xref: /qemu/target/arm/cpu.h (revision 29320530)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 typedef struct {
170     uint64_t raw_tcr;
171     uint32_t mask;
172     uint32_t base_mask;
173 } TCR;
174 
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
179 
180 /* Define a maximum sized vector register.
181  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182  * For 64-bit, this is a 2048-bit SVE register.
183  *
184  * Note that the mapping between S, D, and Q views of the register bank
185  * differs between AArch64 and AArch32.
186  * In AArch32:
187  *  Qn = regs[n].d[1]:regs[n].d[0]
188  *  Dn = regs[n / 2].d[n & 1]
189  *  Sn = regs[n / 4].d[n % 4 / 2],
190  *       bits 31..0 for even n, and bits 63..32 for odd n
191  *       (and regs[16] to regs[31] are inaccessible)
192  * In AArch64:
193  *  Zn = regs[n].d[*]
194  *  Qn = regs[n].d[1]:regs[n].d[0]
195  *  Dn = regs[n].d[0]
196  *  Sn = regs[n].d[0] bits 31..0
197  *  Hn = regs[n].d[0] bits 15..0
198  *
199  * This corresponds to the architecturally defined mapping between
200  * the two execution states, and means we do not need to explicitly
201  * map these registers when changing states.
202  *
203  * Align the data for use with TCG host vector operations.
204  */
205 
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ    16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ    1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
217 
218 typedef struct ARMVectorReg {
219     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
221 
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all.  */
224 typedef struct ARMPredicateReg {
225     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
227 
228 /* In AArch32 mode, PAC keys do not exist at all.  */
229 typedef struct ARMPACKey {
230     uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
233 
234 /* See the commentary above the TBFLAG field definitions.  */
235 typedef struct CPUARMTBFlags {
236     uint32_t flags;
237     target_ulong flags2;
238 } CPUARMTBFlags;
239 
240 typedef struct CPUArchState {
241     /* Regs for current mode.  */
242     uint32_t regs[16];
243 
244     /* 32/64 switch only happens when taking and returning from
245      * exceptions so the overlap semantics are taken care of then
246      * instead of having a complicated union.
247      */
248     /* Regs for A64 mode.  */
249     uint64_t xregs[32];
250     uint64_t pc;
251     /* PSTATE isn't an architectural register for ARMv8. However, it is
252      * convenient for us to assemble the underlying state into a 32 bit format
253      * identical to the architectural format used for the SPSR. (This is also
254      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255      * 'pstate' register are.) Of the PSTATE bits:
256      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257      *    semantics as for AArch32, as described in the comments on each field)
258      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
259      *  DAIF (exception masks) are kept in env->daif
260      *  BTYPE is kept in env->btype
261      *  all other bits are stored in their correct places in env->pstate
262      */
263     uint32_t pstate;
264     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
266 
267     /* Cached TBFLAGS state.  See below for which bits are included.  */
268     CPUARMTBFlags hflags;
269 
270     /* Frequently accessed CPSR bits are stored separately for efficiency.
271        This contains all the other bits.  Use cpsr_{read,write} to access
272        the whole CPSR.  */
273     uint32_t uncached_cpsr;
274     uint32_t spsr;
275 
276     /* Banked registers.  */
277     uint64_t banked_spsr[8];
278     uint32_t banked_r13[8];
279     uint32_t banked_r14[8];
280 
281     /* These hold r8-r12.  */
282     uint32_t usr_regs[5];
283     uint32_t fiq_regs[5];
284 
285     /* cpsr flag cache for faster execution */
286     uint32_t CF; /* 0 or 1 */
287     uint32_t VF; /* V is the bit 31. All other bits are undefined */
288     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
289     uint32_t ZF; /* Z set if zero.  */
290     uint32_t QF; /* 0 or 1 */
291     uint32_t GE; /* cpsr[19:16] */
292     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
293     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
294     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
295 
296     uint64_t elr_el[4]; /* AArch64 exception link regs  */
297     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
298 
299     /* System control coprocessor (cp15) */
300     struct {
301         uint32_t c0_cpuid;
302         union { /* Cache size selection */
303             struct {
304                 uint64_t _unused_csselr0;
305                 uint64_t csselr_ns;
306                 uint64_t _unused_csselr1;
307                 uint64_t csselr_s;
308             };
309             uint64_t csselr_el[4];
310         };
311         union { /* System control register. */
312             struct {
313                 uint64_t _unused_sctlr;
314                 uint64_t sctlr_ns;
315                 uint64_t hsctlr;
316                 uint64_t sctlr_s;
317             };
318             uint64_t sctlr_el[4];
319         };
320         uint64_t cpacr_el1; /* Architectural feature access control register */
321         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
322         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
323         uint64_t sder; /* Secure debug enable register. */
324         uint32_t nsacr; /* Non-secure access control register. */
325         union { /* MMU translation table base 0. */
326             struct {
327                 uint64_t _unused_ttbr0_0;
328                 uint64_t ttbr0_ns;
329                 uint64_t _unused_ttbr0_1;
330                 uint64_t ttbr0_s;
331             };
332             uint64_t ttbr0_el[4];
333         };
334         union { /* MMU translation table base 1. */
335             struct {
336                 uint64_t _unused_ttbr1_0;
337                 uint64_t ttbr1_ns;
338                 uint64_t _unused_ttbr1_1;
339                 uint64_t ttbr1_s;
340             };
341             uint64_t ttbr1_el[4];
342         };
343         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
344         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345         /* MMU translation table base control. */
346         TCR tcr_el[4];
347         TCR vtcr_el2; /* Virtualization Translation Control.  */
348         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349         uint32_t c2_data; /* MPU data cacheable bits.  */
350         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
351         union { /* MMU domain access control register
352                  * MPU write buffer control.
353                  */
354             struct {
355                 uint64_t dacr_ns;
356                 uint64_t dacr_s;
357             };
358             struct {
359                 uint64_t dacr32_el2;
360             };
361         };
362         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364         uint64_t hcr_el2; /* Hypervisor configuration register */
365         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
366         uint64_t scr_el3; /* Secure configuration register.  */
367         union { /* Fault status registers.  */
368             struct {
369                 uint64_t ifsr_ns;
370                 uint64_t ifsr_s;
371             };
372             struct {
373                 uint64_t ifsr32_el2;
374             };
375         };
376         union {
377             struct {
378                 uint64_t _unused_dfsr;
379                 uint64_t dfsr_ns;
380                 uint64_t hsr;
381                 uint64_t dfsr_s;
382             };
383             uint64_t esr_el[4];
384         };
385         uint32_t c6_region[8]; /* MPU base/size registers.  */
386         union { /* Fault address registers. */
387             struct {
388                 uint64_t _unused_far0;
389 #if HOST_BIG_ENDIAN
390                 uint32_t ifar_ns;
391                 uint32_t dfar_ns;
392                 uint32_t ifar_s;
393                 uint32_t dfar_s;
394 #else
395                 uint32_t dfar_ns;
396                 uint32_t ifar_ns;
397                 uint32_t dfar_s;
398                 uint32_t ifar_s;
399 #endif
400                 uint64_t _unused_far3;
401             };
402             uint64_t far_el[4];
403         };
404         uint64_t hpfar_el2;
405         uint64_t hstr_el2;
406         union { /* Translation result. */
407             struct {
408                 uint64_t _unused_par_0;
409                 uint64_t par_ns;
410                 uint64_t _unused_par_1;
411                 uint64_t par_s;
412             };
413             uint64_t par_el[4];
414         };
415 
416         uint32_t c9_insn; /* Cache lockdown registers.  */
417         uint32_t c9_data;
418         uint64_t c9_pmcr; /* performance monitor control register */
419         uint64_t c9_pmcnten; /* perf monitor counter enables */
420         uint64_t c9_pmovsr; /* perf monitor overflow status */
421         uint64_t c9_pmuserenr; /* perf monitor user enable */
422         uint64_t c9_pmselr; /* perf monitor counter selection register */
423         uint64_t c9_pminten; /* perf monitor interrupt enables */
424         union { /* Memory attribute redirection */
425             struct {
426 #if HOST_BIG_ENDIAN
427                 uint64_t _unused_mair_0;
428                 uint32_t mair1_ns;
429                 uint32_t mair0_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair1_s;
432                 uint32_t mair0_s;
433 #else
434                 uint64_t _unused_mair_0;
435                 uint32_t mair0_ns;
436                 uint32_t mair1_ns;
437                 uint64_t _unused_mair_1;
438                 uint32_t mair0_s;
439                 uint32_t mair1_s;
440 #endif
441             };
442             uint64_t mair_el[4];
443         };
444         union { /* vector base address register */
445             struct {
446                 uint64_t _unused_vbar;
447                 uint64_t vbar_ns;
448                 uint64_t hvbar;
449                 uint64_t vbar_s;
450             };
451             uint64_t vbar_el[4];
452         };
453         uint32_t mvbar; /* (monitor) vector base address register */
454         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
455         struct { /* FCSE PID. */
456             uint32_t fcseidr_ns;
457             uint32_t fcseidr_s;
458         };
459         union { /* Context ID. */
460             struct {
461                 uint64_t _unused_contextidr_0;
462                 uint64_t contextidr_ns;
463                 uint64_t _unused_contextidr_1;
464                 uint64_t contextidr_s;
465             };
466             uint64_t contextidr_el[4];
467         };
468         union { /* User RW Thread register. */
469             struct {
470                 uint64_t tpidrurw_ns;
471                 uint64_t tpidrprw_ns;
472                 uint64_t htpidr;
473                 uint64_t _tpidr_el3;
474             };
475             uint64_t tpidr_el[4];
476         };
477         /* The secure banks of these registers don't map anywhere */
478         uint64_t tpidrurw_s;
479         uint64_t tpidrprw_s;
480         uint64_t tpidruro_s;
481 
482         union { /* User RO Thread register. */
483             uint64_t tpidruro_ns;
484             uint64_t tpidrro_el[1];
485         };
486         uint64_t c14_cntfrq; /* Counter Frequency register */
487         uint64_t c14_cntkctl; /* Timer Control register */
488         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
489         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
490         ARMGenericTimer c14_timer[NUM_GTIMERS];
491         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
492         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
493         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
494         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
495         uint32_t c15_threadid; /* TI debugger thread-ID.  */
496         uint32_t c15_config_base_address; /* SCU base address.  */
497         uint32_t c15_diagnostic; /* diagnostic register */
498         uint32_t c15_power_diagnostic;
499         uint32_t c15_power_control; /* power control */
500         uint64_t dbgbvr[16]; /* breakpoint value registers */
501         uint64_t dbgbcr[16]; /* breakpoint control registers */
502         uint64_t dbgwvr[16]; /* watchpoint value registers */
503         uint64_t dbgwcr[16]; /* watchpoint control registers */
504         uint64_t mdscr_el1;
505         uint64_t oslsr_el1; /* OS Lock Status */
506         uint64_t mdcr_el2;
507         uint64_t mdcr_el3;
508         /* Stores the architectural value of the counter *the last time it was
509          * updated* by pmccntr_op_start. Accesses should always be surrounded
510          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
511          * architecturally-correct value is being read/set.
512          */
513         uint64_t c15_ccnt;
514         /* Stores the delta between the architectural value and the underlying
515          * cycle count during normal operation. It is used to update c15_ccnt
516          * to be the correct architectural value before accesses. During
517          * accesses, c15_ccnt_delta contains the underlying count being used
518          * for the access, after which it reverts to the delta value in
519          * pmccntr_op_finish.
520          */
521         uint64_t c15_ccnt_delta;
522         uint64_t c14_pmevcntr[31];
523         uint64_t c14_pmevcntr_delta[31];
524         uint64_t c14_pmevtyper[31];
525         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
526         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
527         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
528         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
529         uint64_t gcr_el1;
530         uint64_t rgsr_el1;
531 
532         /* Minimal RAS registers */
533         uint64_t disr_el1;
534         uint64_t vdisr_el2;
535         uint64_t vsesr_el2;
536     } cp15;
537 
538     struct {
539         /* M profile has up to 4 stack pointers:
540          * a Main Stack Pointer and a Process Stack Pointer for each
541          * of the Secure and Non-Secure states. (If the CPU doesn't support
542          * the security extension then it has only two SPs.)
543          * In QEMU we always store the currently active SP in regs[13],
544          * and the non-active SP for the current security state in
545          * v7m.other_sp. The stack pointers for the inactive security state
546          * are stored in other_ss_msp and other_ss_psp.
547          * switch_v7m_security_state() is responsible for rearranging them
548          * when we change security state.
549          */
550         uint32_t other_sp;
551         uint32_t other_ss_msp;
552         uint32_t other_ss_psp;
553         uint32_t vecbase[M_REG_NUM_BANKS];
554         uint32_t basepri[M_REG_NUM_BANKS];
555         uint32_t control[M_REG_NUM_BANKS];
556         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
557         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
558         uint32_t hfsr; /* HardFault Status */
559         uint32_t dfsr; /* Debug Fault Status Register */
560         uint32_t sfsr; /* Secure Fault Status Register */
561         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
562         uint32_t bfar; /* BusFault Address */
563         uint32_t sfar; /* Secure Fault Address Register */
564         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
565         int exception;
566         uint32_t primask[M_REG_NUM_BANKS];
567         uint32_t faultmask[M_REG_NUM_BANKS];
568         uint32_t aircr; /* only holds r/w state if security extn implemented */
569         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
570         uint32_t csselr[M_REG_NUM_BANKS];
571         uint32_t scr[M_REG_NUM_BANKS];
572         uint32_t msplim[M_REG_NUM_BANKS];
573         uint32_t psplim[M_REG_NUM_BANKS];
574         uint32_t fpcar[M_REG_NUM_BANKS];
575         uint32_t fpccr[M_REG_NUM_BANKS];
576         uint32_t fpdscr[M_REG_NUM_BANKS];
577         uint32_t cpacr[M_REG_NUM_BANKS];
578         uint32_t nsacr;
579         uint32_t ltpsize;
580         uint32_t vpr;
581     } v7m;
582 
583     /* Information associated with an exception about to be taken:
584      * code which raises an exception must set cs->exception_index and
585      * the relevant parts of this structure; the cpu_do_interrupt function
586      * will then set the guest-visible registers as part of the exception
587      * entry process.
588      */
589     struct {
590         uint32_t syndrome; /* AArch64 format syndrome register */
591         uint32_t fsr; /* AArch32 format fault status register info */
592         uint64_t vaddress; /* virtual addr associated with exception, if any */
593         uint32_t target_el; /* EL the exception should be targeted for */
594         /* If we implement EL2 we will also need to store information
595          * about the intermediate physical address for stage 2 faults.
