xref: /qemu/target/arm/cpu.c (revision f917eed3)
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu-common.h"
24 #include "target/arm/idau.h"
25 #include "qemu/module.h"
26 #include "qapi/error.h"
27 #include "qapi/visitor.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "exec/exec-all.h"
31 #include "hw/qdev-properties.h"
32 #if !defined(CONFIG_USER_ONLY)
33 #include "hw/loader.h"
34 #include "hw/boards.h"
35 #endif
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/hw_accel.h"
39 #include "kvm_arm.h"
40 #include "disas/capstone.h"
41 #include "fpu/softfloat.h"
42 
43 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
44 {
45     ARMCPU *cpu = ARM_CPU(cs);
46     CPUARMState *env = &cpu->env;
47 
48     if (is_a64(env)) {
49         env->pc = value;
50         env->thumb = 0;
51     } else {
52         env->regs[15] = value & ~1;
53         env->thumb = value & 1;
54     }
55 }
56 
57 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
58 {
59     ARMCPU *cpu = ARM_CPU(cs);
60     CPUARMState *env = &cpu->env;
61 
62     /*
63      * It's OK to look at env for the current mode here, because it's
64      * never possible for an AArch64 TB to chain to an AArch32 TB.
65      */
66     if (is_a64(env)) {
67         env->pc = tb->pc;
68     } else {
69         env->regs[15] = tb->pc;
70     }
71 }
72 
73 static bool arm_cpu_has_work(CPUState *cs)
74 {
75     ARMCPU *cpu = ARM_CPU(cs);
76 
77     return (cpu->power_state != PSCI_OFF)
78         && cs->interrupt_request &
79         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
80          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
81          | CPU_INTERRUPT_EXITTB);
82 }
83 
84 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85                                  void *opaque)
86 {
87     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 
89     entry->hook = hook;
90     entry->opaque = opaque;
91 
92     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 }
94 
95 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96                                  void *opaque)
97 {
98     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 
100     entry->hook = hook;
101     entry->opaque = opaque;
102 
103     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 }
105 
106 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
107 {
108     /* Reset a single ARMCPRegInfo register */
109     ARMCPRegInfo *ri = value;
110     ARMCPU *cpu = opaque;
111 
112     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
113         return;
114     }
115 
116     if (ri->resetfn) {
117         ri->resetfn(&cpu->env, ri);
118         return;
119     }
120 
121     /* A zero offset is never possible as it would be regs[0]
122      * so we use it to indicate that reset is being handled elsewhere.
123      * This is basically only used for fields in non-core coprocessors
124      * (like the pxa2xx ones).
125      */
126     if (!ri->fieldoffset) {
127         return;
128     }
129 
130     if (cpreg_field_is_64bit(ri)) {
131         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
132     } else {
133         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
134     }
135 }
136 
137 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
138 {
139     /* Purely an assertion check: we've already done reset once,
140      * so now check that running the reset for the cpreg doesn't
141      * change its value. This traps bugs where two different cpregs
142      * both try to reset the same state field but to different values.
143      */
144     ARMCPRegInfo *ri = value;
145     ARMCPU *cpu = opaque;
146     uint64_t oldvalue, newvalue;
147 
148     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
149         return;
150     }
151 
152     oldvalue = read_raw_cp_reg(&cpu->env, ri);
153     cp_reg_reset(key, value, opaque);
154     newvalue = read_raw_cp_reg(&cpu->env, ri);
155     assert(oldvalue == newvalue);
156 }
157 
158 static void arm_cpu_reset(DeviceState *dev)
159 {
160     CPUState *s = CPU(dev);
161     ARMCPU *cpu = ARM_CPU(s);
162     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
163     CPUARMState *env = &cpu->env;
164 
165     acc->parent_reset(dev);
166 
167     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
168 
169     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
170     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
171 
172     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
173     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
174     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
175     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
176 
177     cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
178 
179     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
180         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
181     }
182 
183     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
184         /* 64 bit CPUs always start in 64 bit mode */
185         env->aarch64 = 1;
186 #if defined(CONFIG_USER_ONLY)
187         env->pstate = PSTATE_MODE_EL0t;
188         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
189         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
190         /* Enable all PAC keys.  */
191         env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
192                                   SCTLR_EnDA | SCTLR_EnDB);
193         /* and to the FP/Neon instructions */
194         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
195         /* and to the SVE instructions */
196         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
197         /* with reasonable vector length */
198         if (cpu_isar_feature(aa64_sve, cpu)) {
199             env->vfp.zcr_el[1] = MIN(cpu->sve_max_vq - 1, 3);
200         }
201         /*
202          * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
203          * turning on both here will produce smaller code and otherwise
204          * make no difference to the user-level emulation.
205          *
206          * In sve_probe_page, we assume that this is set.
207          * Do not modify this without other changes.
208          */
209         env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211         /* Reset into the highest available EL */
212         if (arm_feature(env, ARM_FEATURE_EL3)) {
213             env->pstate = PSTATE_MODE_EL3h;
214         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215             env->pstate = PSTATE_MODE_EL2h;
216         } else {
217             env->pstate = PSTATE_MODE_EL1h;
218         }
219         env->pc = cpu->rvbar;
220 #endif
221     } else {
222 #if defined(CONFIG_USER_ONLY)
223         /* Userspace expects access to cp10 and cp11 for FP/Neon */
224         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
226     }
227 
228 #if defined(CONFIG_USER_ONLY)
229     env->uncached_cpsr = ARM_CPU_MODE_USR;
230     /* For user mode we must enable access to coprocessors */
231     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233         env->cp15.c15_cpar = 3;
234     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235         env->cp15.c15_cpar = 1;
236     }
237 #else
238 
239     /*
240      * If the highest available EL is EL2, AArch32 will start in Hyp
241      * mode; otherwise it starts in SVC. Note that if we start in
242      * AArch64 then these values in the uncached_cpsr will be ignored.
243      */
244     if (arm_feature(env, ARM_FEATURE_EL2) &&
245         !arm_feature(env, ARM_FEATURE_EL3)) {
246         env->uncached_cpsr = ARM_CPU_MODE_HYP;
247     } else {
248         env->uncached_cpsr = ARM_CPU_MODE_SVC;
249     }
250     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
251 
252     if (arm_feature(env, ARM_FEATURE_M)) {
253         uint32_t initial_msp; /* Loaded from 0x0 */
254         uint32_t initial_pc; /* Loaded from 0x4 */
255         uint8_t *rom;
256         uint32_t vecbase;
257 
258         if (cpu_isar_feature(aa32_lob, cpu)) {
259             /*
260              * LTPSIZE is constant 4 if MVE not implemented, and resets
261              * to an UNKNOWN value if MVE is implemented. We choose to
262              * always reset to 4.
263              */
264             env->v7m.ltpsize = 4;
265             /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
266             env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
267             env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
268         }
269 
270         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
271             env->v7m.secure = true;
272         } else {
273             /* This bit resets to 0 if security is supported, but 1 if
274              * it is not. The bit is not present in v7M, but we set it
275              * here so we can avoid having to make checks on it conditional
276              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
277              */
278             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
279             /*
280              * Set NSACR to indicate "NS access permitted to everything";
281              * this avoids having to have all the tests of it being
282              * conditional on ARM_FEATURE_M_SECURITY. Note also that from
283              * v8.1M the guest-visible value of NSACR in a CPU without the
284              * Security Extension is 0xcff.
285              */
286             env->v7m.nsacr = 0xcff;
287         }
288 
289         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
290          * that it resets to 1, so QEMU always does that rather than making
291          * it dependent on CPU model. In v8M it is RES1.
292          */
293         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
294         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
295         if (arm_feature(env, ARM_FEATURE_V8)) {
296             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
297             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
298             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
299         }
300         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
301             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
302             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
303         }
304 
305         if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
306             env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
307             env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
308                 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
309         }
310         /* Unlike A/R profile, M profile defines the reset LR value */
311         env->regs[14] = 0xffffffff;
312 
313         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
314 
315         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
316         vecbase = env->v7m.vecbase[env->v7m.secure];
317         rom = rom_ptr(vecbase, 8);
318         if (rom) {
319             /* Address zero is covered by ROM which hasn't yet been
320              * copied into physical memory.
321              */
322             initial_msp = ldl_p(rom);
323             initial_pc = ldl_p(rom + 4);
324         } else {
325             /* Address zero not covered by a ROM blob, or the ROM blob
326              * is in non-modifiable memory and this is a second reset after
327              * it got copied into memory. In the latter case, rom_ptr
328              * will return a NULL pointer and we should use ldl_phys instead.
329              */
330             initial_msp = ldl_phys(s->as, vecbase);
331             initial_pc = ldl_phys(s->as, vecbase + 4);
332         }
333 
334         env->regs[13] = initial_msp & 0xFFFFFFFC;
335         env->regs[15] = initial_pc & ~1;
336         env->thumb = initial_pc & 1;
337     }
338 
339     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
340      * executing as AArch32 then check if highvecs are enabled and
341      * adjust the PC accordingly.
342      */
343     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
344         env->regs[15] = 0xFFFF0000;
345     }
346 
347     /* M profile requires that reset clears the exclusive monitor;
348      * A profile does not, but clearing it makes more sense than having it
349      * set with an exclusive access on address zero.
