xref: /qemu/target/arm/cpu64.c (revision 2e8f72ac)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "sysemu/kvm.h"
29 #include "kvm_arm.h"
30 #include "qapi/visitor.h"
31 #include "hw/qdev-properties.h"
32 
33 
34 #ifndef CONFIG_USER_ONLY
35 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
36 {
37     ARMCPU *cpu = env_archcpu(env);
38 
39     /* Number of cores is in [25:24]; otherwise we RAZ */
40     return (cpu->core_count - 1) << 24;
41 }
42 #endif
43 
44 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo[] = {
45 #ifndef CONFIG_USER_ONLY
46     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
47       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
48       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
49       .writefn = arm_cp_write_ignore },
50     { .name = "L2CTLR",
51       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
52       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
53       .writefn = arm_cp_write_ignore },
54 #endif
55     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
56       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
57       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
58     { .name = "L2ECTLR",
59       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
60       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
61     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
62       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
63       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
64     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
65       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "CPUACTLR",
68       .cp = 15, .opc1 = 0, .crm = 15,
69       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
70     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
71       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
72       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73     { .name = "CPUECTLR",
74       .cp = 15, .opc1 = 1, .crm = 15,
75       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
76     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
77       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
78       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
79     { .name = "CPUMERRSR",
80       .cp = 15, .opc1 = 2, .crm = 15,
81       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
82     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
83       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
84       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
85     { .name = "L2MERRSR",
86       .cp = 15, .opc1 = 3, .crm = 15,
87       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
88     REGINFO_SENTINEL
89 };
90 
91 static void aarch64_a57_initfn(Object *obj)
92 {
93     ARMCPU *cpu = ARM_CPU(obj);
94 
95     cpu->dtb_compatible = "arm,cortex-a57";
96     set_feature(&cpu->env, ARM_FEATURE_V8);
97     set_feature(&cpu->env, ARM_FEATURE_NEON);
98     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
99     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
100     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
101     set_feature(&cpu->env, ARM_FEATURE_EL2);
102     set_feature(&cpu->env, ARM_FEATURE_EL3);
103     set_feature(&cpu->env, ARM_FEATURE_PMU);
104     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
105     cpu->midr = 0x411fd070;
106     cpu->revidr = 0x00000000;
107     cpu->reset_fpsid = 0x41034070;
108     cpu->isar.mvfr0 = 0x10110222;
109     cpu->isar.mvfr1 = 0x12111111;
110     cpu->isar.mvfr2 = 0x00000043;
111     cpu->ctr = 0x8444c004;
112     cpu->reset_sctlr = 0x00c50838;
113     cpu->isar.id_pfr0 = 0x00000131;
114     cpu->isar.id_pfr1 = 0x00011011;
115     cpu->isar.id_dfr0 = 0x03010066;
116     cpu->id_afr0 = 0x00000000;
117     cpu->isar.id_mmfr0 = 0x10101105;
118     cpu->isar.id_mmfr1 = 0x40000000;
119     cpu->isar.id_mmfr2 = 0x01260000;
120     cpu->isar.id_mmfr3 = 0x02102211;
121     cpu->isar.id_isar0 = 0x02101110;
122     cpu->isar.id_isar1 = 0x13112111;
123     cpu->isar.id_isar2 = 0x21232042;
