xref: /qemu/target/arm/cpu.c (revision f8ed3648)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "cpu.h"
30 #ifdef CONFIG_TCG
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
39 #ifdef CONFIG_TCG
40 #include "hw/intc/armv7m_nvic.h"
41 #endif /* CONFIG_TCG */
42 #endif /* !CONFIG_USER_ONLY */
43 #include "sysemu/tcg.h"
44 #include "sysemu/qtest.h"
45 #include "sysemu/hw_accel.h"
46 #include "kvm_arm.h"
47 #include "disas/capstone.h"
48 #include "fpu/softfloat.h"
49 #include "cpregs.h"
50 
51 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
52 {
53     ARMCPU *cpu = ARM_CPU(cs);
54     CPUARMState *env = &cpu->env;
55 
56     if (is_a64(env)) {
57         env->pc = value;
58         env->thumb = false;
59     } else {
60         env->regs[15] = value & ~1;
61         env->thumb = value & 1;
62     }
63 }
64 
65 static vaddr arm_cpu_get_pc(CPUState *cs)
66 {
67     ARMCPU *cpu = ARM_CPU(cs);
68     CPUARMState *env = &cpu->env;
69 
70     if (is_a64(env)) {
71         return env->pc;
72     } else {
73         return env->regs[15];
74     }
75 }
76 
77 #ifdef CONFIG_TCG
78 void arm_cpu_synchronize_from_tb(CPUState *cs,
79                                  const TranslationBlock *tb)
80 {
81     /* The program counter is always up to date with CF_PCREL. */
82     if (!(tb_cflags(tb) & CF_PCREL)) {
83         CPUARMState *env = cs->env_ptr;
84         /*
85          * It's OK to look at env for the current mode here, because it's
86          * never possible for an AArch64 TB to chain to an AArch32 TB.
87          */
88         if (is_a64(env)) {
89             env->pc = tb->pc;
90         } else {
91             env->regs[15] = tb->pc;
92         }
93     }
94 }
95 
96 void arm_restore_state_to_opc(CPUState *cs,
97                               const TranslationBlock *tb,
98                               const uint64_t *data)
99 {
100     CPUARMState *env = cs->env_ptr;
101 
102     if (is_a64(env)) {
103         if (tb_cflags(tb) & CF_PCREL) {
104             env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105         } else {
106             env->pc = data[0];
107         }
108         env->condexec_bits = 0;
109         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
110     } else {
111         if (tb_cflags(tb) & CF_PCREL) {
112             env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
113         } else {
114             env->regs[15] = data[0];
115         }
116         env->condexec_bits = data[1];
117         env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
118     }
119 }
120 #endif /* CONFIG_TCG */
121 
122 static bool arm_cpu_has_work(CPUState *cs)
123 {
124     ARMCPU *cpu = ARM_CPU(cs);
125 
126     return (cpu->power_state != PSCI_OFF)
127         && cs->interrupt_request &
128         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
129          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
130          | CPU_INTERRUPT_EXITTB);
131 }
132 
133 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
134                                  void *opaque)
135 {
136     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
137 
138     entry->hook = hook;
139     entry->opaque = opaque;
140 
141     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
142 }
143 
144 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
145                                  void *opaque)
146 {
147     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
148 
149     entry->hook = hook;
150     entry->opaque = opaque;
151 
152     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
153 }
154 
155 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
156 {
157     /* Reset a single ARMCPRegInfo register */
158     ARMCPRegInfo *ri = value;
159     ARMCPU *cpu = opaque;
160 
161     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
162         return;
163     }
164 
165     if (ri->resetfn) {
166         ri->resetfn(&cpu->env, ri);
167         return;
168     }
169 
170     /* A zero offset is never possible as it would be regs[0]
171      * so we use it to indicate that reset is being handled elsewhere.
172      * This is basically only used for fields in non-core coprocessors
173      * (like the pxa2xx ones).
174      */
175     if (!ri->fieldoffset) {
176         return;
177     }
178 
179     if (cpreg_field_is_64bit(ri)) {
180         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
181     } else {
182         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183     }
184 }
185 
186 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
187 {
188     /* Purely an assertion check: we've already done reset once,
189      * so now check that running the reset for the cpreg doesn't
190      * change its value. This traps bugs where two different cpregs
191      * both try to reset the same state field but to different values.
192      */
193     ARMCPRegInfo *ri = value;
194     ARMCPU *cpu = opaque;
195     uint64_t oldvalue, newvalue;
196 
197     if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198         return;
199     }
200 
201     oldvalue = read_raw_cp_reg(&cpu->env, ri);
202     cp_reg_reset(key, value, opaque);
203     newvalue = read_raw_cp_reg(&cpu->env, ri);
204     assert(oldvalue == newvalue);
205 }
206 
207 static void arm_cpu_reset_hold(Object *obj)
208 {
209     CPUState *s = CPU(obj);
210     ARMCPU *cpu = ARM_CPU(s);
211     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
212     CPUARMState *env = &cpu->env;
213 
214     if (acc->parent_phases.hold) {
215         acc->parent_phases.hold(obj);
216     }
217 
218     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
219 
220     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
221     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
222 
223     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
224     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
225     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
226     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
227 
228     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
229 
230     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
231         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
232     }
233 
234     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
235         /* 64 bit CPUs always start in 64 bit mode */
236         env->aarch64 = true;
237 #if defined(CONFIG_USER_ONLY)
238         env->pstate = PSTATE_MODE_EL0t;
239         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
240         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
241         /* Enable all PAC keys.  */
242         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
243                                   SCTLR_EnDA | SCTLR_EnDB);
244         /* Trap on btype=3 for PACIxSP. */
245         env->cp15.sctlr_el[1] |= SCTLR_BT0;
246         /* and to the FP/Neon instructions */
247         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
248                                          CPACR_EL1, FPEN, 3);
249         /* and to the SVE instructions, with default vector length */
250         if (cpu_isar_feature(aa64_sve, cpu)) {
251             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
252                                              CPACR_EL1, ZEN, 3);
253             env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
254         }
255         /* and for SME instructions, with default vector length, and TPIDR2 */
256         if (cpu_isar_feature(aa64_sme, cpu)) {
257             env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
258             env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
259                                              CPACR_EL1, SMEN, 3);
260             env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
261             if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
262                 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
263                                                  SMCR, FA64, 1);
264             }
265         }
266         /*
267          * Enable 48-bit address space (TODO: take reserved_va into account).
268          * Enable TBI0 but not TBI1.
269          * Note that this must match useronly_clean_ptr.
270          */
271         env->cp15.tcr_el[1] = 5 | (1ULL << 37);
272 
273         /* Enable MTE */
274         if (cpu_isar_feature(aa64_mte, cpu)) {
275             /* Enable tag access, but leave TCF0 as No Effect (0). */
276             env->cp15.sctlr_el[1] |= SCTLR_ATA0;
277             /*
278              * Exclude all tags, so that tag 0 is always used.
279              * This corresponds to Linux current->thread.gcr_incl = 0.
280              *
281              * Set RRND, so that helper_irg() will generate a seed later.
282              * Here in cpu_reset(), the crypto subsystem has not yet been
283              * initialized.
284              */
285             env->cp15.gcr_el1 = 0x1ffff;
286         }
287         /*
288          * Disable access to SCXTNUM_EL0 from CSV2_1p2.
289          * This is not yet exposed from the Linux kernel in any way.
290          */
291         env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
292         /* Disable access to Debug Communication Channel (DCC). */
293         env->cp15.mdscr_el1 |= 1 << 12;
294 #else
295         /* Reset into the highest available EL */
296         if (arm_feature(env, ARM_FEATURE_EL3)) {
297             env->pstate = PSTATE_MODE_EL3h;
298         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
299             env->pstate = PSTATE_MODE_EL2h;
300         } else {
301             env->pstate = PSTATE_MODE_EL1h;
302         }
303 
304         /* Sample rvbar at reset.  */
305         env->cp15.rvbar = cpu->rvbar_prop;
306         env->pc = env->cp15.rvbar;
307 #endif
308     } else {
309 #if defined(CONFIG_USER_ONLY)
310         /* Userspace expects access to cp10 and cp11 for FP/Neon */
311         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
312                                          CPACR, CP10, 3);
313         env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
314                                          CPACR, CP11, 3);
315 #endif
316         if (arm_feature(env, ARM_FEATURE_V8)) {
317             env->cp15.rvbar = cpu->rvbar_prop;
318             env->regs[15] = cpu->rvbar_prop;
319         }
320     }
321 
322 #if defined(CONFIG_USER_ONLY)
323     env->uncached_cpsr = ARM_CPU_MODE_USR;
324     /* For user mode we must enable access to coprocessors */
325     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
326     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
327         env->cp15.c15_cpar = 3;
328     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
329         env->cp15.c15_cpar = 1;
330     }
331 #else
332 
333     /*
334      * If the highest available EL is EL2, AArch32 will start in Hyp
335      * mode; otherwise it starts in SVC. Note that if we start in
336      * AArch64 then these values in the uncached_cpsr will be ignored.