350      */
351     arm_clear_exclusive(env);
352 
353     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
354 #endif
355 
356     if (arm_feature(env, ARM_FEATURE_PMSA)) {
357         if (cpu->pmsav7_dregion > 0) {
358             if (arm_feature(env, ARM_FEATURE_V8)) {
359                 memset(env->pmsav8.rbar[M_REG_NS], 0,
360                        sizeof(*env->pmsav8.rbar[M_REG_NS])
361                        * cpu->pmsav7_dregion);
362                 memset(env->pmsav8.rlar[M_REG_NS], 0,
363                        sizeof(*env->pmsav8.rlar[M_REG_NS])
364                        * cpu->pmsav7_dregion);
365                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
366                     memset(env->pmsav8.rbar[M_REG_S], 0,
367                            sizeof(*env->pmsav8.rbar[M_REG_S])
368                            * cpu->pmsav7_dregion);
369                     memset(env->pmsav8.rlar[M_REG_S], 0,
370                            sizeof(*env->pmsav8.rlar[M_REG_S])
371                            * cpu->pmsav7_dregion);
372                 }
373             } else if (arm_feature(env, ARM_FEATURE_V7)) {
374                 memset(env->pmsav7.drbar, 0,
375                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
376                 memset(env->pmsav7.drsr, 0,
377                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
378                 memset(env->pmsav7.dracr, 0,
379                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
380             }
381         }
382         env->pmsav7.rnr[M_REG_NS] = 0;
383         env->pmsav7.rnr[M_REG_S] = 0;
384         env->pmsav8.mair0[M_REG_NS] = 0;
385         env->pmsav8.mair0[M_REG_S] = 0;
386         env->pmsav8.mair1[M_REG_NS] = 0;
387         env->pmsav8.mair1[M_REG_S] = 0;
388     }
389 
390     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
391         if (cpu->sau_sregion > 0) {
392             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
393             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
394         }
395         env->sau.rnr = 0;
396         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
397          * the Cortex-M33 does.
398          */
399         env->sau.ctrl = 0;
400     }
401 
402     set_flush_to_zero(1, &env->vfp.standard_fp_status);
403     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
404     set_default_nan_mode(1, &env->vfp.standard_fp_status);
405     set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
406     set_float_detect_tininess(float_tininess_before_rounding,
407                               &env->vfp.fp_status);
408     set_float_detect_tininess(float_tininess_before_rounding,
409                               &env->vfp.standard_fp_status);
410     set_float_detect_tininess(float_tininess_before_rounding,
411                               &env->vfp.fp_status_f16);
412     set_float_detect_tininess(float_tininess_before_rounding,
413                               &env->vfp.standard_fp_status_f16);
414 #ifndef CONFIG_USER_ONLY
415     if (kvm_enabled()) {
416         kvm_arm_reset_vcpu(cpu);
417     }
418 #endif
419 
420     hw_breakpoint_update_all(cpu);
421     hw_watchpoint_update_all(cpu);
422     arm_rebuild_hflags(env);
423 }
424 
425 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
426                                      unsigned int target_el,
427                                      unsigned int cur_el, bool secure,
428                                      uint64_t hcr_el2)
429 {
430     CPUARMState *env = cs->env_ptr;
431     bool pstate_unmasked;
432     bool unmasked = false;
433 
434     /*
435      * Don't take exceptions if they target a lower EL.
436      * This check should catch any exceptions that would not be taken
437      * but left pending.
438      */
439     if (cur_el > target_el) {
440         return false;
441     }
442 
443     switch (excp_idx) {
444     case EXCP_FIQ:
445         pstate_unmasked = !(env->daif & PSTATE_F);
446         break;
447 
448     case EXCP_IRQ:
449         pstate_unmasked = !(env->daif & PSTATE_I);
450         break;
451 
452     case EXCP_VFIQ:
453         if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
454             /* VFIQs are only taken when hypervized and non-secure.  */
455             return false;
456         }
457         return !(env->daif & PSTATE_F);
458     case EXCP_VIRQ:
459         if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
460             /* VIRQs are only taken when hypervized and non-secure.  */
461             return false;
462         }
463         return !(env->daif & PSTATE_I);
464     default:
465         g_assert_not_reached();
466     }
467 
468     /*
469      * Use the target EL, current execution state and SCR/HCR settings to
470      * determine whether the corresponding CPSR bit is used to mask the
471      * interrupt.
472      */
473     if ((target_el > cur_el) && (target_el != 1)) {
474         /* Exceptions targeting a higher EL may not be maskable */
475         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
476             /*
477              * 64-bit masking rules are simple: exceptions to EL3
478              * can't be masked, and exceptions to EL2 can only be
479              * masked from Secure state. The HCR and SCR settings
480              * don't affect the masking logic, only the interrupt routing.
481              */
482             if (target_el == 3 || !secure) {
483                 unmasked = true;
484             }
485         } else {
486             /*
487              * The old 32-bit-only environment has a more complicated
488              * masking setup. HCR and SCR bits not only affect interrupt
489              * routing but also change the behaviour of masking.
490              */
491             bool hcr, scr;
492 
493             switch (excp_idx) {
494             case EXCP_FIQ:
495                 /*
496                  * If FIQs are routed to EL3 or EL2 then there are cases where
497                  * we override the CPSR.F in determining if the exception is
498                  * masked or not. If neither of these are set then we fall back
499                  * to the CPSR.F setting otherwise we further assess the state
500                  * below.
501                  */
502                 hcr = hcr_el2 & HCR_FMO;
503                 scr = (env->cp15.scr_el3 & SCR_FIQ);
504 
505                 /*
506                  * When EL3 is 32-bit, the SCR.FW bit controls whether the
507                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
508                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
509                  * when non-secure but only when FIQs are only routed to EL3.
510                  */
511                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
512                 break;
513             case EXCP_IRQ:
514                 /*
515                  * When EL3 execution state is 32-bit, if HCR.IMO is set then
516                  * we may override the CPSR.I masking when in non-secure state.
517                  * The SCR.IRQ setting has already been taken into consideration
518                  * when setting the target EL, so it does not have a further
519                  * affect here.
520                  */
521                 hcr = hcr_el2 & HCR_IMO;
522                 scr = false;
523                 break;
524             default:
525                 g_assert_not_reached();
526             }
527 
528             if ((scr || hcr) && !secure) {
529                 unmasked = true;
530             }
531         }
532     }
533 
534     /*
535      * The PSTATE bits only mask the interrupt if we have not overriden the
536      * ability above.
537      */
538     return unmasked || pstate_unmasked;
539 }
540 
541 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
542 {
543     CPUClass *cc = CPU_GET_CLASS(cs);
544     CPUARMState *env = cs->env_ptr;
545     uint32_t cur_el = arm_current_el(env);
546     bool secure = arm_is_secure(env);
547     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
548     uint32_t target_el;
549     uint32_t excp_idx;
550 
551     /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
552 
553     if (interrupt_request & CPU_INTERRUPT_FIQ) {
554         excp_idx = EXCP_FIQ;
555         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
556         if (arm_excp_unmasked(cs, excp_idx, target_el,
557                               cur_el, secure, hcr_el2)) {
558             goto found;
559         }
560     }
561     if (interrupt_request & CPU_INTERRUPT_HARD) {
562         excp_idx = EXCP_IRQ;
563         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
564         if (arm_excp_unmasked(cs, excp_idx, target_el,
565                               cur_el, secure, hcr_el2)) {
566             goto found;
567         }
568     }
569     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
570         excp_idx = EXCP_VIRQ;
571         target_el = 1;
572         if (arm_excp_unmasked(cs, excp_idx, target_el,
573                               cur_el, secure, hcr_el2)) {
574             goto found;
575         }
576     }
577     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
578         excp_idx = EXCP_VFIQ;
579         target_el = 1;
580         if (arm_excp_unmasked(cs, excp_idx, target_el,
581                               cur_el, secure, hcr_el2)) {
582             goto found;
583         }
584     }
585     return false;
586 
587  found:
588     cs->exception_index = excp_idx;
589     env->exception.target_el = target_el;
590     cc->do_interrupt(cs);
591     return true;
592 }
593 
594 void arm_cpu_update_virq(ARMCPU *cpu)
595 {
596     /*
597      * Update the interrupt level for VIRQ, which is the logical OR of
598      * the HCR_EL2.VI bit and the input line level from the GIC.
599      */
600     CPUARMState *env = &cpu->env;
601     CPUState *cs = CPU(cpu);
602 
603     bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
604         (env->irq_line_state & CPU_INTERRUPT_VIRQ);
605 
606     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
607         if (new_state) {
608             cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
609         } else {
610             cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
611         }
612     }
613 }
614 
615 void arm_cpu_update_vfiq(ARMCPU *cpu)
616 {
617     /*
618      * Update the interrupt level for VFIQ, which is the logical OR of
619      * the HCR_EL2.VF bit and the input line level from the GIC.
