xref: /qemu/target/arm/cpu.c (revision f91005e1)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "target/arm/idau.h"
24 #include "qemu/module.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "cpu.h"
28 #include "internals.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "sysemu/sysemu.h"
35 #include "sysemu/tcg.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
40 
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 {
43     ARMCPU *cpu = ARM_CPU(cs);
44     CPUARMState *env = &cpu->env;
45 
46     if (is_a64(env)) {
47         env->pc = value;
48         env->thumb = 0;
49     } else {
50         env->regs[15] = value & ~1;
51         env->thumb = value & 1;
52     }
53 }
54 
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
56 {
57     ARMCPU *cpu = ARM_CPU(cs);
58     CPUARMState *env = &cpu->env;
59 
60     /*
61      * It's OK to look at env for the current mode here, because it's
62      * never possible for an AArch64 TB to chain to an AArch32 TB.
63      */
64     if (is_a64(env)) {
65         env->pc = tb->pc;
66     } else {
67         env->regs[15] = tb->pc;
68     }
69 }
70 
71 static bool arm_cpu_has_work(CPUState *cs)
72 {
73     ARMCPU *cpu = ARM_CPU(cs);
74 
75     return (cpu->power_state != PSCI_OFF)
76         && cs->interrupt_request &
77         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79          | CPU_INTERRUPT_EXITTB);
80 }
81 
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83                                  void *opaque)
84 {
85     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
86 
87     entry->hook = hook;
88     entry->opaque = opaque;
89 
90     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
91 }
92 
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94                                  void *opaque)
95 {
96     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
97 
98     entry->hook = hook;
99     entry->opaque = opaque;
100 
101     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
102 }
103 
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
105 {
106     /* Reset a single ARMCPRegInfo register */
107     ARMCPRegInfo *ri = value;
108     ARMCPU *cpu = opaque;
109 
110     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111         return;
112     }
113 
114     if (ri->resetfn) {
115         ri->resetfn(&cpu->env, ri);
116         return;
117     }
118 
119     /* A zero offset is never possible as it would be regs[0]
120      * so we use it to indicate that reset is being handled elsewhere.
121      * This is basically only used for fields in non-core coprocessors
122      * (like the pxa2xx ones).
123      */
124     if (!ri->fieldoffset) {
125         return;
126     }
127 
128     if (cpreg_field_is_64bit(ri)) {
129         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130     } else {
131         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
132     }
133 }
134 
135 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
136 {
137     /* Purely an assertion check: we've already done reset once,
138      * so now check that running the reset for the cpreg doesn't
139      * change its value. This traps bugs where two different cpregs
140      * both try to reset the same state field but to different values.
141      */
142     ARMCPRegInfo *ri = value;
143     ARMCPU *cpu = opaque;
144     uint64_t oldvalue, newvalue;
145 
146     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147         return;
148     }
149 
150     oldvalue = read_raw_cp_reg(&cpu->env, ri);
151     cp_reg_reset(key, value, opaque);
152     newvalue = read_raw_cp_reg(&cpu->env, ri);
153     assert(oldvalue == newvalue);
154 }
155 
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
158 {
159     ARMCPU *cpu = ARM_CPU(s);
160     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161     CPUARMState *env = &cpu->env;
162 
163     acc->parent_reset(s);
164 
165     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
166 
167     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
169 
170     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
174 
175     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176     s->halted = cpu->start_powered_off;
177 
178     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
180     }
181 
182     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183         /* 64 bit CPUs always start in 64 bit mode */
184         env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186         env->pstate = PSTATE_MODE_EL0t;
187         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189         /* Enable all PAC keys.  */
190         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191                                   SCTLR_EnDA | SCTLR_EnDB);
192         /* Enable all PAC instructions */
193         env->cp15.hcr_el2 |= HCR_API;
194         env->cp15.scr_el3 |= SCR_API;
195         /* and to the FP/Neon instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197         /* and to the SVE instructions */
198         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199         env->cp15.cptr_el[3] |= CPTR_EZ;
200         /* with maximum vector length */
201         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
204         /*
205          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
206          * turning on both here will produce smaller code and otherwise
207          * make no difference to the user-level emulation.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259             env->v7m.secure = true;
260         } else {
261             /* This bit resets to 0 if security is supported, but 1 if
262              * it is not. The bit is not present in v7M, but we set it
263              * here so we can avoid having to make checks on it conditional
264              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
265              */
266             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
267         }
268 
269         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270          * that it resets to 1, so QEMU always does that rather than making
271          * it dependent on CPU model. In v8M it is RES1.
272          */
273         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275         if (arm_feature(env, ARM_FEATURE_V8)) {
276             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
279         }
280         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
283         }
284 
285         if (arm_feature(env, ARM_FEATURE_VFP)) {
286             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
287             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
288                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
289         }
290         /* Unlike A/R profile, M profile defines the reset LR value */
291         env->regs[14] = 0xffffffff;
292 
293         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
294 
295         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
296         vecbase = env->v7m.vecbase[env->v7m.secure];
297         rom = rom_ptr(vecbase, 8);
298         if (rom) {
299             /* Address zero is covered by ROM which hasn't yet been
300              * copied into physical memory.
301              */
302             initial_msp = ldl_p(rom);
303             initial_pc = ldl_p(rom + 4);
304         } else {
305             /* Address zero not covered by a ROM blob, or the ROM blob
306              * is in non-modifiable memory and this is a second reset after
307              * it got copied into memory. In the latter case, rom_ptr
308              * will return a NULL pointer and we should use ldl_phys instead.
309              */
310             initial_msp = ldl_phys(s->as, vecbase);
311             initial_pc = ldl_phys(s->as, vecbase + 4);
312         }
313 
314         env->regs[13] = initial_msp & 0xFFFFFFFC;
315         env->regs[15] = initial_pc & ~1;
316         env->thumb = initial_pc & 1;
317     }
318 
319     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
320      * executing as AArch32 then check if highvecs are enabled and
321      * adjust the PC accordingly.
322      */
323     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
324         env->regs[15] = 0xFFFF0000;
325     }
326 
327     /* M profile requires that reset clears the exclusive monitor;
328      * A profile does not, but clearing it makes more sense than having it
329      * set with an exclusive access on address zero.
330      */
331     arm_clear_exclusive(env);
332 
333     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
334 #endif
335 
336     if (arm_feature(env, ARM_FEATURE_PMSA)) {
337         if (cpu->pmsav7_dregion > 0) {
338             if (arm_feature(env, ARM_FEATURE_V8)) {
339                 memset(env->pmsav8.rbar[M_REG_NS], 0,
340                        sizeof(*env->pmsav8.rbar[M_REG_NS])
341                        * cpu->pmsav7_dregion);
342                 memset(env->pmsav8.rlar[M_REG_NS], 0,
343                        sizeof(*env->pmsav8.rlar[M_REG_NS])
344                        * cpu->pmsav7_dregion);
345                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
346                     memset(env->pmsav8.rbar[M_REG_S], 0,
347                            sizeof(*env->pmsav8.rbar[M_REG_S])
348                            * cpu->pmsav7_dregion);
349                     memset(env->pmsav8.rlar[M_REG_S], 0,
350                            sizeof(*env->pmsav8.rlar[M_REG_S])
351                            * cpu->pmsav7_dregion);
352                 }
353             } else if (arm_feature(env, ARM_FEATURE_V7)) {
354                 memset(env->pmsav7.drbar, 0,
355                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
356                 memset(env->pmsav7.drsr, 0,
357                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
358                 memset(env->pmsav7.dracr, 0,
359                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
360             }
361         }
362         env->pmsav7.rnr[M_REG_NS] = 0;
363         env->pmsav7.rnr[M_REG_S] = 0;
364         env->pmsav8.mair0[M_REG_NS] = 0;
365         env->pmsav8.mair0[M_REG_S] = 0;
366         env->pmsav8.mair1[M_REG_NS] = 0;
367         env->pmsav8.mair1[M_REG_S] = 0;
368     }
369 
370     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
371         if (cpu->sau_sregion > 0) {
372             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
373             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
374         }
375         env->sau.rnr = 0;
376         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
377          * the Cortex-M33 does.
