xref: /qemu/target/arm/cpu.h (revision 9d5154d7)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
25 
26 #if defined(TARGET_AARCH64)
27   /* AArch64 definitions */
28 #  define TARGET_LONG_BITS 64
29 #else
30 #  define TARGET_LONG_BITS 32
31 #endif
32 
33 #define CPUArchState struct CPUARMState
34 
35 #include "qemu-common.h"
36 #include "cpu-qom.h"
37 #include "exec/cpu-defs.h"
38 
39 #include "fpu/softfloat.h"
40 
41 #define EXCP_UDEF            1   /* undefined instruction */
42 #define EXCP_SWI             2   /* software interrupt */
43 #define EXCP_PREFETCH_ABORT  3
44 #define EXCP_DATA_ABORT      4
45 #define EXCP_IRQ             5
46 #define EXCP_FIQ             6
47 #define EXCP_BKPT            7
48 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
49 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
50 #define EXCP_HVC            11   /* HyperVisor Call */
51 #define EXCP_HYP_TRAP       12
52 #define EXCP_SMC            13   /* Secure Monitor Call */
53 #define EXCP_VIRQ           14
54 #define EXCP_VFIQ           15
55 #define EXCP_SEMIHOST       16   /* semihosting call */
56 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
57 
58 #define ARMV7M_EXCP_RESET   1
59 #define ARMV7M_EXCP_NMI     2
60 #define ARMV7M_EXCP_HARD    3
61 #define ARMV7M_EXCP_MEM     4
62 #define ARMV7M_EXCP_BUS     5
63 #define ARMV7M_EXCP_USAGE   6
64 #define ARMV7M_EXCP_SVC     11
65 #define ARMV7M_EXCP_DEBUG   12
66 #define ARMV7M_EXCP_PENDSV  14
67 #define ARMV7M_EXCP_SYSTICK 15
68 
69 /* ARM-specific interrupt pending bits.  */
70 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
71 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
72 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
73 
74 /* The usual mapping for an AArch64 system register to its AArch32
75  * counterpart is for the 32 bit world to have access to the lower
76  * half only (with writes leaving the upper half untouched). It's
77  * therefore useful to be able to pass TCG the offset of the least
78  * significant half of a uint64_t struct member.
79  */
80 #ifdef HOST_WORDS_BIGENDIAN
81 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
82 #define offsetofhigh32(S, M) offsetof(S, M)
83 #else
84 #define offsetoflow32(S, M) offsetof(S, M)
85 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
86 #endif
87 
88 /* Meanings of the ARMCPU object's four inbound GPIO lines */
89 #define ARM_CPU_IRQ 0
90 #define ARM_CPU_FIQ 1
91 #define ARM_CPU_VIRQ 2
92 #define ARM_CPU_VFIQ 3
93 
94 #define NB_MMU_MODES 7
95 /* ARM-specific extra insn start words:
96  * 1: Conditional execution bits
97  * 2: Partial exception syndrome for data aborts
98  */
99 #define TARGET_INSN_START_EXTRA_WORDS 2
100 
101 /* The 2nd extra word holding syndrome info for data aborts does not use
102  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
103  * help the sleb128 encoder do a better job.
104  * When restoring the CPU state, we shift it back up.
105  */
106 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
107 #define ARM_INSN_START_WORD2_SHIFT 14
108 
109 /* We currently assume float and double are IEEE single and double
110    precision respectively.
111    Doing runtime conversions is tricky because VFP registers may contain
112    integer values (eg. as the result of a FTOSI instruction).
113    s<2n> maps to the least significant half of d<n>
114    s<2n+1> maps to the most significant half of d<n>
115  */
116 
117 /* CPU state for each instance of a generic timer (in cp15 c14) */
118 typedef struct ARMGenericTimer {
119     uint64_t cval; /* Timer CompareValue register */
120     uint64_t ctl; /* Timer Control register */
121 } ARMGenericTimer;
122 
123 #define GTIMER_PHYS 0
124 #define GTIMER_VIRT 1
125 #define GTIMER_HYP  2
126 #define GTIMER_SEC  3
127 #define NUM_GTIMERS 4
128 
129 typedef struct {
130     uint64_t raw_tcr;
131     uint32_t mask;
132     uint32_t base_mask;
133 } TCR;
134 
135 typedef struct CPUARMState {
136     /* Regs for current mode.  */
137     uint32_t regs[16];
138 
139     /* 32/64 switch only happens when taking and returning from
140      * exceptions so the overlap semantics are taken care of then
141      * instead of having a complicated union.
142      */
143     /* Regs for A64 mode.  */
144     uint64_t xregs[32];
145     uint64_t pc;
146     /* PSTATE isn't an architectural register for ARMv8. However, it is
147      * convenient for us to assemble the underlying state into a 32 bit format
148      * identical to the architectural format used for the SPSR. (This is also
149      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
150      * 'pstate' register are.) Of the PSTATE bits:
151      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
152      *    semantics as for AArch32, as described in the comments on each field)
153      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
154      *  DAIF (exception masks) are kept in env->daif
155      *  all other bits are stored in their correct places in env->pstate
156      */
157     uint32_t pstate;
158     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
159 
160     /* Frequently accessed CPSR bits are stored separately for efficiency.
161        This contains all the other bits.  Use cpsr_{read,write} to access
162        the whole CPSR.  */
163     uint32_t uncached_cpsr;
164     uint32_t spsr;
165 
166     /* Banked registers.  */
167     uint64_t banked_spsr[8];
168     uint32_t banked_r13[8];
169     uint32_t banked_r14[8];
170 
171     /* These hold r8-r12.  */
172     uint32_t usr_regs[5];
173     uint32_t fiq_regs[5];
174 
175     /* cpsr flag cache for faster execution */
176     uint32_t CF; /* 0 or 1 */
177     uint32_t VF; /* V is the bit 31. All other bits are undefined */
178     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
179     uint32_t ZF; /* Z set if zero.  */
180     uint32_t QF; /* 0 or 1 */
181     uint32_t GE; /* cpsr[19:16] */
182     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
183     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
184     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
185 
186     uint64_t elr_el[4]; /* AArch64 exception link regs  */
187     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
188 
189     /* System control coprocessor (cp15) */
190     struct {
191         uint32_t c0_cpuid;
192         union { /* Cache size selection */
193             struct {
194                 uint64_t _unused_csselr0;
195                 uint64_t csselr_ns;
196                 uint64_t _unused_csselr1;
197                 uint64_t csselr_s;
198             };
199             uint64_t csselr_el[4];
200         };
201         union { /* System control register. */
202             struct {
203                 uint64_t _unused_sctlr;
204                 uint64_t sctlr_ns;
205                 uint64_t hsctlr;
206                 uint64_t sctlr_s;
207             };
208             uint64_t sctlr_el[4];
209         };
210         uint64_t cpacr_el1; /* Architectural feature access control register */
211         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
212         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
213         uint64_t sder; /* Secure debug enable register. */
214         uint32_t nsacr; /* Non-secure access control register. */
215         union { /* MMU translation table base 0. */
216             struct {
217                 uint64_t _unused_ttbr0_0;
218                 uint64_t ttbr0_ns;
219                 uint64_t _unused_ttbr0_1;
220                 uint64_t ttbr0_s;
221             };
222             uint64_t ttbr0_el[4];
223         };
224         union { /* MMU translation table base 1. */
225             struct {
226                 uint64_t _unused_ttbr1_0;
227                 uint64_t ttbr1_ns;
228                 uint64_t _unused_ttbr1_1;
229                 uint64_t ttbr1_s;
230             };
231             uint64_t ttbr1_el[4];
232         };
233         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
234         /* MMU translation table base control. */
235         TCR tcr_el[4];
236         TCR vtcr_el2; /* Virtualization Translation Control.  */
237         uint32_t c2_data; /* MPU data cacheable bits.  */
238         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
239         union { /* MMU domain access control register
240                  * MPU write buffer control.
