xref: /qemu/target/arm/cpu.h (revision 33848cee)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 
25 #if defined(TARGET_AARCH64)
26   /* AArch64 definitions */
27 #  define TARGET_LONG_BITS 64
28 #else
29 #  define TARGET_LONG_BITS 32
30 #endif
31 
32 #define CPUArchState struct CPUARMState
33 
34 #include "qemu-common.h"
35 #include "cpu-qom.h"
36 #include "exec/cpu-defs.h"
37 
38 #include "fpu/softfloat.h"
39 
40 #define EXCP_UDEF            1   /* undefined instruction */
41 #define EXCP_SWI             2   /* software interrupt */
42 #define EXCP_PREFETCH_ABORT  3
43 #define EXCP_DATA_ABORT      4
44 #define EXCP_IRQ             5
45 #define EXCP_FIQ             6
46 #define EXCP_BKPT            7
47 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49 #define EXCP_HVC            11   /* HyperVisor Call */
50 #define EXCP_HYP_TRAP       12
51 #define EXCP_SMC            13   /* Secure Monitor Call */
52 #define EXCP_VIRQ           14
53 #define EXCP_VFIQ           15
54 #define EXCP_SEMIHOST       16   /* semihosting call */
55 
56 #define ARMV7M_EXCP_RESET   1
57 #define ARMV7M_EXCP_NMI     2
58 #define ARMV7M_EXCP_HARD    3
59 #define ARMV7M_EXCP_MEM     4
60 #define ARMV7M_EXCP_BUS     5
61 #define ARMV7M_EXCP_USAGE   6
62 #define ARMV7M_EXCP_SVC     11
63 #define ARMV7M_EXCP_DEBUG   12
64 #define ARMV7M_EXCP_PENDSV  14
65 #define ARMV7M_EXCP_SYSTICK 15
66 
67 /* ARM-specific interrupt pending bits.  */
68 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
69 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
70 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
71 
72 /* The usual mapping for an AArch64 system register to its AArch32
73  * counterpart is for the 32 bit world to have access to the lower
74  * half only (with writes leaving the upper half untouched). It's
75  * therefore useful to be able to pass TCG the offset of the least
76  * significant half of a uint64_t struct member.
77  */
78 #ifdef HOST_WORDS_BIGENDIAN
79 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
80 #define offsetofhigh32(S, M) offsetof(S, M)
81 #else
82 #define offsetoflow32(S, M) offsetof(S, M)
83 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
84 #endif
85 
86 /* Meanings of the ARMCPU object's four inbound GPIO lines */
87 #define ARM_CPU_IRQ 0
88 #define ARM_CPU_FIQ 1
89 #define ARM_CPU_VIRQ 2
90 #define ARM_CPU_VFIQ 3
91 
92 #define NB_MMU_MODES 7
93 /* ARM-specific extra insn start words:
94  * 1: Conditional execution bits
95  * 2: Partial exception syndrome for data aborts
96  */
97 #define TARGET_INSN_START_EXTRA_WORDS 2
98 
99 /* The 2nd extra word holding syndrome info for data aborts does not use
100  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
101  * help the sleb128 encoder do a better job.
102  * When restoring the CPU state, we shift it back up.
103  */
104 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
105 #define ARM_INSN_START_WORD2_SHIFT 14
106 
107 /* We currently assume float and double are IEEE single and double
108    precision respectively.
109    Doing runtime conversions is tricky because VFP registers may contain
110    integer values (eg. as the result of a FTOSI instruction).
111    s<2n> maps to the least significant half of d<n>
112    s<2n+1> maps to the most significant half of d<n>
113  */
114 
115 /* CPU state for each instance of a generic timer (in cp15 c14) */
116 typedef struct ARMGenericTimer {
117     uint64_t cval; /* Timer CompareValue register */
118     uint64_t ctl; /* Timer Control register */
119 } ARMGenericTimer;
120 
121 #define GTIMER_PHYS 0
122 #define GTIMER_VIRT 1
123 #define GTIMER_HYP  2
124 #define GTIMER_SEC  3
125 #define NUM_GTIMERS 4
126 
127 typedef struct {
128     uint64_t raw_tcr;
129     uint32_t mask;
130     uint32_t base_mask;
131 } TCR;
132 
133 typedef struct CPUARMState {
134     /* Regs for current mode.  */
135     uint32_t regs[16];
136 
137     /* 32/64 switch only happens when taking and returning from
138      * exceptions so the overlap semantics are taken care of then
139      * instead of having a complicated union.
140      */
141     /* Regs for A64 mode.  */
142     uint64_t xregs[32];
143     uint64_t pc;
144     /* PSTATE isn't an architectural register for ARMv8. However, it is
145      * convenient for us to assemble the underlying state into a 32 bit format
146      * identical to the architectural format used for the SPSR. (This is also
147      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
148      * 'pstate' register are.) Of the PSTATE bits:
149      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
150      *    semantics as for AArch32, as described in the comments on each field)
151      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
152      *  DAIF (exception masks) are kept in env->daif
153      *  all other bits are stored in their correct places in env->pstate
154      */
155     uint32_t pstate;
156     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
157 
158     /* Frequently accessed CPSR bits are stored separately for efficiency.
159        This contains all the other bits.  Use cpsr_{read,write} to access
160        the whole CPSR.  */
161     uint32_t uncached_cpsr;
162     uint32_t spsr;
163 
164     /* Banked registers.  */
165     uint64_t banked_spsr[8];
166     uint32_t banked_r13[8];
167     uint32_t banked_r14[8];
168 
169     /* These hold r8-r12.  */
170     uint32_t usr_regs[5];
171     uint32_t fiq_regs[5];
172 
173     /* cpsr flag cache for faster execution */
174     uint32_t CF; /* 0 or 1 */
175     uint32_t VF; /* V is the bit 31. All other bits are undefined */
176     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
177     uint32_t ZF; /* Z set if zero.  */
178     uint32_t QF; /* 0 or 1 */
179     uint32_t GE; /* cpsr[19:16] */
180     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
181     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
182     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
183 
184     uint64_t elr_el[4]; /* AArch64 exception link regs  */
185     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
186 
187     /* System control coprocessor (cp15) */
188     struct {
189         uint32_t c0_cpuid;
190         union { /* Cache size selection */
191             struct {
192                 uint64_t _unused_csselr0;
193                 uint64_t csselr_ns;
194                 uint64_t _unused_csselr1;
195                 uint64_t csselr_s;
196             };
197             uint64_t csselr_el[4];
198         };
199         union { /* System control register. */
200             struct {
201                 uint64_t _unused_sctlr;
202                 uint64_t sctlr_ns;
203                 uint64_t hsctlr;
204                 uint64_t sctlr_s;
205             };
206             uint64_t sctlr_el[4];
207         };
208         uint64_t cpacr_el1; /* Architectural feature access control register */
209         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
210         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
211         uint64_t sder; /* Secure debug enable register. */
212         uint32_t nsacr; /* Non-secure access control register. */
213         union { /* MMU translation table base 0. */
214             struct {
215                 uint64_t _unused_ttbr0_0;
216                 uint64_t ttbr0_ns;
217                 uint64_t _unused_ttbr0_1;
218                 uint64_t ttbr0_s;
219             };
220             uint64_t ttbr0_el[4];
221         };
222         union { /* MMU translation table base 1. */
223             struct {
224                 uint64_t _unused_ttbr1_0;
225                 uint64_t ttbr1_ns;
226                 uint64_t _unused_ttbr1_1;
227                 uint64_t ttbr1_s;
228             };
229             uint64_t ttbr1_el[4];
230         };
231         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
232         /* MMU translation table base control. */
233         TCR tcr_el[4];
234         TCR vtcr_el2; /* Virtualization Translation Control.  */
235         uint32_t c2_data; /* MPU data cacheable bits.  */
236         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
237         union { /* MMU domain access control register
238                  * MPU write buffer control.
