xref: /qemu/target/arm/cpu.h (revision a6819c1b)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "exec/gdbstub.h"
29 #include "qapi/qapi-types-common.h"
30 #include "target/arm/multiprocessing.h"
31 #include "target/arm/gtimer.h"
32 
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO      (0)
35 
36 #ifdef TARGET_AARCH64
37 #define KVM_HAVE_MCE_INJECTION 1
38 #endif
39 
40 #define EXCP_UDEF            1   /* undefined instruction */
41 #define EXCP_SWI             2   /* software interrupt */
42 #define EXCP_PREFETCH_ABORT  3
43 #define EXCP_DATA_ABORT      4
44 #define EXCP_IRQ             5
45 #define EXCP_FIQ             6
46 #define EXCP_BKPT            7
47 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
48 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
49 #define EXCP_HVC            11   /* HyperVisor Call */
50 #define EXCP_HYP_TRAP       12
51 #define EXCP_SMC            13   /* Secure Monitor Call */
52 #define EXCP_VIRQ           14
53 #define EXCP_VFIQ           15
54 #define EXCP_SEMIHOST       16   /* semihosting call */
55 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
56 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
57 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
58 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
59 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
60 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
61 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
62 #define EXCP_VSERR          24
63 #define EXCP_GPC            25   /* v9 Granule Protection Check Fault */
64 #define EXCP_NMI            26
65 #define EXCP_VINMI          27
66 #define EXCP_VFNMI          28
67 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
68 
69 #define ARMV7M_EXCP_RESET   1
70 #define ARMV7M_EXCP_NMI     2
71 #define ARMV7M_EXCP_HARD    3
72 #define ARMV7M_EXCP_MEM     4
73 #define ARMV7M_EXCP_BUS     5
74 #define ARMV7M_EXCP_USAGE   6
75 #define ARMV7M_EXCP_SECURE  7
76 #define ARMV7M_EXCP_SVC     11
77 #define ARMV7M_EXCP_DEBUG   12
78 #define ARMV7M_EXCP_PENDSV  14
79 #define ARMV7M_EXCP_SYSTICK 15
80 
81 /* ARM-specific interrupt pending bits.  */
82 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
83 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
84 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
85 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
86 #define CPU_INTERRUPT_NMI   CPU_INTERRUPT_TGT_EXT_4
87 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0
88 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1
89 
90 /* The usual mapping for an AArch64 system register to its AArch32
91  * counterpart is for the 32 bit world to have access to the lower
92  * half only (with writes leaving the upper half untouched). It's
93  * therefore useful to be able to pass TCG the offset of the least
94  * significant half of a uint64_t struct member.
95  */
96 #if HOST_BIG_ENDIAN
97 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
98 #define offsetofhigh32(S, M) offsetof(S, M)
99 #else
100 #define offsetoflow32(S, M) offsetof(S, M)
101 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #endif
103 
104 /* ARM-specific extra insn start words:
105  * 1: Conditional execution bits
106  * 2: Partial exception syndrome for data aborts
107  */
108 #define TARGET_INSN_START_EXTRA_WORDS 2
109 
110 /* The 2nd extra word holding syndrome info for data aborts does not use
111  * the upper 6 bits nor the lower 13 bits. We mask and shift it down to
112  * help the sleb128 encoder do a better job.
113  * When restoring the CPU state, we shift it back up.
114  */
115 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
116 #define ARM_INSN_START_WORD2_SHIFT 13
117 
118 /* We currently assume float and double are IEEE single and double
119    precision respectively.
120    Doing runtime conversions is tricky because VFP registers may contain
121    integer values (eg. as the result of a FTOSI instruction).
122    s<2n> maps to the least significant half of d<n>
123    s<2n+1> maps to the most significant half of d<n>
124  */
125 
126 /**
127  * DynamicGDBFeatureInfo:
128  * @desc: Contains the feature descriptions.
129  * @data: A union with data specific to the set of registers
130  *    @cpregs_keys: Array that contains the corresponding Key of
131  *                  a given cpreg with the same order of the cpreg
132  *                  in the XML description.
133  */
134 typedef struct DynamicGDBFeatureInfo {
135     GDBFeature desc;
136     union {
137         struct {
138             uint32_t *keys;
139         } cpregs;
140     } data;
141 } DynamicGDBFeatureInfo;
142 
143 /* CPU state for each instance of a generic timer (in cp15 c14) */
144 typedef struct ARMGenericTimer {
145     uint64_t cval; /* Timer CompareValue register */
146     uint64_t ctl; /* Timer Control register */
147 } ARMGenericTimer;
148 
149 /* Define a maximum sized vector register.
150  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
151  * For 64-bit, this is a 2048-bit SVE register.
152  *
153  * Note that the mapping between S, D, and Q views of the register bank
154  * differs between AArch64 and AArch32.
155  * In AArch32:
156  *  Qn = regs[n].d[1]:regs[n].d[0]
157  *  Dn = regs[n / 2].d[n & 1]
158  *  Sn = regs[n / 4].d[n % 4 / 2],
159  *       bits 31..0 for even n, and bits 63..32 for odd n
160  *       (and regs[16] to regs[31] are inaccessible)
161  * In AArch64:
162  *  Zn = regs[n].d[*]
163  *  Qn = regs[n].d[1]:regs[n].d[0]
164  *  Dn = regs[n].d[0]
165  *  Sn = regs[n].d[0] bits 31..0
166  *  Hn = regs[n].d[0] bits 15..0
167  *
168  * This corresponds to the architecturally defined mapping between
169  * the two execution states, and means we do not need to explicitly
170  * map these registers when changing states.
171  *
172  * Align the data for use with TCG host vector operations.
173  */
174 
175 #ifdef TARGET_AARCH64
176 # define ARM_MAX_VQ    16
177 #else
178 # define ARM_MAX_VQ    1
179 #endif
180 
181 typedef struct ARMVectorReg {
182     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
183 } ARMVectorReg;
184 
185 #ifdef TARGET_AARCH64
186 /* In AArch32 mode, predicate registers do not exist at all.  */
187 typedef struct ARMPredicateReg {
188     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
189 } ARMPredicateReg;
190 
191 /* In AArch32 mode, PAC keys do not exist at all.  */
192 typedef struct ARMPACKey {
193     uint64_t lo, hi;
194 } ARMPACKey;
195 #endif
196 
197 /* See the commentary above the TBFLAG field definitions.  */
198 typedef struct CPUARMTBFlags {
199     uint32_t flags;
200     target_ulong flags2;
201 } CPUARMTBFlags;
202 
203 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
204 
205 typedef struct NVICState NVICState;
206 
207 typedef struct CPUArchState {
208     /* Regs for current mode.  */
209     uint32_t regs[16];
210 
211     /* 32/64 switch only happens when taking and returning from
212      * exceptions so the overlap semantics are taken care of then
213      * instead of having a complicated union.
214      */
215     /* Regs for A64 mode.  */
216     uint64_t xregs[32];
217     uint64_t pc;
218     /* PSTATE isn't an architectural register for ARMv8. However, it is
219      * convenient for us to assemble the underlying state into a 32 bit format
220      * identical to the architectural format used for the SPSR. (This is also
221      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
222      * 'pstate' register are.) Of the PSTATE bits:
223      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
224      *    semantics as for AArch32, as described in the comments on each field)
225      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
226      *  DAIF (exception masks) are kept in env->daif
227      *  BTYPE is kept in env->btype
228      *  SM and ZA are kept in env->svcr
229      *  all other bits are stored in their correct places in env->pstate
230      */
231     uint32_t pstate;
232     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
233     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
234 
235     /* Cached TBFLAGS state.  See below for which bits are included.  */
236     CPUARMTBFlags hflags;
237 
238     /* Frequently accessed CPSR bits are stored separately for efficiency.
239        This contains all the other bits.  Use cpsr_{read,write} to access
240        the whole CPSR.  */
241     uint32_t uncached_cpsr;
242     uint32_t spsr;
243 
244     /* Banked registers.  */
245     uint64_t banked_spsr[8];
246     uint32_t banked_r13[8];
247     uint32_t banked_r14[8];
248 
249     /* These hold r8-r12.  */
250     uint32_t usr_regs[5];
251     uint32_t fiq_regs[5];
252 
253     /* cpsr flag cache for faster execution */
254     uint32_t CF; /* 0 or 1 */
255     uint32_t VF; /* V is the bit 31. All other bits are undefined */
256     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
257     uint32_t ZF; /* Z set if zero.  */
258     uint32_t QF; /* 0 or 1 */
259     uint32_t GE; /* cpsr[19:16] */
260     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
261     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
262     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
263     uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */
264 
265     uint64_t elr_el[4]; /* AArch64 exception link regs  */
266     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
267 
268     /* System control coprocessor (cp15) */
269     struct {
270         uint32_t c0_cpuid;
271         union { /* Cache size selection */
272             struct {
273                 uint64_t _unused_csselr0;
274                 uint64_t csselr_ns;
275                 uint64_t _unused_csselr1;
276                 uint64_t csselr_s;
277             };
278             uint64_t csselr_el[4];
279         };
280         union { /* System control register. */
281             struct {
282                 uint64_t _unused_sctlr;
283                 uint64_t sctlr_ns;
284                 uint64_t hsctlr;
285                 uint64_t sctlr_s;
286             };
287             uint64_t sctlr_el[4];
288         };
289         uint64_t vsctlr; /* Virtualization System control register. */
290         uint64_t cpacr_el1; /* Architectural feature access control register */
291         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
292         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
293         uint64_t sder; /* Secure debug enable register. */
294         uint32_t nsacr; /* Non-secure access control register. */
295         union { /* MMU translation table base 0. */
296             struct {
297                 uint64_t _unused_ttbr0_0;
298                 uint64_t ttbr0_ns;
299                 uint64_t _unused_ttbr0_1;
300                 uint64_t ttbr0_s;
301             };
302             uint64_t ttbr0_el[4];
303         };
304         union { /* MMU translation table base 1. */
305             struct {
306                 uint64_t _unused_ttbr1_0;
307                 uint64_t ttbr1_ns;
308                 uint64_t _unused_ttbr1_1;
309                 uint64_t ttbr1_s;
310             };
311             uint64_t ttbr1_el[4];
312         };
313         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
314         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
315         /* MMU translation table base control. */
316         uint64_t tcr_el[4];
317         uint64_t vtcr_el2; /* Virtualization Translation Control.  */
318         uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */
319         uint32_t c2_data; /* MPU data cacheable bits.  */
320         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
321         union { /* MMU domain access control register
322                  * MPU write buffer control.
323                  */
324             struct {
325                 uint64_t dacr_ns;
326                 uint64_t dacr_s;
327             };
328             struct {
329                 uint64_t dacr32_el2;
330             };
331         };
332         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
333         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
334         uint64_t hcr_el2; /* Hypervisor configuration register */
335         uint64_t hcrx_el2; /* Extended Hypervisor configuration register */
336         uint64_t scr_el3; /* Secure configuration register.  */
337         union { /* Fault status registers.  */
338             struct {
339                 uint64_t ifsr_ns;
340                 uint64_t ifsr_s;
341             };
342             struct {
343                 uint64_t ifsr32_el2;
344             };
345         };
346         union {
347             struct {
348                 uint64_t _unused_dfsr;
349                 uint64_t dfsr_ns;
350                 uint64_t hsr;
351                 uint64_t dfsr_s;
352             };
353             uint64_t esr_el[4];
354         };
355         uint32_t c6_region[8]; /* MPU base/size registers.  */
356         union { /* Fault address registers. */
357             struct {
358                 uint64_t _unused_far0;
359 #if HOST_BIG_ENDIAN
360                 uint32_t ifar_ns;
361                 uint32_t dfar_ns;
362                 uint32_t ifar_s;
363                 uint32_t dfar_s;
364 #else
365                 uint32_t dfar_ns;
366                 uint32_t ifar_ns;
367                 uint32_t dfar_s;
368                 uint32_t ifar_s;
369 #endif
370                 uint64_t _unused_far3;
371             };
372             uint64_t far_el[4];
373         };
374         uint64_t hpfar_el2;
375         uint64_t hstr_el2;
376         union { /* Translation result. */
377             struct {
378                 uint64_t _unused_par_0;
379                 uint64_t par_ns;
380                 uint64_t _unused_par_1;
381                 uint64_t par_s;
382             };
383             uint64_t par_el[4];
384         };
385 
386         uint32_t c9_insn; /* Cache lockdown registers.  */
387         uint32_t c9_data;
388         uint64_t c9_pmcr; /* performance monitor control register */
389         uint64_t c9_pmcnten; /* perf monitor counter enables */
390         uint64_t c9_pmovsr; /* perf monitor overflow status */
391         uint64_t c9_pmuserenr; /* perf monitor user enable */
392         uint64_t c9_pmselr; /* perf monitor counter selection register */
393         uint64_t c9_pminten; /* perf monitor interrupt enables */
394         union { /* Memory attribute redirection */
395             struct {
396 #if HOST_BIG_ENDIAN
397                 uint64_t _unused_mair_0;
398                 uint32_t mair1_ns;
399                 uint32_t mair0_ns;
400                 uint64_t _unused_mair_1;
401                 uint32_t mair1_s;
402                 uint32_t mair0_s;
403 #else
404                 uint64_t _unused_mair_0;
405                 uint32_t mair0_ns;
406                 uint32_t mair1_ns;
407                 uint64_t _unused_mair_1;
408                 uint32_t mair0_s;
409                 uint32_t mair1_s;
410 #endif
411             };
412             uint64_t mair_el[4];
413         };
414         union { /* vector base address register */
415             struct {
416                 uint64_t _unused_vbar;
417                 uint64_t vbar_ns;
418                 uint64_t hvbar;
419                 uint64_t vbar_s;
420             };
421             uint64_t vbar_el[4];
422         };
423         uint32_t mvbar; /* (monitor) vector base address register */
424         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
425         struct { /* FCSE PID. */
426             uint32_t fcseidr_ns;
427             uint32_t fcseidr_s;
428         };
429         union { /* Context ID. */
430             struct {
431                 uint64_t _unused_contextidr_0;
432                 uint64_t contextidr_ns;
433                 uint64_t _unused_contextidr_1;
434                 uint64_t contextidr_s;
435             };
436             uint64_t contextidr_el[4];
437         };
438         union { /* User RW Thread register. */
439             struct {
440                 uint64_t tpidrurw_ns;
441                 uint64_t tpidrprw_ns;
442                 uint64_t htpidr;
443                 uint64_t _tpidr_el3;
444             };
445             uint64_t tpidr_el[4];
446         };
447         uint64_t tpidr2_el0;
448         /* The secure banks of these registers don't map anywhere */
449         uint64_t tpidrurw_s;
450         uint64_t tpidrprw_s;
451         uint64_t tpidruro_s;
452 
453         union { /* User RO Thread register. */
454             uint64_t tpidruro_ns;
455             uint64_t tpidrro_el[1];
456         };
457         uint64_t c14_cntfrq; /* Counter Frequency register */
458         uint64_t c14_cntkctl; /* Timer Control register */
459         uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */
460         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
461         uint64_t cntpoff_el2; /* Counter Physical Offset register */
462         ARMGenericTimer c14_timer[NUM_GTIMERS];
463         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
464         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
465         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
466         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
467         uint32_t c15_threadid; /* TI debugger thread-ID.  */
468         uint32_t c15_config_base_address; /* SCU base address.  */
469         uint32_t c15_diagnostic; /* diagnostic register */
470         uint32_t c15_power_diagnostic;
471         uint32_t c15_power_control; /* power control */
472         uint64_t dbgbvr[16]; /* breakpoint value registers */
473         uint64_t dbgbcr[16]; /* breakpoint control registers */
474         uint64_t dbgwvr[16]; /* watchpoint value registers */
475         uint64_t dbgwcr[16]; /* watchpoint control registers */
476         uint64_t dbgclaim;   /* DBGCLAIM bits */
477         uint64_t mdscr_el1;
478         uint64_t oslsr_el1; /* OS Lock Status */
479         uint64_t osdlr_el1; /* OS DoubleLock status */
480         uint64_t mdcr_el2;
481         uint64_t mdcr_el3;
482         /* Stores the architectural value of the counter *the last time it was
483          * updated* by pmccntr_op_start. Accesses should always be surrounded
484          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
485          * architecturally-correct value is being read/set.