124     cpu->isar.id_isar3 = 0x01112131;
125     cpu->isar.id_isar4 = 0x00011142;
126     cpu->isar.id_isar5 = 0x00011121;
127     cpu->isar.id_isar6 = 0;
128     cpu->isar.id_aa64pfr0 = 0x00002222;
129     cpu->isar.id_aa64dfr0 = 0x10305106;
130     cpu->isar.id_aa64isar0 = 0x00011120;
131     cpu->isar.id_aa64mmfr0 = 0x00001124;
132     cpu->isar.dbgdidr = 0x3516d000;
133     cpu->clidr = 0x0a200023;
134     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
135     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
136     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
137     cpu->dcz_blocksize = 4; /* 64 bytes */
138     cpu->gic_num_lrs = 4;
139     cpu->gic_vpribits = 5;
140     cpu->gic_vprebits = 5;
141     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
142 }
143 
144 static void aarch64_a53_initfn(Object *obj)
145 {
146     ARMCPU *cpu = ARM_CPU(obj);
147 
148     cpu->dtb_compatible = "arm,cortex-a53";
149     set_feature(&cpu->env, ARM_FEATURE_V8);
150     set_feature(&cpu->env, ARM_FEATURE_NEON);
151     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
152     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
153     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
154     set_feature(&cpu->env, ARM_FEATURE_EL2);
155     set_feature(&cpu->env, ARM_FEATURE_EL3);
156     set_feature(&cpu->env, ARM_FEATURE_PMU);
157     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
158     cpu->midr = 0x410fd034;
159     cpu->revidr = 0x00000000;
160     cpu->reset_fpsid = 0x41034070;
161     cpu->isar.mvfr0 = 0x10110222;
162     cpu->isar.mvfr1 = 0x12111111;
163     cpu->isar.mvfr2 = 0x00000043;
164     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
165     cpu->reset_sctlr = 0x00c50838;
166     cpu->isar.id_pfr0 = 0x00000131;
167     cpu->isar.id_pfr1 = 0x00011011;
168     cpu->isar.id_dfr0 = 0x03010066;
169     cpu->id_afr0 = 0x00000000;
170     cpu->isar.id_mmfr0 = 0x10101105;
171     cpu->isar.id_mmfr1 = 0x40000000;
172     cpu->isar.id_mmfr2 = 0x01260000;
173     cpu->isar.id_mmfr3 = 0x02102211;
174     cpu->isar.id_isar0 = 0x02101110;
175     cpu->isar.id_isar1 = 0x13112111;
176     cpu->isar.id_isar2 = 0x21232042;
177     cpu->isar.id_isar3 = 0x01112131;
178     cpu->isar.id_isar4 = 0x00011142;
179     cpu->isar.id_isar5 = 0x00011121;
180     cpu->isar.id_isar6 = 0;
181     cpu->isar.id_aa64pfr0 = 0x00002222;
182     cpu->isar.id_aa64dfr0 = 0x10305106;
183     cpu->isar.id_aa64isar0 = 0x00011120;
184     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
185     cpu->isar.dbgdidr = 0x3516d000;
186     cpu->clidr = 0x0a200023;
187     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
188     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
189     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
190     cpu->dcz_blocksize = 4; /* 64 bytes */
191     cpu->gic_num_lrs = 4;
192     cpu->gic_vpribits = 5;
193     cpu->gic_vprebits = 5;
194     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
195 }
196 
197 static void aarch64_a72_initfn(Object *obj)
198 {
199     ARMCPU *cpu = ARM_CPU(obj);
200 
201     cpu->dtb_compatible = "arm,cortex-a72";
202     set_feature(&cpu->env, ARM_FEATURE_V8);
203     set_feature(&cpu->env, ARM_FEATURE_NEON);
204     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
205     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
206     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
207     set_feature(&cpu->env, ARM_FEATURE_EL2);
208     set_feature(&cpu->env, ARM_FEATURE_EL3);
209     set_feature(&cpu->env, ARM_FEATURE_PMU);
210     cpu->midr = 0x410fd083;
211     cpu->revidr = 0x00000000;
212     cpu->reset_fpsid = 0x41034080;
213     cpu->isar.mvfr0 = 0x10110222;
214     cpu->isar.mvfr1 = 0x12111111;
215     cpu->isar.mvfr2 = 0x00000043;
216     cpu->ctr = 0x8444c004;
217     cpu->reset_sctlr = 0x00c50838;
218     cpu->isar.id_pfr0 = 0x00000131;
219     cpu->isar.id_pfr1 = 0x00011011;
220     cpu->isar.id_dfr0 = 0x03010066;
221     cpu->id_afr0 = 0x00000000;
222     cpu->isar.id_mmfr0 = 0x10201105;
223     cpu->isar.id_mmfr1 = 0x40000000;
