_strdup()ed in
924      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
925      * from r->name because we know we definitely allocated it.
926      */
927     ARMCPRegInfo *r = data;
928 
929     g_free((void *)r->name);
930     g_free(r);
931 }
932 
933 static void arm_cpu_initfn(Object *obj)
934 {
935     ARMCPU *cpu = ARM_CPU(obj);
936 
937     cpu_set_cpustate_pointers(cpu);
938     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
939                                          g_free, cpreg_hashtable_data_destroy);
940 
941     QLIST_INIT(&cpu->pre_el_change_hooks);
942     QLIST_INIT(&cpu->el_change_hooks);
943 
944 #ifndef CONFIG_USER_ONLY
945     /* Our inbound IRQ and FIQ lines */
946     if (kvm_enabled()) {
947         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
948          * the same interface as non-KVM CPUs.
949          */
950         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
951     } else {
952         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
953     }
954 
955     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
956                        ARRAY_SIZE(cpu->gt_timer_outputs));
957 
958     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
959                              "gicv3-maintenance-interrupt", 1);
960     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
961                              "pmu-interrupt", 1);
962 #endif
963 
964     /* DTB consumers generally don't in fact care what the 'compatible'
965      * string is, so always provide some string and trust that a hypothetical
966      * picky DTB consumer will also provide a helpful error message.
967      */
968     cpu->dtb_compatible = "qemu,unknown";
969     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
970     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
971 
972     if (tcg_enabled()) {
973         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
974     }
975 }
976 
977 static Property arm_cpu_reset_cbar_property =
978             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
979 
980 static Property arm_cpu_reset_hivecs_property =
981             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
982 
983 static Property arm_cpu_rvbar_property =
984             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
985 
986 static Property arm_cpu_has_el2_property =
987             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
988 
989 static Property arm_cpu_has_el3_property =
990             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
991 
992 static Property arm_cpu_cfgend_property =
993             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
994 
995 static Property arm_cpu_has_vfp_property =
996             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
997 
998 static Property arm_cpu_has_neon_property =
999             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1000 
1001 static Property arm_cpu_has_dsp_property =
1002             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1003 
1004 static Property arm_cpu_has_mpu_property =
1005             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1006 
1007 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1008  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1009  * the right value for that particular CPU type, and we don't want
1010  * to override that with an incorrect constant value.
1011  */
1012 static Property arm_cpu_pmsav7_dregion_property =
1013             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1014                                            pmsav7_dregion,
1015                                            qdev_prop_uint32, uint32_t);
1016 
1017 static bool arm_get_pmu(Object *obj, Error **errp)
1018 {
1019     ARMCPU *cpu = ARM_CPU(obj);
1020 
1021     return cpu->has_pmu;
1022 }
1023 
1024 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1025 {
1026     ARMCPU *cpu = ARM_CPU(obj);
1027 
1028     if (value) {
1029         if (kvm_enabled() && !kvm_arm_pmu_supported(CPU(cpu))) {
1030             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1031             return;
1032         }
1033         set_feature(&cpu->env, ARM_FEATURE_PMU);
1034     } else {
1035         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1036     }
1037     cpu->has_pmu = value;
1038 }
1039 
1040 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
1041                                void *opaque, Error **errp)
1042 {
1043     ARMCPU *cpu = ARM_CPU(obj);
1044 
1045     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1046 }
1047 
1048 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
1049                                void *opaque, Error **errp)
1050 {
1051     ARMCPU *cpu = ARM_CPU(obj);
1052 
1053     visit_type_uint32(v, name, &cpu->init_svtor, errp);
1054 }
1055 
1056 void arm_cpu_post_init(Object *obj)
1057 {
1058     ARMCPU *cpu = ARM_CPU(obj);
1059 
1060     /* M profile implies PMSA. We have to do this here rather than
1061      * in realize with the other feature-implication checks because
1062      * we look at the PMSA bit to see if we should add some properties.
1063      */
1064     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1065         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1066     }
1067     /* Similarly for the VFP feature bits */
1068     if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
1069         set_feature(&cpu->env, ARM_FEATURE_VFP3);
1070     }
1071     if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
1072         set_feature(&cpu->env, ARM_FEATURE_VFP);
1073     }
1074 
1075     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1076         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1077         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
1078                                  &error_abort);
1079     }
1080 
1081     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1082         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
1083                                  &error_abort);
1084     }
1085 
1086     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1087         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
1088                                  &error_abort);
1089     }
1090 
1091     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1092         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1093          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1094          */
1095         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
1096                                  &error_abort);
1097 
1098 #ifndef CONFIG_USER_ONLY
1099         object_property_add_link(obj, "secure-memory",
1100                                  TYPE_MEMORY_REGION,
1101                                  (Object **)&cpu->secure_memory,
1102                                  qdev_prop_allow_set_link_before_realize,
1103                                  OBJ_PROP_LINK_STRONG,
1104                                  &error_abort);
1105 #endif
1106     }
1107 
1108     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1109         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
1110                                  &error_abort);
1111     }
1112 
1113     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1114         cpu->has_pmu = true;
1115         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu,
1116                                  &error_abort);
1117     }
1118 
1119     /*
1120      * Allow user to turn off VFP and Neon support, but only for TCG --
1121      * KVM does not currently allow us to lie to the guest about its
1122      * ID/feature registers, so the guest always sees what the host has.
1123      */
1124     if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1125         cpu->has_vfp = true;
1126         if (!kvm_enabled()) {
1127             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
1128                                      &error_abort);
1129         }
1130     }
1131 
1132     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1133         cpu->has_neon = true;
1134         if (!kvm_enabled()) {
1135             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
1136                                      &error_abort);
1137         }
1138     }
1139 
1140     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1141         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1142         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property,
1143                                  &error_abort);
1144     }
1145 
1146     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1147         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
1148                                  &error_abort);
1149         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1150             qdev_property_add_static(DEVICE(obj),
1151                                      &arm_cpu_pmsav7_dregion_property,
1152                                      &error_abort);
1153         }
1154     }
1155 
1156     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1157         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1158                                  qdev_prop_allow_set_link_before_realize,
1159                                  OBJ_PROP_LINK_STRONG,
1160                                  &error_abort);
1161         /*
1162          * M profile: initial value of the Secure VTOR. We can't just use
1163          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1164          * the property to be set after realize.
1165          */
1166         object_property_add(obj, "init-svtor", "uint32",
1167                             arm_get_init_svtor, arm_set_init_svtor,
1168                             NULL, NULL, &error_abort);
1169     }
1170 
1171     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
1172                              &error_abort);
1173 }
1174 
1175 static void arm_cpu_finalizefn(Object *obj)
1176 {
1177     ARMCPU *cpu = ARM_CPU(obj);
1178     ARMELChangeHook *hook, *next;
1179 
1180     g_hash_table_destroy(cpu->cp_regs);
1181 
1182     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1183         QLIST_REMOVE(hook, node);
1184         g_free(hook);
1185     }
1186     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1187         QLIST_REMOVE(hook, node);
1188         g_free(hook);
1189     }
1190 #ifndef CONFIG_USER_ONLY
1191     if (cpu->pmu_timer) {
1192         timer_del(cpu->pmu_timer);
1193         timer_deinit(cpu->pmu_timer);
1194         timer_free(cpu->pmu_timer);
1195     }
1196 #endif
1197 }
1198 
1199 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1200 {
1201     CPUState *cs = CPU(dev);
1202     ARMCPU *cpu = ARM_CPU(dev);
1203     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1204     CPUARMState *env = &cpu->env;
1205     int pagebits;
1206     Error *local_err = NULL;
1207     bool no_aa32 = false;
1208 
1209     /* If we needed to query the host kernel for the CPU features
1210      * then it's possible that might have failed in the initfn, but
1211      * this is the first point where we can report it.