486          */
487         uint64_t c15_ccnt;
488         /* Stores the delta between the architectural value and the underlying
489          * cycle count during normal operation. It is used to update c15_ccnt
490          * to be the correct architectural value before accesses. During
491          * accesses, c15_ccnt_delta contains the underlying count being used
492          * for the access, after which it reverts to the delta value in
493          * pmccntr_op_finish.
494          */
495         uint64_t c15_ccnt_delta;
496         uint64_t c14_pmevcntr[31];
497         uint64_t c14_pmevcntr_delta[31];
498         uint64_t c14_pmevtyper[31];
499         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
500         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
501         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
502         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
503         uint64_t gcr_el1;
504         uint64_t rgsr_el1;
505 
506         /* Minimal RAS registers */
507         uint64_t disr_el1;
508         uint64_t vdisr_el2;
509         uint64_t vsesr_el2;
510 
511         /*
512          * Fine-Grained Trap registers. We store these as arrays so the
513          * access checking code doesn't have to manually select
514          * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test.
515          * FEAT_FGT2 will add more elements to these arrays.
516          */
517         uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */
518         uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */
519         uint64_t fgt_exec[1]; /* HFGITR */
520 
521         /* RME registers */
522         uint64_t gpccr_el3;
523         uint64_t gptbr_el3;
524         uint64_t mfar_el3;
525 
526         /* NV2 register */
527         uint64_t vncr_el2;
528     } cp15;
529 
530     struct {
531         /* M profile has up to 4 stack pointers:
532          * a Main Stack Pointer and a Process Stack Pointer for each
533          * of the Secure and Non-Secure states. (If the CPU doesn't support
534          * the security extension then it has only two SPs.)
535          * In QEMU we always store the currently active SP in regs[13],
536          * and the non-active SP for the current security state in
537          * v7m.other_sp. The stack pointers for the inactive security state
538          * are stored in other_ss_msp and other_ss_psp.
539          * switch_v7m_security_state() is responsible for rearranging them
540          * when we change security state.
541          */
542         uint32_t other_sp;
543         uint32_t other_ss_msp;
544         uint32_t other_ss_psp;
545         uint32_t vecbase[M_REG_NUM_BANKS];
546         uint32_t basepri[M_REG_NUM_BANKS];
547         uint32_t control[M_REG_NUM_BANKS];
548         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
549         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
550         uint32_t hfsr; /* HardFault Status */
551         uint32_t dfsr; /* Debug Fault Status Register */
552         uint32_t sfsr; /* Secure Fault Status Register */
553         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
554         uint32_t bfar; /* BusFault Address */
555         uint32_t sfar; /* Secure Fault Address Register */
556         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
557         int exception;
558         uint32_t primask[M_REG_NUM_BANKS];
559         uint32_t faultmask[M_REG_NUM_BANKS];
560         uint32_t aircr; /* only holds r/w state if security extn implemented */
561         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
562         uint32_t csselr[M_REG_NUM_BANKS];
563         uint32_t scr[M_REG_NUM_BANKS];
564         uint32_t msplim[M_REG_NUM_BANKS];
565         uint32_t psplim[M_REG_NUM_BANKS];
566         uint32_t fpcar[M_REG_NUM_BANKS];
567         uint32_t fpccr[M_REG_NUM_BANKS];
568         uint32_t fpdscr[M_REG_NUM_BANKS];
569         uint32_t cpacr[M_REG_NUM_BANKS];
570         uint32_t nsacr;
571         uint32_t ltpsize;
572         uint32_t vpr;
573     } v7m;
574 
575     /* Information associated with an exception about to be taken:
576      * code which raises an exception must set cs->exception_index and
577      * the relevant parts of this structure; the cpu_do_interrupt function
578      * will then set the guest-visible registers as part of the exception
579      * entry process.
580      */
581     struct {
582         uint32_t syndrome; /* AArch64 format syndrome register */
583         uint32_t fsr; /* AArch32 format fault status register info */
584         uint64_t vaddress; /* virtual addr associated with exception, if any */
585         uint32_t target_el; /* EL the exception should be targeted for */
586         /* If we implement EL2 we will also need to store information
587          * about the intermediate physical address for stage 2 faults.
588          */
589     } exception;
590 
591     /* Information associated with an SError */
592     struct {
593         uint8_t pending;
594         uint8_t has_esr;
595         uint64_t esr;
596     } serror;
597 
598     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
599 
600     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
601     uint32_t irq_line_state;
602 
603     /* Thumb-2 EE state.  */
604     uint32_t teecr;
605     uint32_t teehbr;
606 
607     /* VFP coprocessor state.  */
608     struct {
609         ARMVectorReg zregs[32];
610 
611 #ifdef TARGET_AARCH64
612         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
613 #define FFR_PRED_NUM 16
614         ARMPredicateReg pregs[17];
615         /* Scratch space for aa64 sve predicate temporary.  */
616         ARMPredicateReg preg_tmp;
617 #endif
618 
619         /* We store these fpcsr fields separately for convenience.  */
620         uint32_t qc[4] QEMU_ALIGNED(16);
621         int vec_len;
622         int vec_stride;
623 
624         uint32_t xregs[16];
625 
626         /* Scratch space for aa32 neon expansion.  */
627         uint32_t scratch[8];
628 
629         /* There are a number of distinct float control structures:
630          *
631          *  fp_status: is the "normal" fp status.
632          *  fp_status_fp16: used for half-precision calculations
633          *  standard_fp_status : the ARM "Standard FPSCR Value"
634          *  standard_fp_status_fp16 : used for half-precision
635          *       calculations with the ARM "Standard FPSCR Value"
636          *
637          * Half-precision operations are governed by a separate
638          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
639          * status structure to control this.
640          *
641          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
642          * round-to-nearest and is used by any operations (generally
643          * Neon) which the architecture defines as controlled by the
644          * standard FPSCR value rather than the FPSCR.
645          *
646          * The "standard FPSCR but for fp16 ops" is needed because
647          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
648          * using a fixed value for it.
649          *
650          * To avoid having to transfer exception bits around, we simply
651          * say that the FPSCR cumulative exception flags are the logical
652          * OR of the flags in the four fp statuses. This relies on the
653          * only thing which needs to read the exception flags being
654          * an explicit FPSCR read.
655          */
656         float_status fp_status;
657         float_status fp_status_f16;
658         float_status standard_fp_status;
659         float_status standard_fp_status_f16;
660 
661         uint64_t zcr_el[4];   /* ZCR_EL[1-3] */
662         uint64_t smcr_el[4];  /* SMCR_EL[1-3] */
663     } vfp;
664 
665     uint64_t exclusive_addr;
666     uint64_t exclusive_val;
667     /*
668      * Contains the 'val' for the second 64-bit register of LDXP, which comes
669      * from the higher address, not the high part of a complete 128-bit value.
670      * In some ways it might be more convenient to record the exclusive value
671      * as the low and high halves of a 128 bit data value, but the current
672      * semantics of these fields are baked into the migration format.
673      */
674     uint64_t exclusive_high;
675 
676     /* iwMMXt coprocessor state.  */
677     struct {
678         uint64_t regs[16];
679         uint64_t val;
680 
681         uint32_t cregs[16];
682     } iwmmxt;
683 
684 #ifdef TARGET_AARCH64
685     struct {
686         ARMPACKey apia;
687         ARMPACKey apib;
688         ARMPACKey apda;
689         ARMPACKey apdb;
690         ARMPACKey apga;
691     } keys;
692 
693     uint64_t scxtnum_el[4];
694 
695     /*
696      * SME ZA storage -- 256 x 256 byte array, with bytes in host word order,
697      * as we do with vfp.zregs[].  This corresponds to the architectural ZA
698      * array, where ZA[N] is in the least-significant bytes of env->zarray[N].
699      * When SVL is less than the architectural maximum, the accessible
700      * storage is restricted, such that if the SVL is X bytes the guest can
701      * see only the bottom X elements of zarray[], and only the least
702      * significant X bytes of each element of the array. (In other words,
703      * the observable part is always square.)
704      *
705      * The ZA storage can also be considered as a set of square tiles of
706      * elements of different sizes. The mapping from tiles to the ZA array
707      * is architecturally defined, such that for tiles of elements of esz
708      * bytes, the Nth row (or "horizontal slice") of tile T is in
709      * ZA[T + N * esz]. Note that this means that each tile is not contiguous
710      * in the ZA storage, because its rows are striped through the ZA array.
711      *
712      * Because this is so large, keep this toward the end of the reset area,
713      * to keep the offsets into the rest of the structure smaller.
714      */
715     ARMVectorReg zarray[ARM_MAX_VQ * 16];
716 #endif
717 
718     struct CPUBreakpoint *cpu_breakpoint[16];
719     struct CPUWatchpoint *cpu_watchpoint[16];
720 
721     /* Optional fault info across tlb lookup. */
722     ARMMMUFaultInfo *tlb_fi;
723 
724     /* Fields up to this point are cleared by a CPU reset */
725     struct {} end_reset_fields;
726 
727     /* Fields after this point are preserved across CPU reset. */
728 
729     /* Internal CPU feature flags.  */
730     uint64_t features;
731 
732     /* PMSAv7 MPU */
733     struct {
734         uint32_t *drbar;
735         uint32_t *drsr;
736         uint32_t *dracr;
737         uint32_t rnr[M_REG_NUM_BANKS];
738     } pmsav7;
739 
740     /* PMSAv8 MPU */
741     struct {
742         /* The PMSAv8 implementation also shares some PMSAv7 config
743          * and state:
744          *  pmsav7.rnr (region number register)
745          *  pmsav7_dregion (number of configured regions)
746          */
747         uint32_t *rbar[M_REG_NUM_BANKS];
748         uint32_t *rlar[M_REG_NUM_BANKS];
749         uint32_t *hprbar;
750         uint32_t *hprlar;
751         uint32_t mair0[M_REG_NUM_BANKS];
752         uint32_t mair1[M_REG_NUM_BANKS];
753         uint32_t hprselr;
754     } pmsav8;
755 
756     /* v8M SAU */
757     struct {
758         uint32_t *rbar;
759         uint32_t *rlar;
760         uint32_t rnr;
761         uint32_t ctrl;
762     } sau;
763 
764 #if !defined(CONFIG_USER_ONLY)
765     NVICState *nvic;
766     const struct arm_boot_info *boot_info;
767     /* Store GICv3CPUState to access from this struct */
768     void *gicv3state;
769 #else /* CONFIG_USER_ONLY */
770     /* For usermode syscall translation.  */
771     bool eabi;
772 #endif /* CONFIG_USER_ONLY */
773 
774 #ifdef TARGET_TAGGED_ADDRESSES
775     /* Linux syscall tagged address support */
776     bool tagged_addr_enable;
777 #endif
778 } CPUARMState;
779 
780 static inline void set_feature(CPUARMState *env, int feature)
781 {
782     env->features |= 1ULL << feature;
783 }
784 
785 static inline void unset_feature(CPUARMState *env, int feature)
786 {
787     env->features &= ~(1ULL << feature);
788 }
789 
790 /**
791  * ARMELChangeHookFn:
792  * type of a function which can be registered via arm_register_el_change_hook()
793  * to get callbacks when the CPU changes its exception level or mode.
794  */
795 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
796 typedef struct ARMELChangeHook ARMELChangeHook;
797 struct ARMELChangeHook {
798     ARMELChangeHookFn *hook;
799     void *opaque;
800     QLIST_ENTRY(ARMELChangeHook) node;
801 };
802 
803 /* These values map onto the return values for
804  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
805 typedef enum ARMPSCIState {
806     PSCI_ON = 0,
807     PSCI_OFF = 1,
808     PSCI_ON_PENDING = 2
809 } ARMPSCIState;
810 
811 typedef struct ARMISARegisters ARMISARegisters;
812 
813 /*
814  * In map, each set bit is a supported vector length of (bit-number + 1) * 16
815  * bytes, i.e. each bit number + 1 is the vector length in quadwords.
