xref: /qemu/target/arm/cpu.h (revision 20daa90a)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 
25 #if defined(TARGET_AARCH64)
26   /* AArch64 definitions */
27 #  define TARGET_LONG_BITS 64
28 #else
29 #  define TARGET_LONG_BITS 32
30 #endif
31 
32 #define CPUArchState struct CPUARMState
33 
34 #include "qemu-common.h"
35 #include "cpu-qom.h"
36 #include "exec/cpu-defs.h"
37 
38 #include "fpu/softfloat.h"
39 
40 #define EXCP_UDEF            1   /* undefined instruction */
41 #define EXCP_SWI             2   /* software interrupt */
42 #define EXCP_PREFETCH_ABORT  3
43 #define EXCP_DATA_ABORT      4
44 #define EXCP_IRQ             5
45 #define EXCP_FIQ             6
46 #define EXCP_BKPT            7
47 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49 #define EXCP_HVC            11   /* HyperVisor Call */
50 #define EXCP_HYP_TRAP       12
51 #define EXCP_SMC            13   /* Secure Monitor Call */
52 #define EXCP_VIRQ           14
53 #define EXCP_VFIQ           15
54 #define EXCP_SEMIHOST       16   /* semihosting call */
55 
56 #define ARMV7M_EXCP_RESET   1
57 #define ARMV7M_EXCP_NMI     2
58 #define ARMV7M_EXCP_HARD    3
59 #define ARMV7M_EXCP_MEM     4
60 #define ARMV7M_EXCP_BUS     5
61 #define ARMV7M_EXCP_USAGE   6
62 #define ARMV7M_EXCP_SVC     11
63 #define ARMV7M_EXCP_DEBUG   12
64 #define ARMV7M_EXCP_PENDSV  14
65 #define ARMV7M_EXCP_SYSTICK 15
66 
67 /* ARM-specific interrupt pending bits.  */
68 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
69 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
70 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
71 
72 /* The usual mapping for an AArch64 system register to its AArch32
73  * counterpart is for the 32 bit world to have access to the lower
74  * half only (with writes leaving the upper half untouched). It's
75  * therefore useful to be able to pass TCG the offset of the least
76  * significant half of a uint64_t struct member.
77  */
78 #ifdef HOST_WORDS_BIGENDIAN
79 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
80 #define offsetofhigh32(S, M) offsetof(S, M)
81 #else
82 #define offsetoflow32(S, M) offsetof(S, M)
83 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #endif
85 
86 /* Meanings of the ARMCPU object's four inbound GPIO lines */
87 #define ARM_CPU_IRQ 0
88 #define ARM_CPU_FIQ 1
89 #define ARM_CPU_VIRQ 2
90 #define ARM_CPU_VFIQ 3
91 
92 #define NB_MMU_MODES 7
93 /* ARM-specific extra insn start words:
94  * 1: Conditional execution bits
95  * 2: Partial exception syndrome for data aborts
96  */
97 #define TARGET_INSN_START_EXTRA_WORDS 2
98 
99 /* The 2nd extra word holding syndrome info for data aborts does not use
100  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
101  * help the sleb128 encoder do a better job.
102  * When restoring the CPU state, we shift it back up.
103  */
104 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
105 #define ARM_INSN_START_WORD2_SHIFT 14
106 
107 /* We currently assume float and double are IEEE single and double
108    precision respectively.
109    Doing runtime conversions is tricky because VFP registers may contain
110    integer values (eg. as the result of a FTOSI instruction).
111    s<2n> maps to the least significant half of d<n>
112    s<2n+1> maps to the most significant half of d<n>
113  */
114 
115 /* CPU state for each instance of a generic timer (in cp15 c14) */
116 typedef struct ARMGenericTimer {
117     uint64_t cval; /* Timer CompareValue register */
118     uint64_t ctl; /* Timer Control register */
119 } ARMGenericTimer;
120 
121 #define GTIMER_PHYS 0
122 #define GTIMER_VIRT 1
123 #define GTIMER_HYP  2
124 #define GTIMER_SEC  3
125 #define NUM_GTIMERS 4
126 
127 typedef struct {
128     uint64_t raw_tcr;
129     uint32_t mask;
130     uint32_t base_mask;
131 } TCR;
132 
133 typedef struct CPUARMState {
134     /* Regs for current mode.  */
135     uint32_t regs[16];
136 
137     /* 32/64 switch only happens when taking and returning from
138      * exceptions so the overlap semantics are taken care of then
139      * instead of having a complicated union.
140      */
141     /* Regs for A64 mode.  */
142     uint64_t xregs[32];
143     uint64_t pc;
144     /* PSTATE isn't an architectural register for ARMv8. However, it is
145      * convenient for us to assemble the underlying state into a 32 bit format
146      * identical to the architectural format used for the SPSR. (This is also
147      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
148      * 'pstate' register are.) Of the PSTATE bits:
149      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
150      *    semantics as for AArch32, as described in the comments on each field)
151      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
152      *  DAIF (exception masks) are kept in env->daif
153      *  all other bits are stored in their correct places in env->pstate
154      */
155     uint32_t pstate;
156     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
157 
158     /* Frequently accessed CPSR bits are stored separately for efficiency.
159        This contains all the other bits.  Use cpsr_{read,write} to access
160        the whole CPSR.  */
161     uint32_t uncached_cpsr;
162     uint32_t spsr;
163 
164     /* Banked registers.  */
165     uint64_t banked_spsr[8];
166     uint32_t banked_r13[8];
167     uint32_t banked_r14[8];
168 
169     /* These hold r8-r12.  */
170     uint32_t usr_regs[5];
171     uint32_t fiq_regs[5];
172 
173     /* cpsr flag cache for faster execution */
174     uint32_t CF; /* 0 or 1 */
175     uint32_t VF; /* V is the bit 31. All other bits are undefined */
176     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
177     uint32_t ZF; /* Z set if zero.  */
178     uint32_t QF; /* 0 or 1 */
179     uint32_t GE; /* cpsr[19:16] */
180     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
181     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
182     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
183 
184     uint64_t elr_el[4]; /* AArch64 exception link regs  */
185     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
186 
187     /* System control coprocessor (cp15) */
188     struct {
189         uint32_t c0_cpuid;
190         union { /* Cache size selection */
191             struct {
192                 uint64_t _unused_csselr0;
193                 uint64_t csselr_ns;
194                 uint64_t _unused_csselr1;
195                 uint64_t csselr_s;
196             };
197             uint64_t csselr_el[4];
198         };
199         union { /* System control register. */
200             struct {
201                 uint64_t _unused_sctlr;
202                 uint64_t sctlr_ns;
203                 uint64_t hsctlr;
204                 uint64_t sctlr_s;
205             };
206             uint64_t sctlr_el[4];
207         };
208         uint64_t cpacr_el1; /* Architectural feature access control register */
209         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
210         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
211         uint64_t sder; /* Secure debug enable register. */
212         uint32_t nsacr; /* Non-secure access control register. */
213         union { /* MMU translation table base 0. */
214             struct {
215                 uint64_t _unused_ttbr0_0;
216                 uint64_t ttbr0_ns;
217                 uint64_t _unused_ttbr0_1;
218                 uint64_t ttbr0_s;
219             };
220             uint64_t ttbr0_el[4];
221         };
222         union { /* MMU translation table base 1. */
223             struct {
224                 uint64_t _unused_ttbr1_0;
225                 uint64_t ttbr1_ns;
226                 uint64_t _unused_ttbr1_1;
227                 uint64_t ttbr1_s;
228             };
229             uint64_t ttbr1_el[4];
230         };
231         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
232         /* MMU translation table base control. */
233         TCR tcr_el[4];
234         TCR vtcr_el2; /* Virtualization Translation Control.  */
235         uint32_t c2_data; /* MPU data cacheable bits.  */
236         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
237         union { /* MMU domain access control register
238                  * MPU write buffer control.