224     cpu->isar.id_mmfr2 = 0x01260000;
225     cpu->isar.id_mmfr3 = 0x02102211;
226     cpu->isar.id_isar0 = 0x02101110;
227     cpu->isar.id_isar1 = 0x13112111;
228     cpu->isar.id_isar2 = 0x21232042;
229     cpu->isar.id_isar3 = 0x01112131;
230     cpu->isar.id_isar4 = 0x00011142;
231     cpu->isar.id_isar5 = 0x00011121;
232     cpu->isar.id_aa64pfr0 = 0x00002222;
233     cpu->isar.id_aa64dfr0 = 0x10305106;
234     cpu->isar.id_aa64isar0 = 0x00011120;
235     cpu->isar.id_aa64mmfr0 = 0x00001124;
236     cpu->isar.dbgdidr = 0x3516d000;
237     cpu->clidr = 0x0a200023;
238     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
239     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
240     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
241     cpu->dcz_blocksize = 4; /* 64 bytes */
242     cpu->gic_num_lrs = 4;
243     cpu->gic_vpribits = 5;
244     cpu->gic_vprebits = 5;
245     define_arm_cp_regs(cpu, cortex_a72_a57_a53_cp_reginfo);
246 }
247 
248 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
249 {
250     /*
251      * If any vector lengths are explicitly enabled with sve<N> properties,
252      * then all other lengths are implicitly disabled.  If sve-max-vq is
253      * specified then it is the same as explicitly enabling all lengths
254      * up to and including the specified maximum, which means all larger
255      * lengths will be implicitly disabled.  If no sve<N> properties
256      * are enabled and sve-max-vq is not specified, then all lengths not
257      * explicitly disabled will be enabled.  Additionally, all power-of-two
258      * vector lengths less than the maximum enabled length will be
259      * automatically enabled and all vector lengths larger than the largest
260      * disabled power-of-two vector length will be automatically disabled.
261      * Errors are generated if the user provided input that interferes with
262      * any of the above.  Finally, if SVE is not disabled, then at least one
263      * vector length must be enabled.
264      */
265     DECLARE_BITMAP(kvm_supported, ARM_MAX_VQ);
266     DECLARE_BITMAP(tmp, ARM_MAX_VQ);
267     uint32_t vq, max_vq = 0;
268 
269     /* Collect the set of vector lengths supported by KVM. */
270     bitmap_zero(kvm_supported, ARM_MAX_VQ);
271     if (kvm_enabled() && kvm_arm_sve_supported()) {
272         kvm_arm_sve_get_vls(CPU(cpu), kvm_supported);
273     } else if (kvm_enabled()) {
274         assert(!cpu_isar_feature(aa64_sve, cpu));
275     }
276 
277     /*
278      * Process explicit sve<N> properties.
279      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
280      * Check first for any sve<N> enabled.
281      */
282     if (!bitmap_empty(cpu->sve_vq_map, ARM_MAX_VQ)) {
283         max_vq = find_last_bit(cpu->sve_vq_map, ARM_MAX_VQ) + 1;
284 
285         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
286             error_setg(errp, "cannot enable sve%d", max_vq * 128);
287             error_append_hint(errp, "sve%d is larger than the maximum vector "
288                               "length, sve-max-vq=%d (%d bits)\n",
289                               max_vq * 128, cpu->sve_max_vq,
290                               cpu->sve_max_vq * 128);
291             return;
292         }
293 
294         if (kvm_enabled()) {
295             /*
296              * For KVM we have to automatically enable all supported unitialized
297              * lengths, even when the smaller lengths are not all powers-of-two.
298              */
299             bitmap_andnot(tmp, kvm_supported, cpu->sve_vq_init, max_vq);
300             bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
301         } else {
302             /* Propagate enabled bits down through required powers-of-two. */
303             for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
304                 if (!test_bit(vq - 1, cpu->sve_vq_init)) {
305                     set_bit(vq - 1, cpu->sve_vq_map);
306                 }
307             }
308         }
309     } else if (cpu->sve_max_vq == 0) {
310         /*
311          * No explicit bits enabled, and no implicit bits from sve-max-vq.
