xref: /qemu/target/arm/cpu.h (revision b88651cb)
1 /*
2  * ARM virtual CPU header
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
22 
23 #include "kvm-consts.h"
24 #include "qemu/cpu-float.h"
25 #include "hw/registerfields.h"
26 #include "cpu-qom.h"
27 #include "exec/cpu-defs.h"
28 #include "qapi/qapi-types-common.h"
29 
30 /* ARM processors have a weak memory model */
31 #define TCG_GUEST_DEFAULT_MO      (0)
32 
33 #ifdef TARGET_AARCH64
34 #define KVM_HAVE_MCE_INJECTION 1
35 #endif
36 
37 #define EXCP_UDEF            1   /* undefined instruction */
38 #define EXCP_SWI             2   /* software interrupt */
39 #define EXCP_PREFETCH_ABORT  3
40 #define EXCP_DATA_ABORT      4
41 #define EXCP_IRQ             5
42 #define EXCP_FIQ             6
43 #define EXCP_BKPT            7
44 #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
45 #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
46 #define EXCP_HVC            11   /* HyperVisor Call */
47 #define EXCP_HYP_TRAP       12
48 #define EXCP_SMC            13   /* Secure Monitor Call */
49 #define EXCP_VIRQ           14
50 #define EXCP_VFIQ           15
51 #define EXCP_SEMIHOST       16   /* semihosting call */
52 #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
53 #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
54 #define EXCP_STKOF          19   /* v8M STKOF UsageFault */
55 #define EXCP_LAZYFP         20   /* v7M fault during lazy FP stacking */
56 #define EXCP_LSERR          21   /* v8M LSERR SecureFault */
57 #define EXCP_UNALIGNED      22   /* v7M UNALIGNED UsageFault */
58 #define EXCP_DIVBYZERO      23   /* v7M DIVBYZERO UsageFault */
59 #define EXCP_VSERR          24
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 
62 #define ARMV7M_EXCP_RESET   1
63 #define ARMV7M_EXCP_NMI     2
64 #define ARMV7M_EXCP_HARD    3
65 #define ARMV7M_EXCP_MEM     4
66 #define ARMV7M_EXCP_BUS     5
67 #define ARMV7M_EXCP_USAGE   6
68 #define ARMV7M_EXCP_SECURE  7
69 #define ARMV7M_EXCP_SVC     11
70 #define ARMV7M_EXCP_DEBUG   12
71 #define ARMV7M_EXCP_PENDSV  14
72 #define ARMV7M_EXCP_SYSTICK 15
73 
74 /* For M profile, some registers are banked secure vs non-secure;
75  * these are represented as a 2-element array where the first element
76  * is the non-secure copy and the second is the secure copy.
77  * When the CPU does not have implement the security extension then
78  * only the first element is used.
79  * This means that the copy for the current security state can be
80  * accessed via env->registerfield[env->v7m.secure] (whether the security
81  * extension is implemented or not).
82  */
83 enum {
84     M_REG_NS = 0,
85     M_REG_S = 1,
86     M_REG_NUM_BANKS = 2,
87 };
88 
89 /* ARM-specific interrupt pending bits.  */
90 #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
93 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0
94 
95 /* The usual mapping for an AArch64 system register to its AArch32
96  * counterpart is for the 32 bit world to have access to the lower
97  * half only (with writes leaving the upper half untouched). It's
98  * therefore useful to be able to pass TCG the offset of the least
99  * significant half of a uint64_t struct member.
100  */
101 #if HOST_BIG_ENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
104 #else
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 #endif
108 
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
114 
115 /* ARM-specific extra insn start words:
116  * 1: Conditional execution bits
117  * 2: Partial exception syndrome for data aborts
118  */
119 #define TARGET_INSN_START_EXTRA_WORDS 2
120 
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123  * help the sleb128 encoder do a better job.
124  * When restoring the CPU state, we shift it back up.
125  */
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
128 
129 /* We currently assume float and double are IEEE single and double
130    precision respectively.
131    Doing runtime conversions is tricky because VFP registers may contain
132    integer values (eg. as the result of a FTOSI instruction).
133    s<2n> maps to the least significant half of d<n>
134    s<2n+1> maps to the most significant half of d<n>
135  */
136 
137 /**
138  * DynamicGDBXMLInfo:
139  * @desc: Contains the XML descriptions.
140  * @num: Number of the registers in this XML seen by GDB.
141  * @data: A union with data specific to the set of registers
142  *    @cpregs_keys: Array that contains the corresponding Key of
143  *                  a given cpreg with the same order of the cpreg
144  *                  in the XML description.
145  */
146 typedef struct DynamicGDBXMLInfo {
147     char *desc;
148     int num;
149     union {
150         struct {
151             uint32_t *keys;
152         } cpregs;
153     } data;
154 } DynamicGDBXMLInfo;
155 
156 /* CPU state for each instance of a generic timer (in cp15 c14) */
157 typedef struct ARMGenericTimer {
158     uint64_t cval; /* Timer CompareValue register */
159     uint64_t ctl; /* Timer Control register */
160 } ARMGenericTimer;
161 
162 #define GTIMER_PHYS     0
163 #define GTIMER_VIRT     1
164 #define GTIMER_HYP      2
165 #define GTIMER_SEC      3
166 #define GTIMER_HYPVIRT  4
167 #define NUM_GTIMERS     5
168 
169 typedef struct {
170     uint64_t raw_tcr;
171     uint32_t mask;
172     uint32_t base_mask;
173 } TCR;
174 
175 #define VTCR_NSW (1u << 29)
176 #define VTCR_NSA (1u << 30)
177 #define VSTCR_SW VTCR_NSW
178 #define VSTCR_SA VTCR_NSA
179 
180 /* Define a maximum sized vector register.
181  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
182  * For 64-bit, this is a 2048-bit SVE register.
183  *
184  * Note that the mapping between S, D, and Q views of the register bank
185  * differs between AArch64 and AArch32.
186  * In AArch32:
187  *  Qn = regs[n].d[1]:regs[n].d[0]
188  *  Dn = regs[n / 2].d[n & 1]
189  *  Sn = regs[n / 4].d[n % 4 / 2],
190  *       bits 31..0 for even n, and bits 63..32 for odd n
191  *       (and regs[16] to regs[31] are inaccessible)
192  * In AArch64:
193  *  Zn = regs[n].d[*]
194  *  Qn = regs[n].d[1]:regs[n].d[0]
195  *  Dn = regs[n].d[0]
196  *  Sn = regs[n].d[0] bits 31..0
197  *  Hn = regs[n].d[0] bits 15..0
198  *
199  * This corresponds to the architecturally defined mapping between
200  * the two execution states, and means we do not need to explicitly
201  * map these registers when changing states.
202  *
203  * Align the data for use with TCG host vector operations.
204  */
205 
206 #ifdef TARGET_AARCH64
207 # define ARM_MAX_VQ    16
208 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
209 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
210 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
211 #else
212 # define ARM_MAX_VQ    1
213 static inline void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp) { }
214 static inline void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp) { }
215 static inline void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp) { }
216 #endif
217 
218 typedef struct ARMVectorReg {
219     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
220 } ARMVectorReg;
221 
222 #ifdef TARGET_AARCH64
223 /* In AArch32 mode, predicate registers do not exist at all.  */
224 typedef struct ARMPredicateReg {
225     uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16);
226 } ARMPredicateReg;
227 
228 /* In AArch32 mode, PAC keys do not exist at all.  */
229 typedef struct ARMPACKey {
230     uint64_t lo, hi;
231 } ARMPACKey;
232 #endif
233 
234 /* See the commentary above the TBFLAG field definitions.  */
235 typedef struct CPUARMTBFlags {
236     uint32_t flags;
237     target_ulong flags2;
238 } CPUARMTBFlags;
239 
240 typedef struct CPUArchState {
241     /* Regs for current mode.  */
242     uint32_t regs[16];
243 
244     /* 32/64 switch only happens when taking and returning from
245      * exceptions so the overlap semantics are taken care of then
246      * instead of having a complicated union.
247      */
248     /* Regs for A64 mode.  */
249     uint64_t xregs[32];
250     uint64_t pc;
251     /* PSTATE isn't an architectural register for ARMv8. However, it is
252      * convenient for us to assemble the underlying state into a 32 bit format
253      * identical to the architectural format used for the SPSR. (This is also
254      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
255      * 'pstate' register are.) Of the PSTATE bits:
256      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
257      *    semantics as for AArch32, as described in the comments on each field)
258      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
259      *  DAIF (exception masks) are kept in env->daif
260      *  BTYPE is kept in env->btype
261      *  all other bits are stored in their correct places in env->pstate
262      */
263     uint32_t pstate;
264     bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */
265     bool thumb;   /* True if CPU is in thumb mode; cpsr[5] */
266 
267     /* Cached TBFLAGS state.  See below for which bits are included.  */
268     CPUARMTBFlags hflags;
269 
270     /* Frequently accessed CPSR bits are stored separately for efficiency.
271        This contains all the other bits.  Use cpsr_{read,write} to access
272        the whole CPSR.  */
273     uint32_t uncached_cpsr;
274     uint32_t spsr;
275 
276     /* Banked registers.  */
277     uint64_t banked_spsr[8];
278     uint32_t banked_r13[8];
279     uint32_t banked_r14[8];
280 
281     /* These hold r8-r12.  */
282     uint32_t usr_regs[5];
283     uint32_t fiq_regs[5];
284 
285     /* cpsr flag cache for faster execution */
286     uint32_t CF; /* 0 or 1 */
287     uint32_t VF; /* V is the bit 31. All other bits are undefined */
288     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
289     uint32_t ZF; /* Z set if zero.  */
290     uint32_t QF; /* 0 or 1 */
291     uint32_t GE; /* cpsr[19:16] */
292     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
293     uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
294     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
295 
296     uint64_t elr_el[4]; /* AArch64 exception link regs  */
297     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
298 
299     /* System control coprocessor (cp15) */
300     struct {
301         uint32_t c0_cpuid;
302         union { /* Cache size selection */
303             struct {
304                 uint64_t _unused_csselr0;
305                 uint64_t csselr_ns;
306                 uint64_t _unused_csselr1;
307                 uint64_t csselr_s;
308             };
309             uint64_t csselr_el[4];
310         };
311         union { /* System control register. */
312             struct {
313                 uint64_t _unused_sctlr;
314                 uint64_t sctlr_ns;
315                 uint64_t hsctlr;
316                 uint64_t sctlr_s;
317             };
318             uint64_t sctlr_el[4];
319         };
320         uint64_t cpacr_el1; /* Architectural feature access control register */
321         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
322         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
323         uint64_t sder; /* Secure debug enable register. */
324         uint32_t nsacr; /* Non-secure access control register. */
325         union { /* MMU translation table base 0. */
326             struct {
327                 uint64_t _unused_ttbr0_0;
328                 uint64_t ttbr0_ns;
329                 uint64_t _unused_ttbr0_1;
330                 uint64_t ttbr0_s;
331             };
332             uint64_t ttbr0_el[4];
333         };
334         union { /* MMU translation table base 1. */
335             struct {
336                 uint64_t _unused_ttbr1_0;
337                 uint64_t ttbr1_ns;
338                 uint64_t _unused_ttbr1_1;
339                 uint64_t ttbr1_s;
340             };
341             uint64_t ttbr1_el[4];
342         };
343         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
344         uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */
345         /* MMU translation table base control. */
346         TCR tcr_el[4];
347         TCR vtcr_el2; /* Virtualization Translation Control.  */
348         TCR vstcr_el2; /* Secure Virtualization Translation Control. */
349         uint32_t c2_data; /* MPU data cacheable bits.  */
350         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
351         union { /* MMU domain access control register
352                  * MPU write buffer control.
353                  */
354             struct {
355                 uint64_t dacr_ns;
356                 uint64_t dacr_s;
357             };
358             struct {
359                 uint64_t dacr32_el2;
360             };
361         };
362         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
363         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
364         uint64_t hcr_el2; /* Hypervisor configuration register */
365         uint64_t scr_el3; /* Secure configuration register.  */
366         union { /* Fault status registers.  */
367             struct {
368                 uint64_t ifsr_ns;
369                 uint64_t ifsr_s;
370             };
371             struct {
372                 uint64_t ifsr32_el2;
373             };
374         };
375         union {
376             struct {
377                 uint64_t _unused_dfsr;
378                 uint64_t dfsr_ns;
379                 uint64_t hsr;
380                 uint64_t dfsr_s;
381             };
382             uint64_t esr_el[4];
383         };
384         uint32_t c6_region[8]; /* MPU base/size registers.  */
385         union { /* Fault address registers. */
386             struct {
387                 uint64_t _unused_far0;
388 #if HOST_BIG_ENDIAN
389                 uint32_t ifar_ns;
390                 uint32_t dfar_ns;
391                 uint32_t ifar_s;
392                 uint32_t dfar_s;
393 #else
394                 uint32_t dfar_ns;
395                 uint32_t ifar_ns;
396                 uint32_t dfar_s;
397                 uint32_t ifar_s;
398 #endif
399                 uint64_t _unused_far3;
400             };
401             uint64_t far_el[4];
402         };
403         uint64_t hpfar_el2;
404         uint64_t hstr_el2;
405         union { /* Translation result. */
406             struct {
407                 uint64_t _unused_par_0;
408                 uint64_t par_ns;
409                 uint64_t _unused_par_1;
410                 uint64_t par_s;
411             };
412             uint64_t par_el[4];
413         };
414 
415         uint32_t c9_insn; /* Cache lockdown registers.  */
416         uint32_t c9_data;
417         uint64_t c9_pmcr; /* performance monitor control register */
418         uint64_t c9_pmcnten; /* perf monitor counter enables */
419         uint64_t c9_pmovsr; /* perf monitor overflow status */
420         uint64_t c9_pmuserenr; /* perf monitor user enable */
421         uint64_t c9_pmselr; /* perf monitor counter selection register */
422         uint64_t c9_pminten; /* perf monitor interrupt enables */
423         union { /* Memory attribute redirection */
424             struct {
425 #if HOST_BIG_ENDIAN
426                 uint64_t _unused_mair_0;
427                 uint32_t mair1_ns;
428                 uint32_t mair0_ns;
429                 uint64_t _unused_mair_1;
430                 uint32_t mair1_s;
431                 uint32_t mair0_s;
432 #else
433                 uint64_t _unused_mair_0;
434                 uint32_t mair0_ns;
435                 uint32_t mair1_ns;
436                 uint64_t _unused_mair_1;
437                 uint32_t mair0_s;
438                 uint32_t mair1_s;
439 #endif
440             };
441             uint64_t mair_el[4];
442         };
443         union { /* vector base address register */
444             struct {
445                 uint64_t _unused_vbar;
446                 uint64_t vbar_ns;
447                 uint64_t hvbar;
448                 uint64_t vbar_s;
449             };
450             uint64_t vbar_el[4];
451         };
452         uint32_t mvbar; /* (monitor) vector base address register */
453         uint64_t rvbar; /* rvbar sampled from rvbar property at reset */
454         struct { /* FCSE PID. */
455             uint32_t fcseidr_ns;
456             uint32_t fcseidr_s;
457         };
458         union { /* Context ID. */
459             struct {
460                 uint64_t _unused_contextidr_0;
461                 uint64_t contextidr_ns;
462                 uint64_t _unused_contextidr_1;
463                 uint64_t contextidr_s;
464             };
465             uint64_t contextidr_el[4];
466         };
467         union { /* User RW Thread register. */
468             struct {
469                 uint64_t tpidrurw_ns;
470                 uint64_t tpidrprw_ns;
471                 uint64_t htpidr;
472                 uint64_t _tpidr_el3;
473             };
474             uint64_t tpidr_el[4];
475         };
476         /* The secure banks of these registers don't map anywhere */
477         uint64_t tpidrurw_s;
478         uint64_t tpidrprw_s;
479         uint64_t tpidruro_s;
480 
481         union { /* User RO Thread register. */
482             uint64_t tpidruro_ns;
483             uint64_t tpidrro_el[1];
484         };
485         uint64_t c14_cntfrq; /* Counter Frequency register */
486         uint64_t c14_cntkctl; /* Timer Control register */
487         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
488         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
489         ARMGenericTimer c14_timer[NUM_GTIMERS];
490         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
491         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
492         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
493         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
494         uint32_t c15_threadid; /* TI debugger thread-ID.  */
495         uint32_t c15_config_base_address; /* SCU base address.  */
496         uint32_t c15_diagnostic; /* diagnostic register */
497         uint32_t c15_power_diagnostic;
498         uint32_t c15_power_control; /* power control */
499         uint64_t dbgbvr[16]; /* breakpoint value registers */
500         uint64_t dbgbcr[16]; /* breakpoint control registers */
501         uint64_t dbgwvr[16]; /* watchpoint value registers */
502         uint64_t dbgwcr[16]; /* watchpoint control registers */
503         uint64_t mdscr_el1;
504         uint64_t oslsr_el1; /* OS Lock Status */
505         uint64_t mdcr_el2;
506         uint64_t mdcr_el3;
507         /* Stores the architectural value of the counter *the last time it was
508          * updated* by pmccntr_op_start. Accesses should always be surrounded
509          * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
510          * architecturally-correct value is being read/set.
511          */
512         uint64_t c15_ccnt;
513         /* Stores the delta between the architectural value and the underlying
514          * cycle count during normal operation. It is used to update c15_ccnt
515          * to be the correct architectural value before accesses. During
516          * accesses, c15_ccnt_delta contains the underlying count being used
517          * for the access, after which it reverts to the delta value in
518          * pmccntr_op_finish.
519          */
520         uint64_t c15_ccnt_delta;
521         uint64_t c14_pmevcntr[31];
522         uint64_t c14_pmevcntr_delta[31];
523         uint64_t c14_pmevtyper[31];
524         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
525         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
526         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
527         uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0.  */
528         uint64_t gcr_el1;
529         uint64_t rgsr_el1;
530 
531         /* Minimal RAS registers */
532         uint64_t disr_el1;
533         uint64_t vdisr_el2;
534         uint64_t vsesr_el2;
535     } cp15;
536 
537     struct {
538         /* M profile has up to 4 stack pointers:
539          * a Main Stack Pointer and a Process Stack Pointer for each
540          * of the Secure and Non-Secure states. (If the CPU doesn't support
541          * the security extension then it has only two SPs.)
542          * In QEMU we always store the currently active SP in regs[13],
543          * and the non-active SP for the current security state in
544          * v7m.other_sp. The stack pointers for the inactive security state
545          * are stored in other_ss_msp and other_ss_psp.
546          * switch_v7m_security_state() is responsible for rearranging them
547          * when we change security state.
