xref: /qemu/target/arm/cpu.h (revision 43692239)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 #include "cpu-qom.h"
26 #include "exec/cpu-defs.h"
27 #include "qapi/qapi-types-common.h"
28 
29 /* ARM processors have a weak memory model */
30 #define TCG_GUEST_DEFAULT_MO      (0)
31 
32 #ifdef TARGET_AARCH64
33 #define KVM_HAVE_MCE_INJECTION 1
34 #endif
35 
36 #define EXCP_UDEF            1   /* undefined instruction */
37 #define EXCP_SWI             2   /* software interrupt */
38 #define EXCP_PREFETCH_ABORT  3
39 #define EXCP_DATA_ABORT      4
40 #define EXCP_IRQ             5
41 #define EXCP_FIQ             6
42 #define EXCP_BKPT            7
43 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
44 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
45 #define EXCP_HVC            11   /* HyperVisor Call */
46 #define EXCP_HYP_TRAP       12
47 #define EXCP_SMC            13   /* Secure Monitor Call */
48 #define EXCP_VIRQ           14
49 #define EXCP_VFIQ           15
50 #define EXCP_SEMIHOST       16   /* semihosting call */
51 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
52 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
53 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
54 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
55 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
56 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
57 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
58 
59 #define ARMV7M_EXCP_RESET   1
60 #define ARMV7M_EXCP_NMI     2
61 #define ARMV7M_EXCP_HARD    3
62 #define ARMV7M_EXCP_MEM     4
63 #define ARMV7M_EXCP_BUS     5
64 #define ARMV7M_EXCP_USAGE   6
65 #define ARMV7M_EXCP_SECURE  7
66 #define ARMV7M_EXCP_SVC     11
67 #define ARMV7M_EXCP_DEBUG   12
68 #define ARMV7M_EXCP_PENDSV  14
69 #define ARMV7M_EXCP_SYSTICK 15
70 
71 /* For M profile, some registers are banked secure vs non-secure;
72  * these are represented as a 2-element array where the first element
73  * is the non-secure copy and the second is the secure copy.
74  * When the CPU does not have implement the security extension then
75  * only the first element is used.
76  * This means that the copy for the current security state can be
77  * accessed via env->registerfield[env->v7m.secure] (whether the security
78  * extension is implemented or not).
79  */
80 enum {
81     M_REG_NS = 0,
82     M_REG_S = 1,
83     M_REG_NUM_BANKS = 2,
84 };
85 
86 /* ARM-specific interrupt pending bits.  */
87 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
88 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
89 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
90 
91 /* The usual mapping for an AArch64 system register to its AArch32
92  * counterpart is for the 32 bit world to have access to the lower
93  * half only (with writes leaving the upper half untouched). It's
94  * therefore useful to be able to pass TCG the offset of the least
95  * significant half of a uint64_t struct member.
96  */
97 #ifdef HOST_WORDS_BIGENDIAN
98 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
99 #define offsetofhigh32(S, M) offsetof(S, M)
100 #else
101 #define offsetoflow32(S, M) offsetof(S, M)
102 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #endif
104 
105 /* Meanings of the ARMCPU object's four inbound GPIO lines */
106 #define ARM_CPU_IRQ 0
107 #define ARM_CPU_FIQ 1
108 #define ARM_CPU_VIRQ 2
109 #define ARM_CPU_VFIQ 3
110 
111 /* ARM-specific extra insn start words:
112  * 1: Conditional execution bits
113  * 2: Partial exception syndrome for data aborts
114  */
115 #define TARGET_INSN_START_EXTRA_WORDS 2
116 
117 /* The 2nd extra word holding syndrome info for data aborts does not use
118  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
119  * help the sleb128 encoder do a better job.
120  * When restoring the CPU state, we shift it back up.
121  */
122 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
123 #define ARM_INSN_START_WORD2_SHIFT 14
124 
125 /* We currently assume float and double are IEEE single and double
126    precision respectively.
127    Doing runtime conversions is tricky because VFP registers may contain
128    integer values (eg. as the result of a FTOSI instruction).
129    s<2n> maps to the least significant half of d<n>
130    s<2n+1> maps to the most significant half of d<n>
131  */
132 
133 /**
134  * DynamicGDBXMLInfo:
135  * @desc: Contains the XML descriptions.
136  * @num: Number of the registers in this XML seen by GDB.
137  * @data: A union with data specific to the set of registers
138  *    @cpregs_keys: Array that contains the corresponding Key of
139  *                  a given cpreg with the same order of the cpreg
140  *                  in the XML description.
141  */
142 typedef struct DynamicGDBXMLInfo {
143     char *desc;
144     int num;
145     union {
146         struct {
147             uint32_t *keys;
148         } cpregs;
149     } data;
150 } DynamicGDBXMLInfo;
151 
152 /* CPU state for each instance of a generic timer (in cp15 c14) */
153 typedef struct ARMGenericTimer {
154     uint64_t cval; /* Timer CompareValue register */
155     uint64_t ctl; /* Timer Control register */
156 } ARMGenericTimer;
157 
158 #define GTIMER_PHYS     0
159 #define GTIMER_VIRT     1
160 #define GTIMER_HYP      2
161 #define GTIMER_SEC      3
162 #define GTIMER_HYPVIRT  4
163 #define NUM_GTIMERS     5
164 
165 typedef struct {
166     uint64_t raw_tcr;
167     uint32_t mask;
168     uint32_t base_mask;
169 } TCR;
170 
171 #define VTCR_NSW (1u << 29)
172 #define VTCR_NSA (1u << 30)
173 #define VSTCR_SW VTCR_NSW
174 #define VSTCR_SA VTCR_NSA
175 
176 /* Define a maximum sized vector register.
177  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
178  * For 64-bit, this is a 2048-bit SVE register.
179  *
180  * Note that the mapping between S, D, and Q views of the register bank
181  * differs between AArch64 and AArch32.
182  * In AArch32:
183  *  Qn = regs[n].d[1]:regs[n].d[0]
184  *  Dn = regs[n / 2].d[n & 1]
185  *  Sn = regs[n / 4].d[n % 4 / 2],
186  *       bits 31..0 for even n, and bits 63..32 for odd n
187  *       (and regs[16] to regs[31] are inaccessible)
188  * In AArch64:
189  *  Zn = regs[n].d[*]
190  *  Qn = regs[n].d[1]:regs[n].d[0]
191  *  Dn = regs[n].d[0]
192  *  Sn = regs[n].d[0] bits 31..0
193  *  Hn = regs[n].d[0] bits 15..0
194  *
195  * This corresponds to the architecturally defined mapping between
196  * the two execution states, and means we do not need to explicitly
197  * map these registers when changing states.
198  *
199  * Align the data for use with TCG host vector operations.
200  */
201 
202 #ifdef TARGET_AARCH64
203 # define ARM_MAX_VQ    16
204 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
205 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
206 #else
207 # define ARM_MAX_VQ    1
208 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
209 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
210 #endif
211 
212 typedef struct ARMVectorReg {
213     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
214 } ARMVectorReg;
215 
216 #ifdef TARGET_AARCH64
217 /* In AArch32 mode, predicate registers do not exist at all.  */
218 typedef struct ARMPredicateReg {
219     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
220 } ARMPredicateReg;
221 
222 /* In AArch32 mode, PAC keys do not exist at all.  */
223 typedef struct ARMPACKey {
224     uint64_t lo, hi;
225 } ARMPACKey;
226 #endif
227 
228 /* See the commentary above the TBFLAG field definitions.  */
229 typedef struct CPUARMTBFlags {
230     uint32_t flags;
231     target_ulong flags2;
232 } CPUARMTBFlags;
233 
234 typedef struct CPUARMState {
235     /* Regs for current mode.  */
236     uint32_t regs[16];
237 
238     /* 32/64 switch only happens when taking and returning from
239      * exceptions so the overlap semantics are taken care of then
240      * instead of having a complicated union.
241      */
242     /* Regs for A64 mode.  */
243     uint64_t xregs[32];
244     uint64_t pc;
245     /* PSTATE isn't an architectural register for ARMv8. However, it is
246      * convenient for us to assemble the underlying state into a 32 bit format
247      * identical to the architectural format used for the SPSR. (This is also
248      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
249      * 'pstate' register are.) Of the PSTATE bits:
250      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
251      *    semantics as for AArch32, as described in the comments on each field)
252      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
253      *  DAIF (exception masks) are kept in env->daif
254      *  BTYPE is kept in env->btype
255      *  all other bits are stored in their correct places in env->pstate
256      */
257     uint32_t pstate;
258     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
259 
260     /* Cached TBFLAGS state.  See below for which bits are included.  */
261     CPUARMTBFlags hflags;
262 
263     /* Frequently accessed CPSR bits are stored separately for efficiency.
264        This contains all the other bits.  Use cpsr_{read,write} to access
265        the whole CPSR.  */
266     uint32_t uncached_cpsr;
267     uint32_t spsr;
268 
269     /* Banked registers.  */
270     uint64_t banked_spsr[8];
271     uint32_t banked_r13[8];
272     uint32_t banked_r14[8];
273 
274     /* These hold r8-r12.  */
275     uint32_t usr_regs[5];
276     uint32_t fiq_regs[5];
277 
278     /* cpsr flag cache for faster execution */
279     uint32_t CF; /* 0 or 1 */
280     uint32_t VF; /* V is the bit 31. All other bits are undefined */
281     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
282     uint32_t ZF; /* Z set if zero.  */
283     uint32_t QF; /* 0 or 1 */
284     uint32_t GE; /* cpsr[19:16] */
285     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
286     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
287     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
288     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
289 
290     uint64_t elr_el[4]; /* AArch64 exception link regs  */
291     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
292 
293     /* System control coprocessor (cp15) */
294     struct {
295         uint32_t c0_cpuid;
296         union { /* Cache size selection */
297             struct {
298                 uint64_t _unused_csselr0;
299                 uint64_t csselr_ns;
300                 uint64_t _unused_csselr1;
301                 uint64_t csselr_s;
302             };
303             uint64_t csselr_el[4];
304         };
305         union { /* System control register. */
306             struct {
307                 uint64_t _unused_sctlr;
308                 uint64_t sctlr_ns;
309                 uint64_t hsctlr;
310                 uint64_t sctlr_s;
311             };
312             uint64_t sctlr_el[4];
313         };
314         uint64_t cpacr_el1; /* Architectural feature access control register */
315         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
316         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
317         uint64_t sder; /* Secure debug enable register. */
318         uint32_t nsacr; /* Non-secure access control register. */
319         union { /* MMU translation table base 0. */
320             struct {
321                 uint64_t _unused_ttbr0_0;
322                 uint64_t ttbr0_ns;
323                 uint64_t _unused_ttbr0_1;
324                 uint64_t ttbr0_s;
325             };
326             uint64_t ttbr0_el[4];
327         };
328         union { /* MMU translation table base 1. */
329             struct {
330                 uint64_t _unused_ttbr1_0;
331                 uint64_t ttbr1_ns;
332                 uint64_t _unused_ttbr1_1;
333                 uint64_t ttbr1_s;
334             };
335             uint64_t ttbr1_el[4];
336         };
337         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
338         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
339         /* MMU translation table base control. */
340         TCR tcr_el[4];
341         TCR vtcr_el2; /* Virtualization Translation Control.  */
342         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
343         uint32_t c2_data; /* MPU data cacheable bits.  */
344         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
345         union { /* MMU domain access control register
346                  * MPU write buffer control.
347                  */
348             struct {
349                 uint64_t dacr_ns;
350                 uint64_t dacr_s;
351             };
352             struct {
353                 uint64_t dacr32_el2;
354             };
355         };
356         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
357         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
358         uint64_t hcr_el2; /* Hypervisor configuration register */
359         uint64_t scr_el3; /* Secure configuration register.  */
360         union { /* Fault status registers.  */
361             struct {
362                 uint64_t ifsr_ns;
363                 uint64_t ifsr_s;
364             };
365             struct {
366                 uint64_t ifsr32_el2;
367             };
368         };
369         union {
370             struct {
371                 uint64_t _unused_dfsr;
372                 uint64_t dfsr_ns;
373                 uint64_t hsr;
374                 uint64_t dfsr_s;
375             };
376             uint64_t esr_el[4];
377         };
378         uint32_t c6_region[8]; /* MPU base/size registers.  */
379         union { /* Fault address registers. */
380             struct {
381                 uint64_t _unused_far0;
382 #ifdef HOST_WORDS_BIGENDIAN
383                 uint32_t ifar_ns;
384                 uint32_t dfar_ns;
385                 uint32_t ifar_s;
386                 uint32_t dfar_s;
387 #else
388                 uint32_t dfar_ns;
389                 uint32_t ifar_ns;
390                 uint32_t dfar_s;
391                 uint32_t ifar_s;
392 #endif
393                 uint64_t _unused_far3;
394             };
395             uint64_t far_el[4];
396         };
397         uint64_t hpfar_el2;
398         uint64_t hstr_el2;
399         union { /* Translation result. */
400             struct {
401                 uint64_t _unused_par_0;
402                 uint64_t par_ns;
403                 uint64_t _unused_par_1;
404                 uint64_t par_s;
405             };
406             uint64_t par_el[4];
407         };
408 
409         uint32_t c9_insn; /* Cache lockdown registers.  */
410         uint32_t c9_data;
411         uint64_t c9_pmcr; /* performance monitor control register */
412         uint64_t c9_pmcnten; /* perf monitor counter enables */
413         uint64_t c9_pmovsr; /* perf monitor overflow status */
414         uint64_t c9_pmuserenr; /* perf monitor user enable */
415         uint64_t c9_pmselr; /* perf monitor counter selection register */
416         uint64_t c9_pminten; /* perf monitor interrupt enables */
417         union { /* Memory attribute redirection */
418             struct {
419 #ifdef HOST_WORDS_BIGENDIAN
420                 uint64_t _unused_mair_0;
421                 uint32_t mair1_ns;
422                 uint32_t mair0_ns;
423                 uint64_t _unused_mair_1;
424                 uint32_t mair1_s;
425                 uint32_t mair0_s;
426 #else
427                 uint64_t _unused_mair_0;
428                 uint32_t mair0_ns;
429                 uint32_t mair1_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair0_s;
432                 uint32_t mair1_s;
433 #endif
434             };
435             uint64_t mair_el[4];
436         };
437         union { /* vector base address register */
438             struct {
439                 uint64_t _unused_vbar;
440                 uint64_t vbar_ns;
441                 uint64_t hvbar;
442                 uint64_t vbar_s;
443             };
444             uint64_t vbar_el[4];
445         };
446         uint32_t mvbar; /* (monitor) vector base address register */
447         struct { /* FCSE PID. */
448             uint32_t fcseidr_ns;
449             uint32_t fcseidr_s;
450         };
451         union { /* Context ID. */
452             struct {
453                 uint64_t _unused_contextidr_0;
454                 uint64_t contextidr_ns;
455                 uint64_t _unused_contextidr_1;
456                 uint64_t contextidr_s;
457             };
458             uint64_t contextidr_el[4];
459         };
460         union { /* User RW Thread register. */
461             struct {
462                 uint64_t tpidrurw_ns;
463                 uint64_t tpidrprw_ns;
464                 uint64_t htpidr;
465                 uint64_t _tpidr_el3;
466             };
467             uint64_t tpidr_el[4];
468         };
469         /* The secure banks of these registers don't map anywhere */
470         uint64_t tpidrurw_s;
471         uint64_t tpidrprw_s;
472         uint64_t tpidruro_s;
473 
474         union { /* User RO Thread register. */
475             uint64_t tpidruro_ns;
476             uint64_t tpidrro_el[1];
477         };
478         uint64_t c14_cntfrq; /* Counter Frequency register */
479         uint64_t c14_cntkctl; /* Timer Control register */
480         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
481         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
482         ARMGenericTimer c14_timer[NUM_GTIMERS];
483         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
484         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
485         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
486         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
487         uint32_t c15_threadid; /* TI debugger thread-ID.  */
488         uint32_t c15_config_base_address; /* SCU base address.  */
489         uint32_t c15_diagnostic; /* diagnostic register */
490         uint32_t c15_power_diagnostic;
491         uint32_t c15_power_control; /* power control */
492         uint64_t dbgbvr[16]; /* breakpoint value registers */
493         uint64_t dbgbcr[16]; /* breakpoint control registers */
494         uint64_t dbgwvr[16]; /* watchpoint value registers */
495         uint64_t dbgwcr[16]; /* watchpoint control registers */
496         uint64_t mdscr_el1;
497         uint64_t oslsr_el1; /* OS Lock Status */
498         uint64_t mdcr_el2;
499         uint64_t mdcr_el3;
500         /* Stores the architectural value of the counter *the last time it was
501          * updated* by pmccntr_op_start. Accesses should always be surrounded
502          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
503          * architecturally-correct value is being read/set.