1212      */
1213     if (cpu->host_cpu_probe_failed) {
1214         if (!kvm_enabled()) {
1215             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1216         } else {
1217             error_setg(errp, "Failed to retrieve host CPU features");
1218         }
1219         return;
1220     }
1221 
1222 #ifndef CONFIG_USER_ONLY
1223     /* The NVIC and M-profile CPU are two halves of a single piece of
1224      * hardware; trying to use one without the other is a command line
1225      * error and will result in segfaults if not caught here.
1226      */
1227     if (arm_feature(env, ARM_FEATURE_M)) {
1228         if (!env->nvic) {
1229             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1230             return;
1231         }
1232     } else {
1233         if (env->nvic) {
1234             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1235             return;
1236         }
1237     }
1238 
1239     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1240                                            arm_gt_ptimer_cb, cpu);
1241     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1242                                            arm_gt_vtimer_cb, cpu);
1243     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1244                                           arm_gt_htimer_cb, cpu);
1245     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
1246                                           arm_gt_stimer_cb, cpu);
1247 #endif
1248 
1249     cpu_exec_realizefn(cs, &local_err);
1250     if (local_err != NULL) {
1251         error_propagate(errp, local_err);
1252         return;
1253     }
1254 
1255     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1256         cpu->has_vfp != cpu->has_neon) {
1257         /*
1258          * This is an architectural requirement for AArch64; AArch32 is
1259          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1260          */
1261         error_setg(errp,
1262                    "AArch64 CPUs must have both VFP and Neon or neither");
1263         return;
1264     }
1265 
1266     if (!cpu->has_vfp) {
1267         uint64_t t;
1268         uint32_t u;
1269 
1270         unset_feature(env, ARM_FEATURE_VFP);
1271         unset_feature(env, ARM_FEATURE_VFP3);
1272         unset_feature(env, ARM_FEATURE_VFP4);
1273 
1274         t = cpu->isar.id_aa64isar1;
1275         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1276         cpu->isar.id_aa64isar1 = t;
1277 
1278         t = cpu->isar.id_aa64pfr0;
1279         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1280         cpu->isar.id_aa64pfr0 = t;
1281 
1282         u = cpu->isar.id_isar6;
1283         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1284         cpu->isar.id_isar6 = u;
1285 
1286         u = cpu->isar.mvfr0;
1287         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1288         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1289         u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1290         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1291         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1292         u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1293         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1294         cpu->isar.mvfr0 = u;
1295 
1296         u = cpu->isar.mvfr1;
1297         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1298         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1299         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1300         cpu->isar.mvfr1 = u;
1301 
1302         u = cpu->isar.mvfr2;
1303         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1304         cpu->isar.mvfr2 = u;
1305     }
1306 
1307     if (!cpu->has_neon) {
1308         uint64_t t;
1309         uint32_t u;
1310 
1311         unset_feature(env, ARM_FEATURE_NEON);
1312 
1313         t = cpu->isar.id_aa64isar0;
1314         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1315         cpu->isar.id_aa64isar0 = t;
1316 
1317         t = cpu->isar.id_aa64isar1;
1318         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1319         cpu->isar.id_aa64isar1 = t;
1320 
1321         t = cpu->isar.id_aa64pfr0;
1322         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1323         cpu->isar.id_aa64pfr0 = t;
1324 
1325         u = cpu->isar.id_isar5;
1326         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1327         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1328         cpu->isar.id_isar5 = u;
1329 
1330         u = cpu->isar.id_isar6;
1331         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1332         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1333         cpu->isar.id_isar6 = u;
1334 
1335         u = cpu->isar.mvfr1;
1336         u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1337         u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1338         u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1339         u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1340         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1341         cpu->isar.mvfr1 = u;
1342 
1343         u = cpu->isar.mvfr2;
1344         u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1345         cpu->isar.mvfr2 = u;
1346     }
1347 
1348     if (!cpu->has_neon && !cpu->has_vfp) {
1349         uint64_t t;
1350         uint32_t u;
1351 
1352         t = cpu->isar.id_aa64isar0;
1353         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1354         cpu->isar.id_aa64isar0 = t;
1355 
1356         t = cpu->isar.id_aa64isar1;
1357         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1358         cpu->isar.id_aa64isar1 = t;
1359 
1360         u = cpu->isar.mvfr0;
1361         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1362         cpu->isar.mvfr0 = u;
1363     }
1364 
1365     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1366         uint32_t u;
1367 
1368         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1369 
1370         u = cpu->isar.id_isar1;
1371         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1372         cpu->isar.id_isar1 = u;
1373 
1374         u = cpu->isar.id_isar2;
1375         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1376         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1377         cpu->isar.id_isar2 = u;
1378 
1379         u = cpu->isar.id_isar3;
1380         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1381         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1382         cpu->isar.id_isar3 = u;
1383     }
1384 
1385     /* Some features automatically imply others: */
1386     if (arm_feature(env, ARM_FEATURE_V8)) {
1387         if (arm_feature(env, ARM_FEATURE_M)) {
1388             set_feature(env, ARM_FEATURE_V7);
1389         } else {
1390             set_feature(env, ARM_FEATURE_V7VE);
1391         }
1392     }
1393 
1394     /*
1395      * There exist AArch64 cpus without AArch32 support.  When KVM
1396      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1397      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1398      * As a general principle, we also do not make ID register
1399      * consistency checks anywhere unless using TCG, because only
1400      * for TCG would a consistency-check failure be a QEMU bug.
1401      */
1402     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1403         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1404     }
1405 
1406     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1407         /* v7 Virtualization Extensions. In real hardware this implies
1408          * EL2 and also the presence of the Security Extensions.
1409          * For QEMU, for backwards-compatibility we implement some
1410          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1411          * include the various other features that V7VE implies.
1412          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1413          * Security Extensions is ARM_FEATURE_EL3.
1414          */
1415         assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(arm_div, cpu));
1416         set_feature(env, ARM_FEATURE_LPAE);
1417         set_feature(env, ARM_FEATURE_V7);
1418     }
1419     if (arm_feature(env, ARM_FEATURE_V7)) {
1420         set_feature(env, ARM_FEATURE_VAPA);
1421         set_feature(env, ARM_FEATURE_THUMB2);
1422         set_feature(env, ARM_FEATURE_MPIDR);
1423         if (!arm_feature(env, ARM_FEATURE_M)) {
1424             set_feature(env, ARM_FEATURE_V6K);
1425         } else {
1426             set_feature(env, ARM_FEATURE_V6);
1427         }
1428 
1429         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1430          * non-EL3 configs. This is needed by some legacy boards.
1431          */
1432         set_feature(env, ARM_FEATURE_VBAR);
1433     }
1434     if (arm_feature(env, ARM_FEATURE_V6K)) {
1435         set_feature(env, ARM_FEATURE_V6);
1436         set_feature(env, ARM_FEATURE_MVFR);
1437     }
1438     if (arm_feature(env, ARM_FEATURE_V6)) {
1439         set_feature(env, ARM_FEATURE_V5);
1440         if (!arm_feature(env, ARM_FEATURE_M)) {
1441             assert(!tcg_enabled() || no_aa32 || cpu_isar_feature(jazelle, cpu));
1442             set_feature(env, ARM_FEATURE_AUXCR);
1443         }
1444     }
1445     if (arm_feature(env, ARM_FEATURE_V5)) {
1446         set_feature(env, ARM_FEATURE_V4T);
1447     }
1448     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1449         set_feature(env, ARM_FEATURE_V7MP);
1450         set_feature(env, ARM_FEATURE_PXN);
1451     }
1452     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1453         set_feature(env, ARM_FEATURE_CBAR);
1454     }
1455     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1456         !arm_feature(env, ARM_FEATURE_M)) {
1457         set_feature(env, ARM_FEATURE_THUMB_DSP);
1458     }
1459 
1460     /*
1461      * We rely on no XScale CPU having VFP so we can use the same bits in the
1462      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1463      */
1464     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1465              arm_feature(env, ARM_FEATURE_XSCALE)));
1466 
1467     if (arm_feature(env, ARM_FEATURE_V7) &&
1468         !arm_feature(env, ARM_FEATURE_M) &&
1469         !arm_feature(env, ARM_FEATURE_PMSA)) {
1470         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1471          * can use 4K pages.
