xref: /qemu/target/arm/cpu64.c (revision 06a47ef5)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 
32 static inline void set_feature(CPUARMState *env, int feature)
33 {
34     env->features |= 1ULL << feature;
35 }
36 
37 static inline void unset_feature(CPUARMState *env, int feature)
38 {
39     env->features &= ~(1ULL << feature);
40 }
41 
42 #ifndef CONFIG_USER_ONLY
43 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
44 {
45     ARMCPU *cpu = env_archcpu(env);
46 
47     /* Number of cores is in [25:24]; otherwise we RAZ */
48     return (cpu->core_count - 1) << 24;
49 }
50 #endif
51 
52 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
53 #ifndef CONFIG_USER_ONLY
54     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
55       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
56       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
57       .writefn = arm_cp_write_ignore },
58     { .name = "L2CTLR",
59       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
60       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
61       .writefn = arm_cp_write_ignore },
62 #endif
63     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
64       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
65       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
66     { .name = "L2ECTLR",
67       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
68       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
69     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
70       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
71       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
72     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
73       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
74       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
75     { .name = "CPUACTLR",
76       .cp = 15, .opc1 = 0, .crm = 15,
77       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
78     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
79       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
80       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
81     { .name = "CPUECTLR",
82       .cp = 15, .opc1 = 1, .crm = 15,
83       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
84     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
85       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
86       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
87     { .name = "CPUMERRSR",
88       .cp = 15, .opc1 = 2, .crm = 15,
89       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
90     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
91       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
92       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
93     { .name = "L2MERRSR",
94       .cp = 15, .opc1 = 3, .crm = 15,
95       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
96     REGINFO_SENTINEL
97 };
98 
99 static void aarch64_a57_initfn(Object *obj)
100 {
101     ARMCPU *cpu = ARM_CPU(obj);
102 
103     cpu->dtb_compatible = "arm,cortex-a57";
104     set_feature(&cpu->env, ARM_FEATURE_V8);
105     set_feature(&cpu->env, ARM_FEATURE_VFP4);
106     set_feature(&cpu->env, ARM_FEATURE_NEON);
107     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
108     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
109     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
110     set_feature(&cpu->env, ARM_FEATURE_EL2);
111     set_feature(&cpu->env, ARM_FEATURE_EL3);
112     set_feature(&cpu->env, ARM_FEATURE_PMU);
113     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
114     cpu->midr = 0x411fd070;
115     cpu->revidr = 0x00000000;
116     cpu->reset_fpsid = 0x41034070;
117     cpu->isar.mvfr0 = 0x10110222;
118     cpu->isar.mvfr1 = 0x12111111;
119     cpu->isar.mvfr2 = 0x00000043;
120     cpu->ctr = 0x8444c004;
121     cpu->reset_sctlr = 0x00c50838;
122     cpu->id_pfr0 = 0x00000131;
123     cpu->id_pfr1 = 0x00011011;
124     cpu->id_dfr0 = 0x03010066;
125     cpu->id_afr0 = 0x00000000;
126     cpu->id_mmfr0 = 0x10101105;
127     cpu->id_mmfr1 = 0x40000000;
128     cpu->id_mmfr2 = 0x01260000;
129     cpu->id_mmfr3 = 0x02102211;