596          */
597     } exception;
598 
599     /* Information associated with an SError */
600     struct {
601         uint8_t pending;
602         uint8_t has_esr;
603         uint64_t esr;
604     } serror;
605 
606     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
607 
608     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
609     uint32_t irq_line_state;
610 
611     /* Thumb-2 EE state.  */
612     uint32_t teecr;
613     uint32_t teehbr;
614 
615     /* VFP coprocessor state.  */
616     struct {
617         ARMVectorReg zregs[32];
618 
619 #ifdef TARGET_AARCH64
620         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
621 #define FFR_PRED_NUM 16
622         ARMPredicateReg pregs[17];
623         /* Scratch space for aa64 sve predicate temporary.  */
624         ARMPredicateReg preg_tmp;
625 #endif
626 
627         /* We store these fpcsr fields separately for convenience.  */
628         uint32_t qc[4] QEMU_ALIGNED(16);
629         int vec_len;
630         int vec_stride;
631 
632         uint32_t xregs[16];
633 
634         /* Scratch space for aa32 neon expansion.  */
635         uint32_t scratch[8];
636 
637         /* There are a number of distinct float control structures:
638          *
639          *  fp_status: is the "normal" fp status.
640          *  fp_status_fp16: used for half-precision calculations
641          *  standard_fp_status : the ARM "Standard FPSCR Value"
642          *  standard_fp_status_fp16 : used for half-precision
643          *       calculations with the ARM "Standard FPSCR Value"
644          *
645          * Half-precision operations are governed by a separate
646          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
647          * status structure to control this.
648          *
649          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
650          * round-to-nearest and is used by any operations (generally
651          * Neon) which the architecture defines as controlled by the
652          * standard FPSCR value rather than the FPSCR.
653          *
654          * The "standard FPSCR but for fp16 ops" is needed because
655          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
656          * using a fixed value for it.
657          *
658          * To avoid having to transfer exception bits around, we simply
659          * say that the FPSCR cumulative exception flags are the logical
660          * OR of the flags in the four fp statuses. This relies on the
661          * only thing which needs to read the exception flags being
662          * an explicit FPSCR read.
663          */
664         float_status fp_status;
665         float_status fp_status_f16;
666         float_status standard_fp_status;
667         float_status standard_fp_status_f16;
668 
669         /* ZCR_EL[1-3] */
670         uint64_t zcr_el[4];
671     } vfp;
672     uint64_t exclusive_addr;
673     uint64_t exclusive_val;
674     uint64_t exclusive_high;
675 
676     /* iwMMXt coprocessor state.  */
677     struct {
678         uint64_t regs[16];
679         uint64_t val;
680 
681         uint32_t cregs[16];
682     } iwmmxt;
683 
684 #ifdef TARGET_AARCH64
685     struct {
686         ARMPACKey apia;
687         ARMPACKey apib;
688         ARMPACKey apda;
689         ARMPACKey apdb;
690         ARMPACKey apga;
691     } keys;
692 
693     uint64_t scxtnum_el[4];
694 #endif
695 
696 #if defined(CONFIG_USER_ONLY)
697     /* For usermode syscall translation.  */
698     int eabi;
699 #endif
700 
701     struct CPUBreakpoint *cpu_breakpoint[16];
702     struct CPUWatchpoint *cpu_watchpoint[16];
703 
704     /* Fields up to this point are cleared by a CPU reset */
705     struct {} end_reset_fields;
706 
707     /* Fields after this point are preserved across CPU reset. */
708 
709     /* Internal CPU feature flags.  */
710     uint64_t features;
711 
712     /* PMSAv7 MPU */
713     struct {
714         uint32_t *drbar;
715         uint32_t *drsr;
716         uint32_t *dracr;
717         uint32_t rnr[M_REG_NUM_BANKS];
718     } pmsav7;
719 
720     /* PMSAv8 MPU */
721     struct {
722         /* The PMSAv8 implementation also shares some PMSAv7 config
723          * and state:
724          *  pmsav7.rnr (region number register)
725          *  pmsav7_dregion (number of configured regions)
726          */
727         uint32_t *rbar[M_REG_NUM_BANKS];
728         uint32_t *rlar[M_REG_NUM_BANKS];
729         uint32_t mair0[M_REG_NUM_BANKS];
730         uint32_t mair1[M_REG_NUM_BANKS];
731     } pmsav8;
732 
733     /* v8M SAU */
734     struct {
735         uint32_t *rbar;
736         uint32_t *rlar;
737         uint32_t rnr;
738         uint32_t ctrl;
739     } sau;
740 
741     void *nvic;
742     const struct arm_boot_info *boot_info;
743     /* Store GICv3CPUState to access from this struct */
744     void *gicv3state;
745 
746 #ifdef TARGET_TAGGED_ADDRESSES
747     /* Linux syscall tagged address support */
748     bool tagged_addr_enable;
749 #endif
750 } CPUARMState;
751 
752 static inline void set_feature(CPUARMState *env, int feature)
753 {
754     env->features |= 1ULL << feature;
755 }
756 
757 static inline void unset_feature(CPUARMState *env, int feature)
758 {
759     env->features &= ~(1ULL << feature);
760 }
761 
762 /**
763  * ARMELChangeHookFn:
764  * type of a function which can be registered via arm_register_el_change_hook()
765  * to get callbacks when the CPU changes its exception level or mode.
766  */
767 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
768 typedef struct ARMELChangeHook ARMELChangeHook;
769 struct ARMELChangeHook {
770     ARMELChangeHookFn *hook;
771     void *opaque;
772     QLIST_ENTRY(ARMELChangeHook) node;
773 };
774 
775 /* These values map onto the return values for
776  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
777 typedef enum ARMPSCIState {
778     PSCI_ON = 0,
779     PSCI_OFF = 1,
780     PSCI_ON_PENDING = 2
781 } ARMPSCIState;
782 
783 typedef struct ARMISARegisters ARMISARegisters;
784 
785 /**
786  * ARMCPU:
787  * @env: #CPUARMState
788  *
789  * An ARM CPU core.
790  */
791 struct ArchCPU {
792     /*< private >*/
793     CPUState parent_obj;
794     /*< public >*/
795 
796     CPUNegativeOffsetState neg;
797     CPUARMState env;
798 
799     /* Coprocessor information */
800     GHashTable *cp_regs;
801     /* For marshalling (mostly coprocessor) register state between the
802      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
803      * we use these arrays.
804      */
805     /* List of register indexes managed via these arrays; (full KVM style
806      * 64 bit indexes, not CPRegInfo 32 bit indexes)
807      */
808     uint64_t *cpreg_indexes;
809     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
810     uint64_t *cpreg_values;
811     /* Length of the indexes, values, reset_values arrays */
812     int32_t cpreg_array_len;
813     /* These are used only for migration: incoming data arrives in
814      * these fields and is sanity checked in post_load before copying
815      * to the working data structures above.
816      */
817     uint64_t *cpreg_vmstate_indexes;
818     uint64_t *cpreg_vmstate_values;
819     int32_t cpreg_vmstate_array_len;
820 
821     DynamicGDBXMLInfo dyn_sysreg_xml;
822     DynamicGDBXMLInfo dyn_svereg_xml;
823 
824     /* Timers used by the generic (architected) timer */
825     QEMUTimer *gt_timer[NUM_GTIMERS];
826     /*
827      * Timer used by the PMU. Its state is restored after migration by
828      * pmu_op_finish() - it does not need other handling during migration
829      */
830     QEMUTimer *pmu_timer;
831     /* GPIO outputs for generic timer */
832     qemu_irq gt_timer_outputs[NUM_GTIMERS];
833     /* GPIO output for GICv3 maintenance interrupt signal */
834     qemu_irq gicv3_maintenance_interrupt;
835     /* GPIO output for the PMU interrupt */
836     qemu_irq pmu_interrupt;
837 
838     /* MemoryRegion to use for secure physical accesses */
839     MemoryRegion *secure_memory;
840 
841     /* MemoryRegion to use for allocation tag accesses */
842     MemoryRegion *tag_memory;
843     MemoryRegion *secure_tag_memory;
844 
845     /* For v8M, pointer to the IDAU interface provided by board/SoC */
846     Object *idau;
847 
848     /* 'compatible' string for this CPU for Linux device trees */
849     const char *dtb_compatible;
850 
851     /* PSCI version for this CPU
852      * Bits[31:16] = Major Version
853      * Bits[15:0] = Minor Version
854      */
855     uint32_t psci_version;
856 
857     /* Current power state, access guarded by BQL */
858     ARMPSCIState power_state;
859 
860     /* CPU has virtualization extension */
861     bool has_el2;
862     /* CPU has security extension */
863     bool has_el3;
864     /* CPU has PMU (Performance Monitor Unit) */
865     bool has_pmu;
866     /* CPU has VFP */
867     bool has_vfp;
868     /* CPU has Neon */
869     bool has_neon;
870     /* CPU has M-profile DSP extension */
871     bool has_dsp;
872 
873     /* CPU has memory protection unit */
874     bool has_mpu;
875     /* PMSAv7 MPU number of supported regions */
876     uint32_t pmsav7_dregion;
877     /* v8M SAU number of supported regions */
878     uint32_t sau_sregion;
879 
880     /* PSCI conduit used to invoke PSCI methods
881      * 0 - disabled, 1 - smc, 2 - hvc
882      */
883     uint32_t psci_conduit;
884 
885     /* For v8M, initial value of the Secure VTOR */
886     uint32_t init_svtor;
887     /* For v8M, initial value of the Non-secure VTOR */
888     uint32_t init_nsvtor;
889 
890     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
891      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
892      */
893     uint32_t kvm_target;
894 
895     /* KVM init features for this CPU */
896     uint32_t kvm_init_features[7];
897 
898     /* KVM CPU state */
899 
900     /* KVM virtual time adjustment */
901     bool kvm_adjvtime;
902     bool kvm_vtime_dirty;
903     uint64_t kvm_vtime;
904 
905     /* KVM steal time */
906     OnOffAuto kvm_steal_time;
907 
908     /* Uniprocessor system with MP extensions */
909     bool mp_is_up;
910 
911     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
912      * and the probe failed (so we need to report the error in realize)
913      */
914     bool host_cpu_probe_failed;
915 
916     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
917      * register.
918      */
919     int32_t core_count;
920 
921     /* The instance init functions for implementation-specific subclasses
922      * set these fields to specify the implementation-dependent values of
923      * various constant registers and reset values of non-constant
924      * registers.
925      * Some of these might become QOM properties eventually.
926      * Field names match the official register names as defined in the
927      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
928      * is used for reset values of non-constant registers; no reset_
929      * prefix means a constant register.
930      * Some of these registers are split out into a substructure that
931      * is shared with the translators to control the ISA.
932      *
933      * Note that if you add an ID register to the ARMISARegisters struct
934      * you need to also update the 32-bit and 64-bit versions of the
935      * kvm_arm_get_host_cpu_features() function to correctly populate the
936      * field by reading the value from the KVM vCPU.
937      */
938     struct ARMISARegisters {
939         uint32_t id_isar0;
940         uint32_t id_isar1;
941         uint32_t id_isar2;
942         uint32_t id_isar3;
943         uint32_t id_isar4;
944         uint32_t id_isar5;
945         uint32_t id_isar6;
946         uint32_t id_mmfr0;
947         uint32_t id_mmfr1;
948         uint32_t id_mmfr2;
949         uint32_t id_mmfr3;
950         uint32_t id_mmfr4;
951         uint32_t id_pfr0;
952         uint32_t id_pfr1;
953         uint32_t id_pfr2;
954         uint32_t mvfr0;
955         uint32_t mvfr1;
956         uint32_t mvfr2;
957         uint32_t id_dfr0;
958         uint32_t dbgdidr;
959         uint64_t id_aa64isar0;
960         uint64_t id_aa64isar1;
961         uint64_t id_aa64pfr0;
962         uint64_t id_aa64pfr1;
963         uint64_t id_aa64mmfr0;
964         uint64_t id_aa64mmfr1;
965         uint64_t id_aa64mmfr2;
966         uint64_t id_aa64dfr0;
967         uint64_t id_aa64dfr1;
968         uint64_t id_aa64zfr0;
969         uint64_t reset_pmcr_el0;
970     } isar;
971     uint64_t midr;
972     uint32_t revidr;
973     uint32_t reset_fpsid;
974     uint64_t ctr;
975     uint32_t reset_sctlr;
976     uint64_t pmceid0;
977     uint64_t pmceid1;
978     uint32_t id_afr0;
979     uint64_t id_aa64afr0;
980     uint64_t id_aa64afr1;
981     uint64_t clidr;
982     uint64_t mp_affinity; /* MP ID without feature bits */
983     /* The elements of this array are the CCSIDR values for each cache,
984      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
985      */
986     uint64_t ccsidr[16];
987     uint64_t reset_cbar;
988     uint32_t reset_auxcr;
989     bool reset_hivecs;
990 
991     /*
992      * Intermediate values used during property parsing.
993      * Once finalized, the values should be read from ID_AA64*.
994      */
995     bool prop_pauth;
996     bool prop_pauth_impdef;
997     bool prop_lpa2;
998 
999     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1000     uint32_t dcz_blocksize;
1001     uint64_t rvbar_prop; /* Property/input signals.  */
1002 
1003     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1004     int gic_num_lrs; /* number of list registers */
1005     int gic_vpribits; /* number of virtual priority bits */
1006     int gic_vprebits; /* number of virtual preemption bits */
1007     int gic_pribits; /* number of physical priority bits */
1008 
1009     /* Whether the cfgend input is high (i.e. this CPU should reset into
1010      * big-endian mode).  This setting isn't used directly: instead it modifies
1011      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1012      * architecture version.
1013      */
1014     bool cfgend;
1015 
1016     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1017     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1018 
1019     int32_t node_id; /* NUMA node this CPU belongs to */
1020 
1021     /* Used to synchronize KVM and QEMU in-kernel device levels */
1022     uint8_t device_irq_level;
1023 
1024     /* Used to set the maximum vector length the cpu will support.  */
1025     uint32_t sve_max_vq;
1026 
1027 #ifdef CONFIG_USER_ONLY
1028     /* Used to set the default vector length at process start. */
1029     uint32_t sve_default_vq;
1030 #endif
1031 
1032     /*
1033      * In sve_vq_map each set bit is a supported vector length of
1034      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1035      * length in quadwords.
1036      *
1037      * While processing properties during initialization, corresponding
1038      * sve_vq_init bits are set for bits in sve_vq_map that have been
1039      * set by properties.