1472          */
1473         pagebits = 12;
1474     } else {
1475         /* For CPUs which might have tiny 1K pages, or which have an
1476          * MPU and might have small region sizes, stick with 1K pages.
1477          */
1478         pagebits = 10;
1479     }
1480     if (!set_preferred_target_page_bits(pagebits)) {
1481         /* This can only ever happen for hotplugging a CPU, or if
1482          * the board code incorrectly creates a CPU which it has
1483          * promised via minimum_page_size that it will not.
1484          */
1485         error_setg(errp, "This CPU requires a smaller page size than the "
1486                    "system is using");
1487         return;
1488     }
1489 
1490     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1491      * We don't support setting cluster ID ([16..23]) (known as Aff2
1492      * in later ARM ARM versions), or any of the higher affinity level fields,
1493      * so these bits always RAZ.
1494      */
1495     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1496         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1497                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1498     }
1499 
1500     if (cpu->reset_hivecs) {
1501             cpu->reset_sctlr |= (1 << 13);
1502     }
1503 
1504     if (cpu->cfgend) {
1505         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1506             cpu->reset_sctlr |= SCTLR_EE;
1507         } else {
1508             cpu->reset_sctlr |= SCTLR_B;
1509         }
1510     }
1511 
1512     if (!cpu->has_el3) {
1513         /* If the has_el3 CPU property is disabled then we need to disable the
1514          * feature.
1515          */
1516         unset_feature(env, ARM_FEATURE_EL3);
1517 
1518         /* Disable the security extension feature bits in the processor feature
1519          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1520          */
1521         cpu->id_pfr1 &= ~0xf0;
1522         cpu->isar.id_aa64pfr0 &= ~0xf000;
1523     }
1524 
1525     if (!cpu->has_el2) {
1526         unset_feature(env, ARM_FEATURE_EL2);
1527     }
1528 
1529     if (!cpu->has_pmu) {
1530         unset_feature(env, ARM_FEATURE_PMU);
1531     }
1532     if (arm_feature(env, ARM_FEATURE_PMU)) {
1533         pmu_init(cpu);
1534 
1535         if (!kvm_enabled()) {
1536             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1537             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1538         }
1539 
1540 #ifndef CONFIG_USER_ONLY
1541         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1542                 cpu);
1543 #endif
1544     } else {
1545         cpu->id_aa64dfr0 &= ~0xf00;
1546         cpu->id_dfr0 &= ~(0xf << 24);
1547         cpu->pmceid0 = 0;
1548         cpu->pmceid1 = 0;
1549     }
1550 
1551     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1552         /* Disable the hypervisor feature bits in the processor feature
1553          * registers if we don't have EL2. These are id_pfr1[15:12] and
1554          * id_aa64pfr0_el1[11:8].
1555          */
1556         cpu->isar.id_aa64pfr0 &= ~0xf00;
1557         cpu->id_pfr1 &= ~0xf000;
1558     }
1559 
1560     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1561      * to false or by setting pmsav7-dregion to 0.
1562      */
1563     if (!cpu->has_mpu) {
1564         cpu->pmsav7_dregion = 0;
1565     }
1566     if (cpu->pmsav7_dregion == 0) {
1567         cpu->has_mpu = false;
1568     }
1569 
1570     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1571         arm_feature(env, ARM_FEATURE_V7)) {
1572         uint32_t nr = cpu->pmsav7_dregion;
1573 
1574         if (nr > 0xff) {
1575             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1576             return;
1577         }
1578 
1579         if (nr) {
1580             if (arm_feature(env, ARM_FEATURE_V8)) {
1581                 /* PMSAv8 */
1582                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1583                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1584                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1585                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1586                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1587                 }
1588             } else {
1589                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1590                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1591                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1592             }
1593         }
1594     }
1595 
1596     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1597         uint32_t nr = cpu->sau_sregion;
1598 
1599         if (nr > 0xff) {
1600             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1601             return;
1602         }
1603 
1604         if (nr) {
1605             env->sau.rbar = g_new0(uint32_t, nr);
1606             env->sau.rlar = g_new0(uint32_t, nr);
1607         }
1608     }
1609 
1610     if (arm_feature(env, ARM_FEATURE_EL3)) {
1611         set_feature(env, ARM_FEATURE_VBAR);
1612     }
1613 
1614     register_cp_regs_for_features(cpu);
1615     arm_cpu_register_gdb_regs_for_features(cpu);
1616 
1617     init_cpreg_list(cpu);
1618 
1619 #ifndef CONFIG_USER_ONLY
1620     MachineState *ms = MACHINE(qdev_get_machine());
1621     unsigned int smp_cpus = ms->smp.cpus;
1622 
1623     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1624         cs->num_ases = 2;
1625 
1626         if (!cpu->secure_memory) {
1627             cpu->secure_memory = cs->memory;
1628         }
1629         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1630                                cpu->secure_memory);
1631     } else {
1632         cs->num_ases = 1;
1633     }
1634     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1635 
1636     /* No core_count specified, default to smp_cpus. */
1637     if (cpu->core_count == -1) {
1638         cpu->core_count = smp_cpus;
1639     }
1640 #endif
1641 
1642     qemu_init_vcpu(cs);
1643     cpu_reset(cs);
1644 
1645     acc->parent_realize(dev, errp);
1646 }
1647 
1648 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1649 {
1650     ObjectClass *oc;
1651     char *typename;
1652     char **cpuname;
1653     const char *cpunamestr;
1654 
1655     cpuname = g_strsplit(cpu_model, ",", 1);
1656     cpunamestr = cpuname[0];
1657 #ifdef CONFIG_USER_ONLY
1658     /* For backwards compatibility usermode emulation allows "-cpu any",
1659      * which has the same semantics as "-cpu max".
1660      */
1661     if (!strcmp(cpunamestr, "any")) {
1662         cpunamestr = "max";
1663     }
1664 #endif
1665     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1666     oc = object_class_by_name(typename);
1667     g_strfreev(cpuname);
1668     g_free(typename);
1669     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1670         object_class_is_abstract(oc)) {
1671         return NULL;
1672     }
1673     return oc;
1674 }
1675 
1676 /* CPU models. These are not needed for the AArch64 linux-user build. */
1677 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1678 
1679 static void arm926_initfn(Object *obj)
1680 {
1681     ARMCPU *cpu = ARM_CPU(obj);
1682 
1683     cpu->dtb_compatible = "arm,arm926";
1684     set_feature(&cpu->env, ARM_FEATURE_V5);
1685     set_feature(&cpu->env, ARM_FEATURE_VFP);
1686     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1687     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1688     cpu->midr = 0x41069265;
1689     cpu->reset_fpsid = 0x41011090;
1690     cpu->ctr = 0x1dd20d2;
1691     cpu->reset_sctlr = 0x00090078;
1692 
1693     /*
1694      * ARMv5 does not have the ID_ISAR registers, but we can still
1695      * set the field to indicate Jazelle support within QEMU.
1696      */
1697     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1698     /*
1699      * Similarly, we need to set MVFR0 fields to enable double precision
1700      * and short vector support even though ARMv5 doesn't have this register.