312          */
313         if (!cpu_isar_feature(aa64_sve, cpu)) {
314             /* SVE is disabled and so are all vector lengths.  Good. */
315             return;
316         }
317 
318         if (kvm_enabled()) {
319             /* Disabling a supported length disables all larger lengths. */
320             for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
321                 if (test_bit(vq - 1, cpu->sve_vq_init) &&
322                     test_bit(vq - 1, kvm_supported)) {
323                     break;
324                 }
325             }
326             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
327             bitmap_andnot(cpu->sve_vq_map, kvm_supported,
328                           cpu->sve_vq_init, max_vq);
329             if (max_vq == 0 || bitmap_empty(cpu->sve_vq_map, max_vq)) {
330                 error_setg(errp, "cannot disable sve%d", vq * 128);
331                 error_append_hint(errp, "Disabling sve%d results in all "
332                                   "vector lengths being disabled.\n",
333                                   vq * 128);
334                 error_append_hint(errp, "With SVE enabled, at least one "
335                                   "vector length must be enabled.\n");
336                 return;
337             }
338         } else {
339             /* Disabling a power-of-two disables all larger lengths. */
340             if (test_bit(0, cpu->sve_vq_init)) {
341                 error_setg(errp, "cannot disable sve128");
342                 error_append_hint(errp, "Disabling sve128 results in all "
343                                   "vector lengths being disabled.\n");
344                 error_append_hint(errp, "With SVE enabled, at least one "
345                                   "vector length must be enabled.\n");
346                 return;
347             }
348             for (vq = 2; vq <= ARM_MAX_VQ; vq <<= 1) {
349                 if (test_bit(vq - 1, cpu->sve_vq_init)) {
350                     break;
351                 }
352             }
353             max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
354             bitmap_complement(cpu->sve_vq_map, cpu->sve_vq_init, max_vq);
355         }
356 
357         max_vq = find_last_bit(cpu->sve_vq_map, max_vq) + 1;
358     }
359 
360     /*
361      * Process the sve-max-vq property.
362      * Note that we know from the above that no bit above
363      * sve-max-vq is currently set.
364      */
365     if (cpu->sve_max_vq != 0) {
366         max_vq = cpu->sve_max_vq;
367 
368         if (!test_bit(max_vq - 1, cpu->sve_vq_map) &&
369             test_bit(max_vq - 1, cpu->sve_vq_init)) {
370             error_setg(errp, "cannot disable sve%d", max_vq * 128);
371             error_append_hint(errp, "The maximum vector length must be "
372                               "enabled, sve-max-vq=%d (%d bits)\n",
373                               max_vq, max_vq * 128);
374             return;
375         }
376 
377         /* Set all bits not explicitly set within sve-max-vq. */
378         bitmap_complement(tmp, cpu->sve_vq_init, max_vq);
379         bitmap_or(cpu->sve_vq_map, cpu->sve_vq_map, tmp, max_vq);
380     }
381 
382     /*
383      * We should know what max-vq is now.  Also, as we're done
384      * manipulating sve-vq-map, we ensure any bits above max-vq
385      * are clear, just in case anybody looks.
386      */
387     assert(max_vq != 0);
388     bitmap_clear(cpu->sve_vq_map, max_vq, ARM_MAX_VQ - max_vq);
389 
390     if (kvm_enabled()) {
391         /* Ensure the set of lengths matches what KVM supports. */
392         bitmap_xor(tmp, cpu->sve_vq_map, kvm_supported, max_vq);
393         if (!bitmap_empty(tmp, max_vq)) {
394             vq = find_last_bit(tmp, max_vq) + 1;
395             if (test_bit(vq - 1, cpu->sve_vq_map)) {
396                 if (cpu->sve_max_vq) {
397                     error_setg(errp, "cannot set sve-max-vq=%d",
398                                cpu->sve_max_vq);
399                     error_append_hint(errp, "This KVM host does not support "
400                                       "the vector length %d-bits.\n",
401                                       vq * 128);
402                     error_append_hint(errp, "It may not be possible to use "
403                                       "sve-max-vq with this KVM host. Try "
404                                       "using only sve<N> properties.\n");
405                 } else {
406                     error_setg(errp, "cannot enable sve%d", vq * 128);
407                     error_append_hint(errp, "This KVM host does not support "
408                                       "the vector length %d-bits.\n",
409                                       vq * 128);
410                 }
411             } else {
412                 error_setg(errp, "cannot disable sve%d", vq * 128);
413                 error_append_hint(errp, "The KVM host requires all "
414                                   "supported vector lengths smaller "
415                                   "than %d bits to also be enabled.\n",
416                                   max_vq * 128);
417             }
418             return;
419         }
420     } else {
421         /* Ensure all required powers-of-two are enabled. */
422         for (vq = pow2floor(max_vq); vq >= 1; vq >>= 1) {
423             if (!test_bit(vq - 1, cpu->sve_vq_map)) {
424                 error_setg(errp, "cannot disable sve%d", vq * 128);
425                 error_append_hint(errp, "sve%d is required as it "
426                                   "is a power-of-two length smaller than "
427                                   "the maximum, sve%d\n",
428                                   vq * 128, max_vq * 128);
429                 return;
430             }
431         }
432     }
433 
434     /*
435      * Now that we validated all our vector lengths, the only question
436      * left to answer is if we even want SVE at all.