378          */
379         env->sau.ctrl = 0;
380     }
381 
382     set_flush_to_zero(1, &env->vfp.standard_fp_status);
383     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
384     set_default_nan_mode(1, &env->vfp.standard_fp_status);
385     set_float_detect_tininess(float_tininess_before_rounding,
386                               &env->vfp.fp_status);
387     set_float_detect_tininess(float_tininess_before_rounding,
388                               &env->vfp.standard_fp_status);
389     set_float_detect_tininess(float_tininess_before_rounding,
390                               &env->vfp.fp_status_f16);
391 #ifndef CONFIG_USER_ONLY
392     if (kvm_enabled()) {
393         kvm_arm_reset_vcpu(cpu);
394     }
395 #endif
396 
397     hw_breakpoint_update_all(cpu);
398     hw_watchpoint_update_all(cpu);
399 }
400 
401 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
402 {
403     CPUClass *cc = CPU_GET_CLASS(cs);
404     CPUARMState *env = cs->env_ptr;
405     uint32_t cur_el = arm_current_el(env);
406     bool secure = arm_is_secure(env);
407     uint32_t target_el;
408     uint32_t excp_idx;
409     bool ret = false;
410 
411     if (interrupt_request & CPU_INTERRUPT_FIQ) {
412         excp_idx = EXCP_FIQ;
413         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
414         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
415             cs->exception_index = excp_idx;
416             env->exception.target_el = target_el;
417             cc->do_interrupt(cs);
418             ret = true;
419         }
420     }
421     if (interrupt_request & CPU_INTERRUPT_HARD) {
422         excp_idx = EXCP_IRQ;
423         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425             cs->exception_index = excp_idx;
426             env->exception.target_el = target_el;
427             cc->do_interrupt(cs);
428             ret = true;
429         }
430     }
431     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
432         excp_idx = EXCP_VIRQ;
433         target_el = 1;
434         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435             cs->exception_index = excp_idx;
436             env->exception.target_el = target_el;
437             cc->do_interrupt(cs);
438             ret = true;
439         }
440     }
441     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
442         excp_idx = EXCP_VFIQ;
443         target_el = 1;
444         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445             cs->exception_index = excp_idx;
446             env->exception.target_el = target_el;
447             cc->do_interrupt(cs);
448             ret = true;
449         }
450     }
451 
452     return ret;
453 }
454 
455 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
456 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
457 {
458     CPUClass *cc = CPU_GET_CLASS(cs);
459     ARMCPU *cpu = ARM_CPU(cs);
460     CPUARMState *env = &cpu->env;
461     bool ret = false;
462 
463     /* ARMv7-M interrupt masking works differently than -A or -R.
464      * There is no FIQ/IRQ distinction. Instead of I and F bits
465      * masking FIQ and IRQ interrupts, an exception is taken only
466      * if it is higher priority than the current execution priority
467      * (which depends on state like BASEPRI, FAULTMASK and the
468      * currently active exception).
469      */
470     if (interrupt_request & CPU_INTERRUPT_HARD
471         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
472         cs->exception_index = EXCP_IRQ;
473         cc->do_interrupt(cs);
474         ret = true;
475     }
476     return ret;
477 }
478 #endif
479 
480 void arm_cpu_update_virq(ARMCPU *cpu)
481 {
482     /*
483      * Update the interrupt level for VIRQ, which is the logical OR of
484      * the HCR_EL2.VI bit and the input line level from the GIC.
485      */
486     CPUARMState *env = &cpu->env;
487     CPUState *cs = CPU(cpu);
488 
489     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
490         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
491 
492     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
493         if (new_state) {
494             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
495         } else {
496             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
497         }
498     }
499 }
500 
501 void arm_cpu_update_vfiq(ARMCPU *cpu)
502 {
503     /*
504      * Update the interrupt level for VFIQ, which is the logical OR of
505      * the HCR_EL2.VF bit and the input line level from the GIC.
506      */
507     CPUARMState *env = &cpu->env;
508     CPUState *cs = CPU(cpu);
509 
510     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
511         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
512 
513     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
514         if (new_state) {
515             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
516         } else {
517             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
518         }
519     }
520 }
521 
522 #ifndef CONFIG_USER_ONLY
523 static void arm_cpu_set_irq(void *opaque, int irq, int level)
524 {
525     ARMCPU *cpu = opaque;
526     CPUARMState *env = &cpu->env;
527     CPUState *cs = CPU(cpu);
528     static const int mask[] = {
529         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
530         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
531         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
532         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
533     };
534 
535     if (level) {
536         env->irq_line_state |= mask[irq];
537     } else {
538         env->irq_line_state &= ~mask[irq];
539     }
540 
541     switch (irq) {
542     case ARM_CPU_VIRQ:
543         assert(arm_feature(env, ARM_FEATURE_EL2));
544         arm_cpu_update_virq(cpu);
545         break;
546     case ARM_CPU_VFIQ:
547         assert(arm_feature(env, ARM_FEATURE_EL2));
548         arm_cpu_update_vfiq(cpu);
549         break;
550     case ARM_CPU_IRQ:
551     case ARM_CPU_FIQ:
552         if (level) {
553             cpu_interrupt(cs, mask[irq]);
554         } else {
555             cpu_reset_interrupt(cs, mask[irq]);
556         }
557         break;
558     default:
559         g_assert_not_reached();
560     }
561 }
562 
563 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
564 {
565 #ifdef CONFIG_KVM
566     ARMCPU *cpu = opaque;
567     CPUARMState *env = &cpu->env;
568     CPUState *cs = CPU(cpu);
569     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
570     uint32_t linestate_bit;
571 
572     switch (irq) {
573     case ARM_CPU_IRQ:
574         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
575         linestate_bit = CPU_INTERRUPT_HARD;
576         break;
577     case ARM_CPU_FIQ:
578         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
579         linestate_bit = CPU_INTERRUPT_FIQ;
580         break;
581     default:
582         g_assert_not_reached();
583     }
584 
585     if (level) {
586         env->irq_line_state |= linestate_bit;
587     } else {
588         env->irq_line_state &= ~linestate_bit;
589     }
590 
591     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
592     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
593 #endif
594 }
595 
596 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
597 {
598     ARMCPU *cpu = ARM_CPU(cs);
599     CPUARMState *env = &cpu->env;
600 
601     cpu_synchronize_state(cs);
602     return arm_cpu_data_is_big_endian(env);
603 }
604 
605 #endif
606 
607 static inline void set_feature(CPUARMState *env, int feature)
608 {
609     env->features |= 1ULL << feature;
610 }
611 
612 static inline void unset_feature(CPUARMState *env, int feature)
613 {
614     env->features &= ~(1ULL << feature);
615 }
616 
617 static int
618 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
619 {
620   return print_insn_arm(pc | 1, info);
621 }
622 
623 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
624 {
625     ARMCPU *ac = ARM_CPU(cpu);
626     CPUARMState *env = &ac->env;
627     bool sctlr_b;
628 
629     if (is_a64(env)) {
630         /* We might not be compiled with the A64 disassembler
631          * because it needs a C++ compiler. Leave print_insn
632          * unset in this case to use the caller default behaviour.
633          */
634 #if defined(CONFIG_ARM_A64_DIS)
635         info->print_insn = print_insn_arm_a64;
636 #endif
637         info->cap_arch = CS_ARCH_ARM64;
638         info->cap_insn_unit = 4;
639         info->cap_insn_split = 4;
640     } else {
641         int cap_mode;
642         if (env->thumb) {
643             info->print_insn = print_insn_thumb1;
644             info->cap_insn_unit = 2;
645             info->cap_insn_split = 4;
646             cap_mode = CS_MODE_THUMB;
647         } else {
648             info->print_insn = print_insn_arm;
649             info->cap_insn_unit = 4;
650             info->cap_insn_split = 4;
651             cap_mode = CS_MODE_ARM;
652         }
653         if (arm_feature(env, ARM_FEATURE_V8)) {
654             cap_mode |= CS_MODE_V8;
655         }
656         if (arm_feature(env, ARM_FEATURE_M)) {
657             cap_mode |= CS_MODE_MCLASS;
658         }
659         info->cap_arch = CS_ARCH_ARM;
660         info->cap_mode = cap_mode;
661     }
662 
663     sctlr_b = arm_sctlr_b(env);
664     if (bswap_code(sctlr_b)) {
665 #ifdef TARGET_WORDS_BIGENDIAN
666         info->endian = BFD_ENDIAN_LITTLE;
667 #else
668         info->endian = BFD_ENDIAN_BIG;
669 #endif
670     }
671     info->flags &= ~INSN_ARM_BE32;
672 #ifndef CONFIG_USER_ONLY
673     if (sctlr_b) {
674         info->flags |= INSN_ARM_BE32;
675     }
676 #endif
677 }
678 
679 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
680 {
681     uint32_t Aff1 = idx / clustersz;
682     uint32_t Aff0 = idx % clustersz;
683     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
684 }
685 
686 static void cpreg_hashtable_data_destroy(gpointer data)
687 {
688     /*
689      * Destroy function for cpu->cp_regs hashtable data entries.
690      * We must free the name string because it was g_strdup()ed in
691      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
692      * from r->name because we know we definitely allocated it.
693      */
694     ARMCPRegInfo *r = data;
695 
696     g_free((void *)r->name);
697     g_free(r);
698 }
699 
700 static void arm_cpu_initfn(Object *obj)
701 {
702     ARMCPU *cpu = ARM_CPU(obj);
703 
704     cpu_set_cpustate_pointers(cpu);
705     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
706                                          g_free, cpreg_hashtable_data_destroy);
707 
708     QLIST_INIT(&cpu->pre_el_change_hooks);
709     QLIST_INIT(&cpu->el_change_hooks);
710 
711 #ifndef CONFIG_USER_ONLY
712     /* Our inbound IRQ and FIQ lines */
713     if (kvm_enabled()) {
714         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
715          * the same interface as non-KVM CPUs.
716          */
717         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
718     } else {
719         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
720     }
721 
722     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
723                        ARRAY_SIZE(cpu->gt_timer_outputs));
724 
725     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
726                              "gicv3-maintenance-interrupt", 1);
727     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
728                              "pmu-interrupt", 1);
729 #endif
730 
731     /* DTB consumers generally don't in fact care what the 'compatible'
732      * string is, so always provide some string and trust that a hypothetical
733      * picky DTB consumer will also provide a helpful error message.