239                  */
240             struct {
241                 uint64_t dacr_ns;
242                 uint64_t dacr_s;
243             };
244             struct {
245                 uint64_t dacr32_el2;
246             };
247         };
248         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
249         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
250         uint64_t hcr_el2; /* Hypervisor configuration register */
251         uint64_t scr_el3; /* Secure configuration register.  */
252         union { /* Fault status registers.  */
253             struct {
254                 uint64_t ifsr_ns;
255                 uint64_t ifsr_s;
256             };
257             struct {
258                 uint64_t ifsr32_el2;
259             };
260         };
261         union {
262             struct {
263                 uint64_t _unused_dfsr;
264                 uint64_t dfsr_ns;
265                 uint64_t hsr;
266                 uint64_t dfsr_s;
267             };
268             uint64_t esr_el[4];
269         };
270         uint32_t c6_region[8]; /* MPU base/size registers.  */
271         union { /* Fault address registers. */
272             struct {
273                 uint64_t _unused_far0;
274 #ifdef HOST_WORDS_BIGENDIAN
275                 uint32_t ifar_ns;
276                 uint32_t dfar_ns;
277                 uint32_t ifar_s;
278                 uint32_t dfar_s;
279 #else
280                 uint32_t dfar_ns;
281                 uint32_t ifar_ns;
282                 uint32_t dfar_s;
283                 uint32_t ifar_s;
284 #endif
285                 uint64_t _unused_far3;
286             };
287             uint64_t far_el[4];
288         };
289         uint64_t hpfar_el2;
290         uint64_t hstr_el2;
291         union { /* Translation result. */
292             struct {
293                 uint64_t _unused_par_0;
294                 uint64_t par_ns;
295                 uint64_t _unused_par_1;
296                 uint64_t par_s;
297             };
298             uint64_t par_el[4];
299         };
300 
301         uint32_t c6_rgnr;
302 
303         uint32_t c9_insn; /* Cache lockdown registers.  */
304         uint32_t c9_data;
305         uint64_t c9_pmcr; /* performance monitor control register */
306         uint64_t c9_pmcnten; /* perf monitor counter enables */
307         uint32_t c9_pmovsr; /* perf monitor overflow status */
308         uint32_t c9_pmxevtyper; /* perf monitor event type */
309         uint32_t c9_pmuserenr; /* perf monitor user enable */
310         uint32_t c9_pminten; /* perf monitor interrupt enables */
311         union { /* Memory attribute redirection */
312             struct {
313 #ifdef HOST_WORDS_BIGENDIAN
314                 uint64_t _unused_mair_0;
315                 uint32_t mair1_ns;
316                 uint32_t mair0_ns;
317                 uint64_t _unused_mair_1;
318                 uint32_t mair1_s;
319                 uint32_t mair0_s;
320 #else
321                 uint64_t _unused_mair_0;
322                 uint32_t mair0_ns;
323                 uint32_t mair1_ns;
324                 uint64_t _unused_mair_1;
325                 uint32_t mair0_s;
326                 uint32_t mair1_s;
327 #endif
328             };
329             uint64_t mair_el[4];
330         };
331         union { /* vector base address register */
332             struct {
333                 uint64_t _unused_vbar;
334                 uint64_t vbar_ns;
335                 uint64_t hvbar;
336                 uint64_t vbar_s;
337             };
338             uint64_t vbar_el[4];
339         };
340         uint32_t mvbar; /* (monitor) vector base address register */
341         struct { /* FCSE PID. */
342             uint32_t fcseidr_ns;
343             uint32_t fcseidr_s;
344         };
345         union { /* Context ID. */
346             struct {
347                 uint64_t _unused_contextidr_0;
348                 uint64_t contextidr_ns;
349                 uint64_t _unused_contextidr_1;
350                 uint64_t contextidr_s;
351             };
352             uint64_t contextidr_el[4];
353         };
354         union { /* User RW Thread register. */
355             struct {
356                 uint64_t tpidrurw_ns;
357                 uint64_t tpidrprw_ns;
358                 uint64_t htpidr;
359                 uint64_t _tpidr_el3;
360             };
361             uint64_t tpidr_el[4];
362         };
363         /* The secure banks of these registers don't map anywhere */
364         uint64_t tpidrurw_s;
365         uint64_t tpidrprw_s;
366         uint64_t tpidruro_s;
367 
368         union { /* User RO Thread register. */
369             uint64_t tpidruro_ns;
370             uint64_t tpidrro_el[1];
371         };
372         uint64_t c14_cntfrq; /* Counter Frequency register */
373         uint64_t c14_cntkctl; /* Timer Control register */
374         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
375         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
376         ARMGenericTimer c14_timer[NUM_GTIMERS];
377         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
378         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
379         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
380         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
381         uint32_t c15_threadid; /* TI debugger thread-ID.  */
382         uint32_t c15_config_base_address; /* SCU base address.  */
383         uint32_t c15_diagnostic; /* diagnostic register */
384         uint32_t c15_power_diagnostic;
385         uint32_t c15_power_control; /* power control */
386         uint64_t dbgbvr[16]; /* breakpoint value registers */
387         uint64_t dbgbcr[16]; /* breakpoint control registers */
388         uint64_t dbgwvr[16]; /* watchpoint value registers */
389         uint64_t dbgwcr[16]; /* watchpoint control registers */
390         uint64_t mdscr_el1;
391         uint64_t oslsr_el1; /* OS Lock Status */
392         uint64_t mdcr_el2;
393         uint64_t mdcr_el3;
394         /* If the counter is enabled, this stores the last time the counter
395          * was reset. Otherwise it stores the counter value
396          */
397         uint64_t c15_ccnt;
398         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
399         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
400         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
401     } cp15;
402 
403     struct {
404         uint32_t other_sp;
405         uint32_t vecbase;
406         uint32_t basepri;
407         uint32_t control;
408         int current_sp;
409         int exception;
410     } v7m;
411 
412     /* Information associated with an exception about to be taken:
413      * code which raises an exception must set cs->exception_index and
414      * the relevant parts of this structure; the cpu_do_interrupt function
415      * will then set the guest-visible registers as part of the exception
416      * entry process.
417      */
418     struct {
419         uint32_t syndrome; /* AArch64 format syndrome register */
420         uint32_t fsr; /* AArch32 format fault status register info */
421         uint64_t vaddress; /* virtual addr associated with exception, if any */
422         uint32_t target_el; /* EL the exception should be targeted for */
423         /* If we implement EL2 we will also need to store information
424          * about the intermediate physical address for stage 2 faults.
425          */
426     } exception;
427 
428     /* Thumb-2 EE state.  */
429     uint32_t teecr;
430     uint32_t teehbr;
431 
432     /* VFP coprocessor state.  */
433     struct {
434         /* VFP/Neon register state. Note that the mapping between S, D and Q
435          * views of the register bank differs between AArch64 and AArch32:
436          * In AArch32:
437          *  Qn = regs[2n+1]:regs[2n]
438          *  Dn = regs[n]
439          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
440          * (and regs[32] to regs[63] are inaccessible)
441          * In AArch64:
442          *  Qn = regs[2n+1]:regs[2n]
443          *  Dn = regs[2n]
444          *  Sn = regs[2n] bits 31..0
445          * This corresponds to the architecturally defined mapping between
446          * the two execution states, and means we do not need to explicitly
447          * map these registers when changing states.
448          */
449         float64 regs[64];
450 
451         uint32_t xregs[16];
452         /* We store these fpcsr fields separately for convenience.  */
453         int vec_len;
454         int vec_stride;
455 
456         /* scratch space when Tn are not sufficient.  */
457         uint32_t scratch[8];
458 
459         /* fp_status is the "normal" fp status. standard_fp_status retains
460          * values corresponding to the ARM "Standard FPSCR Value", ie
461          * default-NaN, flush-to-zero, round-to-nearest and is used by
462          * any operations (generally Neon) which the architecture defines
463          * as controlled by the standard FPSCR value rather than the FPSCR.
464          *
465          * To avoid having to transfer exception bits around, we simply
466          * say that the FPSCR cumulative exception flags are the logical
467          * OR of the flags in the two fp statuses. This relies on the
468          * only thing which needs to read the exception flags being
469          * an explicit FPSCR read.
470          */
471         float_status fp_status;
472         float_status standard_fp_status;
473     } vfp;
474     uint64_t exclusive_addr;
475     uint64_t exclusive_val;
476     uint64_t exclusive_high;
477 
478     /* iwMMXt coprocessor state.  */
479     struct {
480         uint64_t regs[16];
481         uint64_t val;
482 
483         uint32_t cregs[16];
484     } iwmmxt;
485 
486 #if defined(CONFIG_USER_ONLY)
487     /* For usermode syscall translation.  */
488     int eabi;
489 #endif
490 
491     struct CPUBreakpoint *cpu_breakpoint[16];
492     struct CPUWatchpoint *cpu_watchpoint[16];
493 
494     /* Fields up to this point are cleared by a CPU reset */
495     struct {} end_reset_fields;
496 
497     CPU_COMMON
498 
499     /* Fields after CPU_COMMON are preserved across CPU reset. */
500 
501     /* Internal CPU feature flags.  */
502     uint64_t features;
503 
504     /* PMSAv7 MPU */
505     struct {
506         uint32_t *drbar;
507         uint32_t *drsr;
508         uint32_t *dracr;
509     } pmsav7;
510 
511     void *nvic;
512     const struct arm_boot_info *boot_info;
513 } CPUARMState;
514 
515 /**
516  * ARMELChangeHook:
517  * type of a function which can be registered via arm_register_el_change_hook()
518  * to get callbacks when the CPU changes its exception level or mode.
519  */
520 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
521 
522 /**
523  * ARMCPU:
524  * @env: #CPUARMState
525  *
526  * An ARM CPU core.
527  */
528 struct ARMCPU {
529     /*< private >*/
530     CPUState parent_obj;
531     /*< public >*/
532 
533     CPUARMState env;
534 
535     /* Coprocessor information */
536     GHashTable *cp_regs;
537     /* For marshalling (mostly coprocessor) register state between the
538      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
539      * we use these arrays.
540      */
541     /* List of register indexes managed via these arrays; (full KVM style
542      * 64 bit indexes, not CPRegInfo 32 bit indexes)
543      */
544     uint64_t *cpreg_indexes;
545     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
546     uint64_t *cpreg_values;
547     /* Length of the indexes, values, reset_values arrays */
548     int32_t cpreg_array_len;
549     /* These are used only for migration: incoming data arrives in
550      * these fields and is sanity checked in post_load before copying
551      * to the working data structures above.
552      */
553     uint64_t *cpreg_vmstate_indexes;
554     uint64_t *cpreg_vmstate_values;
555     int32_t cpreg_vmstate_array_len;
556 
557     /* Timers used by the generic (architected) timer */
558     QEMUTimer *gt_timer[NUM_GTIMERS];
559     /* GPIO outputs for generic timer */
560     qemu_irq gt_timer_outputs[NUM_GTIMERS];
561     /* GPIO output for GICv3 maintenance interrupt signal */
562     qemu_irq gicv3_maintenance_interrupt;
563 
564     /* MemoryRegion to use for secure physical accesses */
565     MemoryRegion *secure_memory;
566 
567     /* 'compatible' string for this CPU for Linux device trees */
568     const char *dtb_compatible;
569 
570     /* PSCI version for this CPU
571      * Bits[31:16] = Major Version
572      * Bits[15:0] = Minor Version
573      */
574     uint32_t psci_version;
575 
576     /* Should CPU start in PSCI powered-off state? */
577     bool start_powered_off;
578     /* CPU currently in PSCI powered-off state */
579     bool powered_off;
580     /* CPU has virtualization extension */
581     bool has_el2;
582     /* CPU has security extension */
583     bool has_el3;
584     /* CPU has PMU (Performance Monitor Unit) */
585     bool has_pmu;
586 
587     /* CPU has memory protection unit */
588     bool has_mpu;
589     /* PMSAv7 MPU number of supported regions */
590     uint32_t pmsav7_dregion;
591 
592     /* PSCI conduit used to invoke PSCI methods
593      * 0 - disabled, 1 - smc, 2 - hvc
594      */
595     uint32_t psci_conduit;
596 
597     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
598      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
599      */
600     uint32_t kvm_target;
601 
602     /* KVM init features for this CPU */
603     uint32_t kvm_init_features[7];
604 
605     /* Uniprocessor system with MP extensions */
606     bool mp_is_up;
607 
608     /* The instance init functions for implementation-specific subclasses
609      * set these fields to specify the implementation-dependent values of
610      * various constant registers and reset values of non-constant
611      * registers.