620      */
621     CPUARMState *env = &cpu->env;
622     CPUState *cs = CPU(cpu);
623 
624     bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
625         (env->irq_line_state & CPU_INTERRUPT_VFIQ);
626 
627     if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
628         if (new_state) {
629             cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
630         } else {
631             cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
632         }
633     }
634 }
635 
636 #ifndef CONFIG_USER_ONLY
637 static void arm_cpu_set_irq(void *opaque, int irq, int level)
638 {
639     ARMCPU *cpu = opaque;
640     CPUARMState *env = &cpu->env;
641     CPUState *cs = CPU(cpu);
642     static const int mask[] = {
643         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
644         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
645         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
646         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
647     };
648 
649     if (level) {
650         env->irq_line_state |= mask[irq];
651     } else {
652         env->irq_line_state &= ~mask[irq];
653     }
654 
655     switch (irq) {
656     case ARM_CPU_VIRQ:
657         assert(arm_feature(env, ARM_FEATURE_EL2));
658         arm_cpu_update_virq(cpu);
659         break;
660     case ARM_CPU_VFIQ:
661         assert(arm_feature(env, ARM_FEATURE_EL2));
662         arm_cpu_update_vfiq(cpu);
663         break;
664     case ARM_CPU_IRQ:
665     case ARM_CPU_FIQ:
666         if (level) {
667             cpu_interrupt(cs, mask[irq]);
668         } else {
669             cpu_reset_interrupt(cs, mask[irq]);
670         }
671         break;
672     default:
673         g_assert_not_reached();
674     }
675 }
676 
677 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
678 {
679 #ifdef CONFIG_KVM
680     ARMCPU *cpu = opaque;
681     CPUARMState *env = &cpu->env;
682     CPUState *cs = CPU(cpu);
683     uint32_t linestate_bit;
684     int irq_id;
685 
686     switch (irq) {
687     case ARM_CPU_IRQ:
688         irq_id = KVM_ARM_IRQ_CPU_IRQ;
689         linestate_bit = CPU_INTERRUPT_HARD;
690         break;
691     case ARM_CPU_FIQ:
692         irq_id = KVM_ARM_IRQ_CPU_FIQ;
693         linestate_bit = CPU_INTERRUPT_FIQ;
694         break;
695     default:
696         g_assert_not_reached();
697     }
698 
699     if (level) {
700         env->irq_line_state |= linestate_bit;
701     } else {
702         env->irq_line_state &= ~linestate_bit;
703     }
704     kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
705 #endif
706 }
707 
708 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
709 {
710     ARMCPU *cpu = ARM_CPU(cs);
711     CPUARMState *env = &cpu->env;
712 
713     cpu_synchronize_state(cs);
714     return arm_cpu_data_is_big_endian(env);
715 }
716 
717 #endif
718 
719 static int
720 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
721 {
722   return print_insn_arm(pc | 1, info);
723 }
724 
725 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
726 {
727     ARMCPU *ac = ARM_CPU(cpu);
728     CPUARMState *env = &ac->env;
729     bool sctlr_b;
730 
731     if (is_a64(env)) {
732         /* We might not be compiled with the A64 disassembler
733          * because it needs a C++ compiler. Leave print_insn
734          * unset in this case to use the caller default behaviour.
735          */
736 #if defined(CONFIG_ARM_A64_DIS)
737         info->print_insn = print_insn_arm_a64;
738 #endif
739         info->cap_arch = CS_ARCH_ARM64;
740         info->cap_insn_unit = 4;
741         info->cap_insn_split = 4;
742     } else {
743         int cap_mode;
744         if (env->thumb) {
745             info->print_insn = print_insn_thumb1;
746             info->cap_insn_unit = 2;
747             info->cap_insn_split = 4;
748             cap_mode = CS_MODE_THUMB;
749         } else {
750             info->print_insn = print_insn_arm;
751             info->cap_insn_unit = 4;
752             info->cap_insn_split = 4;
753             cap_mode = CS_MODE_ARM;
754         }
755         if (arm_feature(env, ARM_FEATURE_V8)) {
756             cap_mode |= CS_MODE_V8;
757         }
758         if (arm_feature(env, ARM_FEATURE_M)) {
759             cap_mode |= CS_MODE_MCLASS;
760         }
761         info->cap_arch = CS_ARCH_ARM;
762         info->cap_mode = cap_mode;
763     }
764 
765     sctlr_b = arm_sctlr_b(env);
766     if (bswap_code(sctlr_b)) {
767 #ifdef TARGET_WORDS_BIGENDIAN
768         info->endian = BFD_ENDIAN_LITTLE;
769 #else
770         info->endian = BFD_ENDIAN_BIG;
771 #endif
772     }
773     info->flags &= ~INSN_ARM_BE32;
774 #ifndef CONFIG_USER_ONLY
775     if (sctlr_b) {
776         info->flags |= INSN_ARM_BE32;
777     }
778 #endif
779 }
780 
781 #ifdef TARGET_AARCH64
782 
783 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
784 {
785     ARMCPU *cpu = ARM_CPU(cs);
786     CPUARMState *env = &cpu->env;
787     uint32_t psr = pstate_read(env);
788     int i;
789     int el = arm_current_el(env);
790     const char *ns_status;
791 
792     qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
793     for (i = 0; i < 32; i++) {
794         if (i == 31) {
795             qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
796         } else {
797             qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
798                          (i + 2) % 3 ? " " : "\n");
799         }
800     }
801 
802     if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
803         ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
804     } else {
805         ns_status = "";
806     }
807     qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
808                  psr,
809                  psr & PSTATE_N ? 'N' : '-',
810                  psr & PSTATE_Z ? 'Z' : '-',
811                  psr & PSTATE_C ? 'C' : '-',
812                  psr & PSTATE_V ? 'V' : '-',
813                  ns_status,
814                  el,
815                  psr & PSTATE_SP ? 'h' : 't');
816 
817     if (cpu_isar_feature(aa64_bti, cpu)) {
818         qemu_fprintf(f, "  BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
819     }
820     if (!(flags & CPU_DUMP_FPU)) {
821         qemu_fprintf(f, "\n");
822         return;
823     }
824     if (fp_exception_el(env, el) != 0) {
825         qemu_fprintf(f, "    FPU disabled\n");
826         return;
827     }
828     qemu_fprintf(f, "     FPCR=%08x FPSR=%08x\n",
829                  vfp_get_fpcr(env), vfp_get_fpsr(env));
830 
831     if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
832         int j, zcr_len = sve_zcr_len_for_el(env, el);
833 
834         for (i = 0; i <= FFR_PRED_NUM; i++) {
835             bool eol;
836             if (i == FFR_PRED_NUM) {
837                 qemu_fprintf(f, "FFR=");
838                 /* It's last, so end the line.  */
839                 eol = true;
840             } else {
841                 qemu_fprintf(f, "P%02d=", i);
842                 switch (zcr_len) {
843                 case 0:
844                     eol = i % 8 == 7;
845                     break;
846                 case 1:
847                     eol = i % 6 == 5;
848                     break;
849                 case 2:
850                 case 3:
851                     eol = i % 3 == 2;
852                     break;
853                 default:
854                     /* More than one quadword per predicate.  */
855                     eol = true;
856                     break;
857                 }
858             }
859             for (j = zcr_len / 4; j >= 0; j--) {
860                 int digits;
861                 if (j * 4 + 4 <= zcr_len + 1) {
862                     digits = 16;
863                 } else {
864                     digits = (zcr_len % 4 + 1) * 4;
865                 }
866                 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
867                              env->vfp.pregs[i].p[j],
868                              j ? ":" : eol ? "\n" : " ");
869             }
870         }
871 
872         for (i = 0; i < 32; i++) {
873             if (zcr_len == 0) {
874                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
875                              i, env->vfp.zregs[i].d[1],
876                              env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
877             } else if (zcr_len == 1) {
878                 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
879                              ":%016" PRIx64 ":%016" PRIx64 "\n",
880                              i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
881                              env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
882             } else {
883                 for (j = zcr_len; j >= 0; j--) {
884                     bool odd = (zcr_len - j) % 2 != 0;
885                     if (j == zcr_len) {
886                         qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
887                     } else if (!odd) {
888                         if (j > 0) {
889                             qemu_fprintf(f, "   [%x-%x]=", j, j - 1);
890                         } else {
891                             qemu_fprintf(f, "     [%x]=", j);
892                         }
893                     }
894                     qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
895                                  env->vfp.zregs[i].d[j * 2 + 1],
896                                  env->vfp.zregs[i].d[j * 2],
897                                  odd || j == 0 ? "\n" : ":");
898                 }
899             }
900         }
901     } else {
902         for (i = 0; i < 32; i++) {
903             uint64_t *q = aa64_vfp_qreg(env, i);
904             qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
905                          i, q[1], q[0], (i & 1 ? "\n" : " "));
906         }
907     }
908 }
909 
910 #else
911 
912 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
913 {
914     g_assert_not_reached();
915 }
916 
917 #endif
918 
919 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
920 {
921     ARMCPU *cpu = ARM_CPU(cs);
922     CPUARMState *env = &cpu->env;
923     int i;
924 
925     if (is_a64(env)) {
926         aarch64_cpu_dump_state(cs, f, flags);
927         return;
928     }
929 
930     for (i = 0; i < 16; i++) {
931         qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
932         if ((i % 4) == 3) {
933             qemu_fprintf(f, "\n");
934         } else {
935             qemu_fprintf(f, " ");
936         }
937     }
938 
939     if (arm_feature(env, ARM_FEATURE_M)) {
940         uint32_t xpsr = xpsr_read(env);
941         const char *mode;
942         const char *ns_status = "";
943 
944         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
945             ns_status = env->v7m.secure ? "S " : "NS ";
946         }
947 
948         if (xpsr & XPSR_EXCP) {
949             mode = "handler";
950         } else {
951             if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
952                 mode = "unpriv-thread";
953             } else {
954                 mode = "priv-thread";
955             }
956         }
957 
958         qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
959                      xpsr,
960                      xpsr & XPSR_N ? 'N' : '-',
961                      xpsr & XPSR_Z ? 'Z' : '-',
962                      xpsr & XPSR_C ? 'C' : '-',
963                      xpsr & XPSR_V ? 'V' : '-',
964                      xpsr & XPSR_T ? 'T' : 'A',
965                      ns_status,
966                      mode);
967     } else {
968         uint32_t psr = cpsr_read(env);
969         const char *ns_status = "";
970 
971         if (arm_feature(env, ARM_FEATURE_EL3) &&
972             (psr & CPSR_M) != ARM_CPU_MODE_MON) {
973             ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
974         }
975 
976         qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
977                      psr,
978                      psr & CPSR_N ? 'N' : '-',
979                      psr & CPSR_Z ? 'Z' : '-',
980                      psr & CPSR_C ? 'C' : '-',
981                      psr & CPSR_V ? 'V' : '-',
982                      psr & CPSR_T ? 'T' : 'A',
983                      ns_status,
984                      aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
985     }
986 
987     if (flags & CPU_DUMP_FPU) {
988         int numvfpregs = 0;
989         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
990             numvfpregs = 32;
991         } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
992             numvfpregs = 16;
993         }
994         for (i = 0; i < numvfpregs; i++) {
995             uint64_t v = *aa32_vfp_dreg(env, i);
996             qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
997                          i * 2, (uint32_t)v,
998                          i * 2 + 1, (uint32_t)(v >> 32),
999                          i, v);
1000         }
1001         qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1002     }
1003 }
1004 
1005 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1006 {
1007     uint32_t Aff1 = idx / clustersz;
1008     uint32_t Aff0 = idx % clustersz;
1009     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1010 }
1011 
1012 static void cpreg_hashtable_data_destroy(gpointer data)
1013 {
1014     /*
1015      * Destroy function for cpu->cp_regs hashtable data entries.