734      */
735     cpu->dtb_compatible = "qemu,unknown";
736     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
737     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
738 
739     if (tcg_enabled()) {
740         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
741     }
742 }
743 
744 static Property arm_cpu_reset_cbar_property =
745             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
746 
747 static Property arm_cpu_reset_hivecs_property =
748             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
749 
750 static Property arm_cpu_rvbar_property =
751             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
752 
753 static Property arm_cpu_has_el2_property =
754             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
755 
756 static Property arm_cpu_has_el3_property =
757             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
758 
759 static Property arm_cpu_cfgend_property =
760             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
761 
762 /* use property name "pmu" to match other archs and virt tools */
763 static Property arm_cpu_has_pmu_property =
764             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
765 
766 static Property arm_cpu_has_mpu_property =
767             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
768 
769 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
770  * because the CPU initfn will have already set cpu->pmsav7_dregion to
771  * the right value for that particular CPU type, and we don't want
772  * to override that with an incorrect constant value.
773  */
774 static Property arm_cpu_pmsav7_dregion_property =
775             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
776                                            pmsav7_dregion,
777                                            qdev_prop_uint32, uint32_t);
778 
779 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
780                                void *opaque, Error **errp)
781 {
782     ARMCPU *cpu = ARM_CPU(obj);
783 
784     visit_type_uint32(v, name, &cpu->init_svtor, errp);
785 }
786 
787 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
788                                void *opaque, Error **errp)
789 {
790     ARMCPU *cpu = ARM_CPU(obj);
791 
792     visit_type_uint32(v, name, &cpu->init_svtor, errp);
793 }
794 
795 void arm_cpu_post_init(Object *obj)
796 {
797     ARMCPU *cpu = ARM_CPU(obj);
798 
799     /* M profile implies PMSA. We have to do this here rather than
800      * in realize with the other feature-implication checks because
801      * we look at the PMSA bit to see if we should add some properties.
802      */
803     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
804         set_feature(&cpu->env, ARM_FEATURE_PMSA);
805     }
806 
807     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
808         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
809         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
810                                  &error_abort);
811     }
812 
813     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
814         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
815                                  &error_abort);
816     }
817 
818     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
819         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
820                                  &error_abort);
821     }
822 
823     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
824         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
825          * prevent "has_el3" from existing on CPUs which cannot support EL3.
826          */
827         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
828                                  &error_abort);
829 
830 #ifndef CONFIG_USER_ONLY
831         object_property_add_link(obj, "secure-memory",
832                                  TYPE_MEMORY_REGION,
833                                  (Object **)&cpu->secure_memory,
834                                  qdev_prop_allow_set_link_before_realize,
835                                  OBJ_PROP_LINK_STRONG,
836                                  &error_abort);
837 #endif
838     }
839 
840     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
841         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
842                                  &error_abort);
843     }
844 
845     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
846         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
847                                  &error_abort);
848     }
849 
850     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
851         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
852                                  &error_abort);
853         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
854             qdev_property_add_static(DEVICE(obj),
855                                      &arm_cpu_pmsav7_dregion_property,
856                                      &error_abort);
857         }
858     }
859 
860     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
861         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
862                                  qdev_prop_allow_set_link_before_realize,
863                                  OBJ_PROP_LINK_STRONG,
864                                  &error_abort);
865         /*
866          * M profile: initial value of the Secure VTOR. We can't just use
867          * a simple DEFINE_PROP_UINT32 for this because we want to permit
868          * the property to be set after realize.
869          */
870         object_property_add(obj, "init-svtor", "uint32",
871                             arm_get_init_svtor, arm_set_init_svtor,
872                             NULL, NULL, &error_abort);
873     }
874 
875     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
876                              &error_abort);
877 }
878 
879 static void arm_cpu_finalizefn(Object *obj)
880 {
881     ARMCPU *cpu = ARM_CPU(obj);
882     ARMELChangeHook *hook, *next;
883 
884     g_hash_table_destroy(cpu->cp_regs);
885 
886     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
887         QLIST_REMOVE(hook, node);
888         g_free(hook);
889     }
890     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
891         QLIST_REMOVE(hook, node);
892         g_free(hook);
893     }
894 #ifndef CONFIG_USER_ONLY
895     if (cpu->pmu_timer) {
896         timer_del(cpu->pmu_timer);
897         timer_deinit(cpu->pmu_timer);
898         timer_free(cpu->pmu_timer);
899     }
900 #endif
901 }
902 
903 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
904 {
905     CPUState *cs = CPU(dev);
906     ARMCPU *cpu = ARM_CPU(dev);
907     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
908     CPUARMState *env = &cpu->env;
909     int pagebits;
910     Error *local_err = NULL;
911     bool no_aa32 = false;
912 
913     /* If we needed to query the host kernel for the CPU features
914      * then it's possible that might have failed in the initfn, but
915      * this is the first point where we can report it.
916      */
917     if (cpu->host_cpu_probe_failed) {
918         if (!kvm_enabled()) {
919             error_setg(errp, "The 'host' CPU type can only be used with KVM");
920         } else {
921             error_setg(errp, "Failed to retrieve host CPU features");
922         }
923         return;
924     }
925 
926 #ifndef CONFIG_USER_ONLY
927     /* The NVIC and M-profile CPU are two halves of a single piece of
928      * hardware; trying to use one without the other is a command line
929      * error and will result in segfaults if not caught here.
930      */
931     if (arm_feature(env, ARM_FEATURE_M)) {
932         if (!env->nvic) {
933             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
934             return;
935         }
936     } else {
937         if (env->nvic) {
938             error_setg(errp, "This board can only be used with Cortex-M CPUs");
939             return;
940         }
941     }
942 
943     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
944                                            arm_gt_ptimer_cb, cpu);
945     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
946                                            arm_gt_vtimer_cb, cpu);
947     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
948                                           arm_gt_htimer_cb, cpu);
949     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
950                                           arm_gt_stimer_cb, cpu);
951 #endif
952 
953     cpu_exec_realizefn(cs, &local_err);
954     if (local_err != NULL) {
955         error_propagate(errp, local_err);
956         return;
957     }
958 
959     /* Some features automatically imply others: */
960     if (arm_feature(env, ARM_FEATURE_V8)) {
961         if (arm_feature(env, ARM_FEATURE_M)) {
962             set_feature(env, ARM_FEATURE_V7);
963         } else {
964             set_feature(env, ARM_FEATURE_V7VE);
965         }
966     }
967 
968     /*
969      * There exist AArch64 cpus without AArch32 support.  When KVM
970      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
971      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
972      */
973     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
974         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
975     }
976 
977     if (arm_feature(env, ARM_FEATURE_V7VE)) {
978         /* v7 Virtualization Extensions. In real hardware this implies
979          * EL2 and also the presence of the Security Extensions.
980          * For QEMU, for backwards-compatibility we implement some
981          * CPUs or CPU configs which have no actual EL2 or EL3 but do
982          * include the various other features that V7VE implies.
983          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
984          * Security Extensions is ARM_FEATURE_EL3.
985          */
986         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
987         set_feature(env, ARM_FEATURE_LPAE);
988         set_feature(env, ARM_FEATURE_V7);
989     }
990     if (arm_feature(env, ARM_FEATURE_V7)) {
991         set_feature(env, ARM_FEATURE_VAPA);
992         set_feature(env, ARM_FEATURE_THUMB2);
993         set_feature(env, ARM_FEATURE_MPIDR);
994         if (!arm_feature(env, ARM_FEATURE_M)) {
995             set_feature(env, ARM_FEATURE_V6K);
996         } else {
997             set_feature(env, ARM_FEATURE_V6);
998         }
999 
1000         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1001          * non-EL3 configs. This is needed by some legacy boards.
1002          */
1003         set_feature(env, ARM_FEATURE_VBAR);
1004     }
1005     if (arm_feature(env, ARM_FEATURE_V6K)) {
1006         set_feature(env, ARM_FEATURE_V6);
1007         set_feature(env, ARM_FEATURE_MVFR);
1008     }
1009     if (arm_feature(env, ARM_FEATURE_V6)) {
1010         set_feature(env, ARM_FEATURE_V5);
1011         if (!arm_feature(env, ARM_FEATURE_M)) {
1012             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1013             set_feature(env, ARM_FEATURE_AUXCR);
1014         }
1015     }
1016     if (arm_feature(env, ARM_FEATURE_V5)) {
1017         set_feature(env, ARM_FEATURE_V4T);
1018     }
1019     if (arm_feature(env, ARM_FEATURE_VFP4)) {
1020         set_feature(env, ARM_FEATURE_VFP3);
1021     }
1022     if (arm_feature(env, ARM_FEATURE_VFP3)) {
1023         set_feature(env, ARM_FEATURE_VFP);
1024     }
1025     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1026         set_feature(env, ARM_FEATURE_V7MP);
1027         set_feature(env, ARM_FEATURE_PXN);
1028     }
1029     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1030         set_feature(env, ARM_FEATURE_CBAR);
1031     }
1032     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1033         !arm_feature(env, ARM_FEATURE_M)) {
1034         set_feature(env, ARM_FEATURE_THUMB_DSP);
1035     }
1036 
1037     /*
1038      * We rely on no XScale CPU having VFP so we can use the same bits in the
1039      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1040      */
1041     assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1042              arm_feature(env, ARM_FEATURE_XSCALE)));
1043 
1044     if (arm_feature(env, ARM_FEATURE_V7) &&
1045         !arm_feature(env, ARM_FEATURE_M) &&
1046         !arm_feature(env, ARM_FEATURE_PMSA)) {
1047         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1048          * can use 4K pages.