239                  */
240             struct {
241                 uint64_t dacr_ns;
242                 uint64_t dacr_s;
243             };
244             struct {
245                 uint64_t dacr32_el2;
246             };
247         };
248         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
249         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
250         uint64_t hcr_el2; /* Hypervisor configuration register */
251         uint64_t scr_el3; /* Secure configuration register.  */
252         union { /* Fault status registers.  */
253             struct {
254                 uint64_t ifsr_ns;
255                 uint64_t ifsr_s;
256             };
257             struct {
258                 uint64_t ifsr32_el2;
259             };
260         };
261         union {
262             struct {
263                 uint64_t _unused_dfsr;
264                 uint64_t dfsr_ns;
265                 uint64_t hsr;
266                 uint64_t dfsr_s;
267             };
268             uint64_t esr_el[4];
269         };
270         uint32_t c6_region[8]; /* MPU base/size registers.  */
271         union { /* Fault address registers. */
272             struct {
273                 uint64_t _unused_far0;
274 #ifdef HOST_WORDS_BIGENDIAN
275                 uint32_t ifar_ns;
276                 uint32_t dfar_ns;
277                 uint32_t ifar_s;
278                 uint32_t dfar_s;
279 #else
280                 uint32_t dfar_ns;
281                 uint32_t ifar_ns;
282                 uint32_t dfar_s;
283                 uint32_t ifar_s;
284 #endif
285                 uint64_t _unused_far3;
286             };
287             uint64_t far_el[4];
288         };
289         uint64_t hpfar_el2;
290         uint64_t hstr_el2;
291         union { /* Translation result. */
292             struct {
293                 uint64_t _unused_par_0;
294                 uint64_t par_ns;
295                 uint64_t _unused_par_1;
296                 uint64_t par_s;
297             };
298             uint64_t par_el[4];
299         };
300 
301         uint32_t c6_rgnr;
302 
303         uint32_t c9_insn; /* Cache lockdown registers.  */
304         uint32_t c9_data;
305         uint64_t c9_pmcr; /* performance monitor control register */
306         uint64_t c9_pmcnten; /* perf monitor counter enables */
307         uint32_t c9_pmovsr; /* perf monitor overflow status */
308         uint32_t c9_pmxevtyper; /* perf monitor event type */
309         uint32_t c9_pmuserenr; /* perf monitor user enable */
310         uint32_t c9_pminten; /* perf monitor interrupt enables */
311         union { /* Memory attribute redirection */
312             struct {
313 #ifdef HOST_WORDS_BIGENDIAN
314                 uint64_t _unused_mair_0;
315                 uint32_t mair1_ns;
316                 uint32_t mair0_ns;
317                 uint64_t _unused_mair_1;
318                 uint32_t mair1_s;
319                 uint32_t mair0_s;
320 #else
321                 uint64_t _unused_mair_0;
322                 uint32_t mair0_ns;
323                 uint32_t mair1_ns;
324                 uint64_t _unused_mair_1;
325                 uint32_t mair0_s;
326                 uint32_t mair1_s;
327 #endif
328             };
329             uint64_t mair_el[4];
330         };
331         union { /* vector base address register */
332             struct {
333                 uint64_t _unused_vbar;
334                 uint64_t vbar_ns;
335                 uint64_t hvbar;
336                 uint64_t vbar_s;
337             };
338             uint64_t vbar_el[4];
339         };
340         uint32_t mvbar; /* (monitor) vector base address register */
341         struct { /* FCSE PID. */
342             uint32_t fcseidr_ns;
343             uint32_t fcseidr_s;
344         };
345         union { /* Context ID. */
346             struct {
347                 uint64_t _unused_contextidr_0;
348                 uint64_t contextidr_ns;
349                 uint64_t _unused_contextidr_1;
350                 uint64_t contextidr_s;
351             };
352             uint64_t contextidr_el[4];
353         };
354         union { /* User RW Thread register. */
355             struct {
356                 uint64_t tpidrurw_ns;
357                 uint64_t tpidrprw_ns;
358                 uint64_t htpidr;
359                 uint64_t _tpidr_el3;
360             };
361             uint64_t tpidr_el[4];
362         };
363         /* The secure banks of these registers don't map anywhere */
364         uint64_t tpidrurw_s;
365         uint64_t tpidrprw_s;
366         uint64_t tpidruro_s;
367 
368         union { /* User RO Thread register. */
369             uint64_t tpidruro_ns;
370             uint64_t tpidrro_el[1];
371         };
372         uint64_t c14_cntfrq; /* Counter Frequency register */
373         uint64_t c14_cntkctl; /* Timer Control register */
374         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
375         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
376         ARMGenericTimer c14_timer[NUM_GTIMERS];
377         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
378         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
379         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
380         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
381         uint32_t c15_threadid; /* TI debugger thread-ID.  */
382         uint32_t c15_config_base_address; /* SCU base address.  */
383         uint32_t c15_diagnostic; /* diagnostic register */
384         uint32_t c15_power_diagnostic;
385         uint32_t c15_power_control; /* power control */
386         uint64_t dbgbvr[16]; /* breakpoint value registers */
387         uint64_t dbgbcr[16]; /* breakpoint control registers */
388         uint64_t dbgwvr[16]; /* watchpoint value registers */
389         uint64_t dbgwcr[16]; /* watchpoint control registers */
390         uint64_t mdscr_el1;
391         uint64_t oslsr_el1; /* OS Lock Status */
392         uint64_t mdcr_el2;
393         uint64_t mdcr_el3;
394         /* If the counter is enabled, this stores the last time the counter
395          * was reset. Otherwise it stores the counter value
396          */
397         uint64_t c15_ccnt;
398         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
399         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
400         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
401     } cp15;
402 
403     struct {
404         uint32_t other_sp;
405         uint32_t vecbase;
406         uint32_t basepri;
407         uint32_t control;
408         int current_sp;
409         int exception;
410     } v7m;
411 
412     /* Information associated with an exception about to be taken:
413      * code which raises an exception must set cs->exception_index and
414      * the relevant parts of this structure; the cpu_do_interrupt function
415      * will then set the guest-visible registers as part of the exception
416      * entry process.
417      */
418     struct {
419         uint32_t syndrome; /* AArch64 format syndrome register */
420         uint32_t fsr; /* AArch32 format fault status register info */
421         uint64_t vaddress; /* virtual addr associated with exception, if any */
422         uint32_t target_el; /* EL the exception should be targeted for */
423         /* If we implement EL2 we will also need to store information
424          * about the intermediate physical address for stage 2 faults.
425          */
426     } exception;
427 
428     /* Thumb-2 EE state.  */
429     uint32_t teecr;
430     uint32_t teehbr;
431 
432     /* VFP coprocessor state.  */
433     struct {
434         /* VFP/Neon register state. Note that the mapping between S, D and Q
435          * views of the register bank differs between AArch64 and AArch32:
436          * In AArch32:
437          *  Qn = regs[2n+1]:regs[2n]
438          *  Dn = regs[n]
439          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
440          * (and regs[32] to regs[63] are inaccessible)
441          * In AArch64:
442          *  Qn = regs[2n+1]:regs[2n]
443          *  Dn = regs[2n]
444          *  Sn = regs[2n] bits 31..0
445          * This corresponds to the architecturally defined mapping between
446          * the two execution states, and means we do not need to explicitly
447          * map these registers when changing states.
448          */
449         float64 regs[64];
450 
451         uint32_t xregs[16];
452         /* We store these fpcsr fields separately for convenience.  */
453         int vec_len;
454         int vec_stride;
455 
456         /* scratch space when Tn are not sufficient.  */
457         uint32_t scratch[8];
458 
459         /* fp_status is the "normal" fp status. standard_fp_status retains
460          * values corresponding to the ARM "Standard FPSCR Value", ie
461          * default-NaN, flush-to-zero, round-to-nearest and is used by
462          * any operations (generally Neon) which the architecture defines
463          * as controlled by the standard FPSCR value rather than the FPSCR.
464          *
465          * To avoid having to transfer exception bits around, we simply
466          * say that the FPSCR cumulative exception flags are the logical
467          * OR of the flags in the two fp statuses. This relies on the
468          * only thing which needs to read the exception flags being
469          * an explicit FPSCR read.
470          */
471         float_status fp_status;
472         float_status standard_fp_status;
473     } vfp;
474     uint64_t exclusive_addr;
475     uint64_t exclusive_val;
476     uint64_t exclusive_high;
477 
478     /* iwMMXt coprocessor state.  */
479     struct {
480         uint64_t regs[16];
481         uint64_t val;
482 
483         uint32_t cregs[16];
484     } iwmmxt;
485 
486 #if defined(CONFIG_USER_ONLY)
487     /* For usermode syscall translation.  */
488     int eabi;
489 #endif
490 
491     struct CPUBreakpoint *cpu_breakpoint[16];
492     struct CPUWatchpoint *cpu_watchpoint[16];
493 
494     CPU_COMMON
495 
496     /* These fields after the common ones so they are preserved on reset.  */
497 
498     /* Internal CPU feature flags.  */
499     uint64_t features;
500 
501     /* PMSAv7 MPU */
502     struct {
503         uint32_t *drbar;
504         uint32_t *drsr;
505         uint32_t *dracr;
506     } pmsav7;
507 
508     void *nvic;
509     const struct arm_boot_info *boot_info;
510 } CPUARMState;
511 
512 /**
513  * ARMELChangeHook:
514  * type of a function which can be registered via arm_register_el_change_hook()
515  * to get callbacks when the CPU changes its exception level or mode.
516  */
517 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
518 
519 /**
520  * ARMCPU:
521  * @env: #CPUARMState
522  *
523  * An ARM CPU core.
524  */
525 struct ARMCPU {
526     /*< private >*/
527     CPUState parent_obj;
528     /*< public >*/
529 
530     CPUARMState env;
531 
532     /* Coprocessor information */
533     GHashTable *cp_regs;
534     /* For marshalling (mostly coprocessor) register state between the
535      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
536      * we use these arrays.
537      */
538     /* List of register indexes managed via these arrays; (full KVM style
539      * 64 bit indexes, not CPRegInfo 32 bit indexes)
540      */
541     uint64_t *cpreg_indexes;
542     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
543     uint64_t *cpreg_values;
544     /* Length of the indexes, values, reset_values arrays */
545     int32_t cpreg_array_len;
546     /* These are used only for migration: incoming data arrives in
547      * these fields and is sanity checked in post_load before copying
548      * to the working data structures above.
549      */
550     uint64_t *cpreg_vmstate_indexes;
551     uint64_t *cpreg_vmstate_values;
552     int32_t cpreg_vmstate_array_len;
553 
554     /* Timers used by the generic (architected) timer */
555     QEMUTimer *gt_timer[NUM_GTIMERS];
556     /* GPIO outputs for generic timer */
557     qemu_irq gt_timer_outputs[NUM_GTIMERS];
558 
559     /* MemoryRegion to use for secure physical accesses */
560     MemoryRegion *secure_memory;
561 
562     /* 'compatible' string for this CPU for Linux device trees */
563     const char *dtb_compatible;
564 
565     /* PSCI version for this CPU
566      * Bits[31:16] = Major Version
567      * Bits[15:0] = Minor Version
568      */
569     uint32_t psci_version;
570 
571     /* Should CPU start in PSCI powered-off state? */
572     bool start_powered_off;
573     /* CPU currently in PSCI powered-off state */
574     bool powered_off;
575     /* CPU has security extension */
576     bool has_el3;
577     /* CPU has PMU (Performance Monitor Unit) */
578     bool has_pmu;
579 
580     /* CPU has memory protection unit */
581     bool has_mpu;
582     /* PMSAv7 MPU number of supported regions */
583     uint32_t pmsav7_dregion;
584 
585     /* PSCI conduit used to invoke PSCI methods
586      * 0 - disabled, 1 - smc, 2 - hvc
587      */
588     uint32_t psci_conduit;
589 
590     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
591      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
592      */
593     uint32_t kvm_target;
594 
595     /* KVM init features for this CPU */
596     uint32_t kvm_init_features[7];
597 
598     /* Uniprocessor system with MP extensions */
599     bool mp_is_up;
600 
601     /* The instance init functions for implementation-specific subclasses
602      * set these fields to specify the implementation-dependent values of
603      * various constant registers and reset values of non-constant
604      * registers.
605      * Some of these might become QOM properties eventually.