548          */
549         uint32_t other_sp;
550         uint32_t other_ss_msp;
551         uint32_t other_ss_psp;
552         uint32_t vecbase[M_REG_NUM_BANKS];
553         uint32_t basepri[M_REG_NUM_BANKS];
554         uint32_t control[M_REG_NUM_BANKS];
555         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
556         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
557         uint32_t hfsr; /* HardFault Status */
558         uint32_t dfsr; /* Debug Fault Status Register */
559         uint32_t sfsr; /* Secure Fault Status Register */
560         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
561         uint32_t bfar; /* BusFault Address */
562         uint32_t sfar; /* Secure Fault Address Register */
563         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
564         int exception;
565         uint32_t primask[M_REG_NUM_BANKS];
566         uint32_t faultmask[M_REG_NUM_BANKS];
567         uint32_t aircr; /* only holds r/w state if security extn implemented */
568         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
569         uint32_t csselr[M_REG_NUM_BANKS];
570         uint32_t scr[M_REG_NUM_BANKS];
571         uint32_t msplim[M_REG_NUM_BANKS];
572         uint32_t psplim[M_REG_NUM_BANKS];
573         uint32_t fpcar[M_REG_NUM_BANKS];
574         uint32_t fpccr[M_REG_NUM_BANKS];
575         uint32_t fpdscr[M_REG_NUM_BANKS];
576         uint32_t cpacr[M_REG_NUM_BANKS];
577         uint32_t nsacr;
578         uint32_t ltpsize;
579         uint32_t vpr;
580     } v7m;
581 
582     /* Information associated with an exception about to be taken:
583      * code which raises an exception must set cs->exception_index and
584      * the relevant parts of this structure; the cpu_do_interrupt function
585      * will then set the guest-visible registers as part of the exception
586      * entry process.
587      */
588     struct {
589         uint32_t syndrome; /* AArch64 format syndrome register */
590         uint32_t fsr; /* AArch32 format fault status register info */
591         uint64_t vaddress; /* virtual addr associated with exception, if any */
592         uint32_t target_el; /* EL the exception should be targeted for */
593         /* If we implement EL2 we will also need to store information
594          * about the intermediate physical address for stage 2 faults.
595          */
596     } exception;
597 
598     /* Information associated with an SError */
599     struct {
600         uint8_t pending;
601         uint8_t has_esr;
602         uint64_t esr;
603     } serror;
604 
605     uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */
606 
607     /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
608     uint32_t irq_line_state;
609 
610     /* Thumb-2 EE state.  */
611     uint32_t teecr;
612     uint32_t teehbr;
613 
614     /* VFP coprocessor state.  */
615     struct {
616         ARMVectorReg zregs[32];
617 
618 #ifdef TARGET_AARCH64
619         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
620 #define FFR_PRED_NUM 16
621         ARMPredicateReg pregs[17];
622         /* Scratch space for aa64 sve predicate temporary.  */
623         ARMPredicateReg preg_tmp;
624 #endif
625 
626         /* We store these fpcsr fields separately for convenience.  */
627         uint32_t qc[4] QEMU_ALIGNED(16);
628         int vec_len;
629         int vec_stride;
630 
631         uint32_t xregs[16];
632 
633         /* Scratch space for aa32 neon expansion.  */
634         uint32_t scratch[8];
635 
636         /* There are a number of distinct float control structures:
637          *
638          *  fp_status: is the "normal" fp status.
639          *  fp_status_fp16: used for half-precision calculations
640          *  standard_fp_status : the ARM "Standard FPSCR Value"
641          *  standard_fp_status_fp16 : used for half-precision
642          *       calculations with the ARM "Standard FPSCR Value"
643          *
644          * Half-precision operations are governed by a separate
645          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
646          * status structure to control this.
647          *
648          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
649          * round-to-nearest and is used by any operations (generally
650          * Neon) which the architecture defines as controlled by the
651          * standard FPSCR value rather than the FPSCR.
652          *
653          * The "standard FPSCR but for fp16 ops" is needed because
654          * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than
655          * using a fixed value for it.
656          *
657          * To avoid having to transfer exception bits around, we simply
658          * say that the FPSCR cumulative exception flags are the logical
659          * OR of the flags in the four fp statuses. This relies on the
660          * only thing which needs to read the exception flags being
661          * an explicit FPSCR read.
662          */
663         float_status fp_status;
664         float_status fp_status_f16;
665         float_status standard_fp_status;
666         float_status standard_fp_status_f16;
667 
668         /* ZCR_EL[1-3] */
669         uint64_t zcr_el[4];
670     } vfp;
671     uint64_t exclusive_addr;
672     uint64_t exclusive_val;
673     uint64_t exclusive_high;
674 
675     /* iwMMXt coprocessor state.  */
676     struct {
677         uint64_t regs[16];
678         uint64_t val;
679 
680         uint32_t cregs[16];
681     } iwmmxt;
682 
683 #ifdef TARGET_AARCH64
684     struct {
685         ARMPACKey apia;
686         ARMPACKey apib;
687         ARMPACKey apda;
688         ARMPACKey apdb;
689         ARMPACKey apga;
690     } keys;
691 
692     uint64_t scxtnum_el[4];
693 #endif
694 
695 #if defined(CONFIG_USER_ONLY)
696     /* For usermode syscall translation.  */
697     int eabi;
698 #endif
699 
700     struct CPUBreakpoint *cpu_breakpoint[16];
701     struct CPUWatchpoint *cpu_watchpoint[16];
702 
703     /* Fields up to this point are cleared by a CPU reset */
704     struct {} end_reset_fields;
705 
706     /* Fields after this point are preserved across CPU reset. */
707 
708     /* Internal CPU feature flags.  */
709     uint64_t features;
710 
711     /* PMSAv7 MPU */
712     struct {
713         uint32_t *drbar;
714         uint32_t *drsr;
715         uint32_t *dracr;
716         uint32_t rnr[M_REG_NUM_BANKS];
717     } pmsav7;
718 
719     /* PMSAv8 MPU */
720     struct {
721         /* The PMSAv8 implementation also shares some PMSAv7 config
722          * and state:
723          *  pmsav7.rnr (region number register)
724          *  pmsav7_dregion (number of configured regions)
725          */
726         uint32_t *rbar[M_REG_NUM_BANKS];
727         uint32_t *rlar[M_REG_NUM_BANKS];
728         uint32_t mair0[M_REG_NUM_BANKS];
729         uint32_t mair1[M_REG_NUM_BANKS];
730     } pmsav8;
731 
732     /* v8M SAU */
733     struct {
734         uint32_t *rbar;
735         uint32_t *rlar;
736         uint32_t rnr;
737         uint32_t ctrl;
738     } sau;
739 
740     void *nvic;
741     const struct arm_boot_info *boot_info;
742     /* Store GICv3CPUState to access from this struct */
743     void *gicv3state;
744 
745 #ifdef TARGET_TAGGED_ADDRESSES
746     /* Linux syscall tagged address support */
747     bool tagged_addr_enable;
748 #endif
749 } CPUARMState;
750 
751 static inline void set_feature(CPUARMState *env, int feature)
752 {
753     env->features |= 1ULL << feature;
754 }
755 
756 static inline void unset_feature(CPUARMState *env, int feature)
757 {
758     env->features &= ~(1ULL << feature);
759 }
760 
761 /**
762  * ARMELChangeHookFn:
763  * type of a function which can be registered via arm_register_el_change_hook()
764  * to get callbacks when the CPU changes its exception level or mode.
765  */
766 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
767 typedef struct ARMELChangeHook ARMELChangeHook;
768 struct ARMELChangeHook {
769     ARMELChangeHookFn *hook;
770     void *opaque;
771     QLIST_ENTRY(ARMELChangeHook) node;
772 };
773 
774 /* These values map onto the return values for
775  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
776 typedef enum ARMPSCIState {
777     PSCI_ON = 0,
778     PSCI_OFF = 1,
779     PSCI_ON_PENDING = 2
780 } ARMPSCIState;
781 
782 typedef struct ARMISARegisters ARMISARegisters;
783 
784 /**
785  * ARMCPU:
786  * @env: #CPUARMState
787  *
788  * An ARM CPU core.
789  */
790 struct ArchCPU {
791     /*< private >*/
792     CPUState parent_obj;
793     /*< public >*/
794 
795     CPUNegativeOffsetState neg;
796     CPUARMState env;
797 
798     /* Coprocessor information */
799     GHashTable *cp_regs;
800     /* For marshalling (mostly coprocessor) register state between the
801      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
802      * we use these arrays.
803      */
804     /* List of register indexes managed via these arrays; (full KVM style
805      * 64 bit indexes, not CPRegInfo 32 bit indexes)
806      */
807     uint64_t *cpreg_indexes;
808     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
809     uint64_t *cpreg_values;
810     /* Length of the indexes, values, reset_values arrays */
811     int32_t cpreg_array_len;
812     /* These are used only for migration: incoming data arrives in
813      * these fields and is sanity checked in post_load before copying
814      * to the working data structures above.
815      */
816     uint64_t *cpreg_vmstate_indexes;
817     uint64_t *cpreg_vmstate_values;
818     int32_t cpreg_vmstate_array_len;
819 
820     DynamicGDBXMLInfo dyn_sysreg_xml;
821     DynamicGDBXMLInfo dyn_svereg_xml;
822 
823     /* Timers used by the generic (architected) timer */
824     QEMUTimer *gt_timer[NUM_GTIMERS];
825     /*
826      * Timer used by the PMU. Its state is restored after migration by
827      * pmu_op_finish() - it does not need other handling during migration
828      */
829     QEMUTimer *pmu_timer;
830     /* GPIO outputs for generic timer */
831     qemu_irq gt_timer_outputs[NUM_GTIMERS];
832     /* GPIO output for GICv3 maintenance interrupt signal */
833     qemu_irq gicv3_maintenance_interrupt;
834     /* GPIO output for the PMU interrupt */
835     qemu_irq pmu_interrupt;
836 
837     /* MemoryRegion to use for secure physical accesses */
838     MemoryRegion *secure_memory;
839 
840     /* MemoryRegion to use for allocation tag accesses */
841     MemoryRegion *tag_memory;
842     MemoryRegion *secure_tag_memory;
843 
844     /* For v8M, pointer to the IDAU interface provided by board/SoC */
845     Object *idau;
846 
847     /* 'compatible' string for this CPU for Linux device trees */
848     const char *dtb_compatible;
849 
850     /* PSCI version for this CPU
851      * Bits[31:16] = Major Version
852      * Bits[15:0] = Minor Version
853      */
854     uint32_t psci_version;
855 
856     /* Current power state, access guarded by BQL */
857     ARMPSCIState power_state;
858 
859     /* CPU has virtualization extension */
860     bool has_el2;
861     /* CPU has security extension */
862     bool has_el3;
863     /* CPU has PMU (Performance Monitor Unit) */
864     bool has_pmu;
865     /* CPU has VFP */
866     bool has_vfp;
867     /* CPU has Neon */
868     bool has_neon;
869     /* CPU has M-profile DSP extension */
870     bool has_dsp;
871 
872     /* CPU has memory protection unit */
873     bool has_mpu;
874     /* PMSAv7 MPU number of supported regions */
875     uint32_t pmsav7_dregion;
876     /* v8M SAU number of supported regions */
877     uint32_t sau_sregion;
878 
879     /* PSCI conduit used to invoke PSCI methods
880      * 0 - disabled, 1 - smc, 2 - hvc
881      */
882     uint32_t psci_conduit;
883 
884     /* For v8M, initial value of the Secure VTOR */
885     uint32_t init_svtor;
886     /* For v8M, initial value of the Non-secure VTOR */
887     uint32_t init_nsvtor;
888 
889     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
890      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
891      */
892     uint32_t kvm_target;
893 
894     /* KVM init features for this CPU */
895     uint32_t kvm_init_features[7];
896 
897     /* KVM CPU state */
898 
899     /* KVM virtual time adjustment */
900     bool kvm_adjvtime;
901     bool kvm_vtime_dirty;
902     uint64_t kvm_vtime;
903 
904     /* KVM steal time */
905     OnOffAuto kvm_steal_time;
906 
907     /* Uniprocessor system with MP extensions */
908     bool mp_is_up;
909 
910     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
911      * and the probe failed (so we need to report the error in realize)
912      */
913     bool host_cpu_probe_failed;
914 
915     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
916      * register.
917      */
918     int32_t core_count;
919 
920     /* The instance init functions for implementation-specific subclasses
921      * set these fields to specify the implementation-dependent values of
922      * various constant registers and reset values of non-constant
923      * registers.
924      * Some of these might become QOM properties eventually.
925      * Field names match the official register names as defined in the
926      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
927      * is used for reset values of non-constant registers; no reset_
928      * prefix means a constant register.
929      * Some of these registers are split out into a substructure that
930      * is shared with the translators to control the ISA.
931      *
932      * Note that if you add an ID register to the ARMISARegisters struct
933      * you need to also update the 32-bit and 64-bit versions of the
934      * kvm_arm_get_host_cpu_features() function to correctly populate the
935      * field by reading the value from the KVM vCPU.
936      */
937     struct ARMISARegisters {
938         uint32_t id_isar0;
939         uint32_t id_isar1;
940         uint32_t id_isar2;
941         uint32_t id_isar3;
942         uint32_t id_isar4;
943         uint32_t id_isar5;
944         uint32_t id_isar6;
945         uint32_t id_mmfr0;
946         uint32_t id_mmfr1;
947         uint32_t id_mmfr2;
948         uint32_t id_mmfr3;
949         uint32_t id_mmfr4;
950         uint32_t id_pfr0;
951         uint32_t id_pfr1;
952         uint32_t id_pfr2;
953         uint32_t mvfr0;
954         uint32_t mvfr1;
955         uint32_t mvfr2;
956         uint32_t id_dfr0;
957         uint32_t dbgdidr;
958         uint64_t id_aa64isar0;
959         uint64_t id_aa64isar1;
960         uint64_t id_aa64pfr0;
961         uint64_t id_aa64pfr1;
962         uint64_t id_aa64mmfr0;
963         uint64_t id_aa64mmfr1;
964         uint64_t id_aa64mmfr2;
965         uint64_t id_aa64dfr0;
966         uint64_t id_aa64dfr1;
967         uint64_t id_aa64zfr0;
968     } isar;
969     uint64_t midr;
970     uint32_t revidr;
971     uint32_t reset_fpsid;
972     uint64_t ctr;
973     uint32_t reset_sctlr;
974     uint64_t pmceid0;
975     uint64_t pmceid1;
976     uint32_t id_afr0;
977     uint64_t id_aa64afr0;
978     uint64_t id_aa64afr1;
979     uint64_t clidr;
980     uint64_t mp_affinity; /* MP ID without feature bits */
981     /* The elements of this array are the CCSIDR values for each cache,
982      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
983      */
984     uint64_t ccsidr[16];
985     uint64_t reset_cbar;
986     uint32_t reset_auxcr;
987     bool reset_hivecs;
988 
989     /*
990      * Intermediate values used during property parsing.
991      * Once finalized, the values should be read from ID_AA64*.
992      */
993     bool prop_pauth;
994     bool prop_pauth_impdef;
995     bool prop_lpa2;
996 
997     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
998     uint32_t dcz_blocksize;
999     uint64_t rvbar_prop; /* Property/input signals.  */
1000 
1001     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
1002     int gic_num_lrs; /* number of list registers */
1003     int gic_vpribits; /* number of virtual priority bits */
1004     int gic_vprebits; /* number of virtual preemption bits */
1005 
1006     /* Whether the cfgend input is high (i.e. this CPU should reset into
1007      * big-endian mode).  This setting isn't used directly: instead it modifies
1008      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
1009      * architecture version.
1010      */
1011     bool cfgend;
1012 
1013     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
1014     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
1015 
1016     int32_t node_id; /* NUMA node this CPU belongs to */
1017 
1018     /* Used to synchronize KVM and QEMU in-kernel device levels */
1019     uint8_t device_irq_level;
1020 
1021     /* Used to set the maximum vector length the cpu will support.  */
1022     uint32_t sve_max_vq;
1023 
1024 #ifdef CONFIG_USER_ONLY
1025     /* Used to set the default vector length at process start. */
1026     uint32_t sve_default_vq;
1027 #endif
1028 
1029     /*
1030      * In sve_vq_map each set bit is a supported vector length of
1031      * (bit-number + 1) * 16 bytes, i.e. each bit number + 1 is the vector
1032      * length in quadwords.
1033      *
1034      * While processing properties during initialization, corresponding
1035      * sve_vq_init bits are set for bits in sve_vq_map that have been
1036      * set by properties.
1037      *
1038      * Bits set in sve_vq_supported represent valid vector lengths for
1039      * the CPU type.
1040      */
1041     DECLARE_BITMAP(sve_vq_map, ARM_MAX_VQ);
1042     DECLARE_BITMAP(sve_vq_init, ARM_MAX_VQ);
1043     DECLARE_BITMAP(sve_vq_supported, ARM_MAX_VQ);
1044 
1045     /* Generic timer counter frequency, in Hz */
1046     uint64_t gt_cntfrq_hz;
1047 };
1048 
1049 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu);
1050 
1051 void arm_cpu_post_init(Object *obj);
1052 
1053 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
1054 
1055 #ifndef CONFIG_USER_ONLY
1056 extern const VMStateDescription vmstate_arm_cpu;
1057 
1058 void arm_cpu_do_interrupt(CPUState *cpu);
1059 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
1060 #endif /* !CONFIG_USER_ONLY */
1061 
1062 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
1063                                          MemTxAttrs *attrs);
1064 
1065 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1066 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1067 
1068 /*
1069  * Helpers to dynamically generates XML descriptions of the sysregs
1070  * and SVE registers. Returns the number of registers in each set.
1071  */
1072 int arm_gen_dynamic_sysreg_xml(CPUState *cpu, int base_reg);
1073 int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
1074 
1075 /* Returns the dynamically generated XML for the gdb stub.
1076  * Returns a pointer to the XML contents for the specified XML file or NULL
1077  * if the XML name doesn't match the predefined one.
1078  */
1079 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
1080 
1081 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
1082                              int cpuid, void *opaque);
1083 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
1084                              int cpuid, void *opaque);
1085 
1086 #ifdef TARGET_AARCH64
1087 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
1088 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
1089 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
1090 void aarch64_sve_change_el(CPUARMState *env, int old_el,
1091                            int new_el, bool el0_a64);
1092 void aarch64_add_sve_properties(Object *obj);
1093 void aarch64_add_pauth_properties(Object *obj);
1094 
1095 /*
1096  * SVE registers are encoded in KVM's memory in an endianness-invariant format.
1097  * The byte at offset i from the start of the in-memory representation contains
1098  * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
1099  * lowest offsets are stored in the lowest memory addresses, then that nearly
1100  * matches QEMU's representation, which is to use an array of host-endian
1101  * uint64_t's, where the lower offsets are at the lower indices. To complete
1102  * the translation we just need to byte swap the uint64_t's on big-endian hosts.