337      */
338     if (arm_feature(env, ARM_FEATURE_EL2) &&
339         !arm_feature(env, ARM_FEATURE_EL3)) {
340         env->uncached_cpsr = ARM_CPU_MODE_HYP;
341     } else {
342         env->uncached_cpsr = ARM_CPU_MODE_SVC;
343     }
344     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
345 
346     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
347      * executing as AArch32 then check if highvecs are enabled and
348      * adjust the PC accordingly.
349      */
350     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
351         env->regs[15] = 0xFFFF0000;
352     }
353 
354     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
355 #endif
356 
357     if (arm_feature(env, ARM_FEATURE_M)) {
358 #ifndef CONFIG_USER_ONLY
359         uint32_t initial_msp; /* Loaded from 0x0 */
360         uint32_t initial_pc; /* Loaded from 0x4 */
361         uint8_t *rom;
362         uint32_t vecbase;
363 #endif
364 
365         if (cpu_isar_feature(aa32_lob, cpu)) {
366             /*
367              * LTPSIZE is constant 4 if MVE not implemented, and resets
368              * to an UNKNOWN value if MVE is implemented. We choose to
369              * always reset to 4.
370              */
371             env->v7m.ltpsize = 4;
372             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
373             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
374             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
375         }
376 
377         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
378             env->v7m.secure = true;
379         } else {
380             /* This bit resets to 0 if security is supported, but 1 if
381              * it is not. The bit is not present in v7M, but we set it
382              * here so we can avoid having to make checks on it conditional
383              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
384              */
385             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
386             /*
387              * Set NSACR to indicate "NS access permitted to everything";
388              * this avoids having to have all the tests of it being
389              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
390              * v8.1M the guest-visible value of NSACR in a CPU without the
391              * Security Extension is 0xcff.
392              */
393             env->v7m.nsacr = 0xcff;
394         }
395 
396         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
397          * that it resets to 1, so QEMU always does that rather than making
398          * it dependent on CPU model. In v8M it is RES1.
399          */
400         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
401         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
402         if (arm_feature(env, ARM_FEATURE_V8)) {
403             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
404             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
405             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
406         }
407         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
408             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
409             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
410         }
411 
412         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
413             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
414             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
415                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
416         }
417 
418 #ifndef CONFIG_USER_ONLY
419         /* Unlike A/R profile, M profile defines the reset LR value */
420         env->regs[14] = 0xffffffff;
421 
422         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
423         env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
424 
425         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
426         vecbase = env->v7m.vecbase[env->v7m.secure];
427         rom = rom_ptr_for_as(s->as, vecbase, 8);
428         if (rom) {
429             /* Address zero is covered by ROM which hasn't yet been
430              * copied into physical memory.
431              */
432             initial_msp = ldl_p(rom);
433             initial_pc = ldl_p(rom + 4);
434         } else {
435             /* Address zero not covered by a ROM blob, or the ROM blob
436              * is in non-modifiable memory and this is a second reset after
437              * it got copied into memory. In the latter case, rom_ptr
438              * will return a NULL pointer and we should use ldl_phys instead.
439              */
440             initial_msp = ldl_phys(s->as, vecbase);
441             initial_pc = ldl_phys(s->as, vecbase + 4);
442         }
443 
444         qemu_log_mask(CPU_LOG_INT,
445                       "Loaded reset SP 0x%x PC 0x%x from vector table\n",
446                       initial_msp, initial_pc);
447 
448         env->regs[13] = initial_msp & 0xFFFFFFFC;
449         env->regs[15] = initial_pc & ~1;
450         env->thumb = initial_pc & 1;
451 #else
452         /*
453          * For user mode we run non-secure and with access to the FPU.
454          * The FPU context is active (ie does not need further setup)
455          * and is owned by non-secure.
456          */
457         env->v7m.secure = false;
458         env->v7m.nsacr = 0xcff;
459         env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
460         env->v7m.fpccr[M_REG_S] &=
461             ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
462         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
463 #endif
464     }
465 
466     /* M profile requires that reset clears the exclusive monitor;
467      * A profile does not, but clearing it makes more sense than having it
468      * set with an exclusive access on address zero.
469      */
470     arm_clear_exclusive(env);
471 
472     if (arm_feature(env, ARM_FEATURE_PMSA)) {
473         if (cpu->pmsav7_dregion > 0) {
474             if (arm_feature(env, ARM_FEATURE_V8)) {
475                 memset(env->pmsav8.rbar[M_REG_NS], 0,
476                        sizeof(*env->pmsav8.rbar[M_REG_NS])
477                        * cpu->pmsav7_dregion);
478                 memset(env->pmsav8.rlar[M_REG_NS], 0,
479                        sizeof(*env->pmsav8.rlar[M_REG_NS])
480                        * cpu->pmsav7_dregion);
481                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
482                     memset(env->pmsav8.rbar[M_REG_S], 0,
483                            sizeof(*env->pmsav8.rbar[M_REG_S])
484                            * cpu->pmsav7_dregion);
485                     memset(env->pmsav8.rlar[M_REG_S], 0,
486                            sizeof(*env->pmsav8.rlar[M_REG_S])
487                            * cpu->pmsav7_dregion);
488                 }
489             } else if (arm_feature(env, ARM_FEATURE_V7)) {
490                 memset(env->pmsav7.drbar, 0,
491                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
492                 memset(env->pmsav7.drsr, 0,
493                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
494                 memset(env->pmsav7.dracr, 0,
495                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
496             }
497         }
498 
499         if (cpu->pmsav8r_hdregion > 0) {
500             memset(env->pmsav8.hprbar, 0,
501                    sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
502             memset(env->pmsav8.hprlar, 0,
503                    sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
504         }
505 
506         env->pmsav7.rnr[M_REG_NS] = 0;
507         env->pmsav7.rnr[M_REG_S] = 0;
508         env->pmsav8.mair0[M_REG_NS] = 0;
509         env->pmsav8.mair0[M_REG_S] = 0;
510         env->pmsav8.mair1[M_REG_NS] = 0;
511         env->pmsav8.mair1[M_REG_S] = 0;
512     }
513 
514     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
515         if (cpu->sau_sregion > 0) {
516             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
517             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
518         }
519         env->sau.rnr = 0;
520         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
521          * the Cortex-M33 does.
522          */
523         env->sau.ctrl = 0;
524     }
525 
526     set_flush_to_zero(1, &env->vfp.standard_fp_status);
527     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
528     set_default_nan_mode(1, &env->vfp.standard_fp_status);
529     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
530     set_float_detect_tininess(float_tininess_before_rounding,
531                               &env->vfp.fp_status);
532     set_float_detect_tininess(float_tininess_before_rounding,
533                               &env->vfp.standard_fp_status);
534     set_float_detect_tininess(float_tininess_before_rounding,
535                               &env->vfp.fp_status_f16);
536     set_float_detect_tininess(float_tininess_before_rounding,
537                               &env->vfp.standard_fp_status_f16);
538 #ifndef CONFIG_USER_ONLY
539     if (kvm_enabled()) {
540         kvm_arm_reset_vcpu(cpu);
541     }
542 #endif
543 
544     if (tcg_enabled()) {
545         hw_breakpoint_update_all(cpu);
546         hw_watchpoint_update_all(cpu);
547 
548         arm_rebuild_hflags(env);
549     }
550 }
551 
552 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
553 
554 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
555                                      unsigned int target_el,
556                                      unsigned int cur_el, bool secure,
557                                      uint64_t hcr_el2)
558 {
559     CPUARMState *env = cs->env_ptr;
560     bool pstate_unmasked;
561     bool unmasked = false;
562 
563     /*
564      * Don't take exceptions if they target a lower EL.
565      * This check should catch any exceptions that would not be taken
566      * but left pending.
567      */
568     if (cur_el > target_el) {
569         return false;
570     }
571 
572     switch (excp_idx) {
573     case EXCP_FIQ:
574         pstate_unmasked = !(env->daif & PSTATE_F);
575         break;
576 
577     case EXCP_IRQ:
578         pstate_unmasked = !(env->daif & PSTATE_I);
579         break;
580 
581     case EXCP_VFIQ:
582         if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
583             /* VFIQs are only taken when hypervized.  */
584             return false;
585         }
586         return !(env->daif & PSTATE_F);
587     case EXCP_VIRQ:
588         if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
589             /* VIRQs are only taken when hypervized.  */
590             return false;
591         }
592         return !(env->daif & PSTATE_I);
593     case EXCP_VSERR:
594         if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
595             /* VIRQs are only taken when hypervized.  */
596             return false;
597         }
598         return !(env->daif & PSTATE_A);
599     default:
600         g_assert_not_reached();
601     }
602 
603     /*
604      * Use the target EL, current execution state and SCR/HCR settings to
605      * determine whether the corresponding CPSR bit is used to mask the
606      * interrupt.