1016      * We must free the name string because it was g_strdup()ed in
1017      * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
1018      * from r->name because we know we definitely allocated it.
1019      */
1020     ARMCPRegInfo *r = data;
1021 
1022     g_free((void *)r->name);
1023     g_free(r);
1024 }
1025 
1026 static void arm_cpu_initfn(Object *obj)
1027 {
1028     ARMCPU *cpu = ARM_CPU(obj);
1029 
1030     cpu_set_cpustate_pointers(cpu);
1031     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
1032                                          g_free, cpreg_hashtable_data_destroy);
1033 
1034     QLIST_INIT(&cpu->pre_el_change_hooks);
1035     QLIST_INIT(&cpu->el_change_hooks);
1036 
1037 #ifndef CONFIG_USER_ONLY
1038     /* Our inbound IRQ and FIQ lines */
1039     if (kvm_enabled()) {
1040         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1041          * the same interface as non-KVM CPUs.
1042          */
1043         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1044     } else {
1045         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1046     }
1047 
1048     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1049                        ARRAY_SIZE(cpu->gt_timer_outputs));
1050 
1051     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1052                              "gicv3-maintenance-interrupt", 1);
1053     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1054                              "pmu-interrupt", 1);
1055 #endif
1056 
1057     /* DTB consumers generally don't in fact care what the 'compatible'
1058      * string is, so always provide some string and trust that a hypothetical
1059      * picky DTB consumer will also provide a helpful error message.
1060      */
1061     cpu->dtb_compatible = "qemu,unknown";
1062     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
1063     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1064 
1065     if (tcg_enabled()) {
1066         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
1067     }
1068 }
1069 
1070 static Property arm_cpu_gt_cntfrq_property =
1071             DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1072                                NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1073 
1074 static Property arm_cpu_reset_cbar_property =
1075             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1076 
1077 static Property arm_cpu_reset_hivecs_property =
1078             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1079 
1080 static Property arm_cpu_rvbar_property =
1081             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
1082 
1083 #ifndef CONFIG_USER_ONLY
1084 static Property arm_cpu_has_el2_property =
1085             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1086 
1087 static Property arm_cpu_has_el3_property =
1088             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1089 #endif
1090 
1091 static Property arm_cpu_cfgend_property =
1092             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1093 
1094 static Property arm_cpu_has_vfp_property =
1095             DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1096 
1097 static Property arm_cpu_has_neon_property =
1098             DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1099 
1100 static Property arm_cpu_has_dsp_property =
1101             DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1102 
1103 static Property arm_cpu_has_mpu_property =
1104             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1105 
1106 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1107  * because the CPU initfn will have already set cpu->pmsav7_dregion to
1108  * the right value for that particular CPU type, and we don't want
1109  * to override that with an incorrect constant value.
1110  */
1111 static Property arm_cpu_pmsav7_dregion_property =
1112             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1113                                            pmsav7_dregion,
1114                                            qdev_prop_uint32, uint32_t);
1115 
1116 static bool arm_get_pmu(Object *obj, Error **errp)
1117 {
1118     ARMCPU *cpu = ARM_CPU(obj);
1119 
1120     return cpu->has_pmu;
1121 }
1122 
1123 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1124 {
1125     ARMCPU *cpu = ARM_CPU(obj);
1126 
1127     if (value) {
1128         if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1129             error_setg(errp, "'pmu' feature not supported by KVM on this host");
1130             return;
1131         }
1132         set_feature(&cpu->env, ARM_FEATURE_PMU);
1133     } else {
1134         unset_feature(&cpu->env, ARM_FEATURE_PMU);
1135     }
1136     cpu->has_pmu = value;
1137 }
1138 
1139 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1140 {
1141     /*
1142      * The exact approach to calculating guest ticks is:
1143      *
1144      *     muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1145      *              NANOSECONDS_PER_SECOND);
1146      *
1147      * We don't do that. Rather we intentionally use integer division
1148      * truncation below and in the caller for the conversion of host monotonic
1149      * time to guest ticks to provide the exact inverse for the semantics of
1150      * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1151      * it loses precision when representing frequencies where
1152      * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1153      * provide an exact inverse leads to scheduling timers with negative
1154      * periods, which in turn leads to sticky behaviour in the guest.
1155      *
1156      * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1157      * cannot become zero.
1158      */
1159     return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1160       NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1161 }
1162 
1163 void arm_cpu_post_init(Object *obj)
1164 {
1165     ARMCPU *cpu = ARM_CPU(obj);
1166 
1167     /* M profile implies PMSA. We have to do this here rather than
1168      * in realize with the other feature-implication checks because
1169      * we look at the PMSA bit to see if we should add some properties.
1170      */
1171     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1172         set_feature(&cpu->env, ARM_FEATURE_PMSA);
1173     }
1174 
1175     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1176         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1177         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1178     }
1179 
1180     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1181         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1182     }
1183 
1184     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1185         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property);
1186     }
1187 
1188 #ifndef CONFIG_USER_ONLY
1189     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1190         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
1191          * prevent "has_el3" from existing on CPUs which cannot support EL3.
1192          */
1193         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1194 
1195         object_property_add_link(obj, "secure-memory",
1196                                  TYPE_MEMORY_REGION,
1197                                  (Object **)&cpu->secure_memory,
1198                                  qdev_prop_allow_set_link_before_realize,
1199                                  OBJ_PROP_LINK_STRONG);
1200     }
1201 
1202     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1203         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1204     }
1205 #endif
1206 
1207     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1208         cpu->has_pmu = true;
1209         object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1210     }
1211 
1212     /*
1213      * Allow user to turn off VFP and Neon support, but only for TCG --
1214      * KVM does not currently allow us to lie to the guest about its
1215      * ID/feature registers, so the guest always sees what the host has.
1216      */
1217     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1218         ? cpu_isar_feature(aa64_fp_simd, cpu)
1219         : cpu_isar_feature(aa32_vfp, cpu)) {
1220         cpu->has_vfp = true;
1221         if (!kvm_enabled()) {
1222             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1223         }
1224     }
1225 
1226     if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1227         cpu->has_neon = true;
1228         if (!kvm_enabled()) {
1229             qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1230         }
1231     }
1232 
1233     if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1234         arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1235         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1236     }
1237 
1238     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1239         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1240         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1241             qdev_property_add_static(DEVICE(obj),
1242                                      &arm_cpu_pmsav7_dregion_property);
1243         }
1244     }
1245 
1246     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1247         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1248                                  qdev_prop_allow_set_link_before_realize,
1249                                  OBJ_PROP_LINK_STRONG);
1250         /*
1251          * M profile: initial value of the Secure VTOR. We can't just use
1252          * a simple DEFINE_PROP_UINT32 for this because we want to permit
1253          * the property to be set after realize.