1049          */
1050         pagebits = 12;
1051     } else {
1052         /* For CPUs which might have tiny 1K pages, or which have an
1053          * MPU and might have small region sizes, stick with 1K pages.
1054          */
1055         pagebits = 10;
1056     }
1057     if (!set_preferred_target_page_bits(pagebits)) {
1058         /* This can only ever happen for hotplugging a CPU, or if
1059          * the board code incorrectly creates a CPU which it has
1060          * promised via minimum_page_size that it will not.
1061          */
1062         error_setg(errp, "This CPU requires a smaller page size than the "
1063                    "system is using");
1064         return;
1065     }
1066 
1067     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1068      * We don't support setting cluster ID ([16..23]) (known as Aff2
1069      * in later ARM ARM versions), or any of the higher affinity level fields,
1070      * so these bits always RAZ.
1071      */
1072     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1073         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1074                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1075     }
1076 
1077     if (cpu->reset_hivecs) {
1078             cpu->reset_sctlr |= (1 << 13);
1079     }
1080 
1081     if (cpu->cfgend) {
1082         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1083             cpu->reset_sctlr |= SCTLR_EE;
1084         } else {
1085             cpu->reset_sctlr |= SCTLR_B;
1086         }
1087     }
1088 
1089     if (!cpu->has_el3) {
1090         /* If the has_el3 CPU property is disabled then we need to disable the
1091          * feature.
1092          */
1093         unset_feature(env, ARM_FEATURE_EL3);
1094 
1095         /* Disable the security extension feature bits in the processor feature
1096          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1097          */
1098         cpu->id_pfr1 &= ~0xf0;
1099         cpu->isar.id_aa64pfr0 &= ~0xf000;
1100     }
1101 
1102     if (!cpu->has_el2) {
1103         unset_feature(env, ARM_FEATURE_EL2);
1104     }
1105 
1106     if (!cpu->has_pmu) {
1107         unset_feature(env, ARM_FEATURE_PMU);
1108     }
1109     if (arm_feature(env, ARM_FEATURE_PMU)) {
1110         pmu_init(cpu);
1111 
1112         if (!kvm_enabled()) {
1113             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1114             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1115         }
1116 
1117 #ifndef CONFIG_USER_ONLY
1118         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1119                 cpu);
1120 #endif
1121     } else {
1122         cpu->id_aa64dfr0 &= ~0xf00;
1123         cpu->id_dfr0 &= ~(0xf << 24);
1124         cpu->pmceid0 = 0;
1125         cpu->pmceid1 = 0;
1126     }
1127 
1128     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1129         /* Disable the hypervisor feature bits in the processor feature
1130          * registers if we don't have EL2. These are id_pfr1[15:12] and
1131          * id_aa64pfr0_el1[11:8].
1132          */
1133         cpu->isar.id_aa64pfr0 &= ~0xf00;
1134         cpu->id_pfr1 &= ~0xf000;
1135     }
1136 
1137     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1138      * to false or by setting pmsav7-dregion to 0.
1139      */
1140     if (!cpu->has_mpu) {
1141         cpu->pmsav7_dregion = 0;
1142     }
1143     if (cpu->pmsav7_dregion == 0) {
1144         cpu->has_mpu = false;
1145     }
1146 
1147     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1148         arm_feature(env, ARM_FEATURE_V7)) {
1149         uint32_t nr = cpu->pmsav7_dregion;
1150 
1151         if (nr > 0xff) {
1152             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1153             return;
1154         }
1155 
1156         if (nr) {
1157             if (arm_feature(env, ARM_FEATURE_V8)) {
1158                 /* PMSAv8 */
1159                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1160                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1161                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1162                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1163                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1164                 }
1165             } else {
1166                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1167                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1168                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1169             }
1170         }
1171     }
1172 
1173     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1174         uint32_t nr = cpu->sau_sregion;
1175 
1176         if (nr > 0xff) {
1177             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1178             return;
1179         }
1180 
1181         if (nr) {
1182             env->sau.rbar = g_new0(uint32_t, nr);
1183             env->sau.rlar = g_new0(uint32_t, nr);
1184         }
1185     }
1186 
1187     if (arm_feature(env, ARM_FEATURE_EL3)) {
1188         set_feature(env, ARM_FEATURE_VBAR);
1189     }
1190 
1191     register_cp_regs_for_features(cpu);
1192     arm_cpu_register_gdb_regs_for_features(cpu);
1193 
1194     init_cpreg_list(cpu);
1195 
1196 #ifndef CONFIG_USER_ONLY
1197     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1198         cs->num_ases = 2;
1199 
1200         if (!cpu->secure_memory) {
1201             cpu->secure_memory = cs->memory;
1202         }
1203         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1204                                cpu->secure_memory);
1205     } else {
1206         cs->num_ases = 1;
1207     }
1208     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1209 
1210     /* No core_count specified, default to smp_cpus. */
1211     if (cpu->core_count == -1) {
1212         cpu->core_count = smp_cpus;
1213     }
1214 #endif
1215 
1216     qemu_init_vcpu(cs);
1217     cpu_reset(cs);
1218 
1219     acc->parent_realize(dev, errp);
1220 }
1221 
1222 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1223 {
1224     ObjectClass *oc;
1225     char *typename;
1226     char **cpuname;
1227     const char *cpunamestr;
1228 
1229     cpuname = g_strsplit(cpu_model, ",", 1);
1230     cpunamestr = cpuname[0];
1231 #ifdef CONFIG_USER_ONLY
1232     /* For backwards compatibility usermode emulation allows "-cpu any",
1233      * which has the same semantics as "-cpu max".
1234      */
1235     if (!strcmp(cpunamestr, "any")) {
1236         cpunamestr = "max";
1237     }
1238 #endif
1239     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1240     oc = object_class_by_name(typename);
1241     g_strfreev(cpuname);
1242     g_free(typename);
1243     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1244         object_class_is_abstract(oc)) {
1245         return NULL;
1246     }
1247     return oc;
1248 }
1249 
1250 /* CPU models. These are not needed for the AArch64 linux-user build. */
1251 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1252 
1253 static void arm926_initfn(Object *obj)
1254 {
1255     ARMCPU *cpu = ARM_CPU(obj);
1256 
1257     cpu->dtb_compatible = "arm,arm926";
1258     set_feature(&cpu->env, ARM_FEATURE_V5);
1259     set_feature(&cpu->env, ARM_FEATURE_VFP);
1260     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1261     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1262     cpu->midr = 0x41069265;
1263     cpu->reset_fpsid = 0x41011090;
1264     cpu->ctr = 0x1dd20d2;
1265     cpu->reset_sctlr = 0x00090078;
1266 
1267     /*
1268      * ARMv5 does not have the ID_ISAR registers, but we can still
1269      * set the field to indicate Jazelle support within QEMU.
1270      */
1271     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1272 }
1273 
1274 static void arm946_initfn(Object *obj)
1275 {
1276     ARMCPU *cpu = ARM_CPU(obj);
1277 
1278     cpu->dtb_compatible = "arm,arm946";
1279     set_feature(&cpu->env, ARM_FEATURE_V5);
1280     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1281     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1282     cpu->midr = 0x41059461;
1283     cpu->ctr = 0x0f004006;
1284     cpu->reset_sctlr = 0x00000078;
1285 }
1286 
1287 static void arm1026_initfn(Object *obj)
1288 {
1289     ARMCPU *cpu = ARM_CPU(obj);
1290 
1291     cpu->dtb_compatible = "arm,arm1026";
1292     set_feature(&cpu->env, ARM_FEATURE_V5);
1293     set_feature(&cpu->env, ARM_FEATURE_VFP);
1294     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1295     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1296     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1297     cpu->midr = 0x4106a262;
1298     cpu->reset_fpsid = 0x410110a0;
1299     cpu->ctr = 0x1dd20d2;
1300     cpu->reset_sctlr = 0x00090078;
1301     cpu->reset_auxcr = 1;
1302 
1303     /*
1304      * ARMv5 does not have the ID_ISAR registers, but we can still
1305      * set the field to indicate Jazelle support within QEMU.
1306      */
1307     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1308 
1309     {
1310         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1311         ARMCPRegInfo ifar = {
1312             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1313             .access = PL1_RW,
1314             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1315             .resetvalue = 0
1316         };
1317         define_one_arm_cp_reg(cpu, &ifar);
1318     }
1319 }
1320 
1321 static void arm1136_r2_initfn(Object *obj)
1322 {
1323     ARMCPU *cpu = ARM_CPU(obj);
1324     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1325      * older core than plain "arm1136". In particular this does not
1326      * have the v6K features.