1040      *
1041      * Bits set in sve_vq_supported represent valid vector lengths for
1042      * the CPU type.
1043      */
1044     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1045     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1046     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1047 
1048     /* Generic timer counter frequency, in Hz */
1049     uint64_t gt_cntfrq_hz;
1050 };
1051 
1052 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1053 
1054 void arm_cpu_post_init(Object *obj);
1055 
1056 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1057 
1058 #ifndef CONFIG_USER_ONLY
1059 extern const VMStateDescription vmstate_arm_cpu;
1060 
1061 void arm_cpu_do_interrupt(CPUState *cpu);
1062 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1063 #endif /* !CONFIG_USER_ONLY */
1064 
1065 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1066                                          MemTxAttrs *attrs);
1067 
1068 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1069 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1070 
1071 /*
1072  * Helpers to dynamically generates XML descriptions of the sysregs
1073  * and SVE registers. Returns the number of registers in each set.
1074  */
1075 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1076 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1077 
1078 /* Returns the dynamically generated XML for the gdb stub.
1079  * Returns a pointer to the XML contents for the specified XML file or NULL
1080  * if the XML name doesn't match the predefined one.
1081  */
1082 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1083 
1084 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1085                              int cpuid, void *opaque);
1086 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1087                              int cpuid, void *opaque);
1088 
1089 #ifdef TARGET_AARCH64
1090 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1091 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1092 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1093 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1094                            int new_el, bool el0_a64);
1095 void aarch64_add_sve_properties(Object *obj);
1096 void aarch64_add_pauth_properties(Object *obj);
1097 
1098 /*
1099  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1100  * The byte at offset i from the start of the in-memory representation contains
1101  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1102  * lowest offsets are stored in the lowest memory addresses, then that nearly
1103  * matches QEMU's representation, which is to use an array of host-endian
1104  * uint64_t's, where the lower offsets are at the lower indices. To complete
1105  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1106  */
1107 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1108 {
1109 #if HOST_BIG_ENDIAN
1110     int i;
1111 
1112     for (i = 0; i < nr; ++i) {
1113         dst[i] = bswap64(src[i]);
1114     }
1115 
1116     return dst;
1117 #else
1118     return src;
1119 #endif
1120 }
1121 
1122 #else
1123 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1124 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1125                                          int n, bool a)
1126 { }
1127 static inline void aarch64_add_sve_properties(Object *obj) { }
1128 #endif
1129 
1130 void aarch64_sync_32_to_64(CPUARMState *env);
1131 void aarch64_sync_64_to_32(CPUARMState *env);
1132 
1133 int fp_exception_el(CPUARMState *env, int cur_el);
1134 int sve_exception_el(CPUARMState *env, int cur_el);
1135 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1136 
1137 static inline bool is_a64(CPUARMState *env)
1138 {
1139     return env->aarch64;
1140 }
1141 
1142 /**
1143  * pmu_op_start/finish
1144  * @env: CPUARMState
1145  *
1146  * Convert all PMU counters between their delta form (the typical mode when
1147  * they are enabled) and the guest-visible values. These two calls must
1148  * surround any action which might affect the counters.
1149  */
1150 void pmu_op_start(CPUARMState *env);
1151 void pmu_op_finish(CPUARMState *env);
1152 
1153 /*
1154  * Called when a PMU counter is due to overflow
1155  */
1156 void arm_pmu_timer_cb(void *opaque);
1157 
1158 /**
1159  * Functions to register as EL change hooks for PMU mode filtering
1160  */
1161 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1162 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1163 
1164 /*
1165  * pmu_init
1166  * @cpu: ARMCPU
1167  *
1168  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1169  * for the current configuration
1170  */
1171 void pmu_init(ARMCPU *cpu);
1172 
1173 /* SCTLR bit meanings. Several bits have been reused in newer
1174  * versions of the architecture; in that case we define constants
1175  * for both old and new bit meanings. Code which tests against those
1176  * bits should probably check or otherwise arrange that the CPU
1177  * is the architectural version it expects.
1178  */
1179 #define SCTLR_M       (1U << 0)
1180 #define SCTLR_A       (1U << 1)
1181 #define SCTLR_C       (1U << 2)
1182 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1183 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1184 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1185 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1186 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1187 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1188 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1189 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1190 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1191 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1192 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1193 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1194 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1195 #define SCTLR_SED     (1U << 8) /* v8 onward */
1196 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1197 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1198 #define SCTLR_F       (1U << 10) /* up to v6 */
1199 #define SCTLR_SW      (1U << 10) /* v7 */
1200 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1201 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1202 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1203 #define SCTLR_I       (1U << 12)
1204 #define SCTLR_V       (1U << 13) /* AArch32 only */
1205 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1206 #define SCTLR_RR      (1U << 14) /* up to v7 */
1207 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1208 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1209 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1210 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1211 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1212 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1213 #define SCTLR_BR      (1U << 17) /* PMSA only */
1214 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1215 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1216 #define SCTLR_WXN     (1U << 19)
1217 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1218 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1219 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1220 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1221 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1222 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1223 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1224 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1225 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1226 #define SCTLR_VE      (1U << 24) /* up to v7 */
1227 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1228 #define SCTLR_EE      (1U << 25)
1229 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1230 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1231 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1232 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1233 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1234 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1235 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1236 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1237 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1238 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1239 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1240 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1241 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1242 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1243 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1244 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1245 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1246 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1247 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1248 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1249 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1250 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1251 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1252 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1253 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1254 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1255 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1256 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1257 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1258 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1259 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1260 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1261 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1262 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1263 
1264 /* Bit definitions for CPACR (AArch32 only) */
1265 FIELD(CPACR, CP10, 20, 2)
1266 FIELD(CPACR, CP11, 22, 2)
1267 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1268 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1269 FIELD(CPACR, ASEDIS, 31, 1)
1270 
1271 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1272 FIELD(CPACR_EL1, ZEN, 16, 2)
1273 FIELD(CPACR_EL1, FPEN, 20, 2)
1274 FIELD(CPACR_EL1, SMEN, 24, 2)
1275 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1276 
1277 /* Bit definitions for HCPTR (AArch32 only) */
1278 FIELD(HCPTR, TCP10, 10, 1)
1279 FIELD(HCPTR, TCP11, 11, 1)
1280 FIELD(HCPTR, TASE, 15, 1)
1281 FIELD(HCPTR, TTA, 20, 1)
1282 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1283 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1284 
1285 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1286 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1287 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1288 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1289 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1290 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1291 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1292 FIELD(CPTR_EL2, TTA, 28, 1)
1293 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1294 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1295 
1296 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1297 FIELD(CPTR_EL3, EZ, 8, 1)
1298 FIELD(CPTR_EL3, TFP, 10, 1)
1299 FIELD(CPTR_EL3, ESM, 12, 1)
1300 FIELD(CPTR_EL3, TTA, 20, 1)
1301 FIELD(CPTR_EL3, TAM, 30, 1)
1302 FIELD(CPTR_EL3, TCPAC, 31, 1)
1303 
1304 #define MDCR_EPMAD    (1U << 21)
1305 #define MDCR_EDAD     (1U << 20)
1306 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1307 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1308 #define MDCR_SDD      (1U << 16)
1309 #define MDCR_SPD      (3U << 14)
1310 #define MDCR_TDRA     (1U << 11)
1311 #define MDCR_TDOSA    (1U << 10)
1312 #define MDCR_TDA      (1U << 9)
1313 #define MDCR_TDE      (1U << 8)
1314 #define MDCR_HPME     (1U << 7)
1315 #define MDCR_TPM      (1U << 6)
1316 #define MDCR_TPMCR    (1U << 5)
1317 #define MDCR_HPMN     (0x1fU)
1318 
1319 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1320 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1321 
1322 #define CPSR_M (0x1fU)
1323 #define CPSR_T (1U << 5)
1324 #define CPSR_F (1U << 6)
1325 #define CPSR_I (1U << 7)
1326 #define CPSR_A (1U << 8)
1327 #define CPSR_E (1U << 9)
1328 #define CPSR_IT_2_7 (0xfc00U)
1329 #define CPSR_GE (0xfU << 16)
1330 #define CPSR_IL (1U << 20)
1331 #define CPSR_DIT (1U << 21)
1332 #define CPSR_PAN (1U << 22)
1333 #define CPSR_SSBS (1U << 23)
1334 #define CPSR_J (1U << 24)
1335 #define CPSR_IT_0_1 (3U << 25)
1336 #define CPSR_Q (1U << 27)
1337 #define CPSR_V (1U << 28)
1338 #define CPSR_C (1U << 29)
1339 #define CPSR_Z (1U << 30)
1340 #define CPSR_N (1U << 31)
1341 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1342 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1343 
1344 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1345 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1346     | CPSR_NZCV)
1347 /* Bits writable in user mode.  */
1348 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1349 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1350 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1351 
1352 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1353 #define XPSR_EXCP 0x1ffU
1354 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1355 #define XPSR_IT_2_7 CPSR_IT_2_7
1356 #define XPSR_GE CPSR_GE
1357 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1358 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1359 #define XPSR_IT_0_1 CPSR_IT_0_1
1360 #define XPSR_Q CPSR_Q
1361 #define XPSR_V CPSR_V
1362 #define XPSR_C CPSR_C
1363 #define XPSR_Z CPSR_Z
1364 #define XPSR_N CPSR_N
1365 #define XPSR_NZCV CPSR_NZCV
1366 #define XPSR_IT CPSR_IT
1367 
1368 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1369 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1370 #define TTBCR_PD0    (1U << 4)
1371 #define TTBCR_PD1    (1U << 5)
1372 #define TTBCR_EPD0   (1U << 7)
1373 #define TTBCR_IRGN0  (3U << 8)
1374 #define TTBCR_ORGN0  (3U << 10)
1375 #define TTBCR_SH0    (3U << 12)
1376 #define TTBCR_T1SZ   (3U << 16)
1377 #define TTBCR_A1     (1U << 22)
1378 #define TTBCR_EPD1   (1U << 23)
1379 #define TTBCR_IRGN1  (3U << 24)
1380 #define TTBCR_ORGN1  (3U << 26)
1381 #define TTBCR_SH1    (1U << 28)
1382 #define TTBCR_EAE    (1U << 31)
1383 
1384 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1385  * Only these are valid when in AArch64 mode; in
1386  * AArch32 mode SPSRs are basically CPSR-format.
1387  */
1388 #define PSTATE_SP (1U)
1389 #define PSTATE_M (0xFU)
1390 #define PSTATE_nRW (1U << 4)
1391 #define PSTATE_F (1U << 6)
1392 #define PSTATE_I (1U << 7)
1393 #define PSTATE_A (1U << 8)
1394 #define PSTATE_D (1U << 9)
1395 #define PSTATE_BTYPE (3U << 10)
1396 #define PSTATE_SSBS (1U << 12)
1397 #define PSTATE_IL (1U << 20)
1398 #define PSTATE_SS (1U << 21)
1399 #define PSTATE_PAN (1U << 22)
1400 #define PSTATE_UAO (1U << 23)
1401 #define PSTATE_DIT (1U << 24)
1402 #define PSTATE_TCO (1U << 25)
1403 #define PSTATE_V (1U << 28)
1404 #define PSTATE_C (1U << 29)
1405 #define PSTATE_Z (1U << 30)
1406 #define PSTATE_N (1U << 31)
1407 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1408 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1409 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1410 /* Mode values for AArch64 */
1411 #define PSTATE_MODE_EL3h 13
1412 #define PSTATE_MODE_EL3t 12
1413 #define PSTATE_MODE_EL2h 9
1414 #define PSTATE_MODE_EL2t 8
1415 #define PSTATE_MODE_EL1h 5
1416 #define PSTATE_MODE_EL1t 4
1417 #define PSTATE_MODE_EL0t 0
1418 
1419 /* Write a new value to v7m.exception, thus transitioning into or out
1420  * of Handler mode; this may result in a change of active stack pointer.
1421  */
1422 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1423 
1424 /* Map EL and handler into a PSTATE_MODE.  */
1425 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1426 {
1427     return (el << 2) | handler;
1428 }
1429 
1430 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1431  * interprocessing, so we don't attempt to sync with the cpsr state used by
1432  * the 32 bit decoder.
1433  */
1434 static inline uint32_t pstate_read(CPUARMState *env)
1435 {
1436     int ZF;
1437 
1438     ZF = (env->ZF == 0);
1439     return (env->NF & 0x80000000) | (ZF << 30)
1440         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1441         | env->pstate | env->daif | (env->btype << 10);
1442 }
1443 
1444 static inline void pstate_write(CPUARMState *env, uint32_t val)
1445 {
1446     env->ZF = (~val) & PSTATE_Z;
1447     env->NF = val;
1448     env->CF = (val >> 29) & 1;
1449     env->VF = (val << 3) & 0x80000000;
1450     env->daif = val & PSTATE_DAIF;
1451     env->btype = (val >> 10) & 3;
1452     env->pstate = val & ~CACHED_PSTATE_BITS;
1453 }
1454 
1455 /* Return the current CPSR value.  */
1456 uint32_t cpsr_read(CPUARMState *env);
1457 
1458 typedef enum CPSRWriteType {
1459     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1460     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1461     CPSRWriteRaw = 2,
1462         /* trust values, no reg bank switch, no hflags rebuild */
1463     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1464 } CPSRWriteType;
1465 
1466 /*
1467  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1468  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1469  * correspond to TB flags bits cached in the hflags, unless @write_type
1470  * is CPSRWriteRaw.