606      * Field names match the official register names as defined in the
607      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
608      * is used for reset values of non-constant registers; no reset_
609      * prefix means a constant register.
610      */
611     uint32_t midr;
612     uint32_t revidr;
613     uint32_t reset_fpsid;
614     uint32_t mvfr0;
615     uint32_t mvfr1;
616     uint32_t mvfr2;
617     uint32_t ctr;
618     uint32_t reset_sctlr;
619     uint32_t id_pfr0;
620     uint32_t id_pfr1;
621     uint32_t id_dfr0;
622     uint32_t pmceid0;
623     uint32_t pmceid1;
624     uint32_t id_afr0;
625     uint32_t id_mmfr0;
626     uint32_t id_mmfr1;
627     uint32_t id_mmfr2;
628     uint32_t id_mmfr3;
629     uint32_t id_mmfr4;
630     uint32_t id_isar0;
631     uint32_t id_isar1;
632     uint32_t id_isar2;
633     uint32_t id_isar3;
634     uint32_t id_isar4;
635     uint32_t id_isar5;
636     uint64_t id_aa64pfr0;
637     uint64_t id_aa64pfr1;
638     uint64_t id_aa64dfr0;
639     uint64_t id_aa64dfr1;
640     uint64_t id_aa64afr0;
641     uint64_t id_aa64afr1;
642     uint64_t id_aa64isar0;
643     uint64_t id_aa64isar1;
644     uint64_t id_aa64mmfr0;
645     uint64_t id_aa64mmfr1;
646     uint32_t dbgdidr;
647     uint32_t clidr;
648     uint64_t mp_affinity; /* MP ID without feature bits */
649     /* The elements of this array are the CCSIDR values for each cache,
650      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
651      */
652     uint32_t ccsidr[16];
653     uint64_t reset_cbar;
654     uint32_t reset_auxcr;
655     bool reset_hivecs;
656     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
657     uint32_t dcz_blocksize;
658     uint64_t rvbar;
659 
660     ARMELChangeHook *el_change_hook;
661     void *el_change_hook_opaque;
662 };
663 
664 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
665 {
666     return container_of(env, ARMCPU, env);
667 }
668 
669 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
670 
671 #define ENV_OFFSET offsetof(ARMCPU, env)
672 
673 #ifndef CONFIG_USER_ONLY
674 extern const struct VMStateDescription vmstate_arm_cpu;
675 #endif
676 
677 void arm_cpu_do_interrupt(CPUState *cpu);
678 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
679 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
680 
681 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
682                         int flags);
683 
684 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
685                                          MemTxAttrs *attrs);
686 
687 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
688 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
689 
690 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
691                              int cpuid, void *opaque);
692 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
693                              int cpuid, void *opaque);
694 
695 #ifdef TARGET_AARCH64
696 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
697 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
698 #endif
699 
700 ARMCPU *cpu_arm_init(const char *cpu_model);
701 target_ulong do_arm_semihosting(CPUARMState *env);
702 void aarch64_sync_32_to_64(CPUARMState *env);
703 void aarch64_sync_64_to_32(CPUARMState *env);
704 
705 static inline bool is_a64(CPUARMState *env)
706 {
707     return env->aarch64;
708 }
709 
710 /* you can call this signal handler from your SIGBUS and SIGSEGV
711    signal handlers to inform the virtual CPU of exceptions. non zero
712    is returned if the signal was handled by the virtual CPU.  */
713 int cpu_arm_signal_handler(int host_signum, void *pinfo,
714                            void *puc);
715 
716 /**
717  * pmccntr_sync
718  * @env: CPUARMState
719  *
720  * Synchronises the counter in the PMCCNTR. This must always be called twice,
721  * once before any action that might affect the timer and again afterwards.
722  * The function is used to swap the state of the register if required.
723  * This only happens when not in user mode (!CONFIG_USER_ONLY)
724  */
725 void pmccntr_sync(CPUARMState *env);
726 
727 /* SCTLR bit meanings. Several bits have been reused in newer
728  * versions of the architecture; in that case we define constants
729  * for both old and new bit meanings. Code which tests against those
730  * bits should probably check or otherwise arrange that the CPU
731  * is the architectural version it expects.
732  */
733 #define SCTLR_M       (1U << 0)
734 #define SCTLR_A       (1U << 1)
735 #define SCTLR_C       (1U << 2)
736 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
737 #define SCTLR_SA      (1U << 3)
738 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
739 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
740 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
741 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
742 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
743 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
744 #define SCTLR_ITD     (1U << 7) /* v8 onward */
745 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
746 #define SCTLR_SED     (1U << 8) /* v8 onward */
747 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
748 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
749 #define SCTLR_F       (1U << 10) /* up to v6 */
750 #define SCTLR_SW      (1U << 10) /* v7 onward */
751 #define SCTLR_Z       (1U << 11)
752 #define SCTLR_I       (1U << 12)
753 #define SCTLR_V       (1U << 13)
754 #define SCTLR_RR      (1U << 14) /* up to v7 */
755 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
756 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
757 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
758 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
759 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
760 #define SCTLR_HA      (1U << 17)
761 #define SCTLR_BR      (1U << 17) /* PMSA only */
762 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
763 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
764 #define SCTLR_WXN     (1U << 19)
765 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
766 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
767 #define SCTLR_FI      (1U << 21)
768 #define SCTLR_U       (1U << 22)
769 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
770 #define SCTLR_VE      (1U << 24) /* up to v7 */
771 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
772 #define SCTLR_EE      (1U << 25)
773 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
774 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
775 #define SCTLR_NMFI    (1U << 27)
776 #define SCTLR_TRE     (1U << 28)
777 #define SCTLR_AFE     (1U << 29)
778 #define SCTLR_TE      (1U << 30)
779 
780 #define CPTR_TCPAC    (1U << 31)
781 #define CPTR_TTA      (1U << 20)
782 #define CPTR_TFP      (1U << 10)
783 
784 #define MDCR_EPMAD    (1U << 21)
785 #define MDCR_EDAD     (1U << 20)
786 #define MDCR_SPME     (1U << 17)
787 #define MDCR_SDD      (1U << 16)
788 #define MDCR_SPD      (3U << 14)
789 #define MDCR_TDRA     (1U << 11)
790 #define MDCR_TDOSA    (1U << 10)
791 #define MDCR_TDA      (1U << 9)
792 #define MDCR_TDE      (1U << 8)
793 #define MDCR_HPME     (1U << 7)
794 #define MDCR_TPM      (1U << 6)
795 #define MDCR_TPMCR    (1U << 5)
796 
797 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
798 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
799 
800 #define CPSR_M (0x1fU)
801 #define CPSR_T (1U << 5)
802 #define CPSR_F (1U << 6)
803 #define CPSR_I (1U << 7)
804 #define CPSR_A (1U << 8)
805 #define CPSR_E (1U << 9)
806 #define CPSR_IT_2_7 (0xfc00U)
807 #define CPSR_GE (0xfU << 16)
808 #define CPSR_IL (1U << 20)
809 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
810  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
811  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
812  * where it is live state but not accessible to the AArch32 code.
813  */
814 #define CPSR_RESERVED (0x7U << 21)
815 #define CPSR_J (1U << 24)
816 #define CPSR_IT_0_1 (3U << 25)
817 #define CPSR_Q (1U << 27)
818 #define CPSR_V (1U << 28)
819 #define CPSR_C (1U << 29)
820 #define CPSR_Z (1U << 30)
821 #define CPSR_N (1U << 31)
822 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
823 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
824 
825 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
826 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
827     | CPSR_NZCV)
828 /* Bits writable in user mode.  */
829 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
830 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
831 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
832 /* Mask of bits which may be set by exception return copying them from SPSR */
833 #define CPSR_ERET_MASK (~CPSR_RESERVED)
834 
835 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
836 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
837 #define TTBCR_PD0    (1U << 4)
838 #define TTBCR_PD1    (1U << 5)
839 #define TTBCR_EPD0   (1U << 7)
840 #define TTBCR_IRGN0  (3U << 8)
841 #define TTBCR_ORGN0  (3U << 10)
842 #define TTBCR_SH0    (3U << 12)
843 #define TTBCR_T1SZ   (3U << 16)
844 #define TTBCR_A1     (1U << 22)
845 #define TTBCR_EPD1   (1U << 23)
846 #define TTBCR_IRGN1  (3U << 24)
847 #define TTBCR_ORGN1  (3U << 26)
848 #define TTBCR_SH1    (1U << 28)
849 #define TTBCR_EAE    (1U << 31)
850 
851 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
852  * Only these are valid when in AArch64 mode; in
853  * AArch32 mode SPSRs are basically CPSR-format.
854  */
855 #define PSTATE_SP (1U)
856 #define PSTATE_M (0xFU)
857 #define PSTATE_nRW (1U << 4)
858 #define PSTATE_F (1U << 6)
859 #define PSTATE_I (1U << 7)
860 #define PSTATE_A (1U << 8)
861 #define PSTATE_D (1U << 9)
862 #define PSTATE_IL (1U << 20)
863 #define PSTATE_SS (1U << 21)
864 #define PSTATE_V (1U << 28)
865 #define PSTATE_C (1U << 29)
866 #define PSTATE_Z (1U << 30)
867 #define PSTATE_N (1U << 31)
868 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
869 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
870 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
871 /* Mode values for AArch64 */
872 #define PSTATE_MODE_EL3h 13
873 #define PSTATE_MODE_EL3t 12
874 #define PSTATE_MODE_EL2h 9
875 #define PSTATE_MODE_EL2t 8
876 #define PSTATE_MODE_EL1h 5
877 #define PSTATE_MODE_EL1t 4
878 #define PSTATE_MODE_EL0t 0
879 
880 /* Map EL and handler into a PSTATE_MODE.  */
881 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
882 {
883     return (el << 2) | handler;
884 }
885 
886 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
887  * interprocessing, so we don't attempt to sync with the cpsr state used by
888  * the 32 bit decoder.