504          */
505         uint64_t c15_ccnt;
506         /* Stores the delta between the architectural value and the underlying
507          * cycle count during normal operation. It is used to update c15_ccnt
508          * to be the correct architectural value before accesses. During
509          * accesses, c15_ccnt_delta contains the underlying count being used
510          * for the access, after which it reverts to the delta value in
511          * pmccntr_op_finish.
512          */
513         uint64_t c15_ccnt_delta;
514         uint64_t c14_pmevcntr[31];
515         uint64_t c14_pmevcntr_delta[31];
516         uint64_t c14_pmevtyper[31];
517         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
518         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
519         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
520         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
521         uint64_t gcr_el1;
522         uint64_t rgsr_el1;
523     } cp15;
524 
525     struct {
526         /* M profile has up to 4 stack pointers:
527          * a Main Stack Pointer and a Process Stack Pointer for each
528          * of the Secure and Non-Secure states. (If the CPU doesn't support
529          * the security extension then it has only two SPs.)
530          * In QEMU we always store the currently active SP in regs[13],
531          * and the non-active SP for the current security state in
532          * v7m.other_sp. The stack pointers for the inactive security state
533          * are stored in other_ss_msp and other_ss_psp.
534          * switch_v7m_security_state() is responsible for rearranging them
535          * when we change security state.
536          */
537         uint32_t other_sp;
538         uint32_t other_ss_msp;
539         uint32_t other_ss_psp;
540         uint32_t vecbase[M_REG_NUM_BANKS];
541         uint32_t basepri[M_REG_NUM_BANKS];
542         uint32_t control[M_REG_NUM_BANKS];
543         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
544         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
545         uint32_t hfsr; /* HardFault Status */
546         uint32_t dfsr; /* Debug Fault Status Register */
547         uint32_t sfsr; /* Secure Fault Status Register */
548         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
549         uint32_t bfar; /* BusFault Address */
550         uint32_t sfar; /* Secure Fault Address Register */
551         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
552         int exception;
553         uint32_t primask[M_REG_NUM_BANKS];
554         uint32_t faultmask[M_REG_NUM_BANKS];
555         uint32_t aircr; /* only holds r/w state if security extn implemented */
556         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
557         uint32_t csselr[M_REG_NUM_BANKS];
558         uint32_t scr[M_REG_NUM_BANKS];
559         uint32_t msplim[M_REG_NUM_BANKS];
560         uint32_t psplim[M_REG_NUM_BANKS];
561         uint32_t fpcar[M_REG_NUM_BANKS];
562         uint32_t fpccr[M_REG_NUM_BANKS];
563         uint32_t fpdscr[M_REG_NUM_BANKS];
564         uint32_t cpacr[M_REG_NUM_BANKS];
565         uint32_t nsacr;
566         int ltpsize;
567     } v7m;
568 
569     /* Information associated with an exception about to be taken:
570      * code which raises an exception must set cs->exception_index and
571      * the relevant parts of this structure; the cpu_do_interrupt function
572      * will then set the guest-visible registers as part of the exception
573      * entry process.
574      */
575     struct {
576         uint32_t syndrome; /* AArch64 format syndrome register */
577         uint32_t fsr; /* AArch32 format fault status register info */
578         uint64_t vaddress; /* virtual addr associated with exception, if any */
579         uint32_t target_el; /* EL the exception should be targeted for */
580         /* If we implement EL2 we will also need to store information
581          * about the intermediate physical address for stage 2 faults.
582          */
583     } exception;
584 
585     /* Information associated with an SError */
586     struct {
587         uint8_t pending;
588         uint8_t has_esr;
589         uint64_t esr;
590     } serror;
591 
592     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
593 
594     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
595     uint32_t irq_line_state;
596 
597     /* Thumb-2 EE state.  */
598     uint32_t teecr;
599     uint32_t teehbr;
600 
601     /* VFP coprocessor state.  */
602     struct {
603         ARMVectorReg zregs[32];
604 
605 #ifdef TARGET_AARCH64
606         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
607 #define FFR_PRED_NUM 16
608         ARMPredicateReg pregs[17];
609         /* Scratch space for aa64 sve predicate temporary.  */
610         ARMPredicateReg preg_tmp;
611 #endif
612 
613         /* We store these fpcsr fields separately for convenience.  */
614         uint32_t qc[4] QEMU_ALIGNED(16);
615         int vec_len;
616         int vec_stride;
617 
618         uint32_t xregs[16];
619 
620         /* Scratch space for aa32 neon expansion.  */
621         uint32_t scratch[8];
622 
623         /* There are a number of distinct float control structures:
624          *
625          *  fp_status: is the "normal" fp status.
626          *  fp_status_fp16: used for half-precision calculations
627          *  standard_fp_status : the ARM "Standard FPSCR Value"
628          *  standard_fp_status_fp16 : used for half-precision
629          *       calculations with the ARM "Standard FPSCR Value"
630          *
631          * Half-precision operations are governed by a separate
632          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
633          * status structure to control this.
634          *
635          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
636          * round-to-nearest and is used by any operations (generally
637          * Neon) which the architecture defines as controlled by the
638          * standard FPSCR value rather than the FPSCR.
639          *
640          * The "standard FPSCR but for fp16 ops" is needed because
641          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
642          * using a fixed value for it.
643          *
644          * To avoid having to transfer exception bits around, we simply
645          * say that the FPSCR cumulative exception flags are the logical
646          * OR of the flags in the four fp statuses. This relies on the
647          * only thing which needs to read the exception flags being
648          * an explicit FPSCR read.
649          */
650         float_status fp_status;
651         float_status fp_status_f16;
652         float_status standard_fp_status;
653         float_status standard_fp_status_f16;
654 
655         /* ZCR_EL[1-3] */
656         uint64_t zcr_el[4];
657     } vfp;
658     uint64_t exclusive_addr;
659     uint64_t exclusive_val;
660     uint64_t exclusive_high;
661 
662     /* iwMMXt coprocessor state.  */
663     struct {
664         uint64_t regs[16];
665         uint64_t val;
666 
667         uint32_t cregs[16];
668     } iwmmxt;
669 
670 #ifdef TARGET_AARCH64
671     struct {
672         ARMPACKey apia;
673         ARMPACKey apib;
674         ARMPACKey apda;
675         ARMPACKey apdb;
676         ARMPACKey apga;
677     } keys;
678 #endif
679 
680 #if defined(CONFIG_USER_ONLY)
681     /* For usermode syscall translation.  */
682     int eabi;
683 #endif
684 
685     struct CPUBreakpoint *cpu_breakpoint[16];
686     struct CPUWatchpoint *cpu_watchpoint[16];
687 
688     /* Fields up to this point are cleared by a CPU reset */
689     struct {} end_reset_fields;
690 
691     /* Fields after this point are preserved across CPU reset. */
692 
693     /* Internal CPU feature flags.  */
694     uint64_t features;
695 
696     /* PMSAv7 MPU */
697     struct {
698         uint32_t *drbar;
699         uint32_t *drsr;
700         uint32_t *dracr;
701         uint32_t rnr[M_REG_NUM_BANKS];
702     } pmsav7;
703 
704     /* PMSAv8 MPU */
705     struct {
706         /* The PMSAv8 implementation also shares some PMSAv7 config
707          * and state:
708          *  pmsav7.rnr (region number register)
709          *  pmsav7_dregion (number of configured regions)
710          */
711         uint32_t *rbar[M_REG_NUM_BANKS];
712         uint32_t *rlar[M_REG_NUM_BANKS];
713         uint32_t mair0[M_REG_NUM_BANKS];
714         uint32_t mair1[M_REG_NUM_BANKS];
715     } pmsav8;
716 
717     /* v8M SAU */
718     struct {
719         uint32_t *rbar;
720         uint32_t *rlar;
721         uint32_t rnr;
722         uint32_t ctrl;
723     } sau;
724 
725     void *nvic;
726     const struct arm_boot_info *boot_info;
727     /* Store GICv3CPUState to access from this struct */
728     void *gicv3state;
729 
730 #ifdef TARGET_TAGGED_ADDRESSES
731     /* Linux syscall tagged address support */
732     bool tagged_addr_enable;
733 #endif
734 } CPUARMState;
735 
736 static inline void set_feature(CPUARMState *env, int feature)
737 {
738     env->features |= 1ULL << feature;
739 }
740 
741 static inline void unset_feature(CPUARMState *env, int feature)
742 {
743     env->features &= ~(1ULL << feature);
744 }
745 
746 /**
747  * ARMELChangeHookFn:
748  * type of a function which can be registered via arm_register_el_change_hook()
749  * to get callbacks when the CPU changes its exception level or mode.
750  */
751 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
752 typedef struct ARMELChangeHook ARMELChangeHook;
753 struct ARMELChangeHook {
754     ARMELChangeHookFn *hook;
755     void *opaque;
756     QLIST_ENTRY(ARMELChangeHook) node;
757 };
758 
759 /* These values map onto the return values for
760  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
761 typedef enum ARMPSCIState {
762     PSCI_ON = 0,
763     PSCI_OFF = 1,
764     PSCI_ON_PENDING = 2
765 } ARMPSCIState;
766 
767 typedef struct ARMISARegisters ARMISARegisters;
768 
769 /**
770  * ARMCPU:
771  * @env: #CPUARMState
772  *
773  * An ARM CPU core.
774  */
775 struct ARMCPU {
776     /*< private >*/
777     CPUState parent_obj;
778     /*< public >*/
779 
780     CPUNegativeOffsetState neg;
781     CPUARMState env;
782 
783     /* Coprocessor information */
784     GHashTable *cp_regs;
785     /* For marshalling (mostly coprocessor) register state between the
786      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
787      * we use these arrays.
788      */
789     /* List of register indexes managed via these arrays; (full KVM style
790      * 64 bit indexes, not CPRegInfo 32 bit indexes)
791      */
792     uint64_t *cpreg_indexes;
793     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
794     uint64_t *cpreg_values;
795     /* Length of the indexes, values, reset_values arrays */
796     int32_t cpreg_array_len;
797     /* These are used only for migration: incoming data arrives in
798      * these fields and is sanity checked in post_load before copying
799      * to the working data structures above.
800      */
801     uint64_t *cpreg_vmstate_indexes;
802     uint64_t *cpreg_vmstate_values;
803     int32_t cpreg_vmstate_array_len;
804 
805     DynamicGDBXMLInfo dyn_sysreg_xml;
806     DynamicGDBXMLInfo dyn_svereg_xml;
807 
808     /* Timers used by the generic (architected) timer */
809     QEMUTimer *gt_timer[NUM_GTIMERS];
810     /*
811      * Timer used by the PMU. Its state is restored after migration by
812      * pmu_op_finish() - it does not need other handling during migration
813      */
814     QEMUTimer *pmu_timer;
815     /* GPIO outputs for generic timer */
816     qemu_irq gt_timer_outputs[NUM_GTIMERS];
817     /* GPIO output for GICv3 maintenance interrupt signal */
818     qemu_irq gicv3_maintenance_interrupt;
819     /* GPIO output for the PMU interrupt */
820     qemu_irq pmu_interrupt;
821 
822     /* MemoryRegion to use for secure physical accesses */
823     MemoryRegion *secure_memory;
824 
825     /* MemoryRegion to use for allocation tag accesses */
826     MemoryRegion *tag_memory;
827     MemoryRegion *secure_tag_memory;
828 
829     /* For v8M, pointer to the IDAU interface provided by board/SoC */
830     Object *idau;
831 
832     /* 'compatible' string for this CPU for Linux device trees */
833     const char *dtb_compatible;
834 
835     /* PSCI version for this CPU
836      * Bits[31:16] = Major Version
837      * Bits[15:0] = Minor Version
838      */
839     uint32_t psci_version;
840 
841     /* Current power state, access guarded by BQL */
842     ARMPSCIState power_state;
843 
844     /* CPU has virtualization extension */
845     bool has_el2;
846     /* CPU has security extension */
847     bool has_el3;
848     /* CPU has PMU (Performance Monitor Unit) */
849     bool has_pmu;
850     /* CPU has VFP */
851     bool has_vfp;
852     /* CPU has Neon */
853     bool has_neon;
854     /* CPU has M-profile DSP extension */
855     bool has_dsp;
856 
857     /* CPU has memory protection unit */
858     bool has_mpu;
859     /* PMSAv7 MPU number of supported regions */
860     uint32_t pmsav7_dregion;
861     /* v8M SAU number of supported regions */
862     uint32_t sau_sregion;
863 
864     /* PSCI conduit used to invoke PSCI methods
865      * 0 - disabled, 1 - smc, 2 - hvc
866      */
867     uint32_t psci_conduit;
868 
869     /* For v8M, initial value of the Secure VTOR */
870     uint32_t init_svtor;
871 
872     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
873      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
874      */
875     uint32_t kvm_target;
876 
877     /* KVM init features for this CPU */
878     uint32_t kvm_init_features[7];
879 
880     /* KVM CPU state */
881 
882     /* KVM virtual time adjustment */
883     bool kvm_adjvtime;
884     bool kvm_vtime_dirty;
885     uint64_t kvm_vtime;
886 
887     /* KVM steal time */
888     OnOffAuto kvm_steal_time;
889 
890     /* Uniprocessor system with MP extensions */
891     bool mp_is_up;
892 
893     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
894      * and the probe failed (so we need to report the error in realize)
895      */
896     bool host_cpu_probe_failed;
897 
898     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
899      * register.
900      */
901     int32_t core_count;
902 
903     /* The instance init functions for implementation-specific subclasses
904      * set these fields to specify the implementation-dependent values of
905      * various constant registers and reset values of non-constant
906      * registers.
907      * Some of these might become QOM properties eventually.
908      * Field names match the official register names as defined in the
909      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
910      * is used for reset values of non-constant registers; no reset_
911      * prefix means a constant register.
912      * Some of these registers are split out into a substructure that
913      * is shared with the translators to control the ISA.
914      *
915      * Note that if you add an ID register to the ARMISARegisters struct
916      * you need to also update the 32-bit and 64-bit versions of the
917      * kvm_arm_get_host_cpu_features() function to correctly populate the
918      * field by reading the value from the KVM vCPU.
919      */
920     struct ARMISARegisters {
921         uint32_t id_isar0;
922         uint32_t id_isar1;
923         uint32_t id_isar2;
924         uint32_t id_isar3;
925         uint32_t id_isar4;
926         uint32_t id_isar5;
927         uint32_t id_isar6;
928         uint32_t id_mmfr0;
929         uint32_t id_mmfr1;
930         uint32_t id_mmfr2;
931         uint32_t id_mmfr3;
932         uint32_t id_mmfr4;
933         uint32_t id_pfr0;
934         uint32_t id_pfr1;
935         uint32_t id_pfr2;
936         uint32_t mvfr0;
937         uint32_t mvfr1;
938         uint32_t mvfr2;
939         uint32_t id_dfr0;
940         uint32_t dbgdidr;
941         uint64_t id_aa64isar0;
942         uint64_t id_aa64isar1;
943         uint64_t id_aa64pfr0;
944         uint64_t id_aa64pfr1;
945         uint64_t id_aa64mmfr0;
946         uint64_t id_aa64mmfr1;
947         uint64_t id_aa64mmfr2;
948         uint64_t id_aa64dfr0;
949         uint64_t id_aa64dfr1;
950     } isar;
951     uint64_t midr;
952     uint32_t revidr;
953     uint32_t reset_fpsid;
954     uint64_t ctr;
955     uint32_t reset_sctlr;
956     uint64_t pmceid0;
957     uint64_t pmceid1;
958     uint32_t id_afr0;
959     uint64_t id_aa64afr0;
960     uint64_t id_aa64afr1;
961     uint64_t clidr;
962     uint64_t mp_affinity; /* MP ID without feature bits */
963     /* The elements of this array are the CCSIDR values for each cache,
964      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
965      */
966     uint64_t ccsidr[16];
967     uint64_t reset_cbar;
968     uint32_t reset_auxcr;
969     bool reset_hivecs;
970 
971     /*
972      * Intermediate values used during property parsing.