1471  */
1472 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1473                 CPSRWriteType write_type);
1474 
1475 /* Return the current xPSR value.  */
1476 static inline uint32_t xpsr_read(CPUARMState *env)
1477 {
1478     int ZF;
1479     ZF = (env->ZF == 0);
1480     return (env->NF & 0x80000000) | (ZF << 30)
1481         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1482         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1483         | ((env->condexec_bits & 0xfc) << 8)
1484         | (env->GE << 16)
1485         | env->v7m.exception;
1486 }
1487 
1488 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1489 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1490 {
1491     if (mask & XPSR_NZCV) {
1492         env->ZF = (~val) & XPSR_Z;
1493         env->NF = val;
1494         env->CF = (val >> 29) & 1;
1495         env->VF = (val << 3) & 0x80000000;
1496     }
1497     if (mask & XPSR_Q) {
1498         env->QF = ((val & XPSR_Q) != 0);
1499     }
1500     if (mask & XPSR_GE) {
1501         env->GE = (val & XPSR_GE) >> 16;
1502     }
1503 #ifndef CONFIG_USER_ONLY
1504     if (mask & XPSR_T) {
1505         env->thumb = ((val & XPSR_T) != 0);
1506     }
1507     if (mask & XPSR_IT_0_1) {
1508         env->condexec_bits &= ~3;
1509         env->condexec_bits |= (val >> 25) & 3;
1510     }
1511     if (mask & XPSR_IT_2_7) {
1512         env->condexec_bits &= 3;
1513         env->condexec_bits |= (val >> 8) & 0xfc;
1514     }
1515     if (mask & XPSR_EXCP) {
1516         /* Note that this only happens on exception exit */
1517         write_v7m_exception(env, val & XPSR_EXCP);
1518     }
1519 #endif
1520 }
1521 
1522 #define HCR_VM        (1ULL << 0)
1523 #define HCR_SWIO      (1ULL << 1)
1524 #define HCR_PTW       (1ULL << 2)
1525 #define HCR_FMO       (1ULL << 3)
1526 #define HCR_IMO       (1ULL << 4)
1527 #define HCR_AMO       (1ULL << 5)
1528 #define HCR_VF        (1ULL << 6)
1529 #define HCR_VI        (1ULL << 7)
1530 #define HCR_VSE       (1ULL << 8)
1531 #define HCR_FB        (1ULL << 9)
1532 #define HCR_BSU_MASK  (3ULL << 10)
1533 #define HCR_DC        (1ULL << 12)
1534 #define HCR_TWI       (1ULL << 13)
1535 #define HCR_TWE       (1ULL << 14)
1536 #define HCR_TID0      (1ULL << 15)
1537 #define HCR_TID1      (1ULL << 16)
1538 #define HCR_TID2      (1ULL << 17)
1539 #define HCR_TID3      (1ULL << 18)
1540 #define HCR_TSC       (1ULL << 19)
1541 #define HCR_TIDCP     (1ULL << 20)
1542 #define HCR_TACR      (1ULL << 21)
1543 #define HCR_TSW       (1ULL << 22)
1544 #define HCR_TPCP      (1ULL << 23)
1545 #define HCR_TPU       (1ULL << 24)
1546 #define HCR_TTLB      (1ULL << 25)
1547 #define HCR_TVM       (1ULL << 26)
1548 #define HCR_TGE       (1ULL << 27)
1549 #define HCR_TDZ       (1ULL << 28)
1550 #define HCR_HCD       (1ULL << 29)
1551 #define HCR_TRVM      (1ULL << 30)
1552 #define HCR_RW        (1ULL << 31)
1553 #define HCR_CD        (1ULL << 32)
1554 #define HCR_ID        (1ULL << 33)
1555 #define HCR_E2H       (1ULL << 34)
1556 #define HCR_TLOR      (1ULL << 35)
1557 #define HCR_TERR      (1ULL << 36)
1558 #define HCR_TEA       (1ULL << 37)
1559 #define HCR_MIOCNCE   (1ULL << 38)
1560 /* RES0 bit 39 */
1561 #define HCR_APK       (1ULL << 40)
1562 #define HCR_API       (1ULL << 41)
1563 #define HCR_NV        (1ULL << 42)
1564 #define HCR_NV1       (1ULL << 43)
1565 #define HCR_AT        (1ULL << 44)
1566 #define HCR_NV2       (1ULL << 45)
1567 #define HCR_FWB       (1ULL << 46)
1568 #define HCR_FIEN      (1ULL << 47)
1569 /* RES0 bit 48 */
1570 #define HCR_TID4      (1ULL << 49)
1571 #define HCR_TICAB     (1ULL << 50)
1572 #define HCR_AMVOFFEN  (1ULL << 51)
1573 #define HCR_TOCU      (1ULL << 52)
1574 #define HCR_ENSCXT    (1ULL << 53)
1575 #define HCR_TTLBIS    (1ULL << 54)
1576 #define HCR_TTLBOS    (1ULL << 55)
1577 #define HCR_ATA       (1ULL << 56)
1578 #define HCR_DCT       (1ULL << 57)
1579 #define HCR_TID5      (1ULL << 58)
1580 #define HCR_TWEDEN    (1ULL << 59)
1581 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1582 
1583 #define HCRX_ENAS0    (1ULL << 0)
1584 #define HCRX_ENALS    (1ULL << 1)
1585 #define HCRX_ENASR    (1ULL << 2)
1586 #define HCRX_FNXS     (1ULL << 3)
1587 #define HCRX_FGTNXS   (1ULL << 4)
1588 #define HCRX_SMPME    (1ULL << 5)
1589 #define HCRX_TALLINT  (1ULL << 6)
1590 #define HCRX_VINMI    (1ULL << 7)
1591 #define HCRX_VFNMI    (1ULL << 8)
1592 #define HCRX_CMOW     (1ULL << 9)
1593 #define HCRX_MCE2     (1ULL << 10)
1594 #define HCRX_MSCEN    (1ULL << 11)
1595 
1596 #define HPFAR_NS      (1ULL << 63)
1597 
1598 #define SCR_NS                (1U << 0)
1599 #define SCR_IRQ               (1U << 1)
1600 #define SCR_FIQ               (1U << 2)
1601 #define SCR_EA                (1U << 3)
1602 #define SCR_FW                (1U << 4)
1603 #define SCR_AW                (1U << 5)
1604 #define SCR_NET               (1U << 6)
1605 #define SCR_SMD               (1U << 7)
1606 #define SCR_HCE               (1U << 8)
1607 #define SCR_SIF               (1U << 9)
1608 #define SCR_RW                (1U << 10)
1609 #define SCR_ST                (1U << 11)
1610 #define SCR_TWI               (1U << 12)
1611 #define SCR_TWE               (1U << 13)
1612 #define SCR_TLOR              (1U << 14)
1613 #define SCR_TERR              (1U << 15)
1614 #define SCR_APK               (1U << 16)
1615 #define SCR_API               (1U << 17)
1616 #define SCR_EEL2              (1U << 18)
1617 #define SCR_EASE              (1U << 19)
1618 #define SCR_NMEA              (1U << 20)
1619 #define SCR_FIEN              (1U << 21)
1620 #define SCR_ENSCXT            (1U << 25)
1621 #define SCR_ATA               (1U << 26)
1622 #define SCR_FGTEN             (1U << 27)
1623 #define SCR_ECVEN             (1U << 28)
1624 #define SCR_TWEDEN            (1U << 29)
1625 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1626 #define SCR_TME               (1ULL << 34)
1627 #define SCR_AMVOFFEN          (1ULL << 35)
1628 #define SCR_ENAS0             (1ULL << 36)
1629 #define SCR_ADEN              (1ULL << 37)
1630 #define SCR_HXEN              (1ULL << 38)
1631 #define SCR_TRNDR             (1ULL << 40)
1632 #define SCR_ENTP2             (1ULL << 41)
1633 #define SCR_GPF               (1ULL << 48)
1634 
1635 #define HSTR_TTEE (1 << 16)
1636 #define HSTR_TJDBX (1 << 17)
1637 
1638 /* Return the current FPSCR value.  */
1639 uint32_t vfp_get_fpscr(CPUARMState *env);
1640 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1641 
1642 /* FPCR, Floating Point Control Register
1643  * FPSR, Floating Poiht Status Register
1644  *
1645  * For A64 the FPSCR is split into two logically distinct registers,
1646  * FPCR and FPSR. However since they still use non-overlapping bits
1647  * we store the underlying state in fpscr and just mask on read/write.
1648  */
1649 #define FPSR_MASK 0xf800009f
1650 #define FPCR_MASK 0x07ff9f00
1651 
1652 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1653 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1654 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1655 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1656 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1657 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1658 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1659 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1660 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1661 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1662 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1663 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1664 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1665 #define FPCR_C      (1 << 29)   /* FP carry flag */
1666 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1667 #define FPCR_N      (1 << 31)   /* FP negative flag */
1668 
1669 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1670 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1671 #define FPCR_LTPSIZE_LENGTH 3
1672 
1673 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1674 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1675 
1676 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1677 {
1678     return vfp_get_fpscr(env) & FPSR_MASK;
1679 }
1680 
1681 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1682 {
1683     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1684     vfp_set_fpscr(env, new_fpscr);
1685 }
1686 
1687 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1688 {
1689     return vfp_get_fpscr(env) & FPCR_MASK;
1690 }
1691 
1692 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1693 {
1694     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1695     vfp_set_fpscr(env, new_fpscr);
1696 }
1697 
1698 enum arm_cpu_mode {
1699   ARM_CPU_MODE_USR = 0x10,
1700   ARM_CPU_MODE_FIQ = 0x11,
1701   ARM_CPU_MODE_IRQ = 0x12,
1702   ARM_CPU_MODE_SVC = 0x13,
1703   ARM_CPU_MODE_MON = 0x16,
1704   ARM_CPU_MODE_ABT = 0x17,
1705   ARM_CPU_MODE_HYP = 0x1a,
1706   ARM_CPU_MODE_UND = 0x1b,
1707   ARM_CPU_MODE_SYS = 0x1f
1708 };
1709 
1710 /* VFP system registers.  */
1711 #define ARM_VFP_FPSID   0
1712 #define ARM_VFP_FPSCR   1
1713 #define ARM_VFP_MVFR2   5
1714 #define ARM_VFP_MVFR1   6
1715 #define ARM_VFP_MVFR0   7
1716 #define ARM_VFP_FPEXC   8
1717 #define ARM_VFP_FPINST  9
1718 #define ARM_VFP_FPINST2 10
1719 /* These ones are M-profile only */
1720 #define ARM_VFP_FPSCR_NZCVQC 2
1721 #define ARM_VFP_VPR 12
1722 #define ARM_VFP_P0 13
1723 #define ARM_VFP_FPCXT_NS 14
1724 #define ARM_VFP_FPCXT_S 15
1725 
1726 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1727 #define QEMU_VFP_FPSCR_NZCV 0xffff
1728 
1729 /* iwMMXt coprocessor control registers.  */
1730 #define ARM_IWMMXT_wCID  0
1731 #define ARM_IWMMXT_wCon  1
1732 #define ARM_IWMMXT_wCSSF 2
1733 #define ARM_IWMMXT_wCASF 3
1734 #define ARM_IWMMXT_wCGR0 8
1735 #define ARM_IWMMXT_wCGR1 9
1736 #define ARM_IWMMXT_wCGR2 10
1737 #define ARM_IWMMXT_wCGR3 11
1738 
1739 /* V7M CCR bits */
1740 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1741 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1742 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1743 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1744 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1745 FIELD(V7M_CCR, STKALIGN, 9, 1)
1746 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1747 FIELD(V7M_CCR, DC, 16, 1)
1748 FIELD(V7M_CCR, IC, 17, 1)
1749 FIELD(V7M_CCR, BP, 18, 1)
1750 FIELD(V7M_CCR, LOB, 19, 1)
1751 FIELD(V7M_CCR, TRD, 20, 1)
1752 
1753 /* V7M SCR bits */
1754 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1755 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1756 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1757 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1758 
1759 /* V7M AIRCR bits */
1760 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1761 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1762 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1763 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1764 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1765 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1766 FIELD(V7M_AIRCR, PRIS, 14, 1)
1767 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1768 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1769 
1770 /* V7M CFSR bits for MMFSR */
1771 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1772 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1773 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1774 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1775 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1776 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1777 
1778 /* V7M CFSR bits for BFSR */
1779 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1780 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1781 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1782 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1783 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1784 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1785 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1786 
1787 /* V7M CFSR bits for UFSR */
1788 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1789 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1790 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1791 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1792 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1793 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1794 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1795 
1796 /* V7M CFSR bit masks covering all of the subregister bits */
1797 FIELD(V7M_CFSR, MMFSR, 0, 8)
1798 FIELD(V7M_CFSR, BFSR, 8, 8)
1799 FIELD(V7M_CFSR, UFSR, 16, 16)
1800 
1801 /* V7M HFSR bits */
1802 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1803 FIELD(V7M_HFSR, FORCED, 30, 1)
1804 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1805 
1806 /* V7M DFSR bits */
1807 FIELD(V7M_DFSR, HALTED, 0, 1)
1808 FIELD(V7M_DFSR, BKPT, 1, 1)
1809 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1810 FIELD(V7M_DFSR, VCATCH, 3, 1)
1811 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1812 
1813 /* V7M SFSR bits */
1814 FIELD(V7M_SFSR, INVEP, 0, 1)
1815 FIELD(V7M_SFSR, INVIS, 1, 1)
1816 FIELD(V7M_SFSR, INVER, 2, 1)
1817 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1818 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1819 FIELD(V7M_SFSR, LSPERR, 5, 1)
1820 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1821 FIELD(V7M_SFSR, LSERR, 7, 1)
1822 
1823 /* v7M MPU_CTRL bits */
1824 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1825 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1826 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1827 
1828 /* v7M CLIDR bits */
1829 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1830 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1831 FIELD(V7M_CLIDR, LOC, 24, 3)
1832 FIELD(V7M_CLIDR, LOUU, 27, 3)
1833 FIELD(V7M_CLIDR, ICB, 30, 2)
1834 
1835 FIELD(V7M_CSSELR, IND, 0, 1)
1836 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1837 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1838  * define a mask for this and check that it doesn't permit running off
1839  * the end of the array.
1840  */
1841 FIELD(V7M_CSSELR, INDEX, 0, 4)
1842 
1843 /* v7M FPCCR bits */
1844 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1845 FIELD(V7M_FPCCR, USER, 1, 1)
1846 FIELD(V7M_FPCCR, S, 2, 1)
1847 FIELD(V7M_FPCCR, THREAD, 3, 1)
1848 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1849 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1850 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1851 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1852 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1853 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1854 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1855 FIELD(V7M_FPCCR, RES0, 11, 15)
1856 FIELD(V7M_FPCCR, TS, 26, 1)
1857 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1858 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1859 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1860 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1861 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1862 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1863 #define R_V7M_FPCCR_BANKED_MASK                 \
1864     (R_V7M_FPCCR_LSPACT_MASK |                  \
1865      R_V7M_FPCCR_USER_MASK |                    \
1866      R_V7M_FPCCR_THREAD_MASK |                  \
1867      R_V7M_FPCCR_MMRDY_MASK |                   \
1868      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1869      R_V7M_FPCCR_UFRDY_MASK |                   \
1870      R_V7M_FPCCR_ASPEN_MASK)
1871 
1872 /* v7M VPR bits */
1873 FIELD(V7M_VPR, P0, 0, 16)
1874 FIELD(V7M_VPR, MASK01, 16, 4)
1875 FIELD(V7M_VPR, MASK23, 20, 4)
1876 
1877 /*
1878  * System register ID fields.