1254          */
1255         object_property_add_uint32_ptr(obj, "init-svtor",
1256                                        &cpu->init_svtor,
1257                                        OBJ_PROP_FLAG_READWRITE);
1258     }
1259 
1260     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1261 
1262     if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1263         qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1264     }
1265 
1266     if (kvm_enabled()) {
1267         kvm_arm_add_vcpu_properties(obj);
1268     }
1269 
1270 #ifndef CONFIG_USER_ONLY
1271     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1272         cpu_isar_feature(aa64_mte, cpu)) {
1273         object_property_add_link(obj, "tag-memory",
1274                                  TYPE_MEMORY_REGION,
1275                                  (Object **)&cpu->tag_memory,
1276                                  qdev_prop_allow_set_link_before_realize,
1277                                  OBJ_PROP_LINK_STRONG);
1278 
1279         if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1280             object_property_add_link(obj, "secure-tag-memory",
1281                                      TYPE_MEMORY_REGION,
1282                                      (Object **)&cpu->secure_tag_memory,
1283                                      qdev_prop_allow_set_link_before_realize,
1284                                      OBJ_PROP_LINK_STRONG);
1285         }
1286     }
1287 #endif
1288 }
1289 
1290 static void arm_cpu_finalizefn(Object *obj)
1291 {
1292     ARMCPU *cpu = ARM_CPU(obj);
1293     ARMELChangeHook *hook, *next;
1294 
1295     g_hash_table_destroy(cpu->cp_regs);
1296 
1297     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1298         QLIST_REMOVE(hook, node);
1299         g_free(hook);
1300     }
1301     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1302         QLIST_REMOVE(hook, node);
1303         g_free(hook);
1304     }
1305 #ifndef CONFIG_USER_ONLY
1306     if (cpu->pmu_timer) {
1307         timer_del(cpu->pmu_timer);
1308         timer_deinit(cpu->pmu_timer);
1309         timer_free(cpu->pmu_timer);
1310     }
1311 #endif
1312 }
1313 
1314 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1315 {
1316     Error *local_err = NULL;
1317 
1318     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1319         arm_cpu_sve_finalize(cpu, &local_err);
1320         if (local_err != NULL) {
1321             error_propagate(errp, local_err);
1322             return;
1323         }
1324     }
1325 
1326     if (kvm_enabled()) {
1327         kvm_arm_steal_time_finalize(cpu, &local_err);
1328         if (local_err != NULL) {
1329             error_propagate(errp, local_err);
1330             return;
1331         }
1332     }
1333 }
1334 
1335 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1336 {
1337     CPUState *cs = CPU(dev);
1338     ARMCPU *cpu = ARM_CPU(dev);
1339     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1340     CPUARMState *env = &cpu->env;
1341     int pagebits;
1342     Error *local_err = NULL;
1343     bool no_aa32 = false;
1344 
1345     /* If we needed to query the host kernel for the CPU features
1346      * then it's possible that might have failed in the initfn, but
1347      * this is the first point where we can report it.
1348      */
1349     if (cpu->host_cpu_probe_failed) {
1350         if (!kvm_enabled()) {
1351             error_setg(errp, "The 'host' CPU type can only be used with KVM");
1352         } else {
1353             error_setg(errp, "Failed to retrieve host CPU features");
1354         }
1355         return;
1356     }
1357 
1358 #ifndef CONFIG_USER_ONLY
1359     /* The NVIC and M-profile CPU are two halves of a single piece of
1360      * hardware; trying to use one without the other is a command line
1361      * error and will result in segfaults if not caught here.
1362      */
1363     if (arm_feature(env, ARM_FEATURE_M)) {
1364         if (!env->nvic) {
1365             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1366             return;
1367         }
1368     } else {
1369         if (env->nvic) {
1370             error_setg(errp, "This board can only be used with Cortex-M CPUs");
1371             return;
1372         }
1373     }
1374 
1375     {
1376         uint64_t scale;
1377 
1378         if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1379             if (!cpu->gt_cntfrq_hz) {
1380                 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1381                            cpu->gt_cntfrq_hz);
1382                 return;
1383             }
1384             scale = gt_cntfrq_period_ns(cpu);
1385         } else {
1386             scale = GTIMER_SCALE;
1387         }
1388 
1389         cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1390                                                arm_gt_ptimer_cb, cpu);
1391         cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1392                                                arm_gt_vtimer_cb, cpu);
1393         cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1394                                               arm_gt_htimer_cb, cpu);
1395         cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1396                                               arm_gt_stimer_cb, cpu);
1397         cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1398                                                   arm_gt_hvtimer_cb, cpu);
1399     }
1400 #endif
1401 
1402     cpu_exec_realizefn(cs, &local_err);
1403     if (local_err != NULL) {
1404         error_propagate(errp, local_err);
1405         return;
1406     }
1407 
1408     arm_cpu_finalize_features(cpu, &local_err);
1409     if (local_err != NULL) {
1410         error_propagate(errp, local_err);
1411         return;
1412     }
1413 
1414     if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1415         cpu->has_vfp != cpu->has_neon) {
1416         /*
1417          * This is an architectural requirement for AArch64; AArch32 is
1418          * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1419          */
1420         error_setg(errp,
1421                    "AArch64 CPUs must have both VFP and Neon or neither");
1422         return;
1423     }
1424 
1425     if (!cpu->has_vfp) {
1426         uint64_t t;
1427         uint32_t u;
1428 
1429         t = cpu->isar.id_aa64isar1;
1430         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1431         cpu->isar.id_aa64isar1 = t;
1432 
1433         t = cpu->isar.id_aa64pfr0;
1434         t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1435         cpu->isar.id_aa64pfr0 = t;
1436 
1437         u = cpu->isar.id_isar6;
1438         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1439         cpu->isar.id_isar6 = u;
1440 
1441         u = cpu->isar.mvfr0;
1442         u = FIELD_DP32(u, MVFR0, FPSP, 0);
1443         u = FIELD_DP32(u, MVFR0, FPDP, 0);
1444         u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1445         u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1446         u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1447         if (!arm_feature(env, ARM_FEATURE_M)) {
1448             u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1449             u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1450         }
1451         cpu->isar.mvfr0 = u;
1452 
1453         u = cpu->isar.mvfr1;
1454         u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1455         u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1456         u = FIELD_DP32(u, MVFR1, FPHP, 0);
1457         if (arm_feature(env, ARM_FEATURE_M)) {
1458             u = FIELD_DP32(u, MVFR1, FP16, 0);
1459         }
1460         cpu->isar.mvfr1 = u;
1461 
1462         u = cpu->isar.mvfr2;
1463         u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1464         cpu->isar.mvfr2 = u;
1465     }
1466 
1467     if (!cpu->has_neon) {
1468         uint64_t t;
1469         uint32_t u;
1470 
1471         unset_feature(env, ARM_FEATURE_NEON);
1472 
1473         t = cpu->isar.id_aa64isar0;
1474         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1475         cpu->isar.id_aa64isar0 = t;
1476 
1477         t = cpu->isar.id_aa64isar1;
1478         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1479         cpu->isar.id_aa64isar1 = t;
1480 
1481         t = cpu->isar.id_aa64pfr0;
1482         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1483         cpu->isar.id_aa64pfr0 = t;
1484 
1485         u = cpu->isar.id_isar5;
1486         u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1487         u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1488         cpu->isar.id_isar5 = u;
1489 
1490         u = cpu->isar.id_isar6;
1491         u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1492         u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1493         cpu->isar.id_isar6 = u;
1494 
1495         if (!arm_feature(env, ARM_FEATURE_M)) {
1496             u = cpu->isar.mvfr1;
1497             u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1498             u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1499             u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1500             u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1501             cpu->isar.mvfr1 = u;
1502 
1503             u = cpu->isar.mvfr2;
1504             u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1505             cpu->isar.mvfr2 = u;
1506         }
1507     }
1508 
1509     if (!cpu->has_neon && !cpu->has_vfp) {
1510         uint64_t t;
1511         uint32_t u;
1512 
1513         t = cpu->isar.id_aa64isar0;
1514         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1515         cpu->isar.id_aa64isar0 = t;
1516 
1517         t = cpu->isar.id_aa64isar1;
1518         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1519         cpu->isar.id_aa64isar1 = t;
1520 
1521         u = cpu->isar.mvfr0;
1522         u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1523         cpu->isar.mvfr0 = u;
1524 
1525         /* Despite the name, this field covers both VFP and Neon */
1526         u = cpu->isar.mvfr1;
1527         u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1528         cpu->isar.mvfr1 = u;
1529     }
1530 
1531     if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1532         uint32_t u;
1533 
1534         unset_feature(env, ARM_FEATURE_THUMB_DSP);
1535 
1536         u = cpu->isar.id_isar1;
1537         u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1538         cpu->isar.id_isar1 = u;
1539 
1540         u = cpu->isar.id_isar2;
1541         u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1542         u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1543         cpu->isar.id_isar2 = u;
1544 
1545         u = cpu->isar.id_isar3;
1546         u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1547         u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1548         cpu->isar.id_isar3 = u;
1549     }
1550 
1551     /* Some features automatically imply others: */
1552     if (arm_feature(env, ARM_FEATURE_V8)) {
1553         if (arm_feature(env, ARM_FEATURE_M)) {
1554             set_feature(env, ARM_FEATURE_V7);
1555         } else {
1556             set_feature(env, ARM_FEATURE_V7VE);
1557         }
1558     }
1559 
1560     /*
1561      * There exist AArch64 cpus without AArch32 support.  When KVM
1562      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1563      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1564      * As a general principle, we also do not make ID register
1565      * consistency checks anywhere unless using TCG, because only
1566      * for TCG would a consistency-check failure be a QEMU bug.
1567      */
1568     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1569         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1570     }
1571 
1572     if (arm_feature(env, ARM_FEATURE_V7VE)) {
1573         /* v7 Virtualization Extensions. In real hardware this implies
1574          * EL2 and also the presence of the Security Extensions.