1327      * These ID register values are correct for 1136 but may be wrong
1328      * for 1136_r2 (in particular r0p2 does not actually implement most
1329      * of the ID registers).
1330      */
1331 
1332     cpu->dtb_compatible = "arm,arm1136";
1333     set_feature(&cpu->env, ARM_FEATURE_V6);
1334     set_feature(&cpu->env, ARM_FEATURE_VFP);
1335     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1336     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1337     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1338     cpu->midr = 0x4107b362;
1339     cpu->reset_fpsid = 0x410120b4;
1340     cpu->isar.mvfr0 = 0x11111111;
1341     cpu->isar.mvfr1 = 0x00000000;
1342     cpu->ctr = 0x1dd20d2;
1343     cpu->reset_sctlr = 0x00050078;
1344     cpu->id_pfr0 = 0x111;
1345     cpu->id_pfr1 = 0x1;
1346     cpu->id_dfr0 = 0x2;
1347     cpu->id_afr0 = 0x3;
1348     cpu->id_mmfr0 = 0x01130003;
1349     cpu->id_mmfr1 = 0x10030302;
1350     cpu->id_mmfr2 = 0x01222110;
1351     cpu->isar.id_isar0 = 0x00140011;
1352     cpu->isar.id_isar1 = 0x12002111;
1353     cpu->isar.id_isar2 = 0x11231111;
1354     cpu->isar.id_isar3 = 0x01102131;
1355     cpu->isar.id_isar4 = 0x141;
1356     cpu->reset_auxcr = 7;
1357 }
1358 
1359 static void arm1136_initfn(Object *obj)
1360 {
1361     ARMCPU *cpu = ARM_CPU(obj);
1362 
1363     cpu->dtb_compatible = "arm,arm1136";
1364     set_feature(&cpu->env, ARM_FEATURE_V6K);
1365     set_feature(&cpu->env, ARM_FEATURE_V6);
1366     set_feature(&cpu->env, ARM_FEATURE_VFP);
1367     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1368     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1369     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1370     cpu->midr = 0x4117b363;
1371     cpu->reset_fpsid = 0x410120b4;
1372     cpu->isar.mvfr0 = 0x11111111;
1373     cpu->isar.mvfr1 = 0x00000000;
1374     cpu->ctr = 0x1dd20d2;
1375     cpu->reset_sctlr = 0x00050078;
1376     cpu->id_pfr0 = 0x111;
1377     cpu->id_pfr1 = 0x1;
1378     cpu->id_dfr0 = 0x2;
1379     cpu->id_afr0 = 0x3;
1380     cpu->id_mmfr0 = 0x01130003;
1381     cpu->id_mmfr1 = 0x10030302;
1382     cpu->id_mmfr2 = 0x01222110;
1383     cpu->isar.id_isar0 = 0x00140011;
1384     cpu->isar.id_isar1 = 0x12002111;
1385     cpu->isar.id_isar2 = 0x11231111;
1386     cpu->isar.id_isar3 = 0x01102131;
1387     cpu->isar.id_isar4 = 0x141;
1388     cpu->reset_auxcr = 7;
1389 }
1390 
1391 static void arm1176_initfn(Object *obj)
1392 {
1393     ARMCPU *cpu = ARM_CPU(obj);
1394 
1395     cpu->dtb_compatible = "arm,arm1176";
1396     set_feature(&cpu->env, ARM_FEATURE_V6K);
1397     set_feature(&cpu->env, ARM_FEATURE_VFP);
1398     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1399     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1400     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1401     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1402     set_feature(&cpu->env, ARM_FEATURE_EL3);
1403     cpu->midr = 0x410fb767;
1404     cpu->reset_fpsid = 0x410120b5;
1405     cpu->isar.mvfr0 = 0x11111111;
1406     cpu->isar.mvfr1 = 0x00000000;
1407     cpu->ctr = 0x1dd20d2;
1408     cpu->reset_sctlr = 0x00050078;
1409     cpu->id_pfr0 = 0x111;
1410     cpu->id_pfr1 = 0x11;
1411     cpu->id_dfr0 = 0x33;
1412     cpu->id_afr0 = 0;
1413     cpu->id_mmfr0 = 0x01130003;
1414     cpu->id_mmfr1 = 0x10030302;
1415     cpu->id_mmfr2 = 0x01222100;
1416     cpu->isar.id_isar0 = 0x0140011;
1417     cpu->isar.id_isar1 = 0x12002111;
1418     cpu->isar.id_isar2 = 0x11231121;
1419     cpu->isar.id_isar3 = 0x01102131;
1420     cpu->isar.id_isar4 = 0x01141;
1421     cpu->reset_auxcr = 7;
1422 }
1423 
1424 static void arm11mpcore_initfn(Object *obj)
1425 {
1426     ARMCPU *cpu = ARM_CPU(obj);
1427 
1428     cpu->dtb_compatible = "arm,arm11mpcore";
1429     set_feature(&cpu->env, ARM_FEATURE_V6K);
1430     set_feature(&cpu->env, ARM_FEATURE_VFP);
1431     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1432     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1433     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1434     cpu->midr = 0x410fb022;
1435     cpu->reset_fpsid = 0x410120b4;
1436     cpu->isar.mvfr0 = 0x11111111;
1437     cpu->isar.mvfr1 = 0x00000000;
1438     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1439     cpu->id_pfr0 = 0x111;
1440     cpu->id_pfr1 = 0x1;
1441     cpu->id_dfr0 = 0;
1442     cpu->id_afr0 = 0x2;
1443     cpu->id_mmfr0 = 0x01100103;
1444     cpu->id_mmfr1 = 0x10020302;
1445     cpu->id_mmfr2 = 0x01222000;
1446     cpu->isar.id_isar0 = 0x00100011;
1447     cpu->isar.id_isar1 = 0x12002111;
1448     cpu->isar.id_isar2 = 0x11221011;
1449     cpu->isar.id_isar3 = 0x01102131;
1450     cpu->isar.id_isar4 = 0x141;
1451     cpu->reset_auxcr = 1;
1452 }
1453 
1454 static void cortex_m0_initfn(Object *obj)
1455 {
1456     ARMCPU *cpu = ARM_CPU(obj);
1457     set_feature(&cpu->env, ARM_FEATURE_V6);
1458     set_feature(&cpu->env, ARM_FEATURE_M);
1459 
1460     cpu->midr = 0x410cc200;
1461 }
1462 
1463 static void cortex_m3_initfn(Object *obj)
1464 {
1465     ARMCPU *cpu = ARM_CPU(obj);
1466     set_feature(&cpu->env, ARM_FEATURE_V7);
1467     set_feature(&cpu->env, ARM_FEATURE_M);
1468     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1469     cpu->midr = 0x410fc231;
1470     cpu->pmsav7_dregion = 8;
1471     cpu->id_pfr0 = 0x00000030;
1472     cpu->id_pfr1 = 0x00000200;
1473     cpu->id_dfr0 = 0x00100000;
1474     cpu->id_afr0 = 0x00000000;
1475     cpu->id_mmfr0 = 0x00000030;
1476     cpu->id_mmfr1 = 0x00000000;
1477     cpu->id_mmfr2 = 0x00000000;
1478     cpu->id_mmfr3 = 0x00000000;
1479     cpu->isar.id_isar0 = 0x01141110;
1480     cpu->isar.id_isar1 = 0x02111000;
1481     cpu->isar.id_isar2 = 0x21112231;
1482     cpu->isar.id_isar3 = 0x01111110;
1483     cpu->isar.id_isar4 = 0x01310102;
1484     cpu->isar.id_isar5 = 0x00000000;
1485     cpu->isar.id_isar6 = 0x00000000;
1486 }
1487 
1488 static void cortex_m4_initfn(Object *obj)
1489 {
1490     ARMCPU *cpu = ARM_CPU(obj);
1491 
1492     set_feature(&cpu->env, ARM_FEATURE_V7);
1493     set_feature(&cpu->env, ARM_FEATURE_M);
1494     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1495     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1496     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1497     cpu->midr = 0x410fc240; /* r0p0 */
1498     cpu->pmsav7_dregion = 8;
1499     cpu->isar.mvfr0 = 0x10110021;
1500     cpu->isar.mvfr1 = 0x11000011;
1501     cpu->isar.mvfr2 = 0x00000000;
1502     cpu->id_pfr0 = 0x00000030;
1503     cpu->id_pfr1 = 0x00000200;
1504     cpu->id_dfr0 = 0x00100000;
1505     cpu->id_afr0 = 0x00000000;
1506     cpu->id_mmfr0 = 0x00000030;
1507     cpu->id_mmfr1 = 0x00000000;
1508     cpu->id_mmfr2 = 0x00000000;
1509     cpu->id_mmfr3 = 0x00000000;
1510     cpu->isar.id_isar0 = 0x01141110;
1511     cpu->isar.id_isar1 = 0x02111000;
1512     cpu->isar.id_isar2 = 0x21112231;
1513     cpu->isar.id_isar3 = 0x01111110;
1514     cpu->isar.id_isar4 = 0x01310102;
1515     cpu->isar.id_isar5 = 0x00000000;
1516     cpu->isar.id_isar6 = 0x00000000;
1517 }
1518 
1519 static void cortex_m33_initfn(Object *obj)
1520 {
1521     ARMCPU *cpu = ARM_CPU(obj);
1522 
1523     set_feature(&cpu->env, ARM_FEATURE_V8);
1524     set_feature(&cpu->env, ARM_FEATURE_M);
1525     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1526     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1527     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1528     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1529     cpu->midr = 0x410fd213; /* r0p3 */
1530     cpu->pmsav7_dregion = 16;
1531     cpu->sau_sregion = 8;
1532     cpu->isar.mvfr0 = 0x10110021;
1533     cpu->isar.mvfr1 = 0x11000011;
1534     cpu->isar.mvfr2 = 0x00000040;
1535     cpu->id_pfr0 = 0x00000030;
1536     cpu->id_pfr1 = 0x00000210;
1537     cpu->id_dfr0 = 0x00200000;
1538     cpu->id_afr0 = 0x00000000;
1539     cpu->id_mmfr0 = 0x00101F40;
1540     cpu->id_mmfr1 = 0x00000000;
1541     cpu->id_mmfr2 = 0x01000000;
1542     cpu->id_mmfr3 = 0x00000000;
1543     cpu->isar.id_isar0 = 0x01101110;
1544     cpu->isar.id_isar1 = 0x02212000;
1545     cpu->isar.id_isar2 = 0x20232232;
1546     cpu->isar.id_isar3 = 0x01111131;
1547     cpu->isar.id_isar4 = 0x01310132;
1548     cpu->isar.id_isar5 = 0x00000000;
1549     cpu->isar.id_isar6 = 0x00000000;
1550     cpu->clidr = 0x00000000;
1551     cpu->ctr = 0x8000c000;
1552 }
1553 
1554 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1555 {
1556     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1557     CPUClass *cc = CPU_CLASS(oc);
1558 
1559     acc->info = data;
1560 #ifndef CONFIG_USER_ONLY
1561     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1562 #endif
1563 
1564     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1565 }
1566 
1567 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1568     /* Dummy the TCM region regs for the moment */