437      */
438     if (!cpu_isar_feature(aa64_sve, cpu)) {
439         error_setg(errp, "cannot enable sve%d", max_vq * 128);
440         error_append_hint(errp, "SVE must be enabled to enable vector "
441                           "lengths.\n");
442         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
443         return;
444     }
445 
446     /* From now on sve_max_vq is the actual maximum supported length. */
447     cpu->sve_max_vq = max_vq;
448 }
449 
450 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
451                                    void *opaque, Error **errp)
452 {
453     ARMCPU *cpu = ARM_CPU(obj);
454     uint32_t value;
455 
456     /* All vector lengths are disabled when SVE is off. */
457     if (!cpu_isar_feature(aa64_sve, cpu)) {
458         value = 0;
459     } else {
460         value = cpu->sve_max_vq;
461     }
462     visit_type_uint32(v, name, &value, errp);
463 }
464 
465 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
466                                    void *opaque, Error **errp)
467 {
468     ARMCPU *cpu = ARM_CPU(obj);
469     uint32_t max_vq;
470 
471     if (!visit_type_uint32(v, name, &max_vq, errp)) {
472         return;
473     }
474 
475     if (kvm_enabled() && !kvm_arm_sve_supported()) {
476         error_setg(errp, "cannot set sve-max-vq");
477         error_append_hint(errp, "SVE not supported by KVM on this host\n");
478         return;
479     }
480 
481     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
482         error_setg(errp, "unsupported SVE vector length");
483         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
484                           ARM_MAX_VQ);
485         return;
486     }
487 
488     cpu->sve_max_vq = max_vq;
489 }
490 
491 /*
492  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
493  * object_property_add_bool interface because they make use
494  * of the contents of "name" to determine which bit on which
495  * to operate.
496  */
497 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
498                                void *opaque, Error **errp)
499 {
500     ARMCPU *cpu = ARM_CPU(obj);
501     uint32_t vq = atoi(&name[3]) / 128;
502     bool value;
503 
504     /* All vector lengths are disabled when SVE is off. */
505     if (!cpu_isar_feature(aa64_sve, cpu)) {
506         value = false;
507     } else {
508         value = test_bit(vq - 1, cpu->sve_vq_map);
509     }
510     visit_type_bool(v, name, &value, errp);
511 }
512 
513 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
514                                void *opaque, Error **errp)
515 {
516     ARMCPU *cpu = ARM_CPU(obj);
517     uint32_t vq = atoi(&name[3]) / 128;
518     bool value;
519 
520     if (!visit_type_bool(v, name, &value, errp)) {
521         return;
522     }
523 
524     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
525         error_setg(errp, "cannot enable %s", name);
526         error_append_hint(errp, "SVE not supported by KVM on this host\n");
527         return;
528     }
529 
530     if (value) {
531         set_bit(vq - 1, cpu->sve_vq_map);
532     } else {
533         clear_bit(vq - 1, cpu->sve_vq_map);
534     }
535     set_bit(vq - 1, cpu->sve_vq_init);
536 }
537 
538 static bool cpu_arm_get_sve(Object *obj, Error **errp)
539 {
540     ARMCPU *cpu = ARM_CPU(obj);
541     return cpu_isar_feature(aa64_sve, cpu);
542 }
543 
544 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
545 {
546     ARMCPU *cpu = ARM_CPU(obj);
547     uint64_t t;
548 
549     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
550         error_setg(errp, "'sve' feature not supported by KVM on this host");
551         return;
552     }
553 
554     t = cpu->isar.id_aa64pfr0;
555     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
556     cpu->isar.id_aa64pfr0 = t;
557 }
558 
559 void aarch64_add_sve_properties(Object *obj)
560 {
561     uint32_t vq;
562 
563     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
564 
565     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
566         char name[8];
567         sprintf(name, "sve%d", vq * 128);
568         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
569                             cpu_arm_set_sve_vq, NULL, NULL);
570     }
571 }
572 
573 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
574 {
575     int arch_val = 0, impdef_val = 0;
576     uint64_t t;
577 
578     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
579     if (cpu->prop_pauth) {
580         if (cpu->prop_pauth_impdef) {
581             impdef_val = 1;
582         } else {
583             arch_val = 1;
584         }
