xref: /qemu/target/arm/cpu.h (revision 84615a19)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 #define VTCR_NSW (1u << 29)
170 #define VTCR_NSA (1u << 30)
171 #define VSTCR_SW VTCR_NSW
172 #define VSTCR_SA VTCR_NSA
173 
174 /* Define a maximum sized vector register.
175  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
176  * For 64-bit, this is a 2048-bit SVE register.
177  *
178  * Note that the mapping between S, D, and Q views of the register bank
179  * differs between AArch64 and AArch32.
180  * In AArch32:
181  *  Qn = regs[n].d[1]:regs[n].d[0]
182  *  Dn = regs[n / 2].d[n & 1]
183  *  Sn = regs[n / 4].d[n % 4 / 2],
184  *       bits 31..0 for even n, and bits 63..32 for odd n
185  *       (and regs[16] to regs[31] are inaccessible)
186  * In AArch64:
187  *  Zn = regs[n].d[*]
188  *  Qn = regs[n].d[1]:regs[n].d[0]
189  *  Dn = regs[n].d[0]
190  *  Sn = regs[n].d[0] bits 31..0
191  *  Hn = regs[n].d[0] bits 15..0
192  *
193  * This corresponds to the architecturally defined mapping between
194  * the two execution states, and means we do not need to explicitly
195  * map these registers when changing states.
196  *
197  * Align the data for use with TCG host vector operations.
198  */
199 
200 #ifdef TARGET_AARCH64
201 # define ARM_MAX_VQ    16
202 #else
203 # define ARM_MAX_VQ    1
204 #endif
205 
206 typedef struct ARMVectorReg {
207     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
208 } ARMVectorReg;
209 
210 #ifdef TARGET_AARCH64
211 /* In AArch32 mode, predicate registers do not exist at all.  */
212 typedef struct ARMPredicateReg {
213     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
214 } ARMPredicateReg;
215 
216 /* In AArch32 mode, PAC keys do not exist at all.  */
217 typedef struct ARMPACKey {
218     uint64_t lo, hi;
219 } ARMPACKey;
220 #endif
221 
222 /* See the commentary above the TBFLAG field definitions.  */
223 typedef struct CPUARMTBFlags {
224     uint32_t flags;
225     target_ulong flags2;
226 } CPUARMTBFlags;
227 
228 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
229 
230 typedef struct CPUArchState {
231     /* Regs for current mode.  */
232     uint32_t regs[16];
233 
234     /* 32/64 switch only happens when taking and returning from
235      * exceptions so the overlap semantics are taken care of then
236      * instead of having a complicated union.
237      */
238     /* Regs for A64 mode.  */
239     uint64_t xregs[32];
240     uint64_t pc;
241     /* PSTATE isn't an architectural register for ARMv8. However, it is
242      * convenient for us to assemble the underlying state into a 32 bit format
243      * identical to the architectural format used for the SPSR. (This is also
244      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
245      * 'pstate' register are.) Of the PSTATE bits:
246      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
247      *    semantics as for AArch32, as described in the comments on each field)
248      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
249      *  DAIF (exception masks) are kept in env->daif
250      *  BTYPE is kept in env->btype
251      *  SM and ZA are kept in env->svcr
252      *  all other bits are stored in their correct places in env->pstate
253      */
254     uint32_t pstate;
255     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
256     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
257 
258     /* Cached TBFLAGS state.  See below for which bits are included.  */
259     CPUARMTBFlags hflags;
260 
261     /* Frequently accessed CPSR bits are stored separately for efficiency.
262        This contains all the other bits.  Use cpsr_{read,write} to access
263        the whole CPSR.  */
264     uint32_t uncached_cpsr;
265     uint32_t spsr;
266 
267     /* Banked registers.  */
268     uint64_t banked_spsr[8];
269     uint32_t banked_r13[8];
270     uint32_t banked_r14[8];
271 
272     /* These hold r8-r12.  */
273     uint32_t usr_regs[5];
274     uint32_t fiq_regs[5];
275 
276     /* cpsr flag cache for faster execution */
277     uint32_t CF; /* 0 or 1 */
278     uint32_t VF; /* V is the bit 31. All other bits are undefined */
279     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
280     uint32_t ZF; /* Z set if zero.  */
281     uint32_t QF; /* 0 or 1 */
282     uint32_t GE; /* cpsr[19:16] */
283     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
284     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
285     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
286     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
287 
288     uint64_t elr_el[4]; /* AArch64 exception link regs  */
289     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
290 
291     /* System control coprocessor (cp15) */
292     struct {
293         uint32_t c0_cpuid;
294         union { /* Cache size selection */
295             struct {
296                 uint64_t _unused_csselr0;
297                 uint64_t csselr_ns;
298                 uint64_t _unused_csselr1;
299                 uint64_t csselr_s;
300             };
301             uint64_t csselr_el[4];
302         };
303         union { /* System control register. */
304             struct {
305                 uint64_t _unused_sctlr;
306                 uint64_t sctlr_ns;
307                 uint64_t hsctlr;
308                 uint64_t sctlr_s;
309             };
310             uint64_t sctlr_el[4];
311         };
312         uint64_t vsctlr; /* Virtualization System control register. */
313         uint64_t cpacr_el1; /* Architectural feature access control register */
314         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
315         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
316         uint64_t sder; /* Secure debug enable register. */
317         uint32_t nsacr; /* Non-secure access control register. */
318         union { /* MMU translation table base 0. */
319             struct {
320                 uint64_t _unused_ttbr0_0;
321                 uint64_t ttbr0_ns;
322                 uint64_t _unused_ttbr0_1;
323                 uint64_t ttbr0_s;
324             };
325             uint64_t ttbr0_el[4];
326         };
327         union { /* MMU translation table base 1. */
328             struct {
329                 uint64_t _unused_ttbr1_0;
330                 uint64_t ttbr1_ns;
331                 uint64_t _unused_ttbr1_1;
332                 uint64_t ttbr1_s;
333             };
334             uint64_t ttbr1_el[4];
335         };
336         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
337         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
338         /* MMU translation table base control. */
339         uint64_t tcr_el[4];
340         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
341         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
342         uint32_t c2_data; /* MPU data cacheable bits.  */
343         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
344         union { /* MMU domain access control register
345                  * MPU write buffer control.
346                  */
347             struct {
348                 uint64_t dacr_ns;
349                 uint64_t dacr_s;
350             };
351             struct {
352                 uint64_t dacr32_el2;
353             };
354         };
355         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
356         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
357         uint64_t hcr_el2; /* Hypervisor configuration register */
358         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
359         uint64_t scr_el3; /* Secure configuration register.  */
360         union { /* Fault status registers.  */
361             struct {
362                 uint64_t ifsr_ns;
363                 uint64_t ifsr_s;
364             };
365             struct {
366                 uint64_t ifsr32_el2;
367             };
368         };
369         union {
370             struct {
371                 uint64_t _unused_dfsr;
372                 uint64_t dfsr_ns;
373                 uint64_t hsr;
374                 uint64_t dfsr_s;
375             };
376             uint64_t esr_el[4];
377         };
378         uint32_t c6_region[8]; /* MPU base/size registers.  */
379         union { /* Fault address registers. */
380             struct {
381                 uint64_t _unused_far0;
382 #if HOST_BIG_ENDIAN
383                 uint32_t ifar_ns;
384                 uint32_t dfar_ns;
385                 uint32_t ifar_s;
386                 uint32_t dfar_s;
387 #else
388                 uint32_t dfar_ns;
389                 uint32_t ifar_ns;
390                 uint32_t dfar_s;
391                 uint32_t ifar_s;
392 #endif
393                 uint64_t _unused_far3;
394             };
395             uint64_t far_el[4];
396         };
397         uint64_t hpfar_el2;
398         uint64_t hstr_el2;
399         union { /* Translation result. */
400             struct {
401                 uint64_t _unused_par_0;
402                 uint64_t par_ns;
403                 uint64_t _unused_par_1;
404                 uint64_t par_s;
405             };
406             uint64_t par_el[4];
407         };
408 
409         uint32_t c9_insn; /* Cache lockdown registers.  */
410         uint32_t c9_data;
411         uint64_t c9_pmcr; /* performance monitor control register */
412         uint64_t c9_pmcnten; /* perf monitor counter enables */
413         uint64_t c9_pmovsr; /* perf monitor overflow status */
414         uint64_t c9_pmuserenr; /* perf monitor user enable */
415         uint64_t c9_pmselr; /* perf monitor counter selection register */
416         uint64_t c9_pminten; /* perf monitor interrupt enables */
417         union { /* Memory attribute redirection */
418             struct {
419 #if HOST_BIG_ENDIAN
420                 uint64_t _unused_mair_0;
421                 uint32_t mair1_ns;
422                 uint32_t mair0_ns;
423                 uint64_t _unused_mair_1;
424                 uint32_t mair1_s;
425                 uint32_t mair0_s;
426 #else
427                 uint64_t _unused_mair_0;
428                 uint32_t mair0_ns;
429                 uint32_t mair1_ns;
430                 uint64_t _unused_mair_1;
431                 uint32_t mair0_s;
432                 uint32_t mair1_s;
433 #endif
434             };
435             uint64_t mair_el[4];
436         };
437         union { /* vector base address register */
438             struct {
439                 uint64_t _unused_vbar;
440                 uint64_t vbar_ns;
441                 uint64_t hvbar;
442                 uint64_t vbar_s;
443             };
444             uint64_t vbar_el[4];
445         };
446         uint32_t mvbar; /* (monitor) vector base address register */
447         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
448         struct { /* FCSE PID. */
449             uint32_t fcseidr_ns;
450             uint32_t fcseidr_s;
451         };
452         union { /* Context ID. */
453             struct {
454                 uint64_t _unused_contextidr_0;
455                 uint64_t contextidr_ns;
456                 uint64_t _unused_contextidr_1;
457                 uint64_t contextidr_s;
458             };
459             uint64_t contextidr_el[4];
460         };
461         union { /* User RW Thread register. */
462             struct {
463                 uint64_t tpidrurw_ns;
464                 uint64_t tpidrprw_ns;
465                 uint64_t htpidr;
466                 uint64_t _tpidr_el3;
467             };
468             uint64_t tpidr_el[4];
469         };
470         uint64_t tpidr2_el0;
471         /* The secure banks of these registers don't map anywhere */
472         uint64_t tpidrurw_s;
473         uint64_t tpidrprw_s;
474         uint64_t tpidruro_s;
475 
476         union { /* User RO Thread register. */
477             uint64_t tpidruro_ns;
478             uint64_t tpidrro_el[1];
479         };
480         uint64_t c14_cntfrq; /* Counter Frequency register */
481         uint64_t c14_cntkctl; /* Timer Control register */
482         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
483         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
484         ARMGenericTimer c14_timer[NUM_GTIMERS];
485         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
486         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
487         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
488         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
489         uint32_t c15_threadid; /* TI debugger thread-ID.  */
490         uint32_t c15_config_base_address; /* SCU base address.  */
491         uint32_t c15_diagnostic; /* diagnostic register */
492         uint32_t c15_power_diagnostic;
493         uint32_t c15_power_control; /* power control */
494         uint64_t dbgbvr[16]; /* breakpoint value registers */
495         uint64_t dbgbcr[16]; /* breakpoint control registers */
496         uint64_t dbgwvr[16]; /* watchpoint value registers */
497         uint64_t dbgwcr[16]; /* watchpoint control registers */
498         uint64_t dbgclaim;   /* DBGCLAIM bits */
499         uint64_t mdscr_el1;
500         uint64_t oslsr_el1; /* OS Lock Status */
501         uint64_t osdlr_el1; /* OS DoubleLock status */
502         uint64_t mdcr_el2;
503         uint64_t mdcr_el3;
504         /* Stores the architectural value of the counter *the last time it was
505          * updated* by pmccntr_op_start. Accesses should always be surrounded
506          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
507          * architecturally-correct value is being read/set.
508          */
509         uint64_t c15_ccnt;
510         /* Stores the delta between the architectural value and the underlying
511          * cycle count during normal operation. It is used to update c15_ccnt
512          * to be the correct architectural value before accesses. During
513          * accesses, c15_ccnt_delta contains the underlying count being used
514          * for the access, after which it reverts to the delta value in
515          * pmccntr_op_finish.
516          */
517         uint64_t c15_ccnt_delta;
518         uint64_t c14_pmevcntr[31];
519         uint64_t c14_pmevcntr_delta[31];
520         uint64_t c14_pmevtyper[31];
521         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
522         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
523         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
524         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
525         uint64_t gcr_el1;
526         uint64_t rgsr_el1;
527 
528         /* Minimal RAS registers */
529         uint64_t disr_el1;
530         uint64_t vdisr_el2;
531         uint64_t vsesr_el2;
532 
533         /*
534          * Fine-Grained Trap registers. We store these as arrays so the
535          * access checking code doesn't have to manually select
536          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
537          * FEAT_FGT2 will add more elements to these arrays.
538          */
539         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
540         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
541         uint64_t fgt_exec[1]; /* HFGITR */
542     } cp15;
543 
544     struct {
545         /* M profile has up to 4 stack pointers:
546          * a Main Stack Pointer and a Process Stack Pointer for each
547          * of the Secure and Non-Secure states. (If the CPU doesn't support
548          * the security extension then it has only two SPs.)
549          * In QEMU we always store the currently active SP in regs[13],
550          * and the non-active SP for the current security state in
551          * v7m.other_sp. The stack pointers for the inactive security state
552          * are stored in other_ss_msp and other_ss_psp.
553          * switch_v7m_security_state() is responsible for rearranging them
554          * when we change security state.
555          */
556         uint32_t other_sp;
557         uint32_t other_ss_msp;
558         uint32_t other_ss_psp;
559         uint32_t vecbase[M_REG_NUM_BANKS];
560         uint32_t basepri[M_REG_NUM_BANKS];
561         uint32_t control[M_REG_NUM_BANKS];
562         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
563         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
564         uint32_t hfsr; /* HardFault Status */
565         uint32_t dfsr; /* Debug Fault Status Register */
566         uint32_t sfsr; /* Secure Fault Status Register */
567         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
568         uint32_t bfar; /* BusFault Address */
569         uint32_t sfar; /* Secure Fault Address Register */
570         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
571         int exception;
572         uint32_t primask[M_REG_NUM_BANKS];
573         uint32_t faultmask[M_REG_NUM_BANKS];
574         uint32_t aircr; /* only holds r/w state if security extn implemented */
575         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
576         uint32_t csselr[M_REG_NUM_BANKS];
577         uint32_t scr[M_REG_NUM_BANKS];
578         uint32_t msplim[M_REG_NUM_BANKS];
579         uint32_t psplim[M_REG_NUM_BANKS];
580         uint32_t fpcar[M_REG_NUM_BANKS];
581         uint32_t fpccr[M_REG_NUM_BANKS];
582         uint32_t fpdscr[M_REG_NUM_BANKS];
583         uint32_t cpacr[M_REG_NUM_BANKS];
584         uint32_t nsacr;
585         uint32_t ltpsize;
586         uint32_t vpr;
587     } v7m;
588 
589     /* Information associated with an exception about to be taken:
590      * code which raises an exception must set cs->exception_index and
591      * the relevant parts of this structure; the cpu_do_interrupt function
592      * will then set the guest-visible registers as part of the exception
593      * entry process.
594      */
595     struct {
596         uint32_t syndrome; /* AArch64 format syndrome register */
597         uint32_t fsr; /* AArch32 format fault status register info */
598         uint64_t vaddress; /* virtual addr associated with exception, if any */
599         uint32_t target_el; /* EL the exception should be targeted for */
600         /* If we implement EL2 we will also need to store information
601          * about the intermediate physical address for stage 2 faults.