1575          * For QEMU, for backwards-compatibility we implement some
1576          * CPUs or CPU configs which have no actual EL2 or EL3 but do
1577          * include the various other features that V7VE implies.
1578          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1579          * Security Extensions is ARM_FEATURE_EL3.
1580          */
1581         assert(!tcg_enabled() || no_aa32 ||
1582                cpu_isar_feature(aa32_arm_div, cpu));
1583         set_feature(env, ARM_FEATURE_LPAE);
1584         set_feature(env, ARM_FEATURE_V7);
1585     }
1586     if (arm_feature(env, ARM_FEATURE_V7)) {
1587         set_feature(env, ARM_FEATURE_VAPA);
1588         set_feature(env, ARM_FEATURE_THUMB2);
1589         set_feature(env, ARM_FEATURE_MPIDR);
1590         if (!arm_feature(env, ARM_FEATURE_M)) {
1591             set_feature(env, ARM_FEATURE_V6K);
1592         } else {
1593             set_feature(env, ARM_FEATURE_V6);
1594         }
1595 
1596         /* Always define VBAR for V7 CPUs even if it doesn't exist in
1597          * non-EL3 configs. This is needed by some legacy boards.
1598          */
1599         set_feature(env, ARM_FEATURE_VBAR);
1600     }
1601     if (arm_feature(env, ARM_FEATURE_V6K)) {
1602         set_feature(env, ARM_FEATURE_V6);
1603         set_feature(env, ARM_FEATURE_MVFR);
1604     }
1605     if (arm_feature(env, ARM_FEATURE_V6)) {
1606         set_feature(env, ARM_FEATURE_V5);
1607         if (!arm_feature(env, ARM_FEATURE_M)) {
1608             assert(!tcg_enabled() || no_aa32 ||
1609                    cpu_isar_feature(aa32_jazelle, cpu));
1610             set_feature(env, ARM_FEATURE_AUXCR);
1611         }
1612     }
1613     if (arm_feature(env, ARM_FEATURE_V5)) {
1614         set_feature(env, ARM_FEATURE_V4T);
1615     }
1616     if (arm_feature(env, ARM_FEATURE_LPAE)) {
1617         set_feature(env, ARM_FEATURE_V7MP);
1618     }
1619     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1620         set_feature(env, ARM_FEATURE_CBAR);
1621     }
1622     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1623         !arm_feature(env, ARM_FEATURE_M)) {
1624         set_feature(env, ARM_FEATURE_THUMB_DSP);
1625     }
1626 
1627     /*
1628      * We rely on no XScale CPU having VFP so we can use the same bits in the
1629      * TB flags field for VECSTRIDE and XSCALE_CPAR.
1630      */
1631     assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1632            !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1633            !arm_feature(env, ARM_FEATURE_XSCALE));
1634 
1635     if (arm_feature(env, ARM_FEATURE_V7) &&
1636         !arm_feature(env, ARM_FEATURE_M) &&
1637         !arm_feature(env, ARM_FEATURE_PMSA)) {
1638         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1639          * can use 4K pages.
1640          */
1641         pagebits = 12;
1642     } else {
1643         /* For CPUs which might have tiny 1K pages, or which have an
1644          * MPU and might have small region sizes, stick with 1K pages.
1645          */
1646         pagebits = 10;
1647     }
1648     if (!set_preferred_target_page_bits(pagebits)) {
1649         /* This can only ever happen for hotplugging a CPU, or if
1650          * the board code incorrectly creates a CPU which it has
1651          * promised via minimum_page_size that it will not.
1652          */
1653         error_setg(errp, "This CPU requires a smaller page size than the "
1654                    "system is using");
1655         return;
1656     }
1657 
1658     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1659      * We don't support setting cluster ID ([16..23]) (known as Aff2
1660      * in later ARM ARM versions), or any of the higher affinity level fields,
1661      * so these bits always RAZ.
1662      */
1663     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1664         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1665                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
1666     }
1667 
1668     if (cpu->reset_hivecs) {
1669             cpu->reset_sctlr |= (1 << 13);
1670     }
1671 
1672     if (cpu->cfgend) {
1673         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1674             cpu->reset_sctlr |= SCTLR_EE;
1675         } else {
1676             cpu->reset_sctlr |= SCTLR_B;
1677         }
1678     }
1679 
1680     if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1681         /* If the has_el3 CPU property is disabled then we need to disable the
1682          * feature.
1683          */
1684         unset_feature(env, ARM_FEATURE_EL3);
1685 
1686         /* Disable the security extension feature bits in the processor feature
1687          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1688          */
1689         cpu->isar.id_pfr1 &= ~0xf0;
1690         cpu->isar.id_aa64pfr0 &= ~0xf000;
1691     }
1692 
1693     if (!cpu->has_el2) {
1694         unset_feature(env, ARM_FEATURE_EL2);
1695     }
1696 
1697     if (!cpu->has_pmu) {
1698         unset_feature(env, ARM_FEATURE_PMU);
1699     }
1700     if (arm_feature(env, ARM_FEATURE_PMU)) {
1701         pmu_init(cpu);
1702 
1703         if (!kvm_enabled()) {
1704             arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1705             arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1706         }
1707 
1708 #ifndef CONFIG_USER_ONLY
1709         cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1710                 cpu);
1711 #endif
1712     } else {
1713         cpu->isar.id_aa64dfr0 =
1714             FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1715         cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1716         cpu->pmceid0 = 0;
1717         cpu->pmceid1 = 0;
1718     }
1719 
1720     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1721         /* Disable the hypervisor feature bits in the processor feature
1722          * registers if we don't have EL2. These are id_pfr1[15:12] and
1723          * id_aa64pfr0_el1[11:8].
1724          */
1725         cpu->isar.id_aa64pfr0 &= ~0xf00;
1726         cpu->isar.id_pfr1 &= ~0xf000;
1727     }
1728 
1729 #ifndef CONFIG_USER_ONLY
1730     if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1731         /*
1732          * Disable the MTE feature bits if we do not have tag-memory
1733          * provided by the machine.
1734          */
1735         cpu->isar.id_aa64pfr1 =
1736             FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1737     }
1738 #endif
1739 
1740     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1741      * to false or by setting pmsav7-dregion to 0.
1742      */
1743     if (!cpu->has_mpu) {
1744         cpu->pmsav7_dregion = 0;
1745     }
1746     if (cpu->pmsav7_dregion == 0) {
1747         cpu->has_mpu = false;
1748     }
1749 
1750     if (arm_feature(env, ARM_FEATURE_PMSA) &&
1751         arm_feature(env, ARM_FEATURE_V7)) {
1752         uint32_t nr = cpu->pmsav7_dregion;
1753 
1754         if (nr > 0xff) {
1755             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1756             return;
1757         }
1758 
1759         if (nr) {
1760             if (arm_feature(env, ARM_FEATURE_V8)) {
1761                 /* PMSAv8 */
1762                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1763                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1764                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1765                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1766                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1767                 }
1768             } else {
1769                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1770                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1771                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1772             }
1773         }
1774     }
1775 
1776     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1777         uint32_t nr = cpu->sau_sregion;
1778 
1779         if (nr > 0xff) {
1780             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1781             return;
1782         }
1783 
1784         if (nr) {
1785             env->sau.rbar = g_new0(uint32_t, nr);
1786             env->sau.rlar = g_new0(uint32_t, nr);
1787         }
1788     }
1789 
1790     if (arm_feature(env, ARM_FEATURE_EL3)) {
1791         set_feature(env, ARM_FEATURE_VBAR);
1792     }
1793 
1794     register_cp_regs_for_features(cpu);
1795     arm_cpu_register_gdb_regs_for_features(cpu);
1796 
1797     init_cpreg_list(cpu);
1798 
1799 #ifndef CONFIG_USER_ONLY
1800     MachineState *ms = MACHINE(qdev_get_machine());
1801     unsigned int smp_cpus = ms->smp.cpus;
1802     bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1803 
1804     /*
1805      * We must set cs->num_ases to the final value before
1806      * the first call to cpu_address_space_init.
1807      */
1808     if (cpu->tag_memory != NULL) {
1809         cs->num_ases = 3 + has_secure;
1810     } else {
1811         cs->num_ases = 1 + has_secure;
1812     }
1813 
1814     if (has_secure) {
1815         if (!cpu->secure_memory) {
1816             cpu->secure_memory = cs->memory;
1817         }
1818         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1819                                cpu->secure_memory);
1820     }
1821 
1822     if (cpu->tag_memory != NULL) {
1823         cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1824                                cpu->tag_memory);
1825         if (has_secure) {
1826             cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1827                                    cpu->secure_tag_memory);
1828         }
1829     }
1830 
1831     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1832 
1833     /* No core_count specified, default to smp_cpus. */
1834     if (cpu->core_count == -1) {
1835         cpu->core_count = smp_cpus;
1836     }
1837 #endif
1838 
1839     if (tcg_enabled()) {
1840         int dcz_blocklen = 4 << cpu->dcz_blocksize;
1841 
1842         /*
1843          * We only support DCZ blocklen that fits on one page.
1844          *
1845          * Architectually this is always true.  However TARGET_PAGE_SIZE
1846          * is variable and, for compatibility with -machine virt-2.7,
1847          * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
1848          * But even then, while the largest architectural DCZ blocklen
1849          * is 2KiB, no cpu actually uses such a large blocklen.