1569     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1570       .access = PL1_RW, .type = ARM_CP_CONST },
1571     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1572       .access = PL1_RW, .type = ARM_CP_CONST },
1573     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1574       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1575     REGINFO_SENTINEL
1576 };
1577 
1578 static void cortex_r5_initfn(Object *obj)
1579 {
1580     ARMCPU *cpu = ARM_CPU(obj);
1581 
1582     set_feature(&cpu->env, ARM_FEATURE_V7);
1583     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1584     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1585     cpu->midr = 0x411fc153; /* r1p3 */
1586     cpu->id_pfr0 = 0x0131;
1587     cpu->id_pfr1 = 0x001;
1588     cpu->id_dfr0 = 0x010400;
1589     cpu->id_afr0 = 0x0;
1590     cpu->id_mmfr0 = 0x0210030;
1591     cpu->id_mmfr1 = 0x00000000;
1592     cpu->id_mmfr2 = 0x01200000;
1593     cpu->id_mmfr3 = 0x0211;
1594     cpu->isar.id_isar0 = 0x02101111;
1595     cpu->isar.id_isar1 = 0x13112111;
1596     cpu->isar.id_isar2 = 0x21232141;
1597     cpu->isar.id_isar3 = 0x01112131;
1598     cpu->isar.id_isar4 = 0x0010142;
1599     cpu->isar.id_isar5 = 0x0;
1600     cpu->isar.id_isar6 = 0x0;
1601     cpu->mp_is_up = true;
1602     cpu->pmsav7_dregion = 16;
1603     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1604 }
1605 
1606 static void cortex_r5f_initfn(Object *obj)
1607 {
1608     ARMCPU *cpu = ARM_CPU(obj);
1609 
1610     cortex_r5_initfn(obj);
1611     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1612 }
1613 
1614 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1615     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1616       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1617     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1618       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1619     REGINFO_SENTINEL
1620 };
1621 
1622 static void cortex_a8_initfn(Object *obj)
1623 {
1624     ARMCPU *cpu = ARM_CPU(obj);
1625 
1626     cpu->dtb_compatible = "arm,cortex-a8";
1627     set_feature(&cpu->env, ARM_FEATURE_V7);
1628     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1629     set_feature(&cpu->env, ARM_FEATURE_NEON);
1630     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1631     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1632     set_feature(&cpu->env, ARM_FEATURE_EL3);
1633     cpu->midr = 0x410fc080;
1634     cpu->reset_fpsid = 0x410330c0;
1635     cpu->isar.mvfr0 = 0x11110222;
1636     cpu->isar.mvfr1 = 0x00011111;
1637     cpu->ctr = 0x82048004;
1638     cpu->reset_sctlr = 0x00c50078;
1639     cpu->id_pfr0 = 0x1031;
1640     cpu->id_pfr1 = 0x11;
1641     cpu->id_dfr0 = 0x400;
1642     cpu->id_afr0 = 0;
1643     cpu->id_mmfr0 = 0x31100003;
1644     cpu->id_mmfr1 = 0x20000000;
1645     cpu->id_mmfr2 = 0x01202000;
1646     cpu->id_mmfr3 = 0x11;
1647     cpu->isar.id_isar0 = 0x00101111;
1648     cpu->isar.id_isar1 = 0x12112111;
1649     cpu->isar.id_isar2 = 0x21232031;
1650     cpu->isar.id_isar3 = 0x11112131;
1651     cpu->isar.id_isar4 = 0x00111142;
1652     cpu->dbgdidr = 0x15141000;
1653     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1654     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1655     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1656     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1657     cpu->reset_auxcr = 2;
1658     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1659 }
1660 
1661 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1662     /* power_control should be set to maximum latency. Again,
1663      * default to 0 and set by private hook
1664      */
1665     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1666       .access = PL1_RW, .resetvalue = 0,
1667       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1668     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1669       .access = PL1_RW, .resetvalue = 0,
1670       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1671     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1672       .access = PL1_RW, .resetvalue = 0,
1673       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1674     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1675       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1676     /* TLB lockdown control */
1677     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1678       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1679     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1680       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1681     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1682       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1683     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1684       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1685     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1686       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1687     REGINFO_SENTINEL
1688 };
1689 
1690 static void cortex_a9_initfn(Object *obj)
1691 {
1692     ARMCPU *cpu = ARM_CPU(obj);
1693 
1694     cpu->dtb_compatible = "arm,cortex-a9";
1695     set_feature(&cpu->env, ARM_FEATURE_V7);
1696     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1697     set_feature(&cpu->env, ARM_FEATURE_NEON);
1698     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1699     set_feature(&cpu->env, ARM_FEATURE_EL3);
1700     /* Note that A9 supports the MP extensions even for
1701      * A9UP and single-core A9MP (which are both different
1702      * and valid configurations; we don't model A9UP).
1703      */
1704     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1705     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1706     cpu->midr = 0x410fc090;
1707     cpu->reset_fpsid = 0x41033090;
1708     cpu->isar.mvfr0 = 0x11110222;
1709     cpu->isar.mvfr1 = 0x01111111;
1710     cpu->ctr = 0x80038003;
1711     cpu->reset_sctlr = 0x00c50078;
1712     cpu->id_pfr0 = 0x1031;
1713     cpu->id_pfr1 = 0x11;
1714     cpu->id_dfr0 = 0x000;
1715     cpu->id_afr0 = 0;
1716     cpu->id_mmfr0 = 0x00100103;
1717     cpu->id_mmfr1 = 0x20000000;
1718     cpu->id_mmfr2 = 0x01230000;
1719     cpu->id_mmfr3 = 0x00002111;
1720     cpu->isar.id_isar0 = 0x00101111;
1721     cpu->isar.id_isar1 = 0x13112111;
1722     cpu->isar.id_isar2 = 0x21232041;
1723     cpu->isar.id_isar3 = 0x11112131;
1724     cpu->isar.id_isar4 = 0x00111142;
1725     cpu->dbgdidr = 0x35141000;
1726     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1727     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1728     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1729     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1730 }
1731 
1732 #ifndef CONFIG_USER_ONLY
1733 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1734 {
1735     /* Linux wants the number of processors from here.
1736      * Might as well set the interrupt-controller bit too.
1737      */
1738     return ((smp_cpus - 1) << 24) | (1 << 23);
1739 }
1740 #endif
1741 
1742 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1743 #ifndef CONFIG_USER_ONLY
1744     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1745       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1746       .writefn = arm_cp_write_ignore, },
1747 #endif
1748     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1749       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1750     REGINFO_SENTINEL
1751 };
1752 
1753 static void cortex_a7_initfn(Object *obj)
1754 {
1755     ARMCPU *cpu = ARM_CPU(obj);
1756 
1757     cpu->dtb_compatible = "arm,cortex-a7";
1758     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1759     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1760     set_feature(&cpu->env, ARM_FEATURE_NEON);
1761     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1762     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1763     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1764     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1765     set_feature(&cpu->env, ARM_FEATURE_EL2);
1766     set_feature(&cpu->env, ARM_FEATURE_EL3);
1767     set_feature(&cpu->env, ARM_FEATURE_PMU);
1768     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1769     cpu->midr = 0x410fc075;
1770     cpu->reset_fpsid = 0x41023075;
1771     cpu->isar.mvfr0 = 0x10110222;
1772     cpu->isar.mvfr1 = 0x11111111;
1773     cpu->ctr = 0x84448003;
1774     cpu->reset_sctlr = 0x00c50078;
1775     cpu->id_pfr0 = 0x00001131;
1776     cpu->id_pfr1 = 0x00011011;
1777     cpu->id_dfr0 = 0x02010555;
1778     cpu->id_afr0 = 0x00000000;
1779     cpu->id_mmfr0 = 0x10101105;
1780     cpu->id_mmfr1 = 0x40000000;
1781     cpu->id_mmfr2 = 0x01240000;
1782     cpu->id_mmfr3 = 0x02102211;
1783     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1784      * table 4-41 gives 0x02101110, which includes the arm div insns.