602          */
603     } exception;
604 
605     /* Information associated with an SError */
606     struct {
607         uint8_t pending;
608         uint8_t has_esr;
609         uint64_t esr;
610     } serror;
611 
612     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
613 
614     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
615     uint32_t irq_line_state;
616 
617     /* Thumb-2 EE state.  */
618     uint32_t teecr;
619     uint32_t teehbr;
620 
621     /* VFP coprocessor state.  */
622     struct {
623         ARMVectorReg zregs[32];
624 
625 #ifdef TARGET_AARCH64
626         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
627 #define FFR_PRED_NUM 16
628         ARMPredicateReg pregs[17];
629         /* Scratch space for aa64 sve predicate temporary.  */
630         ARMPredicateReg preg_tmp;
631 #endif
632 
633         /* We store these fpcsr fields separately for convenience.  */
634         uint32_t qc[4] QEMU_ALIGNED(16);
635         int vec_len;
636         int vec_stride;
637 
638         uint32_t xregs[16];
639 
640         /* Scratch space for aa32 neon expansion.  */
641         uint32_t scratch[8];
642 
643         /* There are a number of distinct float control structures:
644          *
645          *  fp_status: is the "normal" fp status.
646          *  fp_status_fp16: used for half-precision calculations
647          *  standard_fp_status : the ARM "Standard FPSCR Value"
648          *  standard_fp_status_fp16 : used for half-precision
649          *       calculations with the ARM "Standard FPSCR Value"
650          *
651          * Half-precision operations are governed by a separate
652          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
653          * status structure to control this.
654          *
655          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
656          * round-to-nearest and is used by any operations (generally
657          * Neon) which the architecture defines as controlled by the
658          * standard FPSCR value rather than the FPSCR.
659          *
660          * The "standard FPSCR but for fp16 ops" is needed because
661          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
662          * using a fixed value for it.
663          *
664          * To avoid having to transfer exception bits around, we simply
665          * say that the FPSCR cumulative exception flags are the logical
666          * OR of the flags in the four fp statuses. This relies on the
667          * only thing which needs to read the exception flags being
668          * an explicit FPSCR read.
669          */
670         float_status fp_status;
671         float_status fp_status_f16;
672         float_status standard_fp_status;
673         float_status standard_fp_status_f16;
674 
675         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
676         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
677     } vfp;
678     uint64_t exclusive_addr;
679     uint64_t exclusive_val;
680     uint64_t exclusive_high;
681 
682     /* iwMMXt coprocessor state.  */
683     struct {
684         uint64_t regs[16];
685         uint64_t val;
686 
687         uint32_t cregs[16];
688     } iwmmxt;
689 
690 #ifdef TARGET_AARCH64
691     struct {
692         ARMPACKey apia;
693         ARMPACKey apib;
694         ARMPACKey apda;
695         ARMPACKey apdb;
696         ARMPACKey apga;
697     } keys;
698 
699     uint64_t scxtnum_el[4];
700 
701     /*
702      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
703      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
704      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
705      * When SVL is less than the architectural maximum, the accessible
706      * storage is restricted, such that if the SVL is X bytes the guest can
707      * see only the bottom X elements of zarray[], and only the least
708      * significant X bytes of each element of the array. (In other words,
709      * the observable part is always square.)
710      *
711      * The ZA storage can also be considered as a set of square tiles of
712      * elements of different sizes. The mapping from tiles to the ZA array
713      * is architecturally defined, such that for tiles of elements of esz
714      * bytes, the Nth row (or "horizontal slice") of tile T is in
715      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
716      * in the ZA storage, because its rows are striped through the ZA array.
717      *
718      * Because this is so large, keep this toward the end of the reset area,
719      * to keep the offsets into the rest of the structure smaller.
720      */
721     ARMVectorReg zarray[ARM_MAX_VQ * 16];
722 #endif
723 
724 #if defined(CONFIG_USER_ONLY)
725     /* For usermode syscall translation.  */
726     int eabi;
727 #endif
728 
729     struct CPUBreakpoint *cpu_breakpoint[16];
730     struct CPUWatchpoint *cpu_watchpoint[16];
731 
732     /* Optional fault info across tlb lookup. */
733     ARMMMUFaultInfo *tlb_fi;
734 
735     /* Fields up to this point are cleared by a CPU reset */
736     struct {} end_reset_fields;
737 
738     /* Fields after this point are preserved across CPU reset. */
739 
740     /* Internal CPU feature flags.  */
741     uint64_t features;
742 
743     /* PMSAv7 MPU */
744     struct {
745         uint32_t *drbar;
746         uint32_t *drsr;
747         uint32_t *dracr;
748         uint32_t rnr[M_REG_NUM_BANKS];
749     } pmsav7;
750 
751     /* PMSAv8 MPU */
752     struct {
753         /* The PMSAv8 implementation also shares some PMSAv7 config
754          * and state:
755          *  pmsav7.rnr (region number register)
756          *  pmsav7_dregion (number of configured regions)
757          */
758         uint32_t *rbar[M_REG_NUM_BANKS];
759         uint32_t *rlar[M_REG_NUM_BANKS];
760         uint32_t *hprbar;
761         uint32_t *hprlar;
762         uint32_t mair0[M_REG_NUM_BANKS];
763         uint32_t mair1[M_REG_NUM_BANKS];
764         uint32_t hprselr;
765     } pmsav8;
766 
767     /* v8M SAU */
768     struct {
769         uint32_t *rbar;
770         uint32_t *rlar;
771         uint32_t rnr;
772         uint32_t ctrl;
773     } sau;
774 
775     void *nvic;
776     const struct arm_boot_info *boot_info;
777     /* Store GICv3CPUState to access from this struct */
778     void *gicv3state;
779 
780 #ifdef TARGET_TAGGED_ADDRESSES
781     /* Linux syscall tagged address support */
782     bool tagged_addr_enable;
783 #endif
784 } CPUARMState;
785 
786 static inline void set_feature(CPUARMState *env, int feature)
787 {
788     env->features |= 1ULL << feature;
789 }
790 
791 static inline void unset_feature(CPUARMState *env, int feature)
792 {
793     env->features &= ~(1ULL << feature);
794 }
795 
796 /**
797  * ARMELChangeHookFn:
798  * type of a function which can be registered via arm_register_el_change_hook()
799  * to get callbacks when the CPU changes its exception level or mode.
800  */
801 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
802 typedef struct ARMELChangeHook ARMELChangeHook;
803 struct ARMELChangeHook {
804     ARMELChangeHookFn *hook;
805     void *opaque;
806     QLIST_ENTRY(ARMELChangeHook) node;
807 };
808 
809 /* These values map onto the return values for
810  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
811 typedef enum ARMPSCIState {
812     PSCI_ON = 0,
813     PSCI_OFF = 1,
814     PSCI_ON_PENDING = 2
815 } ARMPSCIState;
816 
817 typedef struct ARMISARegisters ARMISARegisters;
818 
819 /*
820  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
821  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
822  *
823  * While processing properties during initialization, corresponding init bits
824  * are set for bits in sve_vq_map that have been set by properties.
825  *
826  * Bits set in supported represent valid vector lengths for the CPU type.
827  */
828 typedef struct {
829     uint32_t map, init, supported;
830 } ARMVQMap;
831 
832 /**
833  * ARMCPU:
834  * @env: #CPUARMState
835  *
836  * An ARM CPU core.
837  */
838 struct ArchCPU {
839     /*< private >*/
840     CPUState parent_obj;
841     /*< public >*/
842 
843     CPUNegativeOffsetState neg;
844     CPUARMState env;
845 
846     /* Coprocessor information */
847     GHashTable *cp_regs;
848     /* For marshalling (mostly coprocessor) register state between the
849      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
850      * we use these arrays.
851      */
852     /* List of register indexes managed via these arrays; (full KVM style
853      * 64 bit indexes, not CPRegInfo 32 bit indexes)
854      */
855     uint64_t *cpreg_indexes;
856     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
857     uint64_t *cpreg_values;
858     /* Length of the indexes, values, reset_values arrays */
859     int32_t cpreg_array_len;
860     /* These are used only for migration: incoming data arrives in
861      * these fields and is sanity checked in post_load before copying
862      * to the working data structures above.
863      */
864     uint64_t *cpreg_vmstate_indexes;
865     uint64_t *cpreg_vmstate_values;
866     int32_t cpreg_vmstate_array_len;
867 
868     DynamicGDBXMLInfo dyn_sysreg_xml;
869     DynamicGDBXMLInfo dyn_svereg_xml;
870 
871     /* Timers used by the generic (architected) timer */
872     QEMUTimer *gt_timer[NUM_GTIMERS];
873     /*
874      * Timer used by the PMU. Its state is restored after migration by
875      * pmu_op_finish() - it does not need other handling during migration
876      */
877     QEMUTimer *pmu_timer;
878     /* GPIO outputs for generic timer */
879     qemu_irq gt_timer_outputs[NUM_GTIMERS];
880     /* GPIO output for GICv3 maintenance interrupt signal */
881     qemu_irq gicv3_maintenance_interrupt;
882     /* GPIO output for the PMU interrupt */
883     qemu_irq pmu_interrupt;
884 
885     /* MemoryRegion to use for secure physical accesses */
886     MemoryRegion *secure_memory;
887 
888     /* MemoryRegion to use for allocation tag accesses */
889     MemoryRegion *tag_memory;
890     MemoryRegion *secure_tag_memory;
891 
892     /* For v8M, pointer to the IDAU interface provided by board/SoC */
893     Object *idau;
894 
895     /* 'compatible' string for this CPU for Linux device trees */
896     const char *dtb_compatible;
897 
898     /* PSCI version for this CPU
899      * Bits[31:16] = Major Version
900      * Bits[15:0] = Minor Version
901      */
902     uint32_t psci_version;
903 
904     /* Current power state, access guarded by BQL */
905     ARMPSCIState power_state;
906 
907     /* CPU has virtualization extension */
908     bool has_el2;
909     /* CPU has security extension */
910     bool has_el3;
911     /* CPU has PMU (Performance Monitor Unit) */
912     bool has_pmu;
913     /* CPU has VFP */
914     bool has_vfp;
915     /* CPU has Neon */
916     bool has_neon;
917     /* CPU has M-profile DSP extension */
918     bool has_dsp;
919 
920     /* CPU has memory protection unit */
921     bool has_mpu;
922     /* PMSAv7 MPU number of supported regions */
923     uint32_t pmsav7_dregion;
924     /* PMSAv8 MPU number of supported hyp regions */
925     uint32_t pmsav8r_hdregion;
926     /* v8M SAU number of supported regions */
927     uint32_t sau_sregion;
928 
929     /* PSCI conduit used to invoke PSCI methods
930      * 0 - disabled, 1 - smc, 2 - hvc
931      */
932     uint32_t psci_conduit;
933 
934     /* For v8M, initial value of the Secure VTOR */
935     uint32_t init_svtor;
936     /* For v8M, initial value of the Non-secure VTOR */
937     uint32_t init_nsvtor;
938 
939     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
940      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
941      */
942     uint32_t kvm_target;
943 
944     /* KVM init features for this CPU */
945     uint32_t kvm_init_features[7];
946 
947     /* KVM CPU state */
948 
949     /* KVM virtual time adjustment */
950     bool kvm_adjvtime;
951     bool kvm_vtime_dirty;
952     uint64_t kvm_vtime;
953 
954     /* KVM steal time */
955     OnOffAuto kvm_steal_time;
956 
957     /* Uniprocessor system with MP extensions */
958     bool mp_is_up;
959 
960     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
961      * and the probe failed (so we need to report the error in realize)
962      */
963     bool host_cpu_probe_failed;
964 
965     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
966      * register.
967      */
968     int32_t core_count;
969 
970     /* The instance init functions for implementation-specific subclasses
971      * set these fields to specify the implementation-dependent values of
972      * various constant registers and reset values of non-constant
973      * registers.
974      * Some of these might become QOM properties eventually.
975      * Field names match the official register names as defined in the
976      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
977      * is used for reset values of non-constant registers; no reset_
978      * prefix means a constant register.
979      * Some of these registers are split out into a substructure that
980      * is shared with the translators to control the ISA.
981      *
982      * Note that if you add an ID register to the ARMISARegisters struct
983      * you need to also update the 32-bit and 64-bit versions of the
984      * kvm_arm_get_host_cpu_features() function to correctly populate the
985      * field by reading the value from the KVM vCPU.
986      */
987     struct ARMISARegisters {
988         uint32_t id_isar0;
989         uint32_t id_isar1;
990         uint32_t id_isar2;
991         uint32_t id_isar3;
992         uint32_t id_isar4;
993         uint32_t id_isar5;
994         uint32_t id_isar6;
995         uint32_t id_mmfr0;
996         uint32_t id_mmfr1;
997         uint32_t id_mmfr2;
998         uint32_t id_mmfr3;
999         uint32_t id_mmfr4;
1000         uint32_t id_mmfr5;
1001         uint32_t id_pfr0;
1002         uint32_t id_pfr1;
1003         uint32_t id_pfr2;
1004         uint32_t mvfr0;
1005         uint32_t mvfr1;
1006         uint32_t mvfr2;
1007         uint32_t id_dfr0;
1008         uint32_t id_dfr1;
1009         uint32_t dbgdidr;
1010         uint32_t dbgdevid;
1011         uint32_t dbgdevid1;
1012         uint64_t id_aa64isar0;
1013         uint64_t id_aa64isar1;
1014         uint64_t id_aa64pfr0;
1015         uint64_t id_aa64pfr1;
1016         uint64_t id_aa64mmfr0;
1017         uint64_t id_aa64mmfr1;
1018         uint64_t id_aa64mmfr2;
1019         uint64_t id_aa64dfr0;
1020         uint64_t id_aa64dfr1;
1021         uint64_t id_aa64zfr0;
1022         uint64_t id_aa64smfr0;
1023         uint64_t reset_pmcr_el0;
1024     } isar;
1025     uint64_t midr;
1026     uint32_t revidr;
1027     uint32_t reset_fpsid;
1028     uint64_t ctr;
1029     uint32_t reset_sctlr;
1030     uint64_t pmceid0;
1031     uint64_t pmceid1;
1032     uint32_t id_afr0;
1033     uint64_t id_aa64afr0;
1034     uint64_t id_aa64afr1;
1035     uint64_t clidr;
1036     uint64_t mp_affinity; /* MP ID without feature bits */
1037     /* The elements of this array are the CCSIDR values for each cache,
1038      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1039      */
1040     uint64_t ccsidr[16];
1041     uint64_t reset_cbar;
1042     uint32_t reset_auxcr;
1043     bool reset_hivecs;
1044 
1045     /*
1046      * Intermediate values used during property parsing.
1047      * Once finalized, the values should be read from ID_AA64*.
1048      */
1049     bool prop_pauth;
1050     bool prop_pauth_impdef;
1051     bool prop_lpa2;
1052 
1053     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1054     uint32_t dcz_blocksize;
1055     uint64_t rvbar_prop; /* Property/input signals.  */
1056 
1057     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1058     int gic_num_lrs; /* number of list registers */
1059     int gic_vpribits; /* number of virtual priority bits */
1060     int gic_vprebits; /* number of virtual preemption bits */
1061     int gic_pribits; /* number of physical priority bits */
1062 
1063     /* Whether the cfgend input is high (i.e. this CPU should reset into
1064      * big-endian mode).  This setting isn't used directly: instead it modifies
1065      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1066      * architecture version.