612      * Some of these might become QOM properties eventually.
613      * Field names match the official register names as defined in the
614      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
615      * is used for reset values of non-constant registers; no reset_
616      * prefix means a constant register.
617      */
618     uint32_t midr;
619     uint32_t revidr;
620     uint32_t reset_fpsid;
621     uint32_t mvfr0;
622     uint32_t mvfr1;
623     uint32_t mvfr2;
624     uint32_t ctr;
625     uint32_t reset_sctlr;
626     uint32_t id_pfr0;
627     uint32_t id_pfr1;
628     uint32_t id_dfr0;
629     uint32_t pmceid0;
630     uint32_t pmceid1;
631     uint32_t id_afr0;
632     uint32_t id_mmfr0;
633     uint32_t id_mmfr1;
634     uint32_t id_mmfr2;
635     uint32_t id_mmfr3;
636     uint32_t id_mmfr4;
637     uint32_t id_isar0;
638     uint32_t id_isar1;
639     uint32_t id_isar2;
640     uint32_t id_isar3;
641     uint32_t id_isar4;
642     uint32_t id_isar5;
643     uint64_t id_aa64pfr0;
644     uint64_t id_aa64pfr1;
645     uint64_t id_aa64dfr0;
646     uint64_t id_aa64dfr1;
647     uint64_t id_aa64afr0;
648     uint64_t id_aa64afr1;
649     uint64_t id_aa64isar0;
650     uint64_t id_aa64isar1;
651     uint64_t id_aa64mmfr0;
652     uint64_t id_aa64mmfr1;
653     uint32_t dbgdidr;
654     uint32_t clidr;
655     uint64_t mp_affinity; /* MP ID without feature bits */
656     /* The elements of this array are the CCSIDR values for each cache,
657      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
658      */
659     uint32_t ccsidr[16];
660     uint64_t reset_cbar;
661     uint32_t reset_auxcr;
662     bool reset_hivecs;
663     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
664     uint32_t dcz_blocksize;
665     uint64_t rvbar;
666 
667     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
668     int gic_num_lrs; /* number of list registers */
669     int gic_vpribits; /* number of virtual priority bits */
670     int gic_vprebits; /* number of virtual preemption bits */
671 
672     ARMELChangeHook *el_change_hook;
673     void *el_change_hook_opaque;
674 };
675 
676 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
677 {
678     return container_of(env, ARMCPU, env);
679 }
680 
681 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
682 
683 #define ENV_OFFSET offsetof(ARMCPU, env)
684 
685 #ifndef CONFIG_USER_ONLY
686 extern const struct VMStateDescription vmstate_arm_cpu;
687 #endif
688 
689 void arm_cpu_do_interrupt(CPUState *cpu);
690 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
691 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
692 
693 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
694                         int flags);
695 
696 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
697                                          MemTxAttrs *attrs);
698 
699 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
700 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
701 
702 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
703                              int cpuid, void *opaque);
704 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
705                              int cpuid, void *opaque);
706 
707 #ifdef TARGET_AARCH64
708 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
709 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
710 #endif
711 
712 ARMCPU *cpu_arm_init(const char *cpu_model);
713 target_ulong do_arm_semihosting(CPUARMState *env);
714 void aarch64_sync_32_to_64(CPUARMState *env);
715 void aarch64_sync_64_to_32(CPUARMState *env);
716 
717 static inline bool is_a64(CPUARMState *env)
718 {
719     return env->aarch64;
720 }
721 
722 /* you can call this signal handler from your SIGBUS and SIGSEGV
723    signal handlers to inform the virtual CPU of exceptions. non zero
724    is returned if the signal was handled by the virtual CPU.  */
725 int cpu_arm_signal_handler(int host_signum, void *pinfo,
726                            void *puc);
727 
728 /**
729  * pmccntr_sync
730  * @env: CPUARMState
731  *
732  * Synchronises the counter in the PMCCNTR. This must always be called twice,
733  * once before any action that might affect the timer and again afterwards.
734  * The function is used to swap the state of the register if required.
735  * This only happens when not in user mode (!CONFIG_USER_ONLY)
736  */
737 void pmccntr_sync(CPUARMState *env);
738 
739 /* SCTLR bit meanings. Several bits have been reused in newer
740  * versions of the architecture; in that case we define constants
741  * for both old and new bit meanings. Code which tests against those
742  * bits should probably check or otherwise arrange that the CPU
743  * is the architectural version it expects.
744  */
745 #define SCTLR_M       (1U << 0)
746 #define SCTLR_A       (1U << 1)
747 #define SCTLR_C       (1U << 2)
748 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
749 #define SCTLR_SA      (1U << 3)
750 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
751 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
752 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
753 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
754 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
755 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
756 #define SCTLR_ITD     (1U << 7) /* v8 onward */
757 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
758 #define SCTLR_SED     (1U << 8) /* v8 onward */
759 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
760 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
761 #define SCTLR_F       (1U << 10) /* up to v6 */
762 #define SCTLR_SW      (1U << 10) /* v7 onward */
763 #define SCTLR_Z       (1U << 11)
764 #define SCTLR_I       (1U << 12)
765 #define SCTLR_V       (1U << 13)
766 #define SCTLR_RR      (1U << 14) /* up to v7 */
767 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
768 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
769 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
770 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
771 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
772 #define SCTLR_HA      (1U << 17)
773 #define SCTLR_BR      (1U << 17) /* PMSA only */
774 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
775 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
776 #define SCTLR_WXN     (1U << 19)
777 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
778 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
779 #define SCTLR_FI      (1U << 21)
780 #define SCTLR_U       (1U << 22)
781 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
782 #define SCTLR_VE      (1U << 24) /* up to v7 */
783 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
784 #define SCTLR_EE      (1U << 25)
785 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
786 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
787 #define SCTLR_NMFI    (1U << 27)
788 #define SCTLR_TRE     (1U << 28)
789 #define SCTLR_AFE     (1U << 29)
790 #define SCTLR_TE      (1U << 30)
791 
792 #define CPTR_TCPAC    (1U << 31)
793 #define CPTR_TTA      (1U << 20)
794 #define CPTR_TFP      (1U << 10)
795 
796 #define MDCR_EPMAD    (1U << 21)
797 #define MDCR_EDAD     (1U << 20)
798 #define MDCR_SPME     (1U << 17)
799 #define MDCR_SDD      (1U << 16)
800 #define MDCR_SPD      (3U << 14)
801 #define MDCR_TDRA     (1U << 11)
802 #define MDCR_TDOSA    (1U << 10)
803 #define MDCR_TDA      (1U << 9)
804 #define MDCR_TDE      (1U << 8)
805 #define MDCR_HPME     (1U << 7)
806 #define MDCR_TPM      (1U << 6)
807 #define MDCR_TPMCR    (1U << 5)
808 
809 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
810 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
811 
812 #define CPSR_M (0x1fU)
813 #define CPSR_T (1U << 5)
814 #define CPSR_F (1U << 6)
815 #define CPSR_I (1U << 7)
816 #define CPSR_A (1U << 8)
817 #define CPSR_E (1U << 9)
818 #define CPSR_IT_2_7 (0xfc00U)
819 #define CPSR_GE (0xfU << 16)
820 #define CPSR_IL (1U << 20)
821 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
822  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
823  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
824  * where it is live state but not accessible to the AArch32 code.
825  */
826 #define CPSR_RESERVED (0x7U << 21)
827 #define CPSR_J (1U << 24)
828 #define CPSR_IT_0_1 (3U << 25)
829 #define CPSR_Q (1U << 27)
830 #define CPSR_V (1U << 28)
831 #define CPSR_C (1U << 29)
832 #define CPSR_Z (1U << 30)
833 #define CPSR_N (1U << 31)
834 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
835 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
836 
837 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
838 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
839     | CPSR_NZCV)
840 /* Bits writable in user mode.  */
841 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
842 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
843 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
844 /* Mask of bits which may be set by exception return copying them from SPSR */
845 #define CPSR_ERET_MASK (~CPSR_RESERVED)
846 
847 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
848 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
849 #define TTBCR_PD0    (1U << 4)
850 #define TTBCR_PD1    (1U << 5)
851 #define TTBCR_EPD0   (1U << 7)
852 #define TTBCR_IRGN0  (3U << 8)
853 #define TTBCR_ORGN0  (3U << 10)
854 #define TTBCR_SH0    (3U << 12)
855 #define TTBCR_T1SZ   (3U << 16)
856 #define TTBCR_A1     (1U << 22)
857 #define TTBCR_EPD1   (1U << 23)
858 #define TTBCR_IRGN1  (3U << 24)
859 #define TTBCR_ORGN1  (3U << 26)
860 #define TTBCR_SH1    (1U << 28)
861 #define TTBCR_EAE    (1U << 31)
862 
863 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
864  * Only these are valid when in AArch64 mode; in
865  * AArch32 mode SPSRs are basically CPSR-format.
866  */
867 #define PSTATE_SP (1U)
868 #define PSTATE_M (0xFU)
869 #define PSTATE_nRW (1U << 4)
870 #define PSTATE_F (1U << 6)
871 #define PSTATE_I (1U << 7)
872 #define PSTATE_A (1U << 8)
873 #define PSTATE_D (1U << 9)
874 #define PSTATE_IL (1U << 20)
875 #define PSTATE_SS (1U << 21)
876 #define PSTATE_V (1U << 28)
877 #define PSTATE_C (1U << 29)
878 #define PSTATE_Z (1U << 30)
879 #define PSTATE_N (1U << 31)
880 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
881 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
882 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
883 /* Mode values for AArch64 */
884 #define PSTATE_MODE_EL3h 13
885 #define PSTATE_MODE_EL3t 12
886 #define PSTATE_MODE_EL2h 9
887 #define PSTATE_MODE_EL2t 8
888 #define PSTATE_MODE_EL1h 5
889 #define PSTATE_MODE_EL1t 4
890 #define PSTATE_MODE_EL0t 0
891 
892 /* Map EL and handler into a PSTATE_MODE.  */
893 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
894 {
895     return (el << 2) | handler;
896 }
897 
898 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
899  * interprocessing, so we don't attempt to sync with the cpsr state used by
900  * the 32 bit decoder.