889  */
890 static inline uint32_t pstate_read(CPUARMState *env)
891 {
892     int ZF;
893 
894     ZF = (env->ZF == 0);
895     return (env->NF & 0x80000000) | (ZF << 30)
896         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
897         | env->pstate | env->daif;
898 }
899 
900 static inline void pstate_write(CPUARMState *env, uint32_t val)
901 {
902     env->ZF = (~val) & PSTATE_Z;
903     env->NF = val;
904     env->CF = (val >> 29) & 1;
905     env->VF = (val << 3) & 0x80000000;
906     env->daif = val & PSTATE_DAIF;
907     env->pstate = val & ~CACHED_PSTATE_BITS;
908 }
909 
910 /* Return the current CPSR value.  */
911 uint32_t cpsr_read(CPUARMState *env);
912 
913 typedef enum CPSRWriteType {
914     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
915     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
916     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
917     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
918 } CPSRWriteType;
919 
920 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
921 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
922                 CPSRWriteType write_type);
923 
924 /* Return the current xPSR value.  */
925 static inline uint32_t xpsr_read(CPUARMState *env)
926 {
927     int ZF;
928     ZF = (env->ZF == 0);
929     return (env->NF & 0x80000000) | (ZF << 30)
930         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
931         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
932         | ((env->condexec_bits & 0xfc) << 8)
933         | env->v7m.exception;
934 }
935 
936 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
937 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
938 {
939     if (mask & CPSR_NZCV) {
940         env->ZF = (~val) & CPSR_Z;
941         env->NF = val;
942         env->CF = (val >> 29) & 1;
943         env->VF = (val << 3) & 0x80000000;
944     }
945     if (mask & CPSR_Q)
946         env->QF = ((val & CPSR_Q) != 0);
947     if (mask & (1 << 24))
948         env->thumb = ((val & (1 << 24)) != 0);
949     if (mask & CPSR_IT_0_1) {
950         env->condexec_bits &= ~3;
951         env->condexec_bits |= (val >> 25) & 3;
952     }
953     if (mask & CPSR_IT_2_7) {
954         env->condexec_bits &= 3;
955         env->condexec_bits |= (val >> 8) & 0xfc;
956     }
957     if (mask & 0x1ff) {
958         env->v7m.exception = val & 0x1ff;
959     }
960 }
961 
962 #define HCR_VM        (1ULL << 0)
963 #define HCR_SWIO      (1ULL << 1)
964 #define HCR_PTW       (1ULL << 2)
965 #define HCR_FMO       (1ULL << 3)
966 #define HCR_IMO       (1ULL << 4)
967 #define HCR_AMO       (1ULL << 5)
968 #define HCR_VF        (1ULL << 6)
969 #define HCR_VI        (1ULL << 7)
970 #define HCR_VSE       (1ULL << 8)
971 #define HCR_FB        (1ULL << 9)
972 #define HCR_BSU_MASK  (3ULL << 10)
973 #define HCR_DC        (1ULL << 12)
974 #define HCR_TWI       (1ULL << 13)
975 #define HCR_TWE       (1ULL << 14)
976 #define HCR_TID0      (1ULL << 15)
977 #define HCR_TID1      (1ULL << 16)
978 #define HCR_TID2      (1ULL << 17)
979 #define HCR_TID3      (1ULL << 18)
980 #define HCR_TSC       (1ULL << 19)
981 #define HCR_TIDCP     (1ULL << 20)
982 #define HCR_TACR      (1ULL << 21)
983 #define HCR_TSW       (1ULL << 22)
984 #define HCR_TPC       (1ULL << 23)
985 #define HCR_TPU       (1ULL << 24)
986 #define HCR_TTLB      (1ULL << 25)
987 #define HCR_TVM       (1ULL << 26)
988 #define HCR_TGE       (1ULL << 27)
989 #define HCR_TDZ       (1ULL << 28)
990 #define HCR_HCD       (1ULL << 29)
991 #define HCR_TRVM      (1ULL << 30)
992 #define HCR_RW        (1ULL << 31)
993 #define HCR_CD        (1ULL << 32)
994 #define HCR_ID        (1ULL << 33)
995 #define HCR_MASK      ((1ULL << 34) - 1)
996 
997 #define SCR_NS                (1U << 0)
998 #define SCR_IRQ               (1U << 1)
999 #define SCR_FIQ               (1U << 2)
1000 #define SCR_EA                (1U << 3)
1001 #define SCR_FW                (1U << 4)
1002 #define SCR_AW                (1U << 5)
1003 #define SCR_NET               (1U << 6)
1004 #define SCR_SMD               (1U << 7)
1005 #define SCR_HCE               (1U << 8)
1006 #define SCR_SIF               (1U << 9)
1007 #define SCR_RW                (1U << 10)
1008 #define SCR_ST                (1U << 11)
1009 #define SCR_TWI               (1U << 12)
1010 #define SCR_TWE               (1U << 13)
1011 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1012 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1013 
1014 /* Return the current FPSCR value.  */
1015 uint32_t vfp_get_fpscr(CPUARMState *env);
1016 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1017 
1018 /* For A64 the FPSCR is split into two logically distinct registers,
1019  * FPCR and FPSR. However since they still use non-overlapping bits
1020  * we store the underlying state in fpscr and just mask on read/write.
1021  */
1022 #define FPSR_MASK 0xf800009f
1023 #define FPCR_MASK 0x07f79f00
1024 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1025 {
1026     return vfp_get_fpscr(env) & FPSR_MASK;
1027 }
1028 
1029 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1030 {
1031     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1032     vfp_set_fpscr(env, new_fpscr);
1033 }
1034 
1035 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1036 {
1037     return vfp_get_fpscr(env) & FPCR_MASK;
1038 }
1039 
1040 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1041 {
1042     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1043     vfp_set_fpscr(env, new_fpscr);
1044 }
1045 
1046 enum arm_cpu_mode {
1047   ARM_CPU_MODE_USR = 0x10,
1048   ARM_CPU_MODE_FIQ = 0x11,
1049   ARM_CPU_MODE_IRQ = 0x12,
1050   ARM_CPU_MODE_SVC = 0x13,
1051   ARM_CPU_MODE_MON = 0x16,
1052   ARM_CPU_MODE_ABT = 0x17,
1053   ARM_CPU_MODE_HYP = 0x1a,
1054   ARM_CPU_MODE_UND = 0x1b,
1055   ARM_CPU_MODE_SYS = 0x1f
1056 };
1057 
1058 /* VFP system registers.  */
1059 #define ARM_VFP_FPSID   0
1060 #define ARM_VFP_FPSCR   1
1061 #define ARM_VFP_MVFR2   5
1062 #define ARM_VFP_MVFR1   6
1063 #define ARM_VFP_MVFR0   7
1064 #define ARM_VFP_FPEXC   8
1065 #define ARM_VFP_FPINST  9
1066 #define ARM_VFP_FPINST2 10
1067 
1068 /* iwMMXt coprocessor control registers.  */
1069 #define ARM_IWMMXT_wCID		0
1070 #define ARM_IWMMXT_wCon		1
1071 #define ARM_IWMMXT_wCSSF	2
1072 #define ARM_IWMMXT_wCASF	3
1073 #define ARM_IWMMXT_wCGR0	8
1074 #define ARM_IWMMXT_wCGR1	9
1075 #define ARM_IWMMXT_wCGR2	10
1076 #define ARM_IWMMXT_wCGR3	11
1077 
1078 /* If adding a feature bit which corresponds to a Linux ELF
1079  * HWCAP bit, remember to update the feature-bit-to-hwcap
1080  * mapping in linux-user/elfload.c:get_elf_hwcap().
1081  */
1082 enum arm_features {
1083     ARM_FEATURE_VFP,
1084     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1085     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1086     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1087     ARM_FEATURE_V6,
1088     ARM_FEATURE_V6K,
1089     ARM_FEATURE_V7,
1090     ARM_FEATURE_THUMB2,
1091     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1092     ARM_FEATURE_VFP3,
1093     ARM_FEATURE_VFP_FP16,
1094     ARM_FEATURE_NEON,
1095     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1096     ARM_FEATURE_M, /* Microcontroller profile.  */
1097     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1098     ARM_FEATURE_THUMB2EE,
1099     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1100     ARM_FEATURE_V4T,
1101     ARM_FEATURE_V5,
1102     ARM_FEATURE_STRONGARM,
1103     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1104     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1105     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1106     ARM_FEATURE_GENERIC_TIMER,
1107     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1108     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1109     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1110     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1111     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1112     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1113     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1114     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1115     ARM_FEATURE_V8,
1116     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1117     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1118     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1119     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1120     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1121     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1122     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1123     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1124     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1125     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1126     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1127     ARM_FEATURE_PMU, /* has PMU support */
1128     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1129 };
1130 
1131 static inline int arm_feature(CPUARMState *env, int feature)
1132 {
1133     return (env->features & (1ULL << feature)) != 0;
1134 }
1135 
1136 #if !defined(CONFIG_USER_ONLY)
1137 /* Return true if exception levels below EL3 are in secure state,
1138  * or would be following an exception return to that level.
1139  * Unlike arm_is_secure() (which is always a question about the
1140  * _current_ state of the CPU) this doesn't care about the current
1141  * EL or mode.
1142  */
1143 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1144 {
1145     if (arm_feature(env, ARM_FEATURE_EL3)) {
1146         return !(env->cp15.scr_el3 & SCR_NS);
1147     } else {
1148         /* If EL3 is not supported then the secure state is implementation
1149          * defined, in which case QEMU defaults to non-secure.
1150          */
1151         return false;
1152     }
1153 }
1154 
1155 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1156 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1157 {
1158     if (arm_feature(env, ARM_FEATURE_EL3)) {
1159         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1160             /* CPU currently in AArch64 state and EL3 */
1161             return true;
1162         } else if (!is_a64(env) &&
1163                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1164             /* CPU currently in AArch32 state and monitor mode */
1165             return true;
1166         }
1167     }
1168     return false;
1169 }
1170 
1171 /* Return true if the processor is in secure state */
1172 static inline bool arm_is_secure(CPUARMState *env)
1173 {
1174     if (arm_is_el3_or_mon(env)) {
1175         return true;
1176     }
1177     return arm_is_secure_below_el3(env);
1178 }
1179 
1180 #else
1181 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1182 {
1183     return false;
1184 }
1185 
1186 static inline bool arm_is_secure(CPUARMState *env)
1187 {
1188     return false;
1189 }
1190 #endif
1191 
1192 /* Return true if the specified exception level is running in AArch64 state. */
1193 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1194 {
1195     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1196      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1197      */
1198     assert(el >= 1 && el <= 3);
1199     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1200 
1201     /* The highest exception level is always at the maximum supported
1202      * register width, and then lower levels have a register width controlled
1203      * by bits in the SCR or HCR registers.