816  *
817  * While processing properties during initialization, corresponding init bits
818  * are set for bits in sve_vq_map that have been set by properties.
819  *
820  * Bits set in supported represent valid vector lengths for the CPU type.
821  */
822 typedef struct {
823     uint32_t map, init, supported;
824 } ARMVQMap;
825 
826 /**
827  * ARMCPU:
828  * @env: #CPUARMState
829  *
830  * An ARM CPU core.
831  */
832 struct ArchCPU {
833     CPUState parent_obj;
834 
835     CPUARMState env;
836 
837     /* Coprocessor information */
838     GHashTable *cp_regs;
839     /* For marshalling (mostly coprocessor) register state between the
840      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
841      * we use these arrays.
842      */
843     /* List of register indexes managed via these arrays; (full KVM style
844      * 64 bit indexes, not CPRegInfo 32 bit indexes)
845      */
846     uint64_t *cpreg_indexes;
847     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
848     uint64_t *cpreg_values;
849     /* Length of the indexes, values, reset_values arrays */
850     int32_t cpreg_array_len;
851     /* These are used only for migration: incoming data arrives in
852      * these fields and is sanity checked in post_load before copying
853      * to the working data structures above.
854      */
855     uint64_t *cpreg_vmstate_indexes;
856     uint64_t *cpreg_vmstate_values;
857     int32_t cpreg_vmstate_array_len;
858 
859     DynamicGDBFeatureInfo dyn_sysreg_feature;
860     DynamicGDBFeatureInfo dyn_svereg_feature;
861     DynamicGDBFeatureInfo dyn_m_systemreg_feature;
862     DynamicGDBFeatureInfo dyn_m_secextreg_feature;
863 
864     /* Timers used by the generic (architected) timer */
865     QEMUTimer *gt_timer[NUM_GTIMERS];
866     /*
867      * Timer used by the PMU. Its state is restored after migration by
868      * pmu_op_finish() - it does not need other handling during migration
869      */
870     QEMUTimer *pmu_timer;
871     /* GPIO outputs for generic timer */
872     qemu_irq gt_timer_outputs[NUM_GTIMERS];
873     /* GPIO output for GICv3 maintenance interrupt signal */
874     qemu_irq gicv3_maintenance_interrupt;
875     /* GPIO output for the PMU interrupt */
876     qemu_irq pmu_interrupt;
877 
878     /* MemoryRegion to use for secure physical accesses */
879     MemoryRegion *secure_memory;
880 
881     /* MemoryRegion to use for allocation tag accesses */
882     MemoryRegion *tag_memory;
883     MemoryRegion *secure_tag_memory;
884 
885     /* For v8M, pointer to the IDAU interface provided by board/SoC */
886     Object *idau;
887 
888     /* 'compatible' string for this CPU for Linux device trees */
889     const char *dtb_compatible;
890 
891     /* PSCI version for this CPU
892      * Bits[31:16] = Major Version
893      * Bits[15:0] = Minor Version
894      */
895     uint32_t psci_version;
896 
897     /* Current power state, access guarded by BQL */
898     ARMPSCIState power_state;
899 
900     /* CPU has virtualization extension */
901     bool has_el2;
902     /* CPU has security extension */
903     bool has_el3;
904     /* CPU has PMU (Performance Monitor Unit) */
905     bool has_pmu;
906     /* CPU has VFP */
907     bool has_vfp;
908     /* CPU has 32 VFP registers */
909     bool has_vfp_d32;
910     /* CPU has Neon */
911     bool has_neon;
912     /* CPU has M-profile DSP extension */
913     bool has_dsp;
914 
915     /* CPU has memory protection unit */
916     bool has_mpu;
917     /* PMSAv7 MPU number of supported regions */
918     uint32_t pmsav7_dregion;
919     /* PMSAv8 MPU number of supported hyp regions */
920     uint32_t pmsav8r_hdregion;
921     /* v8M SAU number of supported regions */
922     uint32_t sau_sregion;
923 
924     /* PSCI conduit used to invoke PSCI methods
925      * 0 - disabled, 1 - smc, 2 - hvc
926      */
927     uint32_t psci_conduit;
928 
929     /* For v8M, initial value of the Secure VTOR */
930     uint32_t init_svtor;
931     /* For v8M, initial value of the Non-secure VTOR */
932     uint32_t init_nsvtor;
933 
934     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
935      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
936      */
937     uint32_t kvm_target;
938 
939 #ifdef CONFIG_KVM
940     /* KVM init features for this CPU */
941     uint32_t kvm_init_features[7];
942 
943     /* KVM CPU state */
944 
945     /* KVM virtual time adjustment */
946     bool kvm_adjvtime;
947     bool kvm_vtime_dirty;
948     uint64_t kvm_vtime;
949 
950     /* KVM steal time */
951     OnOffAuto kvm_steal_time;
952 #endif /* CONFIG_KVM */
953 
954     /* Uniprocessor system with MP extensions */
955     bool mp_is_up;
956 
957     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
958      * and the probe failed (so we need to report the error in realize)
959      */
960     bool host_cpu_probe_failed;
961 
962     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
963      * register.
964      */
965     int32_t core_count;
966 
967     /* The instance init functions for implementation-specific subclasses
968      * set these fields to specify the implementation-dependent values of
969      * various constant registers and reset values of non-constant
970      * registers.
971      * Some of these might become QOM properties eventually.
972      * Field names match the official register names as defined in the
973      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
974      * is used for reset values of non-constant registers; no reset_
975      * prefix means a constant register.
976      * Some of these registers are split out into a substructure that
977      * is shared with the translators to control the ISA.
978      *
979      * Note that if you add an ID register to the ARMISARegisters struct
980      * you need to also update the 32-bit and 64-bit versions of the
981      * kvm_arm_get_host_cpu_features() function to correctly populate the
982      * field by reading the value from the KVM vCPU.
983      */
984     struct ARMISARegisters {
985         uint32_t id_isar0;
986         uint32_t id_isar1;
987         uint32_t id_isar2;
988         uint32_t id_isar3;
989         uint32_t id_isar4;
990         uint32_t id_isar5;
991         uint32_t id_isar6;
992         uint32_t id_mmfr0;
993         uint32_t id_mmfr1;
994         uint32_t id_mmfr2;
995         uint32_t id_mmfr3;
996         uint32_t id_mmfr4;
997         uint32_t id_mmfr5;
998         uint32_t id_pfr0;
999         uint32_t id_pfr1;
1000         uint32_t id_pfr2;
1001         uint32_t mvfr0;
1002         uint32_t mvfr1;
1003         uint32_t mvfr2;
1004         uint32_t id_dfr0;
1005         uint32_t id_dfr1;
1006         uint32_t dbgdidr;
1007         uint32_t dbgdevid;
1008         uint32_t dbgdevid1;
1009         uint64_t id_aa64isar0;
1010         uint64_t id_aa64isar1;
1011         uint64_t id_aa64isar2;
1012         uint64_t id_aa64pfr0;
1013         uint64_t id_aa64pfr1;
1014         uint64_t id_aa64mmfr0;
1015         uint64_t id_aa64mmfr1;
1016         uint64_t id_aa64mmfr2;
1017         uint64_t id_aa64dfr0;
1018         uint64_t id_aa64dfr1;
1019         uint64_t id_aa64zfr0;
1020         uint64_t id_aa64smfr0;
1021         uint64_t reset_pmcr_el0;
1022     } isar;
1023     uint64_t midr;
1024     uint32_t revidr;
1025     uint32_t reset_fpsid;
1026     uint64_t ctr;
1027     uint32_t reset_sctlr;
1028     uint64_t pmceid0;
1029     uint64_t pmceid1;
1030     uint32_t id_afr0;
1031     uint64_t id_aa64afr0;
1032     uint64_t id_aa64afr1;
1033     uint64_t clidr;
1034     uint64_t mp_affinity; /* MP ID without feature bits */
1035     /* The elements of this array are the CCSIDR values for each cache,
1036      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
1037      */
1038     uint64_t ccsidr[16];
1039     uint64_t reset_cbar;
1040     uint32_t reset_auxcr;
1041     bool reset_hivecs;
1042     uint8_t reset_l0gptsz;
1043 
1044     /*
1045      * Intermediate values used during property parsing.
1046      * Once finalized, the values should be read from ID_AA64*.
1047      */
1048     bool prop_pauth;
1049     bool prop_pauth_impdef;
1050     bool prop_pauth_qarma3;
1051     bool prop_lpa2;
1052 
1053     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
1054     uint8_t dcz_blocksize;
1055     /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */
1056     uint8_t gm_blocksize;
1057 
1058     uint64_t rvbar_prop; /* Property/input signals.  */
1059 
1060     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1061     int gic_num_lrs; /* number of list registers */
1062     int gic_vpribits; /* number of virtual priority bits */
1063     int gic_vprebits; /* number of virtual preemption bits */
1064     int gic_pribits; /* number of physical priority bits */
1065 
1066     /* Whether the cfgend input is high (i.e. this CPU should reset into
1067      * big-endian mode).  This setting isn't used directly: instead it modifies
1068      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1069      * architecture version.
1070      */
1071     bool cfgend;
1072 
1073     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1074     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1075 
1076     int32_t node_id; /* NUMA node this CPU belongs to */
1077 
1078     /* Used to synchronize KVM and QEMU in-kernel device levels */
1079     uint8_t device_irq_level;
1080 
1081     /* Used to set the maximum vector length the cpu will support.  */
1082     uint32_t sve_max_vq;
1083 
1084 #ifdef CONFIG_USER_ONLY
1085     /* Used to set the default vector length at process start. */
1086     uint32_t sve_default_vq;
1087     uint32_t sme_default_vq;
1088 #endif
1089 
1090     ARMVQMap sve_vq;
1091     ARMVQMap sme_vq;
1092 
1093     /* Generic timer counter frequency, in Hz */
1094     uint64_t gt_cntfrq_hz;
1095 };
1096 
1097 typedef struct ARMCPUInfo {
1098     const char *name;
1099     void (*initfn)(Object *obj);
1100     void (*class_init)(ObjectClass *oc, void *data);
1101 } ARMCPUInfo;
1102 
1103 /**
1104  * ARMCPUClass:
1105  * @parent_realize: The parent class' realize handler.
1106  * @parent_phases: The parent class' reset phase handlers.
1107  *
1108  * An ARM CPU model.
1109  */
1110 struct ARMCPUClass {
1111     CPUClass parent_class;
1112 
1113     const ARMCPUInfo *info;
1114     DeviceRealize parent_realize;
1115     ResettablePhases parent_phases;
1116 };
1117 
1118 struct AArch64CPUClass {
1119     ARMCPUClass parent_class;
1120 };
1121 
1122 /* Callback functions for the generic timer's timers. */
1123 void arm_gt_ptimer_cb(void *opaque);
1124 void arm_gt_vtimer_cb(void *opaque);
1125 void arm_gt_htimer_cb(void *opaque);
1126 void arm_gt_stimer_cb(void *opaque);
1127 void arm_gt_hvtimer_cb(void *opaque);
1128 
1129 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1130 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque);
1131 
1132 void arm_cpu_post_init(Object *obj);
1133 
1134 #define ARM_AFF0_SHIFT 0
1135 #define ARM_AFF0_MASK  (0xFFULL << ARM_AFF0_SHIFT)
1136 #define ARM_AFF1_SHIFT 8
1137 #define ARM_AFF1_MASK  (0xFFULL << ARM_AFF1_SHIFT)
1138 #define ARM_AFF2_SHIFT 16
1139 #define ARM_AFF2_MASK  (0xFFULL << ARM_AFF2_SHIFT)
1140 #define ARM_AFF3_SHIFT 32
1141 #define ARM_AFF3_MASK  (0xFFULL << ARM_AFF3_SHIFT)
1142 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8
1143 
1144 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK)
1145 #define ARM64_AFFINITY_MASK \
1146     (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK)
1147 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK)
1148 
1149 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz);
1150 
1151 #ifndef CONFIG_USER_ONLY
1152 extern const VMStateDescription vmstate_arm_cpu;
1153 
1154 void arm_cpu_do_interrupt(CPUState *cpu);
1155 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1156 
1157 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1158                                          MemTxAttrs *attrs);
1159 #endif /* !CONFIG_USER_ONLY */
1160 
1161 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1162 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1163 
1164 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1165                              int cpuid, DumpState *s);
1166 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1167                              int cpuid, DumpState *s);
1168 
1169 /**
1170  * arm_emulate_firmware_reset: Emulate firmware CPU reset handling
1171  * @cpu: CPU (which must have been freshly reset)
1172  * @target_el: exception level to put the CPU into
1173  * @secure: whether to put the CPU in secure state
1174  *
1175  * When QEMU is directly running a guest kernel at a lower level than
1176  * EL3 it implicitly emulates some aspects of the guest firmware.
1177  * This includes that on reset we need to configure the parts of the
1178  * CPU corresponding to EL3 so that the real guest code can run at its
1179  * lower exception level. This function does that post-reset CPU setup,
1180  * for when we do direct boot of a guest kernel, and for when we
1181  * emulate PSCI and similar firmware interfaces starting a CPU at a
1182  * lower exception level.
1183  *
1184  * @target_el must be an EL implemented by the CPU between 1 and 3.
1185  * We do not support dropping into a Secure EL other than 3.
1186  *
1187  * It is the responsibility of the caller to call arm_rebuild_hflags().