130     cpu->isar.id_isar0 = 0x02101110;
131     cpu->isar.id_isar1 = 0x13112111;
132     cpu->isar.id_isar2 = 0x21232042;
133     cpu->isar.id_isar3 = 0x01112131;
134     cpu->isar.id_isar4 = 0x00011142;
135     cpu->isar.id_isar5 = 0x00011121;
136     cpu->isar.id_isar6 = 0;
137     cpu->isar.id_aa64pfr0 = 0x00002222;
138     cpu->id_aa64dfr0 = 0x10305106;
139     cpu->isar.id_aa64isar0 = 0x00011120;
140     cpu->isar.id_aa64mmfr0 = 0x00001124;
141     cpu->dbgdidr = 0x3516d000;
142     cpu->clidr = 0x0a200023;
143     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
144     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
145     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
146     cpu->dcz_blocksize = 4; /* 64 bytes */
147     cpu->gic_num_lrs = 4;
148     cpu->gic_vpribits = 5;
149     cpu->gic_vprebits = 5;
150     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
151 }
152 
153 static void aarch64_a53_initfn(Object *obj)
154 {
155     ARMCPU *cpu = ARM_CPU(obj);
156 
157     cpu->dtb_compatible = "arm,cortex-a53";
158     set_feature(&cpu->env, ARM_FEATURE_V8);
159     set_feature(&cpu->env, ARM_FEATURE_VFP4);
160     set_feature(&cpu->env, ARM_FEATURE_NEON);
161     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
162     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
163     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
164     set_feature(&cpu->env, ARM_FEATURE_EL2);
165     set_feature(&cpu->env, ARM_FEATURE_EL3);
166     set_feature(&cpu->env, ARM_FEATURE_PMU);
167     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
168     cpu->midr = 0x410fd034;
169     cpu->revidr = 0x00000000;
170     cpu->reset_fpsid = 0x41034070;
171     cpu->isar.mvfr0 = 0x10110222;
172     cpu->isar.mvfr1 = 0x12111111;
173     cpu->isar.mvfr2 = 0x00000043;
174     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
175     cpu->reset_sctlr = 0x00c50838;
176     cpu->id_pfr0 = 0x00000131;
177     cpu->id_pfr1 = 0x00011011;
178     cpu->id_dfr0 = 0x03010066;
179     cpu->id_afr0 = 0x00000000;
180     cpu->id_mmfr0 = 0x10101105;
181     cpu->id_mmfr1 = 0x40000000;
182     cpu->id_mmfr2 = 0x01260000;
183     cpu->id_mmfr3 = 0x02102211;
184     cpu->isar.id_isar0 = 0x02101110;
185     cpu->isar.id_isar1 = 0x13112111;
186     cpu->isar.id_isar2 = 0x21232042;
187     cpu->isar.id_isar3 = 0x01112131;
188     cpu->isar.id_isar4 = 0x00011142;
189     cpu->isar.id_isar5 = 0x00011121;
190     cpu->isar.id_isar6 = 0;
191     cpu->isar.id_aa64pfr0 = 0x00002222;
192     cpu->id_aa64dfr0 = 0x10305106;
193     cpu->isar.id_aa64isar0 = 0x00011120;
194     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
195     cpu->dbgdidr = 0x3516d000;
196     cpu->clidr = 0x0a200023;
197     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
198     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
199     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
200     cpu->dcz_blocksize = 4; /* 64 bytes */
201     cpu->gic_num_lrs = 4;
202     cpu->gic_vpribits = 5;
203     cpu->gic_vprebits = 5;
204     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
205 }
206 
207 static void aarch64_a72_initfn(Object *obj)
208 {
209     ARMCPU *cpu = ARM_CPU(obj);
210 
211     cpu->dtb_compatible = "arm,cortex-a72";
212     set_feature(&cpu->env, ARM_FEATURE_V8);
213     set_feature(&cpu->env, ARM_FEATURE_VFP4);
214     set_feature(&cpu->env, ARM_FEATURE_NEON);
215     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
216     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
217     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
218     set_feature(&cpu->env, ARM_FEATURE_EL2);
219     set_feature(&cpu->env, ARM_FEATURE_EL3);
220     set_feature(&cpu->env, ARM_FEATURE_PMU);
221     cpu->midr = 0x410fd083;
222     cpu->revidr = 0x00000000;
223     cpu->reset_fpsid = 0x41034080;
224     cpu->isar.mvfr0 = 0x10110222;
225     cpu->isar.mvfr1 = 0x12111111;
226     cpu->isar.mvfr2 = 0x00000043;
227     cpu->ctr = 0x8444c004;
228     cpu->reset_sctlr = 0x00c50838;
229     cpu->id_pfr0 = 0x00000131;
230     cpu->id_pfr1 = 0x00011011;
231     cpu->id_dfr0 = 0x03010066;
232     cpu->id_afr0 = 0x00000000;
233     cpu->id_mmfr0 = 0x10201105;