1879  */
1880 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1881 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1882 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1883 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1884 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1885 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1886 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1887 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1888 FIELD(CLIDR_EL1, LOC, 24, 3)
1889 FIELD(CLIDR_EL1, LOUU, 27, 3)
1890 FIELD(CLIDR_EL1, ICB, 30, 3)
1891 
1892 /* When FEAT_CCIDX is implemented */
1893 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1894 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1895 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1896 
1897 /* When FEAT_CCIDX is not implemented */
1898 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1899 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1900 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1901 
1902 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1903 FIELD(CTR_EL0,  L1IP, 14, 2)
1904 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1905 FIELD(CTR_EL0,  ERG, 20, 4)
1906 FIELD(CTR_EL0,  CWG, 24, 4)
1907 FIELD(CTR_EL0,  IDC, 28, 1)
1908 FIELD(CTR_EL0,  DIC, 29, 1)
1909 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1910 
1911 FIELD(MIDR_EL1, REVISION, 0, 4)
1912 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1913 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1914 FIELD(MIDR_EL1, VARIANT, 20, 4)
1915 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1916 
1917 FIELD(ID_ISAR0, SWAP, 0, 4)
1918 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1919 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1920 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1921 FIELD(ID_ISAR0, COPROC, 16, 4)
1922 FIELD(ID_ISAR0, DEBUG, 20, 4)
1923 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1924 
1925 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1926 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1927 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1928 FIELD(ID_ISAR1, EXTEND, 12, 4)
1929 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1930 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1931 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1932 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1933 
1934 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1935 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1936 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1937 FIELD(ID_ISAR2, MULT, 12, 4)
1938 FIELD(ID_ISAR2, MULTS, 16, 4)
1939 FIELD(ID_ISAR2, MULTU, 20, 4)
1940 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1941 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1942 
1943 FIELD(ID_ISAR3, SATURATE, 0, 4)
1944 FIELD(ID_ISAR3, SIMD, 4, 4)
1945 FIELD(ID_ISAR3, SVC, 8, 4)
1946 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1947 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1948 FIELD(ID_ISAR3, T32COPY, 20, 4)
1949 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1950 FIELD(ID_ISAR3, T32EE, 28, 4)
1951 
1952 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1953 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1954 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1955 FIELD(ID_ISAR4, SMC, 12, 4)
1956 FIELD(ID_ISAR4, BARRIER, 16, 4)
1957 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1958 FIELD(ID_ISAR4, PSR_M, 24, 4)
1959 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1960 
1961 FIELD(ID_ISAR5, SEVL, 0, 4)
1962 FIELD(ID_ISAR5, AES, 4, 4)
1963 FIELD(ID_ISAR5, SHA1, 8, 4)
1964 FIELD(ID_ISAR5, SHA2, 12, 4)
1965 FIELD(ID_ISAR5, CRC32, 16, 4)
1966 FIELD(ID_ISAR5, RDM, 24, 4)
1967 FIELD(ID_ISAR5, VCMA, 28, 4)
1968 
1969 FIELD(ID_ISAR6, JSCVT, 0, 4)
1970 FIELD(ID_ISAR6, DP, 4, 4)
1971 FIELD(ID_ISAR6, FHM, 8, 4)
1972 FIELD(ID_ISAR6, SB, 12, 4)
1973 FIELD(ID_ISAR6, SPECRES, 16, 4)
1974 FIELD(ID_ISAR6, BF16, 20, 4)
1975 FIELD(ID_ISAR6, I8MM, 24, 4)
1976 
1977 FIELD(ID_MMFR0, VMSA, 0, 4)
1978 FIELD(ID_MMFR0, PMSA, 4, 4)
1979 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1980 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1981 FIELD(ID_MMFR0, TCM, 16, 4)
1982 FIELD(ID_MMFR0, AUXREG, 20, 4)
1983 FIELD(ID_MMFR0, FCSE, 24, 4)
1984 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1985 
1986 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1987 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1988 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1989 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1990 FIELD(ID_MMFR1, L1HVD, 16, 4)
1991 FIELD(ID_MMFR1, L1UNI, 20, 4)
1992 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1993 FIELD(ID_MMFR1, BPRED, 28, 4)
1994 
1995 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1996 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1997 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1998 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1999 FIELD(ID_MMFR2, UNITLB, 16, 4)
2000 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2001 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2002 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2003 
2004 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2005 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2006 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2007 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2008 FIELD(ID_MMFR3, PAN, 16, 4)
2009 FIELD(ID_MMFR3, COHWALK, 20, 4)
2010 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2011 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2012 
2013 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2014 FIELD(ID_MMFR4, AC2, 4, 4)
2015 FIELD(ID_MMFR4, XNX, 8, 4)
2016 FIELD(ID_MMFR4, CNP, 12, 4)
2017 FIELD(ID_MMFR4, HPDS, 16, 4)
2018 FIELD(ID_MMFR4, LSM, 20, 4)
2019 FIELD(ID_MMFR4, CCIDX, 24, 4)
2020 FIELD(ID_MMFR4, EVT, 28, 4)
2021 
2022 FIELD(ID_MMFR5, ETS, 0, 4)
2023 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2024 
2025 FIELD(ID_PFR0, STATE0, 0, 4)
2026 FIELD(ID_PFR0, STATE1, 4, 4)
2027 FIELD(ID_PFR0, STATE2, 8, 4)
2028 FIELD(ID_PFR0, STATE3, 12, 4)
2029 FIELD(ID_PFR0, CSV2, 16, 4)
2030 FIELD(ID_PFR0, AMU, 20, 4)
2031 FIELD(ID_PFR0, DIT, 24, 4)
2032 FIELD(ID_PFR0, RAS, 28, 4)
2033 
2034 FIELD(ID_PFR1, PROGMOD, 0, 4)
2035 FIELD(ID_PFR1, SECURITY, 4, 4)
2036 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2037 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2038 FIELD(ID_PFR1, GENTIMER, 16, 4)
2039 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2040 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2041 FIELD(ID_PFR1, GIC, 28, 4)
2042 
2043 FIELD(ID_PFR2, CSV3, 0, 4)
2044 FIELD(ID_PFR2, SSBS, 4, 4)
2045 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2046 
2047 FIELD(ID_AA64ISAR0, AES, 4, 4)
2048 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2049 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2050 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2051 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2052 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2053 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2054 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2055 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2056 FIELD(ID_AA64ISAR0, DP, 44, 4)
2057 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2058 FIELD(ID_AA64ISAR0, TS, 52, 4)
2059 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2060 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2061 
2062 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2063 FIELD(ID_AA64ISAR1, APA, 4, 4)
2064 FIELD(ID_AA64ISAR1, API, 8, 4)
2065 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2066 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2067 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2068 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2069 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2070 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2071 FIELD(ID_AA64ISAR1, SB, 36, 4)
2072 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2073 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2074 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2075 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2076 FIELD(ID_AA64ISAR1, XS, 56, 4)
2077 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2078 
2079 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2080 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2081 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2082 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2083 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2084 FIELD(ID_AA64ISAR2, BC, 20, 4)
2085 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2086 
2087 FIELD(ID_AA64PFR0, EL0, 0, 4)
2088 FIELD(ID_AA64PFR0, EL1, 4, 4)
2089 FIELD(ID_AA64PFR0, EL2, 8, 4)
2090 FIELD(ID_AA64PFR0, EL3, 12, 4)
2091 FIELD(ID_AA64PFR0, FP, 16, 4)
2092 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2093 FIELD(ID_AA64PFR0, GIC, 24, 4)
2094 FIELD(ID_AA64PFR0, RAS, 28, 4)
2095 FIELD(ID_AA64PFR0, SVE, 32, 4)
2096 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2097 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2098 FIELD(ID_AA64PFR0, AMU, 44, 4)
2099 FIELD(ID_AA64PFR0, DIT, 48, 4)
2100 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2101 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2102 
2103 FIELD(ID_AA64PFR1, BT, 0, 4)
2104 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2105 FIELD(ID_AA64PFR1, MTE, 8, 4)
2106 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2107 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2108 FIELD(ID_AA64PFR1, SME, 24, 4)
2109 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2110 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2111 FIELD(ID_AA64PFR1, NMI, 36, 4)
2112 
2113 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2114 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2115 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2116 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2117 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2118 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2119 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2120 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2121 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2122 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2123 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2124 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2125 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2126 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2127 
2128 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2129 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2130 FIELD(ID_AA64MMFR1, VH, 8, 4)
2131 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2132 FIELD(ID_AA64MMFR1, LO, 16, 4)
2133 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2134 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2135 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2136 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2137 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2138 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2139 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2140 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2141 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2142 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2143 
2144 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2145 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2146 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2147 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2148 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2149 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2150 FIELD(ID_AA64MMFR2, NV, 24, 4)
2151 FIELD(ID_AA64MMFR2, ST, 28, 4)
2152 FIELD(ID_AA64MMFR2, AT, 32, 4)
2153 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2154 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2155 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2156 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2157 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2158 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2159 
2160 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2161 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2162 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2163 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2164 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2165 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2166 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2167 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2168 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2169 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2170 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2171 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2172 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2173 
2174 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2175 FIELD(ID_AA64ZFR0, AES, 4, 4)
2176 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2177 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2178 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2179 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2180 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2181 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2182 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2183 
2184 FIELD(ID_DFR0, COPDBG, 0, 4)
2185 FIELD(ID_DFR0, COPSDBG, 4, 4)
2186 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2187 FIELD(ID_DFR0, COPTRC, 12, 4)
2188 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2189 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2190 FIELD(ID_DFR0, PERFMON, 24, 4)
2191 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2192 
2193 FIELD(ID_DFR1, MTPMU, 0, 4)
2194 FIELD(ID_DFR1, HPMN0, 4, 4)
2195 
2196 FIELD(DBGDIDR, SE_IMP, 12, 1)
2197 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2198 FIELD(DBGDIDR, VERSION, 16, 4)
2199 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2200 FIELD(DBGDIDR, BRPS, 24, 4)
2201 FIELD(DBGDIDR, WRPS, 28, 4)
2202 
2203 FIELD(MVFR0, SIMDREG, 0, 4)
2204 FIELD(MVFR0, FPSP, 4, 4)
2205 FIELD(MVFR0, FPDP, 8, 4)
2206 FIELD(MVFR0, FPTRAP, 12, 4)
2207 FIELD(MVFR0, FPDIVIDE, 16, 4)
2208 FIELD(MVFR0, FPSQRT, 20, 4)
2209 FIELD(MVFR0, FPSHVEC, 24, 4)
2210 FIELD(MVFR0, FPROUND, 28, 4)
2211 
2212 FIELD(MVFR1, FPFTZ, 0, 4)
2213 FIELD(MVFR1, FPDNAN, 4, 4)
2214 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2215 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2216 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2217 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2218 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2219 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2220 FIELD(MVFR1, FPHP, 24, 4)
2221 FIELD(MVFR1, SIMDFMAC, 28, 4)
2222 
2223 FIELD(MVFR2, SIMDMISC, 0, 4)
2224 FIELD(MVFR2, FPMISC, 4, 4)
2225 
2226 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2227 
2228 /* If adding a feature bit which corresponds to a Linux ELF
2229  * HWCAP bit, remember to update the feature-bit-to-hwcap
2230  * mapping in linux-user/elfload.c:get_elf_hwcap().
2231  */
2232 enum arm_features {
2233     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2234     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2235     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2236     ARM_FEATURE_V6,
2237     ARM_FEATURE_V6K,
2238     ARM_FEATURE_V7,
2239     ARM_FEATURE_THUMB2,
2240     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2241     ARM_FEATURE_NEON,
2242     ARM_FEATURE_M, /* Microcontroller profile.  */
2243     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2244     ARM_FEATURE_THUMB2EE,
2245     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2246     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2247     ARM_FEATURE_V4T,
2248     ARM_FEATURE_V5,
2249     ARM_FEATURE_STRONGARM,
2250     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2251     ARM_FEATURE_GENERIC_TIMER,
2252     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2253     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2254     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2255     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2256     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2257     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2258     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2259     ARM_FEATURE_V8,
2260     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2261     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2262     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2263     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2264     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2265     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2266     ARM_FEATURE_PMU, /* has PMU support */
2267     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2268     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2269     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2270     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2271 };
2272 
2273 static inline int arm_feature(CPUARMState *env, int feature)
2274 {
2275     return (env->features & (1ULL << feature)) != 0;
2276 }
2277 
2278 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2279 
2280 #if !defined(CONFIG_USER_ONLY)
2281 /* Return true if exception levels below EL3 are in secure state,
2282  * or would be following an exception return to that level.
2283  * Unlike arm_is_secure() (which is always a question about the
2284  * _current_ state of the CPU) this doesn't care about the current
2285  * EL or mode.
2286  */
2287 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2288 {
2289     if (arm_feature(env, ARM_FEATURE_EL3)) {
2290         return !(env->cp15.scr_el3 & SCR_NS);
2291     } else {
2292         /* If EL3 is not supported then the secure state is implementation
2293          * defined, in which case QEMU defaults to non-secure.
2294          */
2295         return false;
2296     }
2297 }
2298 
2299 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2300 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2301 {
2302     if (arm_feature(env, ARM_FEATURE_EL3)) {
2303         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2304             /* CPU currently in AArch64 state and EL3 */
2305             return true;
2306         } else if (!is_a64(env) &&
2307                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2308             /* CPU currently in AArch32 state and monitor mode */
2309             return true;
2310         }
2311     }
2312     return false;
2313 }
2314 
2315 /* Return true if the processor is in secure state */
2316 static inline bool arm_is_secure(CPUARMState *env)
2317 {
2318     if (arm_is_el3_or_mon(env)) {
2319         return true;
2320     }
2321     return arm_is_secure_below_el3(env);
2322 }
2323 
2324 /*
2325  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2326  * This corresponds to the pseudocode EL2Enabled()
2327  */
2328 static inline bool arm_is_el2_enabled(CPUARMState *env)
2329 {
2330     if (arm_feature(env, ARM_FEATURE_EL2)) {
2331         if (arm_is_secure_below_el3(env)) {
2332             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2333         }
2334         return true;
2335     }
2336     return false;
2337 }
2338 
2339 #else
2340 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2341 {
2342     return false;
2343 }
2344 
2345 static inline bool arm_is_secure(CPUARMState *env)
2346 {
2347     return false;
2348 }
2349 
2350 static inline bool arm_is_el2_enabled(CPUARMState *env)
2351 {
2352     return false;
2353 }
2354 #endif
2355 
2356 /**
2357  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2358  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2359  * "for all purposes other than a direct read or write access of HCR_EL2."