1188  */
1189 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el);
1190 
1191 #ifdef TARGET_AARCH64
1192 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1193 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1194 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1195 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1196                            int new_el, bool el0_a64);
1197 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask);
1198 
1199 /*
1200  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1201  * The byte at offset i from the start of the in-memory representation contains
1202  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1203  * lowest offsets are stored in the lowest memory addresses, then that nearly
1204  * matches QEMU's representation, which is to use an array of host-endian
1205  * uint64_t's, where the lower offsets are at the lower indices. To complete
1206  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1207  */
1208 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1209 {
1210 #if HOST_BIG_ENDIAN
1211     int i;
1212 
1213     for (i = 0; i < nr; ++i) {
1214         dst[i] = bswap64(src[i]);
1215     }
1216 
1217     return dst;
1218 #else
1219     return src;
1220 #endif
1221 }
1222 
1223 #else
1224 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1225 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1226                                          int n, bool a)
1227 { }
1228 #endif
1229 
1230 void aarch64_sync_32_to_64(CPUARMState *env);
1231 void aarch64_sync_64_to_32(CPUARMState *env);
1232 
1233 int fp_exception_el(CPUARMState *env, int cur_el);
1234 int sve_exception_el(CPUARMState *env, int cur_el);
1235 int sme_exception_el(CPUARMState *env, int cur_el);
1236 
1237 /**
1238  * sve_vqm1_for_el_sm:
1239  * @env: CPUARMState
1240  * @el: exception level
1241  * @sm: streaming mode
1242  *
1243  * Compute the current vector length for @el & @sm, in units of
1244  * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN.
1245  * If @sm, compute for SVL, otherwise NVL.
1246  */
1247 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm);
1248 
1249 /* Likewise, but using @sm = PSTATE.SM. */
1250 uint32_t sve_vqm1_for_el(CPUARMState *env, int el);
1251 
1252 static inline bool is_a64(CPUARMState *env)
1253 {
1254     return env->aarch64;
1255 }
1256 
1257 /**
1258  * pmu_op_start/finish
1259  * @env: CPUARMState
1260  *
1261  * Convert all PMU counters between their delta form (the typical mode when
1262  * they are enabled) and the guest-visible values. These two calls must
1263  * surround any action which might affect the counters.
1264  */
1265 void pmu_op_start(CPUARMState *env);
1266 void pmu_op_finish(CPUARMState *env);
1267 
1268 /*
1269  * Called when a PMU counter is due to overflow
1270  */
1271 void arm_pmu_timer_cb(void *opaque);
1272 
1273 /**
1274  * Functions to register as EL change hooks for PMU mode filtering
1275  */
1276 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1277 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1278 
1279 /*
1280  * pmu_init
1281  * @cpu: ARMCPU
1282  *
1283  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1284  * for the current configuration
1285  */
1286 void pmu_init(ARMCPU *cpu);
1287 
1288 /* SCTLR bit meanings. Several bits have been reused in newer
1289  * versions of the architecture; in that case we define constants
1290  * for both old and new bit meanings. Code which tests against those
1291  * bits should probably check or otherwise arrange that the CPU
1292  * is the architectural version it expects.
1293  */
1294 #define SCTLR_M       (1U << 0)
1295 #define SCTLR_A       (1U << 1)
1296 #define SCTLR_C       (1U << 2)
1297 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1298 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1299 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1300 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1301 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1302 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1303 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1304 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1305 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1306 #define SCTLR_nAA     (1U << 6) /* when FEAT_LSE2 is implemented */
1307 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1308 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1309 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1310 #define SCTLR_SED     (1U << 8) /* v8 onward */
1311 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1312 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1313 #define SCTLR_F       (1U << 10) /* up to v6 */
1314 #define SCTLR_SW      (1U << 10) /* v7 */
1315 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1316 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1317 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1318 #define SCTLR_I       (1U << 12)
1319 #define SCTLR_V       (1U << 13) /* AArch32 only */
1320 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1321 #define SCTLR_RR      (1U << 14) /* up to v7 */
1322 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1323 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1324 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1325 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1326 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1327 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1328 #define SCTLR_BR      (1U << 17) /* PMSA only */
1329 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1330 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1331 #define SCTLR_WXN     (1U << 19)
1332 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1333 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1334 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1335 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1336 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1337 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1338 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1339 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1340 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1341 #define SCTLR_VE      (1U << 24) /* up to v7 */
1342 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1343 #define SCTLR_EE      (1U << 25)
1344 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1345 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1346 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1347 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1348 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1349 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1350 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1351 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1352 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1353 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1354 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1355 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1356 #define SCTLR_MSCEN   (1ULL << 33) /* FEAT_MOPS */
1357 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1358 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1359 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1360 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1361 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1362 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1363 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1364 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1365 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1366 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1367 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1368 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1369 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1370 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1371 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1372 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1373 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1374 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1375 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1376 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1377 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1378 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1379 
1380 #define CPSR_M (0x1fU)
1381 #define CPSR_T (1U << 5)
1382 #define CPSR_F (1U << 6)
1383 #define CPSR_I (1U << 7)
1384 #define CPSR_A (1U << 8)
1385 #define CPSR_E (1U << 9)
1386 #define CPSR_IT_2_7 (0xfc00U)
1387 #define CPSR_GE (0xfU << 16)
1388 #define CPSR_IL (1U << 20)
1389 #define CPSR_DIT (1U << 21)
1390 #define CPSR_PAN (1U << 22)
1391 #define CPSR_SSBS (1U << 23)
1392 #define CPSR_J (1U << 24)
1393 #define CPSR_IT_0_1 (3U << 25)
1394 #define CPSR_Q (1U << 27)
1395 #define CPSR_V (1U << 28)
1396 #define CPSR_C (1U << 29)
1397 #define CPSR_Z (1U << 30)
1398 #define CPSR_N (1U << 31)
1399 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1400 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1401 #define ISR_FS (1U << 9)
1402 #define ISR_IS (1U << 10)
1403 
1404 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1405 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1406     | CPSR_NZCV)
1407 /* Bits writable in user mode.  */
1408 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1409 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1410 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1411 
1412 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1413 #define XPSR_EXCP 0x1ffU
1414 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1415 #define XPSR_IT_2_7 CPSR_IT_2_7
1416 #define XPSR_GE CPSR_GE
1417 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1418 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1419 #define XPSR_IT_0_1 CPSR_IT_0_1
1420 #define XPSR_Q CPSR_Q
1421 #define XPSR_V CPSR_V
1422 #define XPSR_C CPSR_C
1423 #define XPSR_Z CPSR_Z
1424 #define XPSR_N CPSR_N
1425 #define XPSR_NZCV CPSR_NZCV
1426 #define XPSR_IT CPSR_IT
1427 
1428 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1429  * Only these are valid when in AArch64 mode; in
1430  * AArch32 mode SPSRs are basically CPSR-format.
1431  */
1432 #define PSTATE_SP (1U)
1433 #define PSTATE_M (0xFU)
1434 #define PSTATE_nRW (1U << 4)
1435 #define PSTATE_F (1U << 6)
1436 #define PSTATE_I (1U << 7)
1437 #define PSTATE_A (1U << 8)
1438 #define PSTATE_D (1U << 9)
1439 #define PSTATE_BTYPE (3U << 10)
1440 #define PSTATE_SSBS (1U << 12)
1441 #define PSTATE_ALLINT (1U << 13)
1442 #define PSTATE_IL (1U << 20)
1443 #define PSTATE_SS (1U << 21)
1444 #define PSTATE_PAN (1U << 22)
1445 #define PSTATE_UAO (1U << 23)
1446 #define PSTATE_DIT (1U << 24)
1447 #define PSTATE_TCO (1U << 25)
1448 #define PSTATE_V (1U << 28)
1449 #define PSTATE_C (1U << 29)
1450 #define PSTATE_Z (1U << 30)
1451 #define PSTATE_N (1U << 31)
1452 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1453 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1454 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1455 /* Mode values for AArch64 */
1456 #define PSTATE_MODE_EL3h 13
1457 #define PSTATE_MODE_EL3t 12
1458 #define PSTATE_MODE_EL2h 9
1459 #define PSTATE_MODE_EL2t 8
1460 #define PSTATE_MODE_EL1h 5
1461 #define PSTATE_MODE_EL1t 4
1462 #define PSTATE_MODE_EL0t 0
1463 
1464 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */
1465 FIELD(SVCR, SM, 0, 1)
1466 FIELD(SVCR, ZA, 1, 1)
1467 
1468 /* Fields for SMCR_ELx. */
1469 FIELD(SMCR, LEN, 0, 4)
1470 FIELD(SMCR, FA64, 31, 1)
1471 
1472 /* Write a new value to v7m.exception, thus transitioning into or out
1473  * of Handler mode; this may result in a change of active stack pointer.
1474  */
1475 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1476 
1477 /* Map EL and handler into a PSTATE_MODE.  */
1478 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1479 {
1480     return (el << 2) | handler;
1481 }
1482 
1483 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1484  * interprocessing, so we don't attempt to sync with the cpsr state used by
1485  * the 32 bit decoder.
1486  */
1487 static inline uint32_t pstate_read(CPUARMState *env)
1488 {
1489     int ZF;
1490 
1491     ZF = (env->ZF == 0);
1492     return (env->NF & 0x80000000) | (ZF << 30)
1493         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1494         | env->pstate | env->daif | (env->btype << 10);
1495 }
1496 
1497 static inline void pstate_write(CPUARMState *env, uint32_t val)
1498 {
1499     env->ZF = (~val) & PSTATE_Z;
1500     env->NF = val;
1501     env->CF = (val >> 29) & 1;
1502     env->VF = (val << 3) & 0x80000000;
1503     env->daif = val & PSTATE_DAIF;
1504     env->btype = (val >> 10) & 3;
1505     env->pstate = val & ~CACHED_PSTATE_BITS;
1506 }
1507 
1508 /* Return the current CPSR value.  */
1509 uint32_t cpsr_read(CPUARMState *env);
1510 
1511 typedef enum CPSRWriteType {
1512     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1513     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1514     CPSRWriteRaw = 2,
1515         /* trust values, no reg bank switch, no hflags rebuild */
1516     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1517 } CPSRWriteType;
1518 
1519 /*
1520  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1521  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1522  * correspond to TB flags bits cached in the hflags, unless @write_type
1523  * is CPSRWriteRaw.
1524  */
1525 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1526                 CPSRWriteType write_type);
1527 
1528 /* Return the current xPSR value.  */
1529 static inline uint32_t xpsr_read(CPUARMState *env)
1530 {
1531     int ZF;
1532     ZF = (env->ZF == 0);
1533     return (env->NF & 0x80000000) | (ZF << 30)
1534         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1535         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1536         | ((env->condexec_bits & 0xfc) << 8)
1537         | (env->GE << 16)
1538         | env->v7m.exception;
1539 }
1540 
1541 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1542 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1543 {
1544     if (mask & XPSR_NZCV) {
1545         env->ZF = (~val) & XPSR_Z;
1546         env->NF = val;
1547         env->CF = (val >> 29) & 1;
1548         env->VF = (val << 3) & 0x80000000;
1549     }
1550     if (mask & XPSR_Q) {
1551         env->QF = ((val & XPSR_Q) != 0);
1552     }
1553     if (mask & XPSR_GE) {
1554         env->GE = (val & XPSR_GE) >> 16;
1555     }
1556 #ifndef CONFIG_USER_ONLY
1557     if (mask & XPSR_T) {
1558         env->thumb = ((val & XPSR_T) != 0);
1559     }
1560     if (mask & XPSR_IT_0_1) {
1561         env->condexec_bits &= ~3;
1562         env->condexec_bits |= (val >> 25) & 3;
1563     }
1564     if (mask & XPSR_IT_2_7) {
1565         env->condexec_bits &= 3;
1566         env->condexec_bits |= (val >> 8) & 0xfc;
1567     }
1568     if (mask & XPSR_EXCP) {
1569         /* Note that this only happens on exception exit */
1570         write_v7m_exception(env, val & XPSR_EXCP);
1571     }
1572 #endif
1573 }
1574 
1575 #define HCR_VM        (1ULL << 0)
1576 #define HCR_SWIO      (1ULL << 1)
1577 #define HCR_PTW       (1ULL << 2)
1578 #define HCR_FMO       (1ULL << 3)
1579 #define HCR_IMO       (1ULL << 4)
1580 #define HCR_AMO       (1ULL << 5)
1581 #define HCR_VF        (1ULL << 6)
1582 #define HCR_VI        (1ULL << 7)
1583 #define HCR_VSE       (1ULL << 8)
1584 #define HCR_FB        (1ULL << 9)
1585 #define HCR_BSU_MASK  (3ULL << 10)
1586 #define HCR_DC        (1ULL << 12)
1587 #define HCR_TWI       (1ULL << 13)
1588 #define HCR_TWE       (1ULL << 14)
1589 #define HCR_TID0      (1ULL << 15)
1590 #define HCR_TID1      (1ULL << 16)
1591 #define HCR_TID2      (1ULL << 17)
1592 #define HCR_TID3      (1ULL << 18)
1593 #define HCR_TSC       (1ULL << 19)
1594 #define HCR_TIDCP     (1ULL << 20)
1595 #define HCR_TACR      (1ULL << 21)
1596 #define HCR_TSW       (1ULL << 22)
1597 #define HCR_TPCP      (1ULL << 23)
1598 #define HCR_TPU       (1ULL << 24)
1599 #define HCR_TTLB      (1ULL << 25)
1600 #define HCR_TVM       (1ULL << 26)
1601 #define HCR_TGE       (1ULL << 27)
1602 #define HCR_TDZ       (1ULL << 28)
1603 #define HCR_HCD       (1ULL << 29)
1604 #define HCR_TRVM      (1ULL << 30)
1605 #define HCR_RW        (1ULL << 31)
1606 #define HCR_CD        (1ULL << 32)
1607 #define HCR_ID        (1ULL << 33)
1608 #define HCR_E2H       (1ULL << 34)
1609 #define HCR_TLOR      (1ULL << 35)
1610 #define HCR_TERR      (1ULL << 36)
1611 #define HCR_TEA       (1ULL << 37)
1612 #define HCR_MIOCNCE   (1ULL << 38)
1613 #define HCR_TME       (1ULL << 39)
1614 #define HCR_APK       (1ULL << 40)
1615 #define HCR_API       (1ULL << 41)
1616 #define HCR_NV        (1ULL << 42)
1617 #define HCR_NV1       (1ULL << 43)
1618 #define HCR_AT        (1ULL << 44)
1619 #define HCR_NV2       (1ULL << 45)
1620 #define HCR_FWB       (1ULL << 46)
1621 #define HCR_FIEN      (1ULL << 47)
1622 #define HCR_GPF       (1ULL << 48)
1623 #define HCR_TID4      (1ULL << 49)
1624 #define HCR_TICAB     (1ULL << 50)
1625 #define HCR_AMVOFFEN  (1ULL << 51)
1626 #define HCR_TOCU      (1ULL << 52)
1627 #define HCR_ENSCXT    (1ULL << 53)
1628 #define HCR_TTLBIS    (1ULL << 54)
1629 #define HCR_TTLBOS    (1ULL << 55)
1630 #define HCR_ATA       (1ULL << 56)
1631 #define HCR_DCT       (1ULL << 57)
1632 #define HCR_TID5      (1ULL << 58)
1633 #define HCR_TWEDEN    (1ULL << 59)
1634 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1635 
1636 #define SCR_NS                (1ULL << 0)
1637 #define SCR_IRQ               (1ULL << 1)
1638 #define SCR_FIQ               (1ULL << 2)
1639 #define SCR_EA                (1ULL << 3)
1640 #define SCR_FW                (1ULL << 4)
1641 #define SCR_AW                (1ULL << 5)
1642 #define SCR_NET               (1ULL << 6)
1643 #define SCR_SMD               (1ULL << 7)
1644 #define SCR_HCE               (1ULL << 8)
1645 #define SCR_SIF               (1ULL << 9)
1646 #define SCR_RW                (1ULL << 10)
1647 #define SCR_ST                (1ULL << 11)
1648 #define SCR_TWI               (1ULL << 12)
1649 #define SCR_TWE               (1ULL << 13)
1650 #define SCR_TLOR              (1ULL << 14)
1651 #define SCR_TERR              (1ULL << 15)
1652 #define SCR_APK               (1ULL << 16)
1653 #define SCR_API               (1ULL << 17)
1654 #define SCR_EEL2              (1ULL << 18)
1655 #define SCR_EASE              (1ULL << 19)
1656 #define SCR_NMEA              (1ULL << 20)
1657 #define SCR_FIEN              (1ULL << 21)
1658 #define SCR_ENSCXT            (1ULL << 25)
1659 #define SCR_ATA               (1ULL << 26)
1660 #define SCR_FGTEN             (1ULL << 27)
1661 #define SCR_ECVEN             (1ULL << 28)
1662 #define SCR_TWEDEN            (1ULL << 29)
1663 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1664 #define SCR_TME               (1ULL << 34)
1665 #define SCR_AMVOFFEN          (1ULL << 35)
1666 #define SCR_ENAS0             (1ULL << 36)
1667 #define SCR_ADEN              (1ULL << 37)
1668 #define SCR_HXEN              (1ULL << 38)
1669 #define SCR_TRNDR             (1ULL << 40)
1670 #define SCR_ENTP2             (1ULL << 41)
1671 #define SCR_GPF               (1ULL << 48)
1672 #define SCR_NSE               (1ULL << 62)
1673 
1674 /* Return the current FPSCR value.  */
1675 uint32_t vfp_get_fpscr(CPUARMState *env);
1676 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1677 
1678 /* FPCR, Floating Point Control Register
1679  * FPSR, Floating Poiht Status Register
1680  *
1681  * For A64 the FPSCR is split into two logically distinct registers,
1682  * FPCR and FPSR. However since they still use non-overlapping bits
1683  * we store the underlying state in fpscr and just mask on read/write.