1204      */
1205     if (el == 3) {
1206         return aa64;
1207     }
1208 
1209     if (arm_feature(env, ARM_FEATURE_EL3)) {
1210         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1211     }
1212 
1213     if (el == 2) {
1214         return aa64;
1215     }
1216 
1217     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1218         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1219     }
1220 
1221     return aa64;
1222 }
1223 
1224 /* Function for determing whether guest cp register reads and writes should
1225  * access the secure or non-secure bank of a cp register.  When EL3 is
1226  * operating in AArch32 state, the NS-bit determines whether the secure
1227  * instance of a cp register should be used. When EL3 is AArch64 (or if
1228  * it doesn't exist at all) then there is no register banking, and all
1229  * accesses are to the non-secure version.
1230  */
1231 static inline bool access_secure_reg(CPUARMState *env)
1232 {
1233     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1234                 !arm_el_is_aa64(env, 3) &&
1235                 !(env->cp15.scr_el3 & SCR_NS));
1236 
1237     return ret;
1238 }
1239 
1240 /* Macros for accessing a specified CP register bank */
1241 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1242     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1243 
1244 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1245     do {                                                \
1246         if (_secure) {                                   \
1247             (_env)->cp15._regname##_s = (_val);            \
1248         } else {                                        \
1249             (_env)->cp15._regname##_ns = (_val);           \
1250         }                                               \
1251     } while (0)
1252 
1253 /* Macros for automatically accessing a specific CP register bank depending on
1254  * the current secure state of the system.  These macros are not intended for
1255  * supporting instruction translation reads/writes as these are dependent
1256  * solely on the SCR.NS bit and not the mode.
1257  */
1258 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1259     A32_BANKED_REG_GET((_env), _regname,                \
1260                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1261 
1262 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1263     A32_BANKED_REG_SET((_env), _regname,                                    \
1264                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1265                        (_val))
1266 
1267 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1268 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1269                                  uint32_t cur_el, bool secure);
1270 
1271 /* Interface between CPU and Interrupt controller.  */
1272 void armv7m_nvic_set_pending(void *opaque, int irq);
1273 int armv7m_nvic_acknowledge_irq(void *opaque);
1274 void armv7m_nvic_complete_irq(void *opaque, int irq);
1275 
1276 /* Interface for defining coprocessor registers.
1277  * Registers are defined in tables of arm_cp_reginfo structs
1278  * which are passed to define_arm_cp_regs().
1279  */
1280 
1281 /* When looking up a coprocessor register we look for it
1282  * via an integer which encodes all of:
1283  *  coprocessor number
1284  *  Crn, Crm, opc1, opc2 fields
1285  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1286  *    or via MRRC/MCRR?)
1287  *  non-secure/secure bank (AArch32 only)
1288  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1289  * (In this case crn and opc2 should be zero.)
1290  * For AArch64, there is no 32/64 bit size distinction;
1291  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1292  * and 4 bit CRn and CRm. The encoding patterns are chosen
1293  * to be easy to convert to and from the KVM encodings, and also
1294  * so that the hashtable can contain both AArch32 and AArch64
1295  * registers (to allow for interprocessing where we might run
1296  * 32 bit code on a 64 bit core).
1297  */
1298 /* This bit is private to our hashtable cpreg; in KVM register
1299  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1300  * in the upper bits of the 64 bit ID.
1301  */
1302 #define CP_REG_AA64_SHIFT 28
1303 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1304 
1305 /* To enable banking of coprocessor registers depending on ns-bit we
1306  * add a bit to distinguish between secure and non-secure cpregs in the
1307  * hashtable.
1308  */
1309 #define CP_REG_NS_SHIFT 29
1310 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1311 
1312 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1313     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1314      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1315 
1316 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1317     (CP_REG_AA64_MASK |                                 \
1318      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1319      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1320      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1321      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1322      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1323      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1324 
1325 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1326  * version used as a key for the coprocessor register hashtable
1327  */
1328 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1329 {
1330     uint32_t cpregid = kvmid;
1331     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1332         cpregid |= CP_REG_AA64_MASK;
1333     } else {
1334         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1335             cpregid |= (1 << 15);
1336         }
1337 
1338         /* KVM is always non-secure so add the NS flag on AArch32 register
1339          * entries.
1340          */
1341          cpregid |= 1 << CP_REG_NS_SHIFT;
1342     }
1343     return cpregid;
1344 }
1345 
1346 /* Convert a truncated 32 bit hashtable key into the full
1347  * 64 bit KVM register ID.
1348  */
1349 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1350 {
1351     uint64_t kvmid;
1352 
1353     if (cpregid & CP_REG_AA64_MASK) {
1354         kvmid = cpregid & ~CP_REG_AA64_MASK;
1355         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1356     } else {
1357         kvmid = cpregid & ~(1 << 15);
1358         if (cpregid & (1 << 15)) {
1359             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1360         } else {
1361             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1362         }
1363     }
1364     return kvmid;
1365 }
1366 
1367 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1368  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1369  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1370  * TCG can assume the value to be constant (ie load at translate time)
1371  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1372  * indicates that the TB should not be ended after a write to this register
1373  * (the default is that the TB ends after cp writes). OVERRIDE permits
1374  * a register definition to override a previous definition for the
1375  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1376  * old must have the OVERRIDE bit set.
1377  * ALIAS indicates that this register is an alias view of some underlying
1378  * state which is also visible via another register, and that the other
1379  * register is handling migration and reset; registers marked ALIAS will not be
1380  * migrated but may have their state set by syncing of register state from KVM.
1381  * NO_RAW indicates that this register has no underlying state and does not
1382  * support raw access for state saving/loading; it will not be used for either
1383  * migration or KVM state synchronization. (Typically this is for "registers"
1384  * which are actually used as instructions for cache maintenance and so on.)
1385  * IO indicates that this register does I/O and therefore its accesses
1386  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1387  * registers which implement clocks or timers require this.
1388  */
1389 #define ARM_CP_SPECIAL 1
1390 #define ARM_CP_CONST 2
1391 #define ARM_CP_64BIT 4
1392 #define ARM_CP_SUPPRESS_TB_END 8
1393 #define ARM_CP_OVERRIDE 16
1394 #define ARM_CP_ALIAS 32
1395 #define ARM_CP_IO 64
1396 #define ARM_CP_NO_RAW 128
1397 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1398 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1399 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1400 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1401 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1402 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1403 /* Used only as a terminator for ARMCPRegInfo lists */
1404 #define ARM_CP_SENTINEL 0xffff
1405 /* Mask of only the flag bits in a type field */
1406 #define ARM_CP_FLAG_MASK 0xff
1407 
1408 /* Valid values for ARMCPRegInfo state field, indicating which of
1409  * the AArch32 and AArch64 execution states this register is visible in.
1410  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1411  * If the reginfo is declared to be visible in both states then a second
1412  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1413  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1414  * Note that we rely on the values of these enums as we iterate through
1415  * the various states in some places.
1416  */
1417 enum {
1418     ARM_CP_STATE_AA32 = 0,
1419     ARM_CP_STATE_AA64 = 1,
1420     ARM_CP_STATE_BOTH = 2,
1421 };
1422 
1423 /* ARM CP register secure state flags.  These flags identify security state
1424  * attributes for a given CP register entry.
1425  * The existence of both or neither secure and non-secure flags indicates that
1426  * the register has both a secure and non-secure hash entry.  A single one of
1427  * these flags causes the register to only be hashed for the specified
1428  * security state.
1429  * Although definitions may have any combination of the S/NS bits, each
1430  * registered entry will only have one to identify whether the entry is secure
1431  * or non-secure.
1432  */
1433 enum {
1434     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1435     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1436 };
1437 
1438 /* Return true if cptype is a valid type field. This is used to try to
1439  * catch errors where the sentinel has been accidentally left off the end
1440  * of a list of registers.
1441  */
1442 static inline bool cptype_valid(int cptype)
1443 {
1444     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1445         || ((cptype & ARM_CP_SPECIAL) &&
1446             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1447 }
1448 
1449 /* Access rights:
1450  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1451  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1452  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1453  * (ie any of the privileged modes in Secure state, or Monitor mode).
1454  * If a register is accessible in one privilege level it's always accessible
1455  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1456  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1457  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1458  * terminology a little and call this PL3.
1459  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1460  * with the ELx exception levels.
1461  *
1462  * If access permissions for a register are more complex than can be
1463  * described with these bits, then use a laxer set of restrictions, and
1464  * do the more restrictive/complex check inside a helper function.
1465  */
1466 #define PL3_R 0x80
1467 #define PL3_W 0x40
1468 #define PL2_R (0x20 | PL3_R)
1469 #define PL2_W (0x10 | PL3_W)
1470 #define PL1_R (0x08 | PL2_R)
1471 #define PL1_W (0x04 | PL2_W)
1472 #define PL0_R (0x02 | PL1_R)
1473 #define PL0_W (0x01 | PL1_W)
1474 
1475 #define PL3_RW (PL3_R | PL3_W)
1476 #define PL2_RW (PL2_R | PL2_W)
1477 #define PL1_RW (PL1_R | PL1_W)
1478 #define PL0_RW (PL0_R | PL0_W)
1479 
1480 /* Return the highest implemented Exception Level */
1481 static inline int arm_highest_el(CPUARMState *env)
1482 {
1483     if (arm_feature(env, ARM_FEATURE_EL3)) {
1484         return 3;
1485     }
1486     if (arm_feature(env, ARM_FEATURE_EL2)) {
1487         return 2;
1488     }
1489     return 1;
1490 }
1491 
1492 /* Return the current Exception Level (as per ARMv8; note that this differs
1493  * from the ARMv7 Privilege Level).