2360  * Not included here is HCR_RW.
2361  */
2362 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2363 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2364 
2365 /* Return true if the specified exception level is running in AArch64 state. */
2366 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2367 {
2368     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2369      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2370      */
2371     assert(el >= 1 && el <= 3);
2372     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2373 
2374     /* The highest exception level is always at the maximum supported
2375      * register width, and then lower levels have a register width controlled
2376      * by bits in the SCR or HCR registers.
2377      */
2378     if (el == 3) {
2379         return aa64;
2380     }
2381 
2382     if (arm_feature(env, ARM_FEATURE_EL3) &&
2383         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2384         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2385     }
2386 
2387     if (el == 2) {
2388         return aa64;
2389     }
2390 
2391     if (arm_is_el2_enabled(env)) {
2392         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2393     }
2394 
2395     return aa64;
2396 }
2397 
2398 /* Function for determing whether guest cp register reads and writes should
2399  * access the secure or non-secure bank of a cp register.  When EL3 is
2400  * operating in AArch32 state, the NS-bit determines whether the secure
2401  * instance of a cp register should be used. When EL3 is AArch64 (or if
2402  * it doesn't exist at all) then there is no register banking, and all
2403  * accesses are to the non-secure version.
2404  */
2405 static inline bool access_secure_reg(CPUARMState *env)
2406 {
2407     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2408                 !arm_el_is_aa64(env, 3) &&
2409                 !(env->cp15.scr_el3 & SCR_NS));
2410 
2411     return ret;
2412 }
2413 
2414 /* Macros for accessing a specified CP register bank */
2415 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2416     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2417 
2418 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2419     do {                                                \
2420         if (_secure) {                                   \
2421             (_env)->cp15._regname##_s = (_val);            \
2422         } else {                                        \
2423             (_env)->cp15._regname##_ns = (_val);           \
2424         }                                               \
2425     } while (0)
2426 
2427 /* Macros for automatically accessing a specific CP register bank depending on
2428  * the current secure state of the system.  These macros are not intended for
2429  * supporting instruction translation reads/writes as these are dependent
2430  * solely on the SCR.NS bit and not the mode.
2431  */
2432 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2433     A32_BANKED_REG_GET((_env), _regname,                \
2434                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2435 
2436 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2437     A32_BANKED_REG_SET((_env), _regname,                                    \
2438                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2439                        (_val))
2440 
2441 void arm_cpu_list(void);
2442 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2443                                  uint32_t cur_el, bool secure);
2444 
2445 /* Interface between CPU and Interrupt controller.  */
2446 #ifndef CONFIG_USER_ONLY
2447 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2448 #else
2449 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2450 {
2451     return true;
2452 }
2453 #endif
2454 /**
2455  * armv7m_nvic_set_pending: mark the specified exception as pending
2456  * @opaque: the NVIC
2457  * @irq: the exception number to mark pending
2458  * @secure: false for non-banked exceptions or for the nonsecure
2459  * version of a banked exception, true for the secure version of a banked
2460  * exception.
2461  *
2462  * Marks the specified exception as pending. Note that we will assert()
2463  * if @secure is true and @irq does not specify one of the fixed set
2464  * of architecturally banked exceptions.
2465  */
2466 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2467 /**
2468  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2469  * @opaque: the NVIC
2470  * @irq: the exception number to mark pending
2471  * @secure: false for non-banked exceptions or for the nonsecure
2472  * version of a banked exception, true for the secure version of a banked
2473  * exception.
2474  *
2475  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2476  * exceptions (exceptions generated in the course of trying to take
2477  * a different exception).
2478  */
2479 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2480 /**
2481  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2482  * @opaque: the NVIC
2483  * @irq: the exception number to mark pending
2484  * @secure: false for non-banked exceptions or for the nonsecure
2485  * version of a banked exception, true for the secure version of a banked
2486  * exception.
2487  *
2488  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2489  * generated in the course of lazy stacking of FP registers.
2490  */
2491 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2492 /**
2493  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2494  *    exception, and whether it targets Secure state
2495  * @opaque: the NVIC
2496  * @pirq: set to pending exception number
2497  * @ptargets_secure: set to whether pending exception targets Secure
2498  *
2499  * This function writes the number of the highest priority pending
2500  * exception (the one which would be made active by
2501  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2502  * to true if the current highest priority pending exception should
2503  * be taken to Secure state, false for NS.
2504  */
2505 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2506                                       bool *ptargets_secure);
2507 /**
2508  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2509  * @opaque: the NVIC
2510  *
2511  * Move the current highest priority pending exception from the pending
2512  * state to the active state, and update v7m.exception to indicate that
2513  * it is the exception currently being handled.
2514  */
2515 void armv7m_nvic_acknowledge_irq(void *opaque);
2516 /**
2517  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2518  * @opaque: the NVIC
2519  * @irq: the exception number to complete
2520  * @secure: true if this exception was secure
2521  *
2522  * Returns: -1 if the irq was not active
2523  *           1 if completing this irq brought us back to base (no active irqs)
2524  *           0 if there is still an irq active after this one was completed
2525  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2526  */
2527 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2528 /**
2529  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2530  * @opaque: the NVIC
2531  * @irq: the exception number to mark pending
2532  * @secure: false for non-banked exceptions or for the nonsecure
2533  * version of a banked exception, true for the secure version of a banked
2534  * exception.
2535  *
2536  * Return whether an exception is "ready", i.e. whether the exception is
2537  * enabled and is configured at a priority which would allow it to
2538  * interrupt the current execution priority. This controls whether the
2539  * RDY bit for it in the FPCCR is set.
2540  */
2541 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2542 /**
2543  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2544  * @opaque: the NVIC
2545  *
2546  * Returns: the raw execution priority as defined by the v8M architecture.
2547  * This is the execution priority minus the effects of AIRCR.PRIS,
2548  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2549  * (v8M ARM ARM I_PKLD.)
2550  */
2551 int armv7m_nvic_raw_execution_priority(void *opaque);
2552 /**
2553  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2554  * priority is negative for the specified security state.
2555  * @opaque: the NVIC
2556  * @secure: the security state to test
2557  * This corresponds to the pseudocode IsReqExecPriNeg().
2558  */
2559 #ifndef CONFIG_USER_ONLY
2560 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2561 #else
2562 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2563 {
2564     return false;
2565 }
2566 #endif
2567 
2568 /* Interface for defining coprocessor registers.
2569  * Registers are defined in tables of arm_cp_reginfo structs
2570  * which are passed to define_arm_cp_regs().
2571  */
2572 
2573 /* When looking up a coprocessor register we look for it
2574  * via an integer which encodes all of:
2575  *  coprocessor number
2576  *  Crn, Crm, opc1, opc2 fields
2577  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2578  *    or via MRRC/MCRR?)
2579  *  non-secure/secure bank (AArch32 only)
2580  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2581  * (In this case crn and opc2 should be zero.)
2582  * For AArch64, there is no 32/64 bit size distinction;
2583  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2584  * and 4 bit CRn and CRm. The encoding patterns are chosen
2585  * to be easy to convert to and from the KVM encodings, and also
2586  * so that the hashtable can contain both AArch32 and AArch64
2587  * registers (to allow for interprocessing where we might run
2588  * 32 bit code on a 64 bit core).
2589  */
2590 /* This bit is private to our hashtable cpreg; in KVM register
2591  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2592  * in the upper bits of the 64 bit ID.
2593  */
2594 #define CP_REG_AA64_SHIFT 28
2595 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2596 
2597 /* To enable banking of coprocessor registers depending on ns-bit we
2598  * add a bit to distinguish between secure and non-secure cpregs in the
2599  * hashtable.
2600  */
2601 #define CP_REG_NS_SHIFT 29
2602 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2603 
2604 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2605     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2606      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2607 
2608 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2609     (CP_REG_AA64_MASK |                                 \
2610      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2611      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2612      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2613      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2614      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2615      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2616 
2617 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2618  * version used as a key for the coprocessor register hashtable
2619  */
2620 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2621 {
2622     uint32_t cpregid = kvmid;
2623     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2624         cpregid |= CP_REG_AA64_MASK;
2625     } else {
2626         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2627             cpregid |= (1 << 15);
2628         }
2629 
2630         /* KVM is always non-secure so add the NS flag on AArch32 register
2631          * entries.
2632          */
2633          cpregid |= 1 << CP_REG_NS_SHIFT;
2634     }
2635     return cpregid;
2636 }
2637 
2638 /* Convert a truncated 32 bit hashtable key into the full
2639  * 64 bit KVM register ID.
2640  */
2641 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2642 {
2643     uint64_t kvmid;
2644 
2645     if (cpregid & CP_REG_AA64_MASK) {
2646         kvmid = cpregid & ~CP_REG_AA64_MASK;
2647         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2648     } else {
2649         kvmid = cpregid & ~(1 << 15);
2650         if (cpregid & (1 << 15)) {
2651             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2652         } else {
2653             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2654         }
2655     }
2656     return kvmid;
2657 }
2658 
2659 /* Return the highest implemented Exception Level */
2660 static inline int arm_highest_el(CPUARMState *env)
2661 {
2662     if (arm_feature(env, ARM_FEATURE_EL3)) {
2663         return 3;
2664     }
2665     if (arm_feature(env, ARM_FEATURE_EL2)) {
2666         return 2;
2667     }
2668     return 1;
2669 }
2670 
2671 /* Return true if a v7M CPU is in Handler mode */
2672 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2673 {
2674     return env->v7m.exception != 0;
2675 }
2676 
2677 /* Return the current Exception Level (as per ARMv8; note that this differs
2678  * from the ARMv7 Privilege Level).
2679  */
2680 static inline int arm_current_el(CPUARMState *env)
2681 {
2682     if (arm_feature(env, ARM_FEATURE_M)) {
2683         return arm_v7m_is_handler_mode(env) ||
2684             !(env->v7m.control[env->v7m.secure] & 1);
2685     }
2686 
2687     if (is_a64(env)) {
2688         return extract32(env->pstate, 2, 2);
2689     }
2690 
2691     switch (env->uncached_cpsr & 0x1f) {
2692     case ARM_CPU_MODE_USR:
2693         return 0;
2694     case ARM_CPU_MODE_HYP:
2695         return 2;
2696     case ARM_CPU_MODE_MON:
2697         return 3;
2698     default:
2699         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2700             /* If EL3 is 32-bit then all secure privileged modes run in
2701              * EL3
2702              */
2703             return 3;
2704         }
2705 
2706         return 1;
2707     }
2708 }
2709 
2710 /**
2711  * write_list_to_cpustate
2712  * @cpu: ARMCPU
2713  *
2714  * For each register listed in the ARMCPU cpreg_indexes list, write
2715  * its value from the cpreg_values list into the ARMCPUState structure.
2716  * This updates TCG's working data structures from KVM data or
2717  * from incoming migration state.
2718  *
2719  * Returns: true if all register values were updated correctly,
2720  * false if some register was unknown or could not be written.
2721  * Note that we do not stop early on failure -- we will attempt
2722  * writing all registers in the list.
2723  */
2724 bool write_list_to_cpustate(ARMCPU *cpu);
2725 
2726 /**
2727  * write_cpustate_to_list:
2728  * @cpu: ARMCPU
2729  * @kvm_sync: true if this is for syncing back to KVM
2730  *
2731  * For each register listed in the ARMCPU cpreg_indexes list, write
2732  * its value from the ARMCPUState structure into the cpreg_values list.
2733  * This is used to copy info from TCG's working data structures into
2734  * KVM or for outbound migration.
2735  *
2736  * @kvm_sync is true if we are doing this in order to sync the
2737  * register state back to KVM. In this case we will only update
2738  * values in the list if the previous list->cpustate sync actually
2739  * successfully wrote the CPU state. Otherwise we will keep the value
2740  * that is in the list.
2741  *
2742  * Returns: true if all register values were read correctly,
2743  * false if some register was unknown or could not be read.
2744  * Note that we do not stop early on failure -- we will attempt
2745  * reading all registers in the list.
2746  */
2747 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2748 
2749 #define ARM_CPUID_TI915T      0x54029152
2750 #define ARM_CPUID_TI925T      0x54029252
2751 
2752 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2753 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2754 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2755 
2756 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2757 
2758 #define cpu_list arm_cpu_list
2759 
2760 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2761  *
2762  * If EL3 is 64-bit:
2763  *  + NonSecure EL1 & 0 stage 1
2764  *  + NonSecure EL1 & 0 stage 2
2765  *  + NonSecure EL2
2766  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2767  *  + Secure EL1 & 0
2768  *  + Secure EL3
2769  * If EL3 is 32-bit:
2770  *  + NonSecure PL1 & 0 stage 1
2771  *  + NonSecure PL1 & 0 stage 2
2772  *  + NonSecure PL2
2773  *  + Secure PL0
2774  *  + Secure PL1
2775  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2776  *
2777  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2778  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2779  *     because they may differ in access permissions even if the VA->PA map is
2780  *     the same
2781  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2782  *     translation, which means that we have one mmu_idx that deals with two
2783  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2784  *     architecturally permitted]
2785  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2786  *     handling via the TLB. The only way to do a stage 1 translation without
2787  *     the immediate stage 2 translation is via the ATS or AT system insns,
2788  *     which can be slow-pathed and always do a page table walk.
2789  *     The only use of stage 2 translations is either as part of an s1+2
2790  *     lookup or when loading the descriptors during a stage 1 page table walk,
2791  *     and in both those cases we don't use the TLB.
2792  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2793  *     translation regimes, because they map reasonably well to each other
2794  *     and they can't both be active at the same time.
2795  *  5. we want to be able to use the TLB for accesses done as part of a
2796  *     stage1 page table walk, rather than having to walk the stage2 page
2797  *     table over and over.
2798  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2799  *     Never (PAN) bit within PSTATE.
2800  *
2801  * This gives us the following list of cases:
2802  *
2803  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2804  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2805  * NS EL1 EL1&0 stage 1+2 +PAN
2806  * NS EL0 EL2&0
2807  * NS EL2 EL2&0
2808  * NS EL2 EL2&0 +PAN
2809  * NS EL2 (aka NS PL2)
2810  * S EL0 EL1&0 (aka S PL0)
2811  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2812  * S EL1 EL1&0 +PAN
2813  * S EL3 (aka S PL1)
2814  *
2815  * for a total of 11 different mmu_idx.
2816  *
2817  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2818  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2819  * NS EL2 if we ever model a Cortex-R52).
2820  *
2821  * M profile CPUs are rather different as they do not have a true MMU.