1103  */
1104 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
1105 {
1106 #if HOST_BIG_ENDIAN
1107     int i;
1108 
1109     for (i = 0; i < nr; ++i) {
1110         dst[i] = bswap64(src[i]);
1111     }
1112 
1113     return dst;
1114 #else
1115     return src;
1116 #endif
1117 }
1118 
1119 #else
1120 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
1121 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
1122                                          int n, bool a)
1123 { }
1124 static inline void aarch64_add_sve_properties(Object *obj) { }
1125 #endif
1126 
1127 void aarch64_sync_32_to_64(CPUARMState *env);
1128 void aarch64_sync_64_to_32(CPUARMState *env);
1129 
1130 int fp_exception_el(CPUARMState *env, int cur_el);
1131 int sve_exception_el(CPUARMState *env, int cur_el);
1132 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
1133 
1134 static inline bool is_a64(CPUARMState *env)
1135 {
1136     return env->aarch64;
1137 }
1138 
1139 /**
1140  * pmu_op_start/finish
1141  * @env: CPUARMState
1142  *
1143  * Convert all PMU counters between their delta form (the typical mode when
1144  * they are enabled) and the guest-visible values. These two calls must
1145  * surround any action which might affect the counters.
1146  */
1147 void pmu_op_start(CPUARMState *env);
1148 void pmu_op_finish(CPUARMState *env);
1149 
1150 /*
1151  * Called when a PMU counter is due to overflow
1152  */
1153 void arm_pmu_timer_cb(void *opaque);
1154 
1155 /**
1156  * Functions to register as EL change hooks for PMU mode filtering
1157  */
1158 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1159 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1160 
1161 /*
1162  * pmu_init
1163  * @cpu: ARMCPU
1164  *
1165  * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1166  * for the current configuration
1167  */
1168 void pmu_init(ARMCPU *cpu);
1169 
1170 /* SCTLR bit meanings. Several bits have been reused in newer
1171  * versions of the architecture; in that case we define constants
1172  * for both old and new bit meanings. Code which tests against those
1173  * bits should probably check or otherwise arrange that the CPU
1174  * is the architectural version it expects.
1175  */
1176 #define SCTLR_M       (1U << 0)
1177 #define SCTLR_A       (1U << 1)
1178 #define SCTLR_C       (1U << 2)
1179 #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1180 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1181 #define SCTLR_SA      (1U << 3) /* AArch64 only */
1182 #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1183 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1184 #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1185 #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1186 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1187 #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1188 #define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1189 #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1190 #define SCTLR_ITD     (1U << 7) /* v8 onward */
1191 #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1192 #define SCTLR_SED     (1U << 8) /* v8 onward */
1193 #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1194 #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1195 #define SCTLR_F       (1U << 10) /* up to v6 */
1196 #define SCTLR_SW      (1U << 10) /* v7 */
1197 #define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1198 #define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1199 #define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1200 #define SCTLR_I       (1U << 12)
1201 #define SCTLR_V       (1U << 13) /* AArch32 only */
1202 #define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1203 #define SCTLR_RR      (1U << 14) /* up to v7 */
1204 #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1205 #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1206 #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1207 #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1208 #define SCTLR_nTWI    (1U << 16) /* v8 onward */
1209 #define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1210 #define SCTLR_BR      (1U << 17) /* PMSA only */
1211 #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1212 #define SCTLR_nTWE    (1U << 18) /* v8 onward */
1213 #define SCTLR_WXN     (1U << 19)
1214 #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1215 #define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1216 #define SCTLR_TSCXT   (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */
1217 #define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1218 #define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1219 #define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1220 #define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1221 #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1222 #define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1223 #define SCTLR_VE      (1U << 24) /* up to v7 */
1224 #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1225 #define SCTLR_EE      (1U << 25)
1226 #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1227 #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1228 #define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1229 #define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1230 #define SCTLR_TRE     (1U << 28) /* AArch32 only */
1231 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1232 #define SCTLR_AFE     (1U << 29) /* AArch32 only */
1233 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1234 #define SCTLR_TE      (1U << 30) /* AArch32 only */
1235 #define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1236 #define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1237 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */
1238 #define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1239 #define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1240 #define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1241 #define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1242 #define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1243 #define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1244 #define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1245 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */
1246 #define SCTLR_TWEDEn  (1ULL << 45)  /* FEAT_TWED */
1247 #define SCTLR_TWEDEL  MAKE_64_MASK(46, 4)  /* FEAT_TWED */
1248 #define SCTLR_TMT0    (1ULL << 50) /* FEAT_TME */
1249 #define SCTLR_TMT     (1ULL << 51) /* FEAT_TME */
1250 #define SCTLR_TME0    (1ULL << 52) /* FEAT_TME */
1251 #define SCTLR_TME     (1ULL << 53) /* FEAT_TME */
1252 #define SCTLR_EnASR   (1ULL << 54) /* FEAT_LS64_V */
1253 #define SCTLR_EnAS0   (1ULL << 55) /* FEAT_LS64_ACCDATA */
1254 #define SCTLR_EnALS   (1ULL << 56) /* FEAT_LS64 */
1255 #define SCTLR_EPAN    (1ULL << 57) /* FEAT_PAN3 */
1256 #define SCTLR_EnTP2   (1ULL << 60) /* FEAT_SME */
1257 #define SCTLR_NMI     (1ULL << 61) /* FEAT_NMI */
1258 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */
1259 #define SCTLR_TIDCP   (1ULL << 63) /* FEAT_TIDCP1 */
1260 
1261 #define CPTR_TCPAC    (1U << 31)
1262 #define CPTR_TTA      (1U << 20)
1263 #define CPTR_TFP      (1U << 10)
1264 #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1265 #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1266 
1267 #define MDCR_EPMAD    (1U << 21)
1268 #define MDCR_EDAD     (1U << 20)
1269 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1270 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1271 #define MDCR_SDD      (1U << 16)
1272 #define MDCR_SPD      (3U << 14)
1273 #define MDCR_TDRA     (1U << 11)
1274 #define MDCR_TDOSA    (1U << 10)
1275 #define MDCR_TDA      (1U << 9)
1276 #define MDCR_TDE      (1U << 8)
1277 #define MDCR_HPME     (1U << 7)
1278 #define MDCR_TPM      (1U << 6)
1279 #define MDCR_TPMCR    (1U << 5)
1280 #define MDCR_HPMN     (0x1fU)
1281 
1282 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1283 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1284 
1285 #define CPSR_M (0x1fU)
1286 #define CPSR_T (1U << 5)
1287 #define CPSR_F (1U << 6)
1288 #define CPSR_I (1U << 7)
1289 #define CPSR_A (1U << 8)
1290 #define CPSR_E (1U << 9)
1291 #define CPSR_IT_2_7 (0xfc00U)
1292 #define CPSR_GE (0xfU << 16)
1293 #define CPSR_IL (1U << 20)
1294 #define CPSR_DIT (1U << 21)
1295 #define CPSR_PAN (1U << 22)
1296 #define CPSR_SSBS (1U << 23)
1297 #define CPSR_J (1U << 24)
1298 #define CPSR_IT_0_1 (3U << 25)
1299 #define CPSR_Q (1U << 27)
1300 #define CPSR_V (1U << 28)
1301 #define CPSR_C (1U << 29)
1302 #define CPSR_Z (1U << 30)
1303 #define CPSR_N (1U << 31)
1304 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1305 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1306 
1307 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1308 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1309     | CPSR_NZCV)
1310 /* Bits writable in user mode.  */
1311 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E)
1312 /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1313 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1314 
1315 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1316 #define XPSR_EXCP 0x1ffU
1317 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1318 #define XPSR_IT_2_7 CPSR_IT_2_7
1319 #define XPSR_GE CPSR_GE
1320 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1321 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1322 #define XPSR_IT_0_1 CPSR_IT_0_1
1323 #define XPSR_Q CPSR_Q
1324 #define XPSR_V CPSR_V
1325 #define XPSR_C CPSR_C
1326 #define XPSR_Z CPSR_Z
1327 #define XPSR_N CPSR_N
1328 #define XPSR_NZCV CPSR_NZCV
1329 #define XPSR_IT CPSR_IT
1330 
1331 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1332 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1333 #define TTBCR_PD0    (1U << 4)
1334 #define TTBCR_PD1    (1U << 5)
1335 #define TTBCR_EPD0   (1U << 7)
1336 #define TTBCR_IRGN0  (3U << 8)
1337 #define TTBCR_ORGN0  (3U << 10)
1338 #define TTBCR_SH0    (3U << 12)
1339 #define TTBCR_T1SZ   (3U << 16)
1340 #define TTBCR_A1     (1U << 22)
1341 #define TTBCR_EPD1   (1U << 23)
1342 #define TTBCR_IRGN1  (3U << 24)
1343 #define TTBCR_ORGN1  (3U << 26)
1344 #define TTBCR_SH1    (1U << 28)
1345 #define TTBCR_EAE    (1U << 31)
1346 
1347 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1348  * Only these are valid when in AArch64 mode; in
1349  * AArch32 mode SPSRs are basically CPSR-format.
1350  */
1351 #define PSTATE_SP (1U)
1352 #define PSTATE_M (0xFU)
1353 #define PSTATE_nRW (1U << 4)
1354 #define PSTATE_F (1U << 6)
1355 #define PSTATE_I (1U << 7)
1356 #define PSTATE_A (1U << 8)
1357 #define PSTATE_D (1U << 9)
1358 #define PSTATE_BTYPE (3U << 10)
1359 #define PSTATE_SSBS (1U << 12)
1360 #define PSTATE_IL (1U << 20)
1361 #define PSTATE_SS (1U << 21)
1362 #define PSTATE_PAN (1U << 22)
1363 #define PSTATE_UAO (1U << 23)
1364 #define PSTATE_DIT (1U << 24)
1365 #define PSTATE_TCO (1U << 25)
1366 #define PSTATE_V (1U << 28)
1367 #define PSTATE_C (1U << 29)
1368 #define PSTATE_Z (1U << 30)
1369 #define PSTATE_N (1U << 31)
1370 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1371 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1372 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1373 /* Mode values for AArch64 */
1374 #define PSTATE_MODE_EL3h 13
1375 #define PSTATE_MODE_EL3t 12
1376 #define PSTATE_MODE_EL2h 9
1377 #define PSTATE_MODE_EL2t 8
1378 #define PSTATE_MODE_EL1h 5
1379 #define PSTATE_MODE_EL1t 4
1380 #define PSTATE_MODE_EL0t 0
1381 
1382 /* Write a new value to v7m.exception, thus transitioning into or out
1383  * of Handler mode; this may result in a change of active stack pointer.
1384  */
1385 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1386 
1387 /* Map EL and handler into a PSTATE_MODE.  */
1388 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1389 {
1390     return (el << 2) | handler;
1391 }
1392 
1393 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1394  * interprocessing, so we don't attempt to sync with the cpsr state used by
1395  * the 32 bit decoder.
1396  */
1397 static inline uint32_t pstate_read(CPUARMState *env)
1398 {
1399     int ZF;
1400 
1401     ZF = (env->ZF == 0);
1402     return (env->NF & 0x80000000) | (ZF << 30)
1403         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1404         | env->pstate | env->daif | (env->btype << 10);
1405 }
1406 
1407 static inline void pstate_write(CPUARMState *env, uint32_t val)
1408 {
1409     env->ZF = (~val) & PSTATE_Z;
1410     env->NF = val;
1411     env->CF = (val >> 29) & 1;
1412     env->VF = (val << 3) & 0x80000000;
1413     env->daif = val & PSTATE_DAIF;
1414     env->btype = (val >> 10) & 3;
1415     env->pstate = val & ~CACHED_PSTATE_BITS;
1416 }
1417 
1418 /* Return the current CPSR value.  */
1419 uint32_t cpsr_read(CPUARMState *env);
1420 
1421 typedef enum CPSRWriteType {
1422     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1423     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1424     CPSRWriteRaw = 2,
1425         /* trust values, no reg bank switch, no hflags rebuild */
1426     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1427 } CPSRWriteType;
1428 
1429 /*
1430  * Set the CPSR.  Note that some bits of mask must be all-set or all-clear.
1431  * This will do an arm_rebuild_hflags() if any of the bits in @mask
1432  * correspond to TB flags bits cached in the hflags, unless @write_type
1433  * is CPSRWriteRaw.
1434  */
1435 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1436                 CPSRWriteType write_type);
1437 
1438 /* Return the current xPSR value.  */
1439 static inline uint32_t xpsr_read(CPUARMState *env)
1440 {
1441     int ZF;
1442     ZF = (env->ZF == 0);
1443     return (env->NF & 0x80000000) | (ZF << 30)
1444         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1445         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1446         | ((env->condexec_bits & 0xfc) << 8)
1447         | (env->GE << 16)
1448         | env->v7m.exception;
1449 }
1450 
1451 /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1452 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1453 {
1454     if (mask & XPSR_NZCV) {
1455         env->ZF = (~val) & XPSR_Z;
1456         env->NF = val;
1457         env->CF = (val >> 29) & 1;
1458         env->VF = (val << 3) & 0x80000000;
1459     }
1460     if (mask & XPSR_Q) {
1461         env->QF = ((val & XPSR_Q) != 0);
1462     }
1463     if (mask & XPSR_GE) {
1464         env->GE = (val & XPSR_GE) >> 16;
1465     }
1466 #ifndef CONFIG_USER_ONLY
1467     if (mask & XPSR_T) {
1468         env->thumb = ((val & XPSR_T) != 0);
1469     }
1470     if (mask & XPSR_IT_0_1) {
1471         env->condexec_bits &= ~3;
1472         env->condexec_bits |= (val >> 25) & 3;
1473     }
1474     if (mask & XPSR_IT_2_7) {
1475         env->condexec_bits &= 3;
1476         env->condexec_bits |= (val >> 8) & 0xfc;
1477     }
1478     if (mask & XPSR_EXCP) {
1479         /* Note that this only happens on exception exit */
1480         write_v7m_exception(env, val & XPSR_EXCP);
1481     }
1482 #endif
1483 }
1484 
1485 #define HCR_VM        (1ULL << 0)
1486 #define HCR_SWIO      (1ULL << 1)
1487 #define HCR_PTW       (1ULL << 2)
1488 #define HCR_FMO       (1ULL << 3)
1489 #define HCR_IMO       (1ULL << 4)
1490 #define HCR_AMO       (1ULL << 5)
1491 #define HCR_VF        (1ULL << 6)
1492 #define HCR_VI        (1ULL << 7)
1493 #define HCR_VSE       (1ULL << 8)
1494 #define HCR_FB        (1ULL << 9)
1495 #define HCR_BSU_MASK  (3ULL << 10)
1496 #define HCR_DC        (1ULL << 12)
1497 #define HCR_TWI       (1ULL << 13)
1498 #define HCR_TWE       (1ULL << 14)
1499 #define HCR_TID0      (1ULL << 15)
1500 #define HCR_TID1      (1ULL << 16)
1501 #define HCR_TID2      (1ULL << 17)
1502 #define HCR_TID3      (1ULL << 18)
1503 #define HCR_TSC       (1ULL << 19)
1504 #define HCR_TIDCP     (1ULL << 20)
1505 #define HCR_TACR      (1ULL << 21)
1506 #define HCR_TSW       (1ULL << 22)
1507 #define HCR_TPCP      (1ULL << 23)
1508 #define HCR_TPU       (1ULL << 24)
1509 #define HCR_TTLB      (1ULL << 25)
1510 #define HCR_TVM       (1ULL << 26)
1511 #define HCR_TGE       (1ULL << 27)
1512 #define HCR_TDZ       (1ULL << 28)
1513 #define HCR_HCD       (1ULL << 29)
1514 #define HCR_TRVM      (1ULL << 30)
1515 #define HCR_RW        (1ULL << 31)
1516 #define HCR_CD        (1ULL << 32)
1517 #define HCR_ID        (1ULL << 33)
1518 #define HCR_E2H       (1ULL << 34)
1519 #define HCR_TLOR      (1ULL << 35)
1520 #define HCR_TERR      (1ULL << 36)
1521 #define HCR_TEA       (1ULL << 37)
1522 #define HCR_MIOCNCE   (1ULL << 38)
1523 /* RES0 bit 39 */
1524 #define HCR_APK       (1ULL << 40)
1525 #define HCR_API       (1ULL << 41)
1526 #define HCR_NV        (1ULL << 42)
1527 #define HCR_NV1       (1ULL << 43)
1528 #define HCR_AT        (1ULL << 44)
1529 #define HCR_NV2       (1ULL << 45)
1530 #define HCR_FWB       (1ULL << 46)
1531 #define HCR_FIEN      (1ULL << 47)
1532 /* RES0 bit 48 */
1533 #define HCR_TID4      (1ULL << 49)
1534 #define HCR_TICAB     (1ULL << 50)
1535 #define HCR_AMVOFFEN  (1ULL << 51)
1536 #define HCR_TOCU      (1ULL << 52)
1537 #define HCR_ENSCXT    (1ULL << 53)
1538 #define HCR_TTLBIS    (1ULL << 54)
1539 #define HCR_TTLBOS    (1ULL << 55)
1540 #define HCR_ATA       (1ULL << 56)
1541 #define HCR_DCT       (1ULL << 57)
1542 #define HCR_TID5      (1ULL << 58)
1543 #define HCR_TWEDEN    (1ULL << 59)
1544 #define HCR_TWEDEL    MAKE_64BIT_MASK(60, 4)
1545 
1546 #define HPFAR_NS      (1ULL << 63)
1547 
1548 #define SCR_NS                (1U << 0)
1549 #define SCR_IRQ               (1U << 1)
1550 #define SCR_FIQ               (1U << 2)
1551 #define SCR_EA                (1U << 3)
1552 #define SCR_FW                (1U << 4)
1553 #define SCR_AW                (1U << 5)
1554 #define SCR_NET               (1U << 6)
1555 #define SCR_SMD               (1U << 7)
1556 #define SCR_HCE               (1U << 8)
1557 #define SCR_SIF               (1U << 9)
1558 #define SCR_RW                (1U << 10)
1559 #define SCR_ST                (1U << 11)
1560 #define SCR_TWI               (1U << 12)
1561 #define SCR_TWE               (1U << 13)
1562 #define SCR_TLOR              (1U << 14)
1563 #define SCR_TERR              (1U << 15)
1564 #define SCR_APK               (1U << 16)
1565 #define SCR_API               (1U << 17)
1566 #define SCR_EEL2              (1U << 18)
1567 #define SCR_EASE              (1U << 19)
1568 #define SCR_NMEA              (1U << 20)
1569 #define SCR_FIEN              (1U << 21)
1570 #define SCR_ENSCXT            (1U << 25)
1571 #define SCR_ATA               (1U << 26)
1572 #define SCR_FGTEN             (1U << 27)
1573 #define SCR_ECVEN             (1U << 28)
1574 #define SCR_TWEDEN            (1U << 29)
1575 #define SCR_TWEDEL            MAKE_64BIT_MASK(30, 4)
1576 #define SCR_TME               (1ULL << 34)
1577 #define SCR_AMVOFFEN          (1ULL << 35)
1578 #define SCR_ENAS0             (1ULL << 36)
1579 #define SCR_ADEN              (1ULL << 37)
1580 #define SCR_HXEN              (1ULL << 38)
1581 #define SCR_TRNDR             (1ULL << 40)
1582 #define SCR_ENTP2             (1ULL << 41)
1583 #define SCR_GPF               (1ULL << 48)
1584 
1585 #define HSTR_TTEE (1 << 16)
1586 #define HSTR_TJDBX (1 << 17)
1587 
1588 /* Return the current FPSCR value.  */
1589 uint32_t vfp_get_fpscr(CPUARMState *env);
1590 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1591 
1592 /* FPCR, Floating Point Control Register
1593  * FPSR, Floating Poiht Status Register
1594  *
1595  * For A64 the FPSCR is split into two logically distinct registers,
1596  * FPCR and FPSR. However since they still use non-overlapping bits
1597  * we store the underlying state in fpscr and just mask on read/write.