234     cpu->id_mmfr1 = 0x40000000;
235     cpu->id_mmfr2 = 0x01260000;
236     cpu->id_mmfr3 = 0x02102211;
237     cpu->isar.id_isar0 = 0x02101110;
238     cpu->isar.id_isar1 = 0x13112111;
239     cpu->isar.id_isar2 = 0x21232042;
240     cpu->isar.id_isar3 = 0x01112131;
241     cpu->isar.id_isar4 = 0x00011142;
242     cpu->isar.id_isar5 = 0x00011121;
243     cpu->isar.id_aa64pfr0 = 0x00002222;
244     cpu->id_aa64dfr0 = 0x10305106;
245     cpu->isar.id_aa64isar0 = 0x00011120;
246     cpu->isar.id_aa64mmfr0 = 0x00001124;
247     cpu->dbgdidr = 0x3516d000;
248     cpu->clidr = 0x0a200023;
249     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
250     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
251     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
252     cpu->dcz_blocksize = 4; /* 64 bytes */
253     cpu->gic_num_lrs = 4;
254     cpu->gic_vpribits = 5;
255     cpu->gic_vprebits = 5;
256     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
257 }
258 
259 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
260 {
261     /*
262      * If any vector lengths are explicitly enabled with sve<N> properties,
263      * then all other lengths are implicitly disabled.  If sve-max-vq is
264      * specified then it is the same as explicitly enabling all lengths
265      * up to and including the specified maximum, which means all larger
266      * lengths will be implicitly disabled.  If no sve<N> properties
267      * are enabled and sve-max-vq is not specified, then all lengths not
268      * explicitly disabled will be enabled.  Additionally, all power-of-two
269      * vector lengths less than the maximum enabled length will be
270      * automatically enabled and all vector lengths larger than the largest
271      * disabled power-of-two vector length will be automatically disabled.
272      * Errors are generated if the user provided input that interferes with
273      * any of the above.  Finally, if SVE is not disabled, then at least one
274      * vector length must be enabled.
275      */
276     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
277     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
278     uint32_t vq, max_vq = 0;
279 
280     /* Collect the set of vector lengths supported by KVM. */
281     bitmap_zero(kvm_supported, ARM_MAX_VQ);
282     if (kvm_enabled() && kvm_arm_sve_supported(CPU(cpu))) {
283         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
284     } else if (kvm_enabled()) {
285         assert(!cpu_isar_feature(aa64_sve, cpu));
286     }
287 
288     /*
289      * Process explicit sve<N> properties.
290      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
291      * Check first for any sve<N> enabled.
292      */
293     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
294         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
295 
296         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
297             error_setg(errp, "cannot enable sve%d", max_vq * 128);
298             error_append_hint(errp, "sve%d is larger than the maximum vector "
299                               "length, sve-max-vq=%d (%d bits)\n",
300                               max_vq * 128, cpu->sve_max_vq,
301                               cpu->sve_max_vq * 128);
302             return;
303         }
304 
305         if (kvm_enabled()) {
306             /*
307              * For KVM we have to automatically enable all supported unitialized
308              * lengths, even when the smaller lengths are not all powers-of-two.
309              */
310             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
311             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
312         } else {
313             /* Propagate enabled bits down through required powers-of-two. */
314             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
315                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
316                     set_bit(vq - 1, cpu->sve_vq_map);
317                 }
318             }
319         }
320     } else if (cpu->sve_max_vq == 0) {
321         /*
322          * No explicit bits enabled, and no implicit bits from sve-max-vq.