901  */
902 static inline uint32_t pstate_read(CPUARMState *env)
903 {
904     int ZF;
905 
906     ZF = (env->ZF == 0);
907     return (env->NF & 0x80000000) | (ZF << 30)
908         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
909         | env->pstate | env->daif;
910 }
911 
912 static inline void pstate_write(CPUARMState *env, uint32_t val)
913 {
914     env->ZF = (~val) & PSTATE_Z;
915     env->NF = val;
916     env->CF = (val >> 29) & 1;
917     env->VF = (val << 3) & 0x80000000;
918     env->daif = val & PSTATE_DAIF;
919     env->pstate = val & ~CACHED_PSTATE_BITS;
920 }
921 
922 /* Return the current CPSR value.  */
923 uint32_t cpsr_read(CPUARMState *env);
924 
925 typedef enum CPSRWriteType {
926     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
927     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
928     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
929     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
930 } CPSRWriteType;
931 
932 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
933 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
934                 CPSRWriteType write_type);
935 
936 /* Return the current xPSR value.  */
937 static inline uint32_t xpsr_read(CPUARMState *env)
938 {
939     int ZF;
940     ZF = (env->ZF == 0);
941     return (env->NF & 0x80000000) | (ZF << 30)
942         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
943         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
944         | ((env->condexec_bits & 0xfc) << 8)
945         | env->v7m.exception;
946 }
947 
948 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
949 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
950 {
951     if (mask & CPSR_NZCV) {
952         env->ZF = (~val) & CPSR_Z;
953         env->NF = val;
954         env->CF = (val >> 29) & 1;
955         env->VF = (val << 3) & 0x80000000;
956     }
957     if (mask & CPSR_Q)
958         env->QF = ((val & CPSR_Q) != 0);
959     if (mask & (1 << 24))
960         env->thumb = ((val & (1 << 24)) != 0);
961     if (mask & CPSR_IT_0_1) {
962         env->condexec_bits &= ~3;
963         env->condexec_bits |= (val >> 25) & 3;
964     }
965     if (mask & CPSR_IT_2_7) {
966         env->condexec_bits &= 3;
967         env->condexec_bits |= (val >> 8) & 0xfc;
968     }
969     if (mask & 0x1ff) {
970         env->v7m.exception = val & 0x1ff;
971     }
972 }
973 
974 #define HCR_VM        (1ULL << 0)
975 #define HCR_SWIO      (1ULL << 1)
976 #define HCR_PTW       (1ULL << 2)
977 #define HCR_FMO       (1ULL << 3)
978 #define HCR_IMO       (1ULL << 4)
979 #define HCR_AMO       (1ULL << 5)
980 #define HCR_VF        (1ULL << 6)
981 #define HCR_VI        (1ULL << 7)
982 #define HCR_VSE       (1ULL << 8)
983 #define HCR_FB        (1ULL << 9)
984 #define HCR_BSU_MASK  (3ULL << 10)
985 #define HCR_DC        (1ULL << 12)
986 #define HCR_TWI       (1ULL << 13)
987 #define HCR_TWE       (1ULL << 14)
988 #define HCR_TID0      (1ULL << 15)
989 #define HCR_TID1      (1ULL << 16)
990 #define HCR_TID2      (1ULL << 17)
991 #define HCR_TID3      (1ULL << 18)
992 #define HCR_TSC       (1ULL << 19)
993 #define HCR_TIDCP     (1ULL << 20)
994 #define HCR_TACR      (1ULL << 21)
995 #define HCR_TSW       (1ULL << 22)
996 #define HCR_TPC       (1ULL << 23)
997 #define HCR_TPU       (1ULL << 24)
998 #define HCR_TTLB      (1ULL << 25)
999 #define HCR_TVM       (1ULL << 26)
1000 #define HCR_TGE       (1ULL << 27)
1001 #define HCR_TDZ       (1ULL << 28)
1002 #define HCR_HCD       (1ULL << 29)
1003 #define HCR_TRVM      (1ULL << 30)
1004 #define HCR_RW        (1ULL << 31)
1005 #define HCR_CD        (1ULL << 32)
1006 #define HCR_ID        (1ULL << 33)
1007 #define HCR_MASK      ((1ULL << 34) - 1)
1008 
1009 #define SCR_NS                (1U << 0)
1010 #define SCR_IRQ               (1U << 1)
1011 #define SCR_FIQ               (1U << 2)
1012 #define SCR_EA                (1U << 3)
1013 #define SCR_FW                (1U << 4)
1014 #define SCR_AW                (1U << 5)
1015 #define SCR_NET               (1U << 6)
1016 #define SCR_SMD               (1U << 7)
1017 #define SCR_HCE               (1U << 8)
1018 #define SCR_SIF               (1U << 9)
1019 #define SCR_RW                (1U << 10)
1020 #define SCR_ST                (1U << 11)
1021 #define SCR_TWI               (1U << 12)
1022 #define SCR_TWE               (1U << 13)
1023 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1024 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1025 
1026 /* Return the current FPSCR value.  */
1027 uint32_t vfp_get_fpscr(CPUARMState *env);
1028 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1029 
1030 /* For A64 the FPSCR is split into two logically distinct registers,
1031  * FPCR and FPSR. However since they still use non-overlapping bits
1032  * we store the underlying state in fpscr and just mask on read/write.
1033  */
1034 #define FPSR_MASK 0xf800009f
1035 #define FPCR_MASK 0x07f79f00
1036 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1037 {
1038     return vfp_get_fpscr(env) & FPSR_MASK;
1039 }
1040 
1041 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1042 {
1043     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1044     vfp_set_fpscr(env, new_fpscr);
1045 }
1046 
1047 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1048 {
1049     return vfp_get_fpscr(env) & FPCR_MASK;
1050 }
1051 
1052 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1053 {
1054     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1055     vfp_set_fpscr(env, new_fpscr);
1056 }
1057 
1058 enum arm_cpu_mode {
1059   ARM_CPU_MODE_USR = 0x10,
1060   ARM_CPU_MODE_FIQ = 0x11,
1061   ARM_CPU_MODE_IRQ = 0x12,
1062   ARM_CPU_MODE_SVC = 0x13,
1063   ARM_CPU_MODE_MON = 0x16,
1064   ARM_CPU_MODE_ABT = 0x17,
1065   ARM_CPU_MODE_HYP = 0x1a,
1066   ARM_CPU_MODE_UND = 0x1b,
1067   ARM_CPU_MODE_SYS = 0x1f
1068 };
1069 
1070 /* VFP system registers.  */
1071 #define ARM_VFP_FPSID   0
1072 #define ARM_VFP_FPSCR   1
1073 #define ARM_VFP_MVFR2   5
1074 #define ARM_VFP_MVFR1   6
1075 #define ARM_VFP_MVFR0   7
1076 #define ARM_VFP_FPEXC   8
1077 #define ARM_VFP_FPINST  9
1078 #define ARM_VFP_FPINST2 10
1079 
1080 /* iwMMXt coprocessor control registers.  */
1081 #define ARM_IWMMXT_wCID		0
1082 #define ARM_IWMMXT_wCon		1
1083 #define ARM_IWMMXT_wCSSF	2
1084 #define ARM_IWMMXT_wCASF	3
1085 #define ARM_IWMMXT_wCGR0	8
1086 #define ARM_IWMMXT_wCGR1	9
1087 #define ARM_IWMMXT_wCGR2	10
1088 #define ARM_IWMMXT_wCGR3	11
1089 
1090 /* If adding a feature bit which corresponds to a Linux ELF
1091  * HWCAP bit, remember to update the feature-bit-to-hwcap
1092  * mapping in linux-user/elfload.c:get_elf_hwcap().
1093  */
1094 enum arm_features {
1095     ARM_FEATURE_VFP,
1096     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1097     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1098     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1099     ARM_FEATURE_V6,
1100     ARM_FEATURE_V6K,
1101     ARM_FEATURE_V7,
1102     ARM_FEATURE_THUMB2,
1103     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1104     ARM_FEATURE_VFP3,
1105     ARM_FEATURE_VFP_FP16,
1106     ARM_FEATURE_NEON,
1107     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1108     ARM_FEATURE_M, /* Microcontroller profile.  */
1109     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1110     ARM_FEATURE_THUMB2EE,
1111     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1112     ARM_FEATURE_V4T,
1113     ARM_FEATURE_V5,
1114     ARM_FEATURE_STRONGARM,
1115     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1116     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1117     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1118     ARM_FEATURE_GENERIC_TIMER,
1119     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1120     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1121     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1122     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1123     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1124     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1125     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1126     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1127     ARM_FEATURE_V8,
1128     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1129     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1130     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1131     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1132     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1133     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1134     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1135     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1136     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1137     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1138     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1139     ARM_FEATURE_PMU, /* has PMU support */
1140     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1141 };
1142 
1143 static inline int arm_feature(CPUARMState *env, int feature)
1144 {
1145     return (env->features & (1ULL << feature)) != 0;
1146 }
1147 
1148 #if !defined(CONFIG_USER_ONLY)
1149 /* Return true if exception levels below EL3 are in secure state,
1150  * or would be following an exception return to that level.
1151  * Unlike arm_is_secure() (which is always a question about the
1152  * _current_ state of the CPU) this doesn't care about the current
1153  * EL or mode.
1154  */
1155 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1156 {
1157     if (arm_feature(env, ARM_FEATURE_EL3)) {
1158         return !(env->cp15.scr_el3 & SCR_NS);
1159     } else {
1160         /* If EL3 is not supported then the secure state is implementation
1161          * defined, in which case QEMU defaults to non-secure.