607      */
608     if ((target_el > cur_el) && (target_el != 1)) {
609         /* Exceptions targeting a higher EL may not be maskable */
610         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
611             switch (target_el) {
612             case 2:
613                 /*
614                  * According to ARM DDI 0487H.a, an interrupt can be masked
615                  * when HCR_E2H and HCR_TGE are both set regardless of the
616                  * current Security state. Note that we need to revisit this
617                  * part again once we need to support NMI.
618                  */
619                 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
620                         unmasked = true;
621                 }
622                 break;
623             case 3:
624                 /* Interrupt cannot be masked when the target EL is 3 */
625                 unmasked = true;
626                 break;
627             default:
628                 g_assert_not_reached();
629             }
630         } else {
631             /*
632              * The old 32-bit-only environment has a more complicated
633              * masking setup. HCR and SCR bits not only affect interrupt
634              * routing but also change the behaviour of masking.
635              */
636             bool hcr, scr;
637 
638             switch (excp_idx) {
639             case EXCP_FIQ:
640                 /*
641                  * If FIQs are routed to EL3 or EL2 then there are cases where
642                  * we override the CPSR.F in determining if the exception is
643                  * masked or not. If neither of these are set then we fall back
644                  * to the CPSR.F setting otherwise we further assess the state
645                  * below.
646                  */
647                 hcr = hcr_el2 & HCR_FMO;
648                 scr = (env->cp15.scr_el3 & SCR_FIQ);
649 
650                 /*
651                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
652                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
653                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
654                  * when non-secure but only when FIQs are only routed to EL3.
655                  */
656                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
657                 break;
658             case EXCP_IRQ:
659                 /*
660                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
661                  * we may override the CPSR.I masking when in non-secure state.
662                  * The SCR.IRQ setting has already been taken into consideration
663                  * when setting the target EL, so it does not have a further
664                  * affect here.
665                  */
666                 hcr = hcr_el2 & HCR_IMO;
667                 scr = false;
668                 break;
669             default:
670                 g_assert_not_reached();
671             }
672 
673             if ((scr || hcr) && !secure) {
674                 unmasked = true;
675             }
676         }
677     }
678 
679     /*
680      * The PSTATE bits only mask the interrupt if we have not overriden the
681      * ability above.
682      */
683     return unmasked || pstate_unmasked;
684 }
685 
686 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
687 {
688     CPUClass *cc = CPU_GET_CLASS(cs);
689     CPUARMState *env = cs->env_ptr;
690     uint32_t cur_el = arm_current_el(env);
691     bool secure = arm_is_secure(env);
692     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
693     uint32_t target_el;
694     uint32_t excp_idx;
695 
696     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
697 
698     if (interrupt_request & CPU_INTERRUPT_FIQ) {
699         excp_idx = EXCP_FIQ;
700         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
701         if (arm_excp_unmasked(cs, excp_idx, target_el,
702                               cur_el, secure, hcr_el2)) {
703             goto found;
704         }
705     }
706     if (interrupt_request & CPU_INTERRUPT_HARD) {
707         excp_idx = EXCP_IRQ;
708         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
709         if (arm_excp_unmasked(cs, excp_idx, target_el,
710                               cur_el, secure, hcr_el2)) {
711             goto found;
712         }
713     }
714     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
715         excp_idx = EXCP_VIRQ;
716         target_el = 1;
717         if (arm_excp_unmasked(cs, excp_idx, target_el,
718                               cur_el, secure, hcr_el2)) {
719             goto found;
720         }
721     }
722     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
723         excp_idx = EXCP_VFIQ;
724         target_el = 1;
725         if (arm_excp_unmasked(cs, excp_idx, target_el,
726                               cur_el, secure, hcr_el2)) {
727             goto found;
728         }
729     }
730     if (interrupt_request & CPU_INTERRUPT_VSERR) {
731         excp_idx = EXCP_VSERR;
732         target_el = 1;
733         if (arm_excp_unmasked(cs, excp_idx, target_el,
734                               cur_el, secure, hcr_el2)) {
735             /* Taking a virtual abort clears HCR_EL2.VSE */
736             env->cp15.hcr_el2 &= ~HCR_VSE;
737             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
738             goto found;
739         }
740     }
741     return false;
742 
743  found:
744     cs->exception_index = excp_idx;
745     env->exception.target_el = target_el;
746     cc->tcg_ops->do_interrupt(cs);
747     return true;
748 }
749 
750 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
751 
752 void arm_cpu_update_virq(ARMCPU *cpu)
753 {
754     /*
755      * Update the interrupt level for VIRQ, which is the logical OR of
756      * the HCR_EL2.VI bit and the input line level from the GIC.
757      */
758     CPUARMState *env = &cpu->env;
759     CPUState *cs = CPU(cpu);
760 
761     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
762         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
763 
764     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
765         if (new_state) {
766             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
767         } else {
768             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
769         }
770     }
771 }
772 
773 void arm_cpu_update_vfiq(ARMCPU *cpu)
774 {
775     /*
776      * Update the interrupt level for VFIQ, which is the logical OR of
777      * the HCR_EL2.VF bit and the input line level from the GIC.
778      */
779     CPUARMState *env = &cpu->env;
780     CPUState *cs = CPU(cpu);
781 
782     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
783         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
784 
785     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
786         if (new_state) {
787             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
788         } else {
789             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
790         }
791     }
792 }
793 
794 void arm_cpu_update_vserr(ARMCPU *cpu)
795 {
796     /*
797      * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
798      */
799     CPUARMState *env = &cpu->env;
800     CPUState *cs = CPU(cpu);
801 
802     bool new_state = env->cp15.hcr_el2 & HCR_VSE;
803 
804     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
805         if (new_state) {
806             cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
807         } else {
808             cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
809         }
810     }
811 }
812 
813 #ifndef CONFIG_USER_ONLY
814 static void arm_cpu_set_irq(void *opaque, int irq, int level)
815 {
816     ARMCPU *cpu = opaque;
817     CPUARMState *env = &cpu->env;
818     CPUState *cs = CPU(cpu);
819     static const int mask[] = {
820         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
821         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
822         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
823         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
824     };
825 
826     if (!arm_feature(env, ARM_FEATURE_EL2) &&
827         (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
828         /*
829          * The GIC might tell us about VIRQ and VFIQ state, but if we don't
830          * have EL2 support we don't care. (Unless the guest is doing something
831          * silly this will only be calls saying "level is still 0".)