585     } else if (cpu->prop_pauth_impdef) {
586         error_setg(errp, "cannot enable pauth-impdef without pauth");
587         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
588     }
589 
590     t = cpu->isar.id_aa64isar1;
591     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
592     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
593     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
594     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
595     cpu->isar.id_aa64isar1 = t;
596 }
597 
598 static Property arm_cpu_pauth_property =
599     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
600 static Property arm_cpu_pauth_impdef_property =
601     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
602 
603 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
604  * otherwise, a CPU with as many features enabled as our emulation supports.
605  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
606  * this only needs to handle 64 bits.
607  */
608 static void aarch64_max_initfn(Object *obj)
609 {
610     ARMCPU *cpu = ARM_CPU(obj);
611 
612     if (kvm_enabled()) {
613         kvm_arm_set_cpu_features_from_host(cpu);
614     } else {
615         uint64_t t;
616         uint32_t u;
617         aarch64_a57_initfn(obj);
618 
619         /*
620          * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
621          * one and try to apply errata workarounds or use impdef features we
622          * don't provide.
623          * An IMPLEMENTER field of 0 means "reserved for software use";
624          * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
625          * to see which features are present";
626          * the VARIANT, PARTNUM and REVISION fields are all implementation
627          * defined and we choose to define PARTNUM just in case guest
628          * code needs to distinguish this QEMU CPU from other software
629          * implementations, though this shouldn't be needed.
630          */
631         t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
632         t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
633         t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
634         t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
635         t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
636         cpu->midr = t;
637 
638         t = cpu->isar.id_aa64isar0;
639         t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* AES + PMULL */
640         t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);
641         t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* SHA512 */
642         t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
643         t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);
644         t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);
645         t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);
646         t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);
647         t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);
648         t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);
649         t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);
650         t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* v8.5-CondM */
651         t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);
652         cpu->isar.id_aa64isar0 = t;
653 
654         t = cpu->isar.id_aa64isar1;
655         t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);
656         t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);
657         t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);
658         t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);
659         t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);
660         t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);
661         t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* ARMv8.4-RCPC */
662         cpu->isar.id_aa64isar1 = t;
663 
664         t = cpu->isar.id_aa64pfr0;
665         t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
666         t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);
667         t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);
668         t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);
669         cpu->isar.id_aa64pfr0 = t;
670 
671         t = cpu->isar.id_aa64pfr1;
672         t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);
673         /*
674          * Begin with full support for MTE. This will be downgraded to MTE=0
675          * during realize if the board provides no tag memory, much like
676          * we do for EL2 with the virtualization=on property.