1162          */
1163         return false;
1164     }
1165 }
1166 
1167 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1168 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1169 {
1170     if (arm_feature(env, ARM_FEATURE_EL3)) {
1171         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1172             /* CPU currently in AArch64 state and EL3 */
1173             return true;
1174         } else if (!is_a64(env) &&
1175                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1176             /* CPU currently in AArch32 state and monitor mode */
1177             return true;
1178         }
1179     }
1180     return false;
1181 }
1182 
1183 /* Return true if the processor is in secure state */
1184 static inline bool arm_is_secure(CPUARMState *env)
1185 {
1186     if (arm_is_el3_or_mon(env)) {
1187         return true;
1188     }
1189     return arm_is_secure_below_el3(env);
1190 }
1191 
1192 #else
1193 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1194 {
1195     return false;
1196 }
1197 
1198 static inline bool arm_is_secure(CPUARMState *env)
1199 {
1200     return false;
1201 }
1202 #endif
1203 
1204 /* Return true if the specified exception level is running in AArch64 state. */
1205 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1206 {
1207     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1208      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1209      */
1210     assert(el >= 1 && el <= 3);
1211     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1212 
1213     /* The highest exception level is always at the maximum supported
1214      * register width, and then lower levels have a register width controlled
1215      * by bits in the SCR or HCR registers.
1216      */
1217     if (el == 3) {
1218         return aa64;
1219     }
1220 
1221     if (arm_feature(env, ARM_FEATURE_EL3)) {
1222         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1223     }
1224 
1225     if (el == 2) {
1226         return aa64;
1227     }
1228 
1229     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1230         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1231     }
1232 
1233     return aa64;
1234 }
1235 
1236 /* Function for determing whether guest cp register reads and writes should
1237  * access the secure or non-secure bank of a cp register.  When EL3 is
1238  * operating in AArch32 state, the NS-bit determines whether the secure
1239  * instance of a cp register should be used. When EL3 is AArch64 (or if
1240  * it doesn't exist at all) then there is no register banking, and all
1241  * accesses are to the non-secure version.
1242  */
1243 static inline bool access_secure_reg(CPUARMState *env)
1244 {
1245     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1246                 !arm_el_is_aa64(env, 3) &&
1247                 !(env->cp15.scr_el3 & SCR_NS));
1248 
1249     return ret;
1250 }
1251 
1252 /* Macros for accessing a specified CP register bank */
1253 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1254     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1255 
1256 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1257     do {                                                \
1258         if (_secure) {                                   \
1259             (_env)->cp15._regname##_s = (_val);            \
1260         } else {                                        \
1261             (_env)->cp15._regname##_ns = (_val);           \
1262         }                                               \
1263     } while (0)
1264 
1265 /* Macros for automatically accessing a specific CP register bank depending on
1266  * the current secure state of the system.  These macros are not intended for
1267  * supporting instruction translation reads/writes as these are dependent
1268  * solely on the SCR.NS bit and not the mode.
1269  */
1270 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1271     A32_BANKED_REG_GET((_env), _regname,                \
1272                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1273 
1274 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1275     A32_BANKED_REG_SET((_env), _regname,                                    \
1276                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1277                        (_val))
1278 
1279 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1280 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1281                                  uint32_t cur_el, bool secure);
1282 
1283 /* Interface between CPU and Interrupt controller.  */
1284 void armv7m_nvic_set_pending(void *opaque, int irq);
1285 int armv7m_nvic_acknowledge_irq(void *opaque);
1286 void armv7m_nvic_complete_irq(void *opaque, int irq);
1287 
1288 /* Interface for defining coprocessor registers.
1289  * Registers are defined in tables of arm_cp_reginfo structs
1290  * which are passed to define_arm_cp_regs().
1291  */
1292 
1293 /* When looking up a coprocessor register we look for it
1294  * via an integer which encodes all of:
1295  *  coprocessor number
1296  *  Crn, Crm, opc1, opc2 fields
1297  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1298  *    or via MRRC/MCRR?)
1299  *  non-secure/secure bank (AArch32 only)
1300  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1301  * (In this case crn and opc2 should be zero.)
1302  * For AArch64, there is no 32/64 bit size distinction;
1303  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1304  * and 4 bit CRn and CRm. The encoding patterns are chosen
1305  * to be easy to convert to and from the KVM encodings, and also
1306  * so that the hashtable can contain both AArch32 and AArch64
1307  * registers (to allow for interprocessing where we might run
1308  * 32 bit code on a 64 bit core).
1309  */
1310 /* This bit is private to our hashtable cpreg; in KVM register
1311  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1312  * in the upper bits of the 64 bit ID.
1313  */
1314 #define CP_REG_AA64_SHIFT 28
1315 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1316 
1317 /* To enable banking of coprocessor registers depending on ns-bit we
1318  * add a bit to distinguish between secure and non-secure cpregs in the
1319  * hashtable.
1320  */
1321 #define CP_REG_NS_SHIFT 29
1322 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1323 
1324 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1325     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1326      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1327 
1328 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1329     (CP_REG_AA64_MASK |                                 \
1330      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1331      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1332      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1333      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1334      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1335      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1336 
1337 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1338  * version used as a key for the coprocessor register hashtable
1339  */
1340 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1341 {
1342     uint32_t cpregid = kvmid;
1343     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1344         cpregid |= CP_REG_AA64_MASK;
1345     } else {
1346         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1347             cpregid |= (1 << 15);
1348         }
1349 
1350         /* KVM is always non-secure so add the NS flag on AArch32 register
1351          * entries.
1352          */
1353          cpregid |= 1 << CP_REG_NS_SHIFT;
1354     }
1355     return cpregid;
1356 }
1357 
1358 /* Convert a truncated 32 bit hashtable key into the full
1359  * 64 bit KVM register ID.
1360  */
1361 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1362 {
1363     uint64_t kvmid;
1364 
1365     if (cpregid & CP_REG_AA64_MASK) {
1366         kvmid = cpregid & ~CP_REG_AA64_MASK;
1367         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1368     } else {
1369         kvmid = cpregid & ~(1 << 15);
1370         if (cpregid & (1 << 15)) {
1371             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1372         } else {
1373             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1374         }
1375     }
1376     return kvmid;
1377 }
1378 
1379 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1380  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1381  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1382  * TCG can assume the value to be constant (ie load at translate time)
1383  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1384  * indicates that the TB should not be ended after a write to this register
1385  * (the default is that the TB ends after cp writes). OVERRIDE permits
1386  * a register definition to override a previous definition for the
1387  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1388  * old must have the OVERRIDE bit set.
1389  * ALIAS indicates that this register is an alias view of some underlying
1390  * state which is also visible via another register, and that the other
1391  * register is handling migration and reset; registers marked ALIAS will not be
1392  * migrated but may have their state set by syncing of register state from KVM.
1393  * NO_RAW indicates that this register has no underlying state and does not
1394  * support raw access for state saving/loading; it will not be used for either
1395  * migration or KVM state synchronization. (Typically this is for "registers"
1396  * which are actually used as instructions for cache maintenance and so on.)
1397  * IO indicates that this register does I/O and therefore its accesses
1398  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1399  * registers which implement clocks or timers require this.
1400  */
1401 #define ARM_CP_SPECIAL 1
1402 #define ARM_CP_CONST 2
1403 #define ARM_CP_64BIT 4
1404 #define ARM_CP_SUPPRESS_TB_END 8
1405 #define ARM_CP_OVERRIDE 16
1406 #define ARM_CP_ALIAS 32
1407 #define ARM_CP_IO 64
1408 #define ARM_CP_NO_RAW 128
1409 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1410 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1411 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1412 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1413 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1414 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1415 /* Used only as a terminator for ARMCPRegInfo lists */
1416 #define ARM_CP_SENTINEL 0xffff
1417 /* Mask of only the flag bits in a type field */
1418 #define ARM_CP_FLAG_MASK 0xff
1419 
1420 /* Valid values for ARMCPRegInfo state field, indicating which of
1421  * the AArch32 and AArch64 execution states this register is visible in.
1422  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1423  * If the reginfo is declared to be visible in both states then a second
1424  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1425  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1426  * Note that we rely on the values of these enums as we iterate through
1427  * the various states in some places.
1428  */
1429 enum {
1430     ARM_CP_STATE_AA32 = 0,
1431     ARM_CP_STATE_AA64 = 1,
1432     ARM_CP_STATE_BOTH = 2,
1433 };
1434 
1435 /* ARM CP register secure state flags.  These flags identify security state
1436  * attributes for a given CP register entry.
1437  * The existence of both or neither secure and non-secure flags indicates that
1438  * the register has both a secure and non-secure hash entry.  A single one of
1439  * these flags causes the register to only be hashed for the specified
1440  * security state.
1441  * Although definitions may have any combination of the S/NS bits, each
1442  * registered entry will only have one to identify whether the entry is secure
1443  * or non-secure.
1444  */
1445 enum {
1446     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1447     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1448 };
1449 
1450 /* Return true if cptype is a valid type field. This is used to try to
1451  * catch errors where the sentinel has been accidentally left off the end
1452  * of a list of registers.
1453  */
1454 static inline bool cptype_valid(int cptype)
1455 {
1456     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1457         || ((cptype & ARM_CP_SPECIAL) &&
1458             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1459 }
1460 
1461 /* Access rights:
1462  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1463  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1464  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1465  * (ie any of the privileged modes in Secure state, or Monitor mode).
1466  * If a register is accessible in one privilege level it's always accessible
1467  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1468  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1469  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1470  * terminology a little and call this PL3.
1471  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1472  * with the ELx exception levels.
1473  *
1474  * If access permissions for a register are more complex than can be
1475  * described with these bits, then use a laxer set of restrictions, and
1476  * do the more restrictive/complex check inside a helper function.
1477  */
1478 #define PL3_R 0x80
1479 #define PL3_W 0x40
1480 #define PL2_R (0x20 | PL3_R)
1481 #define PL2_W (0x10 | PL3_W)
1482 #define PL1_R (0x08 | PL2_R)
1483 #define PL1_W (0x04 | PL2_W)
1484 #define PL0_R (0x02 | PL1_R)
1485 #define PL0_W (0x01 | PL1_W)
1486 
1487 #define PL3_RW (PL3_R | PL3_W)
1488 #define PL2_RW (PL2_R | PL2_W)
1489 #define PL1_RW (PL1_R | PL1_W)
1490 #define PL0_RW (PL0_R | PL0_W)
1491 
1492 /* Return the highest implemented Exception Level */
1493 static inline int arm_highest_el(CPUARMState *env)
1494 {
1495     if (arm_feature(env, ARM_FEATURE_EL3)) {
1496         return 3;
1497     }
1498     if (arm_feature(env, ARM_FEATURE_EL2)) {
1499         return 2;
1500     }
1501     return 1;
1502 }
1503 
1504 /* Return the current Exception Level (as per ARMv8; note that this differs
1505  * from the ARMv7 Privilege Level).