1701      */
1702     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1703     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1704 }
1705 
1706 static void arm946_initfn(Object *obj)
1707 {
1708     ARMCPU *cpu = ARM_CPU(obj);
1709 
1710     cpu->dtb_compatible = "arm,arm946";
1711     set_feature(&cpu->env, ARM_FEATURE_V5);
1712     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1713     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1714     cpu->midr = 0x41059461;
1715     cpu->ctr = 0x0f004006;
1716     cpu->reset_sctlr = 0x00000078;
1717 }
1718 
1719 static void arm1026_initfn(Object *obj)
1720 {
1721     ARMCPU *cpu = ARM_CPU(obj);
1722 
1723     cpu->dtb_compatible = "arm,arm1026";
1724     set_feature(&cpu->env, ARM_FEATURE_V5);
1725     set_feature(&cpu->env, ARM_FEATURE_VFP);
1726     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1727     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1728     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1729     cpu->midr = 0x4106a262;
1730     cpu->reset_fpsid = 0x410110a0;
1731     cpu->ctr = 0x1dd20d2;
1732     cpu->reset_sctlr = 0x00090078;
1733     cpu->reset_auxcr = 1;
1734 
1735     /*
1736      * ARMv5 does not have the ID_ISAR registers, but we can still
1737      * set the field to indicate Jazelle support within QEMU.
1738      */
1739     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1740     /*
1741      * Similarly, we need to set MVFR0 fields to enable double precision
1742      * and short vector support even though ARMv5 doesn't have this register.
1743      */
1744     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
1745     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPDP, 1);
1746 
1747     {
1748         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1749         ARMCPRegInfo ifar = {
1750             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1751             .access = PL1_RW,
1752             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1753             .resetvalue = 0
1754         };
1755         define_one_arm_cp_reg(cpu, &ifar);
1756     }
1757 }
1758 
1759 static void arm1136_r2_initfn(Object *obj)
1760 {
1761     ARMCPU *cpu = ARM_CPU(obj);
1762     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1763      * older core than plain "arm1136". In particular this does not
1764      * have the v6K features.
1765      * These ID register values are correct for 1136 but may be wrong
1766      * for 1136_r2 (in particular r0p2 does not actually implement most
1767      * of the ID registers).
1768      */
1769 
1770     cpu->dtb_compatible = "arm,arm1136";
1771     set_feature(&cpu->env, ARM_FEATURE_V6);
1772     set_feature(&cpu->env, ARM_FEATURE_VFP);
1773     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1774     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1775     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1776     cpu->midr = 0x4107b362;
1777     cpu->reset_fpsid = 0x410120b4;
1778     cpu->isar.mvfr0 = 0x11111111;
1779     cpu->isar.mvfr1 = 0x00000000;
1780     cpu->ctr = 0x1dd20d2;
1781     cpu->reset_sctlr = 0x00050078;
1782     cpu->id_pfr0 = 0x111;
1783     cpu->id_pfr1 = 0x1;
1784     cpu->id_dfr0 = 0x2;
1785     cpu->id_afr0 = 0x3;
1786     cpu->id_mmfr0 = 0x01130003;
1787     cpu->id_mmfr1 = 0x10030302;
1788     cpu->id_mmfr2 = 0x01222110;
1789     cpu->isar.id_isar0 = 0x00140011;
1790     cpu->isar.id_isar1 = 0x12002111;
1791     cpu->isar.id_isar2 = 0x11231111;
1792     cpu->isar.id_isar3 = 0x01102131;
1793     cpu->isar.id_isar4 = 0x141;
1794     cpu->reset_auxcr = 7;
1795 }
1796 
1797 static void arm1136_initfn(Object *obj)
1798 {
1799     ARMCPU *cpu = ARM_CPU(obj);
1800 
1801     cpu->dtb_compatible = "arm,arm1136";
1802     set_feature(&cpu->env, ARM_FEATURE_V6K);
1803     set_feature(&cpu->env, ARM_FEATURE_V6);
1804     set_feature(&cpu->env, ARM_FEATURE_VFP);
1805     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1806     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1807     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1808     cpu->midr = 0x4117b363;
1809     cpu->reset_fpsid = 0x410120b4;
1810     cpu->isar.mvfr0 = 0x11111111;
1811     cpu->isar.mvfr1 = 0x00000000;
1812     cpu->ctr = 0x1dd20d2;
1813     cpu->reset_sctlr = 0x00050078;
1814     cpu->id_pfr0 = 0x111;
1815     cpu->id_pfr1 = 0x1;
1816     cpu->id_dfr0 = 0x2;
1817     cpu->id_afr0 = 0x3;
1818     cpu->id_mmfr0 = 0x01130003;
1819     cpu->id_mmfr1 = 0x10030302;
1820     cpu->id_mmfr2 = 0x01222110;
1821     cpu->isar.id_isar0 = 0x00140011;
1822     cpu->isar.id_isar1 = 0x12002111;
1823     cpu->isar.id_isar2 = 0x11231111;
1824     cpu->isar.id_isar3 = 0x01102131;
1825     cpu->isar.id_isar4 = 0x141;
1826     cpu->reset_auxcr = 7;
1827 }
1828 
1829 static void arm1176_initfn(Object *obj)
1830 {
1831     ARMCPU *cpu = ARM_CPU(obj);
1832 
1833     cpu->dtb_compatible = "arm,arm1176";
1834     set_feature(&cpu->env, ARM_FEATURE_V6K);
1835     set_feature(&cpu->env, ARM_FEATURE_VFP);
1836     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1837     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1838     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1839     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1840     set_feature(&cpu->env, ARM_FEATURE_EL3);
1841     cpu->midr = 0x410fb767;
1842     cpu->reset_fpsid = 0x410120b5;
1843     cpu->isar.mvfr0 = 0x11111111;
1844     cpu->isar.mvfr1 = 0x00000000;
1845     cpu->ctr = 0x1dd20d2;
1846     cpu->reset_sctlr = 0x00050078;
1847     cpu->id_pfr0 = 0x111;
1848     cpu->id_pfr1 = 0x11;
1849     cpu->id_dfr0 = 0x33;
1850     cpu->id_afr0 = 0;
1851     cpu->id_mmfr0 = 0x01130003;
1852     cpu->id_mmfr1 = 0x10030302;
1853     cpu->id_mmfr2 = 0x01222100;
1854     cpu->isar.id_isar0 = 0x0140011;
1855     cpu->isar.id_isar1 = 0x12002111;
1856     cpu->isar.id_isar2 = 0x11231121;
1857     cpu->isar.id_isar3 = 0x01102131;
1858     cpu->isar.id_isar4 = 0x01141;
1859     cpu->reset_auxcr = 7;
1860 }
1861 
1862 static void arm11mpcore_initfn(Object *obj)
1863 {
1864     ARMCPU *cpu = ARM_CPU(obj);
1865 
1866     cpu->dtb_compatible = "arm,arm11mpcore";
1867     set_feature(&cpu->env, ARM_FEATURE_V6K);
1868     set_feature(&cpu->env, ARM_FEATURE_VFP);
1869     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1870     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1871     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1872     cpu->midr = 0x410fb022;
1873     cpu->reset_fpsid = 0x410120b4;
1874     cpu->isar.mvfr0 = 0x11111111;
1875     cpu->isar.mvfr1 = 0x00000000;
1876     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1877     cpu->id_pfr0 = 0x111;
1878     cpu->id_pfr1 = 0x1;
1879     cpu->id_dfr0 = 0;
1880     cpu->id_afr0 = 0x2;
1881     cpu->id_mmfr0 = 0x01100103;
1882     cpu->id_mmfr1 = 0x10020302;
1883     cpu->id_mmfr2 = 0x01222000;
1884     cpu->isar.id_isar0 = 0x00100011;
1885     cpu->isar.id_isar1 = 0x12002111;
1886     cpu->isar.id_isar2 = 0x11221011;
1887     cpu->isar.id_isar3 = 0x01102131;
1888     cpu->isar.id_isar4 = 0x141;
1889     cpu->reset_auxcr = 1;
1890 }
1891 
1892 static void cortex_m0_initfn(Object *obj)
1893 {
1894     ARMCPU *cpu = ARM_CPU(obj);
1895     set_feature(&cpu->env, ARM_FEATURE_V6);
1896     set_feature(&cpu->env, ARM_FEATURE_M);
1897 
1898     cpu->midr = 0x410cc200;
1899 }
1900 
1901 static void cortex_m3_initfn(Object *obj)
1902 {
1903     ARMCPU *cpu = ARM_CPU(obj);
1904     set_feature(&cpu->env, ARM_FEATURE_V7);
1905     set_feature(&cpu->env, ARM_FEATURE_M);
1906     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1907     cpu->midr = 0x410fc231;
1908     cpu->pmsav7_dregion = 8;
1909     cpu->id_pfr0 = 0x00000030;
1910     cpu->id_pfr1 = 0x00000200;
1911     cpu->id_dfr0 = 0x00100000;
1912     cpu->id_afr0 = 0x00000000;
1913     cpu->id_mmfr0 = 0x00000030;
1914     cpu->id_mmfr1 = 0x00000000;
1915     cpu->id_mmfr2 = 0x00000000;
1916     cpu->id_mmfr3 = 0x00000000;
1917     cpu->isar.id_isar0 = 0x01141110;
1918     cpu->isar.id_isar1 = 0x02111000;
1919     cpu->isar.id_isar2 = 0x21112231;
1920     cpu->isar.id_isar3 = 0x01111110;
1921     cpu->isar.id_isar4 = 0x01310102;
1922     cpu->isar.id_isar5 = 0x00000000;
1923     cpu->isar.id_isar6 = 0x00000000;
1924 }
1925 
1926 static void cortex_m4_initfn(Object *obj)
1927 {
1928     ARMCPU *cpu = ARM_CPU(obj);
1929 
1930     set_feature(&cpu->env, ARM_FEATURE_V7);
1931     set_feature(&cpu->env, ARM_FEATURE_M);