832          */
833         return;
834     }
835 
836     if (level) {
837         env->irq_line_state |= mask[irq];
838     } else {
839         env->irq_line_state &= ~mask[irq];
840     }
841 
842     switch (irq) {
843     case ARM_CPU_VIRQ:
844         arm_cpu_update_virq(cpu);
845         break;
846     case ARM_CPU_VFIQ:
847         arm_cpu_update_vfiq(cpu);
848         break;
849     case ARM_CPU_IRQ:
850     case ARM_CPU_FIQ:
851         if (level) {
852             cpu_interrupt(cs, mask[irq]);
853         } else {
854             cpu_reset_interrupt(cs, mask[irq]);
855         }
856         break;
857     default:
858         g_assert_not_reached();
859     }
860 }
861 
862 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
863 {
864 #ifdef CONFIG_KVM
865     ARMCPU *cpu = opaque;
866     CPUARMState *env = &cpu->env;
867     CPUState *cs = CPU(cpu);
868     uint32_t linestate_bit;
869     int irq_id;
870 
871     switch (irq) {
872     case ARM_CPU_IRQ:
873         irq_id = KVM_ARM_IRQ_CPU_IRQ;
874         linestate_bit = CPU_INTERRUPT_HARD;
875         break;
876     case ARM_CPU_FIQ:
877         irq_id = KVM_ARM_IRQ_CPU_FIQ;
878         linestate_bit = CPU_INTERRUPT_FIQ;
879         break;
880     default:
881         g_assert_not_reached();
882     }
883 
884     if (level) {
885         env->irq_line_state |= linestate_bit;
886     } else {
887         env->irq_line_state &= ~linestate_bit;
888     }
889     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
890 #endif
891 }
892 
893 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
894 {
895     ARMCPU *cpu = ARM_CPU(cs);
896     CPUARMState *env = &cpu->env;
897 
898     cpu_synchronize_state(cs);
899     return arm_cpu_data_is_big_endian(env);
900 }
901 
902 #endif
903 
904 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
905 {
906     ARMCPU *ac = ARM_CPU(cpu);
907     CPUARMState *env = &ac->env;
908     bool sctlr_b;
909 
910     if (is_a64(env)) {
911         info->cap_arch = CS_ARCH_ARM64;
912         info->cap_insn_unit = 4;
913         info->cap_insn_split = 4;
914     } else {
915         int cap_mode;
916         if (env->thumb) {
917             info->cap_insn_unit = 2;
918             info->cap_insn_split = 4;
919             cap_mode = CS_MODE_THUMB;
920         } else {
921             info->cap_insn_unit = 4;
922             info->cap_insn_split = 4;
923             cap_mode = CS_MODE_ARM;
924         }
925         if (arm_feature(env, ARM_FEATURE_V8)) {
926             cap_mode |= CS_MODE_V8;
927         }
928         if (arm_feature(env, ARM_FEATURE_M)) {
929             cap_mode |= CS_MODE_MCLASS;
930         }
931         info->cap_arch = CS_ARCH_ARM;
932         info->cap_mode = cap_mode;
933     }
934 
935     sctlr_b = arm_sctlr_b(env);
936     if (bswap_code(sctlr_b)) {
937 #if TARGET_BIG_ENDIAN
938         info->endian = BFD_ENDIAN_LITTLE;
939 #else
940         info->endian = BFD_ENDIAN_BIG;
941 #endif
942     }
943     info->flags &= ~INSN_ARM_BE32;
944 #ifndef CONFIG_USER_ONLY
945     if (sctlr_b) {
946         info->flags |= INSN_ARM_BE32;
947     }
948 #endif
949 }
950 
951 #ifdef TARGET_AARCH64
952 
953 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
954 {
955     ARMCPU *cpu = ARM_CPU(cs);
956     CPUARMState *env = &cpu->env;
957     uint32_t psr = pstate_read(env);
958     int i;
959     int el = arm_current_el(env);
960     const char *ns_status;
961     bool sve;
962 
963     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
964     for (i = 0; i < 32; i++) {
965         if (i == 31) {
966             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
967         } else {
968             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
969                          (i + 2) % 3 ? " " : "\n");
970         }
971     }
972 
973     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
974         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
975     } else {
976         ns_status = "";
977     }
978     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
979                  psr,
980                  psr & PSTATE_N ? 'N' : '-',
981                  psr & PSTATE_Z ? 'Z' : '-',
982                  psr & PSTATE_C ? 'C' : '-',
983                  psr & PSTATE_V ? 'V' : '-',
984                  ns_status,
985                  el,
986                  psr & PSTATE_SP ? 'h' : 't');
987 
988     if (cpu_isar_feature(aa64_sme, cpu)) {
989         qemu_fprintf(f, "  SVCR=%08" PRIx64 " %c%c",
990                      env->svcr,
991                      (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
992                      (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
993     }
994     if (cpu_isar_feature(aa64_bti, cpu)) {
995         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
996     }
997     if (!(flags & CPU_DUMP_FPU)) {
998         qemu_fprintf(f, "\n");
999         return;
1000     }
1001     if (fp_exception_el(env, el) != 0) {
1002         qemu_fprintf(f, "    FPU disabled\n");
1003         return;
1004     }
1005     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
1006                  vfp_get_fpcr(env), vfp_get_fpsr(env));
1007 
1008     if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1009         sve = sme_exception_el(env, el) == 0;
1010     } else if (cpu_isar_feature(aa64_sve, cpu)) {
1011         sve = sve_exception_el(env, el) == 0;
1012     } else {
1013         sve = false;
1014     }
1015 
1016     if (sve) {
1017         int j, zcr_len = sve_vqm1_for_el(env, el);
1018 
1019         for (i = 0; i <= FFR_PRED_NUM; i++) {
1020             bool eol;
1021             if (i == FFR_PRED_NUM) {
1022                 qemu_fprintf(f, "FFR=");
1023                 /* It's last, so end the line.  */
1024                 eol = true;
1025             } else {
1026                 qemu_fprintf(f, "P%02d=", i);
1027                 switch (zcr_len) {
1028                 case 0:
1029                     eol = i % 8 == 7;
1030                     break;
1031                 case 1:
1032                     eol = i % 6 == 5;
1033                     break;
1034                 case 2:
1035                 case 3:
1036                     eol = i % 3 == 2;
1037                     break;
1038                 default:
1039                     /* More than one quadword per predicate.  */
1040                     eol = true;
1041                     break;
1042                 }
1043             }
1044             for (j = zcr_len / 4; j >= 0; j--) {
1045                 int digits;
1046                 if (j * 4 + 4 <= zcr_len + 1) {
1047                     digits = 16;
1048                 } else {
1049                     digits = (zcr_len % 4 + 1) * 4;
1050                 }
1051                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1052                              env->vfp.pregs[i].p[j],
1053                              j ? ":" : eol ? "\n" : " ");
1054             }
1055         }
1056 
1057         for (i = 0; i < 32; i++) {
1058             if (zcr_len == 0) {
1059                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1060                              i, env->vfp.zregs[i].d[1],
1061                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1062             } else if (zcr_len == 1) {
1063                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1064                              ":%016" PRIx64 ":%016" PRIx64 "\n",
1065                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1066                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1067             } else {
1068                 for (j = zcr_len; j >= 0; j--) {
1069                     bool odd = (zcr_len - j) % 2 != 0;
1070                     if (j == zcr_len) {
1071                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1072                     } else if (!odd) {
1073                         if (j > 0) {
1074                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
1075                         } else {
1076                             qemu_fprintf(f, "     [%x]=", j);
1077                         }
1078                     }
1079                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1080                                  env->vfp.zregs[i].d[j * 2 + 1],
1081                                  env->vfp.zregs[i].d[j * 2],
1082                                  odd || j == 0 ? "\n" : ":");
1083                 }
1084             }
1085         }
1086     } else {
1087         for (i = 0; i < 32; i++) {
1088             uint64_t *q = aa64_vfp_qreg(env, i);
1089             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1090                          i, q[1], q[0], (i & 1 ? "\n" : " "));
1091         }
1092     }
1093 }
1094 
1095 #else
1096 
1097 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1098 {
1099     g_assert_not_reached();
1100 }
1101 
1102 #endif
1103 
1104 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1105 {
1106     ARMCPU *cpu = ARM_CPU(cs);
1107     CPUARMState *env = &cpu->env;
1108     int i;
1109 
1110     if (is_a64(env)) {
1111         aarch64_cpu_dump_state(cs, f, flags);
1112         return;
1113     }
1114 
1115     for (i = 0; i < 16; i++) {
1116         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1117         if ((i % 4) == 3) {
1118             qemu_fprintf(f, "\n");
1119         } else {
1120             qemu_fprintf(f, " ");
1121         }
1122     }
1123 
1124     if (arm_feature(env, ARM_FEATURE_M)) {
1125         uint32_t xpsr = xpsr_read(env);
1126         const char *mode;
1127         const char *ns_status = "";
1128 
1129         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1130             ns_status = env->v7m.secure ? "S " : "NS ";
1131         }
1132 
1133         if (xpsr & XPSR_EXCP) {
1134             mode = "handler";
1135         } else {
1136             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1137                 mode = "unpriv-thread";
1138             } else {
1139                 mode = "priv-thread";
1140             }
1141         }
1142 
1143         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1144                      xpsr,
1145                      xpsr & XPSR_N ? 'N' : '-',
1146                      xpsr & XPSR_Z ? 'Z' : '-',
1147                      xpsr & XPSR_C ? 'C' : '-',
1148                      xpsr & XPSR_V ? 'V' : '-',
1149                      xpsr & XPSR_T ? 'T' : 'A',
1150                      ns_status,
1151                      mode);
1152     } else {
1153         uint32_t psr = cpsr_read(env);
1154         const char *ns_status = "";
1155 
1156         if (arm_feature(env, ARM_FEATURE_EL3) &&
1157             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1158             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1159         }
1160 
1161         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1162                      psr,
1163                      psr & CPSR_N ? 'N' : '-',
1164                      psr & CPSR_Z ? 'Z' : '-',
1165                      psr & CPSR_C ? 'C' : '-',
1166                      psr & CPSR_V ? 'V' : '-',
1167                      psr & CPSR_T ? 'T' : 'A',
1168                      ns_status,
1169                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1170     }
1171 
1172     if (flags & CPU_DUMP_FPU) {
1173         int numvfpregs = 0;
1174         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1175             numvfpregs = 32;
1176         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1177             numvfpregs = 16;
1178         }
1179         for (i = 0; i < numvfpregs; i++) {
1180             uint64_t v = *aa32_vfp_dreg(env, i);
1181             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1182                          i * 2, (uint32_t)v,
1183                          i * 2 + 1, (uint32_t)(v >> 32),
1184                          i, v);
1185         }
1186         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1187         if (cpu_isar_feature(aa32_mve, cpu)) {
1188             qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1189         }
1190     }
1191 }
1192 
1193 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1194 {
1195     uint32_t Aff1 = idx / clustersz;
1196     uint32_t Aff0 = idx % clustersz;
1197     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1198 }
1199 
1200 static void arm_cpu_initfn(Object *obj)
1201 {
1202     ARMCPU *cpu = ARM_CPU(obj);
1203 
1204     cpu_set_cpustate_pointers(cpu);
1205     cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1206                                          NULL, g_free);
1207 
1208     QLIST_INIT(&cpu->pre_el_change_hooks);
1209     QLIST_INIT(&cpu->el_change_hooks);
1210 
1211 #ifdef CONFIG_USER_ONLY
1212 # ifdef TARGET_AARCH64
1213     /*
1214      * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1215      * These values were chosen to fit within the default signal frame.