241                  */
242             struct {
243                 uint64_t dacr_ns;
244                 uint64_t dacr_s;
245             };
246             struct {
247                 uint64_t dacr32_el2;
248             };
249         };
250         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
251         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
252         uint64_t hcr_el2; /* Hypervisor configuration register */
253         uint64_t scr_el3; /* Secure configuration register.  */
254         union { /* Fault status registers.  */
255             struct {
256                 uint64_t ifsr_ns;
257                 uint64_t ifsr_s;
258             };
259             struct {
260                 uint64_t ifsr32_el2;
261             };
262         };
263         union {
264             struct {
265                 uint64_t _unused_dfsr;
266                 uint64_t dfsr_ns;
267                 uint64_t hsr;
268                 uint64_t dfsr_s;
269             };
270             uint64_t esr_el[4];
271         };
272         uint32_t c6_region[8]; /* MPU base/size registers.  */
273         union { /* Fault address registers. */
274             struct {
275                 uint64_t _unused_far0;
276 #ifdef HOST_WORDS_BIGENDIAN
277                 uint32_t ifar_ns;
278                 uint32_t dfar_ns;
279                 uint32_t ifar_s;
280                 uint32_t dfar_s;
281 #else
282                 uint32_t dfar_ns;
283                 uint32_t ifar_ns;
284                 uint32_t dfar_s;
285                 uint32_t ifar_s;
286 #endif
287                 uint64_t _unused_far3;
288             };
289             uint64_t far_el[4];
290         };
291         uint64_t hpfar_el2;
292         uint64_t hstr_el2;
293         union { /* Translation result. */
294             struct {
295                 uint64_t _unused_par_0;
296                 uint64_t par_ns;
297                 uint64_t _unused_par_1;
298                 uint64_t par_s;
299             };
300             uint64_t par_el[4];
301         };
302 
303         uint32_t c6_rgnr;
304 
305         uint32_t c9_insn; /* Cache lockdown registers.  */
306         uint32_t c9_data;
307         uint64_t c9_pmcr; /* performance monitor control register */
308         uint64_t c9_pmcnten; /* perf monitor counter enables */
309         uint32_t c9_pmovsr; /* perf monitor overflow status */
310         uint32_t c9_pmxevtyper; /* perf monitor event type */
311         uint32_t c9_pmuserenr; /* perf monitor user enable */
312         uint32_t c9_pminten; /* perf monitor interrupt enables */
313         union { /* Memory attribute redirection */
314             struct {
315 #ifdef HOST_WORDS_BIGENDIAN
316                 uint64_t _unused_mair_0;
317                 uint32_t mair1_ns;
318                 uint32_t mair0_ns;
319                 uint64_t _unused_mair_1;
320                 uint32_t mair1_s;
321                 uint32_t mair0_s;
322 #else
323                 uint64_t _unused_mair_0;
324                 uint32_t mair0_ns;
325                 uint32_t mair1_ns;
326                 uint64_t _unused_mair_1;
327                 uint32_t mair0_s;
328                 uint32_t mair1_s;
329 #endif
330             };
331             uint64_t mair_el[4];
332         };
333         union { /* vector base address register */
334             struct {
335                 uint64_t _unused_vbar;
336                 uint64_t vbar_ns;
337                 uint64_t hvbar;
338                 uint64_t vbar_s;
339             };
340             uint64_t vbar_el[4];
341         };
342         uint32_t mvbar; /* (monitor) vector base address register */
343         struct { /* FCSE PID. */
344             uint32_t fcseidr_ns;
345             uint32_t fcseidr_s;
346         };
347         union { /* Context ID. */
348             struct {
349                 uint64_t _unused_contextidr_0;
350                 uint64_t contextidr_ns;
351                 uint64_t _unused_contextidr_1;
352                 uint64_t contextidr_s;
353             };
354             uint64_t contextidr_el[4];
355         };
356         union { /* User RW Thread register. */
357             struct {
358                 uint64_t tpidrurw_ns;
359                 uint64_t tpidrprw_ns;
360                 uint64_t htpidr;
361                 uint64_t _tpidr_el3;
362             };
363             uint64_t tpidr_el[4];
364         };
365         /* The secure banks of these registers don't map anywhere */
366         uint64_t tpidrurw_s;
367         uint64_t tpidrprw_s;
368         uint64_t tpidruro_s;
369 
370         union { /* User RO Thread register. */
371             uint64_t tpidruro_ns;
372             uint64_t tpidrro_el[1];
373         };
374         uint64_t c14_cntfrq; /* Counter Frequency register */
375         uint64_t c14_cntkctl; /* Timer Control register */
376         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
377         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
378         ARMGenericTimer c14_timer[NUM_GTIMERS];
379         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
380         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
381         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
382         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
383         uint32_t c15_threadid; /* TI debugger thread-ID.  */
384         uint32_t c15_config_base_address; /* SCU base address.  */
385         uint32_t c15_diagnostic; /* diagnostic register */
386         uint32_t c15_power_diagnostic;
387         uint32_t c15_power_control; /* power control */
388         uint64_t dbgbvr[16]; /* breakpoint value registers */
389         uint64_t dbgbcr[16]; /* breakpoint control registers */
390         uint64_t dbgwvr[16]; /* watchpoint value registers */
391         uint64_t dbgwcr[16]; /* watchpoint control registers */
392         uint64_t mdscr_el1;
393         uint64_t oslsr_el1; /* OS Lock Status */
394         uint64_t mdcr_el2;
395         uint64_t mdcr_el3;
396         /* If the counter is enabled, this stores the last time the counter
397          * was reset. Otherwise it stores the counter value
398          */
399         uint64_t c15_ccnt;
400         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
401         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
402         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
403     } cp15;
404 
405     struct {
406         uint32_t other_sp;
407         uint32_t vecbase;
408         uint32_t basepri;
409         uint32_t control;
410         uint32_t ccr; /* Configuration and Control */
411         uint32_t cfsr; /* Configurable Fault Status */
412         uint32_t hfsr; /* HardFault Status */
413         uint32_t dfsr; /* Debug Fault Status Register */
414         uint32_t mmfar; /* MemManage Fault Address */
415         uint32_t bfar; /* BusFault Address */
416         int exception;
417     } v7m;
418 
419     /* Information associated with an exception about to be taken:
420      * code which raises an exception must set cs->exception_index and
421      * the relevant parts of this structure; the cpu_do_interrupt function
422      * will then set the guest-visible registers as part of the exception
423      * entry process.
424      */
425     struct {
426         uint32_t syndrome; /* AArch64 format syndrome register */
427         uint32_t fsr; /* AArch32 format fault status register info */
428         uint64_t vaddress; /* virtual addr associated with exception, if any */
429         uint32_t target_el; /* EL the exception should be targeted for */
430         /* If we implement EL2 we will also need to store information
431          * about the intermediate physical address for stage 2 faults.
432          */
433     } exception;
434 
435     /* Thumb-2 EE state.  */
436     uint32_t teecr;
437     uint32_t teehbr;
438 
439     /* VFP coprocessor state.  */
440     struct {
441         /* VFP/Neon register state. Note that the mapping between S, D and Q
442          * views of the register bank differs between AArch64 and AArch32:
443          * In AArch32:
444          *  Qn = regs[2n+1]:regs[2n]
445          *  Dn = regs[n]
446          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
447          * (and regs[32] to regs[63] are inaccessible)
448          * In AArch64:
449          *  Qn = regs[2n+1]:regs[2n]
450          *  Dn = regs[2n]
451          *  Sn = regs[2n] bits 31..0
452          * This corresponds to the architecturally defined mapping between
453          * the two execution states, and means we do not need to explicitly
454          * map these registers when changing states.
455          */
456         float64 regs[64];
457 
458         uint32_t xregs[16];
459         /* We store these fpcsr fields separately for convenience.  */
460         int vec_len;
461         int vec_stride;
462 
463         /* scratch space when Tn are not sufficient.  */
464         uint32_t scratch[8];
465 
466         /* fp_status is the "normal" fp status. standard_fp_status retains
467          * values corresponding to the ARM "Standard FPSCR Value", ie
468          * default-NaN, flush-to-zero, round-to-nearest and is used by
469          * any operations (generally Neon) which the architecture defines
470          * as controlled by the standard FPSCR value rather than the FPSCR.
471          *
472          * To avoid having to transfer exception bits around, we simply
473          * say that the FPSCR cumulative exception flags are the logical
474          * OR of the flags in the two fp statuses. This relies on the
475          * only thing which needs to read the exception flags being
476          * an explicit FPSCR read.
477          */
478         float_status fp_status;
479         float_status standard_fp_status;
480     } vfp;
481     uint64_t exclusive_addr;
482     uint64_t exclusive_val;
483     uint64_t exclusive_high;
484 
485     /* iwMMXt coprocessor state.  */
486     struct {
487         uint64_t regs[16];
488         uint64_t val;
489 
490         uint32_t cregs[16];
491     } iwmmxt;
492 
493 #if defined(CONFIG_USER_ONLY)
494     /* For usermode syscall translation.  */
495     int eabi;
496 #endif
497 
498     struct CPUBreakpoint *cpu_breakpoint[16];
499     struct CPUWatchpoint *cpu_watchpoint[16];
500 
501     /* Fields up to this point are cleared by a CPU reset */
502     struct {} end_reset_fields;
503 
504     CPU_COMMON
505 
506     /* Fields after CPU_COMMON are preserved across CPU reset. */
507 
508     /* Internal CPU feature flags.  */
509     uint64_t features;
510 
511     /* PMSAv7 MPU */
512     struct {
513         uint32_t *drbar;
514         uint32_t *drsr;
515         uint32_t *dracr;
516     } pmsav7;
517 
518     void *nvic;
519     const struct arm_boot_info *boot_info;
520 } CPUARMState;
521 
522 /**
523  * ARMELChangeHook:
524  * type of a function which can be registered via arm_register_el_change_hook()
525  * to get callbacks when the CPU changes its exception level or mode.
526  */
527 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
528 
529 /**
530  * ARMCPU:
531  * @env: #CPUARMState
532  *
533  * An ARM CPU core.
534  */
535 struct ARMCPU {
536     /*< private >*/
537     CPUState parent_obj;
538     /*< public >*/
539 
540     CPUARMState env;
541 
542     /* Coprocessor information */
543     GHashTable *cp_regs;
544     /* For marshalling (mostly coprocessor) register state between the
545      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
546      * we use these arrays.
547      */
548     /* List of register indexes managed via these arrays; (full KVM style
549      * 64 bit indexes, not CPRegInfo 32 bit indexes)
550      */
551     uint64_t *cpreg_indexes;
552     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
553     uint64_t *cpreg_values;
554     /* Length of the indexes, values, reset_values arrays */
555     int32_t cpreg_array_len;
556     /* These are used only for migration: incoming data arrives in
557      * these fields and is sanity checked in post_load before copying
558      * to the working data structures above.
559      */
560     uint64_t *cpreg_vmstate_indexes;
561     uint64_t *cpreg_vmstate_values;
562     int32_t cpreg_vmstate_array_len;
563 
564     /* Timers used by the generic (architected) timer */
565     QEMUTimer *gt_timer[NUM_GTIMERS];
566     /* GPIO outputs for generic timer */
567     qemu_irq gt_timer_outputs[NUM_GTIMERS];
568     /* GPIO output for GICv3 maintenance interrupt signal */
569     qemu_irq gicv3_maintenance_interrupt;
570 
571     /* MemoryRegion to use for secure physical accesses */
572     MemoryRegion *secure_memory;
573 
574     /* 'compatible' string for this CPU for Linux device trees */
575     const char *dtb_compatible;
576 
577     /* PSCI version for this CPU
578      * Bits[31:16] = Major Version
579      * Bits[15:0] = Minor Version
580      */
581     uint32_t psci_version;
582 
583     /* Should CPU start in PSCI powered-off state? */
584     bool start_powered_off;
585     /* CPU currently in PSCI powered-off state */
586     bool powered_off;
587     /* CPU has virtualization extension */
588     bool has_el2;
589     /* CPU has security extension */
590     bool has_el3;
591     /* CPU has PMU (Performance Monitor Unit) */
592     bool has_pmu;
593 
594     /* CPU has memory protection unit */
595     bool has_mpu;
596     /* PMSAv7 MPU number of supported regions */
597     uint32_t pmsav7_dregion;
598 
599     /* PSCI conduit used to invoke PSCI methods
600      * 0 - disabled, 1 - smc, 2 - hvc
601      */
602     uint32_t psci_conduit;
603 
604     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
605      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
606      */
607     uint32_t kvm_target;
608 
609     /* KVM init features for this CPU */
610     uint32_t kvm_init_features[7];
611 
612     /* Uniprocessor system with MP extensions */
613     bool mp_is_up;
614 
615     /* The instance init functions for implementation-specific subclasses
616      * set these fields to specify the implementation-dependent values of
617      * various constant registers and reset values of non-constant
618      * registers.
619      * Some of these might become QOM properties eventually.
620      * Field names match the official register names as defined in the
621      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
622      * is used for reset values of non-constant registers; no reset_
623      * prefix means a constant register.