1506  */
1507 static inline int arm_current_el(CPUARMState *env)
1508 {
1509     if (arm_feature(env, ARM_FEATURE_M)) {
1510         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1511     }
1512 
1513     if (is_a64(env)) {
1514         return extract32(env->pstate, 2, 2);
1515     }
1516 
1517     switch (env->uncached_cpsr & 0x1f) {
1518     case ARM_CPU_MODE_USR:
1519         return 0;
1520     case ARM_CPU_MODE_HYP:
1521         return 2;
1522     case ARM_CPU_MODE_MON:
1523         return 3;
1524     default:
1525         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1526             /* If EL3 is 32-bit then all secure privileged modes run in
1527              * EL3
1528              */
1529             return 3;
1530         }
1531 
1532         return 1;
1533     }
1534 }
1535 
1536 typedef struct ARMCPRegInfo ARMCPRegInfo;
1537 
1538 typedef enum CPAccessResult {
1539     /* Access is permitted */
1540     CP_ACCESS_OK = 0,
1541     /* Access fails due to a configurable trap or enable which would
1542      * result in a categorized exception syndrome giving information about
1543      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1544      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1545      * PL1 if in EL0, otherwise to the current EL).
1546      */
1547     CP_ACCESS_TRAP = 1,
1548     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1549      * Note that this is not a catch-all case -- the set of cases which may
1550      * result in this failure is specifically defined by the architecture.
1551      */
1552     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1553     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1554     CP_ACCESS_TRAP_EL2 = 3,
1555     CP_ACCESS_TRAP_EL3 = 4,
1556     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1557     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1558     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1559     /* Access fails and results in an exception syndrome for an FP access,
1560      * trapped directly to EL2 or EL3
1561      */
1562     CP_ACCESS_TRAP_FP_EL2 = 7,
1563     CP_ACCESS_TRAP_FP_EL3 = 8,
1564 } CPAccessResult;
1565 
1566 /* Access functions for coprocessor registers. These cannot fail and
1567  * may not raise exceptions.
1568  */
1569 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1570 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1571                        uint64_t value);
1572 /* Access permission check functions for coprocessor registers. */
1573 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1574                                   const ARMCPRegInfo *opaque,
1575                                   bool isread);
1576 /* Hook function for register reset */
1577 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1578 
1579 #define CP_ANY 0xff
1580 
1581 /* Definition of an ARM coprocessor register */
1582 struct ARMCPRegInfo {
1583     /* Name of register (useful mainly for debugging, need not be unique) */
1584     const char *name;
1585     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1586      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1587      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1588      * will be decoded to this register. The register read and write
1589      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1590      * used by the program, so it is possible to register a wildcard and
1591      * then behave differently on read/write if necessary.
1592      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1593      * must both be zero.
1594      * For AArch64-visible registers, opc0 is also used.
1595      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1596      * way to distinguish (for KVM's benefit) guest-visible system registers
1597      * from demuxed ones provided to preserve the "no side effects on
1598      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1599      * visible (to match KVM's encoding); cp==0 will be converted to
1600      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1601      */
1602     uint8_t cp;
1603     uint8_t crn;
1604     uint8_t crm;
1605     uint8_t opc0;
1606     uint8_t opc1;
1607     uint8_t opc2;
1608     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1609     int state;
1610     /* Register type: ARM_CP_* bits/values */
1611     int type;
1612     /* Access rights: PL*_[RW] */
1613     int access;
1614     /* Security state: ARM_CP_SECSTATE_* bits/values */
1615     int secure;
1616     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1617      * this register was defined: can be used to hand data through to the
1618      * register read/write functions, since they are passed the ARMCPRegInfo*.
1619      */
1620     void *opaque;
1621     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1622      * fieldoffset is non-zero, the reset value of the register.
1623      */
1624     uint64_t resetvalue;
1625     /* Offset of the field in CPUARMState for this register.
1626      *
1627      * This is not needed if either:
1628      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1629      *  2. both readfn and writefn are specified
1630      */
1631     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1632 
1633     /* Offsets of the secure and non-secure fields in CPUARMState for the
1634      * register if it is banked.  These fields are only used during the static
1635      * registration of a register.  During hashing the bank associated
1636      * with a given security state is copied to fieldoffset which is used from
1637      * there on out.
1638      *
1639      * It is expected that register definitions use either fieldoffset or
1640      * bank_fieldoffsets in the definition but not both.  It is also expected
1641      * that both bank offsets are set when defining a banked register.  This
1642      * use indicates that a register is banked.
1643      */
1644     ptrdiff_t bank_fieldoffsets[2];
1645 
1646     /* Function for making any access checks for this register in addition to
1647      * those specified by the 'access' permissions bits. If NULL, no extra
1648      * checks required. The access check is performed at runtime, not at
1649      * translate time.
1650      */
1651     CPAccessFn *accessfn;
1652     /* Function for handling reads of this register. If NULL, then reads
1653      * will be done by loading from the offset into CPUARMState specified
1654      * by fieldoffset.
1655      */
1656     CPReadFn *readfn;
1657     /* Function for handling writes of this register. If NULL, then writes
1658      * will be done by writing to the offset into CPUARMState specified
1659      * by fieldoffset.
1660      */
1661     CPWriteFn *writefn;
1662     /* Function for doing a "raw" read; used when we need to copy
1663      * coprocessor state to the kernel for KVM or out for
1664      * migration. This only needs to be provided if there is also a
1665      * readfn and it has side effects (for instance clear-on-read bits).
1666      */
1667     CPReadFn *raw_readfn;
1668     /* Function for doing a "raw" write; used when we need to copy KVM
1669      * kernel coprocessor state into userspace, or for inbound
1670      * migration. This only needs to be provided if there is also a
1671      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1672      * or similar behaviour.
1673      */
1674     CPWriteFn *raw_writefn;
1675     /* Function for resetting the register. If NULL, then reset will be done
1676      * by writing resetvalue to the field specified in fieldoffset. If
1677      * fieldoffset is 0 then no reset will be done.
1678      */
1679     CPResetFn *resetfn;
1680 };
1681 
1682 /* Macros which are lvalues for the field in CPUARMState for the
1683  * ARMCPRegInfo *ri.
1684  */
1685 #define CPREG_FIELD32(env, ri) \
1686     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1687 #define CPREG_FIELD64(env, ri) \
1688     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1689 
1690 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1691 
1692 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1693                                     const ARMCPRegInfo *regs, void *opaque);
1694 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1695                                        const ARMCPRegInfo *regs, void *opaque);
1696 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1697 {
1698     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1699 }
1700 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1701 {
1702     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1703 }
1704 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1705 
1706 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1707 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1708                          uint64_t value);
1709 /* CPReadFn that can be used for read-as-zero behaviour */
1710 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1711 
1712 /* CPResetFn that does nothing, for use if no reset is required even
1713  * if fieldoffset is non zero.
1714  */
1715 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1716 
1717 /* Return true if this reginfo struct's field in the cpu state struct
1718  * is 64 bits wide.
1719  */
1720 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1721 {
1722     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1723 }
1724 
1725 static inline bool cp_access_ok(int current_el,
1726                                 const ARMCPRegInfo *ri, int isread)
1727 {
1728     return (ri->access >> ((current_el * 2) + isread)) & 1;
1729 }
1730 
1731 /* Raw read of a coprocessor register (as needed for migration, etc) */
1732 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1733 
1734 /**
1735  * write_list_to_cpustate
1736  * @cpu: ARMCPU
1737  *
1738  * For each register listed in the ARMCPU cpreg_indexes list, write
1739  * its value from the cpreg_values list into the ARMCPUState structure.
1740  * This updates TCG's working data structures from KVM data or
1741  * from incoming migration state.
1742  *
1743  * Returns: true if all register values were updated correctly,
1744  * false if some register was unknown or could not be written.
1745  * Note that we do not stop early on failure -- we will attempt
1746  * writing all registers in the list.
1747  */
1748 bool write_list_to_cpustate(ARMCPU *cpu);
1749 
1750 /**
1751  * write_cpustate_to_list:
1752  * @cpu: ARMCPU
1753  *
1754  * For each register listed in the ARMCPU cpreg_indexes list, write
1755  * its value from the ARMCPUState structure into the cpreg_values list.
1756  * This is used to copy info from TCG's working data structures into
1757  * KVM or for outbound migration.
1758  *
1759  * Returns: true if all register values were read correctly,
1760  * false if some register was unknown or could not be read.
1761  * Note that we do not stop early on failure -- we will attempt
1762  * reading all registers in the list.
1763  */
1764 bool write_cpustate_to_list(ARMCPU *cpu);
1765 
1766 /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1767    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1768    conventional cores (ie. Application or Realtime profile).  */
1769 
1770 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1771 
1772 #define ARM_CPUID_TI915T      0x54029152
1773 #define ARM_CPUID_TI925T      0x54029252
1774 
1775 #if defined(CONFIG_USER_ONLY)
1776 #define TARGET_PAGE_BITS 12
1777 #else
1778 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1779  * have to support 1K tiny pages.
1780  */
1781 #define TARGET_PAGE_BITS_VARY
1782 #define TARGET_PAGE_BITS_MIN 10
1783 #endif
1784 
1785 #if defined(TARGET_AARCH64)
1786 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1787 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1788 #else
1789 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1790 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1791 #endif
1792 
1793 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1794                                      unsigned int target_el)
1795 {
1796     CPUARMState *env = cs->env_ptr;
1797     unsigned int cur_el = arm_current_el(env);
1798     bool secure = arm_is_secure(env);
1799     bool pstate_unmasked;
1800     int8_t unmasked = 0;
1801 
1802     /* Don't take exceptions if they target a lower EL.
1803      * This check should catch any exceptions that would not be taken but left
1804      * pending.