1216      * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1217      * and our corresponding cpu property.
1218      */
1219     cpu->sve_default_vq = 4;
1220     cpu->sme_default_vq = 2;
1221 # endif
1222 #else
1223     /* Our inbound IRQ and FIQ lines */
1224     if (kvm_enabled()) {
1225         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1226          * the same interface as non-KVM CPUs.
1227          */
1228         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1229     } else {
1230         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1231     }
1232 
1233     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1234                        ARRAY_SIZE(cpu->gt_timer_outputs));
1235 
1236     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1237                              "gicv3-maintenance-interrupt", 1);
1238     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1239                              "pmu-interrupt", 1);
1240 #endif
1241 
1242     /* DTB consumers generally don't in fact care what the 'compatible'
1243      * string is, so always provide some string and trust that a hypothetical
1244      * picky DTB consumer will also provide a helpful error message.
1245      */
1246     cpu->dtb_compatible = "qemu,unknown";
1247     cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1248     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1249 
1250     if (tcg_enabled() || hvf_enabled()) {
1251         /* TCG and HVF implement PSCI 1.1 */
1252         cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1253     }
1254 }
1255 
1256 static Property arm_cpu_gt_cntfrq_property =
1257             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1258                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1259 
1260 static Property arm_cpu_reset_cbar_property =
1261             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1262 
1263 static Property arm_cpu_reset_hivecs_property =
1264             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1265 
1266 #ifndef CONFIG_USER_ONLY
1267 static Property arm_cpu_has_el2_property =
1268             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1269 
1270 static Property arm_cpu_has_el3_property =
1271             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1272 #endif
1273 
1274 static Property arm_cpu_cfgend_property =
1275             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1276 
1277 static Property arm_cpu_has_vfp_property =
1278             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1279 
1280 static Property arm_cpu_has_vfp_d32_property =
1281             DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true);
1282 
1283 static Property arm_cpu_has_neon_property =
1284             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1285 
1286 static Property arm_cpu_has_dsp_property =
1287             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1288 
1289 static Property arm_cpu_has_mpu_property =
1290             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1291 
1292 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1293  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1294  * the right value for that particular CPU type, and we don't want
1295  * to override that with an incorrect constant value.
1296  */
1297 static Property arm_cpu_pmsav7_dregion_property =
1298             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1299                                            pmsav7_dregion,
1300                                            qdev_prop_uint32, uint32_t);
1301 
1302 static bool arm_get_pmu(Object *obj, Error **errp)
1303 {
1304     ARMCPU *cpu = ARM_CPU(obj);
1305 
1306     return cpu->has_pmu;
1307 }
1308 
1309 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1310 {
1311     ARMCPU *cpu = ARM_CPU(obj);
1312 
1313     if (value) {
1314         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1315             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1316             return;
1317         }
1318         set_feature(&cpu->env, ARM_FEATURE_PMU);
1319     } else {
1320         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1321     }
1322     cpu->has_pmu = value;
1323 }
1324 
1325 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1326 {
1327     /*
1328      * The exact approach to calculating guest ticks is:
1329      *
1330      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1331      *              NANOSECONDS_PER_SECOND);
1332      *
1333      * We don't do that. Rather we intentionally use integer division
1334      * truncation below and in the caller for the conversion of host monotonic
1335      * time to guest ticks to provide the exact inverse for the semantics of
1336      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1337      * it loses precision when representing frequencies where
1338      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1339      * provide an exact inverse leads to scheduling timers with negative
1340      * periods, which in turn leads to sticky behaviour in the guest.
1341      *
1342      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1343      * cannot become zero.
1344      */
1345     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1346       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1347 }
1348 
1349 void arm_cpu_post_init(Object *obj)
1350 {
1351     ARMCPU *cpu = ARM_CPU(obj);
1352 
1353     /* M profile implies PMSA. We have to do this here rather than
1354      * in realize with the other feature-implication checks because
1355      * we look at the PMSA bit to see if we should add some properties.
1356      */
1357     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1358         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1359     }
1360 
1361     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1362         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1363         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1364     }
1365 
1366     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1367         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1368     }
1369 
1370     if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1371         object_property_add_uint64_ptr(obj, "rvbar",
1372                                        &cpu->rvbar_prop,
1373                                        OBJ_PROP_FLAG_READWRITE);
1374     }
1375 
1376 #ifndef CONFIG_USER_ONLY
1377     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1378         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1379          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1380          */
1381         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1382 
1383         object_property_add_link(obj, "secure-memory",
1384                                  TYPE_MEMORY_REGION,
1385                                  (Object **)&cpu->secure_memory,
1386                                  qdev_prop_allow_set_link_before_realize,
1387                                  OBJ_PROP_LINK_STRONG);
1388     }
1389 
1390     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1391         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1392     }
1393 #endif
1394 
1395     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1396         cpu->has_pmu = true;
1397         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1398     }
1399 
1400     /*
1401      * Allow user to turn off VFP and Neon support, but only for TCG --
1402      * KVM does not currently allow us to lie to the guest about its
1403      * ID/feature registers, so the guest always sees what the host has.
1404      */
1405     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1406         ? cpu_isar_feature(aa64_fp_simd, cpu)
1407         : cpu_isar_feature(aa32_vfp, cpu)) {
1408         cpu->has_vfp = true;
1409         if (!kvm_enabled()) {
1410             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1411         }
1412     }
1413 
1414     if (cpu->has_vfp && cpu_isar_feature(aa32_simd_r32, cpu)) {
1415         cpu->has_vfp_d32 = true;
1416         if (!kvm_enabled()) {
1417             /*
1418              * The permitted values of the SIMDReg bits [3:0] on
1419              * Armv8-A are either 0b0000 and 0b0010. On such CPUs,
1420              * make sure that has_vfp_d32 can not be set to false.
1421              */
1422             if (!(arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1423                   !arm_feature(&cpu->env, ARM_FEATURE_M))) {
1424                 qdev_property_add_static(DEVICE(obj),
1425                                          &arm_cpu_has_vfp_d32_property);
1426             }
1427         }
1428     }
1429 
1430     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1431         cpu->has_neon = true;
1432         if (!kvm_enabled()) {
1433             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1434         }
1435     }
1436 
1437     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1438         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1439         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1440     }
1441 
1442     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1443         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1444         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1445             qdev_property_add_static(DEVICE(obj),
1446                                      &arm_cpu_pmsav7_dregion_property);
1447         }
1448     }
1449 
1450     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1451         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1452                                  qdev_prop_allow_set_link_before_realize,
1453                                  OBJ_PROP_LINK_STRONG);
1454         /*
1455          * M profile: initial value of the Secure VTOR. We can't just use
1456          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1457          * the property to be set after realize.
1458          */
1459         object_property_add_uint32_ptr(obj, "init-svtor",
1460                                        &cpu->init_svtor,
1461                                        OBJ_PROP_FLAG_READWRITE);
1462     }
1463     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1464         /*
1465          * Initial value of the NS VTOR (for cores without the Security
1466          * extension, this is the only VTOR)
1467          */
1468         object_property_add_uint32_ptr(obj, "init-nsvtor",
1469                                        &cpu->init_nsvtor,
1470                                        OBJ_PROP_FLAG_READWRITE);
1471     }
1472 
1473     /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1474     object_property_add_uint32_ptr(obj, "psci-conduit",
1475                                    &cpu->psci_conduit,
1476                                    OBJ_PROP_FLAG_READWRITE);
1477 
1478     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1479 
1480     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1481         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1482     }
1483 
1484     if (kvm_enabled()) {
1485         kvm_arm_add_vcpu_properties(obj);
1486     }
1487 
1488 #ifndef CONFIG_USER_ONLY
1489     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1490         cpu_isar_feature(aa64_mte, cpu)) {
1491         object_property_add_link(obj, "tag-memory",
1492                                  TYPE_MEMORY_REGION,
1493                                  (Object **)&cpu->tag_memory,
1494                                  qdev_prop_allow_set_link_before_realize,
1495                                  OBJ_PROP_LINK_STRONG);
1496 
1497         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1498             object_property_add_link(obj, "secure-tag-memory",
1499                                      TYPE_MEMORY_REGION,
1500                                      (Object **)&cpu->secure_tag_memory,
1501                                      qdev_prop_allow_set_link_before_realize,
1502                                      OBJ_PROP_LINK_STRONG);
1503         }
1504     }
1505 #endif
1506 }
1507 
1508 static void arm_cpu_finalizefn(Object *obj)
1509 {
1510     ARMCPU *cpu = ARM_CPU(obj);
1511     ARMELChangeHook *hook, *next;
1512 
1513     g_hash_table_destroy(cpu->cp_regs);
1514 
1515     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1516         QLIST_REMOVE(hook, node);
1517         g_free(hook);
1518     }
1519     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1520         QLIST_REMOVE(hook, node);
1521         g_free(hook);
1522     }
1523 #ifndef CONFIG_USER_ONLY
1524     if (cpu->pmu_timer) {
1525         timer_free(cpu->pmu_timer);
1526     }
1527 #endif
1528 }
1529 
1530 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1531 {
1532     Error *local_err = NULL;
1533 
1534 #ifdef TARGET_AARCH64
1535     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1536         arm_cpu_sve_finalize(cpu, &local_err);
1537         if (local_err != NULL) {
1538             error_propagate(errp, local_err);
1539             return;
1540         }
1541 
1542         arm_cpu_sme_finalize(cpu, &local_err);
1543         if (local_err != NULL) {
1544             error_propagate(errp, local_err);
1545             return;
1546         }
1547 
1548         arm_cpu_pauth_finalize(cpu, &local_err);
1549         if (local_err != NULL) {
1550             error_propagate(errp, local_err);
1551             return;
1552         }
1553 
1554         arm_cpu_lpa2_finalize(cpu, &local_err);
1555         if (local_err != NULL) {
1556             error_propagate(errp, local_err);
1557             return;
1558         }
1559     }
1560 #endif
1561 
1562     if (kvm_enabled()) {
1563         kvm_arm_steal_time_finalize(cpu, &local_err);
1564         if (local_err != NULL) {
1565             error_propagate(errp, local_err);
1566             return;
1567         }
1568     }
1569 }
1570 
1571 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1572 {
1573     CPUState *cs = CPU(dev);
1574     ARMCPU *cpu = ARM_CPU(dev);
1575     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1576     CPUARMState *env = &cpu->env;
1577     int pagebits;
1578     Error *local_err = NULL;
1579     bool no_aa32 = false;
1580 
1581     /* Use pc-relative instructions in system-mode */
1582 #ifndef CONFIG_USER_ONLY
1583     cs->tcg_cflags |= CF_PCREL;
1584 #endif
1585 
1586     /* If we needed to query the host kernel for the CPU features
1587      * then it's possible that might have failed in the initfn, but
1588      * this is the first point where we can report it.