323          */
324         if (!cpu_isar_feature(aa64_sve, cpu)) {
325             /* SVE is disabled and so are all vector lengths.  Good. */
326             return;
327         }
328 
329         if (kvm_enabled()) {
330             /* Disabling a supported length disables all larger lengths. */
331             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
332                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
333                     test_bit(vq - 1, kvm_supported)) {
334                     break;
335                 }
336             }
337             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
338             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
339                           cpu->sve_vq_init, max_vq);
340             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
341                 error_setg(errp, "cannot disable sve%d", vq * 128);
342                 error_append_hint(errp, "Disabling sve%d results in all "
343                                   "vector lengths being disabled.\n",
344                                   vq * 128);
345                 error_append_hint(errp, "With SVE enabled, at least one "
346                                   "vector length must be enabled.\n");
347                 return;
348             }
349         } else {
350             /* Disabling a power-of-two disables all larger lengths. */
351             if (test_bit(0, cpu->sve_vq_init)) {
352                 error_setg(errp, "cannot disable sve128");
353                 error_append_hint(errp, "Disabling sve128 results in all "
354                                   "vector lengths being disabled.\n");
355                 error_append_hint(errp, "With SVE enabled, at least one "
356                                   "vector length must be enabled.\n");
357                 return;
358             }
359             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
360                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
361                     break;
362                 }
363             }
364             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
365             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
366         }
367 
368         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
369     }
370 
371     /*
372      * Process the sve-max-vq property.
373      * Note that we know from the above that no bit above
374      * sve-max-vq is currently set.
375      */
376     if (cpu->sve_max_vq != 0) {
377         max_vq = cpu->sve_max_vq;
378 
379         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
380             test_bit(max_vq - 1, cpu->sve_vq_init)) {
381             error_setg(errp, "cannot disable sve%d", max_vq * 128);
382             error_append_hint(errp, "The maximum vector length must be "
383                               "enabled, sve-max-vq=%d (%d bits)\n",
384                               max_vq, max_vq * 128);
385             return;
386         }
387 
388         /* Set all bits not explicitly set within sve-max-vq. */
389         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
390         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
391     }
392 
393     /*
394      * We should know what max-vq is now.  Also, as we're done
395      * manipulating sve-vq-map, we ensure any bits above max-vq
396      * are clear, just in case anybody looks.
397      */
398     assert(max_vq != 0);
399     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
400 
401     if (kvm_enabled()) {
402         /* Ensure the set of lengths matches what KVM supports. */
403         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
404         if (!bitmap_empty(tmp, max_vq)) {
405             vq = find_last_bit(tmp, max_vq) + 1;
406             if (test_bit(vq - 1, cpu->sve_vq_map)) {
407                 if (cpu->sve_max_vq) {
408                     error_setg(errp, "cannot set sve-max-vq=%d",
409                                cpu->sve_max_vq);
410                     error_append_hint(errp, "This KVM host does not support "
411                                       "the vector length %d-bits.\n",
412                                       vq * 128);
413                     error_append_hint(errp, "It may not be possible to use "
414                                       "sve-max-vq with this KVM host. Try "
415                                       "using only sve<N> properties.\n");
416                 } else {
417                     error_setg(errp, "cannot enable sve%d", vq * 128);
418                     error_append_hint(errp, "This KVM host does not support "
419                                       "the vector length %d-bits.\n",
420                                       vq * 128);
421                 }
422             } else {
423                 error_setg(errp, "cannot disable sve%d", vq * 128);
424                 error_append_hint(errp, "The KVM host requires all "
425                                   "supported vector lengths smaller "
426                                   "than %d bits to also be enabled.\n",
427                                   max_vq * 128);
428             }
429             return;
430         }
431     } else {
432         /* Ensure all required powers-of-two are enabled. */
433         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
434             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
435                 error_setg(errp, "cannot disable sve%d", vq * 128);
436                 error_append_hint(errp, "sve%d is required as it "
437                                   "is a power-of-two length smaller than "
438                                   "the maximum, sve%d\n",
439                                   vq * 128, max_vq * 128);
440                 return;
441             }
442         }
443     }
444 
445     /*
446      * Now that we validated all our vector lengths, the only question
447      * left to answer is if we even want SVE at all.