1932     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1933     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1934     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1935     cpu->midr = 0x410fc240; /* r0p0 */
1936     cpu->pmsav7_dregion = 8;
1937     cpu->isar.mvfr0 = 0x10110021;
1938     cpu->isar.mvfr1 = 0x11000011;
1939     cpu->isar.mvfr2 = 0x00000000;
1940     cpu->id_pfr0 = 0x00000030;
1941     cpu->id_pfr1 = 0x00000200;
1942     cpu->id_dfr0 = 0x00100000;
1943     cpu->id_afr0 = 0x00000000;
1944     cpu->id_mmfr0 = 0x00000030;
1945     cpu->id_mmfr1 = 0x00000000;
1946     cpu->id_mmfr2 = 0x00000000;
1947     cpu->id_mmfr3 = 0x00000000;
1948     cpu->isar.id_isar0 = 0x01141110;
1949     cpu->isar.id_isar1 = 0x02111000;
1950     cpu->isar.id_isar2 = 0x21112231;
1951     cpu->isar.id_isar3 = 0x01111110;
1952     cpu->isar.id_isar4 = 0x01310102;
1953     cpu->isar.id_isar5 = 0x00000000;
1954     cpu->isar.id_isar6 = 0x00000000;
1955 }
1956 
1957 static void cortex_m33_initfn(Object *obj)
1958 {
1959     ARMCPU *cpu = ARM_CPU(obj);
1960 
1961     set_feature(&cpu->env, ARM_FEATURE_V8);
1962     set_feature(&cpu->env, ARM_FEATURE_M);
1963     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1964     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1965     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1966     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1967     cpu->midr = 0x410fd213; /* r0p3 */
1968     cpu->pmsav7_dregion = 16;
1969     cpu->sau_sregion = 8;
1970     cpu->isar.mvfr0 = 0x10110021;
1971     cpu->isar.mvfr1 = 0x11000011;
1972     cpu->isar.mvfr2 = 0x00000040;
1973     cpu->id_pfr0 = 0x00000030;
1974     cpu->id_pfr1 = 0x00000210;
1975     cpu->id_dfr0 = 0x00200000;
1976     cpu->id_afr0 = 0x00000000;
1977     cpu->id_mmfr0 = 0x00101F40;
1978     cpu->id_mmfr1 = 0x00000000;
1979     cpu->id_mmfr2 = 0x01000000;
1980     cpu->id_mmfr3 = 0x00000000;
1981     cpu->isar.id_isar0 = 0x01101110;
1982     cpu->isar.id_isar1 = 0x02212000;
1983     cpu->isar.id_isar2 = 0x20232232;
1984     cpu->isar.id_isar3 = 0x01111131;
1985     cpu->isar.id_isar4 = 0x01310132;
1986     cpu->isar.id_isar5 = 0x00000000;
1987     cpu->isar.id_isar6 = 0x00000000;
1988     cpu->clidr = 0x00000000;
1989     cpu->ctr = 0x8000c000;
1990 }
1991 
1992 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1993 {
1994     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1995     CPUClass *cc = CPU_CLASS(oc);
1996 
1997     acc->info = data;
1998 #ifndef CONFIG_USER_ONLY
1999     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
2000 #endif
2001 
2002     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
2003 }
2004 
2005 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
2006     /* Dummy the TCM region regs for the moment */
2007     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2008       .access = PL1_RW, .type = ARM_CP_CONST },
2009     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2010       .access = PL1_RW, .type = ARM_CP_CONST },
2011     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
2012       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
2013     REGINFO_SENTINEL
2014 };
2015 
2016 static void cortex_r5_initfn(Object *obj)
2017 {
2018     ARMCPU *cpu = ARM_CPU(obj);
2019 
2020     set_feature(&cpu->env, ARM_FEATURE_V7);
2021     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2022     set_feature(&cpu->env, ARM_FEATURE_PMSA);
2023     cpu->midr = 0x411fc153; /* r1p3 */
2024     cpu->id_pfr0 = 0x0131;
2025     cpu->id_pfr1 = 0x001;
2026     cpu->id_dfr0 = 0x010400;
2027     cpu->id_afr0 = 0x0;
2028     cpu->id_mmfr0 = 0x0210030;
2029     cpu->id_mmfr1 = 0x00000000;
2030     cpu->id_mmfr2 = 0x01200000;
2031     cpu->id_mmfr3 = 0x0211;
2032     cpu->isar.id_isar0 = 0x02101111;
2033     cpu->isar.id_isar1 = 0x13112111;
2034     cpu->isar.id_isar2 = 0x21232141;
2035     cpu->isar.id_isar3 = 0x01112131;
2036     cpu->isar.id_isar4 = 0x0010142;
2037     cpu->isar.id_isar5 = 0x0;
2038     cpu->isar.id_isar6 = 0x0;
2039     cpu->mp_is_up = true;
2040     cpu->pmsav7_dregion = 16;
2041     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
2042 }
2043 
2044 static void cortex_r5f_initfn(Object *obj)
2045 {
2046     ARMCPU *cpu = ARM_CPU(obj);
2047 
2048     cortex_r5_initfn(obj);
2049     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2050     cpu->isar.mvfr0 = 0x10110221;
2051     cpu->isar.mvfr1 = 0x00000011;
2052 }
2053 
2054 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
2055     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
2056       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2057     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2058       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2059     REGINFO_SENTINEL
2060 };
2061 
2062 static void cortex_a8_initfn(Object *obj)
2063 {
2064     ARMCPU *cpu = ARM_CPU(obj);
2065 
2066     cpu->dtb_compatible = "arm,cortex-a8";
2067     set_feature(&cpu->env, ARM_FEATURE_V7);
2068     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2069     set_feature(&cpu->env, ARM_FEATURE_NEON);
2070     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2071     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2072     set_feature(&cpu->env, ARM_FEATURE_EL3);
2073     cpu->midr = 0x410fc080;
2074     cpu->reset_fpsid = 0x410330c0;
2075     cpu->isar.mvfr0 = 0x11110222;
2076     cpu->isar.mvfr1 = 0x00011111;
2077     cpu->ctr = 0x82048004;
2078     cpu->reset_sctlr = 0x00c50078;
2079     cpu->id_pfr0 = 0x1031;
2080     cpu->id_pfr1 = 0x11;
2081     cpu->id_dfr0 = 0x400;
2082     cpu->id_afr0 = 0;
2083     cpu->id_mmfr0 = 0x31100003;
2084     cpu->id_mmfr1 = 0x20000000;
2085     cpu->id_mmfr2 = 0x01202000;
2086     cpu->id_mmfr3 = 0x11;
2087     cpu->isar.id_isar0 = 0x00101111;
2088     cpu->isar.id_isar1 = 0x12112111;
2089     cpu->isar.id_isar2 = 0x21232031;
2090     cpu->isar.id_isar3 = 0x11112131;
2091     cpu->isar.id_isar4 = 0x00111142;
2092     cpu->dbgdidr = 0x15141000;
2093     cpu->clidr = (1 << 27) | (2 << 24) | 3;
2094     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
2095     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
2096     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
2097     cpu->reset_auxcr = 2;
2098     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
2099 }
2100 
2101 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
2102     /* power_control should be set to maximum latency. Again,
2103      * default to 0 and set by private hook
2104      */
2105     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2106       .access = PL1_RW, .resetvalue = 0,
2107       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
2108     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
2109       .access = PL1_RW, .resetvalue = 0,
2110       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
2111     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
2112       .access = PL1_RW, .resetvalue = 0,
2113       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
2114     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2115       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2116     /* TLB lockdown control */
2117     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
2118       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2119     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
2120       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
2121     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
2122       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2123     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
2124       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2125     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
2126       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
2127     REGINFO_SENTINEL
2128 };
2129 
2130 static void cortex_a9_initfn(Object *obj)
2131 {
2132     ARMCPU *cpu = ARM_CPU(obj);
2133 
2134     cpu->dtb_compatible = "arm,cortex-a9";
2135     set_feature(&cpu->env, ARM_FEATURE_V7);
2136     set_feature(&cpu->env, ARM_FEATURE_VFP3);
2137     set_feature(&cpu->env, ARM_FEATURE_NEON);
2138     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2139     set_feature(&cpu->env, ARM_FEATURE_EL3);
2140     /* Note that A9 supports the MP extensions even for
2141      * A9UP and single-core A9MP (which are both different
2142      * and valid configurations; we don't model A9UP).