973      * Once finalized, the values should be read from ID_AA64ISAR1.
974      */
975     bool prop_pauth;
976     bool prop_pauth_impdef;
977 
978     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
979     uint32_t dcz_blocksize;
980     uint64_t rvbar;
981 
982     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
983     int gic_num_lrs; /* number of list registers */
984     int gic_vpribits; /* number of virtual priority bits */
985     int gic_vprebits; /* number of virtual preemption bits */
986 
987     /* Whether the cfgend input is high (i.e. this CPU should reset into
988      * big-endian mode).  This setting isn't used directly: instead it modifies
989      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
990      * architecture version.
991      */
992     bool cfgend;
993 
994     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
995     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
996 
997     int32_t node_id; /* NUMA node this CPU belongs to */
998 
999     /* Used to synchronize KVM and QEMU in-kernel device levels */
1000     uint8_t device_irq_level;
1001 
1002     /* Used to set the maximum vector length the cpu will support.  */
1003     uint32_t sve_max_vq;
1004 
1005     /*
1006      * In sve_vq_map each set bit is a supported vector length of
1007      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1008      * length in quadwords.
1009      *
1010      * While processing properties during initialization, corresponding
1011      * sve_vq_init bits are set for bits in sve_vq_map that have been
1012      * set by properties.
1013      */
1014     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1015     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1016 
1017     /* Generic timer counter frequency, in Hz */
1018     uint64_t gt_cntfrq_hz;
1019 };
1020 
1021 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1022 
1023 void arm_cpu_post_init(Object *obj);
1024 
1025 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1026 
1027 #ifndef CONFIG_USER_ONLY
1028 extern const VMStateDescription vmstate_arm_cpu;
1029 #endif
1030 
1031 void arm_cpu_do_interrupt(CPUState *cpu);
1032 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1033 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
1034 
1035 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1036                                          MemTxAttrs *attrs);
1037 
1038 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1039 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1040 
1041 /*
1042  * Helpers to dynamically generates XML descriptions of the sysregs
1043  * and SVE registers. Returns the number of registers in each set.
1044  */
1045 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1046 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1047 
1048 /* Returns the dynamically generated XML for the gdb stub.
1049  * Returns a pointer to the XML contents for the specified XML file or NULL
1050  * if the XML name doesn't match the predefined one.
1051  */
1052 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1053 
1054 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1055                              int cpuid, void *opaque);
1056 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1057                              int cpuid, void *opaque);
1058 
1059 #ifdef TARGET_AARCH64
1060 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1061 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1062 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1063 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1064                            int new_el, bool el0_a64);
1065 void aarch64_add_sve_properties(Object *obj);
1066 
1067 /*
1068  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1069  * The byte at offset i from the start of the in-memory representation contains
1070  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1071  * lowest offsets are stored in the lowest memory addresses, then that nearly
1072  * matches QEMU's representation, which is to use an array of host-endian
1073  * uint64_t's, where the lower offsets are at the lower indices. To complete
1074  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1075  */
1076 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1077 {
1078 #ifdef HOST_WORDS_BIGENDIAN
1079     int i;
1080 
1081     for (i = 0; i < nr; ++i) {
1082         dst[i] = bswap64(src[i]);
1083     }
1084 
1085     return dst;
1086 #else
1087     return src;
1088 #endif
1089 }
1090 
1091 #else
1092 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1093 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1094                                          int n, bool a)
1095 { }
1096 static inline void aarch64_add_sve_properties(Object *obj) { }
1097 #endif
1098 
1099 void aarch64_sync_32_to_64(CPUARMState *env);
1100 void aarch64_sync_64_to_32(CPUARMState *env);
1101 
1102 int fp_exception_el(CPUARMState *env, int cur_el);
1103 int sve_exception_el(CPUARMState *env, int cur_el);
1104 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1105 
1106 static inline bool is_a64(CPUARMState *env)
1107 {
1108     return env->aarch64;
1109 }
1110 
1111 /* you can call this signal handler from your SIGBUS and SIGSEGV
1112    signal handlers to inform the virtual CPU of exceptions. non zero
1113    is returned if the signal was handled by the virtual CPU.  */
1114 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1115                            void *puc);
1116 
1117 /**
1118  * pmu_op_start/finish
1119  * @env: CPUARMState
1120  *
1121  * Convert all PMU counters between their delta form (the typical mode when
1122  * they are enabled) and the guest-visible values. These two calls must
1123  * surround any action which might affect the counters.
1124  */
1125 void pmu_op_start(CPUARMState *env);
1126 void pmu_op_finish(CPUARMState *env);
1127 
1128 /*
1129  * Called when a PMU counter is due to overflow
1130  */
1131 void arm_pmu_timer_cb(void *opaque);
1132 
1133 /**
1134  * Functions to register as EL change hooks for PMU mode filtering
1135  */
1136 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1137 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1138 
1139 /*
1140  * pmu_init
1141  * @cpu: ARMCPU
1142  *
1143  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1144  * for the current configuration
1145  */
1146 void pmu_init(ARMCPU *cpu);
1147 
1148 /* SCTLR bit meanings. Several bits have been reused in newer
1149  * versions of the architecture; in that case we define constants
1150  * for both old and new bit meanings. Code which tests against those
1151  * bits should probably check or otherwise arrange that the CPU
1152  * is the architectural version it expects.
1153  */
1154 #define SCTLR_M       (1U << 0)
1155 #define SCTLR_A       (1U << 1)
1156 #define SCTLR_C       (1U << 2)
1157 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1158 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1159 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1160 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1161 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1162 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1163 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1164 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1165 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1166 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1167 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1168 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1169 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1170 #define SCTLR_SED     (1U << 8) /* v8 onward */
1171 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1172 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1173 #define SCTLR_F       (1U << 10) /* up to v6 */
1174 #define SCTLR_SW      (1U << 10) /* v7 */
1175 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1176 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1177 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1178 #define SCTLR_I       (1U << 12)
1179 #define SCTLR_V       (1U << 13) /* AArch32 only */
1180 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1181 #define SCTLR_RR      (1U << 14) /* up to v7 */
1182 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1183 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1184 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1185 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1186 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1187 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1188 #define SCTLR_BR      (1U << 17) /* PMSA only */
1189 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1190 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1191 #define SCTLR_WXN     (1U << 19)
1192 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1193 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1194 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1195 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1196 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1197 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1198 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1199 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1200 #define SCTLR_VE      (1U << 24) /* up to v7 */
1201 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1202 #define SCTLR_EE      (1U << 25)
1203 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1204 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1205 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1206 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1207 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1208 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1209 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1210 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1211 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1212 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1213 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1214 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1215 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1216 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1217 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1218 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1219 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1220 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1221 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1222 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1223 
1224 #define CPTR_TCPAC    (1U << 31)
1225 #define CPTR_TTA      (1U << 20)
1226 #define CPTR_TFP      (1U << 10)
1227 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1228 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1229 
1230 #define MDCR_EPMAD    (1U << 21)
1231 #define MDCR_EDAD     (1U << 20)
1232 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1233 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1234 #define MDCR_SDD      (1U << 16)
1235 #define MDCR_SPD      (3U << 14)
1236 #define MDCR_TDRA     (1U << 11)
1237 #define MDCR_TDOSA    (1U << 10)
1238 #define MDCR_TDA      (1U << 9)
1239 #define MDCR_TDE      (1U << 8)
1240 #define MDCR_HPME     (1U << 7)
1241 #define MDCR_TPM      (1U << 6)
1242 #define MDCR_TPMCR    (1U << 5)
1243 #define MDCR_HPMN     (0x1fU)
1244 
1245 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1246 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1247 
1248 #define CPSR_M (0x1fU)
1249 #define CPSR_T (1U << 5)
1250 #define CPSR_F (1U << 6)
1251 #define CPSR_I (1U << 7)
1252 #define CPSR_A (1U << 8)
1253 #define CPSR_E (1U << 9)
1254 #define CPSR_IT_2_7 (0xfc00U)
1255 #define CPSR_GE (0xfU << 16)
1256 #define CPSR_IL (1U << 20)
1257 #define CPSR_DIT (1U << 21)
1258 #define CPSR_PAN (1U << 22)
1259 #define CPSR_SSBS (1U << 23)
1260 #define CPSR_J (1U << 24)
1261 #define CPSR_IT_0_1 (3U << 25)
1262 #define CPSR_Q (1U << 27)
1263 #define CPSR_V (1U << 28)
1264 #define CPSR_C (1U << 29)
1265 #define CPSR_Z (1U << 30)
1266 #define CPSR_N (1U << 31)
1267 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1268 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1269 
1270 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1271 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1272     | CPSR_NZCV)
1273 /* Bits writable in user mode.  */
1274 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1275 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1276 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1277 
1278 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1279 #define XPSR_EXCP 0x1ffU
1280 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1281 #define XPSR_IT_2_7 CPSR_IT_2_7
1282 #define XPSR_GE CPSR_GE
1283 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1284 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1285 #define XPSR_IT_0_1 CPSR_IT_0_1
1286 #define XPSR_Q CPSR_Q
1287 #define XPSR_V CPSR_V
1288 #define XPSR_C CPSR_C
1289 #define XPSR_Z CPSR_Z
1290 #define XPSR_N CPSR_N
1291 #define XPSR_NZCV CPSR_NZCV
1292 #define XPSR_IT CPSR_IT
1293 
1294 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1295 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1296 #define TTBCR_PD0    (1U << 4)
1297 #define TTBCR_PD1    (1U << 5)
1298 #define TTBCR_EPD0   (1U << 7)
1299 #define TTBCR_IRGN0  (3U << 8)
1300 #define TTBCR_ORGN0  (3U << 10)
1301 #define TTBCR_SH0    (3U << 12)
1302 #define TTBCR_T1SZ   (3U << 16)
1303 #define TTBCR_A1     (1U << 22)
1304 #define TTBCR_EPD1   (1U << 23)
1305 #define TTBCR_IRGN1  (3U << 24)
1306 #define TTBCR_ORGN1  (3U << 26)
1307 #define TTBCR_SH1    (1U << 28)
1308 #define TTBCR_EAE    (1U << 31)
1309 
1310 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1311  * Only these are valid when in AArch64 mode; in
1312  * AArch32 mode SPSRs are basically CPSR-format.
1313  */
1314 #define PSTATE_SP (1U)
1315 #define PSTATE_M (0xFU)
1316 #define PSTATE_nRW (1U << 4)
1317 #define PSTATE_F (1U << 6)
1318 #define PSTATE_I (1U << 7)
1319 #define PSTATE_A (1U << 8)
1320 #define PSTATE_D (1U << 9)
1321 #define PSTATE_BTYPE (3U << 10)
1322 #define PSTATE_SSBS (1U << 12)
1323 #define PSTATE_IL (1U << 20)
1324 #define PSTATE_SS (1U << 21)
1325 #define PSTATE_PAN (1U << 22)
1326 #define PSTATE_UAO (1U << 23)
1327 #define PSTATE_DIT (1U << 24)
1328 #define PSTATE_TCO (1U << 25)
1329 #define PSTATE_V (1U << 28)
1330 #define PSTATE_C (1U << 29)
1331 #define PSTATE_Z (1U << 30)
1332 #define PSTATE_N (1U << 31)
1333 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1334 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1335 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1336 /* Mode values for AArch64 */
1337 #define PSTATE_MODE_EL3h 13
1338 #define PSTATE_MODE_EL3t 12
1339 #define PSTATE_MODE_EL2h 9
1340 #define PSTATE_MODE_EL2t 8
1341 #define PSTATE_MODE_EL1h 5
1342 #define PSTATE_MODE_EL1t 4
1343 #define PSTATE_MODE_EL0t 0
1344 
1345 /* Write a new value to v7m.exception, thus transitioning into or out
1346  * of Handler mode; this may result in a change of active stack pointer.
1347  */
1348 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1349 
1350 /* Map EL and handler into a PSTATE_MODE.  */
1351 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1352 {
1353     return (el << 2) | handler;
1354 }
1355 
1356 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1357  * interprocessing, so we don't attempt to sync with the cpsr state used by
1358  * the 32 bit decoder.
1359  */
1360 static inline uint32_t pstate_read(CPUARMState *env)
1361 {
1362     int ZF;
1363 
1364     ZF = (env->ZF == 0);
1365     return (env->NF & 0x80000000) | (ZF << 30)
1366         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1367         | env->pstate | env->daif | (env->btype << 10);
1368 }
1369 
1370 static inline void pstate_write(CPUARMState *env, uint32_t val)
1371 {
1372     env->ZF = (~val) & PSTATE_Z;
1373     env->NF = val;
1374     env->CF = (val >> 29) & 1;
1375     env->VF = (val << 3) & 0x80000000;
1376     env->daif = val & PSTATE_DAIF;
1377     env->btype = (val >> 10) & 3;
1378     env->pstate = val & ~CACHED_PSTATE_BITS;
1379 }
1380 
1381 /* Return the current CPSR value.  */
1382 uint32_t cpsr_read(CPUARMState *env);
1383 
1384 typedef enum CPSRWriteType {
1385     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1386     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1387     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1388     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1389 } CPSRWriteType;
1390 
1391 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1392 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1393                 CPSRWriteType write_type);
1394 
1395 /* Return the current xPSR value.  */
1396 static inline uint32_t xpsr_read(CPUARMState *env)
1397 {
1398     int ZF;
1399     ZF = (env->ZF == 0);
1400     return (env->NF & 0x80000000) | (ZF << 30)
1401         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1402         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1403         | ((env->condexec_bits & 0xfc) << 8)
1404         | (env->GE << 16)
1405         | env->v7m.exception;
1406 }
1407 
1408 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1409 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1410 {
1411     if (mask & XPSR_NZCV) {
1412         env->ZF = (~val) & XPSR_Z;
1413         env->NF = val;
1414         env->CF = (val >> 29) & 1;
1415         env->VF = (val << 3) & 0x80000000;
1416     }
1417     if (mask & XPSR_Q) {
1418         env->QF = ((val & XPSR_Q) != 0);
1419     }
1420     if (mask & XPSR_GE) {
1421         env->GE = (val & XPSR_GE) >> 16;
1422     }
1423 #ifndef CONFIG_USER_ONLY
1424     if (mask & XPSR_T) {
1425         env->thumb = ((val & XPSR_T) != 0);
1426     }
1427     if (mask & XPSR_IT_0_1) {
1428         env->condexec_bits &= ~3;
1429         env->condexec_bits |= (val >> 25) & 3;
1430     }
1431     if (mask & XPSR_IT_2_7) {
1432         env->condexec_bits &= 3;
1433         env->condexec_bits |= (val >> 8) & 0xfc;
1434     }
1435     if (mask & XPSR_EXCP) {
1436         /* Note that this only happens on exception exit */
1437         write_v7m_exception(env, val & XPSR_EXCP);
1438     }
1439 #endif
1440 }
1441 
1442 #define HCR_VM        (1ULL << 0)
1443 #define HCR_SWIO      (1ULL << 1)
1444 #define HCR_PTW       (1ULL << 2)
1445 #define HCR_FMO       (1ULL << 3)
1446 #define HCR_IMO       (1ULL << 4)
1447 #define HCR_AMO       (1ULL << 5)
1448 #define HCR_VF        (1ULL << 6)
1449 #define HCR_VI        (1ULL << 7)
1450 #define HCR_VSE       (1ULL << 8)
1451 #define HCR_FB        (1ULL << 9)
1452 #define HCR_BSU_MASK  (3ULL << 10)
1453 #define HCR_DC        (1ULL << 12)
1454 #define HCR_TWI       (1ULL << 13)
1455 #define HCR_TWE       (1ULL << 14)
1456 #define HCR_TID0      (1ULL << 15)
1457 #define HCR_TID1      (1ULL << 16)
1458 #define HCR_TID2      (1ULL << 17)
1459 #define HCR_TID3      (1ULL << 18)
1460 #define HCR_TSC       (1ULL << 19)
1461 #define HCR_TIDCP     (1ULL << 20)
1462 #define HCR_TACR      (1ULL << 21)
1463 #define HCR_TSW       (1ULL << 22)
1464 #define HCR_TPCP      (1ULL << 23)
1465 #define HCR_TPU       (1ULL << 24)
1466 #define HCR_TTLB      (1ULL << 25)
1467 #define HCR_TVM       (1ULL << 26)
1468 #define HCR_TGE       (1ULL << 27)
1469 #define HCR_TDZ       (1ULL << 28)
1470 #define HCR_HCD       (1ULL << 29)
1471 #define HCR_TRVM      (1ULL << 30)
1472 #define HCR_RW        (1ULL << 31)
1473 #define HCR_CD        (1ULL << 32)
1474 #define HCR_ID        (1ULL << 33)
1475 #define HCR_E2H       (1ULL << 34)
1476 #define HCR_TLOR      (1ULL << 35)
1477 #define HCR_TERR      (1ULL << 36)
1478 #define HCR_TEA       (1ULL << 37)
1479 #define HCR_MIOCNCE   (1ULL << 38)
1480 /* RES0 bit 39 */
1481 #define HCR_APK       (1ULL << 40)
1482 #define HCR_API       (1ULL << 41)
1483 #define HCR_NV        (1ULL << 42)
1484 #define HCR_NV1       (1ULL << 43)
1485 #define HCR_AT        (1ULL << 44)
1486 #define HCR_NV2       (1ULL << 45)
1487 #define HCR_FWB       (1ULL << 46)
1488 #define HCR_FIEN      (1ULL << 47)
1489 /* RES0 bit 48 */
1490 #define HCR_TID4      (1ULL << 49)
1491 #define HCR_TICAB     (1ULL << 50)
1492 #define HCR_AMVOFFEN  (1ULL << 51)
1493 #define HCR_TOCU      (1ULL << 52)
1494 #define HCR_ENSCXT    (1ULL << 53)
1495 #define HCR_TTLBIS    (1ULL << 54)
1496 #define HCR_TTLBOS    (1ULL << 55)
1497 #define HCR_ATA       (1ULL << 56)
1498 #define HCR_DCT       (1ULL << 57)
1499 #define HCR_TID5      (1ULL << 58)
1500 #define HCR_TWEDEN    (1ULL << 59)
1501 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1502 
1503 #define HPFAR_NS      (1ULL << 63)
1504 
1505 #define SCR_NS                (1U << 0)
1506 #define SCR_IRQ               (1U << 1)
1507 #define SCR_FIQ               (1U << 2)
1508 #define SCR_EA                (1U << 3)
1509 #define SCR_FW                (1U << 4)
1510 #define SCR_AW                (1U << 5)
1511 #define SCR_NET               (1U << 6)
1512 #define SCR_SMD               (1U << 7)
1513 #define SCR_HCE               (1U << 8)
1514 #define SCR_SIF               (1U << 9)
1515 #define SCR_RW                (1U << 10)
1516 #define SCR_ST                (1U << 11)
1517 #define SCR_TWI               (1U << 12)
1518 #define SCR_TWE               (1U << 13)
1519 #define SCR_TLOR              (1U << 14)
1520 #define SCR_TERR              (1U << 15)
1521 #define SCR_APK               (1U << 16)
1522 #define SCR_API               (1U << 17)
1523 #define SCR_EEL2              (1U << 18)
1524 #define SCR_EASE              (1U << 19)
1525 #define SCR_NMEA              (1U << 20)
1526 #define SCR_FIEN              (1U << 21)
1527 #define SCR_ENSCXT            (1U << 25)
1528 #define SCR_ATA               (1U << 26)
1529 
1530 /* Return the current FPSCR value.  */
1531 uint32_t vfp_get_fpscr(CPUARMState *env);
1532 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1533 
1534 /* FPCR, Floating Point Control Register
1535  * FPSR, Floating Poiht Status Register
1536  *
1537  * For A64 the FPSCR is split into two logically distinct registers,
1538  * FPCR and FPSR. However since they still use non-overlapping bits
1539  * we store the underlying state in fpscr and just mask on read/write.