1067      */
1068     bool cfgend;
1069 
1070     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1071     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1072 
1073     int32_t node_id; /* NUMA node this CPU belongs to */
1074 
1075     /* Used to synchronize KVM and QEMU in-kernel device levels */
1076     uint8_t device_irq_level;
1077 
1078     /* Used to set the maximum vector length the cpu will support.  */
1079     uint32_t sve_max_vq;
1080 
1081 #ifdef CONFIG_USER_ONLY
1082     /* Used to set the default vector length at process start. */
1083     uint32_t sve_default_vq;
1084     uint32_t sme_default_vq;
1085 #endif
1086 
1087     ARMVQMap sve_vq;
1088     ARMVQMap sme_vq;
1089 
1090     /* Generic timer counter frequency, in Hz */
1091     uint64_t gt_cntfrq_hz;
1092 };
1093 
1094 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1095 
1096 void arm_cpu_post_init(Object *obj);
1097 
1098 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1099 
1100 #ifndef CONFIG_USER_ONLY
1101 extern const VMStateDescription vmstate_arm_cpu;
1102 
1103 void arm_cpu_do_interrupt(CPUState *cpu);
1104 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1105 #endif /* !CONFIG_USER_ONLY */
1106 
1107 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1108                                          MemTxAttrs *attrs);
1109 
1110 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1111 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1112 
1113 /*
1114  * Helpers to dynamically generates XML descriptions of the sysregs
1115  * and SVE registers. Returns the number of registers in each set.
1116  */
1117 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1118 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1119 
1120 /* Returns the dynamically generated XML for the gdb stub.
1121  * Returns a pointer to the XML contents for the specified XML file or NULL
1122  * if the XML name doesn't match the predefined one.
1123  */
1124 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1125 
1126 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1127                              int cpuid, DumpState *s);
1128 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1129                              int cpuid, DumpState *s);
1130 
1131 #ifdef TARGET_AARCH64
1132 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1133 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1134 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1135 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1136                            int new_el, bool el0_a64);
1137 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1138 
1139 /*
1140  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1141  * The byte at offset i from the start of the in-memory representation contains
1142  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1143  * lowest offsets are stored in the lowest memory addresses, then that nearly
1144  * matches QEMU's representation, which is to use an array of host-endian
1145  * uint64_t's, where the lower offsets are at the lower indices. To complete
1146  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1147  */
1148 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1149 {
1150 #if HOST_BIG_ENDIAN
1151     int i;
1152 
1153     for (i = 0; i < nr; ++i) {
1154         dst[i] = bswap64(src[i]);
1155     }
1156 
1157     return dst;
1158 #else
1159     return src;
1160 #endif
1161 }
1162 
1163 #else
1164 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1165 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1166                                          int n, bool a)
1167 { }
1168 #endif
1169 
1170 void aarch64_sync_32_to_64(CPUARMState *env);
1171 void aarch64_sync_64_to_32(CPUARMState *env);
1172 
1173 int fp_exception_el(CPUARMState *env, int cur_el);
1174 int sve_exception_el(CPUARMState *env, int cur_el);
1175 int sme_exception_el(CPUARMState *env, int cur_el);
1176 
1177 /**
1178  * sve_vqm1_for_el_sm:
1179  * @env: CPUARMState
1180  * @el: exception level
1181  * @sm: streaming mode
1182  *
1183  * Compute the current vector length for @el & @sm, in units of
1184  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1185  * If @sm, compute for SVL, otherwise NVL.
1186  */
1187 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1188 
1189 /* Likewise, but using @sm = PSTATE.SM. */
1190 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1191 
1192 static inline bool is_a64(CPUARMState *env)
1193 {
1194     return env->aarch64;
1195 }
1196 
1197 /**
1198  * pmu_op_start/finish
1199  * @env: CPUARMState
1200  *
1201  * Convert all PMU counters between their delta form (the typical mode when
1202  * they are enabled) and the guest-visible values. These two calls must
1203  * surround any action which might affect the counters.
1204  */
1205 void pmu_op_start(CPUARMState *env);
1206 void pmu_op_finish(CPUARMState *env);
1207 
1208 /*
1209  * Called when a PMU counter is due to overflow
1210  */
1211 void arm_pmu_timer_cb(void *opaque);
1212 
1213 /**
1214  * Functions to register as EL change hooks for PMU mode filtering
1215  */
1216 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1217 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1218 
1219 /*
1220  * pmu_init
1221  * @cpu: ARMCPU
1222  *
1223  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1224  * for the current configuration
1225  */
1226 void pmu_init(ARMCPU *cpu);
1227 
1228 /* SCTLR bit meanings. Several bits have been reused in newer
1229  * versions of the architecture; in that case we define constants
1230  * for both old and new bit meanings. Code which tests against those
1231  * bits should probably check or otherwise arrange that the CPU
1232  * is the architectural version it expects.
1233  */
1234 #define SCTLR_M       (1U << 0)
1235 #define SCTLR_A       (1U << 1)
1236 #define SCTLR_C       (1U << 2)
1237 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1238 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1239 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1240 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1241 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1242 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1243 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1244 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1245 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1246 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1247 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1248 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1249 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1250 #define SCTLR_SED     (1U << 8) /* v8 onward */
1251 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1252 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1253 #define SCTLR_F       (1U << 10) /* up to v6 */
1254 #define SCTLR_SW      (1U << 10) /* v7 */
1255 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1256 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1257 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1258 #define SCTLR_I       (1U << 12)
1259 #define SCTLR_V       (1U << 13) /* AArch32 only */
1260 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1261 #define SCTLR_RR      (1U << 14) /* up to v7 */
1262 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1263 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1264 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1265 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1266 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1267 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1268 #define SCTLR_BR      (1U << 17) /* PMSA only */
1269 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1270 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1271 #define SCTLR_WXN     (1U << 19)
1272 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1273 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1274 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1275 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1276 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1277 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1278 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1279 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1280 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1281 #define SCTLR_VE      (1U << 24) /* up to v7 */
1282 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1283 #define SCTLR_EE      (1U << 25)
1284 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1285 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1286 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1287 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1288 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1289 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1290 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1291 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1292 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1293 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1294 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1295 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1296 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1297 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1298 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1299 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1300 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1301 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1302 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1303 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1304 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1305 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1306 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1307 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1308 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1309 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1310 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1311 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1312 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1313 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1314 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1315 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1316 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1317 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1318 
1319 /* Bit definitions for CPACR (AArch32 only) */
1320 FIELD(CPACR, CP10, 20, 2)
1321 FIELD(CPACR, CP11, 22, 2)
1322 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
1323 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
1324 FIELD(CPACR, ASEDIS, 31, 1)
1325 
1326 /* Bit definitions for CPACR_EL1 (AArch64 only) */
1327 FIELD(CPACR_EL1, ZEN, 16, 2)
1328 FIELD(CPACR_EL1, FPEN, 20, 2)
1329 FIELD(CPACR_EL1, SMEN, 24, 2)
1330 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
1331 
1332 /* Bit definitions for HCPTR (AArch32 only) */
1333 FIELD(HCPTR, TCP10, 10, 1)
1334 FIELD(HCPTR, TCP11, 11, 1)
1335 FIELD(HCPTR, TASE, 15, 1)
1336 FIELD(HCPTR, TTA, 20, 1)
1337 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
1338 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
1339 
1340 /* Bit definitions for CPTR_EL2 (AArch64 only) */
1341 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
1342 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
1343 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
1344 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
1345 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
1346 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
1347 FIELD(CPTR_EL2, TTA, 28, 1)
1348 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
1349 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
1350 
1351 /* Bit definitions for CPTR_EL3 (AArch64 only) */
1352 FIELD(CPTR_EL3, EZ, 8, 1)
1353 FIELD(CPTR_EL3, TFP, 10, 1)
1354 FIELD(CPTR_EL3, ESM, 12, 1)
1355 FIELD(CPTR_EL3, TTA, 20, 1)
1356 FIELD(CPTR_EL3, TAM, 30, 1)
1357 FIELD(CPTR_EL3, TCPAC, 31, 1)
1358 
1359 #define MDCR_MTPME    (1U << 28)
1360 #define MDCR_TDCC     (1U << 27)
1361 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
1362 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
1363 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
1364 #define MDCR_EPMAD    (1U << 21)
1365 #define MDCR_EDAD     (1U << 20)
1366 #define MDCR_TTRF     (1U << 19)
1367 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
1368 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1369 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1370 #define MDCR_SDD      (1U << 16)
1371 #define MDCR_SPD      (3U << 14)
1372 #define MDCR_TDRA     (1U << 11)
1373 #define MDCR_TDOSA    (1U << 10)
1374 #define MDCR_TDA      (1U << 9)
1375 #define MDCR_TDE      (1U << 8)
1376 #define MDCR_HPME     (1U << 7)
1377 #define MDCR_TPM      (1U << 6)
1378 #define MDCR_TPMCR    (1U << 5)
1379 #define MDCR_HPMN     (0x1fU)
1380 
1381 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1382 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
1383                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
1384                          MDCR_STE | MDCR_SPME | MDCR_SPD)
1385 
1386 #define CPSR_M (0x1fU)
1387 #define CPSR_T (1U << 5)
1388 #define CPSR_F (1U << 6)
1389 #define CPSR_I (1U << 7)
1390 #define CPSR_A (1U << 8)
1391 #define CPSR_E (1U << 9)
1392 #define CPSR_IT_2_7 (0xfc00U)
1393 #define CPSR_GE (0xfU << 16)
1394 #define CPSR_IL (1U << 20)
1395 #define CPSR_DIT (1U << 21)
1396 #define CPSR_PAN (1U << 22)
1397 #define CPSR_SSBS (1U << 23)
1398 #define CPSR_J (1U << 24)
1399 #define CPSR_IT_0_1 (3U << 25)
1400 #define CPSR_Q (1U << 27)
1401 #define CPSR_V (1U << 28)
1402 #define CPSR_C (1U << 29)
1403 #define CPSR_Z (1U << 30)
1404 #define CPSR_N (1U << 31)
1405 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1406 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1407 
1408 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1409 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1410     | CPSR_NZCV)
1411 /* Bits writable in user mode.  */
1412 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1413 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1414 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1415 
1416 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1417 #define XPSR_EXCP 0x1ffU
1418 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1419 #define XPSR_IT_2_7 CPSR_IT_2_7
1420 #define XPSR_GE CPSR_GE
1421 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1422 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1423 #define XPSR_IT_0_1 CPSR_IT_0_1
1424 #define XPSR_Q CPSR_Q
1425 #define XPSR_V CPSR_V
1426 #define XPSR_C CPSR_C
1427 #define XPSR_Z CPSR_Z
1428 #define XPSR_N CPSR_N
1429 #define XPSR_NZCV CPSR_NZCV
1430 #define XPSR_IT CPSR_IT
1431 
1432 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1433 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1434 #define TTBCR_PD0    (1U << 4)
1435 #define TTBCR_PD1    (1U << 5)
1436 #define TTBCR_EPD0   (1U << 7)
1437 #define TTBCR_IRGN0  (3U << 8)
1438 #define TTBCR_ORGN0  (3U << 10)
1439 #define TTBCR_SH0    (3U << 12)
1440 #define TTBCR_T1SZ   (3U << 16)
1441 #define TTBCR_A1     (1U << 22)
1442 #define TTBCR_EPD1   (1U << 23)
1443 #define TTBCR_IRGN1  (3U << 24)
1444 #define TTBCR_ORGN1  (3U << 26)
1445 #define TTBCR_SH1    (1U << 28)
1446 #define TTBCR_EAE    (1U << 31)
1447 
1448 FIELD(VTCR, T0SZ, 0, 6)
1449 FIELD(VTCR, SL0, 6, 2)
1450 FIELD(VTCR, IRGN0, 8, 2)
1451 FIELD(VTCR, ORGN0, 10, 2)
1452 FIELD(VTCR, SH0, 12, 2)
1453 FIELD(VTCR, TG0, 14, 2)
1454 FIELD(VTCR, PS, 16, 3)
1455 FIELD(VTCR, VS, 19, 1)
1456 FIELD(VTCR, HA, 21, 1)
1457 FIELD(VTCR, HD, 22, 1)
1458 FIELD(VTCR, HWU59, 25, 1)
1459 FIELD(VTCR, HWU60, 26, 1)
1460 FIELD(VTCR, HWU61, 27, 1)
1461 FIELD(VTCR, HWU62, 28, 1)
1462 FIELD(VTCR, NSW, 29, 1)
1463 FIELD(VTCR, NSA, 30, 1)
1464 FIELD(VTCR, DS, 32, 1)
1465 FIELD(VTCR, SL2, 33, 1)
1466 
1467 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1468  * Only these are valid when in AArch64 mode; in
1469  * AArch32 mode SPSRs are basically CPSR-format.
1470  */
1471 #define PSTATE_SP (1U)
1472 #define PSTATE_M (0xFU)
1473 #define PSTATE_nRW (1U << 4)
1474 #define PSTATE_F (1U << 6)
1475 #define PSTATE_I (1U << 7)
1476 #define PSTATE_A (1U << 8)
1477 #define PSTATE_D (1U << 9)
1478 #define PSTATE_BTYPE (3U << 10)
1479 #define PSTATE_SSBS (1U << 12)
1480 #define PSTATE_IL (1U << 20)
1481 #define PSTATE_SS (1U << 21)
1482 #define PSTATE_PAN (1U << 22)
1483 #define PSTATE_UAO (1U << 23)
1484 #define PSTATE_DIT (1U << 24)
1485 #define PSTATE_TCO (1U << 25)
1486 #define PSTATE_V (1U << 28)
1487 #define PSTATE_C (1U << 29)
1488 #define PSTATE_Z (1U << 30)
1489 #define PSTATE_N (1U << 31)
1490 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1491 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1492 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1493 /* Mode values for AArch64 */
1494 #define PSTATE_MODE_EL3h 13
1495 #define PSTATE_MODE_EL3t 12
1496 #define PSTATE_MODE_EL2h 9
1497 #define PSTATE_MODE_EL2t 8
1498 #define PSTATE_MODE_EL1h 5
1499 #define PSTATE_MODE_EL1t 4
1500 #define PSTATE_MODE_EL0t 0
1501 
1502 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1503 FIELD(SVCR, SM, 0, 1)
1504 FIELD(SVCR, ZA, 1, 1)
1505 
1506 /* Fields for SMCR_ELx. */
1507 FIELD(SMCR, LEN, 0, 4)
1508 FIELD(SMCR, FA64, 31, 1)
1509 
1510 /* Write a new value to v7m.exception, thus transitioning into or out
1511  * of Handler mode; this may result in a change of active stack pointer.
1512  */
1513 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1514 
1515 /* Map EL and handler into a PSTATE_MODE.  */
1516 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1517 {
1518     return (el << 2) | handler;
1519 }
1520 
1521 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1522  * interprocessing, so we don't attempt to sync with the cpsr state used by
1523  * the 32 bit decoder.
1524  */
1525 static inline uint32_t pstate_read(CPUARMState *env)
1526 {
1527     int ZF;
1528 
1529     ZF = (env->ZF == 0);
1530     return (env->NF & 0x80000000) | (ZF << 30)
1531         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1532         | env->pstate | env->daif | (env->btype << 10);
1533 }
1534 
1535 static inline void pstate_write(CPUARMState *env, uint32_t val)
1536 {
1537     env->ZF = (~val) & PSTATE_Z;
1538     env->NF = val;
1539     env->CF = (val >> 29) & 1;
1540     env->VF = (val << 3) & 0x80000000;
1541     env->daif = val & PSTATE_DAIF;
1542     env->btype = (val >> 10) & 3;
1543     env->pstate = val & ~CACHED_PSTATE_BITS;
1544 }
1545 
1546 /* Return the current CPSR value.  */
1547 uint32_t cpsr_read(CPUARMState *env);
1548 
1549 typedef enum CPSRWriteType {
1550     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1551     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1552     CPSRWriteRaw = 2,
1553         /* trust values, no reg bank switch, no hflags rebuild */
1554     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1555 } CPSRWriteType;
1556 
1557 /*
1558  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1559  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1560  * correspond to TB flags bits cached in the hflags, unless @write_type
1561  * is CPSRWriteRaw.