1494  */
1495 static inline int arm_current_el(CPUARMState *env)
1496 {
1497     if (arm_feature(env, ARM_FEATURE_M)) {
1498         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1499     }
1500 
1501     if (is_a64(env)) {
1502         return extract32(env->pstate, 2, 2);
1503     }
1504 
1505     switch (env->uncached_cpsr & 0x1f) {
1506     case ARM_CPU_MODE_USR:
1507         return 0;
1508     case ARM_CPU_MODE_HYP:
1509         return 2;
1510     case ARM_CPU_MODE_MON:
1511         return 3;
1512     default:
1513         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1514             /* If EL3 is 32-bit then all secure privileged modes run in
1515              * EL3
1516              */
1517             return 3;
1518         }
1519 
1520         return 1;
1521     }
1522 }
1523 
1524 typedef struct ARMCPRegInfo ARMCPRegInfo;
1525 
1526 typedef enum CPAccessResult {
1527     /* Access is permitted */
1528     CP_ACCESS_OK = 0,
1529     /* Access fails due to a configurable trap or enable which would
1530      * result in a categorized exception syndrome giving information about
1531      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1532      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1533      * PL1 if in EL0, otherwise to the current EL).
1534      */
1535     CP_ACCESS_TRAP = 1,
1536     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1537      * Note that this is not a catch-all case -- the set of cases which may
1538      * result in this failure is specifically defined by the architecture.
1539      */
1540     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1541     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1542     CP_ACCESS_TRAP_EL2 = 3,
1543     CP_ACCESS_TRAP_EL3 = 4,
1544     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1545     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1546     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1547     /* Access fails and results in an exception syndrome for an FP access,
1548      * trapped directly to EL2 or EL3
1549      */
1550     CP_ACCESS_TRAP_FP_EL2 = 7,
1551     CP_ACCESS_TRAP_FP_EL3 = 8,
1552 } CPAccessResult;
1553 
1554 /* Access functions for coprocessor registers. These cannot fail and
1555  * may not raise exceptions.
1556  */
1557 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1558 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1559                        uint64_t value);
1560 /* Access permission check functions for coprocessor registers. */
1561 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1562                                   const ARMCPRegInfo *opaque,
1563                                   bool isread);
1564 /* Hook function for register reset */
1565 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1566 
1567 #define CP_ANY 0xff
1568 
1569 /* Definition of an ARM coprocessor register */
1570 struct ARMCPRegInfo {
1571     /* Name of register (useful mainly for debugging, need not be unique) */
1572     const char *name;
1573     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1574      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1575      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1576      * will be decoded to this register. The register read and write
1577      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1578      * used by the program, so it is possible to register a wildcard and
1579      * then behave differently on read/write if necessary.
1580      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1581      * must both be zero.
1582      * For AArch64-visible registers, opc0 is also used.
1583      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1584      * way to distinguish (for KVM's benefit) guest-visible system registers
1585      * from demuxed ones provided to preserve the "no side effects on
1586      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1587      * visible (to match KVM's encoding); cp==0 will be converted to
1588      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1589      */
1590     uint8_t cp;
1591     uint8_t crn;
1592     uint8_t crm;
1593     uint8_t opc0;
1594     uint8_t opc1;
1595     uint8_t opc2;
1596     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1597     int state;
1598     /* Register type: ARM_CP_* bits/values */
1599     int type;
1600     /* Access rights: PL*_[RW] */
1601     int access;
1602     /* Security state: ARM_CP_SECSTATE_* bits/values */
1603     int secure;
1604     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1605      * this register was defined: can be used to hand data through to the
1606      * register read/write functions, since they are passed the ARMCPRegInfo*.
1607      */
1608     void *opaque;
1609     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1610      * fieldoffset is non-zero, the reset value of the register.
1611      */
1612     uint64_t resetvalue;
1613     /* Offset of the field in CPUARMState for this register.
1614      *
1615      * This is not needed if either:
1616      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1617      *  2. both readfn and writefn are specified
1618      */
1619     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1620 
1621     /* Offsets of the secure and non-secure fields in CPUARMState for the
1622      * register if it is banked.  These fields are only used during the static
1623      * registration of a register.  During hashing the bank associated
1624      * with a given security state is copied to fieldoffset which is used from
1625      * there on out.
1626      *
1627      * It is expected that register definitions use either fieldoffset or
1628      * bank_fieldoffsets in the definition but not both.  It is also expected
1629      * that both bank offsets are set when defining a banked register.  This
1630      * use indicates that a register is banked.
1631      */
1632     ptrdiff_t bank_fieldoffsets[2];
1633 
1634     /* Function for making any access checks for this register in addition to
1635      * those specified by the 'access' permissions bits. If NULL, no extra
1636      * checks required. The access check is performed at runtime, not at
1637      * translate time.
1638      */
1639     CPAccessFn *accessfn;
1640     /* Function for handling reads of this register. If NULL, then reads
1641      * will be done by loading from the offset into CPUARMState specified
1642      * by fieldoffset.
1643      */
1644     CPReadFn *readfn;
1645     /* Function for handling writes of this register. If NULL, then writes
1646      * will be done by writing to the offset into CPUARMState specified
1647      * by fieldoffset.
1648      */
1649     CPWriteFn *writefn;
1650     /* Function for doing a "raw" read; used when we need to copy
1651      * coprocessor state to the kernel for KVM or out for
1652      * migration. This only needs to be provided if there is also a
1653      * readfn and it has side effects (for instance clear-on-read bits).
1654      */
1655     CPReadFn *raw_readfn;
1656     /* Function for doing a "raw" write; used when we need to copy KVM
1657      * kernel coprocessor state into userspace, or for inbound
1658      * migration. This only needs to be provided if there is also a
1659      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1660      * or similar behaviour.
1661      */
1662     CPWriteFn *raw_writefn;
1663     /* Function for resetting the register. If NULL, then reset will be done
1664      * by writing resetvalue to the field specified in fieldoffset. If
1665      * fieldoffset is 0 then no reset will be done.
1666      */
1667     CPResetFn *resetfn;
1668 };
1669 
1670 /* Macros which are lvalues for the field in CPUARMState for the
1671  * ARMCPRegInfo *ri.
1672  */
1673 #define CPREG_FIELD32(env, ri) \
1674     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1675 #define CPREG_FIELD64(env, ri) \
1676     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1677 
1678 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1679 
1680 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1681                                     const ARMCPRegInfo *regs, void *opaque);
1682 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1683                                        const ARMCPRegInfo *regs, void *opaque);
1684 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1685 {
1686     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1687 }
1688 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1689 {
1690     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1691 }
1692 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1693 
1694 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1695 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1696                          uint64_t value);
1697 /* CPReadFn that can be used for read-as-zero behaviour */
1698 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1699 
1700 /* CPResetFn that does nothing, for use if no reset is required even
1701  * if fieldoffset is non zero.
1702  */
1703 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1704 
1705 /* Return true if this reginfo struct's field in the cpu state struct
1706  * is 64 bits wide.
1707  */
1708 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1709 {
1710     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1711 }
1712 
1713 static inline bool cp_access_ok(int current_el,
1714                                 const ARMCPRegInfo *ri, int isread)
1715 {
1716     return (ri->access >> ((current_el * 2) + isread)) & 1;
1717 }
1718 
1719 /* Raw read of a coprocessor register (as needed for migration, etc) */
1720 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1721 
1722 /**
1723  * write_list_to_cpustate
1724  * @cpu: ARMCPU
1725  *
1726  * For each register listed in the ARMCPU cpreg_indexes list, write
1727  * its value from the cpreg_values list into the ARMCPUState structure.
1728  * This updates TCG's working data structures from KVM data or
1729  * from incoming migration state.
1730  *
1731  * Returns: true if all register values were updated correctly,
1732  * false if some register was unknown or could not be written.
1733  * Note that we do not stop early on failure -- we will attempt
1734  * writing all registers in the list.
1735  */
1736 bool write_list_to_cpustate(ARMCPU *cpu);
1737 
1738 /**
1739  * write_cpustate_to_list:
1740  * @cpu: ARMCPU
1741  *
1742  * For each register listed in the ARMCPU cpreg_indexes list, write
1743  * its value from the ARMCPUState structure into the cpreg_values list.
1744  * This is used to copy info from TCG's working data structures into
1745  * KVM or for outbound migration.
1746  *
1747  * Returns: true if all register values were read correctly,
1748  * false if some register was unknown or could not be read.
1749  * Note that we do not stop early on failure -- we will attempt
1750  * reading all registers in the list.
1751  */
1752 bool write_cpustate_to_list(ARMCPU *cpu);
1753 
1754 /* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
1755    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
1756    conventional cores (ie. Application or Realtime profile).  */
1757 
1758 #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
1759 
1760 #define ARM_CPUID_TI915T      0x54029152
1761 #define ARM_CPUID_TI925T      0x54029252
1762 
1763 #if defined(CONFIG_USER_ONLY)
1764 #define TARGET_PAGE_BITS 12
1765 #else
1766 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1767  * have to support 1K tiny pages.
1768  */
1769 #define TARGET_PAGE_BITS_VARY
1770 #define TARGET_PAGE_BITS_MIN 10
1771 #endif
1772 
1773 #if defined(TARGET_AARCH64)
1774 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1775 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1776 #else
1777 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1778 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1779 #endif
1780 
1781 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1782                                      unsigned int target_el)
1783 {
1784     CPUARMState *env = cs->env_ptr;
1785     unsigned int cur_el = arm_current_el(env);
1786     bool secure = arm_is_secure(env);
1787     bool pstate_unmasked;
1788     int8_t unmasked = 0;
1789 
1790     /* Don't take exceptions if they target a lower EL.
1791      * This check should catch any exceptions that would not be taken but left
1792      * pending.