1850          */
1851         assert(dcz_blocklen <= TARGET_PAGE_SIZE);
1852 
1853         /*
1854          * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
1855          * both nibbles of each byte storing tag data may be written at once.
1856          * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
1857          */
1858         if (cpu_isar_feature(aa64_mte, cpu)) {
1859             assert(dcz_blocklen >= 2 * TAG_GRANULE);
1860         }
1861     }
1862 
1863     qemu_init_vcpu(cs);
1864     cpu_reset(cs);
1865 
1866     acc->parent_realize(dev, errp);
1867 }
1868 
1869 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1870 {
1871     ObjectClass *oc;
1872     char *typename;
1873     char **cpuname;
1874     const char *cpunamestr;
1875 
1876     cpuname = g_strsplit(cpu_model, ",", 1);
1877     cpunamestr = cpuname[0];
1878 #ifdef CONFIG_USER_ONLY
1879     /* For backwards compatibility usermode emulation allows "-cpu any",
1880      * which has the same semantics as "-cpu max".
1881      */
1882     if (!strcmp(cpunamestr, "any")) {
1883         cpunamestr = "max";
1884     }
1885 #endif
1886     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1887     oc = object_class_by_name(typename);
1888     g_strfreev(cpuname);
1889     g_free(typename);
1890     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1891         object_class_is_abstract(oc)) {
1892         return NULL;
1893     }
1894     return oc;
1895 }
1896 
1897 /* CPU models. These are not needed for the AArch64 linux-user build. */
1898 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1899 
1900 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1901     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1902       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1903     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1904       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1905     REGINFO_SENTINEL
1906 };
1907 
1908 static void cortex_a8_initfn(Object *obj)
1909 {
1910     ARMCPU *cpu = ARM_CPU(obj);
1911 
1912     cpu->dtb_compatible = "arm,cortex-a8";
1913     set_feature(&cpu->env, ARM_FEATURE_V7);
1914     set_feature(&cpu->env, ARM_FEATURE_NEON);
1915     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1916     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1917     set_feature(&cpu->env, ARM_FEATURE_EL3);
1918     cpu->midr = 0x410fc080;
1919     cpu->reset_fpsid = 0x410330c0;
1920     cpu->isar.mvfr0 = 0x11110222;
1921     cpu->isar.mvfr1 = 0x00011111;
1922     cpu->ctr = 0x82048004;
1923     cpu->reset_sctlr = 0x00c50078;
1924     cpu->isar.id_pfr0 = 0x1031;
1925     cpu->isar.id_pfr1 = 0x11;
1926     cpu->isar.id_dfr0 = 0x400;
1927     cpu->id_afr0 = 0;
1928     cpu->isar.id_mmfr0 = 0x31100003;
1929     cpu->isar.id_mmfr1 = 0x20000000;
1930     cpu->isar.id_mmfr2 = 0x01202000;
1931     cpu->isar.id_mmfr3 = 0x11;
1932     cpu->isar.id_isar0 = 0x00101111;
1933     cpu->isar.id_isar1 = 0x12112111;
1934     cpu->isar.id_isar2 = 0x21232031;
1935     cpu->isar.id_isar3 = 0x11112131;
1936     cpu->isar.id_isar4 = 0x00111142;
1937     cpu->isar.dbgdidr = 0x15141000;
1938     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1939     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1940     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1941     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1942     cpu->reset_auxcr = 2;
1943     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1944 }
1945 
1946 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1947     /* power_control should be set to maximum latency. Again,
1948      * default to 0 and set by private hook
1949      */
1950     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1951       .access = PL1_RW, .resetvalue = 0,
1952       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1953     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1954       .access = PL1_RW, .resetvalue = 0,
1955       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1956     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1957       .access = PL1_RW, .resetvalue = 0,
1958       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1959     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1960       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1961     /* TLB lockdown control */
1962     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1963       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1964     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1965       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1966     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1967       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1968     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1969       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1970     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1971       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1972     REGINFO_SENTINEL
1973 };
1974 
1975 static void cortex_a9_initfn(Object *obj)
1976 {
1977     ARMCPU *cpu = ARM_CPU(obj);
1978 
1979     cpu->dtb_compatible = "arm,cortex-a9";
1980     set_feature(&cpu->env, ARM_FEATURE_V7);
1981     set_feature(&cpu->env, ARM_FEATURE_NEON);
1982     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1983     set_feature(&cpu->env, ARM_FEATURE_EL3);
1984     /* Note that A9 supports the MP extensions even for
1985      * A9UP and single-core A9MP (which are both different
1986      * and valid configurations; we don't model A9UP).
1987      */
1988     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1989     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1990     cpu->midr = 0x410fc090;
1991     cpu->reset_fpsid = 0x41033090;
1992     cpu->isar.mvfr0 = 0x11110222;
1993     cpu->isar.mvfr1 = 0x01111111;
1994     cpu->ctr = 0x80038003;
1995     cpu->reset_sctlr = 0x00c50078;
1996     cpu->isar.id_pfr0 = 0x1031;
1997     cpu->isar.id_pfr1 = 0x11;
1998     cpu->isar.id_dfr0 = 0x000;
1999     cpu->id_afr0 = 0;
2000     cpu->isar.id_mmfr0 = 0x00100103;
2001     cpu->isar.id_mmfr1 = 0x20000000;
2002     cpu->isar.id_mmfr2 = 0x01230000;
2003     cpu->isar.id_mmfr3 = 0x00002111;
2004     cpu->isar.id_isar0 = 0x00101111;
2005     cpu->isar.id_isar1 = 0x13112111;
2006     cpu->isar.id_isar2 = 0x21232041;
2007     cpu->isar.id_isar3 = 0x11112131;
2008     cpu->isar.id_isar4 = 0x00111142;
2009     cpu->isar.dbgdidr = 0x35141000;
2010     cpu->clidr = (1 << 27) | (1 << 24) | 3;
2011     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
2012     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
2013     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
2014 }
2015 
2016 #ifndef CONFIG_USER_ONLY
2017 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2018 {
2019     MachineState *ms = MACHINE(qdev_get_machine());
2020 
2021     /* Linux wants the number of processors from here.
2022      * Might as well set the interrupt-controller bit too.
2023      */
2024     return ((ms->smp.cpus - 1) << 24) | (1 << 23);
2025 }
2026 #endif
2027 
2028 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
2029 #ifndef CONFIG_USER_ONLY
2030     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
2031       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
2032       .writefn = arm_cp_write_ignore, },
2033 #endif
2034     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
2035       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2036     REGINFO_SENTINEL
2037 };
2038 
2039 static void cortex_a7_initfn(Object *obj)
2040 {
2041     ARMCPU *cpu = ARM_CPU(obj);
2042 
2043     cpu->dtb_compatible = "arm,cortex-a7";
2044     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2045     set_feature(&cpu->env, ARM_FEATURE_NEON);
2046     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2047     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2048     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2049     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2050     set_feature(&cpu->env, ARM_FEATURE_EL2);
2051     set_feature(&cpu->env, ARM_FEATURE_EL3);
2052     set_feature(&cpu->env, ARM_FEATURE_PMU);
2053     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
2054     cpu->midr = 0x410fc075;
2055     cpu->reset_fpsid = 0x41023075;
2056     cpu->isar.mvfr0 = 0x10110222;
2057     cpu->isar.mvfr1 = 0x11111111;
2058     cpu->ctr = 0x84448003;
2059     cpu->reset_sctlr = 0x00c50078;
2060     cpu->isar.id_pfr0 = 0x00001131;
2061     cpu->isar.id_pfr1 = 0x00011011;
2062     cpu->isar.id_dfr0 = 0x02010555;
2063     cpu->id_afr0 = 0x00000000;
2064     cpu->isar.id_mmfr0 = 0x10101105;
2065     cpu->isar.id_mmfr1 = 0x40000000;
2066     cpu->isar.id_mmfr2 = 0x01240000;
2067     cpu->isar.id_mmfr3 = 0x02102211;
2068     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
2069      * table 4-41 gives 0x02101110, which includes the arm div insns.
2070      */
2071     cpu->isar.id_isar0 = 0x02101110;
2072     cpu->isar.id_isar1 = 0x13112111;
2073     cpu->isar.id_isar2 = 0x21232041;
2074     cpu->isar.id_isar3 = 0x11112131;
2075     cpu->isar.id_isar4 = 0x10011142;
2076     cpu->isar.dbgdidr = 0x3515f005;
2077     cpu->clidr = 0x0a200023;
2078     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2079     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2080     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2081     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
2082 }
2083 
2084 static void cortex_a15_initfn(Object *obj)
2085 {
2086     ARMCPU *cpu = ARM_CPU(obj);
2087 
2088     cpu->dtb_compatible = "arm,cortex-a15";
2089     set_feature(&cpu->env, ARM_FEATURE_V7VE);
2090     set_feature(&cpu->env, ARM_FEATURE_NEON);
2091     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
2092     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
2093     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2094     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
2095     set_feature(&cpu->env, ARM_FEATURE_EL2);
2096     set_feature(&cpu->env, ARM_FEATURE_EL3);
2097     set_feature(&cpu->env, ARM_FEATURE_PMU);
2098     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
2099     cpu->midr = 0x412fc0f1;
2100     cpu->reset_fpsid = 0x410430f0;
2101     cpu->isar.mvfr0 = 0x10110222;
2102     cpu->isar.mvfr1 = 0x11111111;
2103     cpu->ctr = 0x8444c004;
2104     cpu->reset_sctlr = 0x00c50078;
2105     cpu->isar.id_pfr0 = 0x00001131;
2106     cpu->isar.id_pfr1 = 0x00011011;
2107     cpu->isar.id_dfr0 = 0x02010555;
2108     cpu->id_afr0 = 0x00000000;
2109     cpu->isar.id_mmfr0 = 0x10201105;
2110     cpu->isar.id_mmfr1 = 0x20000000;
2111     cpu->isar.id_mmfr2 = 0x01240000;
2112     cpu->isar.id_mmfr3 = 0x02102211;
2113     cpu->isar.id_isar0 = 0x02101110;
2114     cpu->isar.id_isar1 = 0x13112111;
2115     cpu->isar.id_isar2 = 0x21232041;
2116     cpu->isar.id_isar3 = 0x11112131;
2117     cpu->isar.id_isar4 = 0x10011142;
2118     cpu->isar.dbgdidr = 0x3515f021;
2119     cpu->clidr = 0x0a200023;
2120     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
2121     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
2122     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
2123     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
2124 }
2125 
2126 #ifndef TARGET_AARCH64
2127 /*
2128  * -cpu max: a CPU with as many features enabled as our emulation supports.