1562  */
1563 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1564                 CPSRWriteType write_type);
1565 
1566 /* Return the current xPSR value.  */
1567 static inline uint32_t xpsr_read(CPUARMState *env)
1568 {
1569     int ZF;
1570     ZF = (env->ZF == 0);
1571     return (env->NF & 0x80000000) | (ZF << 30)
1572         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1573         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1574         | ((env->condexec_bits & 0xfc) << 8)
1575         | (env->GE << 16)
1576         | env->v7m.exception;
1577 }
1578 
1579 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1580 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1581 {
1582     if (mask & XPSR_NZCV) {
1583         env->ZF = (~val) & XPSR_Z;
1584         env->NF = val;
1585         env->CF = (val >> 29) & 1;
1586         env->VF = (val << 3) & 0x80000000;
1587     }
1588     if (mask & XPSR_Q) {
1589         env->QF = ((val & XPSR_Q) != 0);
1590     }
1591     if (mask & XPSR_GE) {
1592         env->GE = (val & XPSR_GE) >> 16;
1593     }
1594 #ifndef CONFIG_USER_ONLY
1595     if (mask & XPSR_T) {
1596         env->thumb = ((val & XPSR_T) != 0);
1597     }
1598     if (mask & XPSR_IT_0_1) {
1599         env->condexec_bits &= ~3;
1600         env->condexec_bits |= (val >> 25) & 3;
1601     }
1602     if (mask & XPSR_IT_2_7) {
1603         env->condexec_bits &= 3;
1604         env->condexec_bits |= (val >> 8) & 0xfc;
1605     }
1606     if (mask & XPSR_EXCP) {
1607         /* Note that this only happens on exception exit */
1608         write_v7m_exception(env, val & XPSR_EXCP);
1609     }
1610 #endif
1611 }
1612 
1613 #define HCR_VM        (1ULL << 0)
1614 #define HCR_SWIO      (1ULL << 1)
1615 #define HCR_PTW       (1ULL << 2)
1616 #define HCR_FMO       (1ULL << 3)
1617 #define HCR_IMO       (1ULL << 4)
1618 #define HCR_AMO       (1ULL << 5)
1619 #define HCR_VF        (1ULL << 6)
1620 #define HCR_VI        (1ULL << 7)
1621 #define HCR_VSE       (1ULL << 8)
1622 #define HCR_FB        (1ULL << 9)
1623 #define HCR_BSU_MASK  (3ULL << 10)
1624 #define HCR_DC        (1ULL << 12)
1625 #define HCR_TWI       (1ULL << 13)
1626 #define HCR_TWE       (1ULL << 14)
1627 #define HCR_TID0      (1ULL << 15)
1628 #define HCR_TID1      (1ULL << 16)
1629 #define HCR_TID2      (1ULL << 17)
1630 #define HCR_TID3      (1ULL << 18)
1631 #define HCR_TSC       (1ULL << 19)
1632 #define HCR_TIDCP     (1ULL << 20)
1633 #define HCR_TACR      (1ULL << 21)
1634 #define HCR_TSW       (1ULL << 22)
1635 #define HCR_TPCP      (1ULL << 23)
1636 #define HCR_TPU       (1ULL << 24)
1637 #define HCR_TTLB      (1ULL << 25)
1638 #define HCR_TVM       (1ULL << 26)
1639 #define HCR_TGE       (1ULL << 27)
1640 #define HCR_TDZ       (1ULL << 28)
1641 #define HCR_HCD       (1ULL << 29)
1642 #define HCR_TRVM      (1ULL << 30)
1643 #define HCR_RW        (1ULL << 31)
1644 #define HCR_CD        (1ULL << 32)
1645 #define HCR_ID        (1ULL << 33)
1646 #define HCR_E2H       (1ULL << 34)
1647 #define HCR_TLOR      (1ULL << 35)
1648 #define HCR_TERR      (1ULL << 36)
1649 #define HCR_TEA       (1ULL << 37)
1650 #define HCR_MIOCNCE   (1ULL << 38)
1651 /* RES0 bit 39 */
1652 #define HCR_APK       (1ULL << 40)
1653 #define HCR_API       (1ULL << 41)
1654 #define HCR_NV        (1ULL << 42)
1655 #define HCR_NV1       (1ULL << 43)
1656 #define HCR_AT        (1ULL << 44)
1657 #define HCR_NV2       (1ULL << 45)
1658 #define HCR_FWB       (1ULL << 46)
1659 #define HCR_FIEN      (1ULL << 47)
1660 /* RES0 bit 48 */
1661 #define HCR_TID4      (1ULL << 49)
1662 #define HCR_TICAB     (1ULL << 50)
1663 #define HCR_AMVOFFEN  (1ULL << 51)
1664 #define HCR_TOCU      (1ULL << 52)
1665 #define HCR_ENSCXT    (1ULL << 53)
1666 #define HCR_TTLBIS    (1ULL << 54)
1667 #define HCR_TTLBOS    (1ULL << 55)
1668 #define HCR_ATA       (1ULL << 56)
1669 #define HCR_DCT       (1ULL << 57)
1670 #define HCR_TID5      (1ULL << 58)
1671 #define HCR_TWEDEN    (1ULL << 59)
1672 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1673 
1674 #define HCRX_ENAS0    (1ULL << 0)
1675 #define HCRX_ENALS    (1ULL << 1)
1676 #define HCRX_ENASR    (1ULL << 2)
1677 #define HCRX_FNXS     (1ULL << 3)
1678 #define HCRX_FGTNXS   (1ULL << 4)
1679 #define HCRX_SMPME    (1ULL << 5)
1680 #define HCRX_TALLINT  (1ULL << 6)
1681 #define HCRX_VINMI    (1ULL << 7)
1682 #define HCRX_VFNMI    (1ULL << 8)
1683 #define HCRX_CMOW     (1ULL << 9)
1684 #define HCRX_MCE2     (1ULL << 10)
1685 #define HCRX_MSCEN    (1ULL << 11)
1686 
1687 #define HPFAR_NS      (1ULL << 63)
1688 
1689 #define SCR_NS                (1ULL << 0)
1690 #define SCR_IRQ               (1ULL << 1)
1691 #define SCR_FIQ               (1ULL << 2)
1692 #define SCR_EA                (1ULL << 3)
1693 #define SCR_FW                (1ULL << 4)
1694 #define SCR_AW                (1ULL << 5)
1695 #define SCR_NET               (1ULL << 6)
1696 #define SCR_SMD               (1ULL << 7)
1697 #define SCR_HCE               (1ULL << 8)
1698 #define SCR_SIF               (1ULL << 9)
1699 #define SCR_RW                (1ULL << 10)
1700 #define SCR_ST                (1ULL << 11)
1701 #define SCR_TWI               (1ULL << 12)
1702 #define SCR_TWE               (1ULL << 13)
1703 #define SCR_TLOR              (1ULL << 14)
1704 #define SCR_TERR              (1ULL << 15)
1705 #define SCR_APK               (1ULL << 16)
1706 #define SCR_API               (1ULL << 17)
1707 #define SCR_EEL2              (1ULL << 18)
1708 #define SCR_EASE              (1ULL << 19)
1709 #define SCR_NMEA              (1ULL << 20)
1710 #define SCR_FIEN              (1ULL << 21)
1711 #define SCR_ENSCXT            (1ULL << 25)
1712 #define SCR_ATA               (1ULL << 26)
1713 #define SCR_FGTEN             (1ULL << 27)
1714 #define SCR_ECVEN             (1ULL << 28)
1715 #define SCR_TWEDEN            (1ULL << 29)
1716 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1717 #define SCR_TME               (1ULL << 34)
1718 #define SCR_AMVOFFEN          (1ULL << 35)
1719 #define SCR_ENAS0             (1ULL << 36)
1720 #define SCR_ADEN              (1ULL << 37)
1721 #define SCR_HXEN              (1ULL << 38)
1722 #define SCR_TRNDR             (1ULL << 40)
1723 #define SCR_ENTP2             (1ULL << 41)
1724 #define SCR_GPF               (1ULL << 48)
1725 
1726 #define HSTR_TTEE (1 << 16)
1727 #define HSTR_TJDBX (1 << 17)
1728 
1729 /* Return the current FPSCR value.  */
1730 uint32_t vfp_get_fpscr(CPUARMState *env);
1731 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1732 
1733 /* FPCR, Floating Point Control Register
1734  * FPSR, Floating Poiht Status Register
1735  *
1736  * For A64 the FPSCR is split into two logically distinct registers,
1737  * FPCR and FPSR. However since they still use non-overlapping bits
1738  * we store the underlying state in fpscr and just mask on read/write.
1739  */
1740 #define FPSR_MASK 0xf800009f
1741 #define FPCR_MASK 0x07ff9f00
1742 
1743 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1744 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1745 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1746 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1747 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1748 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1749 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1750 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1751 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1752 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1753 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1754 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1755 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1756 #define FPCR_C      (1 << 29)   /* FP carry flag */
1757 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1758 #define FPCR_N      (1 << 31)   /* FP negative flag */
1759 
1760 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1761 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1762 #define FPCR_LTPSIZE_LENGTH 3
1763 
1764 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1765 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1766 
1767 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1768 {
1769     return vfp_get_fpscr(env) & FPSR_MASK;
1770 }
1771 
1772 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1773 {
1774     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1775     vfp_set_fpscr(env, new_fpscr);
1776 }
1777 
1778 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1779 {
1780     return vfp_get_fpscr(env) & FPCR_MASK;
1781 }
1782 
1783 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1784 {
1785     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1786     vfp_set_fpscr(env, new_fpscr);
1787 }
1788 
1789 enum arm_cpu_mode {
1790   ARM_CPU_MODE_USR = 0x10,
1791   ARM_CPU_MODE_FIQ = 0x11,
1792   ARM_CPU_MODE_IRQ = 0x12,
1793   ARM_CPU_MODE_SVC = 0x13,
1794   ARM_CPU_MODE_MON = 0x16,
1795   ARM_CPU_MODE_ABT = 0x17,
1796   ARM_CPU_MODE_HYP = 0x1a,
1797   ARM_CPU_MODE_UND = 0x1b,
1798   ARM_CPU_MODE_SYS = 0x1f
1799 };
1800 
1801 /* VFP system registers.  */
1802 #define ARM_VFP_FPSID   0
1803 #define ARM_VFP_FPSCR   1
1804 #define ARM_VFP_MVFR2   5
1805 #define ARM_VFP_MVFR1   6
1806 #define ARM_VFP_MVFR0   7
1807 #define ARM_VFP_FPEXC   8
1808 #define ARM_VFP_FPINST  9
1809 #define ARM_VFP_FPINST2 10
1810 /* These ones are M-profile only */
1811 #define ARM_VFP_FPSCR_NZCVQC 2
1812 #define ARM_VFP_VPR 12
1813 #define ARM_VFP_P0 13
1814 #define ARM_VFP_FPCXT_NS 14
1815 #define ARM_VFP_FPCXT_S 15
1816 
1817 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1818 #define QEMU_VFP_FPSCR_NZCV 0xffff
1819 
1820 /* iwMMXt coprocessor control registers.  */
1821 #define ARM_IWMMXT_wCID  0
1822 #define ARM_IWMMXT_wCon  1
1823 #define ARM_IWMMXT_wCSSF 2
1824 #define ARM_IWMMXT_wCASF 3
1825 #define ARM_IWMMXT_wCGR0 8
1826 #define ARM_IWMMXT_wCGR1 9
1827 #define ARM_IWMMXT_wCGR2 10
1828 #define ARM_IWMMXT_wCGR3 11
1829 
1830 /* V7M CCR bits */
1831 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1832 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1833 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1834 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1835 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1836 FIELD(V7M_CCR, STKALIGN, 9, 1)
1837 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1838 FIELD(V7M_CCR, DC, 16, 1)
1839 FIELD(V7M_CCR, IC, 17, 1)
1840 FIELD(V7M_CCR, BP, 18, 1)
1841 FIELD(V7M_CCR, LOB, 19, 1)
1842 FIELD(V7M_CCR, TRD, 20, 1)
1843 
1844 /* V7M SCR bits */
1845 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1846 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1847 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1848 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1849 
1850 /* V7M AIRCR bits */
1851 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1852 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1853 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1854 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1855 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1856 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1857 FIELD(V7M_AIRCR, PRIS, 14, 1)
1858 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1859 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1860 
1861 /* V7M CFSR bits for MMFSR */
1862 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1863 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1864 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1865 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1866 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1867 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1868 
1869 /* V7M CFSR bits for BFSR */
1870 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1871 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1872 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1873 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1874 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1875 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1876 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1877 
1878 /* V7M CFSR bits for UFSR */
1879 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1880 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1881 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1882 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1883 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1884 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1885 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1886 
1887 /* V7M CFSR bit masks covering all of the subregister bits */
1888 FIELD(V7M_CFSR, MMFSR, 0, 8)
1889 FIELD(V7M_CFSR, BFSR, 8, 8)
1890 FIELD(V7M_CFSR, UFSR, 16, 16)
1891 
1892 /* V7M HFSR bits */
1893 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1894 FIELD(V7M_HFSR, FORCED, 30, 1)
1895 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1896 
1897 /* V7M DFSR bits */
1898 FIELD(V7M_DFSR, HALTED, 0, 1)
1899 FIELD(V7M_DFSR, BKPT, 1, 1)
1900 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1901 FIELD(V7M_DFSR, VCATCH, 3, 1)
1902 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1903 
1904 /* V7M SFSR bits */
1905 FIELD(V7M_SFSR, INVEP, 0, 1)
1906 FIELD(V7M_SFSR, INVIS, 1, 1)
1907 FIELD(V7M_SFSR, INVER, 2, 1)
1908 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1909 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1910 FIELD(V7M_SFSR, LSPERR, 5, 1)
1911 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1912 FIELD(V7M_SFSR, LSERR, 7, 1)
1913 
1914 /* v7M MPU_CTRL bits */
1915 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1916 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1917 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1918 
1919 /* v7M CLIDR bits */
1920 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1921 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1922 FIELD(V7M_CLIDR, LOC, 24, 3)
1923 FIELD(V7M_CLIDR, LOUU, 27, 3)
1924 FIELD(V7M_CLIDR, ICB, 30, 2)
1925 
1926 FIELD(V7M_CSSELR, IND, 0, 1)
1927 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1928 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1929  * define a mask for this and check that it doesn't permit running off
1930  * the end of the array.
1931  */
1932 FIELD(V7M_CSSELR, INDEX, 0, 4)
1933 
1934 /* v7M FPCCR bits */
1935 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1936 FIELD(V7M_FPCCR, USER, 1, 1)
1937 FIELD(V7M_FPCCR, S, 2, 1)
1938 FIELD(V7M_FPCCR, THREAD, 3, 1)
1939 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1940 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1941 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1942 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1943 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1944 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1945 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1946 FIELD(V7M_FPCCR, RES0, 11, 15)
1947 FIELD(V7M_FPCCR, TS, 26, 1)
1948 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1949 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1950 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1951 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1952 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1953 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1954 #define R_V7M_FPCCR_BANKED_MASK                 \
1955     (R_V7M_FPCCR_LSPACT_MASK |                  \
1956      R_V7M_FPCCR_USER_MASK |                    \
1957      R_V7M_FPCCR_THREAD_MASK |                  \
1958      R_V7M_FPCCR_MMRDY_MASK |                   \
1959      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1960      R_V7M_FPCCR_UFRDY_MASK |                   \
1961      R_V7M_FPCCR_ASPEN_MASK)
1962 
1963 /* v7M VPR bits */
1964 FIELD(V7M_VPR, P0, 0, 16)
1965 FIELD(V7M_VPR, MASK01, 16, 4)
1966 FIELD(V7M_VPR, MASK23, 20, 4)
1967 
1968 /*
1969  * System register ID fields.