1785      */
1786     cpu->isar.id_isar0 = 0x02101110;
1787     cpu->isar.id_isar1 = 0x13112111;
1788     cpu->isar.id_isar2 = 0x21232041;
1789     cpu->isar.id_isar3 = 0x11112131;
1790     cpu->isar.id_isar4 = 0x10011142;
1791     cpu->dbgdidr = 0x3515f005;
1792     cpu->clidr = 0x0a200023;
1793     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1794     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1795     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1796     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1797 }
1798 
1799 static void cortex_a15_initfn(Object *obj)
1800 {
1801     ARMCPU *cpu = ARM_CPU(obj);
1802 
1803     cpu->dtb_compatible = "arm,cortex-a15";
1804     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1805     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1806     set_feature(&cpu->env, ARM_FEATURE_NEON);
1807     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1808     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1809     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1810     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1811     set_feature(&cpu->env, ARM_FEATURE_EL2);
1812     set_feature(&cpu->env, ARM_FEATURE_EL3);
1813     set_feature(&cpu->env, ARM_FEATURE_PMU);
1814     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1815     cpu->midr = 0x412fc0f1;
1816     cpu->reset_fpsid = 0x410430f0;
1817     cpu->isar.mvfr0 = 0x10110222;
1818     cpu->isar.mvfr1 = 0x11111111;
1819     cpu->ctr = 0x8444c004;
1820     cpu->reset_sctlr = 0x00c50078;
1821     cpu->id_pfr0 = 0x00001131;
1822     cpu->id_pfr1 = 0x00011011;
1823     cpu->id_dfr0 = 0x02010555;
1824     cpu->id_afr0 = 0x00000000;
1825     cpu->id_mmfr0 = 0x10201105;
1826     cpu->id_mmfr1 = 0x20000000;
1827     cpu->id_mmfr2 = 0x01240000;
1828     cpu->id_mmfr3 = 0x02102211;
1829     cpu->isar.id_isar0 = 0x02101110;
1830     cpu->isar.id_isar1 = 0x13112111;
1831     cpu->isar.id_isar2 = 0x21232041;
1832     cpu->isar.id_isar3 = 0x11112131;
1833     cpu->isar.id_isar4 = 0x10011142;
1834     cpu->dbgdidr = 0x3515f021;
1835     cpu->clidr = 0x0a200023;
1836     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1837     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1838     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1839     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1840 }
1841 
1842 static void ti925t_initfn(Object *obj)
1843 {
1844     ARMCPU *cpu = ARM_CPU(obj);
1845     set_feature(&cpu->env, ARM_FEATURE_V4T);
1846     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1847     cpu->midr = ARM_CPUID_TI925T;
1848     cpu->ctr = 0x5109149;
1849     cpu->reset_sctlr = 0x00000070;
1850 }
1851 
1852 static void sa1100_initfn(Object *obj)
1853 {
1854     ARMCPU *cpu = ARM_CPU(obj);
1855 
1856     cpu->dtb_compatible = "intel,sa1100";
1857     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1858     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1859     cpu->midr = 0x4401A11B;
1860     cpu->reset_sctlr = 0x00000070;
1861 }
1862 
1863 static void sa1110_initfn(Object *obj)
1864 {
1865     ARMCPU *cpu = ARM_CPU(obj);
1866     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1867     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1868     cpu->midr = 0x6901B119;
1869     cpu->reset_sctlr = 0x00000070;
1870 }
1871 
1872 static void pxa250_initfn(Object *obj)
1873 {
1874     ARMCPU *cpu = ARM_CPU(obj);
1875 
1876     cpu->dtb_compatible = "marvell,xscale";
1877     set_feature(&cpu->env, ARM_FEATURE_V5);
1878     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1879     cpu->midr = 0x69052100;
1880     cpu->ctr = 0xd172172;
1881     cpu->reset_sctlr = 0x00000078;
1882 }
1883 
1884 static void pxa255_initfn(Object *obj)
1885 {
1886     ARMCPU *cpu = ARM_CPU(obj);
1887 
1888     cpu->dtb_compatible = "marvell,xscale";
1889     set_feature(&cpu->env, ARM_FEATURE_V5);
1890     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1891     cpu->midr = 0x69052d00;
1892     cpu->ctr = 0xd172172;
1893     cpu->reset_sctlr = 0x00000078;
1894 }
1895 
1896 static void pxa260_initfn(Object *obj)
1897 {
1898     ARMCPU *cpu = ARM_CPU(obj);
1899 
1900     cpu->dtb_compatible = "marvell,xscale";
1901     set_feature(&cpu->env, ARM_FEATURE_V5);
1902     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1903     cpu->midr = 0x69052903;
1904     cpu->ctr = 0xd172172;
1905     cpu->reset_sctlr = 0x00000078;
1906 }
1907 
1908 static void pxa261_initfn(Object *obj)
1909 {
1910     ARMCPU *cpu = ARM_CPU(obj);
1911 
1912     cpu->dtb_compatible = "marvell,xscale";
1913     set_feature(&cpu->env, ARM_FEATURE_V5);
1914     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1915     cpu->midr = 0x69052d05;
1916     cpu->ctr = 0xd172172;
1917     cpu->reset_sctlr = 0x00000078;
1918 }
1919 
1920 static void pxa262_initfn(Object *obj)
1921 {
1922     ARMCPU *cpu = ARM_CPU(obj);
1923 
1924     cpu->dtb_compatible = "marvell,xscale";
1925     set_feature(&cpu->env, ARM_FEATURE_V5);
1926     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1927     cpu->midr = 0x69052d06;
1928     cpu->ctr = 0xd172172;
1929     cpu->reset_sctlr = 0x00000078;
1930 }
1931 
1932 static void pxa270a0_initfn(Object *obj)
1933 {
1934     ARMCPU *cpu = ARM_CPU(obj);
1935 
1936     cpu->dtb_compatible = "marvell,xscale";
1937     set_feature(&cpu->env, ARM_FEATURE_V5);
1938     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1939     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1940     cpu->midr = 0x69054110;
1941     cpu->ctr = 0xd172172;
1942     cpu->reset_sctlr = 0x00000078;
1943 }
1944 
1945 static void pxa270a1_initfn(Object *obj)
1946 {
1947     ARMCPU *cpu = ARM_CPU(obj);
1948 
1949     cpu->dtb_compatible = "marvell,xscale";
1950     set_feature(&cpu->env, ARM_FEATURE_V5);
1951     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1952     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1953     cpu->midr = 0x69054111;
1954     cpu->ctr = 0xd172172;
1955     cpu->reset_sctlr = 0x00000078;
1956 }
1957 
1958 static void pxa270b0_initfn(Object *obj)
1959 {
1960     ARMCPU *cpu = ARM_CPU(obj);
1961 
1962     cpu->dtb_compatible = "marvell,xscale";
1963     set_feature(&cpu->env, ARM_FEATURE_V5);
1964     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1965     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1966     cpu->midr = 0x69054112;
1967     cpu->ctr = 0xd172172;
1968     cpu->reset_sctlr = 0x00000078;
1969 }
1970 
1971 static void pxa270b1_initfn(Object *obj)
1972 {
1973     ARMCPU *cpu = ARM_CPU(obj);
1974 
1975     cpu->dtb_compatible = "marvell,xscale";
1976     set_feature(&cpu->env, ARM_FEATURE_V5);
1977     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1978     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1979     cpu->midr = 0x69054113;
1980     cpu->ctr = 0xd172172;
1981     cpu->reset_sctlr = 0x00000078;
1982 }
1983 
1984 static void pxa270c0_initfn(Object *obj)
1985 {
1986     ARMCPU *cpu = ARM_CPU(obj);
1987 
1988     cpu->dtb_compatible = "marvell,xscale";
1989     set_feature(&cpu->env, ARM_FEATURE_V5);
1990     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1991     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1992     cpu->midr = 0x69054114;
1993     cpu->ctr = 0xd172172;
1994     cpu->reset_sctlr = 0x00000078;
1995 }
1996 
1997 static void pxa270c5_initfn(Object *obj)
1998 {
1999     ARMCPU *cpu = ARM_CPU(obj);
2000 
2001     cpu->dtb_compatible = "marvell,xscale";
2002     set_feature(&cpu->env, ARM_FEATURE_V5);
2003     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2004     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2005     cpu->midr = 0x69054117;
2006     cpu->ctr = 0xd172172;
2007     cpu->reset_sctlr = 0x00000078;
2008 }
2009 
2010 #ifndef TARGET_AARCH64
2011 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2012  * otherwise, a CPU with as many features enabled as our emulation supports.