1684  */
1685 #define FPSR_MASK 0xf800009f
1686 #define FPCR_MASK 0x07ff9f00
1687 
1688 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1689 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1690 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1691 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1692 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1693 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1694 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1695 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1696 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1697 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1698 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1699 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1700 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1701 #define FPCR_C      (1 << 29)   /* FP carry flag */
1702 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1703 #define FPCR_N      (1 << 31)   /* FP negative flag */
1704 
1705 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1706 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1707 #define FPCR_LTPSIZE_LENGTH 3
1708 
1709 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1710 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1711 
1712 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1713 {
1714     return vfp_get_fpscr(env) & FPSR_MASK;
1715 }
1716 
1717 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1718 {
1719     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1720     vfp_set_fpscr(env, new_fpscr);
1721 }
1722 
1723 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1724 {
1725     return vfp_get_fpscr(env) & FPCR_MASK;
1726 }
1727 
1728 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1729 {
1730     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1731     vfp_set_fpscr(env, new_fpscr);
1732 }
1733 
1734 enum arm_cpu_mode {
1735   ARM_CPU_MODE_USR = 0x10,
1736   ARM_CPU_MODE_FIQ = 0x11,
1737   ARM_CPU_MODE_IRQ = 0x12,
1738   ARM_CPU_MODE_SVC = 0x13,
1739   ARM_CPU_MODE_MON = 0x16,
1740   ARM_CPU_MODE_ABT = 0x17,
1741   ARM_CPU_MODE_HYP = 0x1a,
1742   ARM_CPU_MODE_UND = 0x1b,
1743   ARM_CPU_MODE_SYS = 0x1f
1744 };
1745 
1746 /* VFP system registers.  */
1747 #define ARM_VFP_FPSID   0
1748 #define ARM_VFP_FPSCR   1
1749 #define ARM_VFP_MVFR2   5
1750 #define ARM_VFP_MVFR1   6
1751 #define ARM_VFP_MVFR0   7
1752 #define ARM_VFP_FPEXC   8
1753 #define ARM_VFP_FPINST  9
1754 #define ARM_VFP_FPINST2 10
1755 /* These ones are M-profile only */
1756 #define ARM_VFP_FPSCR_NZCVQC 2
1757 #define ARM_VFP_VPR 12
1758 #define ARM_VFP_P0 13
1759 #define ARM_VFP_FPCXT_NS 14
1760 #define ARM_VFP_FPCXT_S 15
1761 
1762 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1763 #define QEMU_VFP_FPSCR_NZCV 0xffff
1764 
1765 /* iwMMXt coprocessor control registers.  */
1766 #define ARM_IWMMXT_wCID  0
1767 #define ARM_IWMMXT_wCon  1
1768 #define ARM_IWMMXT_wCSSF 2
1769 #define ARM_IWMMXT_wCASF 3
1770 #define ARM_IWMMXT_wCGR0 8
1771 #define ARM_IWMMXT_wCGR1 9
1772 #define ARM_IWMMXT_wCGR2 10
1773 #define ARM_IWMMXT_wCGR3 11
1774 
1775 /* V7M CCR bits */
1776 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1777 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1778 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1779 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1780 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1781 FIELD(V7M_CCR, STKALIGN, 9, 1)
1782 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1783 FIELD(V7M_CCR, DC, 16, 1)
1784 FIELD(V7M_CCR, IC, 17, 1)
1785 FIELD(V7M_CCR, BP, 18, 1)
1786 FIELD(V7M_CCR, LOB, 19, 1)
1787 FIELD(V7M_CCR, TRD, 20, 1)
1788 
1789 /* V7M SCR bits */
1790 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1791 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1792 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1793 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1794 
1795 /* V7M AIRCR bits */
1796 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1797 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1798 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1799 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1800 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1801 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1802 FIELD(V7M_AIRCR, PRIS, 14, 1)
1803 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1804 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1805 
1806 /* V7M CFSR bits for MMFSR */
1807 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1808 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1809 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1810 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1811 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1812 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1813 
1814 /* V7M CFSR bits for BFSR */
1815 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1816 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1817 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1818 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1819 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1820 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1821 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1822 
1823 /* V7M CFSR bits for UFSR */
1824 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1825 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1826 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1827 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1828 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1829 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1830 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1831 
1832 /* V7M CFSR bit masks covering all of the subregister bits */
1833 FIELD(V7M_CFSR, MMFSR, 0, 8)
1834 FIELD(V7M_CFSR, BFSR, 8, 8)
1835 FIELD(V7M_CFSR, UFSR, 16, 16)
1836 
1837 /* V7M HFSR bits */
1838 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1839 FIELD(V7M_HFSR, FORCED, 30, 1)
1840 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1841 
1842 /* V7M DFSR bits */
1843 FIELD(V7M_DFSR, HALTED, 0, 1)
1844 FIELD(V7M_DFSR, BKPT, 1, 1)
1845 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1846 FIELD(V7M_DFSR, VCATCH, 3, 1)
1847 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1848 
1849 /* V7M SFSR bits */
1850 FIELD(V7M_SFSR, INVEP, 0, 1)
1851 FIELD(V7M_SFSR, INVIS, 1, 1)
1852 FIELD(V7M_SFSR, INVER, 2, 1)
1853 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1854 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1855 FIELD(V7M_SFSR, LSPERR, 5, 1)
1856 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1857 FIELD(V7M_SFSR, LSERR, 7, 1)
1858 
1859 /* v7M MPU_CTRL bits */
1860 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1861 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1862 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1863 
1864 /* v7M CLIDR bits */
1865 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1866 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1867 FIELD(V7M_CLIDR, LOC, 24, 3)
1868 FIELD(V7M_CLIDR, LOUU, 27, 3)
1869 FIELD(V7M_CLIDR, ICB, 30, 2)
1870 
1871 FIELD(V7M_CSSELR, IND, 0, 1)
1872 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1873 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1874  * define a mask for this and check that it doesn't permit running off
1875  * the end of the array.
1876  */
1877 FIELD(V7M_CSSELR, INDEX, 0, 4)
1878 
1879 /* v7M FPCCR bits */
1880 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1881 FIELD(V7M_FPCCR, USER, 1, 1)
1882 FIELD(V7M_FPCCR, S, 2, 1)
1883 FIELD(V7M_FPCCR, THREAD, 3, 1)
1884 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1885 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1886 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1887 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1888 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1889 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1890 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1891 FIELD(V7M_FPCCR, RES0, 11, 15)
1892 FIELD(V7M_FPCCR, TS, 26, 1)
1893 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1894 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1895 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1896 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1897 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1898 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1899 #define R_V7M_FPCCR_BANKED_MASK                 \
1900     (R_V7M_FPCCR_LSPACT_MASK |                  \
1901      R_V7M_FPCCR_USER_MASK |                    \
1902      R_V7M_FPCCR_THREAD_MASK |                  \
1903      R_V7M_FPCCR_MMRDY_MASK |                   \
1904      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1905      R_V7M_FPCCR_UFRDY_MASK |                   \
1906      R_V7M_FPCCR_ASPEN_MASK)
1907 
1908 /* v7M VPR bits */
1909 FIELD(V7M_VPR, P0, 0, 16)
1910 FIELD(V7M_VPR, MASK01, 16, 4)
1911 FIELD(V7M_VPR, MASK23, 20, 4)
1912 
1913 /*
1914  * System register ID fields.