1540  */
1541 #define FPSR_MASK 0xf800009f
1542 #define FPCR_MASK 0x07ff9f00
1543 
1544 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1545 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1546 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1547 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1548 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1549 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1550 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1551 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1552 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1553 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1554 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1555 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1556 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1557 #define FPCR_C      (1 << 29)   /* FP carry flag */
1558 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1559 #define FPCR_N      (1 << 31)   /* FP negative flag */
1560 
1561 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1562 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1563 
1564 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1565 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1566 
1567 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1568 {
1569     return vfp_get_fpscr(env) & FPSR_MASK;
1570 }
1571 
1572 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1573 {
1574     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1575     vfp_set_fpscr(env, new_fpscr);
1576 }
1577 
1578 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1579 {
1580     return vfp_get_fpscr(env) & FPCR_MASK;
1581 }
1582 
1583 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1584 {
1585     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1586     vfp_set_fpscr(env, new_fpscr);
1587 }
1588 
1589 enum arm_cpu_mode {
1590   ARM_CPU_MODE_USR = 0x10,
1591   ARM_CPU_MODE_FIQ = 0x11,
1592   ARM_CPU_MODE_IRQ = 0x12,
1593   ARM_CPU_MODE_SVC = 0x13,
1594   ARM_CPU_MODE_MON = 0x16,
1595   ARM_CPU_MODE_ABT = 0x17,
1596   ARM_CPU_MODE_HYP = 0x1a,
1597   ARM_CPU_MODE_UND = 0x1b,
1598   ARM_CPU_MODE_SYS = 0x1f
1599 };
1600 
1601 /* VFP system registers.  */
1602 #define ARM_VFP_FPSID   0
1603 #define ARM_VFP_FPSCR   1
1604 #define ARM_VFP_MVFR2   5
1605 #define ARM_VFP_MVFR1   6
1606 #define ARM_VFP_MVFR0   7
1607 #define ARM_VFP_FPEXC   8
1608 #define ARM_VFP_FPINST  9
1609 #define ARM_VFP_FPINST2 10
1610 /* These ones are M-profile only */
1611 #define ARM_VFP_FPSCR_NZCVQC 2
1612 #define ARM_VFP_VPR 12
1613 #define ARM_VFP_P0 13
1614 #define ARM_VFP_FPCXT_NS 14
1615 #define ARM_VFP_FPCXT_S 15
1616 
1617 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1618 #define QEMU_VFP_FPSCR_NZCV 0xffff
1619 
1620 /* iwMMXt coprocessor control registers.  */
1621 #define ARM_IWMMXT_wCID  0
1622 #define ARM_IWMMXT_wCon  1
1623 #define ARM_IWMMXT_wCSSF 2
1624 #define ARM_IWMMXT_wCASF 3
1625 #define ARM_IWMMXT_wCGR0 8
1626 #define ARM_IWMMXT_wCGR1 9
1627 #define ARM_IWMMXT_wCGR2 10
1628 #define ARM_IWMMXT_wCGR3 11
1629 
1630 /* V7M CCR bits */
1631 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1632 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1633 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1634 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1635 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1636 FIELD(V7M_CCR, STKALIGN, 9, 1)
1637 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1638 FIELD(V7M_CCR, DC, 16, 1)
1639 FIELD(V7M_CCR, IC, 17, 1)
1640 FIELD(V7M_CCR, BP, 18, 1)
1641 FIELD(V7M_CCR, LOB, 19, 1)
1642 FIELD(V7M_CCR, TRD, 20, 1)
1643 
1644 /* V7M SCR bits */
1645 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1646 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1647 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1648 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1649 
1650 /* V7M AIRCR bits */
1651 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1652 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1653 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1654 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1655 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1656 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1657 FIELD(V7M_AIRCR, PRIS, 14, 1)
1658 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1659 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1660 
1661 /* V7M CFSR bits for MMFSR */
1662 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1663 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1664 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1665 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1666 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1667 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1668 
1669 /* V7M CFSR bits for BFSR */
1670 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1671 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1672 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1673 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1674 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1675 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1676 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1677 
1678 /* V7M CFSR bits for UFSR */
1679 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1680 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1681 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1682 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1683 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1684 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1685 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1686 
1687 /* V7M CFSR bit masks covering all of the subregister bits */
1688 FIELD(V7M_CFSR, MMFSR, 0, 8)
1689 FIELD(V7M_CFSR, BFSR, 8, 8)
1690 FIELD(V7M_CFSR, UFSR, 16, 16)
1691 
1692 /* V7M HFSR bits */
1693 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1694 FIELD(V7M_HFSR, FORCED, 30, 1)
1695 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1696 
1697 /* V7M DFSR bits */
1698 FIELD(V7M_DFSR, HALTED, 0, 1)
1699 FIELD(V7M_DFSR, BKPT, 1, 1)
1700 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1701 FIELD(V7M_DFSR, VCATCH, 3, 1)
1702 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1703 
1704 /* V7M SFSR bits */
1705 FIELD(V7M_SFSR, INVEP, 0, 1)
1706 FIELD(V7M_SFSR, INVIS, 1, 1)
1707 FIELD(V7M_SFSR, INVER, 2, 1)
1708 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1709 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1710 FIELD(V7M_SFSR, LSPERR, 5, 1)
1711 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1712 FIELD(V7M_SFSR, LSERR, 7, 1)
1713 
1714 /* v7M MPU_CTRL bits */
1715 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1716 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1717 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1718 
1719 /* v7M CLIDR bits */
1720 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1721 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1722 FIELD(V7M_CLIDR, LOC, 24, 3)
1723 FIELD(V7M_CLIDR, LOUU, 27, 3)
1724 FIELD(V7M_CLIDR, ICB, 30, 2)
1725 
1726 FIELD(V7M_CSSELR, IND, 0, 1)
1727 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1728 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1729  * define a mask for this and check that it doesn't permit running off
1730  * the end of the array.
1731  */
1732 FIELD(V7M_CSSELR, INDEX, 0, 4)
1733 
1734 /* v7M FPCCR bits */
1735 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1736 FIELD(V7M_FPCCR, USER, 1, 1)
1737 FIELD(V7M_FPCCR, S, 2, 1)
1738 FIELD(V7M_FPCCR, THREAD, 3, 1)
1739 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1740 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1741 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1742 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1743 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1744 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1745 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1746 FIELD(V7M_FPCCR, RES0, 11, 15)
1747 FIELD(V7M_FPCCR, TS, 26, 1)
1748 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1749 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1750 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1751 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1752 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1753 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1754 #define R_V7M_FPCCR_BANKED_MASK                 \
1755     (R_V7M_FPCCR_LSPACT_MASK |                  \
1756      R_V7M_FPCCR_USER_MASK |                    \
1757      R_V7M_FPCCR_THREAD_MASK |                  \
1758      R_V7M_FPCCR_MMRDY_MASK |                   \
1759      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1760      R_V7M_FPCCR_UFRDY_MASK |                   \
1761      R_V7M_FPCCR_ASPEN_MASK)
1762 
1763 /*
1764  * System register ID fields.
1765  */
1766 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1767 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1768 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1769 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1770 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1771 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1772 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1773 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1774 FIELD(CLIDR_EL1, LOC, 24, 3)
1775 FIELD(CLIDR_EL1, LOUU, 27, 3)
1776 FIELD(CLIDR_EL1, ICB, 30, 3)
1777 
1778 /* When FEAT_CCIDX is implemented */
1779 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1780 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1781 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1782 
1783 /* When FEAT_CCIDX is not implemented */
1784 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1785 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1786 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1787 
1788 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1789 FIELD(CTR_EL0,  L1IP, 14, 2)
1790 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1791 FIELD(CTR_EL0,  ERG, 20, 4)
1792 FIELD(CTR_EL0,  CWG, 24, 4)
1793 FIELD(CTR_EL0,  IDC, 28, 1)
1794 FIELD(CTR_EL0,  DIC, 29, 1)
1795 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1796 
1797 FIELD(MIDR_EL1, REVISION, 0, 4)
1798 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1799 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1800 FIELD(MIDR_EL1, VARIANT, 20, 4)
1801 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1802 
1803 FIELD(ID_ISAR0, SWAP, 0, 4)
1804 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1805 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1806 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1807 FIELD(ID_ISAR0, COPROC, 16, 4)
1808 FIELD(ID_ISAR0, DEBUG, 20, 4)
1809 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1810 
1811 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1812 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1813 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1814 FIELD(ID_ISAR1, EXTEND, 12, 4)
1815 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1816 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1817 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1818 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1819 
1820 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1821 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1822 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1823 FIELD(ID_ISAR2, MULT, 12, 4)
1824 FIELD(ID_ISAR2, MULTS, 16, 4)
1825 FIELD(ID_ISAR2, MULTU, 20, 4)
1826 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1827 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1828 
1829 FIELD(ID_ISAR3, SATURATE, 0, 4)
1830 FIELD(ID_ISAR3, SIMD, 4, 4)
1831 FIELD(ID_ISAR3, SVC, 8, 4)
1832 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1833 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1834 FIELD(ID_ISAR3, T32COPY, 20, 4)
1835 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1836 FIELD(ID_ISAR3, T32EE, 28, 4)
1837 
1838 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1839 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1840 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1841 FIELD(ID_ISAR4, SMC, 12, 4)
1842 FIELD(ID_ISAR4, BARRIER, 16, 4)
1843 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1844 FIELD(ID_ISAR4, PSR_M, 24, 4)
1845 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1846 
1847 FIELD(ID_ISAR5, SEVL, 0, 4)
1848 FIELD(ID_ISAR5, AES, 4, 4)
1849 FIELD(ID_ISAR5, SHA1, 8, 4)
1850 FIELD(ID_ISAR5, SHA2, 12, 4)
1851 FIELD(ID_ISAR5, CRC32, 16, 4)
1852 FIELD(ID_ISAR5, RDM, 24, 4)
1853 FIELD(ID_ISAR5, VCMA, 28, 4)
1854 
1855 FIELD(ID_ISAR6, JSCVT, 0, 4)
1856 FIELD(ID_ISAR6, DP, 4, 4)
1857 FIELD(ID_ISAR6, FHM, 8, 4)
1858 FIELD(ID_ISAR6, SB, 12, 4)
1859 FIELD(ID_ISAR6, SPECRES, 16, 4)
1860 FIELD(ID_ISAR6, BF16, 20, 4)
1861 FIELD(ID_ISAR6, I8MM, 24, 4)
1862 
1863 FIELD(ID_MMFR0, VMSA, 0, 4)
1864 FIELD(ID_MMFR0, PMSA, 4, 4)
1865 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1866 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1867 FIELD(ID_MMFR0, TCM, 16, 4)
1868 FIELD(ID_MMFR0, AUXREG, 20, 4)
1869 FIELD(ID_MMFR0, FCSE, 24, 4)
1870 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1871 
1872 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1873 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1874 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1875 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1876 FIELD(ID_MMFR1, L1HVD, 16, 4)
1877 FIELD(ID_MMFR1, L1UNI, 20, 4)
1878 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1879 FIELD(ID_MMFR1, BPRED, 28, 4)
1880 
1881 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1882 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1883 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1884 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1885 FIELD(ID_MMFR2, UNITLB, 16, 4)
1886 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1887 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1888 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1889 
1890 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1891 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1892 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1893 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1894 FIELD(ID_MMFR3, PAN, 16, 4)
1895 FIELD(ID_MMFR3, COHWALK, 20, 4)
1896 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1897 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1898 
1899 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1900 FIELD(ID_MMFR4, AC2, 4, 4)
1901 FIELD(ID_MMFR4, XNX, 8, 4)
1902 FIELD(ID_MMFR4, CNP, 12, 4)
1903 FIELD(ID_MMFR4, HPDS, 16, 4)
1904 FIELD(ID_MMFR4, LSM, 20, 4)
1905 FIELD(ID_MMFR4, CCIDX, 24, 4)
1906 FIELD(ID_MMFR4, EVT, 28, 4)
1907 
1908 FIELD(ID_MMFR5, ETS, 0, 4)
1909 
1910 FIELD(ID_PFR0, STATE0, 0, 4)
1911 FIELD(ID_PFR0, STATE1, 4, 4)
1912 FIELD(ID_PFR0, STATE2, 8, 4)
1913 FIELD(ID_PFR0, STATE3, 12, 4)
1914 FIELD(ID_PFR0, CSV2, 16, 4)
1915 FIELD(ID_PFR0, AMU, 20, 4)
1916 FIELD(ID_PFR0, DIT, 24, 4)
1917 FIELD(ID_PFR0, RAS, 28, 4)
1918 
1919 FIELD(ID_PFR1, PROGMOD, 0, 4)
1920 FIELD(ID_PFR1, SECURITY, 4, 4)
1921 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1922 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1923 FIELD(ID_PFR1, GENTIMER, 16, 4)
1924 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1925 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1926 FIELD(ID_PFR1, GIC, 28, 4)
1927 
1928 FIELD(ID_PFR2, CSV3, 0, 4)
1929 FIELD(ID_PFR2, SSBS, 4, 4)
1930 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1931 
1932 FIELD(ID_AA64ISAR0, AES, 4, 4)
1933 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1934 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1935 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1936 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1937 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1938 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1939 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1940 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1941 FIELD(ID_AA64ISAR0, DP, 44, 4)
1942 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1943 FIELD(ID_AA64ISAR0, TS, 52, 4)
1944 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1945 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1946 
1947 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1948 FIELD(ID_AA64ISAR1, APA, 4, 4)
1949 FIELD(ID_AA64ISAR1, API, 8, 4)
1950 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1951 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1952 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1953 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1954 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1955 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1956 FIELD(ID_AA64ISAR1, SB, 36, 4)
1957 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1958 FIELD(ID_AA64ISAR1, BF16, 44, 4)
1959 FIELD(ID_AA64ISAR1, DGH, 48, 4)
1960 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
1961 
1962 FIELD(ID_AA64PFR0, EL0, 0, 4)
1963 FIELD(ID_AA64PFR0, EL1, 4, 4)
1964 FIELD(ID_AA64PFR0, EL2, 8, 4)
1965 FIELD(ID_AA64PFR0, EL3, 12, 4)
1966 FIELD(ID_AA64PFR0, FP, 16, 4)
1967 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1968 FIELD(ID_AA64PFR0, GIC, 24, 4)
1969 FIELD(ID_AA64PFR0, RAS, 28, 4)
1970 FIELD(ID_AA64PFR0, SVE, 32, 4)
1971 FIELD(ID_AA64PFR0, SEL2, 36, 4)
1972 FIELD(ID_AA64PFR0, MPAM, 40, 4)
1973 FIELD(ID_AA64PFR0, AMU, 44, 4)
1974 FIELD(ID_AA64PFR0, DIT, 48, 4)
1975 FIELD(ID_AA64PFR0, CSV2, 56, 4)
1976 FIELD(ID_AA64PFR0, CSV3, 60, 4)
1977 
1978 FIELD(ID_AA64PFR1, BT, 0, 4)
1979 FIELD(ID_AA64PFR1, SSBS, 4, 4)
1980 FIELD(ID_AA64PFR1, MTE, 8, 4)
1981 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1982 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
1983 
1984 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1985 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1986 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1987 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1988 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1989 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1990 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1991 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1992 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1993 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1994 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1995 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1996 FIELD(ID_AA64MMFR0, FGT, 56, 4)