1589      */
1590     if (cpu->host_cpu_probe_failed) {
1591         if (!kvm_enabled() && !hvf_enabled()) {
1592             error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1593         } else {
1594             error_setg(errp, "Failed to retrieve host CPU features");
1595         }
1596         return;
1597     }
1598 
1599 #ifndef CONFIG_USER_ONLY
1600     /* The NVIC and M-profile CPU are two halves of a single piece of
1601      * hardware; trying to use one without the other is a command line
1602      * error and will result in segfaults if not caught here.
1603      */
1604     if (arm_feature(env, ARM_FEATURE_M)) {
1605         if (!env->nvic) {
1606             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1607             return;
1608         }
1609     } else {
1610         if (env->nvic) {
1611             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1612             return;
1613         }
1614     }
1615 
1616     if (!tcg_enabled() && !qtest_enabled()) {
1617         /*
1618          * We assume that no accelerator except TCG (and the "not really an
1619          * accelerator" qtest) can handle these features, because Arm hardware
1620          * virtualization can't virtualize them.
1621          *
1622          * Catch all the cases which might cause us to create more than one
1623          * address space for the CPU (otherwise we will assert() later in
1624          * cpu_address_space_init()).
1625          */
1626         if (arm_feature(env, ARM_FEATURE_M)) {
1627             error_setg(errp,
1628                        "Cannot enable %s when using an M-profile guest CPU",
1629                        current_accel_name());
1630             return;
1631         }
1632         if (cpu->has_el3) {
1633             error_setg(errp,
1634                        "Cannot enable %s when guest CPU has EL3 enabled",
1635                        current_accel_name());
1636             return;
1637         }
1638         if (cpu->tag_memory) {
1639             error_setg(errp,
1640                        "Cannot enable %s when guest CPUs has MTE enabled",
1641                        current_accel_name());
1642             return;
1643         }
1644     }
1645 
1646     {
1647         uint64_t scale;
1648 
1649         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1650             if (!cpu->gt_cntfrq_hz) {
1651                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1652                            cpu->gt_cntfrq_hz);
1653                 return;
1654             }
1655             scale = gt_cntfrq_period_ns(cpu);
1656         } else {
1657             scale = GTIMER_SCALE;
1658         }
1659 
1660         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1661                                                arm_gt_ptimer_cb, cpu);
1662         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1663                                                arm_gt_vtimer_cb, cpu);
1664         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1665                                               arm_gt_htimer_cb, cpu);
1666         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1667                                               arm_gt_stimer_cb, cpu);
1668         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1669                                                   arm_gt_hvtimer_cb, cpu);
1670     }
1671 #endif
1672 
1673     cpu_exec_realizefn(cs, &local_err);
1674     if (local_err != NULL) {
1675         error_propagate(errp, local_err);
1676         return;
1677     }
1678 
1679     arm_cpu_finalize_features(cpu, &local_err);
1680     if (local_err != NULL) {
1681         error_propagate(errp, local_err);
1682         return;
1683     }
1684 
1685     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1686         cpu->has_vfp != cpu->has_neon) {
1687         /*
1688          * This is an architectural requirement for AArch64; AArch32 is
1689          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1690          */
1691         error_setg(errp,
1692                    "AArch64 CPUs must have both VFP and Neon or neither");
1693         return;
1694     }
1695 
1696     if (cpu->has_vfp_d32 != cpu->has_neon) {
1697         error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither");
1698         return;
1699     }
1700 
1701    if (!cpu->has_vfp_d32) {
1702         uint32_t u;
1703 
1704         u = cpu->isar.mvfr0;
1705         u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */
1706         cpu->isar.mvfr0 = u;
1707     }
1708 
1709     if (!cpu->has_vfp) {
1710         uint64_t t;
1711         uint32_t u;
1712 
1713         t = cpu->isar.id_aa64isar1;
1714         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1715         cpu->isar.id_aa64isar1 = t;
1716 
1717         t = cpu->isar.id_aa64pfr0;
1718         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1719         cpu->isar.id_aa64pfr0 = t;
1720 
1721         u = cpu->isar.id_isar6;
1722         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1723         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1724         cpu->isar.id_isar6 = u;
1725 
1726         u = cpu->isar.mvfr0;
1727         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1728         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1729         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1730         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1731         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1732         if (!arm_feature(env, ARM_FEATURE_M)) {
1733             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1734             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1735         }
1736         cpu->isar.mvfr0 = u;
1737 
1738         u = cpu->isar.mvfr1;
1739         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1740         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1741         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1742         if (arm_feature(env, ARM_FEATURE_M)) {
1743             u = FIELD_DP32(u, MVFR1, FP16, 0);
1744         }
1745         cpu->isar.mvfr1 = u;
1746 
1747         u = cpu->isar.mvfr2;
1748         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1749         cpu->isar.mvfr2 = u;
1750     }
1751 
1752     if (!cpu->has_neon) {
1753         uint64_t t;
1754         uint32_t u;
1755 
1756         unset_feature(env, ARM_FEATURE_NEON);
1757 
1758         t = cpu->isar.id_aa64isar0;
1759         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1760         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1761         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1762         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1763         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1764         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1765         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1766         cpu->isar.id_aa64isar0 = t;
1767 
1768         t = cpu->isar.id_aa64isar1;
1769         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1770         t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1771         t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1772         cpu->isar.id_aa64isar1 = t;
1773 
1774         t = cpu->isar.id_aa64pfr0;
1775         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1776         cpu->isar.id_aa64pfr0 = t;
1777 
1778         u = cpu->isar.id_isar5;
1779         u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1780         u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1781         u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1782         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1783         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1784         cpu->isar.id_isar5 = u;
1785 
1786         u = cpu->isar.id_isar6;
1787         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1788         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1789         u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1790         u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1791         cpu->isar.id_isar6 = u;
1792 
1793         if (!arm_feature(env, ARM_FEATURE_M)) {
1794             u = cpu->isar.mvfr1;
1795             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1796             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1797             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1798             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1799             cpu->isar.mvfr1 = u;
1800 
1801             u = cpu->isar.mvfr2;
1802             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1803             cpu->isar.mvfr2 = u;
1804         }
1805     }
1806 
1807     if (!cpu->has_neon && !cpu->has_vfp) {
1808         uint64_t t;
1809         uint32_t u;
1810 
1811         t = cpu->isar.id_aa64isar0;
1812         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1813         cpu->isar.id_aa64isar0 = t;
1814 
1815         t = cpu->isar.id_aa64isar1;
1816         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1817         cpu->isar.id_aa64isar1 = t;
1818 
1819         u = cpu->isar.mvfr0;
1820         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1821         cpu->isar.mvfr0 = u;
1822 
1823         /* Despite the name, this field covers both VFP and Neon */
1824         u = cpu->isar.mvfr1;
1825         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1826         cpu->isar.mvfr1 = u;
1827     }
1828 
1829     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1830         uint32_t u;
1831 
1832         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1833 
1834         u = cpu->isar.id_isar1;
1835         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1836         cpu->isar.id_isar1 = u;
1837 
1838         u = cpu->isar.id_isar2;
1839         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1840         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1841         cpu->isar.id_isar2 = u;
1842 
1843         u = cpu->isar.id_isar3;
1844         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1845         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1846         cpu->isar.id_isar3 = u;
1847     }
1848 
1849     /* Some features automatically imply others: */
1850     if (arm_feature(env, ARM_FEATURE_V8)) {
1851         if (arm_feature(env, ARM_FEATURE_M)) {
1852             set_feature(env, ARM_FEATURE_V7);
1853         } else {
1854             set_feature(env, ARM_FEATURE_V7VE);
1855         }
1856     }
1857 
1858     /*
1859      * There exist AArch64 cpus without AArch32 support.  When KVM
1860      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1861      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1862      * As a general principle, we also do not make ID register
1863      * consistency checks anywhere unless using TCG, because only
1864      * for TCG would a consistency-check failure be a QEMU bug.