1805      */
1806     if (cur_el > target_el) {
1807         return false;
1808     }
1809 
1810     switch (excp_idx) {
1811     case EXCP_FIQ:
1812         pstate_unmasked = !(env->daif & PSTATE_F);
1813         break;
1814 
1815     case EXCP_IRQ:
1816         pstate_unmasked = !(env->daif & PSTATE_I);
1817         break;
1818 
1819     case EXCP_VFIQ:
1820         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1821             /* VFIQs are only taken when hypervized and non-secure.  */
1822             return false;
1823         }
1824         return !(env->daif & PSTATE_F);
1825     case EXCP_VIRQ:
1826         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1827             /* VIRQs are only taken when hypervized and non-secure.  */
1828             return false;
1829         }
1830         return !(env->daif & PSTATE_I);
1831     default:
1832         g_assert_not_reached();
1833     }
1834 
1835     /* Use the target EL, current execution state and SCR/HCR settings to
1836      * determine whether the corresponding CPSR bit is used to mask the
1837      * interrupt.
1838      */
1839     if ((target_el > cur_el) && (target_el != 1)) {
1840         /* Exceptions targeting a higher EL may not be maskable */
1841         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1842             /* 64-bit masking rules are simple: exceptions to EL3
1843              * can't be masked, and exceptions to EL2 can only be
1844              * masked from Secure state. The HCR and SCR settings
1845              * don't affect the masking logic, only the interrupt routing.
1846              */
1847             if (target_el == 3 || !secure) {
1848                 unmasked = 1;
1849             }
1850         } else {
1851             /* The old 32-bit-only environment has a more complicated
1852              * masking setup. HCR and SCR bits not only affect interrupt
1853              * routing but also change the behaviour of masking.
1854              */
1855             bool hcr, scr;
1856 
1857             switch (excp_idx) {
1858             case EXCP_FIQ:
1859                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1860                  * we override the CPSR.F in determining if the exception is
1861                  * masked or not. If neither of these are set then we fall back
1862                  * to the CPSR.F setting otherwise we further assess the state
1863                  * below.
1864                  */
1865                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1866                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1867 
1868                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1869                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1870                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1871                  * when non-secure but only when FIQs are only routed to EL3.
1872                  */
1873                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1874                 break;
1875             case EXCP_IRQ:
1876                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1877                  * we may override the CPSR.I masking when in non-secure state.
1878                  * The SCR.IRQ setting has already been taken into consideration
1879                  * when setting the target EL, so it does not have a further
1880                  * affect here.
1881                  */
1882                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1883                 scr = false;
1884                 break;
1885             default:
1886                 g_assert_not_reached();
1887             }
1888 
1889             if ((scr || hcr) && !secure) {
1890                 unmasked = 1;
1891             }
1892         }
1893     }
1894 
1895     /* The PSTATE bits only mask the interrupt if we have not overriden the
1896      * ability above.
1897      */
1898     return unmasked || pstate_unmasked;
1899 }
1900 
1901 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1902 
1903 #define cpu_signal_handler cpu_arm_signal_handler
1904 #define cpu_list arm_cpu_list
1905 
1906 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1907  *
1908  * If EL3 is 64-bit:
1909  *  + NonSecure EL1 & 0 stage 1
1910  *  + NonSecure EL1 & 0 stage 2
1911  *  + NonSecure EL2
1912  *  + Secure EL1 & EL0
1913  *  + Secure EL3
1914  * If EL3 is 32-bit:
1915  *  + NonSecure PL1 & 0 stage 1
1916  *  + NonSecure PL1 & 0 stage 2
1917  *  + NonSecure PL2
1918  *  + Secure PL0 & PL1
1919  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1920  *
1921  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1922  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1923  *     may differ in access permissions even if the VA->PA map is the same
1924  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1925  *     translation, which means that we have one mmu_idx that deals with two
1926  *     concatenated translation regimes [this sort of combined s1+2 TLB is
1927  *     architecturally permitted]
1928  *  3. we don't need to allocate an mmu_idx to translations that we won't be
1929  *     handling via the TLB. The only way to do a stage 1 translation without
1930  *     the immediate stage 2 translation is via the ATS or AT system insns,
1931  *     which can be slow-pathed and always do a page table walk.
1932  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1933  *     translation regimes, because they map reasonably well to each other
1934  *     and they can't both be active at the same time.
1935  * This gives us the following list of mmu_idx values:
1936  *
1937  * NS EL0 (aka NS PL0) stage 1+2
1938  * NS EL1 (aka NS PL1) stage 1+2
1939  * NS EL2 (aka NS PL2)
1940  * S EL3 (aka S PL1)
1941  * S EL0 (aka S PL0)
1942  * S EL1 (not used if EL3 is 32 bit)
1943  * NS EL0+1 stage 2
1944  *
1945  * (The last of these is an mmu_idx because we want to be able to use the TLB
1946  * for the accesses done as part of a stage 1 page table walk, rather than
1947  * having to walk the stage 2 page table over and over.)
1948  *
1949  * Our enumeration includes at the end some entries which are not "true"
1950  * mmu_idx values in that they don't have corresponding TLBs and are only
1951  * valid for doing slow path page table walks.
1952  *
1953  * The constant names here are patterned after the general style of the names
1954  * of the AT/ATS operations.
1955  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1956  */
1957 typedef enum ARMMMUIdx {
1958     ARMMMUIdx_S12NSE0 = 0,
1959     ARMMMUIdx_S12NSE1 = 1,
1960     ARMMMUIdx_S1E2 = 2,
1961     ARMMMUIdx_S1E3 = 3,
1962     ARMMMUIdx_S1SE0 = 4,
1963     ARMMMUIdx_S1SE1 = 5,
1964     ARMMMUIdx_S2NS = 6,
1965     /* Indexes below here don't have TLBs and are used only for AT system
1966      * instructions or for the first stage of an S12 page table walk.
1967      */
1968     ARMMMUIdx_S1NSE0 = 7,
1969     ARMMMUIdx_S1NSE1 = 8,
1970 } ARMMMUIdx;
1971 
1972 #define MMU_USER_IDX 0
1973 
1974 /* Return the exception level we're running at if this is our mmu_idx */
1975 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1976 {
1977     assert(mmu_idx < ARMMMUIdx_S2NS);
1978     return mmu_idx & 3;
1979 }
1980 
1981 /* Determine the current mmu_idx to use for normal loads/stores */
1982 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1983 {
1984     int el = arm_current_el(env);
1985 
1986     if (el < 2 && arm_is_secure_below_el3(env)) {
1987         return ARMMMUIdx_S1SE0 + el;
1988     }
1989     return el;
1990 }
1991 
1992 /* Indexes used when registering address spaces with cpu_address_space_init */
1993 typedef enum ARMASIdx {
1994     ARMASIdx_NS = 0,
1995     ARMASIdx_S = 1,
1996 } ARMASIdx;
1997 
1998 /* Return the Exception Level targeted by debug exceptions. */
1999 static inline int arm_debug_target_el(CPUARMState *env)
2000 {
2001     bool secure = arm_is_secure(env);
2002     bool route_to_el2 = false;
2003 
2004     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2005         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2006                        env->cp15.mdcr_el2 & (1 << 8);
2007     }
2008 
2009     if (route_to_el2) {
2010         return 2;
2011     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2012                !arm_el_is_aa64(env, 3) && secure) {
2013         return 3;
2014     } else {
2015         return 1;
2016     }
2017 }
2018 
2019 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2020 {
2021     if (arm_is_secure(env)) {
2022         /* MDCR_EL3.SDD disables debug events from Secure state */
2023         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2024             || arm_current_el(env) == 3) {
2025             return false;
2026         }
2027     }
2028 
2029     if (arm_current_el(env) == arm_debug_target_el(env)) {
2030         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2031             || (env->daif & PSTATE_D)) {
2032             return false;
2033         }
2034     }
2035     return true;
2036 }
2037 
2038 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2039 {
2040     int el = arm_current_el(env);
2041 
2042     if (el == 0 && arm_el_is_aa64(env, 1)) {
2043         return aa64_generate_debug_exceptions(env);
2044     }
2045 
2046     if (arm_is_secure(env)) {
2047         int spd;
2048 
2049         if (el == 0 && (env->cp15.sder & 1)) {
2050             /* SDER.SUIDEN means debug exceptions from Secure EL0
2051              * are always enabled. Otherwise they are controlled by
2052              * SDCR.SPD like those from other Secure ELs.
2053              */
2054             return true;
2055         }
2056 
2057         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2058         switch (spd) {
2059         case 1:
2060             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2061         case 0:
2062             /* For 0b00 we return true if external secure invasive debug
2063              * is enabled. On real hardware this is controlled by external
2064              * signals to the core. QEMU always permits debug, and behaves
2065              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2066              */
2067             return true;
2068         case 2:
2069             return false;
2070         case 3:
2071             return true;
2072         }
2073     }
2074 
2075     return el != 2;
2076 }
2077 
2078 /* Return true if debugging exceptions are currently enabled.
2079  * This corresponds to what in ARM ARM pseudocode would be
2080  *    if UsingAArch32() then
2081  *        return AArch32.GenerateDebugExceptions()
2082  *    else
2083  *        return AArch64.GenerateDebugExceptions()
2084  * We choose to push the if() down into this function for clarity,
2085  * since the pseudocode has it at all callsites except for the one in
2086  * CheckSoftwareStep(), where it is elided because both branches would
2087  * always return the same value.
2088  *
2089  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2090  * don't yet implement those exception levels or their associated trap bits.
2091  */
2092 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2093 {
2094     if (env->aarch64) {
2095         return aa64_generate_debug_exceptions(env);
2096     } else {
2097         return aa32_generate_debug_exceptions(env);
2098     }
2099 }
2100 
2101 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2102  * implicitly means this always returns false in pre-v8 CPUs.)
2103  */
2104 static inline bool arm_singlestep_active(CPUARMState *env)
2105 {
2106     return extract32(env->cp15.mdscr_el1, 0, 1)
2107         && arm_el_is_aa64(env, arm_debug_target_el(env))
2108         && arm_generate_debug_exceptions(env);
2109 }
2110 
2111 static inline bool arm_sctlr_b(CPUARMState *env)
2112 {
2113     return
2114         /* We need not implement SCTLR.ITD in user-mode emulation, so
2115          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2116          * This lets people run BE32 binaries with "-cpu any".