2013  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2014  * this only needs to handle 32 bits.
2015  */
2016 static void arm_max_initfn(Object *obj)
2017 {
2018     ARMCPU *cpu = ARM_CPU(obj);
2019 
2020     if (kvm_enabled()) {
2021         kvm_arm_set_cpu_features_from_host(cpu);
2022     } else {
2023         cortex_a15_initfn(obj);
2024 #ifdef CONFIG_USER_ONLY
2025         /* We don't set these in system emulation mode for the moment,
2026          * since we don't correctly set (all of) the ID registers to
2027          * advertise them.
2028          */
2029         set_feature(&cpu->env, ARM_FEATURE_V8);
2030         {
2031             uint32_t t;
2032 
2033             t = cpu->isar.id_isar5;
2034             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2035             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2036             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2037             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2038             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2039             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2040             cpu->isar.id_isar5 = t;
2041 
2042             t = cpu->isar.id_isar6;
2043             t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2044             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2045             t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2046             t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2047             t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2048             cpu->isar.id_isar6 = t;
2049 
2050             t = cpu->isar.mvfr2;
2051             t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2052             t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2053             cpu->isar.mvfr2 = t;
2054 
2055             t = cpu->id_mmfr4;
2056             t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2057             cpu->id_mmfr4 = t;
2058         }
2059 #endif
2060     }
2061 }
2062 #endif
2063 
2064 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2065 
2066 struct ARMCPUInfo {
2067     const char *name;
2068     void (*initfn)(Object *obj);
2069     void (*class_init)(ObjectClass *oc, void *data);
2070 };
2071 
2072 static const ARMCPUInfo arm_cpus[] = {
2073 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2074     { .name = "arm926",      .initfn = arm926_initfn },
2075     { .name = "arm946",      .initfn = arm946_initfn },
2076     { .name = "arm1026",     .initfn = arm1026_initfn },
2077     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2078      * older core than plain "arm1136". In particular this does not
2079      * have the v6K features.
2080      */
2081     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2082     { .name = "arm1136",     .initfn = arm1136_initfn },
2083     { .name = "arm1176",     .initfn = arm1176_initfn },
2084     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2085     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2086                              .class_init = arm_v7m_class_init },
2087     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2088                              .class_init = arm_v7m_class_init },
2089     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2090                              .class_init = arm_v7m_class_init },
2091     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2092                              .class_init = arm_v7m_class_init },
2093     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2094     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2095     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2096     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2097     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2098     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2099     { .name = "ti925t",      .initfn = ti925t_initfn },
2100     { .name = "sa1100",      .initfn = sa1100_initfn },
2101     { .name = "sa1110",      .initfn = sa1110_initfn },
2102     { .name = "pxa250",      .initfn = pxa250_initfn },
2103     { .name = "pxa255",      .initfn = pxa255_initfn },
2104     { .name = "pxa260",      .initfn = pxa260_initfn },
2105     { .name = "pxa261",      .initfn = pxa261_initfn },
2106     { .name = "pxa262",      .initfn = pxa262_initfn },
2107     /* "pxa270" is an alias for "pxa270-a0" */
2108     { .name = "pxa270",      .initfn = pxa270a0_initfn },
2109     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2110     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2111     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2112     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2113     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2114     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2115 #ifndef TARGET_AARCH64
2116     { .name = "max",         .initfn = arm_max_initfn },
2117 #endif
2118 #ifdef CONFIG_USER_ONLY
2119     { .name = "any",         .initfn = arm_max_initfn },
2120 #endif
2121 #endif
2122     { .name = NULL }
2123 };
2124 
2125 static Property arm_cpu_properties[] = {
2126     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2127     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2128     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2129     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2130                         mp_affinity, ARM64_AFFINITY_INVALID),
2131     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2132     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2133     DEFINE_PROP_END_OF_LIST()
2134 };
2135 
2136 static gchar *arm_gdb_arch_name(CPUState *cs)
2137 {
2138     ARMCPU *cpu = ARM_CPU(cs);
2139     CPUARMState *env = &cpu->env;
2140 
2141     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2142         return g_strdup("iwmmxt");
2143     }
2144     return g_strdup("arm");
2145 }
2146 
2147 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2148 {
2149     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2150     CPUClass *cc = CPU_CLASS(acc);
2151     DeviceClass *dc = DEVICE_CLASS(oc);
2152 
2153     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2154                                     &acc->parent_realize);
2155     dc->props = arm_cpu_properties;
2156 
2157     acc->parent_reset = cc->reset;
2158     cc->reset = arm_cpu_reset;
2159 
2160     cc->class_by_name = arm_cpu_class_by_name;
2161     cc->has_work = arm_cpu_has_work;
2162     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2163     cc->dump_state = arm_cpu_dump_state;
2164     cc->set_pc = arm_cpu_set_pc;
2165     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2166     cc->gdb_read_register = arm_cpu_gdb_read_register;
2167     cc->gdb_write_register = arm_cpu_gdb_write_register;
2168 #ifndef CONFIG_USER_ONLY
2169     cc->do_interrupt = arm_cpu_do_interrupt;
2170     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2171     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2172     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2173     cc->asidx_from_attrs = arm_asidx_from_attrs;
2174     cc->vmsd = &vmstate_arm_cpu;
2175     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2176     cc->write_elf64_note = arm_cpu_write_elf64_note;
2177     cc->write_elf32_note = arm_cpu_write_elf32_note;
2178 #endif
2179     cc->gdb_num_core_regs = 26;
2180     cc->gdb_core_xml_file = "arm-core.xml";
2181     cc->gdb_arch_name = arm_gdb_arch_name;
2182     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2183     cc->gdb_stop_before_watchpoint = true;
2184     cc->debug_excp_handler = arm_debug_excp_handler;
2185     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2186 #if !defined(CONFIG_USER_ONLY)
2187     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2188 #endif
2189 
2190     cc->disas_set_info = arm_disas_set_info;
2191 #ifdef CONFIG_TCG
2192     cc->tcg_initialize = arm_translate_init;
2193     cc->tlb_fill = arm_cpu_tlb_fill;
2194 #endif
2195 }
2196 
2197 #ifdef CONFIG_KVM
2198 static void arm_host_initfn(Object *obj)
2199 {
2200     ARMCPU *cpu = ARM_CPU(obj);
2201 
2202     kvm_arm_set_cpu_features_from_host(cpu);
2203     arm_cpu_post_init(obj);
2204 }
2205 
2206 static const TypeInfo host_arm_cpu_type_info = {
2207     .name = TYPE_ARM_HOST_CPU,
2208 #ifdef TARGET_AARCH64
2209     .parent = TYPE_AARCH64_CPU,
2210 #else
2211     .parent = TYPE_ARM_CPU,
2212 #endif
2213     .instance_init = arm_host_initfn,
2214 };
2215 
2216 #endif
2217 
2218 static void arm_cpu_instance_init(Object *obj)
2219 {
2220     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2221 
2222     acc->info->initfn(obj);
2223     arm_cpu_post_init(obj);
2224 }
2225 
2226 static void cpu_register_class_init(ObjectClass *oc, void *data)
2227 {
2228     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2229 
2230     acc->info = data;
2231 }
2232 
2233 static void cpu_register(const ARMCPUInfo *info)
2234 {
2235     TypeInfo type_info = {
2236         .parent = TYPE_ARM_CPU,
2237         .instance_size = sizeof(ARMCPU),
2238         .instance_init = arm_cpu_instance_init,
2239         .class_size = sizeof(ARMCPUClass),
2240         .class_init = info->class_init ?: cpu_register_class_init,
2241         .class_data = (void *)info,
2242     };
2243 
2244     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2245     type_register(&type_info);
2246     g_free((void *)type_info.name);
2247 }
2248 
2249 static const TypeInfo arm_cpu_type_info = {
2250     .name = TYPE_ARM_CPU,
2251     .parent = TYPE_CPU,
2252     .instance_size = sizeof(ARMCPU),
2253     .instance_init = arm_cpu_initfn,
2254     .instance_finalize = arm_cpu_finalizefn,
2255     .abstract = true,
2256     .class_size = sizeof(ARMCPUClass),
2257     .class_init = arm_cpu_class_init,
2258 };
2259 
2260 static const TypeInfo idau_interface_type_info = {
2261     .name = TYPE_IDAU_INTERFACE,
2262     .parent = TYPE_INTERFACE,
2263     .class_size = sizeof(IDAUInterfaceClass),
2264 };
2265 
2266 static void arm_cpu_register_types(void)
2267 {
2268     const ARMCPUInfo *info = arm_cpus;
2269 
2270     type_register_static(&arm_cpu_type_info);
2271     type_register_static(&idau_interface_type_info);
2272 
2273     while (info->name) {
2274         cpu_register(info);
2275         info++;
2276     }
2277 
2278 #ifdef CONFIG_KVM
2279     type_register_static(&host_arm_cpu_type_info);
2280 #endif
2281 }
2282 
2283 type_init(arm_cpu_register_types)
2284