1865      */
1866     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1867         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1868     }
1869 
1870     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1871         /* v7 Virtualization Extensions. In real hardware this implies
1872          * EL2 and also the presence of the Security Extensions.
1873          * For QEMU, for backwards-compatibility we implement some
1874          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1875          * include the various other features that V7VE implies.
1876          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1877          * Security Extensions is ARM_FEATURE_EL3.
1878          */
1879         assert(!tcg_enabled() || no_aa32 ||
1880                cpu_isar_feature(aa32_arm_div, cpu));
1881         set_feature(env, ARM_FEATURE_LPAE);
1882         set_feature(env, ARM_FEATURE_V7);
1883     }
1884     if (arm_feature(env, ARM_FEATURE_V7)) {
1885         set_feature(env, ARM_FEATURE_VAPA);
1886         set_feature(env, ARM_FEATURE_THUMB2);
1887         set_feature(env, ARM_FEATURE_MPIDR);
1888         if (!arm_feature(env, ARM_FEATURE_M)) {
1889             set_feature(env, ARM_FEATURE_V6K);
1890         } else {
1891             set_feature(env, ARM_FEATURE_V6);
1892         }
1893 
1894         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1895          * non-EL3 configs. This is needed by some legacy boards.
1896          */
1897         set_feature(env, ARM_FEATURE_VBAR);
1898     }
1899     if (arm_feature(env, ARM_FEATURE_V6K)) {
1900         set_feature(env, ARM_FEATURE_V6);
1901         set_feature(env, ARM_FEATURE_MVFR);
1902     }
1903     if (arm_feature(env, ARM_FEATURE_V6)) {
1904         set_feature(env, ARM_FEATURE_V5);
1905         if (!arm_feature(env, ARM_FEATURE_M)) {
1906             assert(!tcg_enabled() || no_aa32 ||
1907                    cpu_isar_feature(aa32_jazelle, cpu));
1908             set_feature(env, ARM_FEATURE_AUXCR);
1909         }
1910     }
1911     if (arm_feature(env, ARM_FEATURE_V5)) {
1912         set_feature(env, ARM_FEATURE_V4T);
1913     }
1914     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1915         set_feature(env, ARM_FEATURE_V7MP);
1916     }
1917     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1918         set_feature(env, ARM_FEATURE_CBAR);
1919     }
1920     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1921         !arm_feature(env, ARM_FEATURE_M)) {
1922         set_feature(env, ARM_FEATURE_THUMB_DSP);
1923     }
1924 
1925     /*
1926      * We rely on no XScale CPU having VFP so we can use the same bits in the
1927      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1928      */
1929     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1930            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1931            !arm_feature(env, ARM_FEATURE_XSCALE));
1932 
1933     if (arm_feature(env, ARM_FEATURE_V7) &&
1934         !arm_feature(env, ARM_FEATURE_M) &&
1935         !arm_feature(env, ARM_FEATURE_PMSA)) {
1936         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1937          * can use 4K pages.
1938          */
1939         pagebits = 12;
1940     } else {
1941         /* For CPUs which might have tiny 1K pages, or which have an
1942          * MPU and might have small region sizes, stick with 1K pages.
1943          */
1944         pagebits = 10;
1945     }
1946     if (!set_preferred_target_page_bits(pagebits)) {
1947         /* This can only ever happen for hotplugging a CPU, or if
1948          * the board code incorrectly creates a CPU which it has
1949          * promised via minimum_page_size that it will not.
1950          */
1951         error_setg(errp, "This CPU requires a smaller page size than the "
1952                    "system is using");
1953         return;
1954     }
1955 
1956     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1957      * We don't support setting cluster ID ([16..23]) (known as Aff2
1958      * in later ARM ARM versions), or any of the higher affinity level fields,
1959      * so these bits always RAZ.
1960      */
1961     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1962         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1963                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1964     }
1965 
1966     if (cpu->reset_hivecs) {
1967             cpu->reset_sctlr |= (1 << 13);
1968     }
1969 
1970     if (cpu->cfgend) {
1971         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1972             cpu->reset_sctlr |= SCTLR_EE;
1973         } else {
1974             cpu->reset_sctlr |= SCTLR_B;
1975         }
1976     }
1977 
1978     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1979         /* If the has_el3 CPU property is disabled then we need to disable the
1980          * feature.
1981          */
1982         unset_feature(env, ARM_FEATURE_EL3);
1983 
1984         /*
1985          * Disable the security extension feature bits in the processor
1986          * feature registers as well.
1987          */
1988         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1989         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1990         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1991                                            ID_AA64PFR0, EL3, 0);
1992     }
1993 
1994     if (!cpu->has_el2) {
1995         unset_feature(env, ARM_FEATURE_EL2);
1996     }
1997 
1998     if (!cpu->has_pmu) {
1999         unset_feature(env, ARM_FEATURE_PMU);
2000     }
2001     if (arm_feature(env, ARM_FEATURE_PMU)) {
2002         pmu_init(cpu);
2003 
2004         if (!kvm_enabled()) {
2005             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
2006             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
2007         }
2008 
2009 #ifndef CONFIG_USER_ONLY
2010         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
2011                 cpu);
2012 #endif
2013     } else {
2014         cpu->isar.id_aa64dfr0 =
2015             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
2016         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
2017         cpu->pmceid0 = 0;
2018         cpu->pmceid1 = 0;
2019     }
2020 
2021     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2022         /*
2023          * Disable the hypervisor feature bits in the processor feature
2024          * registers if we don't have EL2.
2025          */
2026         cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
2027                                            ID_AA64PFR0, EL2, 0);
2028         cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
2029                                        ID_PFR1, VIRTUALIZATION, 0);
2030     }
2031 
2032 #ifndef CONFIG_USER_ONLY
2033     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
2034         /*
2035          * Disable the MTE feature bits if we do not have tag-memory
2036          * provided by the machine.
2037          */
2038         cpu->isar.id_aa64pfr1 =
2039             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
2040     }
2041 #endif
2042 
2043     if (tcg_enabled()) {
2044         /*
2045          * Don't report the Statistical Profiling Extension in the ID
2046          * registers, because TCG doesn't implement it yet (not even a
2047          * minimal stub version) and guests will fall over when they
2048          * try to access the non-existent system registers for it.
2049          */
2050         cpu->isar.id_aa64dfr0 =
2051             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2052     }
2053 
2054     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2055      * to false or by setting pmsav7-dregion to 0.
2056      */
2057     if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2058         cpu->has_mpu = false;
2059         cpu->pmsav7_dregion = 0;
2060         cpu->pmsav8r_hdregion = 0;
2061     }
2062 
2063     if (arm_feature(env, ARM_FEATURE_PMSA) &&
2064         arm_feature(env, ARM_FEATURE_V7)) {
2065         uint32_t nr = cpu->pmsav7_dregion;
2066 
2067         if (nr > 0xff) {
2068             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2069             return;
2070         }
2071 
2072         if (nr) {
2073             if (arm_feature(env, ARM_FEATURE_V8)) {
2074                 /* PMSAv8 */
2075                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2076                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2077                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2078                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2079                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2080                 }
2081             } else {
2082                 env->pmsav7.drbar = g_new0(uint32_t, nr);
2083                 env->pmsav7.drsr = g_new0(uint32_t, nr);
2084                 env->pmsav7.dracr = g_new0(uint32_t, nr);
2085             }
2086         }
2087 
2088         if (cpu->pmsav8r_hdregion > 0xff) {
2089             error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2090                               cpu->pmsav8r_hdregion);
2091             return;
2092         }
2093 
2094         if (cpu->pmsav8r_hdregion) {
2095             env->pmsav8.hprbar = g_new0(uint32_t,
2096                                         cpu->pmsav8r_hdregion);
2097             env->pmsav8.hprlar = g_new0(uint32_t,
2098                                         cpu->pmsav8r_hdregion);
2099         }
2100     }
2101 
2102     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2103         uint32_t nr = cpu->sau_sregion;
2104 
2105         if (nr > 0xff) {
2106             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2107             return;
2108         }
2109 
2110         if (nr) {
2111             env->sau.rbar = g_new0(uint32_t, nr);
2112             env->sau.rlar = g_new0(uint32_t, nr);
2113         }
2114     }
2115 
2116     if (arm_feature(env, ARM_FEATURE_EL3)) {
2117         set_feature(env, ARM_FEATURE_VBAR);
2118     }
2119 
2120     register_cp_regs_for_features(cpu);
2121     arm_cpu_register_gdb_regs_for_features(cpu);
2122 
2123     init_cpreg_list(cpu);
2124 
2125 #ifndef CONFIG_USER_ONLY
2126     MachineState *ms = MACHINE(qdev_get_machine());
2127     unsigned int smp_cpus = ms->smp.cpus;
2128     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2129 
2130     /*
2131      * We must set cs->num_ases to the final value before
2132      * the first call to cpu_address_space_init.