1997 FIELD(ID_AA64MMFR0, ECV, 60, 4)
1998 
1999 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2000 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2001 FIELD(ID_AA64MMFR1, VH, 8, 4)
2002 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2003 FIELD(ID_AA64MMFR1, LO, 16, 4)
2004 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2005 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2006 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2007 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2008 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2009 
2010 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2011 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2012 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2013 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2014 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2015 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2016 FIELD(ID_AA64MMFR2, NV, 24, 4)
2017 FIELD(ID_AA64MMFR2, ST, 28, 4)
2018 FIELD(ID_AA64MMFR2, AT, 32, 4)
2019 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2020 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2021 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2022 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2023 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2024 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2025 
2026 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2027 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2028 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2029 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2030 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2031 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2032 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2033 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2034 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2035 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2036 
2037 FIELD(ID_DFR0, COPDBG, 0, 4)
2038 FIELD(ID_DFR0, COPSDBG, 4, 4)
2039 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2040 FIELD(ID_DFR0, COPTRC, 12, 4)
2041 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2042 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2043 FIELD(ID_DFR0, PERFMON, 24, 4)
2044 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2045 
2046 FIELD(ID_DFR1, MTPMU, 0, 4)
2047 
2048 FIELD(DBGDIDR, SE_IMP, 12, 1)
2049 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2050 FIELD(DBGDIDR, VERSION, 16, 4)
2051 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2052 FIELD(DBGDIDR, BRPS, 24, 4)
2053 FIELD(DBGDIDR, WRPS, 28, 4)
2054 
2055 FIELD(MVFR0, SIMDREG, 0, 4)
2056 FIELD(MVFR0, FPSP, 4, 4)
2057 FIELD(MVFR0, FPDP, 8, 4)
2058 FIELD(MVFR0, FPTRAP, 12, 4)
2059 FIELD(MVFR0, FPDIVIDE, 16, 4)
2060 FIELD(MVFR0, FPSQRT, 20, 4)
2061 FIELD(MVFR0, FPSHVEC, 24, 4)
2062 FIELD(MVFR0, FPROUND, 28, 4)
2063 
2064 FIELD(MVFR1, FPFTZ, 0, 4)
2065 FIELD(MVFR1, FPDNAN, 4, 4)
2066 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2067 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2068 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2069 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2070 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2071 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2072 FIELD(MVFR1, FPHP, 24, 4)
2073 FIELD(MVFR1, SIMDFMAC, 28, 4)
2074 
2075 FIELD(MVFR2, SIMDMISC, 0, 4)
2076 FIELD(MVFR2, FPMISC, 4, 4)
2077 
2078 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2079 
2080 /* If adding a feature bit which corresponds to a Linux ELF
2081  * HWCAP bit, remember to update the feature-bit-to-hwcap
2082  * mapping in linux-user/elfload.c:get_elf_hwcap().
2083  */
2084 enum arm_features {
2085     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2086     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2087     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2088     ARM_FEATURE_V6,
2089     ARM_FEATURE_V6K,
2090     ARM_FEATURE_V7,
2091     ARM_FEATURE_THUMB2,
2092     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2093     ARM_FEATURE_NEON,
2094     ARM_FEATURE_M, /* Microcontroller profile.  */
2095     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2096     ARM_FEATURE_THUMB2EE,
2097     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2098     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2099     ARM_FEATURE_V4T,
2100     ARM_FEATURE_V5,
2101     ARM_FEATURE_STRONGARM,
2102     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2103     ARM_FEATURE_GENERIC_TIMER,
2104     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2105     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2106     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2107     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2108     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2109     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2110     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2111     ARM_FEATURE_V8,
2112     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2113     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2114     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2115     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2116     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2117     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2118     ARM_FEATURE_PMU, /* has PMU support */
2119     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2120     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2121     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2122     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2123 };
2124 
2125 static inline int arm_feature(CPUARMState *env, int feature)
2126 {
2127     return (env->features & (1ULL << feature)) != 0;
2128 }
2129 
2130 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2131 
2132 #if !defined(CONFIG_USER_ONLY)
2133 /* Return true if exception levels below EL3 are in secure state,
2134  * or would be following an exception return to that level.
2135  * Unlike arm_is_secure() (which is always a question about the
2136  * _current_ state of the CPU) this doesn't care about the current
2137  * EL or mode.
2138  */
2139 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2140 {
2141     if (arm_feature(env, ARM_FEATURE_EL3)) {
2142         return !(env->cp15.scr_el3 & SCR_NS);
2143     } else {
2144         /* If EL3 is not supported then the secure state is implementation
2145          * defined, in which case QEMU defaults to non-secure.
2146          */
2147         return false;
2148     }
2149 }
2150 
2151 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2152 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2153 {
2154     if (arm_feature(env, ARM_FEATURE_EL3)) {
2155         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2156             /* CPU currently in AArch64 state and EL3 */
2157             return true;
2158         } else if (!is_a64(env) &&
2159                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2160             /* CPU currently in AArch32 state and monitor mode */
2161             return true;
2162         }
2163     }
2164     return false;
2165 }
2166 
2167 /* Return true if the processor is in secure state */
2168 static inline bool arm_is_secure(CPUARMState *env)
2169 {
2170     if (arm_is_el3_or_mon(env)) {
2171         return true;
2172     }
2173     return arm_is_secure_below_el3(env);
2174 }
2175 
2176 /*
2177  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2178  * This corresponds to the pseudocode EL2Enabled()
2179  */
2180 static inline bool arm_is_el2_enabled(CPUARMState *env)
2181 {
2182     if (arm_feature(env, ARM_FEATURE_EL2)) {
2183         if (arm_is_secure_below_el3(env)) {
2184             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2185         }
2186         return true;
2187     }
2188     return false;
2189 }
2190 
2191 #else
2192 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2193 {
2194     return false;
2195 }
2196 
2197 static inline bool arm_is_secure(CPUARMState *env)
2198 {
2199     return false;
2200 }
2201 
2202 static inline bool arm_is_el2_enabled(CPUARMState *env)
2203 {
2204     return false;
2205 }
2206 #endif
2207 
2208 /**
2209  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2210  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2211  * "for all purposes other than a direct read or write access of HCR_EL2."
2212  * Not included here is HCR_RW.
2213  */
2214 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2215 
2216 /* Return true if the specified exception level is running in AArch64 state. */
2217 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2218 {
2219     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2220      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2221      */
2222     assert(el >= 1 && el <= 3);
2223     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2224 
2225     /* The highest exception level is always at the maximum supported
2226      * register width, and then lower levels have a register width controlled
2227      * by bits in the SCR or HCR registers.
2228      */
2229     if (el == 3) {
2230         return aa64;
2231     }
2232 
2233     if (arm_feature(env, ARM_FEATURE_EL3) &&
2234         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2235         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2236     }
2237 
2238     if (el == 2) {
2239         return aa64;
2240     }
2241 
2242     if (arm_is_el2_enabled(env)) {
2243         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2244     }
2245 
2246     return aa64;
2247 }
2248 
2249 /* Function for determing whether guest cp register reads and writes should
2250  * access the secure or non-secure bank of a cp register.  When EL3 is
2251  * operating in AArch32 state, the NS-bit determines whether the secure
2252  * instance of a cp register should be used. When EL3 is AArch64 (or if
2253  * it doesn't exist at all) then there is no register banking, and all
2254  * accesses are to the non-secure version.
2255  */
2256 static inline bool access_secure_reg(CPUARMState *env)
2257 {
2258     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2259                 !arm_el_is_aa64(env, 3) &&
2260                 !(env->cp15.scr_el3 & SCR_NS));
2261 
2262     return ret;
2263 }
2264 
2265 /* Macros for accessing a specified CP register bank */
2266 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2267     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2268 
2269 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2270     do {                                                \
2271         if (_secure) {                                   \
2272             (_env)->cp15._regname##_s = (_val);            \
2273         } else {                                        \
2274             (_env)->cp15._regname##_ns = (_val);           \
2275         }                                               \
2276     } while (0)
2277 
2278 /* Macros for automatically accessing a specific CP register bank depending on
2279  * the current secure state of the system.  These macros are not intended for
2280  * supporting instruction translation reads/writes as these are dependent
2281  * solely on the SCR.NS bit and not the mode.
2282  */
2283 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2284     A32_BANKED_REG_GET((_env), _regname,                \
2285                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2286 
2287 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2288     A32_BANKED_REG_SET((_env), _regname,                                    \
2289                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2290                        (_val))
2291 
2292 void arm_cpu_list(void);
2293 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2294                                  uint32_t cur_el, bool secure);
2295 
2296 /* Interface between CPU and Interrupt controller.  */
2297 #ifndef CONFIG_USER_ONLY
2298 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2299 #else
2300 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2301 {
2302     return true;
2303 }
2304 #endif
2305 /**
2306  * armv7m_nvic_set_pending: mark the specified exception as pending
2307  * @opaque: the NVIC
2308  * @irq: the exception number to mark pending
2309  * @secure: false for non-banked exceptions or for the nonsecure
2310  * version of a banked exception, true for the secure version of a banked
2311  * exception.
2312  *
2313  * Marks the specified exception as pending. Note that we will assert()
2314  * if @secure is true and @irq does not specify one of the fixed set
2315  * of architecturally banked exceptions.
2316  */
2317 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2318 /**
2319  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2320  * @opaque: the NVIC
2321  * @irq: the exception number to mark pending
2322  * @secure: false for non-banked exceptions or for the nonsecure
2323  * version of a banked exception, true for the secure version of a banked
2324  * exception.
2325  *
2326  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2327  * exceptions (exceptions generated in the course of trying to take
2328  * a different exception).
2329  */
2330 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2331 /**
2332  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2333  * @opaque: the NVIC
2334  * @irq: the exception number to mark pending
2335  * @secure: false for non-banked exceptions or for the nonsecure
2336  * version of a banked exception, true for the secure version of a banked
2337  * exception.
2338  *
2339  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2340  * generated in the course of lazy stacking of FP registers.
2341  */
2342 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2343 /**
2344  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2345  *    exception, and whether it targets Secure state
2346  * @opaque: the NVIC
2347  * @pirq: set to pending exception number
2348  * @ptargets_secure: set to whether pending exception targets Secure
2349  *
2350  * This function writes the number of the highest priority pending
2351  * exception (the one which would be made active by
2352  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2353  * to true if the current highest priority pending exception should
2354  * be taken to Secure state, false for NS.
2355  */
2356 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2357                                       bool *ptargets_secure);
2358 /**
2359  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2360  * @opaque: the NVIC
2361  *
2362  * Move the current highest priority pending exception from the pending
2363  * state to the active state, and update v7m.exception to indicate that
2364  * it is the exception currently being handled.
2365  */
2366 void armv7m_nvic_acknowledge_irq(void *opaque);
2367 /**
2368  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2369  * @opaque: the NVIC
2370  * @irq: the exception number to complete
2371  * @secure: true if this exception was secure
2372  *
2373  * Returns: -1 if the irq was not active
2374  *           1 if completing this irq brought us back to base (no active irqs)
2375  *           0 if there is still an irq active after this one was completed
2376  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2377  */
2378 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2379 /**
2380  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2381  * @opaque: the NVIC
2382  * @irq: the exception number to mark pending
2383  * @secure: false for non-banked exceptions or for the nonsecure
2384  * version of a banked exception, true for the secure version of a banked
2385  * exception.
2386  *
2387  * Return whether an exception is "ready", i.e. whether the exception is
2388  * enabled and is configured at a priority which would allow it to
2389  * interrupt the current execution priority. This controls whether the
2390  * RDY bit for it in the FPCCR is set.
2391  */
2392 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2393 /**
2394  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2395  * @opaque: the NVIC
2396  *
2397  * Returns: the raw execution priority as defined by the v8M architecture.
2398  * This is the execution priority minus the effects of AIRCR.PRIS,
2399  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2400  * (v8M ARM ARM I_PKLD.)
2401  */
2402 int armv7m_nvic_raw_execution_priority(void *opaque);
2403 /**
2404  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2405  * priority is negative for the specified security state.
2406  * @opaque: the NVIC
2407  * @secure: the security state to test
2408  * This corresponds to the pseudocode IsReqExecPriNeg().
2409  */
2410 #ifndef CONFIG_USER_ONLY
2411 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2412 #else
2413 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2414 {
2415     return false;
2416 }
2417 #endif
2418 
2419 /* Interface for defining coprocessor registers.
2420  * Registers are defined in tables of arm_cp_reginfo structs
2421  * which are passed to define_arm_cp_regs().
2422  */
2423 
2424 /* When looking up a coprocessor register we look for it
2425  * via an integer which encodes all of:
2426  *  coprocessor number
2427  *  Crn, Crm, opc1, opc2 fields
2428  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2429  *    or via MRRC/MCRR?)
2430  *  non-secure/secure bank (AArch32 only)
2431  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2432  * (In this case crn and opc2 should be zero.)
2433  * For AArch64, there is no 32/64 bit size distinction;
2434  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2435  * and 4 bit CRn and CRm. The encoding patterns are chosen
2436  * to be easy to convert to and from the KVM encodings, and also
2437  * so that the hashtable can contain both AArch32 and AArch64
2438  * registers (to allow for interprocessing where we might run
2439  * 32 bit code on a 64 bit core).
2440  */
2441 /* This bit is private to our hashtable cpreg; in KVM register
2442  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2443  * in the upper bits of the 64 bit ID.