1598  */
1599 #define FPSR_MASK 0xf800009f
1600 #define FPCR_MASK 0x07ff9f00
1601 
1602 #define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1603 #define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1604 #define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1605 #define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1606 #define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1607 #define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1608 #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1609 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */
1610 #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1611 #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1612 #define FPCR_AHP    (1 << 26)   /* Alternative half-precision */
1613 #define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1614 #define FPCR_V      (1 << 28)   /* FP overflow flag */
1615 #define FPCR_C      (1 << 29)   /* FP carry flag */
1616 #define FPCR_Z      (1 << 30)   /* FP zero flag */
1617 #define FPCR_N      (1 << 31)   /* FP negative flag */
1618 
1619 #define FPCR_LTPSIZE_SHIFT 16   /* LTPSIZE, M-profile only */
1620 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT)
1621 #define FPCR_LTPSIZE_LENGTH 3
1622 
1623 #define FPCR_NZCV_MASK (FPCR_N | FPCR_Z | FPCR_C | FPCR_V)
1624 #define FPCR_NZCVQC_MASK (FPCR_NZCV_MASK | FPCR_QC)
1625 
1626 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1627 {
1628     return vfp_get_fpscr(env) & FPSR_MASK;
1629 }
1630 
1631 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1632 {
1633     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1634     vfp_set_fpscr(env, new_fpscr);
1635 }
1636 
1637 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1638 {
1639     return vfp_get_fpscr(env) & FPCR_MASK;
1640 }
1641 
1642 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1643 {
1644     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1645     vfp_set_fpscr(env, new_fpscr);
1646 }
1647 
1648 enum arm_cpu_mode {
1649   ARM_CPU_MODE_USR = 0x10,
1650   ARM_CPU_MODE_FIQ = 0x11,
1651   ARM_CPU_MODE_IRQ = 0x12,
1652   ARM_CPU_MODE_SVC = 0x13,
1653   ARM_CPU_MODE_MON = 0x16,
1654   ARM_CPU_MODE_ABT = 0x17,
1655   ARM_CPU_MODE_HYP = 0x1a,
1656   ARM_CPU_MODE_UND = 0x1b,
1657   ARM_CPU_MODE_SYS = 0x1f
1658 };
1659 
1660 /* VFP system registers.  */
1661 #define ARM_VFP_FPSID   0
1662 #define ARM_VFP_FPSCR   1
1663 #define ARM_VFP_MVFR2   5
1664 #define ARM_VFP_MVFR1   6
1665 #define ARM_VFP_MVFR0   7
1666 #define ARM_VFP_FPEXC   8
1667 #define ARM_VFP_FPINST  9
1668 #define ARM_VFP_FPINST2 10
1669 /* These ones are M-profile only */
1670 #define ARM_VFP_FPSCR_NZCVQC 2
1671 #define ARM_VFP_VPR 12
1672 #define ARM_VFP_P0 13
1673 #define ARM_VFP_FPCXT_NS 14
1674 #define ARM_VFP_FPCXT_S 15
1675 
1676 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */
1677 #define QEMU_VFP_FPSCR_NZCV 0xffff
1678 
1679 /* iwMMXt coprocessor control registers.  */
1680 #define ARM_IWMMXT_wCID  0
1681 #define ARM_IWMMXT_wCon  1
1682 #define ARM_IWMMXT_wCSSF 2
1683 #define ARM_IWMMXT_wCASF 3
1684 #define ARM_IWMMXT_wCGR0 8
1685 #define ARM_IWMMXT_wCGR1 9
1686 #define ARM_IWMMXT_wCGR2 10
1687 #define ARM_IWMMXT_wCGR3 11
1688 
1689 /* V7M CCR bits */
1690 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1691 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1692 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1693 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1694 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1695 FIELD(V7M_CCR, STKALIGN, 9, 1)
1696 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1697 FIELD(V7M_CCR, DC, 16, 1)
1698 FIELD(V7M_CCR, IC, 17, 1)
1699 FIELD(V7M_CCR, BP, 18, 1)
1700 FIELD(V7M_CCR, LOB, 19, 1)
1701 FIELD(V7M_CCR, TRD, 20, 1)
1702 
1703 /* V7M SCR bits */
1704 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1705 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1706 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1707 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1708 
1709 /* V7M AIRCR bits */
1710 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1711 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1712 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1713 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1714 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1715 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1716 FIELD(V7M_AIRCR, PRIS, 14, 1)
1717 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1718 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1719 
1720 /* V7M CFSR bits for MMFSR */
1721 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1722 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1723 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1724 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1725 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1726 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1727 
1728 /* V7M CFSR bits for BFSR */
1729 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1730 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1731 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1732 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1733 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1734 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1735 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1736 
1737 /* V7M CFSR bits for UFSR */
1738 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1739 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1740 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1741 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1742 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1743 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1744 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1745 
1746 /* V7M CFSR bit masks covering all of the subregister bits */
1747 FIELD(V7M_CFSR, MMFSR, 0, 8)
1748 FIELD(V7M_CFSR, BFSR, 8, 8)
1749 FIELD(V7M_CFSR, UFSR, 16, 16)
1750 
1751 /* V7M HFSR bits */
1752 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1753 FIELD(V7M_HFSR, FORCED, 30, 1)
1754 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1755 
1756 /* V7M DFSR bits */
1757 FIELD(V7M_DFSR, HALTED, 0, 1)
1758 FIELD(V7M_DFSR, BKPT, 1, 1)
1759 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1760 FIELD(V7M_DFSR, VCATCH, 3, 1)
1761 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1762 
1763 /* V7M SFSR bits */
1764 FIELD(V7M_SFSR, INVEP, 0, 1)
1765 FIELD(V7M_SFSR, INVIS, 1, 1)
1766 FIELD(V7M_SFSR, INVER, 2, 1)
1767 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1768 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1769 FIELD(V7M_SFSR, LSPERR, 5, 1)
1770 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1771 FIELD(V7M_SFSR, LSERR, 7, 1)
1772 
1773 /* v7M MPU_CTRL bits */
1774 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1775 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1776 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1777 
1778 /* v7M CLIDR bits */
1779 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1780 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1781 FIELD(V7M_CLIDR, LOC, 24, 3)
1782 FIELD(V7M_CLIDR, LOUU, 27, 3)
1783 FIELD(V7M_CLIDR, ICB, 30, 2)
1784 
1785 FIELD(V7M_CSSELR, IND, 0, 1)
1786 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1787 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1788  * define a mask for this and check that it doesn't permit running off
1789  * the end of the array.
1790  */
1791 FIELD(V7M_CSSELR, INDEX, 0, 4)
1792 
1793 /* v7M FPCCR bits */
1794 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1795 FIELD(V7M_FPCCR, USER, 1, 1)
1796 FIELD(V7M_FPCCR, S, 2, 1)
1797 FIELD(V7M_FPCCR, THREAD, 3, 1)
1798 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1799 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1800 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1801 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1802 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1803 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1804 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1805 FIELD(V7M_FPCCR, RES0, 11, 15)
1806 FIELD(V7M_FPCCR, TS, 26, 1)
1807 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1808 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1809 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1810 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1811 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1812 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1813 #define R_V7M_FPCCR_BANKED_MASK                 \
1814     (R_V7M_FPCCR_LSPACT_MASK |                  \
1815      R_V7M_FPCCR_USER_MASK |                    \
1816      R_V7M_FPCCR_THREAD_MASK |                  \
1817      R_V7M_FPCCR_MMRDY_MASK |                   \
1818      R_V7M_FPCCR_SPLIMVIOL_MASK |               \
1819      R_V7M_FPCCR_UFRDY_MASK |                   \
1820      R_V7M_FPCCR_ASPEN_MASK)
1821 
1822 /* v7M VPR bits */
1823 FIELD(V7M_VPR, P0, 0, 16)
1824 FIELD(V7M_VPR, MASK01, 16, 4)
1825 FIELD(V7M_VPR, MASK23, 20, 4)
1826 
1827 /*
1828  * System register ID fields.
1829  */
1830 FIELD(CLIDR_EL1, CTYPE1, 0, 3)
1831 FIELD(CLIDR_EL1, CTYPE2, 3, 3)
1832 FIELD(CLIDR_EL1, CTYPE3, 6, 3)
1833 FIELD(CLIDR_EL1, CTYPE4, 9, 3)
1834 FIELD(CLIDR_EL1, CTYPE5, 12, 3)
1835 FIELD(CLIDR_EL1, CTYPE6, 15, 3)
1836 FIELD(CLIDR_EL1, CTYPE7, 18, 3)
1837 FIELD(CLIDR_EL1, LOUIS, 21, 3)
1838 FIELD(CLIDR_EL1, LOC, 24, 3)
1839 FIELD(CLIDR_EL1, LOUU, 27, 3)
1840 FIELD(CLIDR_EL1, ICB, 30, 3)
1841 
1842 /* When FEAT_CCIDX is implemented */
1843 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3)
1844 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21)
1845 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24)
1846 
1847 /* When FEAT_CCIDX is not implemented */
1848 FIELD(CCSIDR_EL1, LINESIZE, 0, 3)
1849 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10)
1850 FIELD(CCSIDR_EL1, NUMSETS, 13, 15)
1851 
1852 FIELD(CTR_EL0,  IMINLINE, 0, 4)
1853 FIELD(CTR_EL0,  L1IP, 14, 2)
1854 FIELD(CTR_EL0,  DMINLINE, 16, 4)
1855 FIELD(CTR_EL0,  ERG, 20, 4)
1856 FIELD(CTR_EL0,  CWG, 24, 4)
1857 FIELD(CTR_EL0,  IDC, 28, 1)
1858 FIELD(CTR_EL0,  DIC, 29, 1)
1859 FIELD(CTR_EL0,  TMINLINE, 32, 6)
1860 
1861 FIELD(MIDR_EL1, REVISION, 0, 4)
1862 FIELD(MIDR_EL1, PARTNUM, 4, 12)
1863 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4)
1864 FIELD(MIDR_EL1, VARIANT, 20, 4)
1865 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8)
1866 
1867 FIELD(ID_ISAR0, SWAP, 0, 4)
1868 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1869 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1870 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1871 FIELD(ID_ISAR0, COPROC, 16, 4)
1872 FIELD(ID_ISAR0, DEBUG, 20, 4)
1873 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1874 
1875 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1876 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1877 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1878 FIELD(ID_ISAR1, EXTEND, 12, 4)
1879 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1880 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1881 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1882 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1883 
1884 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1885 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1886 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1887 FIELD(ID_ISAR2, MULT, 12, 4)
1888 FIELD(ID_ISAR2, MULTS, 16, 4)
1889 FIELD(ID_ISAR2, MULTU, 20, 4)
1890 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1891 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1892 
1893 FIELD(ID_ISAR3, SATURATE, 0, 4)
1894 FIELD(ID_ISAR3, SIMD, 4, 4)
1895 FIELD(ID_ISAR3, SVC, 8, 4)
1896 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1897 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1898 FIELD(ID_ISAR3, T32COPY, 20, 4)
1899 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1900 FIELD(ID_ISAR3, T32EE, 28, 4)
1901 
1902 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1903 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1904 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1905 FIELD(ID_ISAR4, SMC, 12, 4)
1906 FIELD(ID_ISAR4, BARRIER, 16, 4)
1907 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1908 FIELD(ID_ISAR4, PSR_M, 24, 4)
1909 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1910 
1911 FIELD(ID_ISAR5, SEVL, 0, 4)
1912 FIELD(ID_ISAR5, AES, 4, 4)
1913 FIELD(ID_ISAR5, SHA1, 8, 4)
1914 FIELD(ID_ISAR5, SHA2, 12, 4)
1915 FIELD(ID_ISAR5, CRC32, 16, 4)
1916 FIELD(ID_ISAR5, RDM, 24, 4)
1917 FIELD(ID_ISAR5, VCMA, 28, 4)
1918 
1919 FIELD(ID_ISAR6, JSCVT, 0, 4)
1920 FIELD(ID_ISAR6, DP, 4, 4)
1921 FIELD(ID_ISAR6, FHM, 8, 4)
1922 FIELD(ID_ISAR6, SB, 12, 4)
1923 FIELD(ID_ISAR6, SPECRES, 16, 4)
1924 FIELD(ID_ISAR6, BF16, 20, 4)
1925 FIELD(ID_ISAR6, I8MM, 24, 4)
1926 
1927 FIELD(ID_MMFR0, VMSA, 0, 4)
1928 FIELD(ID_MMFR0, PMSA, 4, 4)
1929 FIELD(ID_MMFR0, OUTERSHR, 8, 4)
1930 FIELD(ID_MMFR0, SHARELVL, 12, 4)
1931 FIELD(ID_MMFR0, TCM, 16, 4)
1932 FIELD(ID_MMFR0, AUXREG, 20, 4)
1933 FIELD(ID_MMFR0, FCSE, 24, 4)
1934 FIELD(ID_MMFR0, INNERSHR, 28, 4)
1935 
1936 FIELD(ID_MMFR1, L1HVDVA, 0, 4)
1937 FIELD(ID_MMFR1, L1UNIVA, 4, 4)
1938 FIELD(ID_MMFR1, L1HVDSW, 8, 4)
1939 FIELD(ID_MMFR1, L1UNISW, 12, 4)
1940 FIELD(ID_MMFR1, L1HVD, 16, 4)
1941 FIELD(ID_MMFR1, L1UNI, 20, 4)
1942 FIELD(ID_MMFR1, L1TSTCLN, 24, 4)
1943 FIELD(ID_MMFR1, BPRED, 28, 4)
1944 
1945 FIELD(ID_MMFR2, L1HVDFG, 0, 4)
1946 FIELD(ID_MMFR2, L1HVDBG, 4, 4)
1947 FIELD(ID_MMFR2, L1HVDRNG, 8, 4)
1948 FIELD(ID_MMFR2, HVDTLB, 12, 4)
1949 FIELD(ID_MMFR2, UNITLB, 16, 4)
1950 FIELD(ID_MMFR2, MEMBARR, 20, 4)
1951 FIELD(ID_MMFR2, WFISTALL, 24, 4)
1952 FIELD(ID_MMFR2, HWACCFLG, 28, 4)
1953 
1954 FIELD(ID_MMFR3, CMAINTVA, 0, 4)
1955 FIELD(ID_MMFR3, CMAINTSW, 4, 4)
1956 FIELD(ID_MMFR3, BPMAINT, 8, 4)
1957 FIELD(ID_MMFR3, MAINTBCST, 12, 4)
1958 FIELD(ID_MMFR3, PAN, 16, 4)
1959 FIELD(ID_MMFR3, COHWALK, 20, 4)
1960 FIELD(ID_MMFR3, CMEMSZ, 24, 4)
1961 FIELD(ID_MMFR3, SUPERSEC, 28, 4)
1962 
1963 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1964 FIELD(ID_MMFR4, AC2, 4, 4)
1965 FIELD(ID_MMFR4, XNX, 8, 4)
1966 FIELD(ID_MMFR4, CNP, 12, 4)
1967 FIELD(ID_MMFR4, HPDS, 16, 4)
1968 FIELD(ID_MMFR4, LSM, 20, 4)
1969 FIELD(ID_MMFR4, CCIDX, 24, 4)
1970 FIELD(ID_MMFR4, EVT, 28, 4)
1971 
1972 FIELD(ID_MMFR5, ETS, 0, 4)
1973 FIELD(ID_MMFR5, NTLBPA, 4, 4)
1974 
1975 FIELD(ID_PFR0, STATE0, 0, 4)
1976 FIELD(ID_PFR0, STATE1, 4, 4)
1977 FIELD(ID_PFR0, STATE2, 8, 4)
1978 FIELD(ID_PFR0, STATE3, 12, 4)
1979 FIELD(ID_PFR0, CSV2, 16, 4)
1980 FIELD(ID_PFR0, AMU, 20, 4)
1981 FIELD(ID_PFR0, DIT, 24, 4)
1982 FIELD(ID_PFR0, RAS, 28, 4)
1983 
1984 FIELD(ID_PFR1, PROGMOD, 0, 4)
1985 FIELD(ID_PFR1, SECURITY, 4, 4)
1986 FIELD(ID_PFR1, MPROGMOD, 8, 4)
1987 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4)
1988 FIELD(ID_PFR1, GENTIMER, 16, 4)
1989 FIELD(ID_PFR1, SEC_FRAC, 20, 4)
1990 FIELD(ID_PFR1, VIRT_FRAC, 24, 4)
1991 FIELD(ID_PFR1, GIC, 28, 4)
1992 
1993 FIELD(ID_PFR2, CSV3, 0, 4)
1994 FIELD(ID_PFR2, SSBS, 4, 4)
1995 FIELD(ID_PFR2, RAS_FRAC, 8, 4)
1996 
1997 FIELD(ID_AA64ISAR0, AES, 4, 4)
1998 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1999 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
2000 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
2001 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
2002 FIELD(ID_AA64ISAR0, RDM, 28, 4)
2003 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
2004 FIELD(ID_AA64ISAR0, SM3, 36, 4)
2005 FIELD(ID_AA64ISAR0, SM4, 40, 4)
2006 FIELD(ID_AA64ISAR0, DP, 44, 4)
2007 FIELD(ID_AA64ISAR0, FHM, 48, 4)
2008 FIELD(ID_AA64ISAR0, TS, 52, 4)
2009 FIELD(ID_AA64ISAR0, TLB, 56, 4)
2010 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
2011 
2012 FIELD(ID_AA64ISAR1, DPB, 0, 4)
2013 FIELD(ID_AA64ISAR1, APA, 4, 4)
2014 FIELD(ID_AA64ISAR1, API, 8, 4)
2015 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
2016 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
2017 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
2018 FIELD(ID_AA64ISAR1, GPA, 24, 4)
2019 FIELD(ID_AA64ISAR1, GPI, 28, 4)
2020 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
2021 FIELD(ID_AA64ISAR1, SB, 36, 4)
2022 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
2023 FIELD(ID_AA64ISAR1, BF16, 44, 4)
2024 FIELD(ID_AA64ISAR1, DGH, 48, 4)
2025 FIELD(ID_AA64ISAR1, I8MM, 52, 4)
2026 FIELD(ID_AA64ISAR1, XS, 56, 4)
2027 FIELD(ID_AA64ISAR1, LS64, 60, 4)
2028 
2029 FIELD(ID_AA64ISAR2, WFXT, 0, 4)
2030 FIELD(ID_AA64ISAR2, RPRES, 4, 4)
2031 FIELD(ID_AA64ISAR2, GPA3, 8, 4)
2032 FIELD(ID_AA64ISAR2, APA3, 12, 4)
2033 FIELD(ID_AA64ISAR2, MOPS, 16, 4)
2034 FIELD(ID_AA64ISAR2, BC, 20, 4)
2035 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4)
2036 
2037 FIELD(ID_AA64PFR0, EL0, 0, 4)
2038 FIELD(ID_AA64PFR0, EL1, 4, 4)
2039 FIELD(ID_AA64PFR0, EL2, 8, 4)
2040 FIELD(ID_AA64PFR0, EL3, 12, 4)
2041 FIELD(ID_AA64PFR0, FP, 16, 4)
2042 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
2043 FIELD(ID_AA64PFR0, GIC, 24, 4)
2044 FIELD(ID_AA64PFR0, RAS, 28, 4)
2045 FIELD(ID_AA64PFR0, SVE, 32, 4)
2046 FIELD(ID_AA64PFR0, SEL2, 36, 4)
2047 FIELD(ID_AA64PFR0, MPAM, 40, 4)
2048 FIELD(ID_AA64PFR0, AMU, 44, 4)
2049 FIELD(ID_AA64PFR0, DIT, 48, 4)
2050 FIELD(ID_AA64PFR0, CSV2, 56, 4)
2051 FIELD(ID_AA64PFR0, CSV3, 60, 4)
2052 
2053 FIELD(ID_AA64PFR1, BT, 0, 4)
2054 FIELD(ID_AA64PFR1, SSBS, 4, 4)
2055 FIELD(ID_AA64PFR1, MTE, 8, 4)