2143      */
2144     set_feature(&cpu->env, ARM_FEATURE_V7MP);
2145     set_feature(&cpu->env, ARM_FEATURE_CBAR);
2146     cpu->midr = 0x410fc090;
2147     cpu->reset_fpsid = 0x41033090;
2148     cpu->isar.mvfr0 = 0x11110222;
2149     cpu->isar.mvfr1 = 0x01111111;
2150     cpu->ctr = 0x80038003;
2151     cpu->reset_sctlr = 0x00c50078;
2152     cpu->id_pfr0 = 0x1031;
2153     cpu->id_pfr1 = 0x11;
2154     cpu->id_dfr0 = 0x000;
2155     cpu->id_afr0 = 0;
2156     cpu->id_mmfr0 = 0x00100103;
2157     cpu->id_mmfr1 = 0x20000000;
2158     cpu->id_mmfr2 = 0x01230000;
2159     cpu->id_mmfr3 = 0x00002111;
2160     cpu->isar.id_isar0 = 0x00101111;
2161     cpu->isar.id_isar1 = 0x13112111;
2162     cpu->isar.id_isar2 = 0x21232041;
2163     cpu->isar.id_isar3 = 0x11112131;
2164     cpu->isar.id_isar4 = 0x00111142;
2165     cpu->dbgdidr = 0x35141000;
2166     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2167     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2168     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2169     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2170 }
2171 
2172 #ifndef CONFIG_USER_ONLY
2173 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2174 {
2175     MachineState *ms = MACHINE(qdev_get_machine());
2176 
2177     /* Linux wants the number of processors from here.
2178      * Might as well set the interrupt-controller bit too.
2179      */
2180     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2181 }
2182 #endif
2183 
2184 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2185 #ifndef CONFIG_USER_ONLY
2186     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2187       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2188       .writefn = arm_cp_write_ignore, },
2189 #endif
2190     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2191       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2192     REGINFO_SENTINEL
2193 };
2194 
2195 static void cortex_a7_initfn(Object *obj)
2196 {
2197     ARMCPU *cpu = ARM_CPU(obj);
2198 
2199     cpu->dtb_compatible = "arm,cortex-a7";
2200     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2201     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2202     set_feature(&cpu->env, ARM_FEATURE_NEON);
2203     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2204     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2205     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2206     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2207     set_feature(&cpu->env, ARM_FEATURE_EL2);
2208     set_feature(&cpu->env, ARM_FEATURE_EL3);
2209     set_feature(&cpu->env, ARM_FEATURE_PMU);
2210     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2211     cpu->midr = 0x410fc075;
2212     cpu->reset_fpsid = 0x41023075;
2213     cpu->isar.mvfr0 = 0x10110222;
2214     cpu->isar.mvfr1 = 0x11111111;
2215     cpu->ctr = 0x84448003;
2216     cpu->reset_sctlr = 0x00c50078;
2217     cpu->id_pfr0 = 0x00001131;
2218     cpu->id_pfr1 = 0x00011011;
2219     cpu->id_dfr0 = 0x02010555;
2220     cpu->id_afr0 = 0x00000000;
2221     cpu->id_mmfr0 = 0x10101105;
2222     cpu->id_mmfr1 = 0x40000000;
2223     cpu->id_mmfr2 = 0x01240000;
2224     cpu->id_mmfr3 = 0x02102211;
2225     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2226      * table 4-41 gives 0x02101110, which includes the arm div insns.