448      */
449     if (!cpu_isar_feature(aa64_sve, cpu)) {
450         error_setg(errp, "cannot enable sve%d", max_vq * 128);
451         error_append_hint(errp, "SVE must be enabled to enable vector "
452                           "lengths.\n");
453         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
454         return;
455     }
456 
457     /* From now on sve_max_vq is the actual maximum supported length. */
458     cpu->sve_max_vq = max_vq;
459 }
460 
461 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
462                                    void *opaque, Error **errp)
463 {
464     ARMCPU *cpu = ARM_CPU(obj);
465     uint32_t value;
466 
467     /* All vector lengths are disabled when SVE is off. */
468     if (!cpu_isar_feature(aa64_sve, cpu)) {
469         value = 0;
470     } else {
471         value = cpu->sve_max_vq;
472     }
473     visit_type_uint32(v, name, &value, errp);
474 }
475 
476 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
477                                    void *opaque, Error **errp)
478 {
479     ARMCPU *cpu = ARM_CPU(obj);
480     Error *err = NULL;
481     uint32_t max_vq;
482 
483     visit_type_uint32(v, name, &max_vq, &err);
484     if (err) {
485         error_propagate(errp, err);
486         return;
487     }
488 
489     if (kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
490         error_setg(errp, "cannot set sve-max-vq");
491         error_append_hint(errp, "SVE not supported by KVM on this host\n");
492         return;
493     }
494 
495     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
496         error_setg(errp, "unsupported SVE vector length");
497         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
498                           ARM_MAX_VQ);
499         return;
500     }
501 
502     cpu->sve_max_vq = max_vq;
503 }
504 
505 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
506                                void *opaque, Error **errp)
507 {
508     ARMCPU *cpu = ARM_CPU(obj);
509     uint32_t vq = atoi(&name[3]) / 128;
510     bool value;
511 
512     /* All vector lengths are disabled when SVE is off. */
513     if (!cpu_isar_feature(aa64_sve, cpu)) {
514         value = false;
515     } else {
516         value = test_bit(vq - 1, cpu->sve_vq_map);
517     }
518     visit_type_bool(v, name, &value, errp);
519 }
520 
521 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
522                                void *opaque, Error **errp)
523 {
524     ARMCPU *cpu = ARM_CPU(obj);
525     uint32_t vq = atoi(&name[3]) / 128;
526     Error *err = NULL;
527     bool value;
528 
529     visit_type_bool(v, name, &value, &err);
530     if (err) {
531         error_propagate(errp, err);
532         return;
533     }
534 
535     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
536         error_setg(errp, "cannot enable %s", name);
537         error_append_hint(errp, "SVE not supported by KVM on this host\n");
538         return;
539     }
540 
541     if (value) {
542         set_bit(vq - 1, cpu->sve_vq_map);
543     } else {
544         clear_bit(vq - 1, cpu->sve_vq_map);
545     }
546     set_bit(vq - 1, cpu->sve_vq_init);
547 }
548 
549 static void cpu_arm_get_sve(Object *obj, Visitor *v, const char *name,
550                             void *opaque, Error **errp)
551 {
552     ARMCPU *cpu = ARM_CPU(obj);
553     bool value = cpu_isar_feature(aa64_sve, cpu);
554 
555     visit_type_bool(v, name, &value, errp);
556 }
557 
558 static void cpu_arm_set_sve(Object *obj, Visitor *v, const char *name,
559                             void *opaque, Error **errp)
560 {
561     ARMCPU *cpu = ARM_CPU(obj);
562     Error *err = NULL;
563     bool value;
564     uint64_t t;
565 
566     visit_type_bool(v, name, &value, &err);
567     if (err) {
568         error_propagate(errp, err);
569         return;
570     }
571 
572     if (value && kvm_enabled() && !kvm_arm_sve_supported(CPU(cpu))) {
573         error_setg(errp, "'sve' feature not supported by KVM on this host");
574         return;
575     }
576 
577     t = cpu->isar.id_aa64pfr0;
578     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
579     cpu->isar.id_aa64pfr0 = t;
580 }
581 
582 void aarch64_add_sve_properties(Object *obj)
583 {
584     uint32_t vq;
585 
586     object_property_add(obj, "sve", "bool", cpu_arm_get_sve,
587                         cpu_arm_set_sve, NULL, NULL, &error_fatal);
588 
589     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
590         char name[8];
591         sprintf(name, "sve%d", vq * 128);
592         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
593                             cpu_arm_set_sve_vq, NULL, NULL, &error_fatal);
594     }
595 }
596 
597 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
598  * otherwise, a CPU with as many features enabled as our emulation supports.