1915  */
1916 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1917 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1918 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1919 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1920 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1921 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1922 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1923 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1924 FIELD(CLIDR_EL1, LOC, 24, 3)
1925 FIELD(CLIDR_EL1, LOUU, 27, 3)
1926 FIELD(CLIDR_EL1, ICB, 30, 3)
1927 
1928 /* When FEAT_CCIDX is implemented */
1929 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1930 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1931 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1932 
1933 /* When FEAT_CCIDX is not implemented */
1934 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1935 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1936 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1937 
1938 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1939 FIELD(CTR_EL0,  L1IP, 14, 2)
1940 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1941 FIELD(CTR_EL0,  ERG, 20, 4)
1942 FIELD(CTR_EL0,  CWG, 24, 4)
1943 FIELD(CTR_EL0,  IDC, 28, 1)
1944 FIELD(CTR_EL0,  DIC, 29, 1)
1945 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1946 
1947 FIELD(MIDR_EL1, REVISION, 0, 4)
1948 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1949 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1950 FIELD(MIDR_EL1, VARIANT, 20, 4)
1951 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1952 
1953 FIELD(ID_ISAR0, SWAP, 0, 4)
1954 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1955 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1956 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1957 FIELD(ID_ISAR0, COPROC, 16, 4)
1958 FIELD(ID_ISAR0, DEBUG, 20, 4)
1959 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1960 
1961 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1962 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1963 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1964 FIELD(ID_ISAR1, EXTEND, 12, 4)
1965 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1966 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1967 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1968 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1969 
1970 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1971 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1972 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1973 FIELD(ID_ISAR2, MULT, 12, 4)
1974 FIELD(ID_ISAR2, MULTS, 16, 4)
1975 FIELD(ID_ISAR2, MULTU, 20, 4)
1976 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1977 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1978 
1979 FIELD(ID_ISAR3, SATURATE, 0, 4)
1980 FIELD(ID_ISAR3, SIMD, 4, 4)
1981 FIELD(ID_ISAR3, SVC, 8, 4)
1982 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1983 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1984 FIELD(ID_ISAR3, T32COPY, 20, 4)
1985 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1986 FIELD(ID_ISAR3, T32EE, 28, 4)
1987 
1988 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1989 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1990 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1991 FIELD(ID_ISAR4, SMC, 12, 4)
1992 FIELD(ID_ISAR4, BARRIER, 16, 4)
1993 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1994 FIELD(ID_ISAR4, PSR_M, 24, 4)
1995 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1996 
1997 FIELD(ID_ISAR5, SEVL, 0, 4)
1998 FIELD(ID_ISAR5, AES, 4, 4)
1999 FIELD(ID_ISAR5, SHA1, 8, 4)
2000 FIELD(ID_ISAR5, SHA2, 12, 4)
2001 FIELD(ID_ISAR5, CRC32, 16, 4)
2002 FIELD(ID_ISAR5, RDM, 24, 4)
2003 FIELD(ID_ISAR5, VCMA, 28, 4)
2004 
2005 FIELD(ID_ISAR6, JSCVT, 0, 4)
2006 FIELD(ID_ISAR6, DP, 4, 4)
2007 FIELD(ID_ISAR6, FHM, 8, 4)
2008 FIELD(ID_ISAR6, SB, 12, 4)
2009 FIELD(ID_ISAR6, SPECRES, 16, 4)
2010 FIELD(ID_ISAR6, BF16, 20, 4)
2011 FIELD(ID_ISAR6, I8MM, 24, 4)
2012 
2013 FIELD(ID_MMFR0, VMSA, 0, 4)
2014 FIELD(ID_MMFR0, PMSA, 4, 4)
2015 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
2016 FIELD(ID_MMFR0, SHARELVL, 12, 4)
2017 FIELD(ID_MMFR0, TCM, 16, 4)
2018 FIELD(ID_MMFR0, AUXREG, 20, 4)
2019 FIELD(ID_MMFR0, FCSE, 24, 4)
2020 FIELD(ID_MMFR0, INNERSHR, 28, 4)
2021 
2022 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
2023 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
2024 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
2025 FIELD(ID_MMFR1, L1UNISW, 12, 4)
2026 FIELD(ID_MMFR1, L1HVD, 16, 4)
2027 FIELD(ID_MMFR1, L1UNI, 20, 4)
2028 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
2029 FIELD(ID_MMFR1, BPRED, 28, 4)
2030 
2031 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
2032 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
2033 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
2034 FIELD(ID_MMFR2, HVDTLB, 12, 4)
2035 FIELD(ID_MMFR2, UNITLB, 16, 4)
2036 FIELD(ID_MMFR2, MEMBARR, 20, 4)
2037 FIELD(ID_MMFR2, WFISTALL, 24, 4)
2038 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
2039 
2040 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
2041 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
2042 FIELD(ID_MMFR3, BPMAINT, 8, 4)
2043 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
2044 FIELD(ID_MMFR3, PAN, 16, 4)
2045 FIELD(ID_MMFR3, COHWALK, 20, 4)
2046 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
2047 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
2048 
2049 FIELD(ID_MMFR4, SPECSEI, 0, 4)
2050 FIELD(ID_MMFR4, AC2, 4, 4)
2051 FIELD(ID_MMFR4, XNX, 8, 4)
2052 FIELD(ID_MMFR4, CNP, 12, 4)
2053 FIELD(ID_MMFR4, HPDS, 16, 4)
2054 FIELD(ID_MMFR4, LSM, 20, 4)
2055 FIELD(ID_MMFR4, CCIDX, 24, 4)
2056 FIELD(ID_MMFR4, EVT, 28, 4)
2057 
2058 FIELD(ID_MMFR5, ETS, 0, 4)
2059 FIELD(ID_MMFR5, NTLBPA, 4, 4)
2060 
2061 FIELD(ID_PFR0, STATE0, 0, 4)
2062 FIELD(ID_PFR0, STATE1, 4, 4)
2063 FIELD(ID_PFR0, STATE2, 8, 4)
2064 FIELD(ID_PFR0, STATE3, 12, 4)
2065 FIELD(ID_PFR0, CSV2, 16, 4)
2066 FIELD(ID_PFR0, AMU, 20, 4)
2067 FIELD(ID_PFR0, DIT, 24, 4)
2068 FIELD(ID_PFR0, RAS, 28, 4)
2069 
2070 FIELD(ID_PFR1, PROGMOD, 0, 4)
2071 FIELD(ID_PFR1, SECURITY, 4, 4)
2072 FIELD(ID_PFR1, MPROGMOD, 8, 4)
2073 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
2074 FIELD(ID_PFR1, GENTIMER, 16, 4)
2075 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
2076 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
2077 FIELD(ID_PFR1, GIC, 28, 4)
2078 
2079 FIELD(ID_PFR2, CSV3, 0, 4)
2080 FIELD(ID_PFR2, SSBS, 4, 4)
2081 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
2082 
2083 FIELD(ID_AA64ISAR0, AES, 4, 4)
2084 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
2085 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2086 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2087 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2088 FIELD(ID_AA64ISAR0, TME, 24, 4)
2089 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2090 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2091 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2092 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2093 FIELD(ID_AA64ISAR0, DP, 44, 4)
2094 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2095 FIELD(ID_AA64ISAR0, TS, 52, 4)
2096 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2097 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2098 
2099 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2100 FIELD(ID_AA64ISAR1, APA, 4, 4)
2101 FIELD(ID_AA64ISAR1, API, 8, 4)
2102 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2103 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2104 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2105 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2106 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2107 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2108 FIELD(ID_AA64ISAR1, SB, 36, 4)
2109 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2110 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2111 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2112 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2113 FIELD(ID_AA64ISAR1, XS, 56, 4)
2114 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2115 
2116 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2117 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2118 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2119 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2120 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2121 FIELD(ID_AA64ISAR2, BC, 20, 4)
2122 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2123 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4)
2124 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4)
2125 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4)
2126 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4)
2127 FIELD(ID_AA64ISAR2, RPRFM, 48, 4)
2128 FIELD(ID_AA64ISAR2, CSSC, 52, 4)
2129 FIELD(ID_AA64ISAR2, ATS1A, 60, 4)
2130 
2131 FIELD(ID_AA64PFR0, EL0, 0, 4)
2132 FIELD(ID_AA64PFR0, EL1, 4, 4)
2133 FIELD(ID_AA64PFR0, EL2, 8, 4)
2134 FIELD(ID_AA64PFR0, EL3, 12, 4)
2135 FIELD(ID_AA64PFR0, FP, 16, 4)
2136 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2137 FIELD(ID_AA64PFR0, GIC, 24, 4)
2138 FIELD(ID_AA64PFR0, RAS, 28, 4)
2139 FIELD(ID_AA64PFR0, SVE, 32, 4)
2140 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2141 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2142 FIELD(ID_AA64PFR0, AMU, 44, 4)
2143 FIELD(ID_AA64PFR0, DIT, 48, 4)
2144 FIELD(ID_AA64PFR0, RME, 52, 4)
2145 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2146 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2147 
2148 FIELD(ID_AA64PFR1, BT, 0, 4)
2149 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2150 FIELD(ID_AA64PFR1, MTE, 8, 4)
2151 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2152 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2153 FIELD(ID_AA64PFR1, SME, 24, 4)
2154 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2155 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2156 FIELD(ID_AA64PFR1, NMI, 36, 4)
2157 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4)
2158 FIELD(ID_AA64PFR1, GCS, 44, 4)
2159 FIELD(ID_AA64PFR1, THE, 48, 4)
2160 FIELD(ID_AA64PFR1, MTEX, 52, 4)
2161 FIELD(ID_AA64PFR1, DF2, 56, 4)
2162 FIELD(ID_AA64PFR1, PFAR, 60, 4)
2163 
2164 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2165 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2166 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2167 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2168 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2169 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2170 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2171 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2172 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2173 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2174 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2175 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2176 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2177 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2178 
2179 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2180 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2181 FIELD(ID_AA64MMFR1, VH, 8, 4)
2182 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2183 FIELD(ID_AA64MMFR1, LO, 16, 4)
2184 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2185 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2186 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2187 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2188 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2189 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2190 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2191 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2192 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2193 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2194 FIELD(ID_AA64MMFR1, ECBHB, 60, 4)
2195 
2196 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2197 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2198 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2199 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2200 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2201 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2202 FIELD(ID_AA64MMFR2, NV, 24, 4)
2203 FIELD(ID_AA64MMFR2, ST, 28, 4)
2204 FIELD(ID_AA64MMFR2, AT, 32, 4)
2205 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2206 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2207 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2208 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2209 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2210 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2211 
2212 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2213 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2214 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2215 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2216 FIELD(ID_AA64DFR0, PMSS, 16, 4)
2217 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2218 FIELD(ID_AA64DFR0, SEBEP, 24, 4)
2219 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2220 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2221 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2222 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2223 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2224 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2225 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2226 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4)
2227 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2228 
2229 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2230 FIELD(ID_AA64ZFR0, AES, 4, 4)
2231 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2232 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2233 FIELD(ID_AA64ZFR0, B16B16, 24, 4)
2234 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2235 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2236 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2237 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2238 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2239 
2240 FIELD(ID_AA64SMFR0, F32F32, 32, 1)
2241 FIELD(ID_AA64SMFR0, BI32I32, 33, 1)
2242 FIELD(ID_AA64SMFR0, B16F32, 34, 1)
2243 FIELD(ID_AA64SMFR0, F16F32, 35, 1)
2244 FIELD(ID_AA64SMFR0, I8I32, 36, 4)
2245 FIELD(ID_AA64SMFR0, F16F16, 42, 1)
2246 FIELD(ID_AA64SMFR0, B16B16, 43, 1)
2247 FIELD(ID_AA64SMFR0, I16I32, 44, 4)
2248 FIELD(ID_AA64SMFR0, F64F64, 48, 1)
2249 FIELD(ID_AA64SMFR0, I16I64, 52, 4)
2250 FIELD(ID_AA64SMFR0, SMEVER, 56, 4)
2251 FIELD(ID_AA64SMFR0, FA64, 63, 1)
2252 
2253 FIELD(ID_DFR0, COPDBG, 0, 4)
2254 FIELD(ID_DFR0, COPSDBG, 4, 4)
2255 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2256 FIELD(ID_DFR0, COPTRC, 12, 4)
2257 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2258 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2259 FIELD(ID_DFR0, PERFMON, 24, 4)
2260 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2261 
2262 FIELD(ID_DFR1, MTPMU, 0, 4)
2263 FIELD(ID_DFR1, HPMN0, 4, 4)
2264 
2265 FIELD(DBGDIDR, SE_IMP, 12, 1)
2266 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2267 FIELD(DBGDIDR, VERSION, 16, 4)
2268 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2269 FIELD(DBGDIDR, BRPS, 24, 4)
2270 FIELD(DBGDIDR, WRPS, 28, 4)
2271 
2272 FIELD(DBGDEVID, PCSAMPLE, 0, 4)
2273 FIELD(DBGDEVID, WPADDRMASK, 4, 4)
2274 FIELD(DBGDEVID, BPADDRMASK, 8, 4)
2275 FIELD(DBGDEVID, VECTORCATCH, 12, 4)
2276 FIELD(DBGDEVID, VIRTEXTNS, 16, 4)
2277 FIELD(DBGDEVID, DOUBLELOCK, 20, 4)
2278 FIELD(DBGDEVID, AUXREGS, 24, 4)
2279 FIELD(DBGDEVID, CIDMASK, 28, 4)
2280 
2281 FIELD(MVFR0, SIMDREG, 0, 4)
2282 FIELD(MVFR0, FPSP, 4, 4)
2283 FIELD(MVFR0, FPDP, 8, 4)
2284 FIELD(MVFR0, FPTRAP, 12, 4)
2285 FIELD(MVFR0, FPDIVIDE, 16, 4)
2286 FIELD(MVFR0, FPSQRT, 20, 4)
2287 FIELD(MVFR0, FPSHVEC, 24, 4)
2288 FIELD(MVFR0, FPROUND, 28, 4)
2289 
2290 FIELD(MVFR1, FPFTZ, 0, 4)
2291 FIELD(MVFR1, FPDNAN, 4, 4)
2292 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2293 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2294 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2295 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2296 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2297 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2298 FIELD(MVFR1, FPHP, 24, 4)
2299 FIELD(MVFR1, SIMDFMAC, 28, 4)
2300 
2301 FIELD(MVFR2, SIMDMISC, 0, 4)
2302 FIELD(MVFR2, FPMISC, 4, 4)
2303 
2304 FIELD(GPCCR, PPS, 0, 3)
2305 FIELD(GPCCR, IRGN, 8, 2)
2306 FIELD(GPCCR, ORGN, 10, 2)
2307 FIELD(GPCCR, SH, 12, 2)
2308 FIELD(GPCCR, PGS, 14, 2)
2309 FIELD(GPCCR, GPC, 16, 1)
2310 FIELD(GPCCR, GPCP, 17, 1)
2311 FIELD(GPCCR, L0GPTSZ, 20, 4)
2312 
2313 FIELD(MFAR, FPA, 12, 40)
2314 FIELD(MFAR, NSE, 62, 1)
2315 FIELD(MFAR, NS, 63, 1)
2316 
2317 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2318 
2319 /* If adding a feature bit which corresponds to a Linux ELF
2320  * HWCAP bit, remember to update the feature-bit-to-hwcap
2321  * mapping in linux-user/elfload.c:get_elf_hwcap().
2322  */
2323 enum arm_features {
2324     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2325     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2326     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2327     ARM_FEATURE_V6,
2328     ARM_FEATURE_V6K,
2329     ARM_FEATURE_V7,
2330     ARM_FEATURE_THUMB2,
2331     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2332     ARM_FEATURE_NEON,
2333     ARM_FEATURE_M, /* Microcontroller profile.  */
2334     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2335     ARM_FEATURE_THUMB2EE,
2336     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2337     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2338     ARM_FEATURE_V4T,
2339     ARM_FEATURE_V5,
2340     ARM_FEATURE_STRONGARM,
2341     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2342     ARM_FEATURE_GENERIC_TIMER,
2343     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2344     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2345     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2346     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2347     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2348     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2349     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2350     ARM_FEATURE_V8,
2351     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2352     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2353     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2354     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2355     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2356     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2357     ARM_FEATURE_PMU, /* has PMU support */
2358     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2359     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2360     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2361     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2362 };
2363 
2364 static inline int arm_feature(CPUARMState *env, int feature)
2365 {
2366     return (env->features & (1ULL << feature)) != 0;
2367 }
2368 
2369 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2370 
2371 /*
2372  * ARM v9 security states.
2373  * The ordering of the enumeration corresponds to the low 2 bits
2374  * of the GPI value, and (except for Root) the concat of NSE:NS.
2375  */
2376 
2377 typedef enum ARMSecuritySpace {
2378     ARMSS_Secure     = 0,
2379     ARMSS_NonSecure  = 1,
2380     ARMSS_Root       = 2,
2381     ARMSS_Realm      = 3,
2382 } ARMSecuritySpace;
2383 
2384 /* Return true if @space is secure, in the pre-v9 sense. */
2385 static inline bool arm_space_is_secure(ARMSecuritySpace space)
2386 {
2387     return space == ARMSS_Secure || space == ARMSS_Root;
2388 }
2389 
2390 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */
2391 static inline ARMSecuritySpace arm_secure_to_space(bool secure)
2392 {
2393     return secure ? ARMSS_Secure : ARMSS_NonSecure;
2394 }
2395 
2396 #if !defined(CONFIG_USER_ONLY)
2397 /**
2398  * arm_security_space_below_el3:
2399  * @env: cpu context
2400  *
2401  * Return the security space of exception levels below EL3, following
2402  * an exception return to those levels.  Unlike arm_security_space,
2403  * this doesn't care about the current EL.