2444  */
2445 #define CP_REG_AA64_SHIFT 28
2446 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2447 
2448 /* To enable banking of coprocessor registers depending on ns-bit we
2449  * add a bit to distinguish between secure and non-secure cpregs in the
2450  * hashtable.
2451  */
2452 #define CP_REG_NS_SHIFT 29
2453 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2454 
2455 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2456     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2457      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2458 
2459 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2460     (CP_REG_AA64_MASK |                                 \
2461      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2462      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2463      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2464      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2465      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2466      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2467 
2468 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2469  * version used as a key for the coprocessor register hashtable
2470  */
2471 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2472 {
2473     uint32_t cpregid = kvmid;
2474     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2475         cpregid |= CP_REG_AA64_MASK;
2476     } else {
2477         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2478             cpregid |= (1 << 15);
2479         }
2480 
2481         /* KVM is always non-secure so add the NS flag on AArch32 register
2482          * entries.
2483          */
2484          cpregid |= 1 << CP_REG_NS_SHIFT;
2485     }
2486     return cpregid;
2487 }
2488 
2489 /* Convert a truncated 32 bit hashtable key into the full
2490  * 64 bit KVM register ID.
2491  */
2492 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2493 {
2494     uint64_t kvmid;
2495 
2496     if (cpregid & CP_REG_AA64_MASK) {
2497         kvmid = cpregid & ~CP_REG_AA64_MASK;
2498         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2499     } else {
2500         kvmid = cpregid & ~(1 << 15);
2501         if (cpregid & (1 << 15)) {
2502             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2503         } else {
2504             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2505         }
2506     }
2507     return kvmid;
2508 }
2509 
2510 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2511  * special-behaviour cp reg and bits [11..8] indicate what behaviour
2512  * it has. Otherwise it is a simple cp reg, where CONST indicates that
2513  * TCG can assume the value to be constant (ie load at translate time)
2514  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2515  * indicates that the TB should not be ended after a write to this register
2516  * (the default is that the TB ends after cp writes). OVERRIDE permits
2517  * a register definition to override a previous definition for the
2518  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2519  * old must have the OVERRIDE bit set.
2520  * ALIAS indicates that this register is an alias view of some underlying
2521  * state which is also visible via another register, and that the other
2522  * register is handling migration and reset; registers marked ALIAS will not be
2523  * migrated but may have their state set by syncing of register state from KVM.
2524  * NO_RAW indicates that this register has no underlying state and does not
2525  * support raw access for state saving/loading; it will not be used for either
2526  * migration or KVM state synchronization. (Typically this is for "registers"
2527  * which are actually used as instructions for cache maintenance and so on.)
2528  * IO indicates that this register does I/O and therefore its accesses
2529  * need to be marked with gen_io_start() and also end the TB. In particular,
2530  * registers which implement clocks or timers require this.
2531  * RAISES_EXC is for when the read or write hook might raise an exception;
2532  * the generated code will synchronize the CPU state before calling the hook
2533  * so that it is safe for the hook to call raise_exception().
2534  * NEWEL is for writes to registers that might change the exception
2535  * level - typically on older ARM chips. For those cases we need to
2536  * re-read the new el when recomputing the translation flags.
2537  */
2538 #define ARM_CP_SPECIAL           0x0001
2539 #define ARM_CP_CONST             0x0002
2540 #define ARM_CP_64BIT             0x0004
2541 #define ARM_CP_SUPPRESS_TB_END   0x0008
2542 #define ARM_CP_OVERRIDE          0x0010
2543 #define ARM_CP_ALIAS             0x0020
2544 #define ARM_CP_IO                0x0040
2545 #define ARM_CP_NO_RAW            0x0080
2546 #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2547 #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2548 #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2549 #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2550 #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2551 #define ARM_CP_DC_GVA            (ARM_CP_SPECIAL | 0x0600)
2552 #define ARM_CP_DC_GZVA           (ARM_CP_SPECIAL | 0x0700)
2553 #define ARM_LAST_SPECIAL         ARM_CP_DC_GZVA
2554 #define ARM_CP_FPU               0x1000
2555 #define ARM_CP_SVE               0x2000
2556 #define ARM_CP_NO_GDB            0x4000
2557 #define ARM_CP_RAISES_EXC        0x8000
2558 #define ARM_CP_NEWEL             0x10000
2559 /* Used only as a terminator for ARMCPRegInfo lists */
2560 #define ARM_CP_SENTINEL          0xfffff
2561 /* Mask of only the flag bits in a type field */
2562 #define ARM_CP_FLAG_MASK         0x1f0ff
2563 
2564 /* Valid values for ARMCPRegInfo state field, indicating which of
2565  * the AArch32 and AArch64 execution states this register is visible in.
2566  * If the reginfo doesn't explicitly specify then it is AArch32 only.
2567  * If the reginfo is declared to be visible in both states then a second
2568  * reginfo is synthesised for the AArch32 view of the AArch64 register,
2569  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2570  * Note that we rely on the values of these enums as we iterate through
2571  * the various states in some places.
2572  */
2573 enum {
2574     ARM_CP_STATE_AA32 = 0,
2575     ARM_CP_STATE_AA64 = 1,
2576     ARM_CP_STATE_BOTH = 2,
2577 };
2578 
2579 /* ARM CP register secure state flags.  These flags identify security state
2580  * attributes for a given CP register entry.
2581  * The existence of both or neither secure and non-secure flags indicates that
2582  * the register has both a secure and non-secure hash entry.  A single one of
2583  * these flags causes the register to only be hashed for the specified
2584  * security state.
2585  * Although definitions may have any combination of the S/NS bits, each
2586  * registered entry will only have one to identify whether the entry is secure
2587  * or non-secure.
2588  */
2589 enum {
2590     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2591     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2592 };
2593 
2594 /* Return true if cptype is a valid type field. This is used to try to
2595  * catch errors where the sentinel has been accidentally left off the end
2596  * of a list of registers.
2597  */
2598 static inline bool cptype_valid(int cptype)
2599 {
2600     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2601         || ((cptype & ARM_CP_SPECIAL) &&
2602             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2603 }
2604 
2605 /* Access rights:
2606  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2607  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2608  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2609  * (ie any of the privileged modes in Secure state, or Monitor mode).
2610  * If a register is accessible in one privilege level it's always accessible
2611  * in higher privilege levels too. Since "Secure PL1" also follows this rule
2612  * (ie anything visible in PL2 is visible in S-PL1, some things are only
2613  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2614  * terminology a little and call this PL3.
2615  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2616  * with the ELx exception levels.
2617  *
2618  * If access permissions for a register are more complex than can be
2619  * described with these bits, then use a laxer set of restrictions, and
2620  * do the more restrictive/complex check inside a helper function.
2621  */
2622 #define PL3_R 0x80
2623 #define PL3_W 0x40
2624 #define PL2_R (0x20 | PL3_R)
2625 #define PL2_W (0x10 | PL3_W)
2626 #define PL1_R (0x08 | PL2_R)
2627 #define PL1_W (0x04 | PL2_W)
2628 #define PL0_R (0x02 | PL1_R)
2629 #define PL0_W (0x01 | PL1_W)
2630 
2631 /*
2632  * For user-mode some registers are accessible to EL0 via a kernel
2633  * trap-and-emulate ABI. In this case we define the read permissions
2634  * as actually being PL0_R. However some bits of any given register
2635  * may still be masked.
2636  */
2637 #ifdef CONFIG_USER_ONLY
2638 #define PL0U_R PL0_R
2639 #else
2640 #define PL0U_R PL1_R
2641 #endif
2642 
2643 #define PL3_RW (PL3_R | PL3_W)
2644 #define PL2_RW (PL2_R | PL2_W)
2645 #define PL1_RW (PL1_R | PL1_W)
2646 #define PL0_RW (PL0_R | PL0_W)
2647 
2648 /* Return the highest implemented Exception Level */
2649 static inline int arm_highest_el(CPUARMState *env)
2650 {
2651     if (arm_feature(env, ARM_FEATURE_EL3)) {
2652         return 3;
2653     }
2654     if (arm_feature(env, ARM_FEATURE_EL2)) {
2655         return 2;
2656     }
2657     return 1;
2658 }
2659 
2660 /* Return true if a v7M CPU is in Handler mode */
2661 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2662 {
2663     return env->v7m.exception != 0;
2664 }
2665 
2666 /* Return the current Exception Level (as per ARMv8; note that this differs
2667  * from the ARMv7 Privilege Level).
2668  */
2669 static inline int arm_current_el(CPUARMState *env)
2670 {
2671     if (arm_feature(env, ARM_FEATURE_M)) {
2672         return arm_v7m_is_handler_mode(env) ||
2673             !(env->v7m.control[env->v7m.secure] & 1);
2674     }
2675 
2676     if (is_a64(env)) {
2677         return extract32(env->pstate, 2, 2);
2678     }
2679 
2680     switch (env->uncached_cpsr & 0x1f) {
2681     case ARM_CPU_MODE_USR:
2682         return 0;
2683     case ARM_CPU_MODE_HYP:
2684         return 2;
2685     case ARM_CPU_MODE_MON:
2686         return 3;
2687     default:
2688         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2689             /* If EL3 is 32-bit then all secure privileged modes run in
2690              * EL3
2691              */
2692             return 3;
2693         }
2694 
2695         return 1;
2696     }
2697 }
2698 
2699 typedef struct ARMCPRegInfo ARMCPRegInfo;
2700 
2701 typedef enum CPAccessResult {
2702     /* Access is permitted */
2703     CP_ACCESS_OK = 0,
2704     /* Access fails due to a configurable trap or enable which would
2705      * result in a categorized exception syndrome giving information about
2706      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2707      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2708      * PL1 if in EL0, otherwise to the current EL).
2709      */
2710     CP_ACCESS_TRAP = 1,
2711     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2712      * Note that this is not a catch-all case -- the set of cases which may
2713      * result in this failure is specifically defined by the architecture.
2714      */
2715     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2716     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2717     CP_ACCESS_TRAP_EL2 = 3,
2718     CP_ACCESS_TRAP_EL3 = 4,
2719     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2720     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2721     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2722     /* Access fails and results in an exception syndrome for an FP access,
2723      * trapped directly to EL2 or EL3
2724      */
2725     CP_ACCESS_TRAP_FP_EL2 = 7,
2726     CP_ACCESS_TRAP_FP_EL3 = 8,
2727 } CPAccessResult;
2728 
2729 /* Access functions for coprocessor registers. These cannot fail and
2730  * may not raise exceptions.
2731  */
2732 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2733 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2734                        uint64_t value);
2735 /* Access permission check functions for coprocessor registers. */
2736 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2737                                   const ARMCPRegInfo *opaque,
2738                                   bool isread);
2739 /* Hook function for register reset */
2740 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2741 
2742 #define CP_ANY 0xff
2743 
2744 /* Definition of an ARM coprocessor register */
2745 struct ARMCPRegInfo {
2746     /* Name of register (useful mainly for debugging, need not be unique) */
2747     const char *name;
2748     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2749      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2750      * 'wildcard' field -- any value of that field in the MRC/MCR insn
2751      * will be decoded to this register. The register read and write
2752      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2753      * used by the program, so it is possible to register a wildcard and
2754      * then behave differently on read/write if necessary.
2755      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2756      * must both be zero.
2757      * For AArch64-visible registers, opc0 is also used.
2758      * Since there are no "coprocessors" in AArch64, cp is purely used as a
2759      * way to distinguish (for KVM's benefit) guest-visible system registers
2760      * from demuxed ones provided to preserve the "no side effects on
2761      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2762      * visible (to match KVM's encoding); cp==0 will be converted to
2763      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2764      */
2765     uint8_t cp;
2766     uint8_t crn;
2767     uint8_t crm;
2768     uint8_t opc0;
2769     uint8_t opc1;
2770     uint8_t opc2;
2771     /* Execution state in which this register is visible: ARM_CP_STATE_* */
2772     int state;
2773     /* Register type: ARM_CP_* bits/values */
2774     int type;
2775     /* Access rights: PL*_[RW] */
2776     int access;
2777     /* Security state: ARM_CP_SECSTATE_* bits/values */
2778     int secure;
2779     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2780      * this register was defined: can be used to hand data through to the
2781      * register read/write functions, since they are passed the ARMCPRegInfo*.
2782      */
2783     void *opaque;
2784     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2785      * fieldoffset is non-zero, the reset value of the register.
2786      */
2787     uint64_t resetvalue;
2788     /* Offset of the field in CPUARMState for this register.
2789      *
2790      * This is not needed if either:
2791      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2792      *  2. both readfn and writefn are specified
2793      */
2794     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2795 
2796     /* Offsets of the secure and non-secure fields in CPUARMState for the
2797      * register if it is banked.  These fields are only used during the static
2798      * registration of a register.  During hashing the bank associated
2799      * with a given security state is copied to fieldoffset which is used from
2800      * there on out.
2801      *
2802      * It is expected that register definitions use either fieldoffset or
2803      * bank_fieldoffsets in the definition but not both.  It is also expected
2804      * that both bank offsets are set when defining a banked register.  This
2805      * use indicates that a register is banked.
2806      */
2807     ptrdiff_t bank_fieldoffsets[2];
2808 
2809     /* Function for making any access checks for this register in addition to
2810      * those specified by the 'access' permissions bits. If NULL, no extra
2811      * checks required. The access check is performed at runtime, not at
2812      * translate time.
2813      */
2814     CPAccessFn *accessfn;
2815     /* Function for handling reads of this register. If NULL, then reads
2816      * will be done by loading from the offset into CPUARMState specified
2817      * by fieldoffset.
2818      */
2819     CPReadFn *readfn;
2820     /* Function for handling writes of this register. If NULL, then writes
2821      * will be done by writing to the offset into CPUARMState specified
2822      * by fieldoffset.
2823      */
2824     CPWriteFn *writefn;
2825     /* Function for doing a "raw" read; used when we need to copy
2826      * coprocessor state to the kernel for KVM or out for
2827      * migration. This only needs to be provided if there is also a
2828      * readfn and it has side effects (for instance clear-on-read bits).
2829      */
2830     CPReadFn *raw_readfn;
2831     /* Function for doing a "raw" write; used when we need to copy KVM
2832      * kernel coprocessor state into userspace, or for inbound
2833      * migration. This only needs to be provided if there is also a
2834      * writefn and it masks out "unwritable" bits or has write-one-to-clear
2835      * or similar behaviour.
2836      */
2837     CPWriteFn *raw_writefn;
2838     /* Function for resetting the register. If NULL, then reset will be done
2839      * by writing resetvalue to the field specified in fieldoffset. If
2840      * fieldoffset is 0 then no reset will be done.
2841      */
2842     CPResetFn *resetfn;
2843 
2844     /*
2845      * "Original" writefn and readfn.
2846      * For ARMv8.1-VHE register aliases, we overwrite the read/write
2847      * accessor functions of various EL1/EL0 to perform the runtime
2848      * check for which sysreg should actually be modified, and then
2849      * forwards the operation.  Before overwriting the accessors,
2850      * the original function is copied here, so that accesses that
2851      * really do go to the EL1/EL0 version proceed normally.
2852      * (The corresponding EL2 register is linked via opaque.)
2853      */
2854     CPReadFn *orig_readfn;
2855     CPWriteFn *orig_writefn;
2856 };
2857 
2858 /* Macros which are lvalues for the field in CPUARMState for the
2859  * ARMCPRegInfo *ri.
2860  */
2861 #define CPREG_FIELD32(env, ri) \
2862     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2863 #define CPREG_FIELD64(env, ri) \
2864     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2865 
2866 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2867 
2868 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2869                                     const ARMCPRegInfo *regs, void *opaque);
2870 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2871                                        const ARMCPRegInfo *regs, void *opaque);
2872 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2873 {
2874     define_arm_cp_regs_with_opaque(cpu, regs, 0);
2875 }
2876 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2877 {
2878     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2879 }
2880 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2881 
2882 /*
2883  * Definition of an ARM co-processor register as viewed from
2884  * userspace. This is used for presenting sanitised versions of
2885  * registers to userspace when emulating the Linux AArch64 CPU
2886  * ID/feature ABI (advertised as HWCAP_CPUID).