624      */
625     uint32_t midr;
626     uint32_t revidr;
627     uint32_t reset_fpsid;
628     uint32_t mvfr0;
629     uint32_t mvfr1;
630     uint32_t mvfr2;
631     uint32_t ctr;
632     uint32_t reset_sctlr;
633     uint32_t id_pfr0;
634     uint32_t id_pfr1;
635     uint32_t id_dfr0;
636     uint32_t pmceid0;
637     uint32_t pmceid1;
638     uint32_t id_afr0;
639     uint32_t id_mmfr0;
640     uint32_t id_mmfr1;
641     uint32_t id_mmfr2;
642     uint32_t id_mmfr3;
643     uint32_t id_mmfr4;
644     uint32_t id_isar0;
645     uint32_t id_isar1;
646     uint32_t id_isar2;
647     uint32_t id_isar3;
648     uint32_t id_isar4;
649     uint32_t id_isar5;
650     uint64_t id_aa64pfr0;
651     uint64_t id_aa64pfr1;
652     uint64_t id_aa64dfr0;
653     uint64_t id_aa64dfr1;
654     uint64_t id_aa64afr0;
655     uint64_t id_aa64afr1;
656     uint64_t id_aa64isar0;
657     uint64_t id_aa64isar1;
658     uint64_t id_aa64mmfr0;
659     uint64_t id_aa64mmfr1;
660     uint32_t dbgdidr;
661     uint32_t clidr;
662     uint64_t mp_affinity; /* MP ID without feature bits */
663     /* The elements of this array are the CCSIDR values for each cache,
664      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
665      */
666     uint32_t ccsidr[16];
667     uint64_t reset_cbar;
668     uint32_t reset_auxcr;
669     bool reset_hivecs;
670     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
671     uint32_t dcz_blocksize;
672     uint64_t rvbar;
673 
674     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
675     int gic_num_lrs; /* number of list registers */
676     int gic_vpribits; /* number of virtual priority bits */
677     int gic_vprebits; /* number of virtual preemption bits */
678 
679     ARMELChangeHook *el_change_hook;
680     void *el_change_hook_opaque;
681 };
682 
683 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
684 {
685     return container_of(env, ARMCPU, env);
686 }
687 
688 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
689 
690 #define ENV_OFFSET offsetof(ARMCPU, env)
691 
692 #ifndef CONFIG_USER_ONLY
693 extern const struct VMStateDescription vmstate_arm_cpu;
694 #endif
695 
696 void arm_cpu_do_interrupt(CPUState *cpu);
697 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
698 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
699 
700 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
701                         int flags);
702 
703 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
704                                          MemTxAttrs *attrs);
705 
706 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
707 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
708 
709 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
710                              int cpuid, void *opaque);
711 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
712                              int cpuid, void *opaque);
713 
714 #ifdef TARGET_AARCH64
715 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
716 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
717 #endif
718 
719 ARMCPU *cpu_arm_init(const char *cpu_model);
720 target_ulong do_arm_semihosting(CPUARMState *env);
721 void aarch64_sync_32_to_64(CPUARMState *env);
722 void aarch64_sync_64_to_32(CPUARMState *env);
723 
724 static inline bool is_a64(CPUARMState *env)
725 {
726     return env->aarch64;
727 }
728 
729 /* you can call this signal handler from your SIGBUS and SIGSEGV
730    signal handlers to inform the virtual CPU of exceptions. non zero
731    is returned if the signal was handled by the virtual CPU.  */
732 int cpu_arm_signal_handler(int host_signum, void *pinfo,
733                            void *puc);
734 
735 /**
736  * pmccntr_sync
737  * @env: CPUARMState
738  *
739  * Synchronises the counter in the PMCCNTR. This must always be called twice,
740  * once before any action that might affect the timer and again afterwards.
741  * The function is used to swap the state of the register if required.
742  * This only happens when not in user mode (!CONFIG_USER_ONLY)
743  */
744 void pmccntr_sync(CPUARMState *env);
745 
746 /* SCTLR bit meanings. Several bits have been reused in newer
747  * versions of the architecture; in that case we define constants
748  * for both old and new bit meanings. Code which tests against those
749  * bits should probably check or otherwise arrange that the CPU
750  * is the architectural version it expects.
751  */
752 #define SCTLR_M       (1U << 0)
753 #define SCTLR_A       (1U << 1)
754 #define SCTLR_C       (1U << 2)
755 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
756 #define SCTLR_SA      (1U << 3)
757 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
758 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
759 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
760 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
761 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
762 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
763 #define SCTLR_ITD     (1U << 7) /* v8 onward */
764 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
765 #define SCTLR_SED     (1U << 8) /* v8 onward */
766 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
767 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
768 #define SCTLR_F       (1U << 10) /* up to v6 */
769 #define SCTLR_SW      (1U << 10) /* v7 onward */
770 #define SCTLR_Z       (1U << 11)
771 #define SCTLR_I       (1U << 12)
772 #define SCTLR_V       (1U << 13)
773 #define SCTLR_RR      (1U << 14) /* up to v7 */
774 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
775 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
776 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
777 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
778 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
779 #define SCTLR_HA      (1U << 17)
780 #define SCTLR_BR      (1U << 17) /* PMSA only */
781 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
782 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
783 #define SCTLR_WXN     (1U << 19)
784 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
785 #define SCTLR_UWXN    (1U << 20) /* v7 onward */
786 #define SCTLR_FI      (1U << 21)
787 #define SCTLR_U       (1U << 22)
788 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
789 #define SCTLR_VE      (1U << 24) /* up to v7 */
790 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
791 #define SCTLR_EE      (1U << 25)
792 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
793 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
794 #define SCTLR_NMFI    (1U << 27)
795 #define SCTLR_TRE     (1U << 28)
796 #define SCTLR_AFE     (1U << 29)
797 #define SCTLR_TE      (1U << 30)
798 
799 #define CPTR_TCPAC    (1U << 31)
800 #define CPTR_TTA      (1U << 20)
801 #define CPTR_TFP      (1U << 10)
802 
803 #define MDCR_EPMAD    (1U << 21)
804 #define MDCR_EDAD     (1U << 20)
805 #define MDCR_SPME     (1U << 17)
806 #define MDCR_SDD      (1U << 16)
807 #define MDCR_SPD      (3U << 14)
808 #define MDCR_TDRA     (1U << 11)
809 #define MDCR_TDOSA    (1U << 10)
810 #define MDCR_TDA      (1U << 9)
811 #define MDCR_TDE      (1U << 8)
812 #define MDCR_HPME     (1U << 7)
813 #define MDCR_TPM      (1U << 6)
814 #define MDCR_TPMCR    (1U << 5)
815 
816 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
817 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
818 
819 #define CPSR_M (0x1fU)
820 #define CPSR_T (1U << 5)
821 #define CPSR_F (1U << 6)
822 #define CPSR_I (1U << 7)
823 #define CPSR_A (1U << 8)
824 #define CPSR_E (1U << 9)
825 #define CPSR_IT_2_7 (0xfc00U)
826 #define CPSR_GE (0xfU << 16)
827 #define CPSR_IL (1U << 20)
828 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
829  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
830  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
831  * where it is live state but not accessible to the AArch32 code.
832  */
833 #define CPSR_RESERVED (0x7U << 21)
834 #define CPSR_J (1U << 24)
835 #define CPSR_IT_0_1 (3U << 25)
836 #define CPSR_Q (1U << 27)
837 #define CPSR_V (1U << 28)
838 #define CPSR_C (1U << 29)
839 #define CPSR_Z (1U << 30)
840 #define CPSR_N (1U << 31)
841 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
842 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
843 
844 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
845 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
846     | CPSR_NZCV)
847 /* Bits writable in user mode.  */
848 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
849 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
850 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
851 /* Mask of bits which may be set by exception return copying them from SPSR */
852 #define CPSR_ERET_MASK (~CPSR_RESERVED)
853 
854 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
855 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
856 #define TTBCR_PD0    (1U << 4)
857 #define TTBCR_PD1    (1U << 5)
858 #define TTBCR_EPD0   (1U << 7)
859 #define TTBCR_IRGN0  (3U << 8)
860 #define TTBCR_ORGN0  (3U << 10)
861 #define TTBCR_SH0    (3U << 12)
862 #define TTBCR_T1SZ   (3U << 16)
863 #define TTBCR_A1     (1U << 22)
864 #define TTBCR_EPD1   (1U << 23)
865 #define TTBCR_IRGN1  (3U << 24)
866 #define TTBCR_ORGN1  (3U << 26)
867 #define TTBCR_SH1    (1U << 28)
868 #define TTBCR_EAE    (1U << 31)
869 
870 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
871  * Only these are valid when in AArch64 mode; in
872  * AArch32 mode SPSRs are basically CPSR-format.
873  */
874 #define PSTATE_SP (1U)
875 #define PSTATE_M (0xFU)
876 #define PSTATE_nRW (1U << 4)
877 #define PSTATE_F (1U << 6)
878 #define PSTATE_I (1U << 7)
879 #define PSTATE_A (1U << 8)
880 #define PSTATE_D (1U << 9)
881 #define PSTATE_IL (1U << 20)
882 #define PSTATE_SS (1U << 21)
883 #define PSTATE_V (1U << 28)
884 #define PSTATE_C (1U << 29)
885 #define PSTATE_Z (1U << 30)
886 #define PSTATE_N (1U << 31)
887 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
888 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
889 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
890 /* Mode values for AArch64 */
891 #define PSTATE_MODE_EL3h 13
892 #define PSTATE_MODE_EL3t 12
893 #define PSTATE_MODE_EL2h 9
894 #define PSTATE_MODE_EL2t 8
895 #define PSTATE_MODE_EL1h 5
896 #define PSTATE_MODE_EL1t 4
897 #define PSTATE_MODE_EL0t 0
898 
899 /* Map EL and handler into a PSTATE_MODE.  */
900 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
901 {
902     return (el << 2) | handler;
903 }
904 
905 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
906  * interprocessing, so we don't attempt to sync with the cpsr state used by
907  * the 32 bit decoder.