2133      */
2134     if (cpu->tag_memory != NULL) {
2135         cs->num_ases = 3 + has_secure;
2136     } else {
2137         cs->num_ases = 1 + has_secure;
2138     }
2139 
2140     if (has_secure) {
2141         if (!cpu->secure_memory) {
2142             cpu->secure_memory = cs->memory;
2143         }
2144         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2145                                cpu->secure_memory);
2146     }
2147 
2148     if (cpu->tag_memory != NULL) {
2149         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2150                                cpu->tag_memory);
2151         if (has_secure) {
2152             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2153                                    cpu->secure_tag_memory);
2154         }
2155     }
2156 
2157     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2158 
2159     /* No core_count specified, default to smp_cpus. */
2160     if (cpu->core_count == -1) {
2161         cpu->core_count = smp_cpus;
2162     }
2163 #endif
2164 
2165     if (tcg_enabled()) {
2166         int dcz_blocklen = 4 << cpu->dcz_blocksize;
2167 
2168         /*
2169          * We only support DCZ blocklen that fits on one page.
2170          *
2171          * Architectually this is always true.  However TARGET_PAGE_SIZE
2172          * is variable and, for compatibility with -machine virt-2.7,
2173          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2174          * But even then, while the largest architectural DCZ blocklen
2175          * is 2KiB, no cpu actually uses such a large blocklen.
2176          */
2177         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2178 
2179         /*
2180          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2181          * both nibbles of each byte storing tag data may be written at once.
2182          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2183          */
2184         if (cpu_isar_feature(aa64_mte, cpu)) {
2185             assert(dcz_blocklen >= 2 * TAG_GRANULE);
2186         }
2187     }
2188 
2189     qemu_init_vcpu(cs);
2190     cpu_reset(cs);
2191 
2192     acc->parent_realize(dev, errp);
2193 }
2194 
2195 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2196 {
2197     ObjectClass *oc;
2198     char *typename;
2199     char **cpuname;
2200     const char *cpunamestr;
2201 
2202     cpuname = g_strsplit(cpu_model, ",", 1);
2203     cpunamestr = cpuname[0];
2204 #ifdef CONFIG_USER_ONLY
2205     /* For backwards compatibility usermode emulation allows "-cpu any",
2206      * which has the same semantics as "-cpu max".
2207      */
2208     if (!strcmp(cpunamestr, "any")) {
2209         cpunamestr = "max";
2210     }
2211 #endif
2212     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2213     oc = object_class_by_name(typename);
2214     g_strfreev(cpuname);
2215     g_free(typename);
2216     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2217         object_class_is_abstract(oc)) {
2218         return NULL;
2219     }
2220     return oc;
2221 }
2222 
2223 static Property arm_cpu_properties[] = {
2224     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2225     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2226                         mp_affinity, ARM64_AFFINITY_INVALID),
2227     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2228     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2229     DEFINE_PROP_END_OF_LIST()
2230 };
2231 
2232 static gchar *arm_gdb_arch_name(CPUState *cs)
2233 {
2234     ARMCPU *cpu = ARM_CPU(cs);
2235     CPUARMState *env = &cpu->env;
2236 
2237     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2238         return g_strdup("iwmmxt");
2239     }
2240     return g_strdup("arm");
2241 }
2242 
2243 #ifndef CONFIG_USER_ONLY
2244 #include "hw/core/sysemu-cpu-ops.h"
2245 
2246 static const struct SysemuCPUOps arm_sysemu_ops = {
2247     .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2248     .asidx_from_attrs = arm_asidx_from_attrs,
2249     .write_elf32_note = arm_cpu_write_elf32_note,
2250     .write_elf64_note = arm_cpu_write_elf64_note,
2251     .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2252     .legacy_vmsd = &vmstate_arm_cpu,
2253 };
2254 #endif
2255 
2256 #ifdef CONFIG_TCG
2257 static const struct TCGCPUOps arm_tcg_ops = {
2258     .initialize = arm_translate_init,
2259     .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2260     .debug_excp_handler = arm_debug_excp_handler,
2261     .restore_state_to_opc = arm_restore_state_to_opc,
2262 
2263 #ifdef CONFIG_USER_ONLY
2264     .record_sigsegv = arm_cpu_record_sigsegv,
2265     .record_sigbus = arm_cpu_record_sigbus,
2266 #else
2267     .tlb_fill = arm_cpu_tlb_fill,
2268     .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2269     .do_interrupt = arm_cpu_do_interrupt,
2270     .do_transaction_failed = arm_cpu_do_transaction_failed,
2271     .do_unaligned_access = arm_cpu_do_unaligned_access,
2272     .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2273     .debug_check_watchpoint = arm_debug_check_watchpoint,
2274     .debug_check_breakpoint = arm_debug_check_breakpoint,
2275 #endif /* !CONFIG_USER_ONLY */
2276 };
2277 #endif /* CONFIG_TCG */
2278 
2279 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2280 {
2281     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2282     CPUClass *cc = CPU_CLASS(acc);
2283     DeviceClass *dc = DEVICE_CLASS(oc);
2284     ResettableClass *rc = RESETTABLE_CLASS(oc);
2285 
2286     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2287                                     &acc->parent_realize);
2288 
2289     device_class_set_props(dc, arm_cpu_properties);
2290 
2291     resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2292                                        &acc->parent_phases);
2293 
2294     cc->class_by_name = arm_cpu_class_by_name;
2295     cc->has_work = arm_cpu_has_work;
2296     cc->dump_state = arm_cpu_dump_state;
2297     cc->set_pc = arm_cpu_set_pc;
2298     cc->get_pc = arm_cpu_get_pc;
2299     cc->gdb_read_register = arm_cpu_gdb_read_register;
2300     cc->gdb_write_register = arm_cpu_gdb_write_register;
2301 #ifndef CONFIG_USER_ONLY
2302     cc->sysemu_ops = &arm_sysemu_ops;
2303 #endif
2304     cc->gdb_num_core_regs = 26;
2305     cc->gdb_core_xml_file = "arm-core.xml";
2306     cc->gdb_arch_name = arm_gdb_arch_name;
2307     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2308     cc->gdb_stop_before_watchpoint = true;
2309     cc->disas_set_info = arm_disas_set_info;
2310 
2311 #ifdef CONFIG_TCG
2312     cc->tcg_ops = &arm_tcg_ops;
2313 #endif /* CONFIG_TCG */
2314 }
2315 
2316 static void arm_cpu_instance_init(Object *obj)
2317 {
2318     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2319 
2320     acc->info->initfn(obj);
2321     arm_cpu_post_init(obj);
2322 }
2323 
2324 static void cpu_register_class_init(ObjectClass *oc, void *data)
2325 {
2326     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2327 
2328     acc->info = data;
2329 }
2330 
2331 void arm_cpu_register(const ARMCPUInfo *info)
2332 {
2333     TypeInfo type_info = {
2334         .parent = TYPE_ARM_CPU,
2335         .instance_size = sizeof(ARMCPU),
2336         .instance_align = __alignof__(ARMCPU),
2337         .instance_init = arm_cpu_instance_init,
2338         .class_size = sizeof(ARMCPUClass),
2339         .class_init = info->class_init ?: cpu_register_class_init,
2340         .class_data = (void *)info,
2341     };
2342 
2343     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2344     type_register(&type_info);
2345     g_free((void *)type_info.name);
2346 }
2347 
2348 static const TypeInfo arm_cpu_type_info = {
2349     .name = TYPE_ARM_CPU,
2350     .parent = TYPE_CPU,
2351     .instance_size = sizeof(ARMCPU),
2352     .instance_align = __alignof__(ARMCPU),
2353     .instance_init = arm_cpu_initfn,
2354     .instance_finalize = arm_cpu_finalizefn,
2355     .abstract = true,
2356     .class_size = sizeof(ARMCPUClass),
2357     .class_init = arm_cpu_class_init,
2358 };
2359 
2360 static void arm_cpu_register_types(void)
2361 {
2362     type_register_static(&arm_cpu_type_info);
2363 }
2364 
2365 type_init(arm_cpu_register_types)
2366