2887  */
2888 typedef struct ARMCPRegUserSpaceInfo {
2889     /* Name of register */
2890     const char *name;
2891 
2892     /* Is the name actually a glob pattern */
2893     bool is_glob;
2894 
2895     /* Only some bits are exported to user space */
2896     uint64_t exported_bits;
2897 
2898     /* Fixed bits are applied after the mask */
2899     uint64_t fixed_bits;
2900 } ARMCPRegUserSpaceInfo;
2901 
2902 #define REGUSERINFO_SENTINEL { .name = NULL }
2903 
2904 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2905 
2906 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2907 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2908                          uint64_t value);
2909 /* CPReadFn that can be used for read-as-zero behaviour */
2910 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2911 
2912 /* CPResetFn that does nothing, for use if no reset is required even
2913  * if fieldoffset is non zero.
2914  */
2915 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2916 
2917 /* Return true if this reginfo struct's field in the cpu state struct
2918  * is 64 bits wide.
2919  */
2920 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2921 {
2922     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2923 }
2924 
2925 static inline bool cp_access_ok(int current_el,
2926                                 const ARMCPRegInfo *ri, int isread)
2927 {
2928     return (ri->access >> ((current_el * 2) + isread)) & 1;
2929 }
2930 
2931 /* Raw read of a coprocessor register (as needed for migration, etc) */
2932 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2933 
2934 /**
2935  * write_list_to_cpustate
2936  * @cpu: ARMCPU
2937  *
2938  * For each register listed in the ARMCPU cpreg_indexes list, write
2939  * its value from the cpreg_values list into the ARMCPUState structure.
2940  * This updates TCG's working data structures from KVM data or
2941  * from incoming migration state.
2942  *
2943  * Returns: true if all register values were updated correctly,
2944  * false if some register was unknown or could not be written.
2945  * Note that we do not stop early on failure -- we will attempt
2946  * writing all registers in the list.
2947  */
2948 bool write_list_to_cpustate(ARMCPU *cpu);
2949 
2950 /**
2951  * write_cpustate_to_list:
2952  * @cpu: ARMCPU
2953  * @kvm_sync: true if this is for syncing back to KVM
2954  *
2955  * For each register listed in the ARMCPU cpreg_indexes list, write
2956  * its value from the ARMCPUState structure into the cpreg_values list.
2957  * This is used to copy info from TCG's working data structures into
2958  * KVM or for outbound migration.
2959  *
2960  * @kvm_sync is true if we are doing this in order to sync the
2961  * register state back to KVM. In this case we will only update
2962  * values in the list if the previous list->cpustate sync actually
2963  * successfully wrote the CPU state. Otherwise we will keep the value
2964  * that is in the list.
2965  *
2966  * Returns: true if all register values were read correctly,
2967  * false if some register was unknown or could not be read.
2968  * Note that we do not stop early on failure -- we will attempt
2969  * reading all registers in the list.
2970  */
2971 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2972 
2973 #define ARM_CPUID_TI915T      0x54029152
2974 #define ARM_CPUID_TI925T      0x54029252
2975 
2976 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2977 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2978 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2979 
2980 #define cpu_signal_handler cpu_arm_signal_handler
2981 #define cpu_list arm_cpu_list
2982 
2983 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2984  *
2985  * If EL3 is 64-bit:
2986  *  + NonSecure EL1 & 0 stage 1
2987  *  + NonSecure EL1 & 0 stage 2
2988  *  + NonSecure EL2
2989  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2990  *  + Secure EL1 & 0
2991  *  + Secure EL3
2992  * If EL3 is 32-bit:
2993  *  + NonSecure PL1 & 0 stage 1
2994  *  + NonSecure PL1 & 0 stage 2
2995  *  + NonSecure PL2
2996  *  + Secure PL0
2997  *  + Secure PL1
2998  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2999  *
3000  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
3001  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
3002  *     because they may differ in access permissions even if the VA->PA map is
3003  *     the same
3004  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
3005  *     translation, which means that we have one mmu_idx that deals with two
3006  *     concatenated translation regimes [this sort of combined s1+2 TLB is
3007  *     architecturally permitted]
3008  *  3. we don't need to allocate an mmu_idx to translations that we won't be
3009  *     handling via the TLB. The only way to do a stage 1 translation without
3010  *     the immediate stage 2 translation is via the ATS or AT system insns,
3011  *     which can be slow-pathed and always do a page table walk.
3012  *     The only use of stage 2 translations is either as part of an s1+2
3013  *     lookup or when loading the descriptors during a stage 1 page table walk,
3014  *     and in both those cases we don't use the TLB.
3015  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
3016  *     translation regimes, because they map reasonably well to each other
3017  *     and they can't both be active at the same time.
3018  *  5. we want to be able to use the TLB for accesses done as part of a
3019  *     stage1 page table walk, rather than having to walk the stage2 page
3020  *     table over and over.
3021  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
3022  *     Never (PAN) bit within PSTATE.
3023  *
3024  * This gives us the following list of cases:
3025  *
3026  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
3027  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
3028  * NS EL1 EL1&0 stage 1+2 +PAN
3029  * NS EL0 EL2&0
3030  * NS EL2 EL2&0
3031  * NS EL2 EL2&0 +PAN
3032  * NS EL2 (aka NS PL2)
3033  * S EL0 EL1&0 (aka S PL0)
3034  * S EL1 EL1&0 (not used if EL3 is 32 bit)
3035  * S EL1 EL1&0 +PAN
3036  * S EL3 (aka S PL1)
3037  *
3038  * for a total of 11 different mmu_idx.
3039  *
3040  * R profile CPUs have an MPU, but can use the same set of MMU indexes
3041  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
3042  * NS EL2 if we ever model a Cortex-R52).
3043  *
3044  * M profile CPUs are rather different as they do not have a true MMU.
3045  * They have the following different MMU indexes:
3046  *  User
3047  *  Privileged
3048  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
3049  *  Privileged, execution priority negative (ditto)
3050  * If the CPU supports the v8M Security Extension then there are also:
3051  *  Secure User
3052  *  Secure Privileged
3053  *  Secure User, execution priority negative
3054  *  Secure Privileged, execution priority negative
3055  *
3056  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
3057  * are not quite the same -- different CPU types (most notably M profile
3058  * vs A/R profile) would like to use MMU indexes with different semantics,
3059  * but since we don't ever need to use all of those in a single CPU we
3060  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
3061  * modes + total number of M profile MMU modes". The lower bits of
3062  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
3063  * the same for any particular CPU.
3064  * Variables of type ARMMUIdx are always full values, and the core
3065  * index values are in variables of type 'int'.
3066  *
3067  * Our enumeration includes at the end some entries which are not "true"
3068  * mmu_idx values in that they don't have corresponding TLBs and are only
3069  * valid for doing slow path page table walks.
3070  *
3071  * The constant names here are patterned after the general style of the names
3072  * of the AT/ATS operations.
3073  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
3074  * For M profile we arrange them to have a bit for priv, a bit for negpri
3075  * and a bit for secure.
3076  */
3077 #define ARM_MMU_IDX_A     0x10  /* A profile */
3078 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
3079 #define ARM_MMU_IDX_M     0x40  /* M profile */
3080 
3081 /* Meanings of the bits for A profile mmu idx values */
3082 #define ARM_MMU_IDX_A_NS     0x8
3083 
3084 /* Meanings of the bits for M profile mmu idx values */
3085 #define ARM_MMU_IDX_M_PRIV   0x1
3086 #define ARM_MMU_IDX_M_NEGPRI 0x2
3087 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
3088 
3089 #define ARM_MMU_IDX_TYPE_MASK \
3090     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
3091 #define ARM_MMU_IDX_COREIDX_MASK 0xf
3092 
3093 typedef enum ARMMMUIdx {
3094     /*
3095      * A-profile.
3096      */
3097     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
3098     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
3099     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
3100     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
3101     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
3102     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
3103     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
3104     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
3105 
3106     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
3107     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
3108     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
3109     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
3110     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
3111     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
3112     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
3113 
3114     /*
3115      * These are not allocated TLBs and are used only for AT system
3116      * instructions or for the first stage of an S12 page table walk.
3117      */
3118     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3119     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3120     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3121     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
3122     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
3123     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
3124     /*
3125      * Not allocated a TLB: used only for second stage of an S12 page
3126      * table walk, or for descriptor loads during first stage of an S1
3127      * page table walk. Note that if we ever want to have a TLB for this
3128      * then various TLB flush insns which currently are no-ops or flush
3129      * only stage 1 MMU indexes will need to change to flush stage 2.
3130      */
3131     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
3132     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
3133 
3134     /*
3135      * M-profile.
3136      */
3137     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3138     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3139     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3140     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3141     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3142     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3143     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3144     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3145 } ARMMMUIdx;
3146 
3147 /*
3148  * Bit macros for the core-mmu-index values for each index,
3149  * for use when calling tlb_flush_by_mmuidx() and friends.
3150  */
3151 #define TO_CORE_BIT(NAME) \
3152     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3153 
3154 typedef enum ARMMMUIdxBit {
3155     TO_CORE_BIT(E10_0),
3156     TO_CORE_BIT(E20_0),
3157     TO_CORE_BIT(E10_1),
3158     TO_CORE_BIT(E10_1_PAN),
3159     TO_CORE_BIT(E2),
3160     TO_CORE_BIT(E20_2),
3161     TO_CORE_BIT(E20_2_PAN),
3162     TO_CORE_BIT(SE10_0),
3163     TO_CORE_BIT(SE20_0),
3164     TO_CORE_BIT(SE10_1),
3165     TO_CORE_BIT(SE20_2),
3166     TO_CORE_BIT(SE10_1_PAN),
3167     TO_CORE_BIT(SE20_2_PAN),
3168     TO_CORE_BIT(SE2),
3169     TO_CORE_BIT(SE3),
3170 
3171     TO_CORE_BIT(MUser),
3172     TO_CORE_BIT(MPriv),
3173     TO_CORE_BIT(MUserNegPri),
3174     TO_CORE_BIT(MPrivNegPri),
3175     TO_CORE_BIT(MSUser),
3176     TO_CORE_BIT(MSPriv),
3177     TO_CORE_BIT(MSUserNegPri),
3178     TO_CORE_BIT(MSPrivNegPri),
3179 } ARMMMUIdxBit;
3180 
3181 #undef TO_CORE_BIT
3182 
3183 #define MMU_USER_IDX 0
3184 
3185 /* Indexes used when registering address spaces with cpu_address_space_init */
3186 typedef enum ARMASIdx {
3187     ARMASIdx_NS = 0,
3188     ARMASIdx_S = 1,
3189     ARMASIdx_TagNS = 2,
3190     ARMASIdx_TagS = 3,
3191 } ARMASIdx;
3192 
3193 /* Return the Exception Level targeted by debug exceptions. */
3194 static inline int arm_debug_target_el(CPUARMState *env)
3195 {
3196     bool secure = arm_is_secure(env);
3197     bool route_to_el2 = false;
3198 
3199     if (arm_is_el2_enabled(env)) {
3200         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
3201                        env->cp15.mdcr_el2 & MDCR_TDE;
3202     }
3203 
3204     if (route_to_el2) {
3205         return 2;
3206     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
3207                !arm_el_is_aa64(env, 3) && secure) {
3208         return 3;
3209     } else {
3210         return 1;
3211     }
3212 }
3213 
3214 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3215 {
3216     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3217      * CSSELR is RAZ/WI.
3218      */
3219     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3220 }
3221 
3222 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
3223 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
3224 {
3225     int cur_el = arm_current_el(env);
3226     int debug_el;
3227 
3228     if (cur_el == 3) {
3229         return false;
3230     }
3231 
3232     /* MDCR_EL3.SDD disables debug events from Secure state */
3233     if (arm_is_secure_below_el3(env)
3234         && extract32(env->cp15.mdcr_el3, 16, 1)) {
3235         return false;
3236     }
3237 
3238     /*
3239      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3240      * while not masking the (D)ebug bit in DAIF.
3241      */
3242     debug_el = arm_debug_target_el(env);
3243 
3244     if (cur_el == debug_el) {
3245         return extract32(env->cp15.mdscr_el1, 13, 1)
3246             && !(env->daif & PSTATE_D);
3247     }
3248 
3249     /* Otherwise the debug target needs to be a higher EL */
3250     return debug_el > cur_el;
3251 }
3252 
3253 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3254 {
3255     int el = arm_current_el(env);
3256 
3257     if (el == 0 && arm_el_is_aa64(env, 1)) {
3258         return aa64_generate_debug_exceptions(env);
3259     }
3260 
3261     if (arm_is_secure(env)) {
3262         int spd;
3263 
3264         if (el == 0 && (env->cp15.sder & 1)) {
3265             /* SDER.SUIDEN means debug exceptions from Secure EL0
3266              * are always enabled. Otherwise they are controlled by
3267              * SDCR.SPD like those from other Secure ELs.
3268              */
3269             return true;
3270         }
3271 
3272         spd = extract32(env->cp15.mdcr_el3, 14, 2);
3273         switch (spd) {
3274         case 1:
3275             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3276         case 0:
3277             /* For 0b00 we return true if external secure invasive debug
3278              * is enabled. On real hardware this is controlled by external
3279              * signals to the core. QEMU always permits debug, and behaves
3280              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3281              */
3282             return true;
3283         case 2:
3284             return false;
3285         case 3:
3286             return true;
3287         }
3288     }
3289 
3290     return el != 2;
3291 }
3292 
3293 /* Return true if debugging exceptions are currently enabled.
3294  * This corresponds to what in ARM ARM pseudocode would be
3295  *    if UsingAArch32() then
3296  *        return AArch32.GenerateDebugExceptions()
3297  *    else
3298  *        return AArch64.GenerateDebugExceptions()
3299  * We choose to push the if() down into this function for clarity,
3300  * since the pseudocode has it at all callsites except for the one in
3301  * CheckSoftwareStep(), where it is elided because both branches would
3302  * always return the same value.
3303  */
3304 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3305 {
3306     if (env->aarch64) {
3307         return aa64_generate_debug_exceptions(env);
3308     } else {
3309         return aa32_generate_debug_exceptions(env);
3310     }
3311 }
3312 
3313 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3314  * implicitly means this always returns false in pre-v8 CPUs.)
3315  */
3316 static inline bool arm_singlestep_active(CPUARMState *env)
3317 {
3318     return extract32(env->cp15.mdscr_el1, 0, 1)
3319         && arm_el_is_aa64(env, arm_debug_target_el(env))
3320         && arm_generate_debug_exceptions(env);
3321 }
3322 
3323 static inline bool arm_sctlr_b(CPUARMState *env)
3324 {
3325     return
3326         /* We need not implement SCTLR.ITD in user-mode emulation, so
3327          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3328          * This lets people run BE32 binaries with "-cpu any".
3329          */
3330 #ifndef CONFIG_USER_ONLY
3331         !arm_feature(env, ARM_FEATURE_V7) &&
3332 #endif
3333         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3334 }
3335 
3336 uint64_t arm_sctlr(CPUARMState *env, int el);
3337 
3338 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3339                                                   bool sctlr_b)
3340 {
3341 #ifdef CONFIG_USER_ONLY
3342     /*
3343      * In system mode, BE32 is modelled in line with the
3344      * architecture (as word-invariant big-endianness), where loads
3345      * and stores are done little endian but from addresses which
3346      * are adjusted by XORing with the appropriate constant. So the
3347      * endianness to use for the raw data access is not affected by
3348      * SCTLR.B.
3349      * In user mode, however, we model BE32 as byte-invariant
3350      * big-endianness (because user-only code cannot tell the
3351      * difference), and so we need to use a data access endianness
3352      * that depends on SCTLR.B.
3353      */
3354     if (sctlr_b) {
3355         return true;
3356     }
3357 #endif
3358     /* In 32bit endianness is determined by looking at CPSR's E bit */
3359     return env->uncached_cpsr & CPSR_E;
3360 }
3361 
3362 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3363 {
3364     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3365 }
3366 
3367 /* Return true if the processor is in big-endian mode. */
3368 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3369 {
3370     if (!is_a64(env)) {
3371         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3372     } else {
3373         int cur_el = arm_current_el(env);
3374         uint64_t sctlr = arm_sctlr(env, cur_el);
3375         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3376     }
3377 }
3378 
3379 typedef CPUARMState CPUArchState;
3380 typedef ARMCPU ArchCPU;
3381 
3382 #include "exec/cpu-all.h"
3383 
3384 /*
3385  * We have more than 32-bits worth of state per TB, so we split the data
3386  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3387  * We collect these two parts in CPUARMTBFlags where they are named
3388  * flags and flags2 respectively.