2227      */
2228     cpu->isar.id_isar0 = 0x02101110;
2229     cpu->isar.id_isar1 = 0x13112111;
2230     cpu->isar.id_isar2 = 0x21232041;
2231     cpu->isar.id_isar3 = 0x11112131;
2232     cpu->isar.id_isar4 = 0x10011142;
2233     cpu->dbgdidr = 0x3515f005;
2234     cpu->clidr = 0x0a200023;
2235     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2236     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2237     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2238     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2239 }
2240 
2241 static void cortex_a15_initfn(Object *obj)
2242 {
2243     ARMCPU *cpu = ARM_CPU(obj);
2244 
2245     cpu->dtb_compatible = "arm,cortex-a15";
2246     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2247     set_feature(&cpu->env, ARM_FEATURE_VFP4);
2248     set_feature(&cpu->env, ARM_FEATURE_NEON);
2249     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2250     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2251     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2252     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2253     set_feature(&cpu->env, ARM_FEATURE_EL2);
2254     set_feature(&cpu->env, ARM_FEATURE_EL3);
2255     set_feature(&cpu->env, ARM_FEATURE_PMU);
2256     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2257     cpu->midr = 0x412fc0f1;
2258     cpu->reset_fpsid = 0x410430f0;
2259     cpu->isar.mvfr0 = 0x10110222;
2260     cpu->isar.mvfr1 = 0x11111111;
2261     cpu->ctr = 0x8444c004;
2262     cpu->reset_sctlr = 0x00c50078;
2263     cpu->id_pfr0 = 0x00001131;
2264     cpu->id_pfr1 = 0x00011011;
2265     cpu->id_dfr0 = 0x02010555;
2266     cpu->id_afr0 = 0x00000000;
2267     cpu->id_mmfr0 = 0x10201105;
2268     cpu->id_mmfr1 = 0x20000000;
2269     cpu->id_mmfr2 = 0x01240000;
2270     cpu->id_mmfr3 = 0x02102211;
2271     cpu->isar.id_isar0 = 0x02101110;
2272     cpu->isar.id_isar1 = 0x13112111;
2273     cpu->isar.id_isar2 = 0x21232041;
2274     cpu->isar.id_isar3 = 0x11112131;
2275     cpu->isar.id_isar4 = 0x10011142;
2276     cpu->dbgdidr = 0x3515f021;
2277     cpu->clidr = 0x0a200023;
2278     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2279     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2280     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2281     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2282 }
2283 
2284 static void ti925t_initfn(Object *obj)
2285 {
2286     ARMCPU *cpu = ARM_CPU(obj);
2287     set_feature(&cpu->env, ARM_FEATURE_V4T);
2288     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
2289     cpu->midr = ARM_CPUID_TI925T;
2290     cpu->ctr = 0x5109149;
2291     cpu->reset_sctlr = 0x00000070;
2292 }
2293 
2294 static void sa1100_initfn(Object *obj)
2295 {
2296     ARMCPU *cpu = ARM_CPU(obj);
2297 
2298     cpu->dtb_compatible = "intel,sa1100";
2299     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2300     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2301     cpu->midr = 0x4401A11B;
2302     cpu->reset_sctlr = 0x00000070;
2303 }
2304 
2305 static void sa1110_initfn(Object *obj)
2306 {
2307     ARMCPU *cpu = ARM_CPU(obj);
2308     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2309     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2310     cpu->midr = 0x6901B119;
2311     cpu->reset_sctlr = 0x00000070;
2312 }
2313 
2314 static void pxa250_initfn(Object *obj)
2315 {
2316     ARMCPU *cpu = ARM_CPU(obj);
2317 
2318     cpu->dtb_compatible = "marvell,xscale";
2319     set_feature(&cpu->env, ARM_FEATURE_V5);
2320     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2321     cpu->midr = 0x69052100;
2322     cpu->ctr = 0xd172172;
2323     cpu->reset_sctlr = 0x00000078;
2324 }
2325 
2326 static void pxa255_initfn(Object *obj)
2327 {
2328     ARMCPU *cpu = ARM_CPU(obj);
2329 
2330     cpu->dtb_compatible = "marvell,xscale";
2331     set_feature(&cpu->env, ARM_FEATURE_V5);
2332     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2333     cpu->midr = 0x69052d00;
2334     cpu->ctr = 0xd172172;
2335     cpu->reset_sctlr = 0x00000078;
2336 }
2337 
2338 static void pxa260_initfn(Object *obj)
2339 {
2340     ARMCPU *cpu = ARM_CPU(obj);
2341 
2342     cpu->dtb_compatible = "marvell,xscale";
2343     set_feature(&cpu->env, ARM_FEATURE_V5);
2344     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2345     cpu->midr = 0x69052903;
2346     cpu->ctr = 0xd172172;
2347     cpu->reset_sctlr = 0x00000078;
2348 }
2349 
2350 static void pxa261_initfn(Object *obj)
2351 {
2352     ARMCPU *cpu = ARM_CPU(obj);
2353 
2354     cpu->dtb_compatible = "marvell,xscale";
2355     set_feature(&cpu->env, ARM_FEATURE_V5);
2356     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2357     cpu->midr = 0x69052d05;
2358     cpu->ctr = 0xd172172;
2359     cpu->reset_sctlr = 0x00000078;
2360 }
2361 
2362 static void pxa262_initfn(Object *obj)
2363 {
2364     ARMCPU *cpu = ARM_CPU(obj);
2365 
2366     cpu->dtb_compatible = "marvell,xscale";
2367     set_feature(&cpu->env, ARM_FEATURE_V5);
2368     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2369     cpu->midr = 0x69052d06;
2370     cpu->ctr = 0xd172172;
2371     cpu->reset_sctlr = 0x00000078;
2372 }
2373 
2374 static void pxa270a0_initfn(Object *obj)
2375 {
2376     ARMCPU *cpu = ARM_CPU(obj);
2377 
2378     cpu->dtb_compatible = "marvell,xscale";
2379     set_feature(&cpu->env, ARM_FEATURE_V5);
2380     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2381     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2382     cpu->midr = 0x69054110;
2383     cpu->ctr = 0xd172172;
2384     cpu->reset_sctlr = 0x00000078;
2385 }
2386 
2387 static void pxa270a1_initfn(Object *obj)
2388 {
2389     ARMCPU *cpu = ARM_CPU(obj);
2390 
2391     cpu->dtb_compatible = "marvell,xscale";
2392     set_feature(&cpu->env, ARM_FEATURE_V5);
2393     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2394     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2395     cpu->midr = 0x69054111;
2396     cpu->ctr = 0xd172172;
2397     cpu->reset_sctlr = 0x00000078;
2398 }
2399 
2400 static void pxa270b0_initfn(Object *obj)
2401 {
2402     ARMCPU *cpu = ARM_CPU(obj);
2403 
2404     cpu->dtb_compatible = "marvell,xscale";
2405     set_feature(&cpu->env, ARM_FEATURE_V5);
2406     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2407     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2408     cpu->midr = 0x69054112;
2409     cpu->ctr = 0xd172172;
2410     cpu->reset_sctlr = 0x00000078;
2411 }
2412 
2413 static void pxa270b1_initfn(Object *obj)
2414 {
2415     ARMCPU *cpu = ARM_CPU(obj);
2416 
2417     cpu->dtb_compatible = "marvell,xscale";
2418     set_feature(&cpu->env, ARM_FEATURE_V5);
2419     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2420     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2421     cpu->midr = 0x69054113;
2422     cpu->ctr = 0xd172172;
2423     cpu->reset_sctlr = 0x00000078;
2424 }
2425 
2426 static void pxa270c0_initfn(Object *obj)
2427 {
2428     ARMCPU *cpu = ARM_CPU(obj);
2429 
2430     cpu->dtb_compatible = "marvell,xscale";
2431     set_feature(&cpu->env, ARM_FEATURE_V5);
2432     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2433     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2434     cpu->midr = 0x69054114;
2435     cpu->ctr = 0xd172172;
2436     cpu->reset_sctlr = 0x00000078;
2437 }
2438 
2439 static void pxa270c5_initfn(Object *obj)
2440 {
2441     ARMCPU *cpu = ARM_CPU(obj);
2442 
2443     cpu->dtb_compatible = "marvell,xscale";
2444     set_feature(&cpu->env, ARM_FEATURE_V5);
2445     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2446     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2447     cpu->midr = 0x69054117;
2448     cpu->ctr = 0xd172172;
2449     cpu->reset_sctlr = 0x00000078;
2450 }
2451 
2452 #ifndef TARGET_AARCH64
2453 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2454  * otherwise, a CPU with as many features enabled as our emulation supports.
2455  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2456  * this only needs to handle 32 bits.
2457  */
2458 static void arm_max_initfn(Object *obj)
2459 {
2460     ARMCPU *cpu = ARM_CPU(obj);
2461 
2462     if (kvm_enabled()) {
2463         kvm_arm_set_cpu_features_from_host(cpu);
2464     } else {
2465         cortex_a15_initfn(obj);
2466 
2467         /* old-style VFP short-vector support */
2468         cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2469 
2470 #ifdef CONFIG_USER_ONLY
2471         /* We don't set these in system emulation mode for the moment,
2472          * since we don't correctly set (all of) the ID registers to
2473          * advertise them.