2822  * They have the following different MMU indexes:
2823  *  User
2824  *  Privileged
2825  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2826  *  Privileged, execution priority negative (ditto)
2827  * If the CPU supports the v8M Security Extension then there are also:
2828  *  Secure User
2829  *  Secure Privileged
2830  *  Secure User, execution priority negative
2831  *  Secure Privileged, execution priority negative
2832  *
2833  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2834  * are not quite the same -- different CPU types (most notably M profile
2835  * vs A/R profile) would like to use MMU indexes with different semantics,
2836  * but since we don't ever need to use all of those in a single CPU we
2837  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2838  * modes + total number of M profile MMU modes". The lower bits of
2839  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2840  * the same for any particular CPU.
2841  * Variables of type ARMMUIdx are always full values, and the core
2842  * index values are in variables of type 'int'.
2843  *
2844  * Our enumeration includes at the end some entries which are not "true"
2845  * mmu_idx values in that they don't have corresponding TLBs and are only
2846  * valid for doing slow path page table walks.
2847  *
2848  * The constant names here are patterned after the general style of the names
2849  * of the AT/ATS operations.
2850  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2851  * For M profile we arrange them to have a bit for priv, a bit for negpri
2852  * and a bit for secure.
2853  */
2854 #define ARM_MMU_IDX_A     0x10  /* A profile */
2855 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2856 #define ARM_MMU_IDX_M     0x40  /* M profile */
2857 
2858 /* Meanings of the bits for A profile mmu idx values */
2859 #define ARM_MMU_IDX_A_NS     0x8
2860 
2861 /* Meanings of the bits for M profile mmu idx values */
2862 #define ARM_MMU_IDX_M_PRIV   0x1
2863 #define ARM_MMU_IDX_M_NEGPRI 0x2
2864 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2865 
2866 #define ARM_MMU_IDX_TYPE_MASK \
2867     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2868 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2869 
2870 typedef enum ARMMMUIdx {
2871     /*
2872      * A-profile.
2873      */
2874     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2875     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2876     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2877     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2878     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2879     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2880     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2881     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2882 
2883     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2884     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2885     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2886     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2887     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2888     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2889     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2890 
2891     /*
2892      * These are not allocated TLBs and are used only for AT system
2893      * instructions or for the first stage of an S12 page table walk.
2894      */
2895     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2896     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2897     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2898     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2899     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2900     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2901     /*
2902      * Not allocated a TLB: used only for second stage of an S12 page
2903      * table walk, or for descriptor loads during first stage of an S1
2904      * page table walk. Note that if we ever want to have a TLB for this
2905      * then various TLB flush insns which currently are no-ops or flush
2906      * only stage 1 MMU indexes will need to change to flush stage 2.
2907      */
2908     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2909     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2910 
2911     /*
2912      * M-profile.
2913      */
2914     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2915     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2916     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2917     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2918     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2919     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2920     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2921     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2922 } ARMMMUIdx;
2923 
2924 /*
2925  * Bit macros for the core-mmu-index values for each index,
2926  * for use when calling tlb_flush_by_mmuidx() and friends.
2927  */
2928 #define TO_CORE_BIT(NAME) \
2929     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2930 
2931 typedef enum ARMMMUIdxBit {
2932     TO_CORE_BIT(E10_0),
2933     TO_CORE_BIT(E20_0),
2934     TO_CORE_BIT(E10_1),
2935     TO_CORE_BIT(E10_1_PAN),
2936     TO_CORE_BIT(E2),
2937     TO_CORE_BIT(E20_2),
2938     TO_CORE_BIT(E20_2_PAN),
2939     TO_CORE_BIT(SE10_0),
2940     TO_CORE_BIT(SE20_0),
2941     TO_CORE_BIT(SE10_1),
2942     TO_CORE_BIT(SE20_2),
2943     TO_CORE_BIT(SE10_1_PAN),
2944     TO_CORE_BIT(SE20_2_PAN),
2945     TO_CORE_BIT(SE2),
2946     TO_CORE_BIT(SE3),
2947 
2948     TO_CORE_BIT(MUser),
2949     TO_CORE_BIT(MPriv),
2950     TO_CORE_BIT(MUserNegPri),
2951     TO_CORE_BIT(MPrivNegPri),
2952     TO_CORE_BIT(MSUser),
2953     TO_CORE_BIT(MSPriv),
2954     TO_CORE_BIT(MSUserNegPri),
2955     TO_CORE_BIT(MSPrivNegPri),
2956 } ARMMMUIdxBit;
2957 
2958 #undef TO_CORE_BIT
2959 
2960 #define MMU_USER_IDX 0
2961 
2962 /* Indexes used when registering address spaces with cpu_address_space_init */
2963 typedef enum ARMASIdx {
2964     ARMASIdx_NS = 0,
2965     ARMASIdx_S = 1,
2966     ARMASIdx_TagNS = 2,
2967     ARMASIdx_TagS = 3,
2968 } ARMASIdx;
2969 
2970 /* Return the Exception Level targeted by debug exceptions. */
2971 static inline int arm_debug_target_el(CPUARMState *env)
2972 {
2973     bool secure = arm_is_secure(env);
2974     bool route_to_el2 = false;
2975 
2976     if (arm_is_el2_enabled(env)) {
2977         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2978                        env->cp15.mdcr_el2 & MDCR_TDE;
2979     }
2980 
2981     if (route_to_el2) {
2982         return 2;
2983     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2984                !arm_el_is_aa64(env, 3) && secure) {
2985         return 3;
2986     } else {
2987         return 1;
2988     }
2989 }
2990 
2991 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2992 {
2993     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2994      * CSSELR is RAZ/WI.
2995      */
2996     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2997 }
2998 
2999 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3000 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3001 {
3002     int cur_el = arm_current_el(env);
3003     int debug_el;
3004 
3005     if (cur_el == 3) {
3006         return false;
3007     }
3008 
3009     /* MDCR_EL3.SDD disables debug events from Secure state */
3010     if (arm_is_secure_below_el3(env)
3011         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3012         return false;
3013     }
3014 
3015     /*
3016      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3017      * while not masking the (D)ebug bit in DAIF.
3018      */
3019     debug_el = arm_debug_target_el(env);
3020 
3021     if (cur_el == debug_el) {
3022         return extract32(env->cp15.mdscr_el1, 13, 1)
3023             && !(env->daif & PSTATE_D);
3024     }
3025 
3026     /* Otherwise the debug target needs to be a higher EL */
3027     return debug_el > cur_el;
3028 }
3029 
3030 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3031 {
3032     int el = arm_current_el(env);
3033 
3034     if (el == 0 && arm_el_is_aa64(env, 1)) {
3035         return aa64_generate_debug_exceptions(env);
3036     }
3037 
3038     if (arm_is_secure(env)) {
3039         int spd;
3040 
3041         if (el == 0 && (env->cp15.sder & 1)) {
3042             /* SDER.SUIDEN means debug exceptions from Secure EL0
3043              * are always enabled. Otherwise they are controlled by
3044              * SDCR.SPD like those from other Secure ELs.
3045              */
3046             return true;
3047         }
3048 
3049         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3050         switch (spd) {
3051         case 1:
3052             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3053         case 0:
3054             /* For 0b00 we return true if external secure invasive debug
3055              * is enabled. On real hardware this is controlled by external
3056              * signals to the core. QEMU always permits debug, and behaves
3057              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3058              */
3059             return true;
3060         case 2:
3061             return false;
3062         case 3:
3063             return true;
3064         }
3065     }
3066 
3067     return el != 2;
3068 }
3069 
3070 /* Return true if debugging exceptions are currently enabled.
3071  * This corresponds to what in ARM ARM pseudocode would be
3072  *    if UsingAArch32() then
3073  *        return AArch32.GenerateDebugExceptions()
3074  *    else
3075  *        return AArch64.GenerateDebugExceptions()
3076  * We choose to push the if() down into this function for clarity,
3077  * since the pseudocode has it at all callsites except for the one in
3078  * CheckSoftwareStep(), where it is elided because both branches would
3079  * always return the same value.
3080  */
3081 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3082 {
3083     if (env->aarch64) {
3084         return aa64_generate_debug_exceptions(env);
3085     } else {
3086         return aa32_generate_debug_exceptions(env);
3087     }
3088 }
3089 
3090 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3091  * implicitly means this always returns false in pre-v8 CPUs.)
3092  */
3093 static inline bool arm_singlestep_active(CPUARMState *env)
3094 {
3095     return extract32(env->cp15.mdscr_el1, 0, 1)
3096         && arm_el_is_aa64(env, arm_debug_target_el(env))
3097         && arm_generate_debug_exceptions(env);
3098 }
3099 
3100 static inline bool arm_sctlr_b(CPUARMState *env)
3101 {
3102     return
3103         /* We need not implement SCTLR.ITD in user-mode emulation, so
3104          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3105          * This lets people run BE32 binaries with "-cpu any".
3106          */
3107 #ifndef CONFIG_USER_ONLY
3108         !arm_feature(env, ARM_FEATURE_V7) &&
3109 #endif
3110         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3111 }
3112 
3113 uint64_t arm_sctlr(CPUARMState *env, int el);
3114 
3115 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3116                                                   bool sctlr_b)
3117 {
3118 #ifdef CONFIG_USER_ONLY
3119     /*
3120      * In system mode, BE32 is modelled in line with the
3121      * architecture (as word-invariant big-endianness), where loads
3122      * and stores are done little endian but from addresses which
3123      * are adjusted by XORing with the appropriate constant. So the
3124      * endianness to use for the raw data access is not affected by
3125      * SCTLR.B.
3126      * In user mode, however, we model BE32 as byte-invariant
3127      * big-endianness (because user-only code cannot tell the
3128      * difference), and so we need to use a data access endianness
3129      * that depends on SCTLR.B.
3130      */
3131     if (sctlr_b) {
3132         return true;
3133     }
3134 #endif
3135     /* In 32bit endianness is determined by looking at CPSR's E bit */
3136     return env->uncached_cpsr & CPSR_E;
3137 }
3138 
3139 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3140 {
3141     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3142 }
3143 
3144 /* Return true if the processor is in big-endian mode. */
3145 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3146 {
3147     if (!is_a64(env)) {
3148         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3149     } else {
3150         int cur_el = arm_current_el(env);
3151         uint64_t sctlr = arm_sctlr(env, cur_el);
3152         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3153     }
3154 }
3155 
3156 #include "exec/cpu-all.h"
3157 
3158 /*
3159  * We have more than 32-bits worth of state per TB, so we split the data
3160  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3161  * We collect these two parts in CPUARMTBFlags where they are named
3162  * flags and flags2 respectively.
3163  *
3164  * The flags that are shared between all execution modes, TBFLAG_ANY,
3165  * are stored in flags.  The flags that are specific to a given mode
3166  * are stores in flags2.  Since cs_base is sized on the configured
3167  * address size, flags2 always has 64-bits for A64, and a minimum of
3168  * 32-bits for A32 and M32.
3169  *
3170  * The bits for 32-bit A-profile and M-profile partially overlap:
3171  *
3172  *  31         23         11 10             0
3173  * +-------------+----------+----------------+
3174  * |             |          |   TBFLAG_A32   |
3175  * | TBFLAG_AM32 |          +-----+----------+
3176  * |             |                |TBFLAG_M32|
3177  * +-------------+----------------+----------+
3178  *  31         23                6 5        0
3179  *
3180  * Unless otherwise noted, these bits are cached in env->hflags.
3181  */
3182 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3183 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3184 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3185 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3186 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3187 /* Target EL if we take a floating-point-disabled exception */
3188 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3189 /* For A-profile only, target EL for debug exceptions.  */
3190 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3191 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3192 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3193 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3194 
3195 /*
3196  * Bit usage when in AArch32 state, both A- and M-profile.
3197  */
3198 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3199 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3200 
3201 /*
3202  * Bit usage when in AArch32 state, for A-profile only.
3203  */
3204 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3205 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3206 /*
3207  * We store the bottom two bits of the CPAR as TB flags and handle
3208  * checks on the other bits at runtime. This shares the same bits as
3209  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3210  * Not cached, because VECLEN+VECSTRIDE are not cached.
3211  */
3212 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3213 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3214 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3215 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3216 /*
3217  * Indicates whether cp register reads and writes by guest code should access
3218  * the secure or nonsecure bank of banked registers; note that this is not
3219  * the same thing as the current security state of the processor!
3220  */
3221 FIELD(TBFLAG_A32, NS, 10, 1)
3222 
3223 /*
3224  * Bit usage when in AArch32 state, for M-profile only.
3225  */
3226 /* Handler (ie not Thread) mode */
3227 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3228 /* Whether we should generate stack-limit checks */
3229 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3230 /* Set if FPCCR.LSPACT is set */
3231 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3232 /* Set if we must create a new FP context */
3233 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3234 /* Set if FPCCR.S does not match current security state */
3235 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3236 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3237 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3238 
3239 /*
3240  * Bit usage when in AArch64 state
3241  */
3242 FIELD(TBFLAG_A64, TBII, 0, 2)
3243 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3244 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3245 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3246 FIELD(TBFLAG_A64, BT, 9, 1)
3247 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3248 FIELD(TBFLAG_A64, TBID, 12, 2)
3249 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3250 FIELD(TBFLAG_A64, ATA, 15, 1)
3251 FIELD(TBFLAG_A64, TCMA, 16, 2)
3252 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3253 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3254 
3255 /*
3256  * Helpers for using the above.
3257  */
3258 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3259     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3260 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3261     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3262 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3263     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3264 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3265     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3266 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3267     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3268 
3269 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3270 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3271 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3272 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3273 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3274 
3275 /**
3276  * cpu_mmu_index:
3277  * @env: The cpu environment
3278  * @ifetch: True for code access, false for data access.
3279  *
3280  * Return the core mmu index for the current translation regime.
3281  * This function is used by generic TCG code paths.
3282  */
3283 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3284 {
3285     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3286 }
3287 
3288 static inline bool bswap_code(bool sctlr_b)
3289 {
3290 #ifdef CONFIG_USER_ONLY
3291     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3292      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3293      * would also end up as a mixed-endian mode with BE code, LE data.