908  */
909 static inline uint32_t pstate_read(CPUARMState *env)
910 {
911     int ZF;
912 
913     ZF = (env->ZF == 0);
914     return (env->NF & 0x80000000) | (ZF << 30)
915         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
916         | env->pstate | env->daif;
917 }
918 
919 static inline void pstate_write(CPUARMState *env, uint32_t val)
920 {
921     env->ZF = (~val) & PSTATE_Z;
922     env->NF = val;
923     env->CF = (val >> 29) & 1;
924     env->VF = (val << 3) & 0x80000000;
925     env->daif = val & PSTATE_DAIF;
926     env->pstate = val & ~CACHED_PSTATE_BITS;
927 }
928 
929 /* Return the current CPSR value.  */
930 uint32_t cpsr_read(CPUARMState *env);
931 
932 typedef enum CPSRWriteType {
933     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
934     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
935     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
936     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
937 } CPSRWriteType;
938 
939 /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
940 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
941                 CPSRWriteType write_type);
942 
943 /* Return the current xPSR value.  */
944 static inline uint32_t xpsr_read(CPUARMState *env)
945 {
946     int ZF;
947     ZF = (env->ZF == 0);
948     return (env->NF & 0x80000000) | (ZF << 30)
949         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
950         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
951         | ((env->condexec_bits & 0xfc) << 8)
952         | env->v7m.exception;
953 }
954 
955 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
956 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
957 {
958     if (mask & CPSR_NZCV) {
959         env->ZF = (~val) & CPSR_Z;
960         env->NF = val;
961         env->CF = (val >> 29) & 1;
962         env->VF = (val << 3) & 0x80000000;
963     }
964     if (mask & CPSR_Q)
965         env->QF = ((val & CPSR_Q) != 0);
966     if (mask & (1 << 24))
967         env->thumb = ((val & (1 << 24)) != 0);
968     if (mask & CPSR_IT_0_1) {
969         env->condexec_bits &= ~3;
970         env->condexec_bits |= (val >> 25) & 3;
971     }
972     if (mask & CPSR_IT_2_7) {
973         env->condexec_bits &= 3;
974         env->condexec_bits |= (val >> 8) & 0xfc;
975     }
976     if (mask & 0x1ff) {
977         env->v7m.exception = val & 0x1ff;
978     }
979 }
980 
981 #define HCR_VM        (1ULL << 0)
982 #define HCR_SWIO      (1ULL << 1)
983 #define HCR_PTW       (1ULL << 2)
984 #define HCR_FMO       (1ULL << 3)
985 #define HCR_IMO       (1ULL << 4)
986 #define HCR_AMO       (1ULL << 5)
987 #define HCR_VF        (1ULL << 6)
988 #define HCR_VI        (1ULL << 7)
989 #define HCR_VSE       (1ULL << 8)
990 #define HCR_FB        (1ULL << 9)
991 #define HCR_BSU_MASK  (3ULL << 10)
992 #define HCR_DC        (1ULL << 12)
993 #define HCR_TWI       (1ULL << 13)
994 #define HCR_TWE       (1ULL << 14)
995 #define HCR_TID0      (1ULL << 15)
996 #define HCR_TID1      (1ULL << 16)
997 #define HCR_TID2      (1ULL << 17)
998 #define HCR_TID3      (1ULL << 18)
999 #define HCR_TSC       (1ULL << 19)
1000 #define HCR_TIDCP     (1ULL << 20)
1001 #define HCR_TACR      (1ULL << 21)
1002 #define HCR_TSW       (1ULL << 22)
1003 #define HCR_TPC       (1ULL << 23)
1004 #define HCR_TPU       (1ULL << 24)
1005 #define HCR_TTLB      (1ULL << 25)
1006 #define HCR_TVM       (1ULL << 26)
1007 #define HCR_TGE       (1ULL << 27)
1008 #define HCR_TDZ       (1ULL << 28)
1009 #define HCR_HCD       (1ULL << 29)
1010 #define HCR_TRVM      (1ULL << 30)
1011 #define HCR_RW        (1ULL << 31)
1012 #define HCR_CD        (1ULL << 32)
1013 #define HCR_ID        (1ULL << 33)
1014 #define HCR_MASK      ((1ULL << 34) - 1)
1015 
1016 #define SCR_NS                (1U << 0)
1017 #define SCR_IRQ               (1U << 1)
1018 #define SCR_FIQ               (1U << 2)
1019 #define SCR_EA                (1U << 3)
1020 #define SCR_FW                (1U << 4)
1021 #define SCR_AW                (1U << 5)
1022 #define SCR_NET               (1U << 6)
1023 #define SCR_SMD               (1U << 7)
1024 #define SCR_HCE               (1U << 8)
1025 #define SCR_SIF               (1U << 9)
1026 #define SCR_RW                (1U << 10)
1027 #define SCR_ST                (1U << 11)
1028 #define SCR_TWI               (1U << 12)
1029 #define SCR_TWE               (1U << 13)
1030 #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
1031 #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
1032 
1033 /* Return the current FPSCR value.  */
1034 uint32_t vfp_get_fpscr(CPUARMState *env);
1035 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1036 
1037 /* For A64 the FPSCR is split into two logically distinct registers,
1038  * FPCR and FPSR. However since they still use non-overlapping bits
1039  * we store the underlying state in fpscr and just mask on read/write.
1040  */
1041 #define FPSR_MASK 0xf800009f
1042 #define FPCR_MASK 0x07f79f00
1043 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1044 {
1045     return vfp_get_fpscr(env) & FPSR_MASK;
1046 }
1047 
1048 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1049 {
1050     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1051     vfp_set_fpscr(env, new_fpscr);
1052 }
1053 
1054 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1055 {
1056     return vfp_get_fpscr(env) & FPCR_MASK;
1057 }
1058 
1059 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1060 {
1061     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1062     vfp_set_fpscr(env, new_fpscr);
1063 }
1064 
1065 enum arm_cpu_mode {
1066   ARM_CPU_MODE_USR = 0x10,
1067   ARM_CPU_MODE_FIQ = 0x11,
1068   ARM_CPU_MODE_IRQ = 0x12,
1069   ARM_CPU_MODE_SVC = 0x13,
1070   ARM_CPU_MODE_MON = 0x16,
1071   ARM_CPU_MODE_ABT = 0x17,
1072   ARM_CPU_MODE_HYP = 0x1a,
1073   ARM_CPU_MODE_UND = 0x1b,
1074   ARM_CPU_MODE_SYS = 0x1f
1075 };
1076 
1077 /* VFP system registers.  */
1078 #define ARM_VFP_FPSID   0
1079 #define ARM_VFP_FPSCR   1
1080 #define ARM_VFP_MVFR2   5
1081 #define ARM_VFP_MVFR1   6
1082 #define ARM_VFP_MVFR0   7
1083 #define ARM_VFP_FPEXC   8
1084 #define ARM_VFP_FPINST  9
1085 #define ARM_VFP_FPINST2 10
1086 
1087 /* iwMMXt coprocessor control registers.  */
1088 #define ARM_IWMMXT_wCID		0
1089 #define ARM_IWMMXT_wCon		1
1090 #define ARM_IWMMXT_wCSSF	2
1091 #define ARM_IWMMXT_wCASF	3
1092 #define ARM_IWMMXT_wCGR0	8
1093 #define ARM_IWMMXT_wCGR1	9
1094 #define ARM_IWMMXT_wCGR2	10
1095 #define ARM_IWMMXT_wCGR3	11
1096 
1097 /* V7M CCR bits */
1098 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1099 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1100 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1101 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1102 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1103 FIELD(V7M_CCR, STKALIGN, 9, 1)
1104 FIELD(V7M_CCR, DC, 16, 1)
1105 FIELD(V7M_CCR, IC, 17, 1)
1106 
1107 /* V7M CFSR bits for MMFSR */
1108 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1109 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1110 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1111 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1112 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1113 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1114 
1115 /* V7M CFSR bits for BFSR */
1116 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1117 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1118 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1119 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1120 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1121 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1122 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1123 
1124 /* V7M CFSR bits for UFSR */
1125 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1126 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1127 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1128 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1129 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1130 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1131 
1132 /* V7M HFSR bits */
1133 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1134 FIELD(V7M_HFSR, FORCED, 30, 1)
1135 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1136 
1137 /* V7M DFSR bits */
1138 FIELD(V7M_DFSR, HALTED, 0, 1)
1139 FIELD(V7M_DFSR, BKPT, 1, 1)
1140 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1141 FIELD(V7M_DFSR, VCATCH, 3, 1)
1142 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1143 
1144 /* If adding a feature bit which corresponds to a Linux ELF
1145  * HWCAP bit, remember to update the feature-bit-to-hwcap
1146  * mapping in linux-user/elfload.c:get_elf_hwcap().
1147  */
1148 enum arm_features {
1149     ARM_FEATURE_VFP,
1150     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1151     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1152     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1153     ARM_FEATURE_V6,
1154     ARM_FEATURE_V6K,
1155     ARM_FEATURE_V7,
1156     ARM_FEATURE_THUMB2,
1157     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
1158     ARM_FEATURE_VFP3,
1159     ARM_FEATURE_VFP_FP16,
1160     ARM_FEATURE_NEON,
1161     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1162     ARM_FEATURE_M, /* Microcontroller profile.  */
1163     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1164     ARM_FEATURE_THUMB2EE,
1165     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1166     ARM_FEATURE_V4T,
1167     ARM_FEATURE_V5,
1168     ARM_FEATURE_STRONGARM,
1169     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1170     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1171     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1172     ARM_FEATURE_GENERIC_TIMER,
1173     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1174     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1175     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1176     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1177     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1178     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1179     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1180     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1181     ARM_FEATURE_V8,
1182     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1183     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1184     ARM_FEATURE_CBAR, /* has cp15 CBAR */
1185     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1186     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1187     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1188     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1189     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1190     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1191     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1192     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1193     ARM_FEATURE_PMU, /* has PMU support */
1194     ARM_FEATURE_VBAR, /* has cp15 VBAR */
1195 };
1196 
1197 static inline int arm_feature(CPUARMState *env, int feature)
1198 {
1199     return (env->features & (1ULL << feature)) != 0;
1200 }
1201 
1202 #if !defined(CONFIG_USER_ONLY)
1203 /* Return true if exception levels below EL3 are in secure state,
1204  * or would be following an exception return to that level.
1205  * Unlike arm_is_secure() (which is always a question about the
1206  * _current_ state of the CPU) this doesn't care about the current
1207  * EL or mode.
1208  */
1209 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1210 {
1211     if (arm_feature(env, ARM_FEATURE_EL3)) {
1212         return !(env->cp15.scr_el3 & SCR_NS);
1213     } else {
1214         /* If EL3 is not supported then the secure state is implementation
1215          * defined, in which case QEMU defaults to non-secure.
1216          */
1217         return false;
1218     }
1219 }
1220 
1221 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1222 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1223 {
1224     if (arm_feature(env, ARM_FEATURE_EL3)) {
1225         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1226             /* CPU currently in AArch64 state and EL3 */
1227             return true;
1228         } else if (!is_a64(env) &&
1229                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1230             /* CPU currently in AArch32 state and monitor mode */
1231             return true;
1232         }
1233     }
1234     return false;
1235 }
1236 
1237 /* Return true if the processor is in secure state */
1238 static inline bool arm_is_secure(CPUARMState *env)
1239 {
1240     if (arm_is_el3_or_mon(env)) {
1241         return true;
1242     }
1243     return arm_is_secure_below_el3(env);
1244 }
1245 
1246 #else
1247 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1248 {
1249     return false;
1250 }
1251 
1252 static inline bool arm_is_secure(CPUARMState *env)
1253 {
1254     return false;
1255 }
1256 #endif
1257 
1258 /* Return true if the specified exception level is running in AArch64 state. */
1259 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1260 {
1261     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1262      * and if we're not in EL0 then the state of EL0 isn't well defined.)