2474          */
2475         set_feature(&cpu->env, ARM_FEATURE_V8);
2476         {
2477             uint32_t t;
2478 
2479             t = cpu->isar.id_isar5;
2480             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2481             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2482             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2483             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2484             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2485             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2486             cpu->isar.id_isar5 = t;
2487 
2488             t = cpu->isar.id_isar6;
2489             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2490             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2491             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2492             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2493             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2494             cpu->isar.id_isar6 = t;
2495 
2496             t = cpu->isar.mvfr1;
2497             t = FIELD_DP32(t, MVFR1, FPHP, 2);     /* v8.0 FP support */
2498             cpu->isar.mvfr1 = t;
2499 
2500             t = cpu->isar.mvfr2;
2501             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2502             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2503             cpu->isar.mvfr2 = t;
2504 
2505             t = cpu->id_mmfr4;
2506             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2507             cpu->id_mmfr4 = t;
2508         }
2509 #endif
2510     }
2511 }
2512 #endif
2513 
2514 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2515 
2516 struct ARMCPUInfo {
2517     const char *name;
2518     void (*initfn)(Object *obj);
2519     void (*class_init)(ObjectClass *oc, void *data);
2520 };
2521 
2522 static const ARMCPUInfo arm_cpus[] = {
2523 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2524     { .name = "arm926",      .initfn = arm926_initfn },
2525     { .name = "arm946",      .initfn = arm946_initfn },
2526     { .name = "arm1026",     .initfn = arm1026_initfn },
2527     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2528      * older core than plain "arm1136". In particular this does not
2529      * have the v6K features.
2530      */
2531     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2532     { .name = "arm1136",     .initfn = arm1136_initfn },
2533     { .name = "arm1176",     .initfn = arm1176_initfn },
2534     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2535     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2536                              .class_init = arm_v7m_class_init },
2537     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2538                              .class_init = arm_v7m_class_init },
2539     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2540                              .class_init = arm_v7m_class_init },
2541     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2542                              .class_init = arm_v7m_class_init },
2543     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2544     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2545     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2546     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2547     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2548     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2549     { .name = "ti925t",      .initfn = ti925t_initfn },
2550     { .name = "sa1100",      .initfn = sa1100_initfn },
2551     { .name = "sa1110",      .initfn = sa1110_initfn },
2552     { .name = "pxa250",      .initfn = pxa250_initfn },
2553     { .name = "pxa255",      .initfn = pxa255_initfn },
2554     { .name = "pxa260",      .initfn = pxa260_initfn },
2555     { .name = "pxa261",      .initfn = pxa261_initfn },
2556     { .name = "pxa262",      .initfn = pxa262_initfn },
2557     /* "pxa270" is an alias for "pxa270-a0" */
2558     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2559     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2560     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2561     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2562     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2563     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2564     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2565 #ifndef TARGET_AARCH64
2566     { .name = "max",         .initfn = arm_max_initfn },
2567 #endif
2568 #ifdef CONFIG_USER_ONLY
2569     { .name = "any",         .initfn = arm_max_initfn },
2570 #endif
2571 #endif
2572     { .name = NULL }
2573 };
2574 
2575 static Property arm_cpu_properties[] = {
2576     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2577     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2578     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2579     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2580                         mp_affinity, ARM64_AFFINITY_INVALID),
2581     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2582     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2583     DEFINE_PROP_END_OF_LIST()
2584 };
2585 
2586 static gchar *arm_gdb_arch_name(CPUState *cs)
2587 {
2588     ARMCPU *cpu = ARM_CPU(cs);
2589     CPUARMState *env = &cpu->env;
2590 
2591     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2592         return g_strdup("iwmmxt");
2593     }
2594     return g_strdup("arm");
2595 }
2596 
2597 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2598 {
2599     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2600     CPUClass *cc = CPU_CLASS(acc);
2601     DeviceClass *dc = DEVICE_CLASS(oc);
2602 
2603     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2604                                     &acc->parent_realize);
2605     dc->props = arm_cpu_properties;
2606 
2607     acc->parent_reset = cc->reset;
2608     cc->reset = arm_cpu_reset;
2609 
2610     cc->class_by_name = arm_cpu_class_by_name;
2611     cc->has_work = arm_cpu_has_work;
2612     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2613     cc->dump_state = arm_cpu_dump_state;
2614     cc->set_pc = arm_cpu_set_pc;
2615     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2616     cc->gdb_read_register = arm_cpu_gdb_read_register;
2617     cc->gdb_write_register = arm_cpu_gdb_write_register;
2618 #ifndef CONFIG_USER_ONLY
2619     cc->do_interrupt = arm_cpu_do_interrupt;
2620     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2621     cc->asidx_from_attrs = arm_asidx_from_attrs;
2622     cc->vmsd = &vmstate_arm_cpu;
2623     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2624     cc->write_elf64_note = arm_cpu_write_elf64_note;
2625     cc->write_elf32_note = arm_cpu_write_elf32_note;
2626 #endif
2627     cc->gdb_num_core_regs = 26;
2628     cc->gdb_core_xml_file = "arm-core.xml";
2629     cc->gdb_arch_name = arm_gdb_arch_name;
2630     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2631     cc->gdb_stop_before_watchpoint = true;
2632     cc->disas_set_info = arm_disas_set_info;
2633 #ifdef CONFIG_TCG
2634     cc->tcg_initialize = arm_translate_init;
2635     cc->tlb_fill = arm_cpu_tlb_fill;
2636     cc->debug_excp_handler = arm_debug_excp_handler;
2637     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2638 #if !defined(CONFIG_USER_ONLY)
2639     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2640     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2641     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2642 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2643 #endif
2644 }
2645 
2646 #ifdef CONFIG_KVM
2647 static void arm_host_initfn(Object *obj)
2648 {
2649     ARMCPU *cpu = ARM_CPU(obj);
2650 
2651     kvm_arm_set_cpu_features_from_host(cpu);
2652     arm_cpu_post_init(obj);
2653 }
2654 
2655 static const TypeInfo host_arm_cpu_type_info = {
2656     .name = TYPE_ARM_HOST_CPU,
2657 #ifdef TARGET_AARCH64
2658     .parent = TYPE_AARCH64_CPU,
2659 #else
2660     .parent = TYPE_ARM_CPU,
2661 #endif
2662     .instance_init = arm_host_initfn,
2663 };
2664 
2665 #endif
2666 
2667 static void arm_cpu_instance_init(Object *obj)
2668 {
2669     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2670 
2671     acc->info->initfn(obj);
2672     arm_cpu_post_init(obj);
2673 }
2674 
2675 static void cpu_register_class_init(ObjectClass *oc, void *data)
2676 {
2677     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2678 
2679     acc->info = data;
2680 }
2681 
2682 static void cpu_register(const ARMCPUInfo *info)
2683 {
2684     TypeInfo type_info = {
2685         .parent = TYPE_ARM_CPU,
2686         .instance_size = sizeof(ARMCPU),
2687         .instance_init = arm_cpu_instance_init,
2688         .class_size = sizeof(ARMCPUClass),
2689         .class_init = info->class_init ?: cpu_register_class_init,
2690         .class_data = (void *)info,
2691     };
2692 
2693     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2694     type_register(&type_info);
2695     g_free((void *)type_info.name);
2696 }
2697 
2698 static const TypeInfo arm_cpu_type_info = {
2699     .name = TYPE_ARM_CPU,
2700     .parent = TYPE_CPU,
2701     .instance_size = sizeof(ARMCPU),
2702     .instance_init = arm_cpu_initfn,
2703     .instance_finalize = arm_cpu_finalizefn,
2704     .abstract = true,
2705     .class_size = sizeof(ARMCPUClass),
2706     .class_init = arm_cpu_class_init,
2707 };
2708 
2709 static const TypeInfo idau_interface_type_info = {
2710     .name = TYPE_IDAU_INTERFACE,
2711     .parent = TYPE_INTERFACE,
2712     .class_size = sizeof(IDAUInterfaceClass),
2713 };
2714 
2715 static void arm_cpu_register_types(void)
2716 {
2717     const ARMCPUInfo *info = arm_cpus;
2718 
2719     type_register_static(&arm_cpu_type_info);
2720     type_register_static(&idau_interface_type_info);
2721 
2722     while (info->name) {
2723         cpu_register(info);
2724         info++;
2725     }
2726 
2727 #ifdef CONFIG_KVM
2728     type_register_static(&host_arm_cpu_type_info);
2729 #endif
2730 }
2731 
2732 type_init(arm_cpu_register_types)
2733