1793      */
1794     if (cur_el > target_el) {
1795         return false;
1796     }
1797 
1798     switch (excp_idx) {
1799     case EXCP_FIQ:
1800         pstate_unmasked = !(env->daif & PSTATE_F);
1801         break;
1802 
1803     case EXCP_IRQ:
1804         pstate_unmasked = !(env->daif & PSTATE_I);
1805         break;
1806 
1807     case EXCP_VFIQ:
1808         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1809             /* VFIQs are only taken when hypervized and non-secure.  */
1810             return false;
1811         }
1812         return !(env->daif & PSTATE_F);
1813     case EXCP_VIRQ:
1814         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1815             /* VIRQs are only taken when hypervized and non-secure.  */
1816             return false;
1817         }
1818         return !(env->daif & PSTATE_I);
1819     default:
1820         g_assert_not_reached();
1821     }
1822 
1823     /* Use the target EL, current execution state and SCR/HCR settings to
1824      * determine whether the corresponding CPSR bit is used to mask the
1825      * interrupt.
1826      */
1827     if ((target_el > cur_el) && (target_el != 1)) {
1828         /* Exceptions targeting a higher EL may not be maskable */
1829         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1830             /* 64-bit masking rules are simple: exceptions to EL3
1831              * can't be masked, and exceptions to EL2 can only be
1832              * masked from Secure state. The HCR and SCR settings
1833              * don't affect the masking logic, only the interrupt routing.
1834              */
1835             if (target_el == 3 || !secure) {
1836                 unmasked = 1;
1837             }
1838         } else {
1839             /* The old 32-bit-only environment has a more complicated
1840              * masking setup. HCR and SCR bits not only affect interrupt
1841              * routing but also change the behaviour of masking.
1842              */
1843             bool hcr, scr;
1844 
1845             switch (excp_idx) {
1846             case EXCP_FIQ:
1847                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1848                  * we override the CPSR.F in determining if the exception is
1849                  * masked or not. If neither of these are set then we fall back
1850                  * to the CPSR.F setting otherwise we further assess the state
1851                  * below.
1852                  */
1853                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1854                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1855 
1856                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1857                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1858                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1859                  * when non-secure but only when FIQs are only routed to EL3.
1860                  */
1861                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1862                 break;
1863             case EXCP_IRQ:
1864                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1865                  * we may override the CPSR.I masking when in non-secure state.
1866                  * The SCR.IRQ setting has already been taken into consideration
1867                  * when setting the target EL, so it does not have a further
1868                  * affect here.
1869                  */
1870                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1871                 scr = false;
1872                 break;
1873             default:
1874                 g_assert_not_reached();
1875             }
1876 
1877             if ((scr || hcr) && !secure) {
1878                 unmasked = 1;
1879             }
1880         }
1881     }
1882 
1883     /* The PSTATE bits only mask the interrupt if we have not overriden the
1884      * ability above.
1885      */
1886     return unmasked || pstate_unmasked;
1887 }
1888 
1889 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1890 
1891 #define cpu_signal_handler cpu_arm_signal_handler
1892 #define cpu_list arm_cpu_list
1893 
1894 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1895  *
1896  * If EL3 is 64-bit:
1897  *  + NonSecure EL1 & 0 stage 1
1898  *  + NonSecure EL1 & 0 stage 2
1899  *  + NonSecure EL2
1900  *  + Secure EL1 & EL0
1901  *  + Secure EL3
1902  * If EL3 is 32-bit:
1903  *  + NonSecure PL1 & 0 stage 1
1904  *  + NonSecure PL1 & 0 stage 2
1905  *  + NonSecure PL2
1906  *  + Secure PL0 & PL1
1907  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1908  *
1909  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1910  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1911  *     may differ in access permissions even if the VA->PA map is the same
1912  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1913  *     translation, which means that we have one mmu_idx that deals with two
1914  *     concatenated translation regimes [this sort of combined s1+2 TLB is
1915  *     architecturally permitted]
1916  *  3. we don't need to allocate an mmu_idx to translations that we won't be
1917  *     handling via the TLB. The only way to do a stage 1 translation without
1918  *     the immediate stage 2 translation is via the ATS or AT system insns,
1919  *     which can be slow-pathed and always do a page table walk.
1920  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1921  *     translation regimes, because they map reasonably well to each other
1922  *     and they can't both be active at the same time.
1923  * This gives us the following list of mmu_idx values:
1924  *
1925  * NS EL0 (aka NS PL0) stage 1+2
1926  * NS EL1 (aka NS PL1) stage 1+2
1927  * NS EL2 (aka NS PL2)
1928  * S EL3 (aka S PL1)
1929  * S EL0 (aka S PL0)
1930  * S EL1 (not used if EL3 is 32 bit)
1931  * NS EL0+1 stage 2
1932  *
1933  * (The last of these is an mmu_idx because we want to be able to use the TLB
1934  * for the accesses done as part of a stage 1 page table walk, rather than
1935  * having to walk the stage 2 page table over and over.)
1936  *
1937  * Our enumeration includes at the end some entries which are not "true"
1938  * mmu_idx values in that they don't have corresponding TLBs and are only
1939  * valid for doing slow path page table walks.
1940  *
1941  * The constant names here are patterned after the general style of the names
1942  * of the AT/ATS operations.
1943  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
1944  */
1945 typedef enum ARMMMUIdx {
1946     ARMMMUIdx_S12NSE0 = 0,
1947     ARMMMUIdx_S12NSE1 = 1,
1948     ARMMMUIdx_S1E2 = 2,
1949     ARMMMUIdx_S1E3 = 3,
1950     ARMMMUIdx_S1SE0 = 4,
1951     ARMMMUIdx_S1SE1 = 5,
1952     ARMMMUIdx_S2NS = 6,
1953     /* Indexes below here don't have TLBs and are used only for AT system
1954      * instructions or for the first stage of an S12 page table walk.
1955      */
1956     ARMMMUIdx_S1NSE0 = 7,
1957     ARMMMUIdx_S1NSE1 = 8,
1958 } ARMMMUIdx;
1959 
1960 #define MMU_USER_IDX 0
1961 
1962 /* Return the exception level we're running at if this is our mmu_idx */
1963 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
1964 {
1965     assert(mmu_idx < ARMMMUIdx_S2NS);
1966     return mmu_idx & 3;
1967 }
1968 
1969 /* Determine the current mmu_idx to use for normal loads/stores */
1970 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
1971 {
1972     int el = arm_current_el(env);
1973 
1974     if (el < 2 && arm_is_secure_below_el3(env)) {
1975         return ARMMMUIdx_S1SE0 + el;
1976     }
1977     return el;
1978 }
1979 
1980 /* Indexes used when registering address spaces with cpu_address_space_init */
1981 typedef enum ARMASIdx {
1982     ARMASIdx_NS = 0,
1983     ARMASIdx_S = 1,
1984 } ARMASIdx;
1985 
1986 /* Return the Exception Level targeted by debug exceptions. */
1987 static inline int arm_debug_target_el(CPUARMState *env)
1988 {
1989     bool secure = arm_is_secure(env);
1990     bool route_to_el2 = false;
1991 
1992     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
1993         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
1994                        env->cp15.mdcr_el2 & (1 << 8);
1995     }
1996 
1997     if (route_to_el2) {
1998         return 2;
1999     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2000                !arm_el_is_aa64(env, 3) && secure) {
2001         return 3;
2002     } else {
2003         return 1;
2004     }
2005 }
2006 
2007 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2008 {
2009     if (arm_is_secure(env)) {
2010         /* MDCR_EL3.SDD disables debug events from Secure state */
2011         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2012             || arm_current_el(env) == 3) {
2013             return false;
2014         }
2015     }
2016 
2017     if (arm_current_el(env) == arm_debug_target_el(env)) {
2018         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2019             || (env->daif & PSTATE_D)) {
2020             return false;
2021         }
2022     }
2023     return true;
2024 }
2025 
2026 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2027 {
2028     int el = arm_current_el(env);
2029 
2030     if (el == 0 && arm_el_is_aa64(env, 1)) {
2031         return aa64_generate_debug_exceptions(env);
2032     }
2033 
2034     if (arm_is_secure(env)) {
2035         int spd;
2036 
2037         if (el == 0 && (env->cp15.sder & 1)) {
2038             /* SDER.SUIDEN means debug exceptions from Secure EL0
2039              * are always enabled. Otherwise they are controlled by
2040              * SDCR.SPD like those from other Secure ELs.
2041              */
2042             return true;
2043         }
2044 
2045         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2046         switch (spd) {
2047         case 1:
2048             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2049         case 0:
2050             /* For 0b00 we return true if external secure invasive debug
2051              * is enabled. On real hardware this is controlled by external
2052              * signals to the core. QEMU always permits debug, and behaves
2053              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2054              */
2055             return true;
2056         case 2:
2057             return false;
2058         case 3:
2059             return true;
2060         }
2061     }
2062 
2063     return el != 2;
2064 }
2065 
2066 /* Return true if debugging exceptions are currently enabled.
2067  * This corresponds to what in ARM ARM pseudocode would be
2068  *    if UsingAArch32() then
2069  *        return AArch32.GenerateDebugExceptions()
2070  *    else
2071  *        return AArch64.GenerateDebugExceptions()
2072  * We choose to push the if() down into this function for clarity,
2073  * since the pseudocode has it at all callsites except for the one in
2074  * CheckSoftwareStep(), where it is elided because both branches would
2075  * always return the same value.
2076  *
2077  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2078  * don't yet implement those exception levels or their associated trap bits.
2079  */
2080 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2081 {
2082     if (env->aarch64) {
2083         return aa64_generate_debug_exceptions(env);
2084     } else {
2085         return aa32_generate_debug_exceptions(env);
2086     }
2087 }
2088 
2089 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2090  * implicitly means this always returns false in pre-v8 CPUs.)
2091  */
2092 static inline bool arm_singlestep_active(CPUARMState *env)
2093 {
2094     return extract32(env->cp15.mdscr_el1, 0, 1)
2095         && arm_el_is_aa64(env, arm_debug_target_el(env))
2096         && arm_generate_debug_exceptions(env);
2097 }
2098 
2099 static inline bool arm_sctlr_b(CPUARMState *env)
2100 {
2101     return
2102         /* We need not implement SCTLR.ITD in user-mode emulation, so
2103          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2104          * This lets people run BE32 binaries with "-cpu any".