1263      */
1264     assert(el >= 1 && el <= 3);
1265     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1266 
1267     /* The highest exception level is always at the maximum supported
1268      * register width, and then lower levels have a register width controlled
1269      * by bits in the SCR or HCR registers.
1270      */
1271     if (el == 3) {
1272         return aa64;
1273     }
1274 
1275     if (arm_feature(env, ARM_FEATURE_EL3)) {
1276         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1277     }
1278 
1279     if (el == 2) {
1280         return aa64;
1281     }
1282 
1283     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1284         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1285     }
1286 
1287     return aa64;
1288 }
1289 
1290 /* Function for determing whether guest cp register reads and writes should
1291  * access the secure or non-secure bank of a cp register.  When EL3 is
1292  * operating in AArch32 state, the NS-bit determines whether the secure
1293  * instance of a cp register should be used. When EL3 is AArch64 (or if
1294  * it doesn't exist at all) then there is no register banking, and all
1295  * accesses are to the non-secure version.
1296  */
1297 static inline bool access_secure_reg(CPUARMState *env)
1298 {
1299     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1300                 !arm_el_is_aa64(env, 3) &&
1301                 !(env->cp15.scr_el3 & SCR_NS));
1302 
1303     return ret;
1304 }
1305 
1306 /* Macros for accessing a specified CP register bank */
1307 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1308     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1309 
1310 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1311     do {                                                \
1312         if (_secure) {                                   \
1313             (_env)->cp15._regname##_s = (_val);            \
1314         } else {                                        \
1315             (_env)->cp15._regname##_ns = (_val);           \
1316         }                                               \
1317     } while (0)
1318 
1319 /* Macros for automatically accessing a specific CP register bank depending on
1320  * the current secure state of the system.  These macros are not intended for
1321  * supporting instruction translation reads/writes as these are dependent
1322  * solely on the SCR.NS bit and not the mode.
1323  */
1324 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1325     A32_BANKED_REG_GET((_env), _regname,                \
1326                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1327 
1328 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1329     A32_BANKED_REG_SET((_env), _regname,                                    \
1330                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1331                        (_val))
1332 
1333 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1334 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1335                                  uint32_t cur_el, bool secure);
1336 
1337 /* Interface between CPU and Interrupt controller.  */
1338 void armv7m_nvic_set_pending(void *opaque, int irq);
1339 int armv7m_nvic_acknowledge_irq(void *opaque);
1340 void armv7m_nvic_complete_irq(void *opaque, int irq);
1341 
1342 /* Interface for defining coprocessor registers.
1343  * Registers are defined in tables of arm_cp_reginfo structs
1344  * which are passed to define_arm_cp_regs().
1345  */
1346 
1347 /* When looking up a coprocessor register we look for it
1348  * via an integer which encodes all of:
1349  *  coprocessor number
1350  *  Crn, Crm, opc1, opc2 fields
1351  *  32 or 64 bit register (ie is it accessed via MRC/MCR
1352  *    or via MRRC/MCRR?)
1353  *  non-secure/secure bank (AArch32 only)
1354  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1355  * (In this case crn and opc2 should be zero.)
1356  * For AArch64, there is no 32/64 bit size distinction;
1357  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1358  * and 4 bit CRn and CRm. The encoding patterns are chosen
1359  * to be easy to convert to and from the KVM encodings, and also
1360  * so that the hashtable can contain both AArch32 and AArch64
1361  * registers (to allow for interprocessing where we might run
1362  * 32 bit code on a 64 bit core).
1363  */
1364 /* This bit is private to our hashtable cpreg; in KVM register
1365  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1366  * in the upper bits of the 64 bit ID.
1367  */
1368 #define CP_REG_AA64_SHIFT 28
1369 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1370 
1371 /* To enable banking of coprocessor registers depending on ns-bit we
1372  * add a bit to distinguish between secure and non-secure cpregs in the
1373  * hashtable.
1374  */
1375 #define CP_REG_NS_SHIFT 29
1376 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1377 
1378 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
1379     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
1380      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1381 
1382 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1383     (CP_REG_AA64_MASK |                                 \
1384      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
1385      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
1386      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
1387      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
1388      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
1389      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1390 
1391 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1392  * version used as a key for the coprocessor register hashtable
1393  */
1394 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1395 {
1396     uint32_t cpregid = kvmid;
1397     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1398         cpregid |= CP_REG_AA64_MASK;
1399     } else {
1400         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1401             cpregid |= (1 << 15);
1402         }
1403 
1404         /* KVM is always non-secure so add the NS flag on AArch32 register
1405          * entries.
1406          */
1407          cpregid |= 1 << CP_REG_NS_SHIFT;
1408     }
1409     return cpregid;
1410 }
1411 
1412 /* Convert a truncated 32 bit hashtable key into the full
1413  * 64 bit KVM register ID.
1414  */
1415 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1416 {
1417     uint64_t kvmid;
1418 
1419     if (cpregid & CP_REG_AA64_MASK) {
1420         kvmid = cpregid & ~CP_REG_AA64_MASK;
1421         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1422     } else {
1423         kvmid = cpregid & ~(1 << 15);
1424         if (cpregid & (1 << 15)) {
1425             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1426         } else {
1427             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1428         }
1429     }
1430     return kvmid;
1431 }
1432 
1433 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1434  * special-behaviour cp reg and bits [15..8] indicate what behaviour
1435  * it has. Otherwise it is a simple cp reg, where CONST indicates that
1436  * TCG can assume the value to be constant (ie load at translate time)
1437  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1438  * indicates that the TB should not be ended after a write to this register
1439  * (the default is that the TB ends after cp writes). OVERRIDE permits
1440  * a register definition to override a previous definition for the
1441  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1442  * old must have the OVERRIDE bit set.
1443  * ALIAS indicates that this register is an alias view of some underlying
1444  * state which is also visible via another register, and that the other
1445  * register is handling migration and reset; registers marked ALIAS will not be
1446  * migrated but may have their state set by syncing of register state from KVM.
1447  * NO_RAW indicates that this register has no underlying state and does not
1448  * support raw access for state saving/loading; it will not be used for either
1449  * migration or KVM state synchronization. (Typically this is for "registers"
1450  * which are actually used as instructions for cache maintenance and so on.)
1451  * IO indicates that this register does I/O and therefore its accesses
1452  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1453  * registers which implement clocks or timers require this.
1454  */
1455 #define ARM_CP_SPECIAL 1
1456 #define ARM_CP_CONST 2
1457 #define ARM_CP_64BIT 4
1458 #define ARM_CP_SUPPRESS_TB_END 8
1459 #define ARM_CP_OVERRIDE 16
1460 #define ARM_CP_ALIAS 32
1461 #define ARM_CP_IO 64
1462 #define ARM_CP_NO_RAW 128
1463 #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
1464 #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
1465 #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
1466 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
1467 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
1468 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1469 /* Used only as a terminator for ARMCPRegInfo lists */
1470 #define ARM_CP_SENTINEL 0xffff
1471 /* Mask of only the flag bits in a type field */
1472 #define ARM_CP_FLAG_MASK 0xff
1473 
1474 /* Valid values for ARMCPRegInfo state field, indicating which of
1475  * the AArch32 and AArch64 execution states this register is visible in.
1476  * If the reginfo doesn't explicitly specify then it is AArch32 only.
1477  * If the reginfo is declared to be visible in both states then a second
1478  * reginfo is synthesised for the AArch32 view of the AArch64 register,
1479  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1480  * Note that we rely on the values of these enums as we iterate through
1481  * the various states in some places.
1482  */
1483 enum {
1484     ARM_CP_STATE_AA32 = 0,
1485     ARM_CP_STATE_AA64 = 1,
1486     ARM_CP_STATE_BOTH = 2,
1487 };
1488 
1489 /* ARM CP register secure state flags.  These flags identify security state
1490  * attributes for a given CP register entry.
1491  * The existence of both or neither secure and non-secure flags indicates that
1492  * the register has both a secure and non-secure hash entry.  A single one of
1493  * these flags causes the register to only be hashed for the specified
1494  * security state.
1495  * Although definitions may have any combination of the S/NS bits, each
1496  * registered entry will only have one to identify whether the entry is secure
1497  * or non-secure.
1498  */
1499 enum {
1500     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
1501     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
1502 };
1503 
1504 /* Return true if cptype is a valid type field. This is used to try to
1505  * catch errors where the sentinel has been accidentally left off the end
1506  * of a list of registers.
1507  */
1508 static inline bool cptype_valid(int cptype)
1509 {
1510     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1511         || ((cptype & ARM_CP_SPECIAL) &&
1512             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1513 }
1514 
1515 /* Access rights:
1516  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1517  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1518  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1519  * (ie any of the privileged modes in Secure state, or Monitor mode).
1520  * If a register is accessible in one privilege level it's always accessible
1521  * in higher privilege levels too. Since "Secure PL1" also follows this rule
1522  * (ie anything visible in PL2 is visible in S-PL1, some things are only
1523  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1524  * terminology a little and call this PL3.
1525  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1526  * with the ELx exception levels.
1527  *
1528  * If access permissions for a register are more complex than can be
1529  * described with these bits, then use a laxer set of restrictions, and
1530  * do the more restrictive/complex check inside a helper function.
1531  */
1532 #define PL3_R 0x80
1533 #define PL3_W 0x40
1534 #define PL2_R (0x20 | PL3_R)
1535 #define PL2_W (0x10 | PL3_W)
1536 #define PL1_R (0x08 | PL2_R)
1537 #define PL1_W (0x04 | PL2_W)
1538 #define PL0_R (0x02 | PL1_R)
1539 #define PL0_W (0x01 | PL1_W)
1540 
1541 #define PL3_RW (PL3_R | PL3_W)
1542 #define PL2_RW (PL2_R | PL2_W)
1543 #define PL1_RW (PL1_R | PL1_W)
1544 #define PL0_RW (PL0_R | PL0_W)
1545 
1546 /* Return the highest implemented Exception Level */
1547 static inline int arm_highest_el(CPUARMState *env)
1548 {
1549     if (arm_feature(env, ARM_FEATURE_EL3)) {
1550         return 3;
1551     }
1552     if (arm_feature(env, ARM_FEATURE_EL2)) {
1553         return 2;
1554     }
1555     return 1;
1556 }
1557 
1558 /* Return the current Exception Level (as per ARMv8; note that this differs
1559  * from the ARMv7 Privilege Level).