1970  */
1971 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1972 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1973 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1974 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1975 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1976 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1977 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1978 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1979 FIELD(CLIDR_EL1, LOC, 24, 3)
1980 FIELD(CLIDR_EL1, LOUU, 27, 3)
1981 FIELD(CLIDR_EL1, ICB, 30, 3)
1982 
1983 /* When FEAT_CCIDX is implemented */
1984 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1985 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1986 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1987 
1988 /* When FEAT_CCIDX is not implemented */
1989 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1990 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1991 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1992 
1993 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1994 FIELD(CTR_EL0,  L1IP, 14, 2)
1995 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1996 FIELD(CTR_EL0,  ERG, 20, 4)
1997 FIELD(CTR_EL0,  CWG, 24, 4)
1998 FIELD(CTR_EL0,  IDC, 28, 1)
1999 FIELD(CTR_EL0,  DIC, 29, 1)
2000 FIELD(CTR_EL0,  TMINLINE, 32, 6)
2001 
2002 FIELD(MIDR_EL1, REVISION, 0, 4)
2003 FIELD(MIDR_EL1, PARTNUM, 4, 12)
2004 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
2005 FIELD(MIDR_EL1, VARIANT, 20, 4)
2006 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
2007 
2008 FIELD(ID_ISAR0, SWAP, 0, 4)
2009 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
2010 FIELD(ID_ISAR0, BITFIELD, 8, 4)
2011 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
2012 FIELD(ID_ISAR0, COPROC, 16, 4)
2013 FIELD(ID_ISAR0, DEBUG, 20, 4)
2014 FIELD(ID_ISAR0, DIVIDE, 24, 4)
2015 
2016 FIELD(ID_ISAR1, ENDIAN, 0, 4)
2017 FIELD(ID_ISAR1, EXCEPT, 4, 4)
2018 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
2019 FIELD(ID_ISAR1, EXTEND, 12, 4)
2020 FIELD(ID_ISAR1, IFTHEN, 16, 4)
2021 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
2022 FIELD(ID_ISAR1, INTERWORK, 24, 4)
2023 FIELD(ID_ISAR1, JAZELLE, 28, 4)
2024 
2025 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
2026 FIELD(ID_ISAR2, MEMHINT, 4, 4)
2027 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
2028 FIELD(ID_ISAR2, MULT, 12, 4)
2029 FIELD(ID_ISAR2, MULTS, 16, 4)
2030 FIELD(ID_ISAR2, MULTU, 20, 4)
2031 FIELD(ID_ISAR2, PSR_AR, 24, 4)
2032 FIELD(ID_ISAR2, REVERSAL, 28, 4)
2033 
2034 FIELD(ID_ISAR3, SATURATE, 0, 4)
2035 FIELD(ID_ISAR3, SIMD, 4, 4)
2036 FIELD(ID_ISAR3, SVC, 8, 4)
2037 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
2038 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
2039 FIELD(ID_ISAR3, T32COPY, 20, 4)
2040 FIELD(ID_ISAR3, TRUENOP, 24, 4)
2041 FIELD(ID_ISAR3, T32EE, 28, 4)
2042 
2043 FIELD(ID_ISAR4, UNPRIV, 0, 4)
2044 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
2045 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
2046 FIELD(ID_ISAR4, SMC, 12, 4)
2047 FIELD(ID_ISAR4, BARRIER, 16, 4)
2048 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
2049 FIELD(ID_ISAR4, PSR_M, 24, 4)
2050 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
2051 
2052 FIELD(ID_ISAR5, SEVL, 0, 4)
2053 FIELD(ID_ISAR5, AES, 4, 4)
2054 FIELD(ID_ISAR5, SHA1, 8, 4)
2055 FIELD(ID_ISAR5, SHA2, 12, 4)
2056 FIELD(ID_ISAR5, CRC32, 16, 4)
2057 FIELD(ID_ISAR5, RDM, 24, 4)
2058 FIELD(ID_ISAR5, VCMA, 28, 4)
2059 
2060 FIELD(ID_ISAR6, JSCVT, 0, 4)
2061 FIELD(ID_ISAR6, DP, 4, 4)
2062 FIELD(ID_ISAR6, FHM, 8, 4)
2063 FIELD(ID_ISAR6, SB, 12, 4)
2064 FIELD(ID_ISAR6, SPECRES, 16, 4)
2065 FIELD(ID_ISAR6, BF16, 20, 4)
2066 FIELD(ID_ISAR6, I8MM, 24, 4)
2067 
2068 FIELD(ID_MMFR0, VMSA, 0, 4)
2069 FIELD(ID_MMFR0, PMSA, 4, 4)
2070 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2071 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2072 FIELD(ID_MMFR0, TCM, 16, 4)
2073 FIELD(ID_MMFR0, AUXREG, 20, 4)
2074 FIELD(ID_MMFR0, FCSE, 24, 4)
2075 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2076 
2077 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2078 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2079 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2080 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2081 FIELD(ID_MMFR1, L1HVD, 16, 4)
2082 FIELD(ID_MMFR1, L1UNI, 20, 4)
2083 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2084 FIELD(ID_MMFR1, BPRED, 28, 4)
2085 
2086 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2087 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2088 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2089 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2090 FIELD(ID_MMFR2, UNITLB, 16, 4)
2091 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2092 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2093 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2094 
2095 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2096 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2097 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2098 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2099 FIELD(ID_MMFR3, PAN, 16, 4)
2100 FIELD(ID_MMFR3, COHWALK, 20, 4)
2101 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2102 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2103 
2104 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2105 FIELD(ID_MMFR4, AC2, 4, 4)
2106 FIELD(ID_MMFR4, XNX, 8, 4)
2107 FIELD(ID_MMFR4, CNP, 12, 4)
2108 FIELD(ID_MMFR4, HPDS, 16, 4)
2109 FIELD(ID_MMFR4, LSM, 20, 4)
2110 FIELD(ID_MMFR4, CCIDX, 24, 4)
2111 FIELD(ID_MMFR4, EVT, 28, 4)
2112 
2113 FIELD(ID_MMFR5, ETS, 0, 4)
2114 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2115 
2116 FIELD(ID_PFR0, STATE0, 0, 4)
2117 FIELD(ID_PFR0, STATE1, 4, 4)
2118 FIELD(ID_PFR0, STATE2, 8, 4)
2119 FIELD(ID_PFR0, STATE3, 12, 4)
2120 FIELD(ID_PFR0, CSV2, 16, 4)
2121 FIELD(ID_PFR0, AMU, 20, 4)
2122 FIELD(ID_PFR0, DIT, 24, 4)
2123 FIELD(ID_PFR0, RAS, 28, 4)
2124 
2125 FIELD(ID_PFR1, PROGMOD, 0, 4)
2126 FIELD(ID_PFR1, SECURITY, 4, 4)
2127 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2128 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2129 FIELD(ID_PFR1, GENTIMER, 16, 4)
2130 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2131 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2132 FIELD(ID_PFR1, GIC, 28, 4)
2133 
2134 FIELD(ID_PFR2, CSV3, 0, 4)
2135 FIELD(ID_PFR2, SSBS, 4, 4)
2136 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2137 
2138 FIELD(ID_AA64ISAR0, AES, 4, 4)
2139 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2140 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2141 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2142 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2143 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2144 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2145 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2146 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2147 FIELD(ID_AA64ISAR0, DP, 44, 4)
2148 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2149 FIELD(ID_AA64ISAR0, TS, 52, 4)
2150 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2151 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2152 
2153 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2154 FIELD(ID_AA64ISAR1, APA, 4, 4)
2155 FIELD(ID_AA64ISAR1, API, 8, 4)
2156 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2157 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2158 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2159 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2160 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2161 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2162 FIELD(ID_AA64ISAR1, SB, 36, 4)
2163 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2164 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2165 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2166 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2167 FIELD(ID_AA64ISAR1, XS, 56, 4)
2168 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2169 
2170 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2171 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2172 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2173 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2174 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2175 FIELD(ID_AA64ISAR2, BC, 20, 4)
2176 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2177 
2178 FIELD(ID_AA64PFR0, EL0, 0, 4)
2179 FIELD(ID_AA64PFR0, EL1, 4, 4)
2180 FIELD(ID_AA64PFR0, EL2, 8, 4)
2181 FIELD(ID_AA64PFR0, EL3, 12, 4)
2182 FIELD(ID_AA64PFR0, FP, 16, 4)
2183 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2184 FIELD(ID_AA64PFR0, GIC, 24, 4)
2185 FIELD(ID_AA64PFR0, RAS, 28, 4)
2186 FIELD(ID_AA64PFR0, SVE, 32, 4)
2187 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2188 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2189 FIELD(ID_AA64PFR0, AMU, 44, 4)
2190 FIELD(ID_AA64PFR0, DIT, 48, 4)
2191 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2192 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2193 
2194 FIELD(ID_AA64PFR1, BT, 0, 4)
2195 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2196 FIELD(ID_AA64PFR1, MTE, 8, 4)
2197 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2198 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2199 FIELD(ID_AA64PFR1, SME, 24, 4)
2200 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2201 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2202 FIELD(ID_AA64PFR1, NMI, 36, 4)
2203 
2204 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2205 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2206 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2207 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2208 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2209 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2210 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2211 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2212 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2213 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2214 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2215 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2216 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2217 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2218 
2219 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2220 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2221 FIELD(ID_AA64MMFR1, VH, 8, 4)
2222 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2223 FIELD(ID_AA64MMFR1, LO, 16, 4)
2224 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2225 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2226 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2227 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2228 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2229 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2230 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2231 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2232 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2233 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2234 
2235 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2236 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2237 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2238 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2239 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2240 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2241 FIELD(ID_AA64MMFR2, NV, 24, 4)
2242 FIELD(ID_AA64MMFR2, ST, 28, 4)
2243 FIELD(ID_AA64MMFR2, AT, 32, 4)
2244 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2245 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2246 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2247 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2248 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2249 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2250 
2251 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2252 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2253 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2254 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2255 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2256 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2257 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2258 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2259 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2260 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2261 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2262 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2263 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2264 
2265 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2266 FIELD(ID_AA64ZFR0, AES, 4, 4)
2267 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2268 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2269 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2270 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2271 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2272 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2273 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2274 
2275 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2276 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2277 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2278 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2279 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2280 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2281 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2282 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2283 
2284 FIELD(ID_DFR0, COPDBG, 0, 4)
2285 FIELD(ID_DFR0, COPSDBG, 4, 4)
2286 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2287 FIELD(ID_DFR0, COPTRC, 12, 4)
2288 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2289 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2290 FIELD(ID_DFR0, PERFMON, 24, 4)
2291 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2292 
2293 FIELD(ID_DFR1, MTPMU, 0, 4)
2294 FIELD(ID_DFR1, HPMN0, 4, 4)
2295 
2296 FIELD(DBGDIDR, SE_IMP, 12, 1)
2297 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2298 FIELD(DBGDIDR, VERSION, 16, 4)
2299 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2300 FIELD(DBGDIDR, BRPS, 24, 4)
2301 FIELD(DBGDIDR, WRPS, 28, 4)
2302 
2303 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2304 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2305 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2306 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2307 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2308 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2309 FIELD(DBGDEVID, AUXREGS, 24, 4)
2310 FIELD(DBGDEVID, CIDMASK, 28, 4)
2311 
2312 FIELD(MVFR0, SIMDREG, 0, 4)
2313 FIELD(MVFR0, FPSP, 4, 4)
2314 FIELD(MVFR0, FPDP, 8, 4)
2315 FIELD(MVFR0, FPTRAP, 12, 4)
2316 FIELD(MVFR0, FPDIVIDE, 16, 4)
2317 FIELD(MVFR0, FPSQRT, 20, 4)
2318 FIELD(MVFR0, FPSHVEC, 24, 4)
2319 FIELD(MVFR0, FPROUND, 28, 4)
2320 
2321 FIELD(MVFR1, FPFTZ, 0, 4)
2322 FIELD(MVFR1, FPDNAN, 4, 4)
2323 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2324 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2325 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2326 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2327 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2328 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2329 FIELD(MVFR1, FPHP, 24, 4)
2330 FIELD(MVFR1, SIMDFMAC, 28, 4)
2331 
2332 FIELD(MVFR2, SIMDMISC, 0, 4)
2333 FIELD(MVFR2, FPMISC, 4, 4)
2334 
2335 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2336 
2337 /* If adding a feature bit which corresponds to a Linux ELF
2338  * HWCAP bit, remember to update the feature-bit-to-hwcap
2339  * mapping in linux-user/elfload.c:get_elf_hwcap().
2340  */
2341 enum arm_features {
2342     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2343     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2344     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2345     ARM_FEATURE_V6,
2346     ARM_FEATURE_V6K,
2347     ARM_FEATURE_V7,
2348     ARM_FEATURE_THUMB2,
2349     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2350     ARM_FEATURE_NEON,
2351     ARM_FEATURE_M, /* Microcontroller profile.  */
2352     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2353     ARM_FEATURE_THUMB2EE,
2354     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2355     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2356     ARM_FEATURE_V4T,
2357     ARM_FEATURE_V5,
2358     ARM_FEATURE_STRONGARM,
2359     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2360     ARM_FEATURE_GENERIC_TIMER,
2361     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2362     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2363     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2364     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2365     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2366     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2367     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2368     ARM_FEATURE_V8,
2369     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2370     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2371     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2372     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2373     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2374     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2375     ARM_FEATURE_PMU, /* has PMU support */
2376     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2377     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2378     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2379     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2380 };
2381 
2382 static inline int arm_feature(CPUARMState *env, int feature)
2383 {
2384     return (env->features & (1ULL << feature)) != 0;
2385 }
2386 
2387 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2388 
2389 #if !defined(CONFIG_USER_ONLY)
2390 /* Return true if exception levels below EL3 are in secure state,
2391  * or would be following an exception return to that level.
2392  * Unlike arm_is_secure() (which is always a question about the
2393  * _current_ state of the CPU) this doesn't care about the current
2394  * EL or mode.
2395  */
2396 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2397 {
2398     if (arm_feature(env, ARM_FEATURE_EL3)) {
2399         return !(env->cp15.scr_el3 & SCR_NS);
2400     } else {
2401         /* If EL3 is not supported then the secure state is implementation
2402          * defined, in which case QEMU defaults to non-secure.
2403          */
2404         return false;
2405     }
2406 }
2407 
2408 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2409 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2410 {
2411     if (arm_feature(env, ARM_FEATURE_EL3)) {
2412         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2413             /* CPU currently in AArch64 state and EL3 */
2414             return true;
2415         } else if (!is_a64(env) &&
2416                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2417             /* CPU currently in AArch32 state and monitor mode */
2418             return true;
2419         }
2420     }
2421     return false;
2422 }
2423 
2424 /* Return true if the processor is in secure state */
2425 static inline bool arm_is_secure(CPUARMState *env)
2426 {
2427     if (arm_is_el3_or_mon(env)) {
2428         return true;
2429     }
2430     return arm_is_secure_below_el3(env);
2431 }
2432 
2433 /*
2434  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2435  * This corresponds to the pseudocode EL2Enabled()
2436  */
2437 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2438 {
2439     return arm_feature(env, ARM_FEATURE_EL2)
2440            && (!secure || (env->cp15.scr_el3 & SCR_EEL2));
2441 }
2442 
2443 static inline bool arm_is_el2_enabled(CPUARMState *env)
2444 {
2445     return arm_is_el2_enabled_secstate(env, arm_is_secure_below_el3(env));
2446 }
2447 
2448 #else
2449 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2450 {
2451     return false;
2452 }
2453 
2454 static inline bool arm_is_secure(CPUARMState *env)
2455 {
2456     return false;
2457 }
2458 
2459 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, bool secure)
2460 {
2461     return false;
2462 }
2463 
2464 static inline bool arm_is_el2_enabled(CPUARMState *env)
2465 {
2466     return false;
2467 }
2468 #endif
2469 
2470 /**
2471  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2472  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2473  * "for all purposes other than a direct read or write access of HCR_EL2."