599  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
600  * this only needs to handle 64 bits.
601  */
602 static void aarch64_max_initfn(Object *obj)
603 {
604     ARMCPU *cpu = ARM_CPU(obj);
605 
606     if (kvm_enabled()) {
607         kvm_arm_set_cpu_features_from_host(cpu);
608         kvm_arm_add_vcpu_properties(obj);
609     } else {
610         uint64_t t;
611         uint32_t u;
612         aarch64_a57_initfn(obj);
613 
614         /*
615          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
616          * one and try to apply errata workarounds or use impdef features we
617          * don't provide.
618          * An IMPLEMENTER field of 0 means "reserved for software use";
619          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
620          * to see which features are present";
621          * the VARIANT, PARTNUM and REVISION fields are all implementation
622          * defined and we choose to define PARTNUM just in case guest
623          * code needs to distinguish this QEMU CPU from other software
624          * implementations, though this shouldn't be needed.
625          */
626         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
627         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
628         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
629         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
630         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
631         cpu->midr = t;
632 
633         t = cpu->isar.id_aa64isar0;
634         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
635         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
636         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
637         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
638         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
639         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
640         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
641         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
642         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
643         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
644         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
645         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
646         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
647         cpu->isar.id_aa64isar0 = t;
648 
649         t = cpu->isar.id_aa64isar1;
650         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
651         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
652         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
653         t = FIELD_DP64(t, ID_AA64ISAR1, APA, 1); /* PAuth, architected only */
654         t = FIELD_DP64(t, ID_AA64ISAR1, API, 0);
655         t = FIELD_DP64(t, ID_AA64ISAR1, GPA, 1);
656         t = FIELD_DP64(t, ID_AA64ISAR1, GPI, 0);
657         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
658         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
659         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
660         cpu->isar.id_aa64isar1 = t;
661 
662         t = cpu->isar.id_aa64pfr0;
663         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
664         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
665         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
666         cpu->isar.id_aa64pfr0 = t;
667 
668         t = cpu->isar.id_aa64pfr1;
669         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
670         cpu->isar.id_aa64pfr1 = t;
671 
672         t = cpu->isar.id_aa64mmfr1;
673         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
674         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
675         cpu->isar.id_aa64mmfr1 = t;
676 
677         /* Replicate the same data to the 32-bit id registers.  */
678         u = cpu->isar.id_isar5;
679         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
680         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
681         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
682         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
683         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
684         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
685         cpu->isar.id_isar5 = u;
686 
687         u = cpu->isar.id_isar6;
688         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
689         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
690         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
691         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
692         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
693         cpu->isar.id_isar6 = u;
694 
695         /*
696          * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
697          * so do not set MVFR1.FPHP.  Strictly speaking this is not legal,
698          * but it is also not legal to enable SVE without support for FP16,
699          * and enabling SVE in system mode is more useful in the short term.
700          */
701 
702 #ifdef CONFIG_USER_ONLY
703         /* For usermode -cpu max we can use a larger and more efficient DCZ
704          * blocksize since we don't have to follow what the hardware does.