1560  */
1561 static inline int arm_current_el(CPUARMState *env)
1562 {
1563     if (arm_feature(env, ARM_FEATURE_M)) {
1564         return !((env->v7m.exception == 0) && (env->v7m.control & 1));
1565     }
1566 
1567     if (is_a64(env)) {
1568         return extract32(env->pstate, 2, 2);
1569     }
1570 
1571     switch (env->uncached_cpsr & 0x1f) {
1572     case ARM_CPU_MODE_USR:
1573         return 0;
1574     case ARM_CPU_MODE_HYP:
1575         return 2;
1576     case ARM_CPU_MODE_MON:
1577         return 3;
1578     default:
1579         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1580             /* If EL3 is 32-bit then all secure privileged modes run in
1581              * EL3
1582              */
1583             return 3;
1584         }
1585 
1586         return 1;
1587     }
1588 }
1589 
1590 typedef struct ARMCPRegInfo ARMCPRegInfo;
1591 
1592 typedef enum CPAccessResult {
1593     /* Access is permitted */
1594     CP_ACCESS_OK = 0,
1595     /* Access fails due to a configurable trap or enable which would
1596      * result in a categorized exception syndrome giving information about
1597      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1598      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1599      * PL1 if in EL0, otherwise to the current EL).
1600      */
1601     CP_ACCESS_TRAP = 1,
1602     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1603      * Note that this is not a catch-all case -- the set of cases which may
1604      * result in this failure is specifically defined by the architecture.
1605      */
1606     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1607     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1608     CP_ACCESS_TRAP_EL2 = 3,
1609     CP_ACCESS_TRAP_EL3 = 4,
1610     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1611     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1612     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1613     /* Access fails and results in an exception syndrome for an FP access,
1614      * trapped directly to EL2 or EL3
1615      */
1616     CP_ACCESS_TRAP_FP_EL2 = 7,
1617     CP_ACCESS_TRAP_FP_EL3 = 8,
1618 } CPAccessResult;
1619 
1620 /* Access functions for coprocessor registers. These cannot fail and
1621  * may not raise exceptions.
1622  */
1623 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1624 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1625                        uint64_t value);
1626 /* Access permission check functions for coprocessor registers. */
1627 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1628                                   const ARMCPRegInfo *opaque,
1629                                   bool isread);
1630 /* Hook function for register reset */
1631 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1632 
1633 #define CP_ANY 0xff
1634 
1635 /* Definition of an ARM coprocessor register */
1636 struct ARMCPRegInfo {
1637     /* Name of register (useful mainly for debugging, need not be unique) */
1638     const char *name;
1639     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1640      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1641      * 'wildcard' field -- any value of that field in the MRC/MCR insn
1642      * will be decoded to this register. The register read and write
1643      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1644      * used by the program, so it is possible to register a wildcard and
1645      * then behave differently on read/write if necessary.
1646      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1647      * must both be zero.
1648      * For AArch64-visible registers, opc0 is also used.
1649      * Since there are no "coprocessors" in AArch64, cp is purely used as a
1650      * way to distinguish (for KVM's benefit) guest-visible system registers
1651      * from demuxed ones provided to preserve the "no side effects on
1652      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1653      * visible (to match KVM's encoding); cp==0 will be converted to
1654      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1655      */
1656     uint8_t cp;
1657     uint8_t crn;
1658     uint8_t crm;
1659     uint8_t opc0;
1660     uint8_t opc1;
1661     uint8_t opc2;
1662     /* Execution state in which this register is visible: ARM_CP_STATE_* */
1663     int state;
1664     /* Register type: ARM_CP_* bits/values */
1665     int type;
1666     /* Access rights: PL*_[RW] */
1667     int access;
1668     /* Security state: ARM_CP_SECSTATE_* bits/values */
1669     int secure;
1670     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1671      * this register was defined: can be used to hand data through to the
1672      * register read/write functions, since they are passed the ARMCPRegInfo*.
1673      */
1674     void *opaque;
1675     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1676      * fieldoffset is non-zero, the reset value of the register.
1677      */
1678     uint64_t resetvalue;
1679     /* Offset of the field in CPUARMState for this register.
1680      *
1681      * This is not needed if either:
1682      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
1683      *  2. both readfn and writefn are specified
1684      */
1685     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
1686 
1687     /* Offsets of the secure and non-secure fields in CPUARMState for the
1688      * register if it is banked.  These fields are only used during the static
1689      * registration of a register.  During hashing the bank associated
1690      * with a given security state is copied to fieldoffset which is used from
1691      * there on out.
1692      *
1693      * It is expected that register definitions use either fieldoffset or
1694      * bank_fieldoffsets in the definition but not both.  It is also expected
1695      * that both bank offsets are set when defining a banked register.  This
1696      * use indicates that a register is banked.
1697      */
1698     ptrdiff_t bank_fieldoffsets[2];
1699 
1700     /* Function for making any access checks for this register in addition to
1701      * those specified by the 'access' permissions bits. If NULL, no extra
1702      * checks required. The access check is performed at runtime, not at
1703      * translate time.
1704      */
1705     CPAccessFn *accessfn;
1706     /* Function for handling reads of this register. If NULL, then reads
1707      * will be done by loading from the offset into CPUARMState specified
1708      * by fieldoffset.
1709      */
1710     CPReadFn *readfn;
1711     /* Function for handling writes of this register. If NULL, then writes
1712      * will be done by writing to the offset into CPUARMState specified
1713      * by fieldoffset.
1714      */
1715     CPWriteFn *writefn;
1716     /* Function for doing a "raw" read; used when we need to copy
1717      * coprocessor state to the kernel for KVM or out for
1718      * migration. This only needs to be provided if there is also a
1719      * readfn and it has side effects (for instance clear-on-read bits).
1720      */
1721     CPReadFn *raw_readfn;
1722     /* Function for doing a "raw" write; used when we need to copy KVM
1723      * kernel coprocessor state into userspace, or for inbound
1724      * migration. This only needs to be provided if there is also a
1725      * writefn and it masks out "unwritable" bits or has write-one-to-clear
1726      * or similar behaviour.
1727      */
1728     CPWriteFn *raw_writefn;
1729     /* Function for resetting the register. If NULL, then reset will be done
1730      * by writing resetvalue to the field specified in fieldoffset. If
1731      * fieldoffset is 0 then no reset will be done.
1732      */
1733     CPResetFn *resetfn;
1734 };
1735 
1736 /* Macros which are lvalues for the field in CPUARMState for the
1737  * ARMCPRegInfo *ri.
1738  */
1739 #define CPREG_FIELD32(env, ri) \
1740     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
1741 #define CPREG_FIELD64(env, ri) \
1742     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
1743 
1744 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
1745 
1746 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1747                                     const ARMCPRegInfo *regs, void *opaque);
1748 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1749                                        const ARMCPRegInfo *regs, void *opaque);
1750 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
1751 {
1752     define_arm_cp_regs_with_opaque(cpu, regs, 0);
1753 }
1754 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
1755 {
1756     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
1757 }
1758 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
1759 
1760 /* CPWriteFn that can be used to implement writes-ignored behaviour */
1761 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1762                          uint64_t value);
1763 /* CPReadFn that can be used for read-as-zero behaviour */
1764 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
1765 
1766 /* CPResetFn that does nothing, for use if no reset is required even
1767  * if fieldoffset is non zero.
1768  */
1769 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
1770 
1771 /* Return true if this reginfo struct's field in the cpu state struct
1772  * is 64 bits wide.
1773  */
1774 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
1775 {
1776     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
1777 }
1778 
1779 static inline bool cp_access_ok(int current_el,
1780                                 const ARMCPRegInfo *ri, int isread)
1781 {
1782     return (ri->access >> ((current_el * 2) + isread)) & 1;
1783 }
1784 
1785 /* Raw read of a coprocessor register (as needed for migration, etc) */
1786 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
1787 
1788 /**
1789  * write_list_to_cpustate
1790  * @cpu: ARMCPU
1791  *
1792  * For each register listed in the ARMCPU cpreg_indexes list, write
1793  * its value from the cpreg_values list into the ARMCPUState structure.
1794  * This updates TCG's working data structures from KVM data or
1795  * from incoming migration state.
1796  *
1797  * Returns: true if all register values were updated correctly,
1798  * false if some register was unknown or could not be written.
1799  * Note that we do not stop early on failure -- we will attempt
1800  * writing all registers in the list.
1801  */
1802 bool write_list_to_cpustate(ARMCPU *cpu);
1803 
1804 /**
1805  * write_cpustate_to_list:
1806  * @cpu: ARMCPU
1807  *
1808  * For each register listed in the ARMCPU cpreg_indexes list, write
1809  * its value from the ARMCPUState structure into the cpreg_values list.
1810  * This is used to copy info from TCG's working data structures into
1811  * KVM or for outbound migration.
1812  *
1813  * Returns: true if all register values were read correctly,
1814  * false if some register was unknown or could not be read.
1815  * Note that we do not stop early on failure -- we will attempt
1816  * reading all registers in the list.
1817  */
1818 bool write_cpustate_to_list(ARMCPU *cpu);
1819 
1820 #define ARM_CPUID_TI915T      0x54029152
1821 #define ARM_CPUID_TI925T      0x54029252
1822 
1823 #if defined(CONFIG_USER_ONLY)
1824 #define TARGET_PAGE_BITS 12
1825 #else
1826 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
1827  * have to support 1K tiny pages.
1828  */
1829 #define TARGET_PAGE_BITS_VARY
1830 #define TARGET_PAGE_BITS_MIN 10
1831 #endif
1832 
1833 #if defined(TARGET_AARCH64)
1834 #  define TARGET_PHYS_ADDR_SPACE_BITS 48
1835 #  define TARGET_VIRT_ADDR_SPACE_BITS 64
1836 #else
1837 #  define TARGET_PHYS_ADDR_SPACE_BITS 40
1838 #  define TARGET_VIRT_ADDR_SPACE_BITS 32
1839 #endif
1840 
1841 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
1842                                      unsigned int target_el)
1843 {
1844     CPUARMState *env = cs->env_ptr;
1845     unsigned int cur_el = arm_current_el(env);
1846     bool secure = arm_is_secure(env);
1847     bool pstate_unmasked;
1848     int8_t unmasked = 0;
1849 
1850     /* Don't take exceptions if they target a lower EL.