2474  * Not included here is HCR_RW.
2475  */
2476 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure);
2477 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2478 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2479 
2480 /* Return true if the specified exception level is running in AArch64 state. */
2481 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2482 {
2483     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2484      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2485      */
2486     assert(el >= 1 && el <= 3);
2487     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2488 
2489     /* The highest exception level is always at the maximum supported
2490      * register width, and then lower levels have a register width controlled
2491      * by bits in the SCR or HCR registers.
2492      */
2493     if (el == 3) {
2494         return aa64;
2495     }
2496 
2497     if (arm_feature(env, ARM_FEATURE_EL3) &&
2498         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2499         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2500     }
2501 
2502     if (el == 2) {
2503         return aa64;
2504     }
2505 
2506     if (arm_is_el2_enabled(env)) {
2507         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2508     }
2509 
2510     return aa64;
2511 }
2512 
2513 /* Function for determing whether guest cp register reads and writes should
2514  * access the secure or non-secure bank of a cp register.  When EL3 is
2515  * operating in AArch32 state, the NS-bit determines whether the secure
2516  * instance of a cp register should be used. When EL3 is AArch64 (or if
2517  * it doesn't exist at all) then there is no register banking, and all
2518  * accesses are to the non-secure version.
2519  */
2520 static inline bool access_secure_reg(CPUARMState *env)
2521 {
2522     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2523                 !arm_el_is_aa64(env, 3) &&
2524                 !(env->cp15.scr_el3 & SCR_NS));
2525 
2526     return ret;
2527 }
2528 
2529 /* Macros for accessing a specified CP register bank */
2530 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2531     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2532 
2533 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2534     do {                                                \
2535         if (_secure) {                                   \
2536             (_env)->cp15._regname##_s = (_val);            \
2537         } else {                                        \
2538             (_env)->cp15._regname##_ns = (_val);           \
2539         }                                               \
2540     } while (0)
2541 
2542 /* Macros for automatically accessing a specific CP register bank depending on
2543  * the current secure state of the system.  These macros are not intended for
2544  * supporting instruction translation reads/writes as these are dependent
2545  * solely on the SCR.NS bit and not the mode.
2546  */
2547 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2548     A32_BANKED_REG_GET((_env), _regname,                \
2549                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2550 
2551 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2552     A32_BANKED_REG_SET((_env), _regname,                                    \
2553                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2554                        (_val))
2555 
2556 void arm_cpu_list(void);
2557 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2558                                  uint32_t cur_el, bool secure);
2559 
2560 /* Interface between CPU and Interrupt controller.  */
2561 #ifndef CONFIG_USER_ONLY
2562 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2563 #else
2564 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2565 {
2566     return true;
2567 }
2568 #endif
2569 /**
2570  * armv7m_nvic_set_pending: mark the specified exception as pending
2571  * @opaque: the NVIC
2572  * @irq: the exception number to mark pending
2573  * @secure: false for non-banked exceptions or for the nonsecure
2574  * version of a banked exception, true for the secure version of a banked
2575  * exception.
2576  *
2577  * Marks the specified exception as pending. Note that we will assert()
2578  * if @secure is true and @irq does not specify one of the fixed set
2579  * of architecturally banked exceptions.
2580  */
2581 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2582 /**
2583  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2584  * @opaque: the NVIC
2585  * @irq: the exception number to mark pending
2586  * @secure: false for non-banked exceptions or for the nonsecure
2587  * version of a banked exception, true for the secure version of a banked
2588  * exception.
2589  *
2590  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2591  * exceptions (exceptions generated in the course of trying to take
2592  * a different exception).
2593  */
2594 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2595 /**
2596  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2597  * @opaque: the NVIC
2598  * @irq: the exception number to mark pending
2599  * @secure: false for non-banked exceptions or for the nonsecure
2600  * version of a banked exception, true for the secure version of a banked
2601  * exception.
2602  *
2603  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2604  * generated in the course of lazy stacking of FP registers.
2605  */
2606 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2607 /**
2608  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2609  *    exception, and whether it targets Secure state
2610  * @opaque: the NVIC
2611  * @pirq: set to pending exception number
2612  * @ptargets_secure: set to whether pending exception targets Secure
2613  *
2614  * This function writes the number of the highest priority pending
2615  * exception (the one which would be made active by
2616  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2617  * to true if the current highest priority pending exception should
2618  * be taken to Secure state, false for NS.
2619  */
2620 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2621                                       bool *ptargets_secure);
2622 /**
2623  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2624  * @opaque: the NVIC
2625  *
2626  * Move the current highest priority pending exception from the pending
2627  * state to the active state, and update v7m.exception to indicate that
2628  * it is the exception currently being handled.
2629  */
2630 void armv7m_nvic_acknowledge_irq(void *opaque);
2631 /**
2632  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2633  * @opaque: the NVIC
2634  * @irq: the exception number to complete
2635  * @secure: true if this exception was secure
2636  *
2637  * Returns: -1 if the irq was not active
2638  *           1 if completing this irq brought us back to base (no active irqs)
2639  *           0 if there is still an irq active after this one was completed
2640  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2641  */
2642 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2643 /**
2644  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2645  * @opaque: the NVIC
2646  * @irq: the exception number to mark pending
2647  * @secure: false for non-banked exceptions or for the nonsecure
2648  * version of a banked exception, true for the secure version of a banked
2649  * exception.
2650  *
2651  * Return whether an exception is "ready", i.e. whether the exception is
2652  * enabled and is configured at a priority which would allow it to
2653  * interrupt the current execution priority. This controls whether the
2654  * RDY bit for it in the FPCCR is set.
2655  */
2656 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2657 /**
2658  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2659  * @opaque: the NVIC
2660  *
2661  * Returns: the raw execution priority as defined by the v8M architecture.
2662  * This is the execution priority minus the effects of AIRCR.PRIS,
2663  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2664  * (v8M ARM ARM I_PKLD.)
2665  */
2666 int armv7m_nvic_raw_execution_priority(void *opaque);
2667 /**
2668  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2669  * priority is negative for the specified security state.
2670  * @opaque: the NVIC
2671  * @secure: the security state to test
2672  * This corresponds to the pseudocode IsReqExecPriNeg().
2673  */
2674 #ifndef CONFIG_USER_ONLY
2675 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2676 #else
2677 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2678 {
2679     return false;
2680 }
2681 #endif
2682 
2683 /* Interface for defining coprocessor registers.
2684  * Registers are defined in tables of arm_cp_reginfo structs
2685  * which are passed to define_arm_cp_regs().
2686  */
2687 
2688 /* When looking up a coprocessor register we look for it
2689  * via an integer which encodes all of:
2690  *  coprocessor number
2691  *  Crn, Crm, opc1, opc2 fields
2692  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2693  *    or via MRRC/MCRR?)
2694  *  non-secure/secure bank (AArch32 only)
2695  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2696  * (In this case crn and opc2 should be zero.)
2697  * For AArch64, there is no 32/64 bit size distinction;
2698  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2699  * and 4 bit CRn and CRm. The encoding patterns are chosen
2700  * to be easy to convert to and from the KVM encodings, and also
2701  * so that the hashtable can contain both AArch32 and AArch64
2702  * registers (to allow for interprocessing where we might run
2703  * 32 bit code on a 64 bit core).
2704  */
2705 /* This bit is private to our hashtable cpreg; in KVM register
2706  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2707  * in the upper bits of the 64 bit ID.
2708  */
2709 #define CP_REG_AA64_SHIFT 28
2710 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2711 
2712 /* To enable banking of coprocessor registers depending on ns-bit we
2713  * add a bit to distinguish between secure and non-secure cpregs in the
2714  * hashtable.
2715  */
2716 #define CP_REG_NS_SHIFT 29
2717 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2718 
2719 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2720     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2721      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2722 
2723 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2724     (CP_REG_AA64_MASK |                                 \
2725      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2726      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2727      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2728      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2729      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2730      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2731 
2732 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2733  * version used as a key for the coprocessor register hashtable
2734  */
2735 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2736 {
2737     uint32_t cpregid = kvmid;
2738     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2739         cpregid |= CP_REG_AA64_MASK;
2740     } else {
2741         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2742             cpregid |= (1 << 15);
2743         }
2744 
2745         /* KVM is always non-secure so add the NS flag on AArch32 register
2746          * entries.
2747          */
2748          cpregid |= 1 << CP_REG_NS_SHIFT;
2749     }
2750     return cpregid;
2751 }
2752 
2753 /* Convert a truncated 32 bit hashtable key into the full
2754  * 64 bit KVM register ID.
2755  */
2756 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2757 {
2758     uint64_t kvmid;
2759 
2760     if (cpregid & CP_REG_AA64_MASK) {
2761         kvmid = cpregid & ~CP_REG_AA64_MASK;
2762         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2763     } else {
2764         kvmid = cpregid & ~(1 << 15);
2765         if (cpregid & (1 << 15)) {
2766             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2767         } else {
2768             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2769         }
2770     }
2771     return kvmid;
2772 }
2773 
2774 /* Return the highest implemented Exception Level */
2775 static inline int arm_highest_el(CPUARMState *env)
2776 {
2777     if (arm_feature(env, ARM_FEATURE_EL3)) {
2778         return 3;
2779     }
2780     if (arm_feature(env, ARM_FEATURE_EL2)) {
2781         return 2;
2782     }
2783     return 1;
2784 }
2785 
2786 /* Return true if a v7M CPU is in Handler mode */
2787 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2788 {
2789     return env->v7m.exception != 0;
2790 }
2791 
2792 /* Return the current Exception Level (as per ARMv8; note that this differs
2793  * from the ARMv7 Privilege Level).
2794  */
2795 static inline int arm_current_el(CPUARMState *env)
2796 {
2797     if (arm_feature(env, ARM_FEATURE_M)) {
2798         return arm_v7m_is_handler_mode(env) ||
2799             !(env->v7m.control[env->v7m.secure] & 1);
2800     }
2801 
2802     if (is_a64(env)) {
2803         return extract32(env->pstate, 2, 2);
2804     }
2805 
2806     switch (env->uncached_cpsr & 0x1f) {
2807     case ARM_CPU_MODE_USR:
2808         return 0;
2809     case ARM_CPU_MODE_HYP:
2810         return 2;
2811     case ARM_CPU_MODE_MON:
2812         return 3;
2813     default:
2814         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2815             /* If EL3 is 32-bit then all secure privileged modes run in
2816              * EL3
2817              */
2818             return 3;
2819         }
2820 
2821         return 1;
2822     }
2823 }
2824 
2825 /**
2826  * write_list_to_cpustate
2827  * @cpu: ARMCPU
2828  *
2829  * For each register listed in the ARMCPU cpreg_indexes list, write
2830  * its value from the cpreg_values list into the ARMCPUState structure.
2831  * This updates TCG's working data structures from KVM data or
2832  * from incoming migration state.
2833  *
2834  * Returns: true if all register values were updated correctly,
2835  * false if some register was unknown or could not be written.
2836  * Note that we do not stop early on failure -- we will attempt
2837  * writing all registers in the list.
2838  */
2839 bool write_list_to_cpustate(ARMCPU *cpu);
2840 
2841 /**
2842  * write_cpustate_to_list:
2843  * @cpu: ARMCPU
2844  * @kvm_sync: true if this is for syncing back to KVM
2845  *
2846  * For each register listed in the ARMCPU cpreg_indexes list, write
2847  * its value from the ARMCPUState structure into the cpreg_values list.
2848  * This is used to copy info from TCG's working data structures into
2849  * KVM or for outbound migration.
2850  *
2851  * @kvm_sync is true if we are doing this in order to sync the
2852  * register state back to KVM. In this case we will only update
2853  * values in the list if the previous list->cpustate sync actually
2854  * successfully wrote the CPU state. Otherwise we will keep the value
2855  * that is in the list.
2856  *
2857  * Returns: true if all register values were read correctly,
2858  * false if some register was unknown or could not be read.
2859  * Note that we do not stop early on failure -- we will attempt
2860  * reading all registers in the list.
2861  */
2862 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2863 
2864 #define ARM_CPUID_TI915T      0x54029152
2865 #define ARM_CPUID_TI925T      0x54029252
2866 
2867 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2868 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2869 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2870 
2871 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2872 
2873 #define cpu_list arm_cpu_list
2874 
2875 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2876  *
2877  * If EL3 is 64-bit:
2878  *  + NonSecure EL1 & 0 stage 1
2879  *  + NonSecure EL1 & 0 stage 2
2880  *  + NonSecure EL2
2881  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2882  *  + Secure EL1 & 0
2883  *  + Secure EL3
2884  * If EL3 is 32-bit:
2885  *  + NonSecure PL1 & 0 stage 1
2886  *  + NonSecure PL1 & 0 stage 2
2887  *  + NonSecure PL2
2888  *  + Secure PL0
2889  *  + Secure PL1
2890  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2891  *
2892  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2893  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2894  *     because they may differ in access permissions even if the VA->PA map is
2895  *     the same
2896  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2897  *     translation, which means that we have one mmu_idx that deals with two
2898  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2899  *     architecturally permitted]
2900  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2901  *     handling via the TLB. The only way to do a stage 1 translation without
2902  *     the immediate stage 2 translation is via the ATS or AT system insns,
2903  *     which can be slow-pathed and always do a page table walk.
2904  *     The only use of stage 2 translations is either as part of an s1+2
2905  *     lookup or when loading the descriptors during a stage 1 page table walk,
2906  *     and in both those cases we don't use the TLB.
2907  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2908  *     translation regimes, because they map reasonably well to each other
2909  *     and they can't both be active at the same time.
2910  *  5. we want to be able to use the TLB for accesses done as part of a
2911  *     stage1 page table walk, rather than having to walk the stage2 page
2912  *     table over and over.
2913  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2914  *     Never (PAN) bit within PSTATE.
2915  *  7. we fold together the secure and non-secure regimes for A-profile,
2916  *     because there are no banked system registers for aarch64, so the
2917  *     process of switching between secure and non-secure is
2918  *     already heavyweight.
2919  *
2920  * This gives us the following list of cases:
2921  *
2922  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2923  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2924  * EL1 EL1&0 stage 1+2 +PAN
2925  * EL0 EL2&0
2926  * EL2 EL2&0
2927  * EL2 EL2&0 +PAN
2928  * EL2 (aka NS PL2)
2929  * EL3 (aka S PL1)
2930  * Physical (NS & S)
2931  * Stage2 (NS & S)
2932  *
2933  * for a total of 12 different mmu_idx.
2934  *
2935  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2936  * as A profile. They only need to distinguish EL0 and EL1 (and
2937  * EL2 if we ever model a Cortex-R52).
2938  *
2939  * M profile CPUs are rather different as they do not have a true MMU.
2940  * They have the following different MMU indexes:
2941  *  User
2942  *  Privileged
2943  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2944  *  Privileged, execution priority negative (ditto)
2945  * If the CPU supports the v8M Security Extension then there are also:
2946  *  Secure User
2947  *  Secure Privileged
2948  *  Secure User, execution priority negative
2949  *  Secure Privileged, execution priority negative
2950  *
2951  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2952  * are not quite the same -- different CPU types (most notably M profile
2953  * vs A/R profile) would like to use MMU indexes with different semantics,
2954  * but since we don't ever need to use all of those in a single CPU we
2955  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2956  * modes + total number of M profile MMU modes". The lower bits of
2957  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2958  * the same for any particular CPU.
2959  * Variables of type ARMMUIdx are always full values, and the core
2960  * index values are in variables of type 'int'.