3294      */
3295     return
3296 #if TARGET_BIG_ENDIAN
3297         1 ^
3298 #endif
3299         sctlr_b;
3300 #else
3301     /* All code access in ARM is little endian, and there are no loaders
3302      * doing swaps that need to be reversed
3303      */
3304     return 0;
3305 #endif
3306 }
3307 
3308 #ifdef CONFIG_USER_ONLY
3309 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3310 {
3311     return
3312 #if TARGET_BIG_ENDIAN
3313        1 ^
3314 #endif
3315        arm_cpu_data_is_big_endian(env);
3316 }
3317 #endif
3318 
3319 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3320                           target_ulong *cs_base, uint32_t *flags);
3321 
3322 enum {
3323     QEMU_PSCI_CONDUIT_DISABLED = 0,
3324     QEMU_PSCI_CONDUIT_SMC = 1,
3325     QEMU_PSCI_CONDUIT_HVC = 2,
3326 };
3327 
3328 #ifndef CONFIG_USER_ONLY
3329 /* Return the address space index to use for a memory access */
3330 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3331 {
3332     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3333 }
3334 
3335 /* Return the AddressSpace to use for a memory access
3336  * (which depends on whether the access is S or NS, and whether
3337  * the board gave us a separate AddressSpace for S accesses).
3338  */
3339 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3340 {
3341     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3342 }
3343 #endif
3344 
3345 /**
3346  * arm_register_pre_el_change_hook:
3347  * Register a hook function which will be called immediately before this
3348  * CPU changes exception level or mode. The hook function will be
3349  * passed a pointer to the ARMCPU and the opaque data pointer passed
3350  * to this function when the hook was registered.
3351  *
3352  * Note that if a pre-change hook is called, any registered post-change hooks
3353  * are guaranteed to subsequently be called.
3354  */
3355 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3356                                  void *opaque);
3357 /**
3358  * arm_register_el_change_hook:
3359  * Register a hook function which will be called immediately after this
3360  * CPU changes exception level or mode. The hook function will be
3361  * passed a pointer to the ARMCPU and the opaque data pointer passed
3362  * to this function when the hook was registered.
3363  *
3364  * Note that any registered hooks registered here are guaranteed to be called
3365  * if pre-change hooks have been.
3366  */
3367 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3368         *opaque);
3369 
3370 /**
3371  * arm_rebuild_hflags:
3372  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3373  */
3374 void arm_rebuild_hflags(CPUARMState *env);
3375 
3376 /**
3377  * aa32_vfp_dreg:
3378  * Return a pointer to the Dn register within env in 32-bit mode.
3379  */
3380 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3381 {
3382     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3383 }
3384 
3385 /**
3386  * aa32_vfp_qreg:
3387  * Return a pointer to the Qn register within env in 32-bit mode.
3388  */
3389 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3390 {
3391     return &env->vfp.zregs[regno].d[0];
3392 }
3393 
3394 /**
3395  * aa64_vfp_qreg:
3396  * Return a pointer to the Qn register within env in 64-bit mode.
3397  */
3398 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3399 {
3400     return &env->vfp.zregs[regno].d[0];
3401 }
3402 
3403 /* Shared between translate-sve.c and sve_helper.c.  */
3404 extern const uint64_t pred_esz_masks[4];
3405 
3406 /* Helper for the macros below, validating the argument type. */
3407 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3408 {
3409     return x;
3410 }
3411 
3412 /*
3413  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3414  * Using these should be a bit more self-documenting than using the
3415  * generic target bits directly.
3416  */
3417 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3418 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3419 
3420 /*
3421  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3422  */
3423 #define PAGE_BTI  PAGE_TARGET_1
3424 #define PAGE_MTE  PAGE_TARGET_2
3425 
3426 #ifdef TARGET_TAGGED_ADDRESSES
3427 /**
3428  * cpu_untagged_addr:
3429  * @cs: CPU context
3430  * @x: tagged address
3431  *
3432  * Remove any address tag from @x.  This is explicitly related to the
3433  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3434  *
3435  * There should be a better place to put this, but we need this in
3436  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3437  */
3438 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3439 {
3440     ARMCPU *cpu = ARM_CPU(cs);
3441     if (cpu->env.tagged_addr_enable) {
3442         /*
3443          * TBI is enabled for userspace but not kernelspace addresses.
3444          * Only clear the tag if bit 55 is clear.
3445          */
3446         x &= sextract64(x, 0, 56);
3447     }
3448     return x;
3449 }
3450 #endif
3451 
3452 /*
3453  * Naming convention for isar_feature functions:
3454  * Functions which test 32-bit ID registers should have _aa32_ in
3455  * their name. Functions which test 64-bit ID registers should have
3456  * _aa64_ in their name. These must only be used in code where we
3457  * know for certain that the CPU has AArch32 or AArch64 respectively
3458  * or where the correct answer for a CPU which doesn't implement that
3459  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3460  * system registers that are specific to that CPU state, for "should
3461  * we let this system register bit be set" tests where the 32-bit
3462  * flavour of the register doesn't have the bit, and so on).
3463  * Functions which simply ask "does this feature exist at all" have
3464  * _any_ in their name, and always return the logical OR of the _aa64_
3465  * and the _aa32_ function.
3466  */
3467 
3468 /*
3469  * 32-bit feature tests via id registers.
3470  */
3471 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3472 {
3473     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3474 }
3475 
3476 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3477 {
3478     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3479 }
3480 
3481 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3482 {
3483     /* (M-profile) low-overhead loops and branch future */
3484     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3485 }
3486 
3487 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3488 {
3489     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3490 }
3491 
3492 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3493 {
3494     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3495 }
3496 
3497 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3498 {
3499     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3500 }
3501 
3502 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3505 }
3506 
3507 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3510 }
3511 
3512 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3513 {
3514     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3515 }
3516 
3517 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3518 {
3519     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3520 }
3521 
3522 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3523 {
3524     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3525 }
3526 
3527 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3528 {
3529     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3530 }
3531 
3532 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3533 {
3534     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3535 }
3536 
3537 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3538 {
3539     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3540 }
3541 
3542 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3545 }
3546 
3547 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3550 }
3551 
3552 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3553 {
3554     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3555 }
3556 
3557 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3558 {
3559     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3560 }
3561 
3562 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3563 {
3564     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3565 }
3566 
3567 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3568 {
3569     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3570 }
3571 
3572 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3573 {
3574     /*
3575      * Return true if M-profile state handling insns
3576      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3577      */
3578     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3579 }
3580 
3581 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3582 {
3583     /* Sadly this is encoded differently for A-profile and M-profile */
3584     if (isar_feature_aa32_mprofile(id)) {
3585         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3586     } else {
3587         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3588     }
3589 }
3590 
3591 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3592 {
3593     /*
3594      * Return true if MVE is supported (either integer or floating point).
3595      * We must check for M-profile as the MVFR1 field means something
3596      * else for A-profile.
3597      */
3598     return isar_feature_aa32_mprofile(id) &&
3599         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3600 }
3601 
3602 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3603 {
3604     /*
3605      * Return true if MVE is supported (either integer or floating point).
3606      * We must check for M-profile as the MVFR1 field means something
3607      * else for A-profile.
3608      */
3609     return isar_feature_aa32_mprofile(id) &&
3610         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3611 }
3612 
3613 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3614 {
3615     /*
3616      * Return true if either VFP or SIMD is implemented.
3617      * In this case, a minimum of VFP w/ D0-D15.
3618      */
3619     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3620 }
3621 
3622 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3623 {
3624     /* Return true if D16-D31 are implemented */
3625     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3626 }
3627 
3628 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3629 {
3630     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3631 }
3632 
3633 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3634 {
3635     /* Return true if CPU supports single precision floating point, VFPv2 */
3636     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3637 }
3638 
3639 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3640 {
3641     /* Return true if CPU supports single precision floating point, VFPv3 */
3642     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3643 }
3644 
3645 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3646 {
3647     /* Return true if CPU supports double precision floating point, VFPv2 */
3648     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3649 }
3650 
3651 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3652 {
3653     /* Return true if CPU supports double precision floating point, VFPv3 */
3654     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3655 }
3656 
3657 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3658 {
3659     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3660 }
3661 
3662 /*
3663  * We always set the FP and SIMD FP16 fields to indicate identical
3664  * levels of support (assuming SIMD is implemented at all), so
3665  * we only need one set of accessors.
3666  */
3667 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3668 {
3669     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3670 }
3671 
3672 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3673 {
3674     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3675 }
3676 
3677 /*
3678  * Note that this ID register field covers both VFP and Neon FMAC,
3679  * so should usually be tested in combination with some other
3680  * check that confirms the presence of whichever of VFP or Neon is
3681  * relevant, to avoid accidentally enabling a Neon feature on
3682  * a VFP-no-Neon core or vice-versa.
3683  */
3684 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3685 {
3686     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3687 }
3688 
3689 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3690 {
3691     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3692 }
3693 
3694 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3695 {
3696     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3697 }
3698 
3699 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3700 {
3701     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3702 }
3703 
3704 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3705 {
3706     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3707 }
3708 
3709 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3710 {
3711     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3712 }
3713 
3714 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3715 {
3716     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3717 }
3718 
3719 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3720 {
3721     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3722 }
3723 
3724 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3725 {
3726     /* 0xf means "non-standard IMPDEF PMU" */
3727     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3728         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3729 }
3730 
3731 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3732 {
3733     /* 0xf means "non-standard IMPDEF PMU" */
3734     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3735         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3736 }
3737 
3738 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3739 {
3740     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3741 }
3742 
3743 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3744 {
3745     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3746 }
3747 
3748 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3749 {
3750     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3751 }
3752 
3753 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3754 {
3755     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3756 }
3757 
3758 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3759 {
3760     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3761 }
3762 
3763 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3764 {
3765     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3766 }
3767 
3768 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3769 {
3770     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3771 }
3772 
3773 /*
3774  * 64-bit feature tests via id registers.
3775  */
3776 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3777 {
3778     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3779 }
3780 
3781 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3782 {
3783     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3784 }
3785 
3786 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3787 {
3788     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3789 }
3790 
3791 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3792 {
3793     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3794 }
3795 
3796 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3797 {
3798     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3799 }
3800 
3801 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3802 {
3803     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3804 }
3805 
3806 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3807 {
3808     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3809 }
3810 
3811 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3812 {
3813     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3814 }
3815 
3816 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3817 {
3818     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3819 }
3820 
3821 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3822 {
3823     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3824 }
3825 
3826 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3827 {
3828     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3829 }
3830 
3831 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3832 {
3833     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3834 }
3835 
3836 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3837 {
3838     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3839 }
3840 
3841 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3842 {
3843     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3844 }
3845 
3846 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3847 {
3848     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3849 }
3850 
3851 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3852 {
3853     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3854 }
3855 
3856 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3857 {
3858     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3859 }
3860 
3861 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3862 {
3863     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3864 }
3865 
3866 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3867 {
3868     /*
3869      * Return true if any form of pauth is enabled, as this
3870      * predicate controls migration of the 128-bit keys.
3871      */
3872     return (id->id_aa64isar1 &
3873             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3874              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3875              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3876              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3877 }
3878 
3879 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3880 {
3881     /*
3882      * Return true if pauth is enabled with the architected QARMA algorithm.
3883      * QEMU will always set APA+GPA to the same value.
3884      */
3885     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3886 }
3887 
3888 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3889 {
3890     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3891 }
3892 
3893 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3894 {
3895     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3896 }
3897 
3898 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3899 {
3900     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3901 }
3902 
3903 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3904 {
3905     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3906 }
3907 
3908 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3909 {
3910     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3911 }
3912 
3913 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3914 {
3915     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3916 }
3917 
3918 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3919 {
3920     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3921 }
3922 
3923 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3924 {
3925     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3926 }
3927 
3928 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3929 {
3930     /* We always set the AdvSIMD and FP fields identically.  */
3931     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3932 }
3933 
3934 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3935 {
3936     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3937     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3938 }
3939 
3940 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3941 {
3942     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3943 }
3944 
3945 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3946 {
3947     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3948 }
3949 
3950 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3951 {
3952     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3953 }
3954 
3955 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3956 {
3957     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3958 }
3959 
3960 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3961 {
3962     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3963 }
3964 
3965 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3968 }
3969 
3970 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3971 {
3972     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3973 }
3974 
3975 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3976 {
3977     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3978 }
3979 
3980 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3981 {
3982     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3983 }
3984 
3985 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
3986 {
3987     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
3988 }
3989 
3990 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3991 {
3992     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3993 }
3994 
3995 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3996 {
3997     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3998 }
3999 
4000 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4001 {
4002     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4003 }
4004 
4005 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4006 {
4007     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4008 }
4009 
4010 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4011 {
4012     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4013 }
4014 
4015 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4016 {
4017     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4018 }
4019 
4020 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4021 {
4022     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4023 }
4024 
4025 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4026 {
4027     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4028         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4029 }
4030 
4031 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4032 {
4033     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4034         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4035 }
4036 
4037 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4038 {
4039     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4040 }
4041 
4042 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4043 {
4044     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4045 }
4046 
4047 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4048 {
4049     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4050 }
4051 
4052 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4053 {
4054     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4055 }
4056 
4057 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4058 {
4059     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4060     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4061 }
4062 
4063 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4064 {
4065     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4066 }
4067 
4068 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4069 {
4070     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4071     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4072 }
4073 
4074 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4075 {
4076     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4077 }
4078 
4079 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4082 }
4083 
4084 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4085 {
4086     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4087 }
4088 
4089 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4090 {
4091     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4092 }
4093 
4094 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4095 {
4096     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4097     if (key >= 2) {
4098         return true;      /* FEAT_CSV2_2 */
4099     }
4100     if (key == 1) {
4101         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4102         return key >= 2;  /* FEAT_CSV2_1p2 */
4103     }
4104     return false;
4105 }
4106 
4107 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4108 {
4109     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4110 }
4111 
4112 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4113 {
4114     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4115 }
4116 
4117 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4118 {
4119     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4120 }
4121 
4122 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4123 {
4124     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4125 }
4126 
4127 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4128 {
4129     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4130 }
4131 
4132 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4133 {
4134     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4135 }
4136 
4137 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4138 {
4139     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4140 }
4141 
4142 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4143 {
4144     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4145 }
4146 
4147 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4148 {
4149     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4150 }
4151 
4152 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4153 {
4154     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4155 }
4156 
4157 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4158 {
4159     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4160 }
4161 
4162 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4163 {
4164     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4165 }
4166 
4167 /*
4168  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4169  */
4170 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4171 {
4172     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4173 }
4174 
4175 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4176 {
4177     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4178 }
4179 
4180 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4181 {
4182     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4183 }
4184 
4185 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4186 {
4187     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4188 }
4189 
4190 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4191 {
4192     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4193 }
4194 
4195 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4196 {
4197     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4198 }
4199 
4200 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4201 {
4202     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4203 }
4204 
4205 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4206 {
4207     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4208 }
4209 
4210 /*
4211  * Forward to the above feature tests given an ARMCPU pointer.
4212  */
4213 #define cpu_isar_feature(name, cpu) \
4214     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4215 
4216 #endif
4217