1851      * This check should catch any exceptions that would not be taken but left
1852      * pending.
1853      */
1854     if (cur_el > target_el) {
1855         return false;
1856     }
1857 
1858     switch (excp_idx) {
1859     case EXCP_FIQ:
1860         pstate_unmasked = !(env->daif & PSTATE_F);
1861         break;
1862 
1863     case EXCP_IRQ:
1864         pstate_unmasked = !(env->daif & PSTATE_I);
1865         break;
1866 
1867     case EXCP_VFIQ:
1868         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
1869             /* VFIQs are only taken when hypervized and non-secure.  */
1870             return false;
1871         }
1872         return !(env->daif & PSTATE_F);
1873     case EXCP_VIRQ:
1874         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
1875             /* VIRQs are only taken when hypervized and non-secure.  */
1876             return false;
1877         }
1878         return !(env->daif & PSTATE_I);
1879     default:
1880         g_assert_not_reached();
1881     }
1882 
1883     /* Use the target EL, current execution state and SCR/HCR settings to
1884      * determine whether the corresponding CPSR bit is used to mask the
1885      * interrupt.
1886      */
1887     if ((target_el > cur_el) && (target_el != 1)) {
1888         /* Exceptions targeting a higher EL may not be maskable */
1889         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1890             /* 64-bit masking rules are simple: exceptions to EL3
1891              * can't be masked, and exceptions to EL2 can only be
1892              * masked from Secure state. The HCR and SCR settings
1893              * don't affect the masking logic, only the interrupt routing.
1894              */
1895             if (target_el == 3 || !secure) {
1896                 unmasked = 1;
1897             }
1898         } else {
1899             /* The old 32-bit-only environment has a more complicated
1900              * masking setup. HCR and SCR bits not only affect interrupt
1901              * routing but also change the behaviour of masking.
1902              */
1903             bool hcr, scr;
1904 
1905             switch (excp_idx) {
1906             case EXCP_FIQ:
1907                 /* If FIQs are routed to EL3 or EL2 then there are cases where
1908                  * we override the CPSR.F in determining if the exception is
1909                  * masked or not. If neither of these are set then we fall back
1910                  * to the CPSR.F setting otherwise we further assess the state
1911                  * below.
1912                  */
1913                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
1914                 scr = (env->cp15.scr_el3 & SCR_FIQ);
1915 
1916                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
1917                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
1918                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
1919                  * when non-secure but only when FIQs are only routed to EL3.
1920                  */
1921                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
1922                 break;
1923             case EXCP_IRQ:
1924                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
1925                  * we may override the CPSR.I masking when in non-secure state.
1926                  * The SCR.IRQ setting has already been taken into consideration
1927                  * when setting the target EL, so it does not have a further
1928                  * affect here.
1929                  */
1930                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
1931                 scr = false;
1932                 break;
1933             default:
1934                 g_assert_not_reached();
1935             }
1936 
1937             if ((scr || hcr) && !secure) {
1938                 unmasked = 1;
1939             }
1940         }
1941     }
1942 
1943     /* The PSTATE bits only mask the interrupt if we have not overriden the
1944      * ability above.
1945      */
1946     return unmasked || pstate_unmasked;
1947 }
1948 
1949 #define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
1950 
1951 #define cpu_signal_handler cpu_arm_signal_handler
1952 #define cpu_list arm_cpu_list
1953 
1954 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
1955  *
1956  * If EL3 is 64-bit:
1957  *  + NonSecure EL1 & 0 stage 1
1958  *  + NonSecure EL1 & 0 stage 2
1959  *  + NonSecure EL2
1960  *  + Secure EL1 & EL0
1961  *  + Secure EL3
1962  * If EL3 is 32-bit:
1963  *  + NonSecure PL1 & 0 stage 1
1964  *  + NonSecure PL1 & 0 stage 2
1965  *  + NonSecure PL2
1966  *  + Secure PL0 & PL1
1967  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
1968  *
1969  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
1970  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
1971  *     may differ in access permissions even if the VA->PA map is the same
1972  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
1973  *     translation, which means that we have one mmu_idx that deals with two
1974  *     concatenated translation regimes [this sort of combined s1+2 TLB is
1975  *     architecturally permitted]
1976  *  3. we don't need to allocate an mmu_idx to translations that we won't be
1977  *     handling via the TLB. The only way to do a stage 1 translation without
1978  *     the immediate stage 2 translation is via the ATS or AT system insns,
1979  *     which can be slow-pathed and always do a page table walk.
1980  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
1981  *     translation regimes, because they map reasonably well to each other
1982  *     and they can't both be active at the same time.
1983  * This gives us the following list of mmu_idx values:
1984  *
1985  * NS EL0 (aka NS PL0) stage 1+2
1986  * NS EL1 (aka NS PL1) stage 1+2
1987  * NS EL2 (aka NS PL2)
1988  * S EL3 (aka S PL1)
1989  * S EL0 (aka S PL0)
1990  * S EL1 (not used if EL3 is 32 bit)
1991  * NS EL0+1 stage 2
1992  *
1993  * (The last of these is an mmu_idx because we want to be able to use the TLB
1994  * for the accesses done as part of a stage 1 page table walk, rather than
1995  * having to walk the stage 2 page table over and over.)
1996  *
1997  * Our enumeration includes at the end some entries which are not "true"
1998  * mmu_idx values in that they don't have corresponding TLBs and are only
1999  * valid for doing slow path page table walks.
2000  *
2001  * The constant names here are patterned after the general style of the names
2002  * of the AT/ATS operations.
2003  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2004  */
2005 typedef enum ARMMMUIdx {
2006     ARMMMUIdx_S12NSE0 = 0,
2007     ARMMMUIdx_S12NSE1 = 1,
2008     ARMMMUIdx_S1E2 = 2,
2009     ARMMMUIdx_S1E3 = 3,
2010     ARMMMUIdx_S1SE0 = 4,
2011     ARMMMUIdx_S1SE1 = 5,
2012     ARMMMUIdx_S2NS = 6,
2013     /* Indexes below here don't have TLBs and are used only for AT system
2014      * instructions or for the first stage of an S12 page table walk.
2015      */
2016     ARMMMUIdx_S1NSE0 = 7,
2017     ARMMMUIdx_S1NSE1 = 8,
2018 } ARMMMUIdx;
2019 
2020 #define MMU_USER_IDX 0
2021 
2022 /* Return the exception level we're running at if this is our mmu_idx */
2023 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2024 {
2025     assert(mmu_idx < ARMMMUIdx_S2NS);
2026     return mmu_idx & 3;
2027 }
2028 
2029 /* Determine the current mmu_idx to use for normal loads/stores */
2030 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2031 {
2032     int el = arm_current_el(env);
2033 
2034     if (el < 2 && arm_is_secure_below_el3(env)) {
2035         return ARMMMUIdx_S1SE0 + el;
2036     }
2037     return el;
2038 }
2039 
2040 /* Indexes used when registering address spaces with cpu_address_space_init */
2041 typedef enum ARMASIdx {
2042     ARMASIdx_NS = 0,
2043     ARMASIdx_S = 1,
2044 } ARMASIdx;
2045 
2046 /* Return the Exception Level targeted by debug exceptions. */
2047 static inline int arm_debug_target_el(CPUARMState *env)
2048 {
2049     bool secure = arm_is_secure(env);
2050     bool route_to_el2 = false;
2051 
2052     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2053         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2054                        env->cp15.mdcr_el2 & (1 << 8);
2055     }
2056 
2057     if (route_to_el2) {
2058         return 2;
2059     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2060                !arm_el_is_aa64(env, 3) && secure) {
2061         return 3;
2062     } else {
2063         return 1;
2064     }
2065 }
2066 
2067 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2068 {
2069     if (arm_is_secure(env)) {
2070         /* MDCR_EL3.SDD disables debug events from Secure state */
2071         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2072             || arm_current_el(env) == 3) {
2073             return false;
2074         }
2075     }
2076 
2077     if (arm_current_el(env) == arm_debug_target_el(env)) {
2078         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2079             || (env->daif & PSTATE_D)) {
2080             return false;
2081         }
2082     }
2083     return true;
2084 }
2085 
2086 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2087 {
2088     int el = arm_current_el(env);
2089 
2090     if (el == 0 && arm_el_is_aa64(env, 1)) {
2091         return aa64_generate_debug_exceptions(env);
2092     }
2093 
2094     if (arm_is_secure(env)) {
2095         int spd;
2096 
2097         if (el == 0 && (env->cp15.sder & 1)) {
2098             /* SDER.SUIDEN means debug exceptions from Secure EL0
2099              * are always enabled. Otherwise they are controlled by
2100              * SDCR.SPD like those from other Secure ELs.
2101              */
2102             return true;
2103         }
2104 
2105         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2106         switch (spd) {
2107         case 1:
2108             /* SPD == 0b01 is reserved, but behaves as 0b00. */
2109         case 0:
2110             /* For 0b00 we return true if external secure invasive debug
2111              * is enabled. On real hardware this is controlled by external
2112              * signals to the core. QEMU always permits debug, and behaves
2113              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2114              */
2115             return true;
2116         case 2:
2117             return false;
2118         case 3:
2119             return true;
2120         }
2121     }
2122 
2123     return el != 2;
2124 }
2125 
2126 /* Return true if debugging exceptions are currently enabled.
2127  * This corresponds to what in ARM ARM pseudocode would be
2128  *    if UsingAArch32() then
2129  *        return AArch32.GenerateDebugExceptions()
2130  *    else
2131  *        return AArch64.GenerateDebugExceptions()
2132  * We choose to push the if() down into this function for clarity,
2133  * since the pseudocode has it at all callsites except for the one in
2134  * CheckSoftwareStep(), where it is elided because both branches would
2135  * always return the same value.
2136  *
2137  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2138  * don't yet implement those exception levels or their associated trap bits.
2139  */
2140 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2141 {
2142     if (env->aarch64) {
2143         return aa64_generate_debug_exceptions(env);
2144     } else {
2145         return aa32_generate_debug_exceptions(env);
2146     }
2147 }
2148 
2149 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2150  * implicitly means this always returns false in pre-v8 CPUs.)
2151  */
2152 static inline bool arm_singlestep_active(CPUARMState *env)
2153 {
2154     return extract32(env->cp15.mdscr_el1, 0, 1)
2155         && arm_el_is_aa64(env, arm_debug_target_el(env))
2156         && arm_generate_debug_exceptions(env);
2157 }
2158 
2159 static inline bool arm_sctlr_b(CPUARMState *env)
2160 {
2161     return
2162         /* We need not implement SCTLR.ITD in user-mode emulation, so
2163          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2164          * This lets people run BE32 binaries with "-cpu any".