2056 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
2057 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4)
2058 FIELD(ID_AA64PFR1, SME, 24, 4)
2059 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4)
2060 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4)
2061 FIELD(ID_AA64PFR1, NMI, 36, 4)
2062 
2063 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
2064 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
2065 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
2066 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
2067 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
2068 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
2069 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
2070 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
2071 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
2072 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
2073 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
2074 FIELD(ID_AA64MMFR0, EXS, 44, 4)
2075 FIELD(ID_AA64MMFR0, FGT, 56, 4)
2076 FIELD(ID_AA64MMFR0, ECV, 60, 4)
2077 
2078 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
2079 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
2080 FIELD(ID_AA64MMFR1, VH, 8, 4)
2081 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
2082 FIELD(ID_AA64MMFR1, LO, 16, 4)
2083 FIELD(ID_AA64MMFR1, PAN, 20, 4)
2084 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
2085 FIELD(ID_AA64MMFR1, XNX, 28, 4)
2086 FIELD(ID_AA64MMFR1, TWED, 32, 4)
2087 FIELD(ID_AA64MMFR1, ETS, 36, 4)
2088 FIELD(ID_AA64MMFR1, HCX, 40, 4)
2089 FIELD(ID_AA64MMFR1, AFP, 44, 4)
2090 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4)
2091 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4)
2092 FIELD(ID_AA64MMFR1, CMOW, 56, 4)
2093 
2094 FIELD(ID_AA64MMFR2, CNP, 0, 4)
2095 FIELD(ID_AA64MMFR2, UAO, 4, 4)
2096 FIELD(ID_AA64MMFR2, LSM, 8, 4)
2097 FIELD(ID_AA64MMFR2, IESB, 12, 4)
2098 FIELD(ID_AA64MMFR2, VARANGE, 16, 4)
2099 FIELD(ID_AA64MMFR2, CCIDX, 20, 4)
2100 FIELD(ID_AA64MMFR2, NV, 24, 4)
2101 FIELD(ID_AA64MMFR2, ST, 28, 4)
2102 FIELD(ID_AA64MMFR2, AT, 32, 4)
2103 FIELD(ID_AA64MMFR2, IDS, 36, 4)
2104 FIELD(ID_AA64MMFR2, FWB, 40, 4)
2105 FIELD(ID_AA64MMFR2, TTL, 48, 4)
2106 FIELD(ID_AA64MMFR2, BBM, 52, 4)
2107 FIELD(ID_AA64MMFR2, EVT, 56, 4)
2108 FIELD(ID_AA64MMFR2, E0PD, 60, 4)
2109 
2110 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4)
2111 FIELD(ID_AA64DFR0, TRACEVER, 4, 4)
2112 FIELD(ID_AA64DFR0, PMUVER, 8, 4)
2113 FIELD(ID_AA64DFR0, BRPS, 12, 4)
2114 FIELD(ID_AA64DFR0, WRPS, 20, 4)
2115 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4)
2116 FIELD(ID_AA64DFR0, PMSVER, 32, 4)
2117 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4)
2118 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4)
2119 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4)
2120 FIELD(ID_AA64DFR0, MTPMU, 48, 4)
2121 FIELD(ID_AA64DFR0, BRBE, 52, 4)
2122 FIELD(ID_AA64DFR0, HPMN0, 60, 4)
2123 
2124 FIELD(ID_AA64ZFR0, SVEVER, 0, 4)
2125 FIELD(ID_AA64ZFR0, AES, 4, 4)
2126 FIELD(ID_AA64ZFR0, BITPERM, 16, 4)
2127 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4)
2128 FIELD(ID_AA64ZFR0, SHA3, 32, 4)
2129 FIELD(ID_AA64ZFR0, SM4, 40, 4)
2130 FIELD(ID_AA64ZFR0, I8MM, 44, 4)
2131 FIELD(ID_AA64ZFR0, F32MM, 52, 4)
2132 FIELD(ID_AA64ZFR0, F64MM, 56, 4)
2133 
2134 FIELD(ID_DFR0, COPDBG, 0, 4)
2135 FIELD(ID_DFR0, COPSDBG, 4, 4)
2136 FIELD(ID_DFR0, MMAPDBG, 8, 4)
2137 FIELD(ID_DFR0, COPTRC, 12, 4)
2138 FIELD(ID_DFR0, MMAPTRC, 16, 4)
2139 FIELD(ID_DFR0, MPROFDBG, 20, 4)
2140 FIELD(ID_DFR0, PERFMON, 24, 4)
2141 FIELD(ID_DFR0, TRACEFILT, 28, 4)
2142 
2143 FIELD(ID_DFR1, MTPMU, 0, 4)
2144 FIELD(ID_DFR1, HPMN0, 4, 4)
2145 
2146 FIELD(DBGDIDR, SE_IMP, 12, 1)
2147 FIELD(DBGDIDR, NSUHD_IMP, 14, 1)
2148 FIELD(DBGDIDR, VERSION, 16, 4)
2149 FIELD(DBGDIDR, CTX_CMPS, 20, 4)
2150 FIELD(DBGDIDR, BRPS, 24, 4)
2151 FIELD(DBGDIDR, WRPS, 28, 4)
2152 
2153 FIELD(MVFR0, SIMDREG, 0, 4)
2154 FIELD(MVFR0, FPSP, 4, 4)
2155 FIELD(MVFR0, FPDP, 8, 4)
2156 FIELD(MVFR0, FPTRAP, 12, 4)
2157 FIELD(MVFR0, FPDIVIDE, 16, 4)
2158 FIELD(MVFR0, FPSQRT, 20, 4)
2159 FIELD(MVFR0, FPSHVEC, 24, 4)
2160 FIELD(MVFR0, FPROUND, 28, 4)
2161 
2162 FIELD(MVFR1, FPFTZ, 0, 4)
2163 FIELD(MVFR1, FPDNAN, 4, 4)
2164 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */
2165 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */
2166 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */
2167 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */
2168 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */
2169 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */
2170 FIELD(MVFR1, FPHP, 24, 4)
2171 FIELD(MVFR1, SIMDFMAC, 28, 4)
2172 
2173 FIELD(MVFR2, SIMDMISC, 0, 4)
2174 FIELD(MVFR2, FPMISC, 4, 4)
2175 
2176 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
2177 
2178 /* If adding a feature bit which corresponds to a Linux ELF
2179  * HWCAP bit, remember to update the feature-bit-to-hwcap
2180  * mapping in linux-user/elfload.c:get_elf_hwcap().
2181  */
2182 enum arm_features {
2183     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
2184     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
2185     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
2186     ARM_FEATURE_V6,
2187     ARM_FEATURE_V6K,
2188     ARM_FEATURE_V7,
2189     ARM_FEATURE_THUMB2,
2190     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
2191     ARM_FEATURE_NEON,
2192     ARM_FEATURE_M, /* Microcontroller profile.  */
2193     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
2194     ARM_FEATURE_THUMB2EE,
2195     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
2196     ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
2197     ARM_FEATURE_V4T,
2198     ARM_FEATURE_V5,
2199     ARM_FEATURE_STRONGARM,
2200     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
2201     ARM_FEATURE_GENERIC_TIMER,
2202     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
2203     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
2204     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
2205     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
2206     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
2207     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
2208     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
2209     ARM_FEATURE_V8,
2210     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
2211     ARM_FEATURE_CBAR, /* has cp15 CBAR */
2212     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
2213     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
2214     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
2215     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
2216     ARM_FEATURE_PMU, /* has PMU support */
2217     ARM_FEATURE_VBAR, /* has cp15 VBAR */
2218     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
2219     ARM_FEATURE_M_MAIN, /* M profile Main Extension */
2220     ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */
2221 };
2222 
2223 static inline int arm_feature(CPUARMState *env, int feature)
2224 {
2225     return (env->features & (1ULL << feature)) != 0;
2226 }
2227 
2228 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp);
2229 
2230 #if !defined(CONFIG_USER_ONLY)
2231 /* Return true if exception levels below EL3 are in secure state,
2232  * or would be following an exception return to that level.
2233  * Unlike arm_is_secure() (which is always a question about the
2234  * _current_ state of the CPU) this doesn't care about the current
2235  * EL or mode.
2236  */
2237 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2238 {
2239     if (arm_feature(env, ARM_FEATURE_EL3)) {
2240         return !(env->cp15.scr_el3 & SCR_NS);
2241     } else {
2242         /* If EL3 is not supported then the secure state is implementation
2243          * defined, in which case QEMU defaults to non-secure.
2244          */
2245         return false;
2246     }
2247 }
2248 
2249 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
2250 static inline bool arm_is_el3_or_mon(CPUARMState *env)
2251 {
2252     if (arm_feature(env, ARM_FEATURE_EL3)) {
2253         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
2254             /* CPU currently in AArch64 state and EL3 */
2255             return true;
2256         } else if (!is_a64(env) &&
2257                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
2258             /* CPU currently in AArch32 state and monitor mode */
2259             return true;
2260         }
2261     }
2262     return false;
2263 }
2264 
2265 /* Return true if the processor is in secure state */
2266 static inline bool arm_is_secure(CPUARMState *env)
2267 {
2268     if (arm_is_el3_or_mon(env)) {
2269         return true;
2270     }
2271     return arm_is_secure_below_el3(env);
2272 }
2273 
2274 /*
2275  * Return true if the current security state has AArch64 EL2 or AArch32 Hyp.
2276  * This corresponds to the pseudocode EL2Enabled()
2277  */
2278 static inline bool arm_is_el2_enabled(CPUARMState *env)
2279 {
2280     if (arm_feature(env, ARM_FEATURE_EL2)) {
2281         if (arm_is_secure_below_el3(env)) {
2282             return (env->cp15.scr_el3 & SCR_EEL2) != 0;
2283         }
2284         return true;
2285     }
2286     return false;
2287 }
2288 
2289 #else
2290 static inline bool arm_is_secure_below_el3(CPUARMState *env)
2291 {
2292     return false;
2293 }
2294 
2295 static inline bool arm_is_secure(CPUARMState *env)
2296 {
2297     return false;
2298 }
2299 
2300 static inline bool arm_is_el2_enabled(CPUARMState *env)
2301 {
2302     return false;
2303 }
2304 #endif
2305 
2306 /**
2307  * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
2308  * E.g. when in secure state, fields in HCR_EL2 are suppressed,
2309  * "for all purposes other than a direct read or write access of HCR_EL2."
2310  * Not included here is HCR_RW.
2311  */
2312 uint64_t arm_hcr_el2_eff(CPUARMState *env);
2313 
2314 /* Return true if the specified exception level is running in AArch64 state. */
2315 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
2316 {
2317     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
2318      * and if we're not in EL0 then the state of EL0 isn't well defined.)
2319      */
2320     assert(el >= 1 && el <= 3);
2321     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
2322 
2323     /* The highest exception level is always at the maximum supported
2324      * register width, and then lower levels have a register width controlled
2325      * by bits in the SCR or HCR registers.
2326      */
2327     if (el == 3) {
2328         return aa64;
2329     }
2330 
2331     if (arm_feature(env, ARM_FEATURE_EL3) &&
2332         ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) {
2333         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
2334     }
2335 
2336     if (el == 2) {
2337         return aa64;
2338     }
2339 
2340     if (arm_is_el2_enabled(env)) {
2341         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
2342     }
2343 
2344     return aa64;
2345 }
2346 
2347 /* Function for determing whether guest cp register reads and writes should
2348  * access the secure or non-secure bank of a cp register.  When EL3 is
2349  * operating in AArch32 state, the NS-bit determines whether the secure
2350  * instance of a cp register should be used. When EL3 is AArch64 (or if
2351  * it doesn't exist at all) then there is no register banking, and all
2352  * accesses are to the non-secure version.
2353  */
2354 static inline bool access_secure_reg(CPUARMState *env)
2355 {
2356     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
2357                 !arm_el_is_aa64(env, 3) &&
2358                 !(env->cp15.scr_el3 & SCR_NS));
2359 
2360     return ret;
2361 }
2362 
2363 /* Macros for accessing a specified CP register bank */
2364 #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
2365     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
2366 
2367 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
2368     do {                                                \
2369         if (_secure) {                                   \
2370             (_env)->cp15._regname##_s = (_val);            \
2371         } else {                                        \
2372             (_env)->cp15._regname##_ns = (_val);           \
2373         }                                               \
2374     } while (0)
2375 
2376 /* Macros for automatically accessing a specific CP register bank depending on
2377  * the current secure state of the system.  These macros are not intended for
2378  * supporting instruction translation reads/writes as these are dependent
2379  * solely on the SCR.NS bit and not the mode.
2380  */
2381 #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
2382     A32_BANKED_REG_GET((_env), _regname,                \
2383                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
2384 
2385 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
2386     A32_BANKED_REG_SET((_env), _regname,                                    \
2387                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
2388                        (_val))
2389 
2390 void arm_cpu_list(void);
2391 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
2392                                  uint32_t cur_el, bool secure);
2393 
2394 /* Interface between CPU and Interrupt controller.  */
2395 #ifndef CONFIG_USER_ONLY
2396 bool armv7m_nvic_can_take_pending_exception(void *opaque);
2397 #else
2398 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
2399 {
2400     return true;
2401 }
2402 #endif
2403 /**
2404  * armv7m_nvic_set_pending: mark the specified exception as pending
2405  * @opaque: the NVIC
2406  * @irq: the exception number to mark pending
2407  * @secure: false for non-banked exceptions or for the nonsecure
2408  * version of a banked exception, true for the secure version of a banked
2409  * exception.
2410  *
2411  * Marks the specified exception as pending. Note that we will assert()
2412  * if @secure is true and @irq does not specify one of the fixed set
2413  * of architecturally banked exceptions.
2414  */
2415 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2416 /**
2417  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2418  * @opaque: the NVIC
2419  * @irq: the exception number to mark pending
2420  * @secure: false for non-banked exceptions or for the nonsecure
2421  * version of a banked exception, true for the secure version of a banked
2422  * exception.
2423  *
2424  * Similar to armv7m_nvic_set_pending(), but specifically for derived
2425  * exceptions (exceptions generated in the course of trying to take
2426  * a different exception).
2427  */
2428 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2429 /**
2430  * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2431  * @opaque: the NVIC
2432  * @irq: the exception number to mark pending
2433  * @secure: false for non-banked exceptions or for the nonsecure
2434  * version of a banked exception, true for the secure version of a banked
2435  * exception.
2436  *
2437  * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2438  * generated in the course of lazy stacking of FP registers.
2439  */
2440 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2441 /**
2442  * armv7m_nvic_get_pending_irq_info: return highest priority pending
2443  *    exception, and whether it targets Secure state
2444  * @opaque: the NVIC
2445  * @pirq: set to pending exception number
2446  * @ptargets_secure: set to whether pending exception targets Secure
2447  *
2448  * This function writes the number of the highest priority pending
2449  * exception (the one which would be made active by
2450  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2451  * to true if the current highest priority pending exception should
2452  * be taken to Secure state, false for NS.
2453  */
2454 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2455                                       bool *ptargets_secure);
2456 /**
2457  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2458  * @opaque: the NVIC
2459  *
2460  * Move the current highest priority pending exception from the pending
2461  * state to the active state, and update v7m.exception to indicate that
2462  * it is the exception currently being handled.
2463  */
2464 void armv7m_nvic_acknowledge_irq(void *opaque);
2465 /**
2466  * armv7m_nvic_complete_irq: complete specified interrupt or exception
2467  * @opaque: the NVIC
2468  * @irq: the exception number to complete
2469  * @secure: true if this exception was secure
2470  *
2471  * Returns: -1 if the irq was not active
2472  *           1 if completing this irq brought us back to base (no active irqs)
2473  *           0 if there is still an irq active after this one was completed
2474  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2475  */
2476 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2477 /**
2478  * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2479  * @opaque: the NVIC
2480  * @irq: the exception number to mark pending
2481  * @secure: false for non-banked exceptions or for the nonsecure
2482  * version of a banked exception, true for the secure version of a banked
2483  * exception.
2484  *
2485  * Return whether an exception is "ready", i.e. whether the exception is
2486  * enabled and is configured at a priority which would allow it to
2487  * interrupt the current execution priority. This controls whether the
2488  * RDY bit for it in the FPCCR is set.