3389  *
3390  * The flags that are shared between all execution modes, TBFLAG_ANY,
3391  * are stored in flags.  The flags that are specific to a given mode
3392  * are stores in flags2.  Since cs_base is sized on the configured
3393  * address size, flags2 always has 64-bits for A64, and a minimum of
3394  * 32-bits for A32 and M32.
3395  *
3396  * The bits for 32-bit A-profile and M-profile partially overlap:
3397  *
3398  *  31         23         11 10             0
3399  * +-------------+----------+----------------+
3400  * |             |          |   TBFLAG_A32   |
3401  * | TBFLAG_AM32 |          +-----+----------+
3402  * |             |                |TBFLAG_M32|
3403  * +-------------+----------------+----------+
3404  *  31         23                5 4        0
3405  *
3406  * Unless otherwise noted, these bits are cached in env->hflags.
3407  */
3408 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3409 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3410 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3411 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3412 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3413 /* Target EL if we take a floating-point-disabled exception */
3414 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3415 /* For A-profile only, target EL for debug exceptions.  */
3416 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3417 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3418 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3419 
3420 /*
3421  * Bit usage when in AArch32 state, both A- and M-profile.
3422  */
3423 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3424 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3425 
3426 /*
3427  * Bit usage when in AArch32 state, for A-profile only.
3428  */
3429 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3430 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3431 /*
3432  * We store the bottom two bits of the CPAR as TB flags and handle
3433  * checks on the other bits at runtime. This shares the same bits as
3434  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3435  * Not cached, because VECLEN+VECSTRIDE are not cached.
3436  */
3437 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3438 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3439 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3440 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3441 /*
3442  * Indicates whether cp register reads and writes by guest code should access
3443  * the secure or nonsecure bank of banked registers; note that this is not
3444  * the same thing as the current security state of the processor!
3445  */
3446 FIELD(TBFLAG_A32, NS, 10, 1)
3447 
3448 /*
3449  * Bit usage when in AArch32 state, for M-profile only.
3450  */
3451 /* Handler (ie not Thread) mode */
3452 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3453 /* Whether we should generate stack-limit checks */
3454 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3455 /* Set if FPCCR.LSPACT is set */
3456 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3457 /* Set if we must create a new FP context */
3458 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3459 /* Set if FPCCR.S does not match current security state */
3460 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3461 
3462 /*
3463  * Bit usage when in AArch64 state
3464  */
3465 FIELD(TBFLAG_A64, TBII, 0, 2)
3466 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3467 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3468 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3469 FIELD(TBFLAG_A64, BT, 9, 1)
3470 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3471 FIELD(TBFLAG_A64, TBID, 12, 2)
3472 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3473 FIELD(TBFLAG_A64, ATA, 15, 1)
3474 FIELD(TBFLAG_A64, TCMA, 16, 2)
3475 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3476 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3477 
3478 /*
3479  * Helpers for using the above.
3480  */
3481 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3482     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3483 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3484     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3485 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3486     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3487 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3488     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3489 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3490     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3491 
3492 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3493 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3494 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3495 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3496 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3497 
3498 /**
3499  * cpu_mmu_index:
3500  * @env: The cpu environment
3501  * @ifetch: True for code access, false for data access.
3502  *
3503  * Return the core mmu index for the current translation regime.
3504  * This function is used by generic TCG code paths.
3505  */
3506 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3507 {
3508     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3509 }
3510 
3511 static inline bool bswap_code(bool sctlr_b)
3512 {
3513 #ifdef CONFIG_USER_ONLY
3514     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3515      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3516      * would also end up as a mixed-endian mode with BE code, LE data.
3517      */
3518     return
3519 #ifdef TARGET_WORDS_BIGENDIAN
3520         1 ^
3521 #endif
3522         sctlr_b;
3523 #else
3524     /* All code access in ARM is little endian, and there are no loaders
3525      * doing swaps that need to be reversed
3526      */
3527     return 0;
3528 #endif
3529 }
3530 
3531 #ifdef CONFIG_USER_ONLY
3532 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3533 {
3534     return
3535 #ifdef TARGET_WORDS_BIGENDIAN
3536        1 ^
3537 #endif
3538        arm_cpu_data_is_big_endian(env);
3539 }
3540 #endif
3541 
3542 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3543                           target_ulong *cs_base, uint32_t *flags);
3544 
3545 enum {
3546     QEMU_PSCI_CONDUIT_DISABLED = 0,
3547     QEMU_PSCI_CONDUIT_SMC = 1,
3548     QEMU_PSCI_CONDUIT_HVC = 2,
3549 };
3550 
3551 #ifndef CONFIG_USER_ONLY
3552 /* Return the address space index to use for a memory access */
3553 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3554 {
3555     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3556 }
3557 
3558 /* Return the AddressSpace to use for a memory access
3559  * (which depends on whether the access is S or NS, and whether
3560  * the board gave us a separate AddressSpace for S accesses).
3561  */
3562 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3563 {
3564     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3565 }
3566 #endif
3567 
3568 /**
3569  * arm_register_pre_el_change_hook:
3570  * Register a hook function which will be called immediately before this
3571  * CPU changes exception level or mode. The hook function will be
3572  * passed a pointer to the ARMCPU and the opaque data pointer passed
3573  * to this function when the hook was registered.
3574  *
3575  * Note that if a pre-change hook is called, any registered post-change hooks
3576  * are guaranteed to subsequently be called.
3577  */
3578 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3579                                  void *opaque);
3580 /**
3581  * arm_register_el_change_hook:
3582  * Register a hook function which will be called immediately after this
3583  * CPU changes exception level or mode. The hook function will be
3584  * passed a pointer to the ARMCPU and the opaque data pointer passed
3585  * to this function when the hook was registered.
3586  *
3587  * Note that any registered hooks registered here are guaranteed to be called
3588  * if pre-change hooks have been.
3589  */
3590 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3591         *opaque);
3592 
3593 /**
3594  * arm_rebuild_hflags:
3595  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3596  */
3597 void arm_rebuild_hflags(CPUARMState *env);
3598 
3599 /**
3600  * aa32_vfp_dreg:
3601  * Return a pointer to the Dn register within env in 32-bit mode.
3602  */
3603 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3604 {
3605     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3606 }
3607 
3608 /**
3609  * aa32_vfp_qreg:
3610  * Return a pointer to the Qn register within env in 32-bit mode.
3611  */
3612 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3613 {
3614     return &env->vfp.zregs[regno].d[0];
3615 }
3616 
3617 /**
3618  * aa64_vfp_qreg:
3619  * Return a pointer to the Qn register within env in 64-bit mode.
3620  */
3621 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3622 {
3623     return &env->vfp.zregs[regno].d[0];
3624 }
3625 
3626 /* Shared between translate-sve.c and sve_helper.c.  */
3627 extern const uint64_t pred_esz_masks[4];
3628 
3629 /* Helper for the macros below, validating the argument type. */
3630 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3631 {
3632     return x;
3633 }
3634 
3635 /*
3636  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3637  * Using these should be a bit more self-documenting than using the
3638  * generic target bits directly.
3639  */
3640 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3641 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3642 
3643 /*
3644  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3645  */
3646 #define PAGE_BTI  PAGE_TARGET_1
3647 #define PAGE_MTE  PAGE_TARGET_2
3648 
3649 #ifdef TARGET_TAGGED_ADDRESSES
3650 /**
3651  * cpu_untagged_addr:
3652  * @cs: CPU context
3653  * @x: tagged address
3654  *
3655  * Remove any address tag from @x.  This is explicitly related to the
3656  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3657  *
3658  * There should be a better place to put this, but we need this in
3659  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3660  */
3661 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3662 {
3663     ARMCPU *cpu = ARM_CPU(cs);
3664     if (cpu->env.tagged_addr_enable) {
3665         /*
3666          * TBI is enabled for userspace but not kernelspace addresses.
3667          * Only clear the tag if bit 55 is clear.
3668          */
3669         x &= sextract64(x, 0, 56);
3670     }
3671     return x;
3672 }
3673 #endif
3674 
3675 /*
3676  * Naming convention for isar_feature functions:
3677  * Functions which test 32-bit ID registers should have _aa32_ in
3678  * their name. Functions which test 64-bit ID registers should have
3679  * _aa64_ in their name. These must only be used in code where we
3680  * know for certain that the CPU has AArch32 or AArch64 respectively
3681  * or where the correct answer for a CPU which doesn't implement that
3682  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3683  * system registers that are specific to that CPU state, for "should
3684  * we let this system register bit be set" tests where the 32-bit
3685  * flavour of the register doesn't have the bit, and so on).
3686  * Functions which simply ask "does this feature exist at all" have
3687  * _any_ in their name, and always return the logical OR of the _aa64_
3688  * and the _aa32_ function.
3689  */
3690 
3691 /*
3692  * 32-bit feature tests via id registers.
3693  */
3694 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3695 {
3696     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3697 }
3698 
3699 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3700 {
3701     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3702 }
3703 
3704 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3705 {
3706     /* (M-profile) low-overhead loops and branch future */
3707     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3708 }
3709 
3710 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3711 {
3712     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3713 }
3714 
3715 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3716 {
3717     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3718 }
3719 
3720 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3721 {
3722     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3723 }
3724 
3725 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3726 {
3727     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3728 }
3729 
3730 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3731 {
3732     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3733 }
3734 
3735 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3736 {
3737     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3738 }
3739 
3740 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3743 }
3744 
3745 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3748 }
3749 
3750 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3768 }
3769 
3770 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3783 }
3784 
3785 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3786 {
3787     /*
3788      * Return true if M-profile state handling insns
3789      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3790      */
3791     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3792 }
3793 
3794 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3795 {
3796     /* Sadly this is encoded differently for A-profile and M-profile */
3797     if (isar_feature_aa32_mprofile(id)) {
3798         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3799     } else {
3800         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3801     }
3802 }
3803 
3804 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3805 {
3806     /*
3807      * Return true if either VFP or SIMD is implemented.
3808      * In this case, a minimum of VFP w/ D0-D15.
3809      */
3810     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3811 }
3812 
3813 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3814 {
3815     /* Return true if D16-D31 are implemented */
3816     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3817 }
3818 
3819 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3820 {
3821     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3822 }
3823 
3824 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3825 {
3826     /* Return true if CPU supports single precision floating point, VFPv2 */
3827     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3828 }
3829 
3830 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3831 {
3832     /* Return true if CPU supports single precision floating point, VFPv3 */
3833     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3834 }
3835 
3836 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3837 {
3838     /* Return true if CPU supports double precision floating point, VFPv2 */
3839     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3840 }
3841 
3842 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3843 {
3844     /* Return true if CPU supports double precision floating point, VFPv3 */
3845     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3846 }
3847 
3848 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3849 {
3850     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3851 }
3852 
3853 /*
3854  * We always set the FP and SIMD FP16 fields to indicate identical
3855  * levels of support (assuming SIMD is implemented at all), so
3856  * we only need one set of accessors.
3857  */
3858 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3859 {
3860     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3861 }
3862 
3863 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3864 {
3865     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3866 }
3867 
3868 /*
3869  * Note that this ID register field covers both VFP and Neon FMAC,
3870  * so should usually be tested in combination with some other
3871  * check that confirms the presence of whichever of VFP or Neon is
3872  * relevant, to avoid accidentally enabling a Neon feature on
3873  * a VFP-no-Neon core or vice-versa.
3874  */
3875 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3876 {
3877     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3878 }
3879 
3880 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3881 {
3882     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3883 }
3884 
3885 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3886 {
3887     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3888 }
3889 
3890 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3891 {
3892     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3893 }
3894 
3895 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3896 {
3897     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3898 }
3899 
3900 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3901 {
3902     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3903 }
3904 
3905 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3906 {
3907     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3908 }
3909 
3910 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3911 {
3912     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3913 }
3914 
3915 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3916 {
3917     /* 0xf means "non-standard IMPDEF PMU" */
3918     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3919         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3920 }
3921 
3922 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3923 {
3924     /* 0xf means "non-standard IMPDEF PMU" */
3925     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3926         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3927 }
3928 
3929 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3930 {
3931     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3932 }
3933 
3934 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3935 {
3936     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3937 }
3938 
3939 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3940 {
3941     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3942 }
3943 
3944 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3945 {
3946     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3947 }
3948 
3949 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3950 {
3951     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3952 }
3953 
3954 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3955 {
3956     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3957 }
3958 
3959 /*
3960  * 64-bit feature tests via id registers.
3961  */
3962 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3963 {
3964     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3965 }
3966 
3967 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3968 {
3969     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3970 }
3971 
3972 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3973 {
3974     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3975 }
3976 
3977 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3978 {
3979     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3980 }
3981 
3982 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3983 {
3984     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3985 }
3986 
3987 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3988 {
3989     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3990 }
3991 
3992 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3993 {
3994     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3995 }
3996 
3997 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3998 {
3999     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
4000 }
4001 
4002 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
4003 {
4004     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
4005 }
4006 
4007 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
4008 {
4009     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
4010 }
4011 
4012 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
4013 {
4014     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
4015 }
4016 
4017 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
4018 {
4019     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
4020 }
4021 
4022 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
4023 {
4024     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
4025 }
4026 
4027 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
4028 {
4029     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
4030 }
4031 
4032 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
4033 {
4034     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
4035 }
4036 
4037 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
4038 {
4039     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
4040 }
4041 
4042 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
4043 {
4044     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
4045 }
4046 
4047 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
4048 {
4049     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
4050 }
4051 
4052 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
4053 {
4054     /*
4055      * Return true if any form of pauth is enabled, as this
4056      * predicate controls migration of the 128-bit keys.
4057      */
4058     return (id->id_aa64isar1 &
4059             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
4060              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
4061              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
4062              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
4063 }
4064 
4065 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
4066 {
4067     /*
4068      * Return true if pauth is enabled with the architected QARMA algorithm.
4069      * QEMU will always set APA+GPA to the same value.
4070      */
4071     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
4072 }
4073 
4074 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
4075 {
4076     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
4077 }
4078 
4079 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
4080 {
4081     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
4082 }
4083 
4084 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
4085 {
4086     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
4087 }
4088 
4089 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
4090 {
4091     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
4092 }
4093 
4094 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
4095 {
4096     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
4097 }
4098 
4099 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
4100 {
4101     /* We always set the AdvSIMD and FP fields identically.  */
4102     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
4103 }
4104 
4105 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
4106 {
4107     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
4108     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
4109 }
4110 
4111 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
4112 {
4113     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
4114 }
4115 
4116 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
4117 {
4118     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
4119 }
4120 
4121 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4122 {
4123     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4124 }
4125 
4126 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4127 {
4128     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4129 }
4130 
4131 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4132 {
4133     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4134 }
4135 
4136 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4137 {
4138     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4139 }
4140 
4141 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4142 {
4143     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4144 }
4145 
4146 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4147 {
4148     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4149 }
4150 
4151 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4152 {
4153     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4154 }
4155 
4156 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4157 {
4158     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4159 }
4160 
4161 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4162 {
4163     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4164 }
4165 
4166 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4167 {
4168     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4169 }
4170 
4171 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4172 {
4173     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4174 }
4175 
4176 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
4177 {
4178     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4179         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4180 }
4181 
4182 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
4183 {
4184     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4185         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4186 }
4187 
4188 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4189 {
4190     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4191 }
4192 
4193 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4194 {
4195     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4196 }
4197 
4198 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4199 {
4200     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4201 }
4202 
4203 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4204 {
4205     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4206 }
4207 
4208 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4209 {
4210     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4211 }
4212 
4213 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4214 {
4215     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4216 }
4217 
4218 /*
4219  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4220  */
4221 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4222 {
4223     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4224 }
4225 
4226 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4227 {
4228     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4229 }
4230 
4231 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4232 {
4233     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4234 }
4235 
4236 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4237 {
4238     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4239 }
4240 
4241 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4242 {
4243     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4244 }
4245 
4246 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4247 {
4248     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4249 }
4250 
4251 /*
4252  * Forward to the above feature tests given an ARMCPU pointer.
4253  */
4254 #define cpu_isar_feature(name, cpu) \
4255     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4256 
4257 #endif
4258