2961  *
2962  * Our enumeration includes at the end some entries which are not "true"
2963  * mmu_idx values in that they don't have corresponding TLBs and are only
2964  * valid for doing slow path page table walks.
2965  *
2966  * The constant names here are patterned after the general style of the names
2967  * of the AT/ATS operations.
2968  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2969  * For M profile we arrange them to have a bit for priv, a bit for negpri
2970  * and a bit for secure.
2971  */
2972 #define ARM_MMU_IDX_A     0x10  /* A profile */
2973 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2974 #define ARM_MMU_IDX_M     0x40  /* M profile */
2975 
2976 /* Meanings of the bits for M profile mmu idx values */
2977 #define ARM_MMU_IDX_M_PRIV   0x1
2978 #define ARM_MMU_IDX_M_NEGPRI 0x2
2979 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2980 
2981 #define ARM_MMU_IDX_TYPE_MASK \
2982     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2983 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2984 
2985 typedef enum ARMMMUIdx {
2986     /*
2987      * A-profile.
2988      */
2989     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2990     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2991     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2992     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2993     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2994     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2995     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2996     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2997 
2998     /* TLBs with 1-1 mapping to the physical address spaces. */
2999     ARMMMUIdx_Phys_NS   = 8 | ARM_MMU_IDX_A,
3000     ARMMMUIdx_Phys_S    = 9 | ARM_MMU_IDX_A,
3001 
3002     /*
3003      * Used for second stage of an S12 page table walk, or for descriptor
3004      * loads during first stage of an S1 page table walk.  Note that both
3005      * are in use simultaneously for SecureEL2: the security state for
3006      * the S2 ptw is selected by the NS bit from the S1 ptw.
3007      */
3008     ARMMMUIdx_Stage2    = 10 | ARM_MMU_IDX_A,
3009     ARMMMUIdx_Stage2_S  = 11 | ARM_MMU_IDX_A,
3010 
3011     /*
3012      * These are not allocated TLBs and are used only for AT system
3013      * instructions or for the first stage of an S12 page table walk.
3014      */
3015     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
3016     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
3017     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
3018 
3019     /*
3020      * M-profile.
3021      */
3022     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
3023     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
3024     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
3025     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
3026     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
3027     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
3028     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
3029     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
3030 } ARMMMUIdx;
3031 
3032 /*
3033  * Bit macros for the core-mmu-index values for each index,
3034  * for use when calling tlb_flush_by_mmuidx() and friends.
3035  */
3036 #define TO_CORE_BIT(NAME) \
3037     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
3038 
3039 typedef enum ARMMMUIdxBit {
3040     TO_CORE_BIT(E10_0),
3041     TO_CORE_BIT(E20_0),
3042     TO_CORE_BIT(E10_1),
3043     TO_CORE_BIT(E10_1_PAN),
3044     TO_CORE_BIT(E2),
3045     TO_CORE_BIT(E20_2),
3046     TO_CORE_BIT(E20_2_PAN),
3047     TO_CORE_BIT(E3),
3048     TO_CORE_BIT(Stage2),
3049     TO_CORE_BIT(Stage2_S),
3050 
3051     TO_CORE_BIT(MUser),
3052     TO_CORE_BIT(MPriv),
3053     TO_CORE_BIT(MUserNegPri),
3054     TO_CORE_BIT(MPrivNegPri),
3055     TO_CORE_BIT(MSUser),
3056     TO_CORE_BIT(MSPriv),
3057     TO_CORE_BIT(MSUserNegPri),
3058     TO_CORE_BIT(MSPrivNegPri),
3059 } ARMMMUIdxBit;
3060 
3061 #undef TO_CORE_BIT
3062 
3063 #define MMU_USER_IDX 0
3064 
3065 /* Indexes used when registering address spaces with cpu_address_space_init */
3066 typedef enum ARMASIdx {
3067     ARMASIdx_NS = 0,
3068     ARMASIdx_S = 1,
3069     ARMASIdx_TagNS = 2,
3070     ARMASIdx_TagS = 3,
3071 } ARMASIdx;
3072 
3073 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
3074 {
3075     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
3076      * CSSELR is RAZ/WI.
3077      */
3078     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
3079 }
3080 
3081 static inline bool arm_sctlr_b(CPUARMState *env)
3082 {
3083     return
3084         /* We need not implement SCTLR.ITD in user-mode emulation, so
3085          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3086          * This lets people run BE32 binaries with "-cpu any".
3087          */
3088 #ifndef CONFIG_USER_ONLY
3089         !arm_feature(env, ARM_FEATURE_V7) &&
3090 #endif
3091         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3092 }
3093 
3094 uint64_t arm_sctlr(CPUARMState *env, int el);
3095 
3096 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3097                                                   bool sctlr_b)
3098 {
3099 #ifdef CONFIG_USER_ONLY
3100     /*
3101      * In system mode, BE32 is modelled in line with the
3102      * architecture (as word-invariant big-endianness), where loads
3103      * and stores are done little endian but from addresses which
3104      * are adjusted by XORing with the appropriate constant. So the
3105      * endianness to use for the raw data access is not affected by
3106      * SCTLR.B.
3107      * In user mode, however, we model BE32 as byte-invariant
3108      * big-endianness (because user-only code cannot tell the
3109      * difference), and so we need to use a data access endianness
3110      * that depends on SCTLR.B.
3111      */
3112     if (sctlr_b) {
3113         return true;
3114     }
3115 #endif
3116     /* In 32bit endianness is determined by looking at CPSR's E bit */
3117     return env->uncached_cpsr & CPSR_E;
3118 }
3119 
3120 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3121 {
3122     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3123 }
3124 
3125 /* Return true if the processor is in big-endian mode. */
3126 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3127 {
3128     if (!is_a64(env)) {
3129         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3130     } else {
3131         int cur_el = arm_current_el(env);
3132         uint64_t sctlr = arm_sctlr(env, cur_el);
3133         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3134     }
3135 }
3136 
3137 #include "exec/cpu-all.h"
3138 
3139 /*
3140  * We have more than 32-bits worth of state per TB, so we split the data
3141  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3142  * We collect these two parts in CPUARMTBFlags where they are named
3143  * flags and flags2 respectively.
3144  *
3145  * The flags that are shared between all execution modes, TBFLAG_ANY,
3146  * are stored in flags.  The flags that are specific to a given mode
3147  * are stores in flags2.  Since cs_base is sized on the configured
3148  * address size, flags2 always has 64-bits for A64, and a minimum of
3149  * 32-bits for A32 and M32.
3150  *
3151  * The bits for 32-bit A-profile and M-profile partially overlap:
3152  *
3153  *  31         23         11 10             0
3154  * +-------------+----------+----------------+
3155  * |             |          |   TBFLAG_A32   |
3156  * | TBFLAG_AM32 |          +-----+----------+
3157  * |             |                |TBFLAG_M32|
3158  * +-------------+----------------+----------+
3159  *  31         23                6 5        0
3160  *
3161  * Unless otherwise noted, these bits are cached in env->hflags.
3162  */
3163 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3164 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3165 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3166 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3167 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3168 /* Target EL if we take a floating-point-disabled exception */
3169 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3170 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3171 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3172 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3173 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3174 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3175 
3176 /*
3177  * Bit usage when in AArch32 state, both A- and M-profile.
3178  */
3179 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3180 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3181 
3182 /*
3183  * Bit usage when in AArch32 state, for A-profile only.
3184  */
3185 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3186 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3187 /*
3188  * We store the bottom two bits of the CPAR as TB flags and handle
3189  * checks on the other bits at runtime. This shares the same bits as
3190  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3191  * Not cached, because VECLEN+VECSTRIDE are not cached.
3192  */
3193 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3194 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3195 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3196 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3197 /*
3198  * Indicates whether cp register reads and writes by guest code should access
3199  * the secure or nonsecure bank of banked registers; note that this is not
3200  * the same thing as the current security state of the processor!
3201  */
3202 FIELD(TBFLAG_A32, NS, 10, 1)
3203 /*
3204  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3205  * This requires an SME trap from AArch32 mode when using NEON.
3206  */
3207 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3208 
3209 /*
3210  * Bit usage when in AArch32 state, for M-profile only.
3211  */
3212 /* Handler (ie not Thread) mode */
3213 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3214 /* Whether we should generate stack-limit checks */
3215 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3216 /* Set if FPCCR.LSPACT is set */
3217 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3218 /* Set if we must create a new FP context */
3219 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3220 /* Set if FPCCR.S does not match current security state */
3221 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3222 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3223 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3224 /* Set if in secure mode */
3225 FIELD(TBFLAG_M32, SECURE, 6, 1)
3226 
3227 /*
3228  * Bit usage when in AArch64 state
3229  */
3230 FIELD(TBFLAG_A64, TBII, 0, 2)
3231 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3232 /* The current vector length, either NVL or SVL. */
3233 FIELD(TBFLAG_A64, VL, 4, 4)
3234 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3235 FIELD(TBFLAG_A64, BT, 9, 1)
3236 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3237 FIELD(TBFLAG_A64, TBID, 12, 2)
3238 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3239 FIELD(TBFLAG_A64, ATA, 15, 1)
3240 FIELD(TBFLAG_A64, TCMA, 16, 2)
3241 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3242 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3243 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3244 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3245 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3246 FIELD(TBFLAG_A64, SVL, 24, 4)
3247 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3248 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3249 FIELD(TBFLAG_A64, FGT_ERET, 29, 1)
3250 
3251 /*
3252  * Helpers for using the above.
3253  */
3254 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3255     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3256 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3257     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3258 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3259     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3260 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3261     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3262 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3263     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3264 
3265 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3266 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3267 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3268 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3269 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3270 
3271 /**
3272  * cpu_mmu_index:
3273  * @env: The cpu environment
3274  * @ifetch: True for code access, false for data access.
3275  *
3276  * Return the core mmu index for the current translation regime.
3277  * This function is used by generic TCG code paths.
3278  */
3279 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3280 {
3281     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3282 }
3283 
3284 /**
3285  * sve_vq
3286  * @env: the cpu context
3287  *
3288  * Return the VL cached within env->hflags, in units of quadwords.
3289  */
3290 static inline int sve_vq(CPUARMState *env)
3291 {
3292     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3293 }
3294 
3295 /**
3296  * sme_vq
3297  * @env: the cpu context
3298  *
3299  * Return the SVL cached within env->hflags, in units of quadwords.
3300  */
3301 static inline int sme_vq(CPUARMState *env)
3302 {
3303     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3304 }
3305 
3306 static inline bool bswap_code(bool sctlr_b)
3307 {
3308 #ifdef CONFIG_USER_ONLY
3309     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3310      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3311      * would also end up as a mixed-endian mode with BE code, LE data.
3312      */
3313     return
3314 #if TARGET_BIG_ENDIAN
3315         1 ^
3316 #endif
3317         sctlr_b;
3318 #else
3319     /* All code access in ARM is little endian, and there are no loaders
3320      * doing swaps that need to be reversed
3321      */
3322     return 0;
3323 #endif
3324 }
3325 
3326 #ifdef CONFIG_USER_ONLY
3327 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3328 {
3329     return
3330 #if TARGET_BIG_ENDIAN
3331        1 ^
3332 #endif
3333        arm_cpu_data_is_big_endian(env);
3334 }
3335 #endif
3336 
3337 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3338                           target_ulong *cs_base, uint32_t *flags);
3339 
3340 enum {
3341     QEMU_PSCI_CONDUIT_DISABLED = 0,
3342     QEMU_PSCI_CONDUIT_SMC = 1,
3343     QEMU_PSCI_CONDUIT_HVC = 2,
3344 };
3345 
3346 #ifndef CONFIG_USER_ONLY
3347 /* Return the address space index to use for a memory access */
3348 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3349 {
3350     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3351 }
3352 
3353 /* Return the AddressSpace to use for a memory access
3354  * (which depends on whether the access is S or NS, and whether
3355  * the board gave us a separate AddressSpace for S accesses).
3356  */
3357 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3358 {
3359     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3360 }
3361 #endif
3362 
3363 /**
3364  * arm_register_pre_el_change_hook:
3365  * Register a hook function which will be called immediately before this
3366  * CPU changes exception level or mode. The hook function will be
3367  * passed a pointer to the ARMCPU and the opaque data pointer passed
3368  * to this function when the hook was registered.
3369  *
3370  * Note that if a pre-change hook is called, any registered post-change hooks
3371  * are guaranteed to subsequently be called.
3372  */
3373 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3374                                  void *opaque);
3375 /**
3376  * arm_register_el_change_hook:
3377  * Register a hook function which will be called immediately after this
3378  * CPU changes exception level or mode. The hook function will be
3379  * passed a pointer to the ARMCPU and the opaque data pointer passed
3380  * to this function when the hook was registered.
3381  *
3382  * Note that any registered hooks registered here are guaranteed to be called
3383  * if pre-change hooks have been.
3384  */
3385 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3386         *opaque);
3387 
3388 /**
3389  * arm_rebuild_hflags:
3390  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3391  */
3392 void arm_rebuild_hflags(CPUARMState *env);
3393 
3394 /**
3395  * aa32_vfp_dreg:
3396  * Return a pointer to the Dn register within env in 32-bit mode.
3397  */
3398 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3399 {
3400     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3401 }
3402 
3403 /**
3404  * aa32_vfp_qreg:
3405  * Return a pointer to the Qn register within env in 32-bit mode.
3406  */
3407 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3408 {
3409     return &env->vfp.zregs[regno].d[0];
3410 }
3411 
3412 /**
3413  * aa64_vfp_qreg:
3414  * Return a pointer to the Qn register within env in 64-bit mode.
3415  */
3416 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3417 {
3418     return &env->vfp.zregs[regno].d[0];
3419 }
3420 
3421 /* Shared between translate-sve.c and sve_helper.c.  */
3422 extern const uint64_t pred_esz_masks[5];
3423 
3424 /*
3425  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3426  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3427  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3428  */
3429 #define PAGE_BTI            PAGE_TARGET_1
3430 #define PAGE_MTE            PAGE_TARGET_2
3431 #define PAGE_TARGET_STICKY  PAGE_MTE
3432 
3433 /* We associate one allocation tag per 16 bytes, the minimum.  */
3434 #define LOG2_TAG_GRANULE 4
3435 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3436 
3437 #ifdef CONFIG_USER_ONLY
3438 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3439 #endif
3440 
3441 #ifdef TARGET_TAGGED_ADDRESSES
3442 /**
3443  * cpu_untagged_addr:
3444  * @cs: CPU context
3445  * @x: tagged address
3446  *
3447  * Remove any address tag from @x.  This is explicitly related to the
3448  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3449  *
3450  * There should be a better place to put this, but we need this in
3451  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3452  */
3453 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3454 {
3455     ARMCPU *cpu = ARM_CPU(cs);
3456     if (cpu->env.tagged_addr_enable) {
3457         /*
3458          * TBI is enabled for userspace but not kernelspace addresses.
3459          * Only clear the tag if bit 55 is clear.
3460          */
3461         x &= sextract64(x, 0, 56);
3462     }
3463     return x;
3464 }
3465 #endif
3466 
3467 /*
3468  * Naming convention for isar_feature functions:
3469  * Functions which test 32-bit ID registers should have _aa32_ in
3470  * their name. Functions which test 64-bit ID registers should have
3471  * _aa64_ in their name. These must only be used in code where we
3472  * know for certain that the CPU has AArch32 or AArch64 respectively
3473  * or where the correct answer for a CPU which doesn't implement that
3474  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3475  * system registers that are specific to that CPU state, for "should
3476  * we let this system register bit be set" tests where the 32-bit
3477  * flavour of the register doesn't have the bit, and so on).
3478  * Functions which simply ask "does this feature exist at all" have
3479  * _any_ in their name, and always return the logical OR of the _aa64_
3480  * and the _aa32_ function.