2129  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2130  * this only needs to handle 32 bits, and need not care about KVM.
2131  */
2132 static void arm_max_initfn(Object *obj)
2133 {
2134     ARMCPU *cpu = ARM_CPU(obj);
2135 
2136     cortex_a15_initfn(obj);
2137 
2138     /* old-style VFP short-vector support */
2139     cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2140 
2141 #ifdef CONFIG_USER_ONLY
2142     /*
2143      * We don't set these in system emulation mode for the moment,
2144      * since we don't correctly set (all of) the ID registers to
2145      * advertise them.
2146      */
2147     set_feature(&cpu->env, ARM_FEATURE_V8);
2148     {
2149         uint32_t t;
2150 
2151         t = cpu->isar.id_isar5;
2152         t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2153         t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2154         t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2155         t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2156         t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2157         t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2158         cpu->isar.id_isar5 = t;
2159 
2160         t = cpu->isar.id_isar6;
2161         t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2162         t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2163         t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2164         t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2165         t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2166         cpu->isar.id_isar6 = t;
2167 
2168         t = cpu->isar.mvfr1;
2169         t = FIELD_DP32(t, MVFR1, FPHP, 3);     /* v8.2-FP16 */
2170         t = FIELD_DP32(t, MVFR1, SIMDHP, 2);   /* v8.2-FP16 */
2171         cpu->isar.mvfr1 = t;
2172 
2173         t = cpu->isar.mvfr2;
2174         t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2175         t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2176         cpu->isar.mvfr2 = t;
2177 
2178         t = cpu->isar.id_mmfr3;
2179         t = FIELD_DP32(t, ID_MMFR3, PAN, 2); /* ATS1E1 */
2180         cpu->isar.id_mmfr3 = t;
2181 
2182         t = cpu->isar.id_mmfr4;
2183         t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2184         t = FIELD_DP32(t, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
2185         t = FIELD_DP32(t, ID_MMFR4, CNP, 1); /* TTCNP */
2186         t = FIELD_DP32(t, ID_MMFR4, XNX, 1); /* TTS2UXN */
2187         cpu->isar.id_mmfr4 = t;
2188     }
2189 #endif
2190 }
2191 #endif
2192 
2193 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2194 
2195 static const ARMCPUInfo arm_cpus[] = {
2196 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2197     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2198     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2199     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2200     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2201 #ifndef TARGET_AARCH64
2202     { .name = "max",         .initfn = arm_max_initfn },
2203 #endif
2204 #ifdef CONFIG_USER_ONLY
2205     { .name = "any",         .initfn = arm_max_initfn },
2206 #endif
2207 #endif
2208 };
2209 
2210 static Property arm_cpu_properties[] = {
2211     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2212     DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2213     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2214                         mp_affinity, ARM64_AFFINITY_INVALID),
2215     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2216     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2217     DEFINE_PROP_END_OF_LIST()
2218 };
2219 
2220 static gchar *arm_gdb_arch_name(CPUState *cs)
2221 {
2222     ARMCPU *cpu = ARM_CPU(cs);
2223     CPUARMState *env = &cpu->env;
2224 
2225     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2226         return g_strdup("iwmmxt");
2227     }
2228     return g_strdup("arm");
2229 }
2230 
2231 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2232 {
2233     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2234     CPUClass *cc = CPU_CLASS(acc);
2235     DeviceClass *dc = DEVICE_CLASS(oc);
2236 
2237     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2238                                     &acc->parent_realize);
2239 
2240     device_class_set_props(dc, arm_cpu_properties);
2241     device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2242 
2243     cc->class_by_name = arm_cpu_class_by_name;
2244     cc->has_work = arm_cpu_has_work;
2245     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2246     cc->dump_state = arm_cpu_dump_state;
2247     cc->set_pc = arm_cpu_set_pc;
2248     cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2249     cc->gdb_read_register = arm_cpu_gdb_read_register;
2250     cc->gdb_write_register = arm_cpu_gdb_write_register;
2251 #ifndef CONFIG_USER_ONLY
2252     cc->do_interrupt = arm_cpu_do_interrupt;
2253     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2254     cc->asidx_from_attrs = arm_asidx_from_attrs;
2255     cc->vmsd = &vmstate_arm_cpu;
2256     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2257     cc->write_elf64_note = arm_cpu_write_elf64_note;
2258     cc->write_elf32_note = arm_cpu_write_elf32_note;
2259 #endif
2260     cc->gdb_num_core_regs = 26;
2261     cc->gdb_core_xml_file = "arm-core.xml";
2262     cc->gdb_arch_name = arm_gdb_arch_name;
2263     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2264     cc->gdb_stop_before_watchpoint = true;
2265     cc->disas_set_info = arm_disas_set_info;
2266 #ifdef CONFIG_TCG
2267     cc->tcg_initialize = arm_translate_init;
2268     cc->tlb_fill = arm_cpu_tlb_fill;
2269     cc->debug_excp_handler = arm_debug_excp_handler;
2270     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2271     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2272 #if !defined(CONFIG_USER_ONLY)
2273     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2274     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2275 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
2276 #endif
2277 }
2278 
2279 #ifdef CONFIG_KVM
2280 static void arm_host_initfn(Object *obj)
2281 {
2282     ARMCPU *cpu = ARM_CPU(obj);
2283 
2284     kvm_arm_set_cpu_features_from_host(cpu);
2285     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
2286         aarch64_add_sve_properties(obj);
2287     }
2288     arm_cpu_post_init(obj);
2289 }
2290 
2291 static const TypeInfo host_arm_cpu_type_info = {
2292     .name = TYPE_ARM_HOST_CPU,
2293     .parent = TYPE_AARCH64_CPU,
2294     .instance_init = arm_host_initfn,
2295 };
2296 
2297 #endif
2298 
2299 static void arm_cpu_instance_init(Object *obj)
2300 {
2301     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2302 
2303     acc->info->initfn(obj);
2304     arm_cpu_post_init(obj);
2305 }
2306 
2307 static void cpu_register_class_init(ObjectClass *oc, void *data)
2308 {
2309     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2310 
2311     acc->info = data;
2312 }
2313 
2314 void arm_cpu_register(const ARMCPUInfo *info)
2315 {
2316     TypeInfo type_info = {
2317         .parent = TYPE_ARM_CPU,
2318         .instance_size = sizeof(ARMCPU),
2319         .instance_align = __alignof__(ARMCPU),
2320         .instance_init = arm_cpu_instance_init,
2321         .class_size = sizeof(ARMCPUClass),
2322         .class_init = info->class_init ?: cpu_register_class_init,
2323         .class_data = (void *)info,
2324     };
2325 
2326     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2327     type_register(&type_info);
2328     g_free((void *)type_info.name);
2329 }
2330 
2331 static const TypeInfo arm_cpu_type_info = {
2332     .name = TYPE_ARM_CPU,
2333     .parent = TYPE_CPU,
2334     .instance_size = sizeof(ARMCPU),
2335     .instance_align = __alignof__(ARMCPU),
2336     .instance_init = arm_cpu_initfn,
2337     .instance_finalize = arm_cpu_finalizefn,
2338     .abstract = true,
2339     .class_size = sizeof(ARMCPUClass),
2340     .class_init = arm_cpu_class_init,
2341 };
2342 
2343 static const TypeInfo idau_interface_type_info = {
2344     .name = TYPE_IDAU_INTERFACE,
2345     .parent = TYPE_INTERFACE,
2346     .class_size = sizeof(IDAUInterfaceClass),
2347 };
2348 
2349 static void arm_cpu_register_types(void)
2350 {
2351     const size_t cpu_count = ARRAY_SIZE(arm_cpus);
2352 
2353     type_register_static(&arm_cpu_type_info);
2354 
2355 #ifdef CONFIG_KVM
2356     type_register_static(&host_arm_cpu_type_info);
2357 #endif
2358 
2359     if (cpu_count) {
2360         size_t i;
2361 
2362         type_register_static(&idau_interface_type_info);
2363         for (i = 0; i < cpu_count; ++i) {
2364             arm_cpu_register(&arm_cpus[i]);
2365         }
2366     }
2367 }
2368 
2369 type_init(arm_cpu_register_types)
2370