2404  */
2405 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env);
2406 
2407 /**
2408  * arm_is_secure_below_el3:
2409  * @env: cpu context
2410  *
2411  * Return true if exception levels below EL3 are in secure state,
2412  * or would be following an exception return to those levels.
2413  */
2414 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2415 {
2416     ARMSecuritySpace ss = arm_security_space_below_el3(env);
2417     return ss == ARMSS_Secure;
2418 }
2419 
2420 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2421 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2422 {
2423     assert(!arm_feature(env, ARM_FEATURE_M));
2424     if (arm_feature(env, ARM_FEATURE_EL3)) {
2425         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2426             /* CPU currently in AArch64 state and EL3 */
2427             return true;
2428         } else if (!is_a64(env) &&
2429                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2430             /* CPU currently in AArch32 state and monitor mode */
2431             return true;
2432         }
2433     }
2434     return false;
2435 }
2436 
2437 /**
2438  * arm_security_space:
2439  * @env: cpu context
2440  *
2441  * Return the current security space of the cpu.
2442  */
2443 ARMSecuritySpace arm_security_space(CPUARMState *env);
2444 
2445 /**
2446  * arm_is_secure:
2447  * @env: cpu context
2448  *
2449  * Return true if the processor is in secure state.
2450  */
2451 static inline bool arm_is_secure(CPUARMState *env)
2452 {
2453     return arm_space_is_secure(arm_security_space(env));
2454 }
2455 
2456 /*
2457  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2458  * This corresponds to the pseudocode EL2Enabled().
2459  */
2460 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2461                                                ARMSecuritySpace space)
2462 {
2463     assert(space != ARMSS_Root);
2464     return arm_feature(env, ARM_FEATURE_EL2)
2465            && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2));
2466 }
2467 
2468 static inline bool arm_is_el2_enabled(CPUARMState *env)
2469 {
2470     return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env));
2471 }
2472 
2473 #else
2474 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
2475 {
2476     return ARMSS_NonSecure;
2477 }
2478 
2479 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2480 {
2481     return false;
2482 }
2483 
2484 static inline ARMSecuritySpace arm_security_space(CPUARMState *env)
2485 {
2486     return ARMSS_NonSecure;
2487 }
2488 
2489 static inline bool arm_is_secure(CPUARMState *env)
2490 {
2491     return false;
2492 }
2493 
2494 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env,
2495                                                ARMSecuritySpace space)
2496 {
2497     return false;
2498 }
2499 
2500 static inline bool arm_is_el2_enabled(CPUARMState *env)
2501 {
2502     return false;
2503 }
2504 #endif
2505 
2506 /**
2507  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2508  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2509  * "for all purposes other than a direct read or write access of HCR_EL2."
2510  * Not included here is HCR_RW.
2511  */
2512 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space);
2513 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2514 uint64_t arm_hcrx_el2_eff(CPUARMState *env);
2515 
2516 /* Return true if the specified exception level is running in AArch64 state. */
2517 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2518 {
2519     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2520      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2521      */
2522     assert(el >= 1 && el <= 3);
2523     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2524 
2525     /* The highest exception level is always at the maximum supported
2526      * register width, and then lower levels have a register width controlled
2527      * by bits in the SCR or HCR registers.
2528      */
2529     if (el == 3) {
2530         return aa64;
2531     }
2532 
2533     if (arm_feature(env, ARM_FEATURE_EL3) &&
2534         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2535         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2536     }
2537 
2538     if (el == 2) {
2539         return aa64;
2540     }
2541 
2542     if (arm_is_el2_enabled(env)) {
2543         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2544     }
2545 
2546     return aa64;
2547 }
2548 
2549 /* Function for determining whether guest cp register reads and writes should
2550  * access the secure or non-secure bank of a cp register.  When EL3 is
2551  * operating in AArch32 state, the NS-bit determines whether the secure
2552  * instance of a cp register should be used. When EL3 is AArch64 (or if
2553  * it doesn't exist at all) then there is no register banking, and all
2554  * accesses are to the non-secure version.
2555  */
2556 static inline bool access_secure_reg(CPUARMState *env)
2557 {
2558     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2559                 !arm_el_is_aa64(env, 3) &&
2560                 !(env->cp15.scr_el3 & SCR_NS));
2561 
2562     return ret;
2563 }
2564 
2565 /* Macros for accessing a specified CP register bank */
2566 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2567     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2568 
2569 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2570     do {                                                \
2571         if (_secure) {                                   \
2572             (_env)->cp15._regname##_s = (_val);            \
2573         } else {                                        \
2574             (_env)->cp15._regname##_ns = (_val);           \
2575         }                                               \
2576     } while (0)
2577 
2578 /* Macros for automatically accessing a specific CP register bank depending on
2579  * the current secure state of the system.  These macros are not intended for
2580  * supporting instruction translation reads/writes as these are dependent
2581  * solely on the SCR.NS bit and not the mode.
2582  */
2583 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2584     A32_BANKED_REG_GET((_env), _regname,                \
2585                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2586 
2587 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2588     A32_BANKED_REG_SET((_env), _regname,                                    \
2589                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2590                        (_val))
2591 
2592 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2593                                  uint32_t cur_el, bool secure);
2594 
2595 /* Return the highest implemented Exception Level */
2596 static inline int arm_highest_el(CPUARMState *env)
2597 {
2598     if (arm_feature(env, ARM_FEATURE_EL3)) {
2599         return 3;
2600     }
2601     if (arm_feature(env, ARM_FEATURE_EL2)) {
2602         return 2;
2603     }
2604     return 1;
2605 }
2606 
2607 /* Return true if a v7M CPU is in Handler mode */
2608 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2609 {
2610     return env->v7m.exception != 0;
2611 }
2612 
2613 /* Return the current Exception Level (as per ARMv8; note that this differs
2614  * from the ARMv7 Privilege Level).
2615  */
2616 static inline int arm_current_el(CPUARMState *env)
2617 {
2618     if (arm_feature(env, ARM_FEATURE_M)) {
2619         return arm_v7m_is_handler_mode(env) ||
2620             !(env->v7m.control[env->v7m.secure] & 1);
2621     }
2622 
2623     if (is_a64(env)) {
2624         return extract32(env->pstate, 2, 2);
2625     }
2626 
2627     switch (env->uncached_cpsr & 0x1f) {
2628     case ARM_CPU_MODE_USR:
2629         return 0;
2630     case ARM_CPU_MODE_HYP:
2631         return 2;
2632     case ARM_CPU_MODE_MON:
2633         return 3;
2634     default:
2635         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2636             /* If EL3 is 32-bit then all secure privileged modes run in
2637              * EL3
2638              */
2639             return 3;
2640         }
2641 
2642         return 1;
2643     }
2644 }
2645 
2646 /**
2647  * write_list_to_cpustate
2648  * @cpu: ARMCPU
2649  *
2650  * For each register listed in the ARMCPU cpreg_indexes list, write
2651  * its value from the cpreg_values list into the ARMCPUState structure.
2652  * This updates TCG's working data structures from KVM data or
2653  * from incoming migration state.
2654  *
2655  * Returns: true if all register values were updated correctly,
2656  * false if some register was unknown or could not be written.
2657  * Note that we do not stop early on failure -- we will attempt
2658  * writing all registers in the list.
2659  */
2660 bool write_list_to_cpustate(ARMCPU *cpu);
2661 
2662 /**
2663  * write_cpustate_to_list:
2664  * @cpu: ARMCPU
2665  * @kvm_sync: true if this is for syncing back to KVM
2666  *
2667  * For each register listed in the ARMCPU cpreg_indexes list, write
2668  * its value from the ARMCPUState structure into the cpreg_values list.
2669  * This is used to copy info from TCG's working data structures into
2670  * KVM or for outbound migration.
2671  *
2672  * @kvm_sync is true if we are doing this in order to sync the
2673  * register state back to KVM. In this case we will only update
2674  * values in the list if the previous list->cpustate sync actually
2675  * successfully wrote the CPU state. Otherwise we will keep the value
2676  * that is in the list.
2677  *
2678  * Returns: true if all register values were read correctly,
2679  * false if some register was unknown or could not be read.
2680  * Note that we do not stop early on failure -- we will attempt
2681  * reading all registers in the list.
2682  */
2683 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2684 
2685 #define ARM_CPUID_TI915T      0x54029152
2686 #define ARM_CPUID_TI925T      0x54029252
2687 
2688 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2689 
2690 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2691 
2692 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2693  *
2694  * If EL3 is 64-bit:
2695  *  + NonSecure EL1 & 0 stage 1
2696  *  + NonSecure EL1 & 0 stage 2
2697  *  + NonSecure EL2
2698  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2699  *  + Secure EL1 & 0
2700  *  + Secure EL3
2701  * If EL3 is 32-bit:
2702  *  + NonSecure PL1 & 0 stage 1
2703  *  + NonSecure PL1 & 0 stage 2
2704  *  + NonSecure PL2
2705  *  + Secure PL0
2706  *  + Secure PL1
2707  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2708  *
2709  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2710  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2711  *     because they may differ in access permissions even if the VA->PA map is
2712  *     the same
2713  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2714  *     translation, which means that we have one mmu_idx that deals with two
2715  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2716  *     architecturally permitted]
2717  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2718  *     handling via the TLB. The only way to do a stage 1 translation without
2719  *     the immediate stage 2 translation is via the ATS or AT system insns,
2720  *     which can be slow-pathed and always do a page table walk.
2721  *     The only use of stage 2 translations is either as part of an s1+2
2722  *     lookup or when loading the descriptors during a stage 1 page table walk,
2723  *     and in both those cases we don't use the TLB.
2724  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2725  *     translation regimes, because they map reasonably well to each other
2726  *     and they can't both be active at the same time.
2727  *  5. we want to be able to use the TLB for accesses done as part of a
2728  *     stage1 page table walk, rather than having to walk the stage2 page
2729  *     table over and over.
2730  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2731  *     Never (PAN) bit within PSTATE.
2732  *  7. we fold together the secure and non-secure regimes for A-profile,
2733  *     because there are no banked system registers for aarch64, so the
2734  *     process of switching between secure and non-secure is
2735  *     already heavyweight.
2736  *
2737  * This gives us the following list of cases:
2738  *
2739  * EL0 EL1&0 stage 1+2 (aka NS PL0)
2740  * EL1 EL1&0 stage 1+2 (aka NS PL1)
2741  * EL1 EL1&0 stage 1+2 +PAN
2742  * EL0 EL2&0
2743  * EL2 EL2&0
2744  * EL2 EL2&0 +PAN
2745  * EL2 (aka NS PL2)
2746  * EL3 (aka S PL1)
2747  * Physical (NS & S)
2748  * Stage2 (NS & S)
2749  *
2750  * for a total of 12 different mmu_idx.
2751  *
2752  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2753  * as A profile. They only need to distinguish EL0 and EL1 (and
2754  * EL2 if we ever model a Cortex-R52).
2755  *
2756  * M profile CPUs are rather different as they do not have a true MMU.
2757  * They have the following different MMU indexes:
2758  *  User
2759  *  Privileged
2760  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2761  *  Privileged, execution priority negative (ditto)
2762  * If the CPU supports the v8M Security Extension then there are also:
2763  *  Secure User
2764  *  Secure Privileged
2765  *  Secure User, execution priority negative
2766  *  Secure Privileged, execution priority negative
2767  *
2768  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2769  * are not quite the same -- different CPU types (most notably M profile
2770  * vs A/R profile) would like to use MMU indexes with different semantics,
2771  * but since we don't ever need to use all of those in a single CPU we
2772  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2773  * modes + total number of M profile MMU modes". The lower bits of
2774  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2775  * the same for any particular CPU.
2776  * Variables of type ARMMUIdx are always full values, and the core
2777  * index values are in variables of type 'int'.
2778  *
2779  * Our enumeration includes at the end some entries which are not "true"
2780  * mmu_idx values in that they don't have corresponding TLBs and are only
2781  * valid for doing slow path page table walks.
2782  *
2783  * The constant names here are patterned after the general style of the names
2784  * of the AT/ATS operations.
2785  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2786  * For M profile we arrange them to have a bit for priv, a bit for negpri
2787  * and a bit for secure.
2788  */
2789 #define ARM_MMU_IDX_A     0x10  /* A profile */
2790 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2791 #define ARM_MMU_IDX_M     0x40  /* M profile */
2792 
2793 /* Meanings of the bits for M profile mmu idx values */
2794 #define ARM_MMU_IDX_M_PRIV   0x1
2795 #define ARM_MMU_IDX_M_NEGPRI 0x2
2796 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2797 
2798 #define ARM_MMU_IDX_TYPE_MASK \
2799     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2800 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2801 
2802 typedef enum ARMMMUIdx {
2803     /*
2804      * A-profile.
2805      */
2806     ARMMMUIdx_E10_0     = 0 | ARM_MMU_IDX_A,
2807     ARMMMUIdx_E20_0     = 1 | ARM_MMU_IDX_A,
2808     ARMMMUIdx_E10_1     = 2 | ARM_MMU_IDX_A,
2809     ARMMMUIdx_E20_2     = 3 | ARM_MMU_IDX_A,
2810     ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A,
2811     ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
2812     ARMMMUIdx_E2        = 6 | ARM_MMU_IDX_A,
2813     ARMMMUIdx_E3        = 7 | ARM_MMU_IDX_A,
2814 
2815     /*
2816      * Used for second stage of an S12 page table walk, or for descriptor
2817      * loads during first stage of an S1 page table walk.  Note that both
2818      * are in use simultaneously for SecureEL2: the security state for
2819      * the S2 ptw is selected by the NS bit from the S1 ptw.
2820      */
2821     ARMMMUIdx_Stage2_S  = 8 | ARM_MMU_IDX_A,
2822     ARMMMUIdx_Stage2    = 9 | ARM_MMU_IDX_A,
2823 
2824     /* TLBs with 1-1 mapping to the physical address spaces. */
2825     ARMMMUIdx_Phys_S     = 10 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_Phys_NS    = 11 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_Phys_Root  = 12 | ARM_MMU_IDX_A,
2828     ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
2829 
2830     /*
2831      * These are not allocated TLBs and are used only for AT system
2832      * instructions or for the first stage of an S12 page table walk.