2489  */
2490 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2491 /**
2492  * armv7m_nvic_raw_execution_priority: return the raw execution priority
2493  * @opaque: the NVIC
2494  *
2495  * Returns: the raw execution priority as defined by the v8M architecture.
2496  * This is the execution priority minus the effects of AIRCR.PRIS,
2497  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2498  * (v8M ARM ARM I_PKLD.)
2499  */
2500 int armv7m_nvic_raw_execution_priority(void *opaque);
2501 /**
2502  * armv7m_nvic_neg_prio_requested: return true if the requested execution
2503  * priority is negative for the specified security state.
2504  * @opaque: the NVIC
2505  * @secure: the security state to test
2506  * This corresponds to the pseudocode IsReqExecPriNeg().
2507  */
2508 #ifndef CONFIG_USER_ONLY
2509 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2510 #else
2511 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2512 {
2513     return false;
2514 }
2515 #endif
2516 
2517 /* Interface for defining coprocessor registers.
2518  * Registers are defined in tables of arm_cp_reginfo structs
2519  * which are passed to define_arm_cp_regs().
2520  */
2521 
2522 /* When looking up a coprocessor register we look for it
2523  * via an integer which encodes all of:
2524  *  coprocessor number
2525  *  Crn, Crm, opc1, opc2 fields
2526  *  32 or 64 bit register (ie is it accessed via MRC/MCR
2527  *    or via MRRC/MCRR?)
2528  *  non-secure/secure bank (AArch32 only)
2529  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2530  * (In this case crn and opc2 should be zero.)
2531  * For AArch64, there is no 32/64 bit size distinction;
2532  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2533  * and 4 bit CRn and CRm. The encoding patterns are chosen
2534  * to be easy to convert to and from the KVM encodings, and also
2535  * so that the hashtable can contain both AArch32 and AArch64
2536  * registers (to allow for interprocessing where we might run
2537  * 32 bit code on a 64 bit core).
2538  */
2539 /* This bit is private to our hashtable cpreg; in KVM register
2540  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2541  * in the upper bits of the 64 bit ID.
2542  */
2543 #define CP_REG_AA64_SHIFT 28
2544 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2545 
2546 /* To enable banking of coprocessor registers depending on ns-bit we
2547  * add a bit to distinguish between secure and non-secure cpregs in the
2548  * hashtable.
2549  */
2550 #define CP_REG_NS_SHIFT 29
2551 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2552 
2553 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2554     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2555      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2556 
2557 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2558     (CP_REG_AA64_MASK |                                 \
2559      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2560      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2561      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2562      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2563      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2564      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2565 
2566 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2567  * version used as a key for the coprocessor register hashtable
2568  */
2569 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2570 {
2571     uint32_t cpregid = kvmid;
2572     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2573         cpregid |= CP_REG_AA64_MASK;
2574     } else {
2575         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2576             cpregid |= (1 << 15);
2577         }
2578 
2579         /* KVM is always non-secure so add the NS flag on AArch32 register
2580          * entries.
2581          */
2582          cpregid |= 1 << CP_REG_NS_SHIFT;
2583     }
2584     return cpregid;
2585 }
2586 
2587 /* Convert a truncated 32 bit hashtable key into the full
2588  * 64 bit KVM register ID.
2589  */
2590 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2591 {
2592     uint64_t kvmid;
2593 
2594     if (cpregid & CP_REG_AA64_MASK) {
2595         kvmid = cpregid & ~CP_REG_AA64_MASK;
2596         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2597     } else {
2598         kvmid = cpregid & ~(1 << 15);
2599         if (cpregid & (1 << 15)) {
2600             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2601         } else {
2602             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2603         }
2604     }
2605     return kvmid;
2606 }
2607 
2608 /* Return the highest implemented Exception Level */
2609 static inline int arm_highest_el(CPUARMState *env)
2610 {
2611     if (arm_feature(env, ARM_FEATURE_EL3)) {
2612         return 3;
2613     }
2614     if (arm_feature(env, ARM_FEATURE_EL2)) {
2615         return 2;
2616     }
2617     return 1;
2618 }
2619 
2620 /* Return true if a v7M CPU is in Handler mode */
2621 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2622 {
2623     return env->v7m.exception != 0;
2624 }
2625 
2626 /* Return the current Exception Level (as per ARMv8; note that this differs
2627  * from the ARMv7 Privilege Level).
2628  */
2629 static inline int arm_current_el(CPUARMState *env)
2630 {
2631     if (arm_feature(env, ARM_FEATURE_M)) {
2632         return arm_v7m_is_handler_mode(env) ||
2633             !(env->v7m.control[env->v7m.secure] & 1);
2634     }
2635 
2636     if (is_a64(env)) {
2637         return extract32(env->pstate, 2, 2);
2638     }
2639 
2640     switch (env->uncached_cpsr & 0x1f) {
2641     case ARM_CPU_MODE_USR:
2642         return 0;
2643     case ARM_CPU_MODE_HYP:
2644         return 2;
2645     case ARM_CPU_MODE_MON:
2646         return 3;
2647     default:
2648         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2649             /* If EL3 is 32-bit then all secure privileged modes run in
2650              * EL3
2651              */
2652             return 3;
2653         }
2654 
2655         return 1;
2656     }
2657 }
2658 
2659 /**
2660  * write_list_to_cpustate
2661  * @cpu: ARMCPU
2662  *
2663  * For each register listed in the ARMCPU cpreg_indexes list, write
2664  * its value from the cpreg_values list into the ARMCPUState structure.
2665  * This updates TCG's working data structures from KVM data or
2666  * from incoming migration state.
2667  *
2668  * Returns: true if all register values were updated correctly,
2669  * false if some register was unknown or could not be written.
2670  * Note that we do not stop early on failure -- we will attempt
2671  * writing all registers in the list.
2672  */
2673 bool write_list_to_cpustate(ARMCPU *cpu);
2674 
2675 /**
2676  * write_cpustate_to_list:
2677  * @cpu: ARMCPU
2678  * @kvm_sync: true if this is for syncing back to KVM
2679  *
2680  * For each register listed in the ARMCPU cpreg_indexes list, write
2681  * its value from the ARMCPUState structure into the cpreg_values list.
2682  * This is used to copy info from TCG's working data structures into
2683  * KVM or for outbound migration.
2684  *
2685  * @kvm_sync is true if we are doing this in order to sync the
2686  * register state back to KVM. In this case we will only update
2687  * values in the list if the previous list->cpustate sync actually
2688  * successfully wrote the CPU state. Otherwise we will keep the value
2689  * that is in the list.
2690  *
2691  * Returns: true if all register values were read correctly,
2692  * false if some register was unknown or could not be read.
2693  * Note that we do not stop early on failure -- we will attempt
2694  * reading all registers in the list.
2695  */
2696 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
2697 
2698 #define ARM_CPUID_TI915T      0x54029152
2699 #define ARM_CPUID_TI925T      0x54029252
2700 
2701 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2702 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2703 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2704 
2705 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU
2706 
2707 #define cpu_list arm_cpu_list
2708 
2709 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2710  *
2711  * If EL3 is 64-bit:
2712  *  + NonSecure EL1 & 0 stage 1
2713  *  + NonSecure EL1 & 0 stage 2
2714  *  + NonSecure EL2
2715  *  + NonSecure EL2 & 0   (ARMv8.1-VHE)
2716  *  + Secure EL1 & 0
2717  *  + Secure EL3
2718  * If EL3 is 32-bit:
2719  *  + NonSecure PL1 & 0 stage 1
2720  *  + NonSecure PL1 & 0 stage 2
2721  *  + NonSecure PL2
2722  *  + Secure PL0
2723  *  + Secure PL1
2724  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2725  *
2726  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2727  *  1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes,
2728  *     because they may differ in access permissions even if the VA->PA map is
2729  *     the same
2730  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2731  *     translation, which means that we have one mmu_idx that deals with two
2732  *     concatenated translation regimes [this sort of combined s1+2 TLB is
2733  *     architecturally permitted]
2734  *  3. we don't need to allocate an mmu_idx to translations that we won't be
2735  *     handling via the TLB. The only way to do a stage 1 translation without
2736  *     the immediate stage 2 translation is via the ATS or AT system insns,
2737  *     which can be slow-pathed and always do a page table walk.
2738  *     The only use of stage 2 translations is either as part of an s1+2
2739  *     lookup or when loading the descriptors during a stage 1 page table walk,
2740  *     and in both those cases we don't use the TLB.
2741  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2742  *     translation regimes, because they map reasonably well to each other
2743  *     and they can't both be active at the same time.
2744  *  5. we want to be able to use the TLB for accesses done as part of a
2745  *     stage1 page table walk, rather than having to walk the stage2 page
2746  *     table over and over.
2747  *  6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access
2748  *     Never (PAN) bit within PSTATE.
2749  *
2750  * This gives us the following list of cases:
2751  *
2752  * NS EL0 EL1&0 stage 1+2 (aka NS PL0)
2753  * NS EL1 EL1&0 stage 1+2 (aka NS PL1)
2754  * NS EL1 EL1&0 stage 1+2 +PAN
2755  * NS EL0 EL2&0
2756  * NS EL2 EL2&0
2757  * NS EL2 EL2&0 +PAN
2758  * NS EL2 (aka NS PL2)
2759  * S EL0 EL1&0 (aka S PL0)
2760  * S EL1 EL1&0 (not used if EL3 is 32 bit)
2761  * S EL1 EL1&0 +PAN
2762  * S EL3 (aka S PL1)
2763  *
2764  * for a total of 11 different mmu_idx.
2765  *
2766  * R profile CPUs have an MPU, but can use the same set of MMU indexes
2767  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2768  * NS EL2 if we ever model a Cortex-R52).
2769  *
2770  * M profile CPUs are rather different as they do not have a true MMU.
2771  * They have the following different MMU indexes:
2772  *  User
2773  *  Privileged
2774  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2775  *  Privileged, execution priority negative (ditto)
2776  * If the CPU supports the v8M Security Extension then there are also:
2777  *  Secure User
2778  *  Secure Privileged
2779  *  Secure User, execution priority negative
2780  *  Secure Privileged, execution priority negative
2781  *
2782  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2783  * are not quite the same -- different CPU types (most notably M profile
2784  * vs A/R profile) would like to use MMU indexes with different semantics,
2785  * but since we don't ever need to use all of those in a single CPU we
2786  * can avoid having to set NB_MMU_MODES to "total number of A profile MMU
2787  * modes + total number of M profile MMU modes". The lower bits of
2788  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2789  * the same for any particular CPU.
2790  * Variables of type ARMMUIdx are always full values, and the core
2791  * index values are in variables of type 'int'.
2792  *
2793  * Our enumeration includes at the end some entries which are not "true"
2794  * mmu_idx values in that they don't have corresponding TLBs and are only
2795  * valid for doing slow path page table walks.
2796  *
2797  * The constant names here are patterned after the general style of the names
2798  * of the AT/ATS operations.
2799  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2800  * For M profile we arrange them to have a bit for priv, a bit for negpri
2801  * and a bit for secure.
2802  */
2803 #define ARM_MMU_IDX_A     0x10  /* A profile */
2804 #define ARM_MMU_IDX_NOTLB 0x20  /* does not have a TLB */
2805 #define ARM_MMU_IDX_M     0x40  /* M profile */
2806 
2807 /* Meanings of the bits for A profile mmu idx values */
2808 #define ARM_MMU_IDX_A_NS     0x8
2809 
2810 /* Meanings of the bits for M profile mmu idx values */
2811 #define ARM_MMU_IDX_M_PRIV   0x1
2812 #define ARM_MMU_IDX_M_NEGPRI 0x2
2813 #define ARM_MMU_IDX_M_S      0x4  /* Secure */
2814 
2815 #define ARM_MMU_IDX_TYPE_MASK \
2816     (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB)
2817 #define ARM_MMU_IDX_COREIDX_MASK 0xf
2818 
2819 typedef enum ARMMMUIdx {
2820     /*
2821      * A-profile.
2822      */
2823     ARMMMUIdx_SE10_0     =  0 | ARM_MMU_IDX_A,
2824     ARMMMUIdx_SE20_0     =  1 | ARM_MMU_IDX_A,
2825     ARMMMUIdx_SE10_1     =  2 | ARM_MMU_IDX_A,
2826     ARMMMUIdx_SE20_2     =  3 | ARM_MMU_IDX_A,
2827     ARMMMUIdx_SE10_1_PAN =  4 | ARM_MMU_IDX_A,
2828     ARMMMUIdx_SE20_2_PAN =  5 | ARM_MMU_IDX_A,
2829     ARMMMUIdx_SE2        =  6 | ARM_MMU_IDX_A,
2830     ARMMMUIdx_SE3        =  7 | ARM_MMU_IDX_A,
2831 
2832     ARMMMUIdx_E10_0     = ARMMMUIdx_SE10_0 | ARM_MMU_IDX_A_NS,
2833     ARMMMUIdx_E20_0     = ARMMMUIdx_SE20_0 | ARM_MMU_IDX_A_NS,
2834     ARMMMUIdx_E10_1     = ARMMMUIdx_SE10_1 | ARM_MMU_IDX_A_NS,
2835     ARMMMUIdx_E20_2     = ARMMMUIdx_SE20_2 | ARM_MMU_IDX_A_NS,
2836     ARMMMUIdx_E10_1_PAN = ARMMMUIdx_SE10_1_PAN | ARM_MMU_IDX_A_NS,
2837     ARMMMUIdx_E20_2_PAN = ARMMMUIdx_SE20_2_PAN | ARM_MMU_IDX_A_NS,
2838     ARMMMUIdx_E2        = ARMMMUIdx_SE2 | ARM_MMU_IDX_A_NS,
2839 
2840     /*
2841      * These are not allocated TLBs and are used only for AT system
2842      * instructions or for the first stage of an S12 page table walk.
2843      */
2844     ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB,
2845     ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB,
2846     ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB,
2847     ARMMMUIdx_Stage1_SE0 = 3 | ARM_MMU_IDX_NOTLB,
2848     ARMMMUIdx_Stage1_SE1 = 4 | ARM_MMU_IDX_NOTLB,
2849     ARMMMUIdx_Stage1_SE1_PAN = 5 | ARM_MMU_IDX_NOTLB,
2850     /*
2851      * Not allocated a TLB: used only for second stage of an S12 page
2852      * table walk, or for descriptor loads during first stage of an S1
2853      * page table walk. Note that if we ever want to have a TLB for this
2854      * then various TLB flush insns which currently are no-ops or flush
2855      * only stage 1 MMU indexes will need to change to flush stage 2.
2856      */
2857     ARMMMUIdx_Stage2     = 6 | ARM_MMU_IDX_NOTLB,
2858     ARMMMUIdx_Stage2_S   = 7 | ARM_MMU_IDX_NOTLB,
2859 
2860     /*
2861      * M-profile.
2862      */
2863     ARMMMUIdx_MUser = ARM_MMU_IDX_M,
2864     ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV,
2865     ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI,
2866     ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI,
2867     ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S,
2868     ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S,
2869     ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S,
2870     ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S,
2871 } ARMMMUIdx;
2872 
2873 /*
2874  * Bit macros for the core-mmu-index values for each index,
2875  * for use when calling tlb_flush_by_mmuidx() and friends.
2876  */
2877 #define TO_CORE_BIT(NAME) \
2878     ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK)
2879 
2880 typedef enum ARMMMUIdxBit {
2881     TO_CORE_BIT(E10_0),
2882     TO_CORE_BIT(E20_0),
2883     TO_CORE_BIT(E10_1),
2884     TO_CORE_BIT(E10_1_PAN),
2885     TO_CORE_BIT(E2),
2886     TO_CORE_BIT(E20_2),
2887     TO_CORE_BIT(E20_2_PAN),
2888     TO_CORE_BIT(SE10_0),
2889     TO_CORE_BIT(SE20_0),
2890     TO_CORE_BIT(SE10_1),
2891     TO_CORE_BIT(SE20_2),
2892     TO_CORE_BIT(SE10_1_PAN),
2893     TO_CORE_BIT(SE20_2_PAN),
2894     TO_CORE_BIT(SE2),
2895     TO_CORE_BIT(SE3),
2896 
2897     TO_CORE_BIT(MUser),
2898     TO_CORE_BIT(MPriv),
2899     TO_CORE_BIT(MUserNegPri),
2900     TO_CORE_BIT(MPrivNegPri),
2901     TO_CORE_BIT(MSUser),
2902     TO_CORE_BIT(MSPriv),
2903     TO_CORE_BIT(MSUserNegPri),
2904     TO_CORE_BIT(MSPrivNegPri),
2905 } ARMMMUIdxBit;
2906 
2907 #undef TO_CORE_BIT
2908 
2909 #define MMU_USER_IDX 0
2910 
2911 /* Indexes used when registering address spaces with cpu_address_space_init */
2912 typedef enum ARMASIdx {
2913     ARMASIdx_NS = 0,
2914     ARMASIdx_S = 1,
2915     ARMASIdx_TagNS = 2,
2916     ARMASIdx_TagS = 3,
2917 } ARMASIdx;
2918 
2919 /* Return the Exception Level targeted by debug exceptions. */
2920 static inline int arm_debug_target_el(CPUARMState *env)
2921 {
2922     bool secure = arm_is_secure(env);
2923     bool route_to_el2 = false;
2924 
2925     if (arm_is_el2_enabled(env)) {
2926         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2927                        env->cp15.mdcr_el2 & MDCR_TDE;
2928     }
2929 
2930     if (route_to_el2) {
2931         return 2;
2932     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2933                !arm_el_is_aa64(env, 3) && secure) {
2934         return 3;
2935     } else {
2936         return 1;
2937     }
2938 }
2939 
2940 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2941 {
2942     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2943      * CSSELR is RAZ/WI.
2944      */
2945     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2946 }
2947 
2948 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2949 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2950 {
2951     int cur_el = arm_current_el(env);
2952     int debug_el;
2953 
2954     if (cur_el == 3) {
2955         return false;
2956     }
2957 
2958     /* MDCR_EL3.SDD disables debug events from Secure state */
2959     if (arm_is_secure_below_el3(env)
2960         && extract32(env->cp15.mdcr_el3, 16, 1)) {
2961         return false;
2962     }
2963 
2964     /*
2965      * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2966      * while not masking the (D)ebug bit in DAIF.
2967      */
2968     debug_el = arm_debug_target_el(env);
2969 
2970     if (cur_el == debug_el) {
2971         return extract32(env->cp15.mdscr_el1, 13, 1)
2972             && !(env->daif & PSTATE_D);
2973     }
2974 
2975     /* Otherwise the debug target needs to be a higher EL */
2976     return debug_el > cur_el;
2977 }
2978 
2979 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2980 {
2981     int el = arm_current_el(env);
2982 
2983     if (el == 0 && arm_el_is_aa64(env, 1)) {
2984         return aa64_generate_debug_exceptions(env);
2985     }
2986 
2987     if (arm_is_secure(env)) {
2988         int spd;
2989 
2990         if (el == 0 && (env->cp15.sder & 1)) {
2991             /* SDER.SUIDEN means debug exceptions from Secure EL0
2992              * are always enabled. Otherwise they are controlled by
2993              * SDCR.SPD like those from other Secure ELs.