705          */
706         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
707         cpu->dcz_blocksize = 7; /*  512 bytes */
708 #endif
709     }
710 
711     aarch64_add_sve_properties(obj);
712     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
713                         cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
714 }
715 
716 struct ARMCPUInfo {
717     const char *name;
718     void (*initfn)(Object *obj);
719     void (*class_init)(ObjectClass *oc, void *data);
720 };
721 
722 static const ARMCPUInfo aarch64_cpus[] = {
723     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
724     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
725     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
726     { .name = "max",                .initfn = aarch64_max_initfn },
727     { .name = NULL }
728 };
729 
730 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
731 {
732     ARMCPU *cpu = ARM_CPU(obj);
733 
734     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
735 }
736 
737 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
738 {
739     ARMCPU *cpu = ARM_CPU(obj);
740 
741     /* At this time, this property is only allowed if KVM is enabled.  This
742      * restriction allows us to avoid fixing up functionality that assumes a
743      * uniform execution state like do_interrupt.
744      */
745     if (value == false) {
746         if (!kvm_enabled() || !kvm_arm_aarch32_supported(CPU(cpu))) {
747             error_setg(errp, "'aarch64' feature cannot be disabled "
748                              "unless KVM is enabled and 32-bit EL1 "
749                              "is supported");
750             return;
751         }
752         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
753     } else {
754         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
755     }
756 }
757 
758 static void aarch64_cpu_initfn(Object *obj)
759 {
760     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
761                              aarch64_cpu_set_aarch64, NULL);
762     object_property_set_description(obj, "aarch64",
763                                     "Set on/off to enable/disable aarch64 "
764                                     "execution state ",
765                                     NULL);
766 }
767 
768 static void aarch64_cpu_finalizefn(Object *obj)
769 {
770 }
771 
772 static gchar *aarch64_gdb_arch_name(CPUState *cs)
773 {
774     return g_strdup("aarch64");
775 }
776 
777 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
778 {
779     CPUClass *cc = CPU_CLASS(oc);
780 
781     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
782     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
783     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
784     cc->gdb_num_core_regs = 34;
785     cc->gdb_core_xml_file = "aarch64-core.xml";
786     cc->gdb_arch_name = aarch64_gdb_arch_name;
787 }
788 
789 static void aarch64_cpu_instance_init(Object *obj)
790 {
791     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
792 
793     acc->info->initfn(obj);
794     arm_cpu_post_init(obj);
795 }
796 
797 static void cpu_register_class_init(ObjectClass *oc, void *data)
798 {
799     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
800 
801     acc->info = data;
802 }
803 
804 static void aarch64_cpu_register(const ARMCPUInfo *info)
805 {
806     TypeInfo type_info = {
807         .parent = TYPE_AARCH64_CPU,
808         .instance_size = sizeof(ARMCPU),
809         .instance_init = aarch64_cpu_instance_init,
810         .class_size = sizeof(ARMCPUClass),
811         .class_init = info->class_init ?: cpu_register_class_init,
812         .class_data = (void *)info,
813     };
814 
815     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
816     type_register(&type_info);
817     g_free((void *)type_info.name);
818 }
819 
820 static const TypeInfo aarch64_cpu_type_info = {
821     .name = TYPE_AARCH64_CPU,
822     .parent = TYPE_ARM_CPU,
823     .instance_size = sizeof(ARMCPU),
824     .instance_init = aarch64_cpu_initfn,
825     .instance_finalize = aarch64_cpu_finalizefn,
826     .abstract = true,
827     .class_size = sizeof(AArch64CPUClass),
828     .class_init = aarch64_cpu_class_init,
829 };
830 
831 static void aarch64_cpu_register_types(void)
832 {
833     const ARMCPUInfo *info = aarch64_cpus;
834 
835     type_register_static(&aarch64_cpu_type_info);
836 
837     while (info->name) {
838         aarch64_cpu_register(info);
839         info++;
840     }
841 }
842 
843 type_init(aarch64_cpu_register_types)
844