2833      */
2834     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2835     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2836     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2837 
2838     /*
2839      * M-profile.
2840      */
2841     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2842     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2843     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2844     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2845     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2846     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2847     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2848     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2849 } ARMMMUIdx;
2850 
2851 /*
2852  * Bit macros for the core-mmu-index values for each index,
2853  * for use when calling tlb_flush_by_mmuidx() and friends.
2854  */
2855 #define TO_CORE_BIT(NAME) \
2856     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2857 
2858 typedef enum ARMMMUIdxBit {
2859     TO_CORE_BIT(E10_0),
2860     TO_CORE_BIT(E20_0),
2861     TO_CORE_BIT(E10_1),
2862     TO_CORE_BIT(E10_1_PAN),
2863     TO_CORE_BIT(E2),
2864     TO_CORE_BIT(E20_2),
2865     TO_CORE_BIT(E20_2_PAN),
2866     TO_CORE_BIT(E3),
2867     TO_CORE_BIT(Stage2),
2868     TO_CORE_BIT(Stage2_S),
2869 
2870     TO_CORE_BIT(MUser),
2871     TO_CORE_BIT(MPriv),
2872     TO_CORE_BIT(MUserNegPri),
2873     TO_CORE_BIT(MPrivNegPri),
2874     TO_CORE_BIT(MSUser),
2875     TO_CORE_BIT(MSPriv),
2876     TO_CORE_BIT(MSUserNegPri),
2877     TO_CORE_BIT(MSPrivNegPri),
2878 } ARMMMUIdxBit;
2879 
2880 #undef TO_CORE_BIT
2881 
2882 #define MMU_USER_IDX 0
2883 
2884 /* Indexes used when registering address spaces with cpu_address_space_init */
2885 typedef enum ARMASIdx {
2886     ARMASIdx_NS = 0,
2887     ARMASIdx_S = 1,
2888     ARMASIdx_TagNS = 2,
2889     ARMASIdx_TagS = 3,
2890 } ARMASIdx;
2891 
2892 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space)
2893 {
2894     /* Assert the relative order of the physical mmu indexes. */
2895     QEMU_BUILD_BUG_ON(ARMSS_Secure != 0);
2896     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure);
2897     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root);
2898     QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm);
2899 
2900     return ARMMMUIdx_Phys_S + space;
2901 }
2902 
2903 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx)
2904 {
2905     assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm);
2906     return idx - ARMMMUIdx_Phys_S;
2907 }
2908 
2909 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2910 {
2911     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2912      * CSSELR is RAZ/WI.
2913      */
2914     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2915 }
2916 
2917 static inline bool arm_sctlr_b(CPUARMState *env)
2918 {
2919     return
2920         /* We need not implement SCTLR.ITD in user-mode emulation, so
2921          * let linux-user ignore the fact that it conflicts with SCTLR_B.
2922          * This lets people run BE32 binaries with "-cpu any".
2923          */
2924 #ifndef CONFIG_USER_ONLY
2925         !arm_feature(env, ARM_FEATURE_V7) &&
2926 #endif
2927         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2928 }
2929 
2930 uint64_t arm_sctlr(CPUARMState *env, int el);
2931 
2932 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
2933                                                   bool sctlr_b)
2934 {
2935 #ifdef CONFIG_USER_ONLY
2936     /*
2937      * In system mode, BE32 is modelled in line with the
2938      * architecture (as word-invariant big-endianness), where loads
2939      * and stores are done little endian but from addresses which
2940      * are adjusted by XORing with the appropriate constant. So the
2941      * endianness to use for the raw data access is not affected by
2942      * SCTLR.B.
2943      * In user mode, however, we model BE32 as byte-invariant
2944      * big-endianness (because user-only code cannot tell the
2945      * difference), and so we need to use a data access endianness
2946      * that depends on SCTLR.B.
2947      */
2948     if (sctlr_b) {
2949         return true;
2950     }
2951 #endif
2952     /* In 32bit endianness is determined by looking at CPSR's E bit */
2953     return env->uncached_cpsr & CPSR_E;
2954 }
2955 
2956 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
2957 {
2958     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
2959 }
2960 
2961 /* Return true if the processor is in big-endian mode. */
2962 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2963 {
2964     if (!is_a64(env)) {
2965         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
2966     } else {
2967         int cur_el = arm_current_el(env);
2968         uint64_t sctlr = arm_sctlr(env, cur_el);
2969         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
2970     }
2971 }
2972 
2973 #include "exec/cpu-all.h"
2974 
2975 /*
2976  * We have more than 32-bits worth of state per TB, so we split the data
2977  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
2978  * We collect these two parts in CPUARMTBFlags where they are named
2979  * flags and flags2 respectively.
2980  *
2981  * The flags that are shared between all execution modes, TBFLAG_ANY,
2982  * are stored in flags.  The flags that are specific to a given mode
2983  * are stores in flags2.  Since cs_base is sized on the configured
2984  * address size, flags2 always has 64-bits for A64, and a minimum of
2985  * 32-bits for A32 and M32.
2986  *
2987  * The bits for 32-bit A-profile and M-profile partially overlap:
2988  *
2989  *  31         23         11 10             0
2990  * +-------------+----------+----------------+
2991  * |             |          |   TBFLAG_A32   |
2992  * | TBFLAG_AM32 |          +-----+----------+
2993  * |             |                |TBFLAG_M32|
2994  * +-------------+----------------+----------+
2995  *  31         23                6 5        0
2996  *
2997  * Unless otherwise noted, these bits are cached in env->hflags.
2998  */
2999 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3000 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3001 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3002 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3003 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3004 /* Target EL if we take a floating-point-disabled exception */
3005 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3006 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3007 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1)
3008 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1)
3009 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1)
3010 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1)
3011 
3012 /*
3013  * Bit usage when in AArch32 state, both A- and M-profile.
3014  */
3015 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3016 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3017 
3018 /*
3019  * Bit usage when in AArch32 state, for A-profile only.
3020  */
3021 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3022 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3023 /*
3024  * We store the bottom two bits of the CPAR as TB flags and handle
3025  * checks on the other bits at runtime. This shares the same bits as
3026  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3027  * Not cached, because VECLEN+VECSTRIDE are not cached.
3028  */
3029 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3030 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3031 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3032 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3033 /*
3034  * Indicates whether cp register reads and writes by guest code should access
3035  * the secure or nonsecure bank of banked registers; note that this is not
3036  * the same thing as the current security state of the processor!
3037  */
3038 FIELD(TBFLAG_A32, NS, 10, 1)
3039 /*
3040  * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not.
3041  * This requires an SME trap from AArch32 mode when using NEON.
3042  */
3043 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1)
3044 
3045 /*
3046  * Bit usage when in AArch32 state, for M-profile only.
3047  */
3048 /* Handler (ie not Thread) mode */
3049 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3050 /* Whether we should generate stack-limit checks */
3051 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3052 /* Set if FPCCR.LSPACT is set */
3053 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3054 /* Set if we must create a new FP context */
3055 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3056 /* Set if FPCCR.S does not match current security state */
3057 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3058 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3059 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3060 /* Set if in secure mode */
3061 FIELD(TBFLAG_M32, SECURE, 6, 1)
3062 
3063 /*
3064  * Bit usage when in AArch64 state
3065  */
3066 FIELD(TBFLAG_A64, TBII, 0, 2)
3067 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3068 /* The current vector length, either NVL or SVL. */
3069 FIELD(TBFLAG_A64, VL, 4, 4)
3070 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3071 FIELD(TBFLAG_A64, BT, 9, 1)
3072 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3073 FIELD(TBFLAG_A64, TBID, 12, 2)
3074 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3075 FIELD(TBFLAG_A64, ATA, 15, 1)
3076 FIELD(TBFLAG_A64, TCMA, 16, 2)
3077 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3078 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3079 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2)
3080 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1)
3081 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1)
3082 FIELD(TBFLAG_A64, SVL, 24, 4)
3083 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */
3084 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1)
3085 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1)
3086 FIELD(TBFLAG_A64, NAA, 30, 1)
3087 FIELD(TBFLAG_A64, ATA0, 31, 1)
3088 FIELD(TBFLAG_A64, NV, 32, 1)
3089 FIELD(TBFLAG_A64, NV1, 33, 1)
3090 FIELD(TBFLAG_A64, NV2, 34, 1)
3091 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */
3092 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1)
3093 /* Set if FEAT_NV2 RAM accesses are big-endian */
3094 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1)
3095 
3096 /*
3097  * Helpers for using the above. Note that only the A64 accessors use
3098  * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags
3099  * word either is or might be 32 bits only.
3100  */
3101 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3102     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3103 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3104     (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL))
3105 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3106     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3107 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3108     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3109 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3110     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3111 
3112 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3113 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH)
3114 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3115 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3116 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3117 
3118 /**
3119  * sve_vq
3120  * @env: the cpu context
3121  *
3122  * Return the VL cached within env->hflags, in units of quadwords.
3123  */
3124 static inline int sve_vq(CPUARMState *env)
3125 {
3126     return EX_TBFLAG_A64(env->hflags, VL) + 1;
3127 }
3128 
3129 /**
3130  * sme_vq
3131  * @env: the cpu context
3132  *
3133  * Return the SVL cached within env->hflags, in units of quadwords.
3134  */
3135 static inline int sme_vq(CPUARMState *env)
3136 {
3137     return EX_TBFLAG_A64(env->hflags, SVL) + 1;
3138 }
3139 
3140 static inline bool bswap_code(bool sctlr_b)
3141 {
3142 #ifdef CONFIG_USER_ONLY
3143     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3144      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3145      * would also end up as a mixed-endian mode with BE code, LE data.
3146      */
3147     return TARGET_BIG_ENDIAN ^ sctlr_b;
3148 #else
3149     /* All code access in ARM is little endian, and there are no loaders
3150      * doing swaps that need to be reversed
3151      */
3152     return 0;
3153 #endif
3154 }
3155 
3156 #ifdef CONFIG_USER_ONLY
3157 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3158 {
3159     return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env);
3160 }
3161 #endif
3162 
3163 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
3164                           uint64_t *cs_base, uint32_t *flags);
3165 
3166 enum {
3167     QEMU_PSCI_CONDUIT_DISABLED = 0,
3168     QEMU_PSCI_CONDUIT_SMC = 1,
3169     QEMU_PSCI_CONDUIT_HVC = 2,
3170 };
3171 
3172 #ifndef CONFIG_USER_ONLY
3173 /* Return the address space index to use for a memory access */
3174 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3175 {
3176     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3177 }
3178 
3179 /* Return the AddressSpace to use for a memory access
3180  * (which depends on whether the access is S or NS, and whether
3181  * the board gave us a separate AddressSpace for S accesses).
3182  */
3183 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3184 {
3185     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3186 }
3187 #endif
3188 
3189 /**
3190  * arm_register_pre_el_change_hook:
3191  * Register a hook function which will be called immediately before this
3192  * CPU changes exception level or mode. The hook function will be
3193  * passed a pointer to the ARMCPU and the opaque data pointer passed
3194  * to this function when the hook was registered.
3195  *
3196  * Note that if a pre-change hook is called, any registered post-change hooks
3197  * are guaranteed to subsequently be called.
3198  */
3199 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3200                                  void *opaque);
3201 /**
3202  * arm_register_el_change_hook:
3203  * Register a hook function which will be called immediately after this
3204  * CPU changes exception level or mode. The hook function will be
3205  * passed a pointer to the ARMCPU and the opaque data pointer passed
3206  * to this function when the hook was registered.
3207  *
3208  * Note that any registered hooks registered here are guaranteed to be called
3209  * if pre-change hooks have been.
3210  */
3211 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3212         *opaque);
3213 
3214 /**
3215  * arm_rebuild_hflags:
3216  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3217  */
3218 void arm_rebuild_hflags(CPUARMState *env);
3219 
3220 /**
3221  * aa32_vfp_dreg:
3222  * Return a pointer to the Dn register within env in 32-bit mode.
3223  */
3224 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3225 {
3226     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3227 }
3228 
3229 /**
3230  * aa32_vfp_qreg:
3231  * Return a pointer to the Qn register within env in 32-bit mode.
3232  */
3233 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3234 {
3235     return &env->vfp.zregs[regno].d[0];
3236 }
3237 
3238 /**
3239  * aa64_vfp_qreg:
3240  * Return a pointer to the Qn register within env in 64-bit mode.
3241  */
3242 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3243 {
3244     return &env->vfp.zregs[regno].d[0];
3245 }
3246 
3247 /* Shared between translate-sve.c and sve_helper.c.  */
3248 extern const uint64_t pred_esz_masks[5];
3249 
3250 /*
3251  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3252  * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect
3253  * mprotect but PROT_BTI may be cleared.  C.f. the kernel's VM_ARCH_CLEAR.
3254  */
3255 #define PAGE_BTI            PAGE_TARGET_1
3256 #define PAGE_MTE            PAGE_TARGET_2
3257 #define PAGE_TARGET_STICKY  PAGE_MTE
3258 
3259 /* We associate one allocation tag per 16 bytes, the minimum.  */
3260 #define LOG2_TAG_GRANULE 4
3261 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
3262 
3263 #ifdef CONFIG_USER_ONLY
3264 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1))
3265 #endif
3266 
3267 #ifdef TARGET_TAGGED_ADDRESSES
3268 /**
3269  * cpu_untagged_addr:
3270  * @cs: CPU context
3271  * @x: tagged address
3272  *
3273  * Remove any address tag from @x.  This is explicitly related to the
3274  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3275  *
3276  * There should be a better place to put this, but we need this in
3277  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3278  */
3279 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3280 {
3281     ARMCPU *cpu = ARM_CPU(cs);
3282     if (cpu->env.tagged_addr_enable) {
3283         /*
3284          * TBI is enabled for userspace but not kernelspace addresses.
3285          * Only clear the tag if bit 55 is clear.
3286          */
3287         x &= sextract64(x, 0, 56);
3288     }
3289     return x;
3290 }
3291 #endif
3292 
3293 #endif
3294