2994              */
2995             return true;
2996         }
2997 
2998         spd = extract32(env->cp15.mdcr_el3, 14, 2);
2999         switch (spd) {
3000         case 1:
3001             /* SPD == 0b01 is reserved, but behaves as 0b00. */
3002         case 0:
3003             /* For 0b00 we return true if external secure invasive debug
3004              * is enabled. On real hardware this is controlled by external
3005              * signals to the core. QEMU always permits debug, and behaves
3006              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3007              */
3008             return true;
3009         case 2:
3010             return false;
3011         case 3:
3012             return true;
3013         }
3014     }
3015 
3016     return el != 2;
3017 }
3018 
3019 /* Return true if debugging exceptions are currently enabled.
3020  * This corresponds to what in ARM ARM pseudocode would be
3021  *    if UsingAArch32() then
3022  *        return AArch32.GenerateDebugExceptions()
3023  *    else
3024  *        return AArch64.GenerateDebugExceptions()
3025  * We choose to push the if() down into this function for clarity,
3026  * since the pseudocode has it at all callsites except for the one in
3027  * CheckSoftwareStep(), where it is elided because both branches would
3028  * always return the same value.
3029  */
3030 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3031 {
3032     if (env->aarch64) {
3033         return aa64_generate_debug_exceptions(env);
3034     } else {
3035         return aa32_generate_debug_exceptions(env);
3036     }
3037 }
3038 
3039 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3040  * implicitly means this always returns false in pre-v8 CPUs.)
3041  */
3042 static inline bool arm_singlestep_active(CPUARMState *env)
3043 {
3044     return extract32(env->cp15.mdscr_el1, 0, 1)
3045         && arm_el_is_aa64(env, arm_debug_target_el(env))
3046         && arm_generate_debug_exceptions(env);
3047 }
3048 
3049 static inline bool arm_sctlr_b(CPUARMState *env)
3050 {
3051     return
3052         /* We need not implement SCTLR.ITD in user-mode emulation, so
3053          * let linux-user ignore the fact that it conflicts with SCTLR_B.
3054          * This lets people run BE32 binaries with "-cpu any".
3055          */
3056 #ifndef CONFIG_USER_ONLY
3057         !arm_feature(env, ARM_FEATURE_V7) &&
3058 #endif
3059         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3060 }
3061 
3062 uint64_t arm_sctlr(CPUARMState *env, int el);
3063 
3064 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env,
3065                                                   bool sctlr_b)
3066 {
3067 #ifdef CONFIG_USER_ONLY
3068     /*
3069      * In system mode, BE32 is modelled in line with the
3070      * architecture (as word-invariant big-endianness), where loads
3071      * and stores are done little endian but from addresses which
3072      * are adjusted by XORing with the appropriate constant. So the
3073      * endianness to use for the raw data access is not affected by
3074      * SCTLR.B.
3075      * In user mode, however, we model BE32 as byte-invariant
3076      * big-endianness (because user-only code cannot tell the
3077      * difference), and so we need to use a data access endianness
3078      * that depends on SCTLR.B.
3079      */
3080     if (sctlr_b) {
3081         return true;
3082     }
3083 #endif
3084     /* In 32bit endianness is determined by looking at CPSR's E bit */
3085     return env->uncached_cpsr & CPSR_E;
3086 }
3087 
3088 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr)
3089 {
3090     return sctlr & (el ? SCTLR_EE : SCTLR_E0E);
3091 }
3092 
3093 /* Return true if the processor is in big-endian mode. */
3094 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3095 {
3096     if (!is_a64(env)) {
3097         return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env));
3098     } else {
3099         int cur_el = arm_current_el(env);
3100         uint64_t sctlr = arm_sctlr(env, cur_el);
3101         return arm_cpu_data_is_big_endian_a64(cur_el, sctlr);
3102     }
3103 }
3104 
3105 #include "exec/cpu-all.h"
3106 
3107 /*
3108  * We have more than 32-bits worth of state per TB, so we split the data
3109  * between tb->flags and tb->cs_base, which is otherwise unused for ARM.
3110  * We collect these two parts in CPUARMTBFlags where they are named
3111  * flags and flags2 respectively.
3112  *
3113  * The flags that are shared between all execution modes, TBFLAG_ANY,
3114  * are stored in flags.  The flags that are specific to a given mode
3115  * are stores in flags2.  Since cs_base is sized on the configured
3116  * address size, flags2 always has 64-bits for A64, and a minimum of
3117  * 32-bits for A32 and M32.
3118  *
3119  * The bits for 32-bit A-profile and M-profile partially overlap:
3120  *
3121  *  31         23         11 10             0
3122  * +-------------+----------+----------------+
3123  * |             |          |   TBFLAG_A32   |
3124  * | TBFLAG_AM32 |          +-----+----------+
3125  * |             |                |TBFLAG_M32|
3126  * +-------------+----------------+----------+
3127  *  31         23                6 5        0
3128  *
3129  * Unless otherwise noted, these bits are cached in env->hflags.
3130  */
3131 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1)
3132 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1)
3133 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1)      /* Not cached. */
3134 FIELD(TBFLAG_ANY, BE_DATA, 3, 1)
3135 FIELD(TBFLAG_ANY, MMUIDX, 4, 4)
3136 /* Target EL if we take a floating-point-disabled exception */
3137 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2)
3138 /* For A-profile only, target EL for debug exceptions.  */
3139 FIELD(TBFLAG_ANY, DEBUG_TARGET_EL, 10, 2)
3140 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */
3141 FIELD(TBFLAG_ANY, ALIGN_MEM, 12, 1)
3142 FIELD(TBFLAG_ANY, PSTATE__IL, 13, 1)
3143 
3144 /*
3145  * Bit usage when in AArch32 state, both A- and M-profile.
3146  */
3147 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8)      /* Not cached. */
3148 FIELD(TBFLAG_AM32, THUMB, 23, 1)         /* Not cached. */
3149 
3150 /*
3151  * Bit usage when in AArch32 state, for A-profile only.
3152  */
3153 FIELD(TBFLAG_A32, VECLEN, 0, 3)         /* Not cached. */
3154 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2)     /* Not cached. */
3155 /*
3156  * We store the bottom two bits of the CPAR as TB flags and handle
3157  * checks on the other bits at runtime. This shares the same bits as
3158  * VECSTRIDE, which is OK as no XScale CPU has VFP.
3159  * Not cached, because VECLEN+VECSTRIDE are not cached.
3160  */
3161 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2)
3162 FIELD(TBFLAG_A32, VFPEN, 7, 1)         /* Partially cached, minus FPEXC. */
3163 FIELD(TBFLAG_A32, SCTLR__B, 8, 1)      /* Cannot overlap with SCTLR_B */
3164 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1)
3165 /*
3166  * Indicates whether cp register reads and writes by guest code should access
3167  * the secure or nonsecure bank of banked registers; note that this is not
3168  * the same thing as the current security state of the processor!
3169  */
3170 FIELD(TBFLAG_A32, NS, 10, 1)
3171 
3172 /*
3173  * Bit usage when in AArch32 state, for M-profile only.
3174  */
3175 /* Handler (ie not Thread) mode */
3176 FIELD(TBFLAG_M32, HANDLER, 0, 1)
3177 /* Whether we should generate stack-limit checks */
3178 FIELD(TBFLAG_M32, STACKCHECK, 1, 1)
3179 /* Set if FPCCR.LSPACT is set */
3180 FIELD(TBFLAG_M32, LSPACT, 2, 1)                 /* Not cached. */
3181 /* Set if we must create a new FP context */
3182 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1)     /* Not cached. */
3183 /* Set if FPCCR.S does not match current security state */
3184 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1)          /* Not cached. */
3185 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */
3186 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1)            /* Not cached. */
3187 
3188 /*
3189  * Bit usage when in AArch64 state
3190  */
3191 FIELD(TBFLAG_A64, TBII, 0, 2)
3192 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3193 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3194 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3195 FIELD(TBFLAG_A64, BT, 9, 1)
3196 FIELD(TBFLAG_A64, BTYPE, 10, 2)         /* Not cached. */
3197 FIELD(TBFLAG_A64, TBID, 12, 2)
3198 FIELD(TBFLAG_A64, UNPRIV, 14, 1)
3199 FIELD(TBFLAG_A64, ATA, 15, 1)
3200 FIELD(TBFLAG_A64, TCMA, 16, 2)
3201 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1)
3202 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1)
3203 
3204 /*
3205  * Helpers for using the above.
3206  */
3207 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \
3208     (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL))
3209 #define DP_TBFLAG_A64(DST, WHICH, VAL) \
3210     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A64, WHICH, VAL))
3211 #define DP_TBFLAG_A32(DST, WHICH, VAL) \
3212     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL))
3213 #define DP_TBFLAG_M32(DST, WHICH, VAL) \
3214     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL))
3215 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \
3216     (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL))
3217 
3218 #define EX_TBFLAG_ANY(IN, WHICH)   FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH)
3219 #define EX_TBFLAG_A64(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A64, WHICH)
3220 #define EX_TBFLAG_A32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH)
3221 #define EX_TBFLAG_M32(IN, WHICH)   FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH)
3222 #define EX_TBFLAG_AM32(IN, WHICH)  FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH)
3223 
3224 /**
3225  * cpu_mmu_index:
3226  * @env: The cpu environment
3227  * @ifetch: True for code access, false for data access.
3228  *
3229  * Return the core mmu index for the current translation regime.
3230  * This function is used by generic TCG code paths.
3231  */
3232 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
3233 {
3234     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
3235 }
3236 
3237 static inline bool bswap_code(bool sctlr_b)
3238 {
3239 #ifdef CONFIG_USER_ONLY
3240     /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian.
3241      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0
3242      * would also end up as a mixed-endian mode with BE code, LE data.
3243      */
3244     return
3245 #if TARGET_BIG_ENDIAN
3246         1 ^
3247 #endif
3248         sctlr_b;
3249 #else
3250     /* All code access in ARM is little endian, and there are no loaders
3251      * doing swaps that need to be reversed
3252      */
3253     return 0;
3254 #endif
3255 }
3256 
3257 #ifdef CONFIG_USER_ONLY
3258 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3259 {
3260     return
3261 #if TARGET_BIG_ENDIAN
3262        1 ^
3263 #endif
3264        arm_cpu_data_is_big_endian(env);
3265 }
3266 #endif
3267 
3268 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3269                           target_ulong *cs_base, uint32_t *flags);
3270 
3271 enum {
3272     QEMU_PSCI_CONDUIT_DISABLED = 0,
3273     QEMU_PSCI_CONDUIT_SMC = 1,
3274     QEMU_PSCI_CONDUIT_HVC = 2,
3275 };
3276 
3277 #ifndef CONFIG_USER_ONLY
3278 /* Return the address space index to use for a memory access */
3279 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3280 {
3281     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3282 }
3283 
3284 /* Return the AddressSpace to use for a memory access
3285  * (which depends on whether the access is S or NS, and whether
3286  * the board gave us a separate AddressSpace for S accesses).
3287  */
3288 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3289 {
3290     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3291 }
3292 #endif
3293 
3294 /**
3295  * arm_register_pre_el_change_hook:
3296  * Register a hook function which will be called immediately before this
3297  * CPU changes exception level or mode. The hook function will be
3298  * passed a pointer to the ARMCPU and the opaque data pointer passed
3299  * to this function when the hook was registered.
3300  *
3301  * Note that if a pre-change hook is called, any registered post-change hooks
3302  * are guaranteed to subsequently be called.
3303  */
3304 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3305                                  void *opaque);
3306 /**
3307  * arm_register_el_change_hook:
3308  * Register a hook function which will be called immediately after this
3309  * CPU changes exception level or mode. The hook function will be
3310  * passed a pointer to the ARMCPU and the opaque data pointer passed
3311  * to this function when the hook was registered.
3312  *
3313  * Note that any registered hooks registered here are guaranteed to be called
3314  * if pre-change hooks have been.
3315  */
3316 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3317         *opaque);
3318 
3319 /**
3320  * arm_rebuild_hflags:
3321  * Rebuild the cached TBFLAGS for arbitrary changed processor state.
3322  */
3323 void arm_rebuild_hflags(CPUARMState *env);
3324 
3325 /**
3326  * aa32_vfp_dreg:
3327  * Return a pointer to the Dn register within env in 32-bit mode.
3328  */
3329 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3330 {
3331     return &env->vfp.zregs[regno >> 1].d[regno & 1];
3332 }
3333 
3334 /**
3335  * aa32_vfp_qreg:
3336  * Return a pointer to the Qn register within env in 32-bit mode.
3337  */
3338 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3339 {
3340     return &env->vfp.zregs[regno].d[0];
3341 }
3342 
3343 /**
3344  * aa64_vfp_qreg:
3345  * Return a pointer to the Qn register within env in 64-bit mode.
3346  */
3347 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3348 {
3349     return &env->vfp.zregs[regno].d[0];
3350 }
3351 
3352 /* Shared between translate-sve.c and sve_helper.c.  */
3353 extern const uint64_t pred_esz_masks[4];
3354 
3355 /* Helper for the macros below, validating the argument type. */
3356 static inline MemTxAttrs *typecheck_memtxattrs(MemTxAttrs *x)
3357 {
3358     return x;
3359 }
3360 
3361 /*
3362  * Lvalue macros for ARM TLB bits that we must cache in the TCG TLB.
3363  * Using these should be a bit more self-documenting than using the
3364  * generic target bits directly.
3365  */
3366 #define arm_tlb_bti_gp(x) (typecheck_memtxattrs(x)->target_tlb_bit0)
3367 #define arm_tlb_mte_tagged(x) (typecheck_memtxattrs(x)->target_tlb_bit1)
3368 
3369 /*
3370  * AArch64 usage of the PAGE_TARGET_* bits for linux-user.
3371  */
3372 #define PAGE_BTI  PAGE_TARGET_1
3373 #define PAGE_MTE  PAGE_TARGET_2
3374 
3375 #ifdef TARGET_TAGGED_ADDRESSES
3376 /**
3377  * cpu_untagged_addr:
3378  * @cs: CPU context
3379  * @x: tagged address
3380  *
3381  * Remove any address tag from @x.  This is explicitly related to the
3382  * linux syscall TIF_TAGGED_ADDR setting, not TBI in general.
3383  *
3384  * There should be a better place to put this, but we need this in
3385  * include/exec/cpu_ldst.h, and not some place linux-user specific.
3386  */
3387 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x)
3388 {
3389     ARMCPU *cpu = ARM_CPU(cs);
3390     if (cpu->env.tagged_addr_enable) {
3391         /*
3392          * TBI is enabled for userspace but not kernelspace addresses.
3393          * Only clear the tag if bit 55 is clear.
3394          */
3395         x &= sextract64(x, 0, 56);
3396     }
3397     return x;
3398 }
3399 #endif
3400 
3401 /*
3402  * Naming convention for isar_feature functions:
3403  * Functions which test 32-bit ID registers should have _aa32_ in
3404  * their name. Functions which test 64-bit ID registers should have
3405  * _aa64_ in their name. These must only be used in code where we
3406  * know for certain that the CPU has AArch32 or AArch64 respectively
3407  * or where the correct answer for a CPU which doesn't implement that
3408  * CPU state is "false" (eg when generating A32 or A64 code, if adding
3409  * system registers that are specific to that CPU state, for "should
3410  * we let this system register bit be set" tests where the 32-bit
3411  * flavour of the register doesn't have the bit, and so on).
3412  * Functions which simply ask "does this feature exist at all" have
3413  * _any_ in their name, and always return the logical OR of the _aa64_
3414  * and the _aa32_ function.
3415  */
3416 
3417 /*
3418  * 32-bit feature tests via id registers.
3419  */
3420 static inline bool isar_feature_aa32_thumb_div(const ARMISARegisters *id)
3421 {
3422     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3423 }
3424 
3425 static inline bool isar_feature_aa32_arm_div(const ARMISARegisters *id)
3426 {
3427     return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3428 }
3429 
3430 static inline bool isar_feature_aa32_lob(const ARMISARegisters *id)
3431 {
3432     /* (M-profile) low-overhead loops and branch future */
3433     return FIELD_EX32(id->id_isar0, ID_ISAR0, CMPBRANCH) >= 3;
3434 }
3435 
3436 static inline bool isar_feature_aa32_jazelle(const ARMISARegisters *id)
3437 {
3438     return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3439 }
3440 
3441 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3442 {
3443     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3444 }
3445 
3446 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3447 {
3448     return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3449 }
3450 
3451 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3452 {
3453     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3454 }
3455 
3456 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3457 {
3458     return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3459 }
3460 
3461 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3462 {
3463     return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3464 }
3465 
3466 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3467 {
3468     return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3469 }
3470 
3471 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3472 {
3473     return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3474 }
3475 
3476 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3477 {
3478     return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3479 }
3480 
3481 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3482 {
3483     return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3484 }
3485 
3486 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3487 {
3488     return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3489 }
3490 
3491 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3492 {
3493     return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3494 }
3495 
3496 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3497 {
3498     return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3499 }
3500 
3501 static inline bool isar_feature_aa32_bf16(const ARMISARegisters *id)
3502 {
3503     return FIELD_EX32(id->id_isar6, ID_ISAR6, BF16) != 0;
3504 }
3505 
3506 static inline bool isar_feature_aa32_i8mm(const ARMISARegisters *id)
3507 {
3508     return FIELD_EX32(id->id_isar6, ID_ISAR6, I8MM) != 0;
3509 }
3510 
3511 static inline bool isar_feature_aa32_ras(const ARMISARegisters *id)
3512 {
3513     return FIELD_EX32(id->id_pfr0, ID_PFR0, RAS) != 0;
3514 }
3515 
3516 static inline bool isar_feature_aa32_mprofile(const ARMISARegisters *id)
3517 {
3518     return FIELD_EX32(id->id_pfr1, ID_PFR1, MPROGMOD) != 0;
3519 }
3520 
3521 static inline bool isar_feature_aa32_m_sec_state(const ARMISARegisters *id)
3522 {
3523     /*
3524      * Return true if M-profile state handling insns
3525      * (VSCCLRM, CLRM, FPCTX access insns) are implemented
3526      */
3527     return FIELD_EX32(id->id_pfr1, ID_PFR1, SECURITY) >= 3;
3528 }
3529 
3530 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3531 {
3532     /* Sadly this is encoded differently for A-profile and M-profile */
3533     if (isar_feature_aa32_mprofile(id)) {
3534         return FIELD_EX32(id->mvfr1, MVFR1, FP16) > 0;
3535     } else {
3536         return FIELD_EX32(id->mvfr1, MVFR1, FPHP) >= 3;
3537     }
3538 }
3539 
3540 static inline bool isar_feature_aa32_mve(const ARMISARegisters *id)
3541 {
3542     /*
3543      * Return true if MVE is supported (either integer or floating point).