2105          */
2106 #ifndef CONFIG_USER_ONLY
2107         !arm_feature(env, ARM_FEATURE_V7) &&
2108 #endif
2109         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2110 }
2111 
2112 /* Return true if the processor is in big-endian mode. */
2113 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2114 {
2115     int cur_el;
2116 
2117     /* In 32bit endianness is determined by looking at CPSR's E bit */
2118     if (!is_a64(env)) {
2119         return
2120 #ifdef CONFIG_USER_ONLY
2121             /* In system mode, BE32 is modelled in line with the
2122              * architecture (as word-invariant big-endianness), where loads
2123              * and stores are done little endian but from addresses which
2124              * are adjusted by XORing with the appropriate constant. So the
2125              * endianness to use for the raw data access is not affected by
2126              * SCTLR.B.
2127              * In user mode, however, we model BE32 as byte-invariant
2128              * big-endianness (because user-only code cannot tell the
2129              * difference), and so we need to use a data access endianness
2130              * that depends on SCTLR.B.
2131              */
2132             arm_sctlr_b(env) ||
2133 #endif
2134                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2135     }
2136 
2137     cur_el = arm_current_el(env);
2138 
2139     if (cur_el == 0) {
2140         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2141     }
2142 
2143     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2144 }
2145 
2146 #include "exec/cpu-all.h"
2147 
2148 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2149  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2150  * We put flags which are shared between 32 and 64 bit mode at the top
2151  * of the word, and flags which apply to only one mode at the bottom.
2152  */
2153 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2154 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2155 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2156 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2157 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2158 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2159 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2160 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2161 /* Target EL if we take a floating-point-disabled exception */
2162 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2163 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2164 
2165 /* Bit usage when in AArch32 state: */
2166 #define ARM_TBFLAG_THUMB_SHIFT      0
2167 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2168 #define ARM_TBFLAG_VECLEN_SHIFT     1
2169 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2170 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2171 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2172 #define ARM_TBFLAG_VFPEN_SHIFT      7
2173 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2174 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2175 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2176 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2177 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2178 /* We store the bottom two bits of the CPAR as TB flags and handle
2179  * checks on the other bits at runtime
2180  */
2181 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2182 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2183 /* Indicates whether cp register reads and writes by guest code should access
2184  * the secure or nonsecure bank of banked registers; note that this is not
2185  * the same thing as the current security state of the processor!
2186  */
2187 #define ARM_TBFLAG_NS_SHIFT         19
2188 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2189 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2190 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2191 
2192 /* Bit usage when in AArch64 state */
2193 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2194 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2195 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2196 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2197 
2198 /* some convenience accessor macros */
2199 #define ARM_TBFLAG_AARCH64_STATE(F) \
2200     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2201 #define ARM_TBFLAG_MMUIDX(F) \
2202     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2203 #define ARM_TBFLAG_SS_ACTIVE(F) \
2204     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2205 #define ARM_TBFLAG_PSTATE_SS(F) \
2206     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2207 #define ARM_TBFLAG_FPEXC_EL(F) \
2208     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2209 #define ARM_TBFLAG_THUMB(F) \
2210     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2211 #define ARM_TBFLAG_VECLEN(F) \
2212     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2213 #define ARM_TBFLAG_VECSTRIDE(F) \
2214     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2215 #define ARM_TBFLAG_VFPEN(F) \
2216     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2217 #define ARM_TBFLAG_CONDEXEC(F) \
2218     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2219 #define ARM_TBFLAG_SCTLR_B(F) \
2220     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2221 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2222     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2223 #define ARM_TBFLAG_NS(F) \
2224     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2225 #define ARM_TBFLAG_BE_DATA(F) \
2226     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2227 #define ARM_TBFLAG_TBI0(F) \
2228     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2229 #define ARM_TBFLAG_TBI1(F) \
2230     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2231 
2232 static inline bool bswap_code(bool sctlr_b)
2233 {
2234 #ifdef CONFIG_USER_ONLY
2235     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2236      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2237      * would also end up as a mixed-endian mode with BE code, LE data.
2238      */
2239     return
2240 #ifdef TARGET_WORDS_BIGENDIAN
2241         1 ^
2242 #endif
2243         sctlr_b;
2244 #else
2245     /* All code access in ARM is little endian, and there are no loaders
2246      * doing swaps that need to be reversed
2247      */
2248     return 0;
2249 #endif
2250 }
2251 
2252 /* Return the exception level to which FP-disabled exceptions should
2253  * be taken, or 0 if FP is enabled.
2254  */
2255 static inline int fp_exception_el(CPUARMState *env)
2256 {
2257     int fpen;
2258     int cur_el = arm_current_el(env);
2259 
2260     /* CPACR and the CPTR registers don't exist before v6, so FP is
2261      * always accessible
2262      */
2263     if (!arm_feature(env, ARM_FEATURE_V6)) {
2264         return 0;
2265     }
2266 
2267     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2268      * 0, 2 : trap EL0 and EL1/PL1 accesses
2269      * 1    : trap only EL0 accesses
2270      * 3    : trap no accesses
2271      */
2272     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2273     switch (fpen) {
2274     case 0:
2275     case 2:
2276         if (cur_el == 0 || cur_el == 1) {
2277             /* Trap to PL1, which might be EL1 or EL3 */
2278             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2279                 return 3;
2280             }
2281             return 1;
2282         }
2283         if (cur_el == 3 && !is_a64(env)) {
2284             /* Secure PL1 running at EL3 */
2285             return 3;
2286         }
2287         break;
2288     case 1:
2289         if (cur_el == 0) {
2290             return 1;
2291         }
2292         break;
2293     case 3:
2294         break;
2295     }
2296 
2297     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2298      * check because zero bits in the registers mean "don't trap".
2299      */
2300 
2301     /* CPTR_EL2 : present in v7VE or v8 */
2302     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2303         && !arm_is_secure_below_el3(env)) {
2304         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2305         return 2;
2306     }
2307 
2308     /* CPTR_EL3 : present in v8 */
2309     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2310         /* Trap all FP ops to EL3 */
2311         return 3;
2312     }
2313 
2314     return 0;
2315 }
2316 
2317 #ifdef CONFIG_USER_ONLY
2318 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2319 {
2320     return
2321 #ifdef TARGET_WORDS_BIGENDIAN
2322        1 ^
2323 #endif
2324        arm_cpu_data_is_big_endian(env);
2325 }
2326 #endif
2327 
2328 #ifndef CONFIG_USER_ONLY
2329 /**
2330  * arm_regime_tbi0:
2331  * @env: CPUARMState
2332  * @mmu_idx: MMU index indicating required translation regime
2333  *
2334  * Extracts the TBI0 value from the appropriate TCR for the current EL
2335  *
2336  * Returns: the TBI0 value.
2337  */
2338 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2339 
2340 /**
2341  * arm_regime_tbi1:
2342  * @env: CPUARMState
2343  * @mmu_idx: MMU index indicating required translation regime
2344  *
2345  * Extracts the TBI1 value from the appropriate TCR for the current EL
2346  *
2347  * Returns: the TBI1 value.
2348  */
2349 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2350 #else
2351 /* We can't handle tagged addresses properly in user-only mode */
2352 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2353 {
2354     return 0;
2355 }
2356 
2357 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2358 {
2359     return 0;
2360 }
2361 #endif
2362 
2363 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2364                                         target_ulong *cs_base, uint32_t *flags)
2365 {
2366     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2367     if (is_a64(env)) {
2368         *pc = env->pc;
2369         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2370         /* Get control bits for tagged addresses */
2371         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2372         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2373     } else {
2374         *pc = env->regs[15];
2375         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2376             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2377             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2378             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2379             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2380         if (!(access_secure_reg(env))) {
2381             *flags |= ARM_TBFLAG_NS_MASK;
2382         }
2383         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2384             || arm_el_is_aa64(env, 1)) {
2385             *flags |= ARM_TBFLAG_VFPEN_MASK;
2386         }
2387         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2388                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2389     }
2390 
2391     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2392 
2393     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2394      * states defined in the ARM ARM for software singlestep:
2395      *  SS_ACTIVE   PSTATE.SS   State
2396      *     0            x       Inactive (the TB flag for SS is always 0)
2397      *     1            0       Active-pending
2398      *     1            1       Active-not-pending
2399      */
2400     if (arm_singlestep_active(env)) {
2401         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2402         if (is_a64(env)) {
2403             if (env->pstate & PSTATE_SS) {
2404                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2405             }
2406         } else {
2407             if (env->uncached_cpsr & PSTATE_SS) {
2408                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2409             }
2410         }
2411     }
2412     if (arm_cpu_data_is_big_endian(env)) {
2413         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2414     }
2415     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2416 
2417     *cs_base = 0;
2418 }
2419 
2420 enum {
2421     QEMU_PSCI_CONDUIT_DISABLED = 0,
2422     QEMU_PSCI_CONDUIT_SMC = 1,
2423     QEMU_PSCI_CONDUIT_HVC = 2,
2424 };
2425 
2426 #ifndef CONFIG_USER_ONLY
2427 /* Return the address space index to use for a memory access */
2428 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2429 {
2430     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2431 }
2432 
2433 /* Return the AddressSpace to use for a memory access
2434  * (which depends on whether the access is S or NS, and whether
2435  * the board gave us a separate AddressSpace for S accesses).
2436  */
2437 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2438 {
2439     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2440 }
2441 #endif
2442 
2443 /**
2444  * arm_register_el_change_hook:
2445  * Register a hook function which will be called back whenever this
2446  * CPU changes exception level or mode. The hook function will be
2447  * passed a pointer to the ARMCPU and the opaque data pointer passed
2448  * to this function when the hook was registered.
2449  *
2450  * Note that we currently only support registering a single hook function,
2451  * and will assert if this function is called twice.
2452  * This facility is intended for the use of the GICv3 emulation.
2453  */
2454 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2455                                  void *opaque);
2456 
2457 /**
2458  * arm_get_el_change_hook_opaque:
2459  * Return the opaque data that will be used by the el_change_hook
2460  * for this CPU.
2461  */
2462 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2463 {
2464     return cpu->el_change_hook_opaque;
2465 }
2466 
2467 #endif
2468