2165          */
2166 #ifndef CONFIG_USER_ONLY
2167         !arm_feature(env, ARM_FEATURE_V7) &&
2168 #endif
2169         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2170 }
2171 
2172 /* Return true if the processor is in big-endian mode. */
2173 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2174 {
2175     int cur_el;
2176 
2177     /* In 32bit endianness is determined by looking at CPSR's E bit */
2178     if (!is_a64(env)) {
2179         return
2180 #ifdef CONFIG_USER_ONLY
2181             /* In system mode, BE32 is modelled in line with the
2182              * architecture (as word-invariant big-endianness), where loads
2183              * and stores are done little endian but from addresses which
2184              * are adjusted by XORing with the appropriate constant. So the
2185              * endianness to use for the raw data access is not affected by
2186              * SCTLR.B.
2187              * In user mode, however, we model BE32 as byte-invariant
2188              * big-endianness (because user-only code cannot tell the
2189              * difference), and so we need to use a data access endianness
2190              * that depends on SCTLR.B.
2191              */
2192             arm_sctlr_b(env) ||
2193 #endif
2194                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2195     }
2196 
2197     cur_el = arm_current_el(env);
2198 
2199     if (cur_el == 0) {
2200         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2201     }
2202 
2203     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2204 }
2205 
2206 #include "exec/cpu-all.h"
2207 
2208 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2209  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2210  * We put flags which are shared between 32 and 64 bit mode at the top
2211  * of the word, and flags which apply to only one mode at the bottom.
2212  */
2213 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2214 #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2215 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2216 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2217 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2218 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2219 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2220 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2221 /* Target EL if we take a floating-point-disabled exception */
2222 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2223 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2224 
2225 /* Bit usage when in AArch32 state: */
2226 #define ARM_TBFLAG_THUMB_SHIFT      0
2227 #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
2228 #define ARM_TBFLAG_VECLEN_SHIFT     1
2229 #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2230 #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
2231 #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2232 #define ARM_TBFLAG_VFPEN_SHIFT      7
2233 #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
2234 #define ARM_TBFLAG_CONDEXEC_SHIFT   8
2235 #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2236 #define ARM_TBFLAG_SCTLR_B_SHIFT    16
2237 #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2238 /* We store the bottom two bits of the CPAR as TB flags and handle
2239  * checks on the other bits at runtime
2240  */
2241 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2242 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2243 /* Indicates whether cp register reads and writes by guest code should access
2244  * the secure or nonsecure bank of banked registers; note that this is not
2245  * the same thing as the current security state of the processor!
2246  */
2247 #define ARM_TBFLAG_NS_SHIFT         19
2248 #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
2249 #define ARM_TBFLAG_BE_DATA_SHIFT    20
2250 #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2251 
2252 /* Bit usage when in AArch64 state */
2253 #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
2254 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2255 #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
2256 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2257 
2258 /* some convenience accessor macros */
2259 #define ARM_TBFLAG_AARCH64_STATE(F) \
2260     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2261 #define ARM_TBFLAG_MMUIDX(F) \
2262     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2263 #define ARM_TBFLAG_SS_ACTIVE(F) \
2264     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2265 #define ARM_TBFLAG_PSTATE_SS(F) \
2266     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2267 #define ARM_TBFLAG_FPEXC_EL(F) \
2268     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2269 #define ARM_TBFLAG_THUMB(F) \
2270     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2271 #define ARM_TBFLAG_VECLEN(F) \
2272     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2273 #define ARM_TBFLAG_VECSTRIDE(F) \
2274     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2275 #define ARM_TBFLAG_VFPEN(F) \
2276     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2277 #define ARM_TBFLAG_CONDEXEC(F) \
2278     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2279 #define ARM_TBFLAG_SCTLR_B(F) \
2280     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2281 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2282     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2283 #define ARM_TBFLAG_NS(F) \
2284     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2285 #define ARM_TBFLAG_BE_DATA(F) \
2286     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2287 #define ARM_TBFLAG_TBI0(F) \
2288     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2289 #define ARM_TBFLAG_TBI1(F) \
2290     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2291 
2292 static inline bool bswap_code(bool sctlr_b)
2293 {
2294 #ifdef CONFIG_USER_ONLY
2295     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2296      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2297      * would also end up as a mixed-endian mode with BE code, LE data.
2298      */
2299     return
2300 #ifdef TARGET_WORDS_BIGENDIAN
2301         1 ^
2302 #endif
2303         sctlr_b;
2304 #else
2305     /* All code access in ARM is little endian, and there are no loaders
2306      * doing swaps that need to be reversed
2307      */
2308     return 0;
2309 #endif
2310 }
2311 
2312 /* Return the exception level to which FP-disabled exceptions should
2313  * be taken, or 0 if FP is enabled.
2314  */
2315 static inline int fp_exception_el(CPUARMState *env)
2316 {
2317     int fpen;
2318     int cur_el = arm_current_el(env);
2319 
2320     /* CPACR and the CPTR registers don't exist before v6, so FP is
2321      * always accessible
2322      */
2323     if (!arm_feature(env, ARM_FEATURE_V6)) {
2324         return 0;
2325     }
2326 
2327     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
2328      * 0, 2 : trap EL0 and EL1/PL1 accesses
2329      * 1    : trap only EL0 accesses
2330      * 3    : trap no accesses
2331      */
2332     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
2333     switch (fpen) {
2334     case 0:
2335     case 2:
2336         if (cur_el == 0 || cur_el == 1) {
2337             /* Trap to PL1, which might be EL1 or EL3 */
2338             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2339                 return 3;
2340             }
2341             return 1;
2342         }
2343         if (cur_el == 3 && !is_a64(env)) {
2344             /* Secure PL1 running at EL3 */
2345             return 3;
2346         }
2347         break;
2348     case 1:
2349         if (cur_el == 0) {
2350             return 1;
2351         }
2352         break;
2353     case 3:
2354         break;
2355     }
2356 
2357     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
2358      * check because zero bits in the registers mean "don't trap".
2359      */
2360 
2361     /* CPTR_EL2 : present in v7VE or v8 */
2362     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
2363         && !arm_is_secure_below_el3(env)) {
2364         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
2365         return 2;
2366     }
2367 
2368     /* CPTR_EL3 : present in v8 */
2369     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
2370         /* Trap all FP ops to EL3 */
2371         return 3;
2372     }
2373 
2374     return 0;
2375 }
2376 
2377 #ifdef CONFIG_USER_ONLY
2378 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2379 {
2380     return
2381 #ifdef TARGET_WORDS_BIGENDIAN
2382        1 ^
2383 #endif
2384        arm_cpu_data_is_big_endian(env);
2385 }
2386 #endif
2387 
2388 #ifndef CONFIG_USER_ONLY
2389 /**
2390  * arm_regime_tbi0:
2391  * @env: CPUARMState
2392  * @mmu_idx: MMU index indicating required translation regime
2393  *
2394  * Extracts the TBI0 value from the appropriate TCR for the current EL
2395  *
2396  * Returns: the TBI0 value.
2397  */
2398 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2399 
2400 /**
2401  * arm_regime_tbi1:
2402  * @env: CPUARMState
2403  * @mmu_idx: MMU index indicating required translation regime
2404  *
2405  * Extracts the TBI1 value from the appropriate TCR for the current EL
2406  *
2407  * Returns: the TBI1 value.
2408  */
2409 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2410 #else
2411 /* We can't handle tagged addresses properly in user-only mode */
2412 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2413 {
2414     return 0;
2415 }
2416 
2417 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2418 {
2419     return 0;
2420 }
2421 #endif
2422 
2423 static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2424                                         target_ulong *cs_base, uint32_t *flags)
2425 {
2426     ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
2427     if (is_a64(env)) {
2428         *pc = env->pc;
2429         *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
2430         /* Get control bits for tagged addresses */
2431         *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
2432         *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
2433     } else {
2434         *pc = env->regs[15];
2435         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
2436             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
2437             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
2438             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
2439             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
2440         if (!(access_secure_reg(env))) {
2441             *flags |= ARM_TBFLAG_NS_MASK;
2442         }
2443         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
2444             || arm_el_is_aa64(env, 1)) {
2445             *flags |= ARM_TBFLAG_VFPEN_MASK;
2446         }
2447         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
2448                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
2449     }
2450 
2451     *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
2452 
2453     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
2454      * states defined in the ARM ARM for software singlestep:
2455      *  SS_ACTIVE   PSTATE.SS   State
2456      *     0            x       Inactive (the TB flag for SS is always 0)
2457      *     1            0       Active-pending
2458      *     1            1       Active-not-pending
2459      */
2460     if (arm_singlestep_active(env)) {
2461         *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
2462         if (is_a64(env)) {
2463             if (env->pstate & PSTATE_SS) {
2464                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2465             }
2466         } else {
2467             if (env->uncached_cpsr & PSTATE_SS) {
2468                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
2469             }
2470         }
2471     }
2472     if (arm_cpu_data_is_big_endian(env)) {
2473         *flags |= ARM_TBFLAG_BE_DATA_MASK;
2474     }
2475     *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
2476 
2477     *cs_base = 0;
2478 }
2479 
2480 enum {
2481     QEMU_PSCI_CONDUIT_DISABLED = 0,
2482     QEMU_PSCI_CONDUIT_SMC = 1,
2483     QEMU_PSCI_CONDUIT_HVC = 2,
2484 };
2485 
2486 #ifndef CONFIG_USER_ONLY
2487 /* Return the address space index to use for a memory access */
2488 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2489 {
2490     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2491 }
2492 
2493 /* Return the AddressSpace to use for a memory access
2494  * (which depends on whether the access is S or NS, and whether
2495  * the board gave us a separate AddressSpace for S accesses).
2496  */
2497 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2498 {
2499     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2500 }
2501 #endif
2502 
2503 /**
2504  * arm_register_el_change_hook:
2505  * Register a hook function which will be called back whenever this
2506  * CPU changes exception level or mode. The hook function will be
2507  * passed a pointer to the ARMCPU and the opaque data pointer passed
2508  * to this function when the hook was registered.
2509  *
2510  * Note that we currently only support registering a single hook function,
2511  * and will assert if this function is called twice.
2512  * This facility is intended for the use of the GICv3 emulation.
2513  */
2514 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2515                                  void *opaque);
2516 
2517 /**
2518  * arm_get_el_change_hook_opaque:
2519  * Return the opaque data that will be used by the el_change_hook
2520  * for this CPU.
2521  */
2522 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2523 {
2524     return cpu->el_change_hook_opaque;
2525 }
2526 
2527 #endif
2528