3544      * We must check for M-profile as the MVFR1 field means something
3545      * else for A-profile.
3546      */
3547     return isar_feature_aa32_mprofile(id) &&
3548         FIELD_EX32(id->mvfr1, MVFR1, MVE) > 0;
3549 }
3550 
3551 static inline bool isar_feature_aa32_mve_fp(const ARMISARegisters *id)
3552 {
3553     /*
3554      * Return true if MVE is supported (either integer or floating point).
3555      * We must check for M-profile as the MVFR1 field means something
3556      * else for A-profile.
3557      */
3558     return isar_feature_aa32_mprofile(id) &&
3559         FIELD_EX32(id->mvfr1, MVFR1, MVE) >= 2;
3560 }
3561 
3562 static inline bool isar_feature_aa32_vfp_simd(const ARMISARegisters *id)
3563 {
3564     /*
3565      * Return true if either VFP or SIMD is implemented.
3566      * In this case, a minimum of VFP w/ D0-D15.
3567      */
3568     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) > 0;
3569 }
3570 
3571 static inline bool isar_feature_aa32_simd_r32(const ARMISARegisters *id)
3572 {
3573     /* Return true if D16-D31 are implemented */
3574     return FIELD_EX32(id->mvfr0, MVFR0, SIMDREG) >= 2;
3575 }
3576 
3577 static inline bool isar_feature_aa32_fpshvec(const ARMISARegisters *id)
3578 {
3579     return FIELD_EX32(id->mvfr0, MVFR0, FPSHVEC) > 0;
3580 }
3581 
3582 static inline bool isar_feature_aa32_fpsp_v2(const ARMISARegisters *id)
3583 {
3584     /* Return true if CPU supports single precision floating point, VFPv2 */
3585     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) > 0;
3586 }
3587 
3588 static inline bool isar_feature_aa32_fpsp_v3(const ARMISARegisters *id)
3589 {
3590     /* Return true if CPU supports single precision floating point, VFPv3 */
3591     return FIELD_EX32(id->mvfr0, MVFR0, FPSP) >= 2;
3592 }
3593 
3594 static inline bool isar_feature_aa32_fpdp_v2(const ARMISARegisters *id)
3595 {
3596     /* Return true if CPU supports double precision floating point, VFPv2 */
3597     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) > 0;
3598 }
3599 
3600 static inline bool isar_feature_aa32_fpdp_v3(const ARMISARegisters *id)
3601 {
3602     /* Return true if CPU supports double precision floating point, VFPv3 */
3603     return FIELD_EX32(id->mvfr0, MVFR0, FPDP) >= 2;
3604 }
3605 
3606 static inline bool isar_feature_aa32_vfp(const ARMISARegisters *id)
3607 {
3608     return isar_feature_aa32_fpsp_v2(id) || isar_feature_aa32_fpdp_v2(id);
3609 }
3610 
3611 /*
3612  * We always set the FP and SIMD FP16 fields to indicate identical
3613  * levels of support (assuming SIMD is implemented at all), so
3614  * we only need one set of accessors.
3615  */
3616 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3617 {
3618     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 0;
3619 }
3620 
3621 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3622 {
3623     return FIELD_EX32(id->mvfr1, MVFR1, FPHP) > 1;
3624 }
3625 
3626 /*
3627  * Note that this ID register field covers both VFP and Neon FMAC,
3628  * so should usually be tested in combination with some other
3629  * check that confirms the presence of whichever of VFP or Neon is
3630  * relevant, to avoid accidentally enabling a Neon feature on
3631  * a VFP-no-Neon core or vice-versa.
3632  */
3633 static inline bool isar_feature_aa32_simdfmac(const ARMISARegisters *id)
3634 {
3635     return FIELD_EX32(id->mvfr1, MVFR1, SIMDFMAC) != 0;
3636 }
3637 
3638 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3639 {
3640     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 1;
3641 }
3642 
3643 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3644 {
3645     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 2;
3646 }
3647 
3648 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3649 {
3650     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 3;
3651 }
3652 
3653 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3654 {
3655     return FIELD_EX32(id->mvfr2, MVFR2, FPMISC) >= 4;
3656 }
3657 
3658 static inline bool isar_feature_aa32_pxn(const ARMISARegisters *id)
3659 {
3660     return FIELD_EX32(id->id_mmfr0, ID_MMFR0, VMSA) >= 4;
3661 }
3662 
3663 static inline bool isar_feature_aa32_pan(const ARMISARegisters *id)
3664 {
3665     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) != 0;
3666 }
3667 
3668 static inline bool isar_feature_aa32_ats1e1(const ARMISARegisters *id)
3669 {
3670     return FIELD_EX32(id->id_mmfr3, ID_MMFR3, PAN) >= 2;
3671 }
3672 
3673 static inline bool isar_feature_aa32_pmu_8_1(const ARMISARegisters *id)
3674 {
3675     /* 0xf means "non-standard IMPDEF PMU" */
3676     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
3677         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3678 }
3679 
3680 static inline bool isar_feature_aa32_pmu_8_4(const ARMISARegisters *id)
3681 {
3682     /* 0xf means "non-standard IMPDEF PMU" */
3683     return FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) >= 5 &&
3684         FIELD_EX32(id->id_dfr0, ID_DFR0, PERFMON) != 0xf;
3685 }
3686 
3687 static inline bool isar_feature_aa32_hpd(const ARMISARegisters *id)
3688 {
3689     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, HPDS) != 0;
3690 }
3691 
3692 static inline bool isar_feature_aa32_ac2(const ARMISARegisters *id)
3693 {
3694     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, AC2) != 0;
3695 }
3696 
3697 static inline bool isar_feature_aa32_ccidx(const ARMISARegisters *id)
3698 {
3699     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, CCIDX) != 0;
3700 }
3701 
3702 static inline bool isar_feature_aa32_tts2uxn(const ARMISARegisters *id)
3703 {
3704     return FIELD_EX32(id->id_mmfr4, ID_MMFR4, XNX) != 0;
3705 }
3706 
3707 static inline bool isar_feature_aa32_dit(const ARMISARegisters *id)
3708 {
3709     return FIELD_EX32(id->id_pfr0, ID_PFR0, DIT) != 0;
3710 }
3711 
3712 static inline bool isar_feature_aa32_ssbs(const ARMISARegisters *id)
3713 {
3714     return FIELD_EX32(id->id_pfr2, ID_PFR2, SSBS) != 0;
3715 }
3716 
3717 static inline bool isar_feature_aa32_debugv8p2(const ARMISARegisters *id)
3718 {
3719     return FIELD_EX32(id->id_dfr0, ID_DFR0, COPDBG) >= 8;
3720 }
3721 
3722 /*
3723  * 64-bit feature tests via id registers.
3724  */
3725 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3726 {
3727     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3728 }
3729 
3730 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3731 {
3732     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3733 }
3734 
3735 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3736 {
3737     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3738 }
3739 
3740 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3741 {
3742     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3743 }
3744 
3745 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3746 {
3747     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3748 }
3749 
3750 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3751 {
3752     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3753 }
3754 
3755 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3756 {
3757     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3758 }
3759 
3760 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3761 {
3762     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3763 }
3764 
3765 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3766 {
3767     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3768 }
3769 
3770 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3771 {
3772     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3773 }
3774 
3775 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3776 {
3777     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3778 }
3779 
3780 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3781 {
3782     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3783 }
3784 
3785 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3786 {
3787     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3788 }
3789 
3790 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3791 {
3792     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3793 }
3794 
3795 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3796 {
3797     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3798 }
3799 
3800 static inline bool isar_feature_aa64_rndr(const ARMISARegisters *id)
3801 {
3802     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RNDR) != 0;
3803 }
3804 
3805 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3806 {
3807     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3808 }
3809 
3810 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3811 {
3812     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3813 }
3814 
3815 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3816 {
3817     /*
3818      * Return true if any form of pauth is enabled, as this
3819      * predicate controls migration of the 128-bit keys.
3820      */
3821     return (id->id_aa64isar1 &
3822             (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3823              FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3824              FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3825              FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3826 }
3827 
3828 static inline bool isar_feature_aa64_pauth_arch(const ARMISARegisters *id)
3829 {
3830     /*
3831      * Return true if pauth is enabled with the architected QARMA algorithm.
3832      * QEMU will always set APA+GPA to the same value.
3833      */
3834     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, APA) != 0;
3835 }
3836 
3837 static inline bool isar_feature_aa64_tlbirange(const ARMISARegisters *id)
3838 {
3839     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) == 2;
3840 }
3841 
3842 static inline bool isar_feature_aa64_tlbios(const ARMISARegisters *id)
3843 {
3844     return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TLB) != 0;
3845 }
3846 
3847 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3848 {
3849     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3850 }
3851 
3852 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3853 {
3854     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3855 }
3856 
3857 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3858 {
3859     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3860 }
3861 
3862 static inline bool isar_feature_aa64_dcpop(const ARMISARegisters *id)
3863 {
3864     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) != 0;
3865 }
3866 
3867 static inline bool isar_feature_aa64_dcpodp(const ARMISARegisters *id)
3868 {
3869     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, DPB) >= 2;
3870 }
3871 
3872 static inline bool isar_feature_aa64_bf16(const ARMISARegisters *id)
3873 {
3874     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, BF16) != 0;
3875 }
3876 
3877 static inline bool isar_feature_aa64_fp_simd(const ARMISARegisters *id)
3878 {
3879     /* We always set the AdvSIMD and FP fields identically.  */
3880     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) != 0xf;
3881 }
3882 
3883 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3884 {
3885     /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3886     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3887 }
3888 
3889 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3890 {
3891     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3892 }
3893 
3894 static inline bool isar_feature_aa64_aa32_el1(const ARMISARegisters *id)
3895 {
3896     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL1) >= 2;
3897 }
3898 
3899 static inline bool isar_feature_aa64_ras(const ARMISARegisters *id)
3900 {
3901     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, RAS) != 0;
3902 }
3903 
3904 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3905 {
3906     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3907 }
3908 
3909 static inline bool isar_feature_aa64_sel2(const ARMISARegisters *id)
3910 {
3911     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SEL2) != 0;
3912 }
3913 
3914 static inline bool isar_feature_aa64_vh(const ARMISARegisters *id)
3915 {
3916     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, VH) != 0;
3917 }
3918 
3919 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3920 {
3921     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3922 }
3923 
3924 static inline bool isar_feature_aa64_pan(const ARMISARegisters *id)
3925 {
3926     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) != 0;
3927 }
3928 
3929 static inline bool isar_feature_aa64_ats1e1(const ARMISARegisters *id)
3930 {
3931     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, PAN) >= 2;
3932 }
3933 
3934 static inline bool isar_feature_aa64_uao(const ARMISARegisters *id)
3935 {
3936     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, UAO) != 0;
3937 }
3938 
3939 static inline bool isar_feature_aa64_st(const ARMISARegisters *id)
3940 {
3941     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, ST) != 0;
3942 }
3943 
3944 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3945 {
3946     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3947 }
3948 
3949 static inline bool isar_feature_aa64_mte_insn_reg(const ARMISARegisters *id)
3950 {
3951     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) != 0;
3952 }
3953 
3954 static inline bool isar_feature_aa64_mte(const ARMISARegisters *id)
3955 {
3956     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, MTE) >= 2;
3957 }
3958 
3959 static inline bool isar_feature_aa64_pmu_8_1(const ARMISARegisters *id)
3960 {
3961     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 4 &&
3962         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3963 }
3964 
3965 static inline bool isar_feature_aa64_pmu_8_4(const ARMISARegisters *id)
3966 {
3967     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) >= 5 &&
3968         FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, PMUVER) != 0xf;
3969 }
3970 
3971 static inline bool isar_feature_aa64_rcpc_8_3(const ARMISARegisters *id)
3972 {
3973     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) != 0;
3974 }
3975 
3976 static inline bool isar_feature_aa64_rcpc_8_4(const ARMISARegisters *id)
3977 {
3978     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, LRCPC) >= 2;
3979 }
3980 
3981 static inline bool isar_feature_aa64_i8mm(const ARMISARegisters *id)
3982 {
3983     return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, I8MM) != 0;
3984 }
3985 
3986 static inline bool isar_feature_aa64_tgran4_lpa2(const ARMISARegisters *id)
3987 {
3988     return FIELD_SEX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4) >= 1;
3989 }
3990 
3991 static inline bool isar_feature_aa64_tgran4_2_lpa2(const ARMISARegisters *id)
3992 {
3993     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN4_2);
3994     return t >= 3 || (t == 0 && isar_feature_aa64_tgran4_lpa2(id));
3995 }
3996 
3997 static inline bool isar_feature_aa64_tgran16_lpa2(const ARMISARegisters *id)
3998 {
3999     return FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16) >= 2;
4000 }
4001 
4002 static inline bool isar_feature_aa64_tgran16_2_lpa2(const ARMISARegisters *id)
4003 {
4004     unsigned t = FIELD_EX64(id->id_aa64mmfr0, ID_AA64MMFR0, TGRAN16_2);
4005     return t >= 3 || (t == 0 && isar_feature_aa64_tgran16_lpa2(id));
4006 }
4007 
4008 static inline bool isar_feature_aa64_ccidx(const ARMISARegisters *id)
4009 {
4010     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, CCIDX) != 0;
4011 }
4012 
4013 static inline bool isar_feature_aa64_lva(const ARMISARegisters *id)
4014 {
4015     return FIELD_EX64(id->id_aa64mmfr2, ID_AA64MMFR2, VARANGE) != 0;
4016 }
4017 
4018 static inline bool isar_feature_aa64_tts2uxn(const ARMISARegisters *id)
4019 {
4020     return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, XNX) != 0;
4021 }
4022 
4023 static inline bool isar_feature_aa64_dit(const ARMISARegisters *id)
4024 {
4025     return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, DIT) != 0;
4026 }
4027 
4028 static inline bool isar_feature_aa64_scxtnum(const ARMISARegisters *id)
4029 {
4030     int key = FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, CSV2);
4031     if (key >= 2) {
4032         return true;      /* FEAT_CSV2_2 */
4033     }
4034     if (key == 1) {
4035         key = FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, CSV2_FRAC);
4036         return key >= 2;  /* FEAT_CSV2_1p2 */
4037     }
4038     return false;
4039 }
4040 
4041 static inline bool isar_feature_aa64_ssbs(const ARMISARegisters *id)
4042 {
4043     return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, SSBS) != 0;
4044 }
4045 
4046 static inline bool isar_feature_aa64_debugv8p2(const ARMISARegisters *id)
4047 {
4048     return FIELD_EX64(id->id_aa64dfr0, ID_AA64DFR0, DEBUGVER) >= 8;
4049 }
4050 
4051 static inline bool isar_feature_aa64_sve2(const ARMISARegisters *id)
4052 {
4053     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SVEVER) != 0;
4054 }
4055 
4056 static inline bool isar_feature_aa64_sve2_aes(const ARMISARegisters *id)
4057 {
4058     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) != 0;
4059 }
4060 
4061 static inline bool isar_feature_aa64_sve2_pmull128(const ARMISARegisters *id)
4062 {
4063     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, AES) >= 2;
4064 }
4065 
4066 static inline bool isar_feature_aa64_sve2_bitperm(const ARMISARegisters *id)
4067 {
4068     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BITPERM) != 0;
4069 }
4070 
4071 static inline bool isar_feature_aa64_sve_bf16(const ARMISARegisters *id)
4072 {
4073     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, BFLOAT16) != 0;
4074 }
4075 
4076 static inline bool isar_feature_aa64_sve2_sha3(const ARMISARegisters *id)
4077 {
4078     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SHA3) != 0;
4079 }
4080 
4081 static inline bool isar_feature_aa64_sve2_sm4(const ARMISARegisters *id)
4082 {
4083     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, SM4) != 0;
4084 }
4085 
4086 static inline bool isar_feature_aa64_sve_i8mm(const ARMISARegisters *id)
4087 {
4088     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, I8MM) != 0;
4089 }
4090 
4091 static inline bool isar_feature_aa64_sve_f32mm(const ARMISARegisters *id)
4092 {
4093     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F32MM) != 0;
4094 }
4095 
4096 static inline bool isar_feature_aa64_sve_f64mm(const ARMISARegisters *id)
4097 {
4098     return FIELD_EX64(id->id_aa64zfr0, ID_AA64ZFR0, F64MM) != 0;
4099 }
4100 
4101 /*
4102  * Feature tests for "does this exist in either 32-bit or 64-bit?"
4103  */
4104 static inline bool isar_feature_any_fp16(const ARMISARegisters *id)
4105 {
4106     return isar_feature_aa64_fp16(id) || isar_feature_aa32_fp16_arith(id);
4107 }
4108 
4109 static inline bool isar_feature_any_predinv(const ARMISARegisters *id)
4110 {
4111     return isar_feature_aa64_predinv(id) || isar_feature_aa32_predinv(id);
4112 }
4113 
4114 static inline bool isar_feature_any_pmu_8_1(const ARMISARegisters *id)
4115 {
4116     return isar_feature_aa64_pmu_8_1(id) || isar_feature_aa32_pmu_8_1(id);
4117 }
4118 
4119 static inline bool isar_feature_any_pmu_8_4(const ARMISARegisters *id)
4120 {
4121     return isar_feature_aa64_pmu_8_4(id) || isar_feature_aa32_pmu_8_4(id);
4122 }
4123 
4124 static inline bool isar_feature_any_ccidx(const ARMISARegisters *id)
4125 {
4126     return isar_feature_aa64_ccidx(id) || isar_feature_aa32_ccidx(id);
4127 }
4128 
4129 static inline bool isar_feature_any_tts2uxn(const ARMISARegisters *id)
4130 {
4131     return isar_feature_aa64_tts2uxn(id) || isar_feature_aa32_tts2uxn(id);
4132 }
4133 
4134 static inline bool isar_feature_any_debugv8p2(const ARMISARegisters *id)
4135 {
4136     return isar_feature_aa64_debugv8p2(id) || isar_feature_aa32_debugv8p2(id);
4137 }
4138 
4139 static inline bool isar_feature_any_ras(const ARMISARegisters *id)
4140 {
4141     return isar_feature_aa64_ras(id) || isar_feature_aa32_ras(id);
4142 }
4143 
4144 /*
4145  * Forward to the above feature tests given an ARMCPU pointer.
4146  */
4147 #define cpu_isar_feature(name, cpu) \
4148     ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
4149 
4150 #endif
4151