2117          */
2118 #ifndef CONFIG_USER_ONLY
2119         !arm_feature(env, ARM_FEATURE_V7) &&
2120 #endif
2121         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2122 }
2123 
2124 /* Return true if the processor is in big-endian mode. */
2125 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2126 {
2127     int cur_el;
2128 
2129     /* In 32bit endianness is determined by looking at CPSR's E bit */
2130     if (!is_a64(env)) {
2131         return
2132 #ifdef CONFIG_USER_ONLY
2133             /* In system mode, BE32 is modelled in line with the
2134              * architecture (as word-invariant big-endianness), where loads
2135              * and stores are done little endian but from addresses which
2136              * are adjusted by XORing with the appropriate constant. So the
2137              * endianness to use for the raw data access is not affected by
2138              * SCTLR.B.
2139              * In user mode, however, we model BE32 as byte-invariant
2140              * big-endianness (because user-only code cannot tell the
2141              * difference), and so we need to use a data access endianness
2142              * that depends on SCTLR.B.
2143              */
2144             arm_sctlr_b(env) ||
2145 #endif
2146                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2147     }
2148 
2149     cur_el = arm_current_el(env);
2150 
2151     if (cur_el == 0) {
2152         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2153     }
2154 
2155     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2156 }
2157 
2158 #include "exec/cpu-all.h"
2159 
2160 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2161  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2162  * We put flags which are shared between 32 and 64 bit mode at the top
2163  * of the word, and flags which apply to only one mode at the bottom.
2164  */
2165 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2166 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2167 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2168 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2169 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2170 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2171 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2172 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2173 /* Target EL if we take a floating-point-disabled exception */
2174 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2175 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2176 
2177 /* Bit usage when in AArch32 state: */
2178 #define ARM_TBFLAG_THUMB_SHIFT      0
2179 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2180 #define ARM_TBFLAG_VECLEN_SHIFT     1
2181 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2182 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2183 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2184 #define ARM_TBFLAG_VFPEN_SHIFT      7
2185 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2186 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2187 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2188 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2189 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2190 /* We store the bottom two bits of the CPAR as TB flags and handle
2191  * checks on the other bits at runtime
2192  */
2193 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2194 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2195 /* Indicates whether cp register reads and writes by guest code should access
2196  * the secure or nonsecure bank of banked registers; note that this is not
2197  * the same thing as the current security state of the processor!
2198  */
2199 #define ARM_TBFLAG_NS_SHIFT         19
2200 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2201 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2202 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2203 
2204 /* Bit usage when in AArch64 state */
2205 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2206 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2207 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2208 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2209 
2210 /* some convenience accessor macros */
2211 #define ARM_TBFLAG_AARCH64_STATE(F) \
2212     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2213 #define ARM_TBFLAG_MMUIDX(F) \
2214     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2215 #define ARM_TBFLAG_SS_ACTIVE(F) \
2216     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2217 #define ARM_TBFLAG_PSTATE_SS(F) \
2218     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2219 #define ARM_TBFLAG_FPEXC_EL(F) \
2220     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2221 #define ARM_TBFLAG_THUMB(F) \
2222     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2223 #define ARM_TBFLAG_VECLEN(F) \
2224     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2225 #define ARM_TBFLAG_VECSTRIDE(F) \
2226     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2227 #define ARM_TBFLAG_VFPEN(F) \
2228     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2229 #define ARM_TBFLAG_CONDEXEC(F) \
2230     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2231 #define ARM_TBFLAG_SCTLR_B(F) \
2232     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2233 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2234     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2235 #define ARM_TBFLAG_NS(F) \
2236     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2237 #define ARM_TBFLAG_BE_DATA(F) \
2238     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2239 #define ARM_TBFLAG_TBI0(F) \
2240     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2241 #define ARM_TBFLAG_TBI1(F) \
2242     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2243 
2244 static inline bool bswap_code(bool sctlr_b)
2245 {
2246 #ifdef CONFIG_USER_ONLY
2247     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2248      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2249      * would also end up as a mixed-endian mode with BE code, LE data.
2250      */
2251     return
2252 #ifdef TARGET_WORDS_BIGENDIAN
2253         1 ^
2254 #endif
2255         sctlr_b;
2256 #else
2257     /* All code access in ARM is little endian, and there are no loaders
2258      * doing swaps that need to be reversed
2259      */
2260     return 0;
2261 #endif
2262 }
2263 
2264 /* Return the exception level to which FP-disabled exceptions should
2265  * be taken, or 0 if FP is enabled.
2266  */
2267 static inline int fp_exception_el(CPUARMState *env)
2268 {
2269     int fpen;
2270     int cur_el = arm_current_el(env);
2271 
2272     /* CPACR and the CPTR registers don't exist before v6, so FP is
2273      * always accessible
2274      */
2275     if (!arm_feature(env, ARM_FEATURE_V6)) {
2276         return 0;
2277     }
2278 
2279     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2280      * 0, 2 : trap EL0 and EL1/PL1 accesses
2281      * 1    : trap only EL0 accesses
2282      * 3    : trap no accesses
2283      */
2284     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2285     switch (fpen) {
2286     case 0:
2287     case 2:
2288         if (cur_el == 0 || cur_el == 1) {
2289             /* Trap to PL1, which might be EL1 or EL3 */
2290             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2291                 return 3;
2292             }
2293             return 1;
2294         }
2295         if (cur_el == 3 && !is_a64(env)) {
2296             /* Secure PL1 running at EL3 */
2297             return 3;
2298         }
2299         break;
2300     case 1:
2301         if (cur_el == 0) {
2302             return 1;
2303         }
2304         break;
2305     case 3:
2306         break;
2307     }
2308 
2309     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2310      * check because zero bits in the registers mean "don't trap".
2311      */
2312 
2313     /* CPTR_EL2 : present in v7VE or v8 */
2314     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2315         && !arm_is_secure_below_el3(env)) {
2316         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2317         return 2;
2318     }
2319 
2320     /* CPTR_EL3 : present in v8 */
2321     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2322         /* Trap all FP ops to EL3 */
2323         return 3;
2324     }
2325 
2326     return 0;
2327 }
2328 
2329 #ifdef CONFIG_USER_ONLY
2330 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2331 {
2332     return
2333 #ifdef TARGET_WORDS_BIGENDIAN
2334        1 ^
2335 #endif
2336        arm_cpu_data_is_big_endian(env);
2337 }
2338 #endif
2339 
2340 #ifndef CONFIG_USER_ONLY
2341 /**
2342  * arm_regime_tbi0:
2343  * @env: CPUARMState
2344  * @mmu_idx: MMU index indicating required translation regime
2345  *
2346  * Extracts the TBI0 value from the appropriate TCR for the current EL
2347  *
2348  * Returns: the TBI0 value.
2349  */
2350 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2351 
2352 /**
2353  * arm_regime_tbi1:
2354  * @env: CPUARMState
2355  * @mmu_idx: MMU index indicating required translation regime
2356  *
2357  * Extracts the TBI1 value from the appropriate TCR for the current EL
2358  *
2359  * Returns: the TBI1 value.
2360  */
2361 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2362 #else
2363 /* We can't handle tagged addresses properly in user-only mode */
2364 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2365 {
2366     return 0;
2367 }
2368 
2369 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2370 {
2371     return 0;
2372 }
2373 #endif
2374 
2375 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2376                                         target_ulong *cs_base, uint32_t *flags)
2377 {
2378     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2379     if (is_a64(env)) {
2380         *pc = env->pc;
2381         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2382         /* Get control bits for tagged addresses */
2383         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2384         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2385     } else {
2386         *pc = env->regs[15];
2387         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2388             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2389             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2390             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2391             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2392         if (!(access_secure_reg(env))) {
2393             *flags |= ARM_TBFLAG_NS_MASK;
2394         }
2395         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2396             || arm_el_is_aa64(env, 1)) {
2397             *flags |= ARM_TBFLAG_VFPEN_MASK;
2398         }
2399         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2400                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2401     }
2402 
2403     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2404 
2405     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2406      * states defined in the ARM ARM for software singlestep:
2407      *  SS_ACTIVE   PSTATE.SS   State
2408      *     0            x       Inactive (the TB flag for SS is always 0)
2409      *     1            0       Active-pending
2410      *     1            1       Active-not-pending
2411      */
2412     if (arm_singlestep_active(env)) {
2413         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2414         if (is_a64(env)) {
2415             if (env->pstate & PSTATE_SS) {
2416                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2417             }
2418         } else {
2419             if (env->uncached_cpsr & PSTATE_SS) {
2420                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2421             }
2422         }
2423     }
2424     if (arm_cpu_data_is_big_endian(env)) {
2425         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2426     }
2427     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2428 
2429     *cs_base = 0;
2430 }
2431 
2432 enum {
2433     QEMU_PSCI_CONDUIT_DISABLED = 0,
2434     QEMU_PSCI_CONDUIT_SMC = 1,
2435     QEMU_PSCI_CONDUIT_HVC = 2,
2436 };
2437 
2438 #ifndef CONFIG_USER_ONLY
2439 /* Return the address space index to use for a memory access */
2440 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2441 {
2442     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2443 }
2444 
2445 /* Return the AddressSpace to use for a memory access
2446  * (which depends on whether the access is S or NS, and whether
2447  * the board gave us a separate AddressSpace for S accesses).
2448  */
2449 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2450 {
2451     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2452 }
2453 #endif
2454 
2455 /**
2456  * arm_register_el_change_hook:
2457  * Register a hook function which will be called back whenever this
2458  * CPU changes exception level or mode. The hook function will be
2459  * passed a pointer to the ARMCPU and the opaque data pointer passed
2460  * to this function when the hook was registered.
2461  *
2462  * Note that we currently only support registering a single hook function,
2463  * and will assert if this function is called twice.
2464  * This facility is intended for the use of the GICv3 emulation.
2465  */
2466 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2467                                  void *opaque);
2468 
2469 /**
2470  * arm_get_el_change_hook_opaque:
2471  * Return the opaque data that will be used by the el_change_hook
2472  * for this CPU.
2473  */
2474 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2475 {
2476     return cpu->el_change_hook_opaque;
2477 }
2478 
2479 #endif
2480