3481  */
3482 
3483 /*
3484  * 32-bit feature tests via id registers.
3485  */
3486 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3487 {
3488     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3489 }
3490 
3491 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3492 {
3493     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3494 }
3495 
3496 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3497 {
3498     /* (M-profile) low-overhead loops and branch future */
3499     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3500 }
3501 
3502 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3503 {
3504     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3505 }
3506 
3507 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3508 {
3509     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3510 }
3511 
3512 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3513 {
3514     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3515 }
3516 
3517 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3518 {
3519     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3520 }
3521 
3522 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3523 {
3524     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3525 }
3526 
3527 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3528 {
3529     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3530 }
3531 
3532 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3533 {
3534     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3535 }
3536 
3537 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3538 {
3539     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3540 }
3541 
3542 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3543 {
3544     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3545 }
3546 
3547 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3548 {
3549     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3550 }
3551 
3552 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3553 {
3554     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3555 }
3556 
3557 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3558 {
3559     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3560 }
3561 
3562 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3563 {
3564     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3565 }
3566 
3567 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3568 {
3569     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3570 }
3571 
3572 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3573 {
3574     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3575 }
3576 
3577 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3578 {
3579     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3580 }
3581 
3582 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3583 {
3584     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3585 }
3586 
3587 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3588 {
3589     /*
3590      * Return true if M-profile state handling insns
3591      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3592      */
3593     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3594 }
3595 
3596 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3597 {
3598     /* Sadly this is encoded differently for A-profile and M-profile */
3599     if (isar_feature_aa32_mprofile(id)) {
3600         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3601     } else {
3602         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3603     }
3604 }
3605 
3606 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3607 {
3608     /*
3609      * Return true if MVE is supported (either integer or floating point).
3610      * We must check for M-profile as the MVFR1 field means something
3611      * else for A-profile.
3612      */
3613     return isar_feature_aa32_mprofile(id) &&
3614         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3615 }
3616 
3617 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3618 {
3619     /*
3620      * Return true if MVE is supported (either integer or floating point).
3621      * We must check for M-profile as the MVFR1 field means something
3622      * else for A-profile.
3623      */
3624     return isar_feature_aa32_mprofile(id) &&
3625         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3626 }
3627 
3628 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3629 {
3630     /*
3631      * Return true if either VFP or SIMD is implemented.
3632      * In this case, a minimum of VFP w/ D0-D15.
3633      */
3634     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3635 }
3636 
3637 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3638 {
3639     /* Return true if D16-D31 are implemented */
3640     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3641 }
3642 
3643 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3644 {
3645     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3646 }
3647 
3648 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3649 {
3650     /* Return true if CPU supports single precision floating point, VFPv2 */
3651     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3652 }
3653 
3654 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3655 {
3656     /* Return true if CPU supports single precision floating point, VFPv3 */
3657     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3658 }
3659 
3660 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3661 {
3662     /* Return true if CPU supports double precision floating point, VFPv2 */
3663     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3664 }
3665 
3666 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3667 {
3668     /* Return true if CPU supports double precision floating point, VFPv3 */
3669     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3670 }
3671 
3672 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3673 {
3674     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3675 }
3676 
3677 /*
3678  * We always set the FP and SIMD FP16 fields to indicate identical
3679  * levels of support (assuming SIMD is implemented at all), so
3680  * we only need one set of accessors.
3681  */
3682 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3683 {
3684     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3685 }
3686 
3687 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3688 {
3689     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3690 }
3691 
3692 /*
3693  * Note that this ID register field covers both VFP and Neon FMAC,
3694  * so should usually be tested in combination with some other
3695  * check that confirms the presence of whichever of VFP or Neon is
3696  * relevant, to avoid accidentally enabling a Neon feature on
3697  * a VFP-no-Neon core or vice-versa.
3698  */
3699 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3700 {
3701     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3702 }
3703 
3704 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3705 {
3706     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3707 }
3708 
3709 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3710 {
3711     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3712 }
3713 
3714 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3715 {
3716     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3717 }
3718 
3719 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3720 {
3721     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3722 }
3723 
3724 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3725 {
3726     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3727 }
3728 
3729 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3730 {
3731     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3732 }
3733 
3734 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3735 {
3736     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3737 }
3738 
3739 static inline bool isar_feature_aa32_pmuv3p1(const ARMISARegisters *id)
3740 {
3741     /* 0xf means "non-standard IMPDEF PMU" */
3742     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3743         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3744 }
3745 
3746 static inline bool isar_feature_aa32_pmuv3p4(const ARMISARegisters *id)
3747 {
3748     /* 0xf means "non-standard IMPDEF PMU" */
3749     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3750         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3751 }
3752 
3753 static inline bool isar_feature_aa32_pmuv3p5(const ARMISARegisters *id)
3754 {
3755     /* 0xf means "non-standard IMPDEF PMU" */
3756     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 6 &&
3757         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3758 }
3759 
3760 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3768 }
3769 
3770 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa32_half_evt(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 1;
3783 }
3784 
3785 static inline bool isar_feature_aa32_evt(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, EVT) >= 2;
3788 }
3789 
3790 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3793 }
3794 
3795 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3798 }
3799 
3800 static inline bool isar_feature_aa32_debugv7p1(const ARMISARegisters *id)
3801 {
3802     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 5;
3803 }
3804 
3805 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3808 }
3809 
3810 static inline bool isar_feature_aa32_doublelock(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX32(id->dbgdevid, DBGDEVID, DOUBLELOCK) > 0;
3813 }
3814 
3815 /*
3816  * 64-bit feature tests via id registers.
3817  */
3818 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3819 {
3820     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3821 }
3822 
3823 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3824 {
3825     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3826 }
3827 
3828 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3829 {
3830     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3831 }
3832 
3833 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3834 {
3835     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3836 }
3837 
3838 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3839 {
3840     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3841 }
3842 
3843 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3844 {
3845     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3846 }
3847 
3848 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3849 {
3850     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3851 }
3852 
3853 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3854 {
3855     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3856 }
3857 
3858 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3859 {
3860     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3861 }
3862 
3863 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3864 {
3865     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3866 }
3867 
3868 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3869 {
3870     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3871 }
3872 
3873 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3874 {
3875     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3876 }
3877 
3878 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3879 {
3880     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3881 }
3882 
3883 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3884 {
3885     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3886 }
3887 
3888 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3889 {
3890     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3891 }
3892 
3893 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3894 {
3895     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3896 }
3897 
3898 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3899 {
3900     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3901 }
3902 
3903 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3904 {
3905     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3906 }
3907 
3908 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3909 {
3910     /*
3911      * Return true if any form of pauth is enabled, as this
3912      * predicate controls migration of the 128-bit keys.
3913      */
3914     return (id->id_aa64isar1 &
3915             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3916              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3917              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3918              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3919 }
3920 
3921 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3922 {
3923     /*
3924      * Return true if pauth is enabled with the architected QARMA algorithm.
3925      * QEMU will always set APA+GPA to the same value.
3926      */
3927     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3928 }
3929 
3930 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3931 {
3932     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3933 }
3934 
3935 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3936 {
3937     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3938 }
3939 
3940 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3941 {
3942     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3943 }
3944 
3945 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3946 {
3947     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3948 }
3949 
3950 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3951 {
3952     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3953 }
3954 
3955 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3956 {
3957     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3958 }
3959 
3960 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3961 {
3962     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3963 }
3964 
3965 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3968 }
3969 
3970 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3971 {
3972     /* We always set the AdvSIMD and FP fields identically.  */
3973     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3974 }
3975 
3976 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3977 {
3978     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3979     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3980 }
3981 
3982 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3983 {
3984     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3985 }
3986 
3987 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3988 {
3989     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3990 }
3991 
3992 static inline bool isar_feature_aa64_aa32_el2(const ARMISARegisters *id)
3993 {
3994     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL2) >= 2;
3995 }
3996 
3997 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3998 {
3999     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
4000 }
4001 
4002 static inline bool isar_feature_aa64_doublefault(const ARMISARegisters *id)
4003 {
4004     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) >= 2;
4005 }
4006 
4007 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
4008 {
4009     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
4010 }
4011 
4012 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
4013 {
4014     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
4015 }
4016 
4017 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
4018 {
4019     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
4020 }
4021 
4022 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
4023 {
4024     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
4025 }
4026 
4027 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
4028 {
4029     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
4030 }
4031 
4032 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
4033 {
4034     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
4035 }
4036 
4037 static inline bool isar_feature_aa64_hcx(const ARMISARegisters *id)
4038 {
4039     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HCX) != 0;
4040 }
4041 
4042 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
4043 {
4044     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
4045 }
4046 
4047 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
4048 {
4049     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
4050 }
4051 
4052 static inline bool isar_feature_aa64_fwb(const ARMISARegisters *id)
4053 {
4054     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, FWB) != 0;
4055 }
4056 
4057 static inline bool isar_feature_aa64_ids(const ARMISARegisters *id)
4058 {
4059     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, IDS) != 0;
4060 }
4061 
4062 static inline bool isar_feature_aa64_half_evt(const ARMISARegisters *id)
4063 {
4064     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 1;
4065 }
4066 
4067 static inline bool isar_feature_aa64_evt(const ARMISARegisters *id)
4068 {
4069     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, EVT) >= 2;
4070 }
4071 
4072 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
4073 {
4074     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
4075 }
4076 
4077 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
4078 {
4079     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
4080 }
4081 
4082 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
4083 {
4084     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
4085 }
4086 
4087 static inline bool isar_feature_aa64_sme(const ARMISARegisters *id)
4088 {
4089     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SME) != 0;
4090 }
4091 
4092 static inline bool isar_feature_aa64_pmuv3p1(const ARMISARegisters *id)
4093 {
4094     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
4095         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4096 }
4097 
4098 static inline bool isar_feature_aa64_pmuv3p4(const ARMISARegisters *id)
4099 {
4100     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
4101         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4102 }
4103 
4104 static inline bool isar_feature_aa64_pmuv3p5(const ARMISARegisters *id)
4105 {
4106     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 6 &&
4107         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
4108 }
4109 
4110 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
4111 {
4112     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
4113 }
4114 
4115 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
4116 {
4117     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
4118 }
4119 
4120 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
4121 {
4122     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
4123 }
4124 
4125 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
4126 {
4127     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
4128 }
4129 
4130 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
4131 {
4132     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4133     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
4134 }
4135 
4136 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
4137 {
4138     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4139 }
4140 
4141 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4142 {
4143     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4144     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4145 }
4146 
4147 static inline bool isar_feature_aa64_tgran4(const ARMISARegisters *id)
4148 {
4149     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 0;
4150 }
4151 
4152 static inline bool isar_feature_aa64_tgran16(const ARMISARegisters *id)
4153 {
4154     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 1;
4155 }
4156 
4157 static inline bool isar_feature_aa64_tgran64(const ARMISARegisters *id)
4158 {
4159     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64) >= 0;
4160 }
4161 
4162 static inline bool isar_feature_aa64_tgran4_2(const ARMISARegisters *id)
4163 {
4164     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
4165     return t >= 2 || (t == 0 && isar_feature_aa64_tgran4(id));
4166 }
4167 
4168 static inline bool isar_feature_aa64_tgran16_2(const ARMISARegisters *id)
4169 {
4170     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4171     return t >= 2 || (t == 0 && isar_feature_aa64_tgran16(id));
4172 }
4173 
4174 static inline bool isar_feature_aa64_tgran64_2(const ARMISARegisters *id)
4175 {
4176     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN64_2);
4177     return t >= 2 || (t == 0 && isar_feature_aa64_tgran64(id));
4178 }
4179 
4180 static inline bool isar_feature_aa64_fgt(const ARMISARegisters *id)
4181 {
4182     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, FGT) != 0;
4183 }
4184 
4185 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4186 {
4187     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4188 }
4189 
4190 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4191 {
4192     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4193 }
4194 
4195 static inline bool isar_feature_aa64_e0pd(const ARMISARegisters *id)
4196 {
4197     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, E0PD) != 0;
4198 }
4199 
4200 static inline bool isar_feature_aa64_hafs(const ARMISARegisters *id)
4201 {
4202     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) != 0;
4203 }
4204 
4205 static inline bool isar_feature_aa64_hdbs(const ARMISARegisters *id)
4206 {
4207     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, HAFDBS) >= 2;
4208 }
4209 
4210 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4211 {
4212     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4213 }
4214 
4215 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4216 {
4217     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4218 }
4219 
4220 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4221 {
4222     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4223     if (key >= 2) {
4224         return true;      /* FEAT_CSV2_2 */
4225     }
4226     if (key == 1) {
4227         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4228         return key >= 2;  /* FEAT_CSV2_1p2 */
4229     }
4230     return false;
4231 }
4232 
4233 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4234 {
4235     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4236 }
4237 
4238 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4239 {
4240     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4241 }
4242 
4243 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4244 {
4245     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4246 }
4247 
4248 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4249 {
4250     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4251 }
4252 
4253 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4254 {
4255     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4256 }
4257 
4258 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4259 {
4260     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4261 }
4262 
4263 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4264 {
4265     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4266 }
4267 
4268 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4269 {
4270     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4271 }
4272 
4273 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4274 {
4275     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4276 }
4277 
4278 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4279 {
4280     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4281 }
4282 
4283 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4284 {
4285     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4286 }
4287 
4288 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4289 {
4290     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4291 }
4292 
4293 static inline bool isar_feature_aa64_sme_f64f64(const ARMISARegisters *id)
4294 {
4295     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, F64F64);
4296 }
4297 
4298 static inline bool isar_feature_aa64_sme_i16i64(const ARMISARegisters *id)
4299 {
4300     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, I16I64) == 0xf;
4301 }
4302 
4303 static inline bool isar_feature_aa64_sme_fa64(const ARMISARegisters *id)
4304 {
4305     return FIELD_EX64(id->id_aa64smfr0, ID_AA64SMFR0, FA64);
4306 }
4307 
4308 static inline bool isar_feature_aa64_doublelock(const ARMISARegisters *id)
4309 {
4310     return FIELD_SEX64(id->id_aa64dfr0, ID_AA64DFR0, DOUBLELOCK) >= 0;
4311 }
4312 
4313 /*
4314  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4315  */
4316 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4317 {
4318     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4319 }
4320 
4321 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4322 {
4323     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4324 }
4325 
4326 static inline bool isar_feature_any_pmuv3p1(const ARMISARegisters *id)
4327 {
4328     return isar_feature_aa64_pmuv3p1(id) || isar_feature_aa32_pmuv3p1(id);
4329 }
4330 
4331 static inline bool isar_feature_any_pmuv3p4(const ARMISARegisters *id)
4332 {
4333     return isar_feature_aa64_pmuv3p4(id) || isar_feature_aa32_pmuv3p4(id);
4334 }
4335 
4336 static inline bool isar_feature_any_pmuv3p5(const ARMISARegisters *id)
4337 {
4338     return isar_feature_aa64_pmuv3p5(id) || isar_feature_aa32_pmuv3p5(id);
4339 }
4340 
4341 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4342 {
4343     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4344 }
4345 
4346 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4347 {
4348     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4349 }
4350 
4351 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4352 {
4353     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4354 }
4355 
4356 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4357 {
4358     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4359 }
4360 
4361 static inline bool isar_feature_any_half_evt(const ARMISARegisters *id)
4362 {
4363     return isar_feature_aa64_half_evt(id) || isar_feature_aa32_half_evt(id);
4364 }
4365 
4366 static inline bool isar_feature_any_evt(const ARMISARegisters *id)
4367 {
4368     return isar_feature_aa64_evt(id) || isar_feature_aa32_evt(id);
4369 }
4370 
4371 /*
4372  * Forward to the above feature tests given an ARMCPU pointer.
4373  */
4374 #define cpu_isar_feature(name, cpu) \
4375     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4376 
4377 #endif
4378