677          */
678         t = FIELD_DP64(t, ID_AA64PFR1, MTE, 2);
679         cpu->isar.id_aa64pfr1 = t;
680 
681         t = cpu->isar.id_aa64mmfr0;
682         t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 5); /* PARange: 48 bits */
683         cpu->isar.id_aa64mmfr0 = t;
684 
685         t = cpu->isar.id_aa64mmfr1;
686         t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1); /* HPD */
687         t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);
688         t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);
689         t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2); /* ATS1E1 */
690         t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* VMID16 */
691         t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* TTS2UXN */
692         cpu->isar.id_aa64mmfr1 = t;
693 
694         t = cpu->isar.id_aa64mmfr2;
695         t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);
696         t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* TTCNP */
697         t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* TTST */
698         cpu->isar.id_aa64mmfr2 = t;
699 
700         /* Replicate the same data to the 32-bit id registers.  */
701         u = cpu->isar.id_isar5;
702         u = FIELD_DP32(u, ID_ISAR5, AES, 2); /* AES + PMULL */
703         u = FIELD_DP32(u, ID_ISAR5, SHA1, 1);
704         u = FIELD_DP32(u, ID_ISAR5, SHA2, 1);
705         u = FIELD_DP32(u, ID_ISAR5, CRC32, 1);
706         u = FIELD_DP32(u, ID_ISAR5, RDM, 1);
707         u = FIELD_DP32(u, ID_ISAR5, VCMA, 1);
708         cpu->isar.id_isar5 = u;
709 
710         u = cpu->isar.id_isar6;
711         u = FIELD_DP32(u, ID_ISAR6, JSCVT, 1);
712         u = FIELD_DP32(u, ID_ISAR6, DP, 1);
713         u = FIELD_DP32(u, ID_ISAR6, FHM, 1);
714         u = FIELD_DP32(u, ID_ISAR6, SB, 1);
715         u = FIELD_DP32(u, ID_ISAR6, SPECRES, 1);
716         cpu->isar.id_isar6 = u;
717 
718         u = cpu->isar.id_mmfr3;
719         u = FIELD_DP32(u, ID_MMFR3, PAN, 2); /* ATS1E1 */
720         cpu->isar.id_mmfr3 = u;
721 
722         u = cpu->isar.id_mmfr4;
723         u = FIELD_DP32(u, ID_MMFR4, HPDS, 1); /* AA32HPD */
724         u = FIELD_DP32(u, ID_MMFR4, AC2, 1); /* ACTLR2, HACTLR2 */
725         u = FIELD_DP32(u, ID_MMFR4, CNP, 1); /* TTCNP */
726         u = FIELD_DP32(u, ID_MMFR4, XNX, 1); /* TTS2UXN */
727         cpu->isar.id_mmfr4 = u;
728 
729         t = cpu->isar.id_aa64dfr0;
730         t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5); /* v8.4-PMU */
731         cpu->isar.id_aa64dfr0 = t;
732 
733         u = cpu->isar.id_dfr0;
734         u = FIELD_DP32(u, ID_DFR0, PERFMON, 5); /* v8.4-PMU */
735         cpu->isar.id_dfr0 = u;
736 
737         u = cpu->isar.mvfr1;
738         u = FIELD_DP32(u, MVFR1, FPHP, 3);      /* v8.2-FP16 */
739         u = FIELD_DP32(u, MVFR1, SIMDHP, 2);    /* v8.2-FP16 */
740         cpu->isar.mvfr1 = u;
741 
742 #ifdef CONFIG_USER_ONLY
743         /* For usermode -cpu max we can use a larger and more efficient DCZ
744          * blocksize since we don't have to follow what the hardware does.
745          */
746         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
747         cpu->dcz_blocksize = 7; /*  512 bytes */
748 #endif
749 
750         /* Default to PAUTH on, with the architected algorithm. */
751         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
752         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
753     }
754 
755     aarch64_add_sve_properties(obj);
756     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
757                         cpu_max_set_sve_max_vq, NULL, NULL);
758 }
759 
760 static const ARMCPUInfo aarch64_cpus[] = {
761     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
762     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
763     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
764     { .name = "max",                .initfn = aarch64_max_initfn },
765 };
766 
767 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
768 {
769     ARMCPU *cpu = ARM_CPU(obj);
770 
771     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
772 }
773 
774 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
775 {
776     ARMCPU *cpu = ARM_CPU(obj);
777 
778     /* At this time, this property is only allowed if KVM is enabled.  This
779      * restriction allows us to avoid fixing up functionality that assumes a
780      * uniform execution state like do_interrupt.
781      */
782     if (value == false) {
783         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
784             error_setg(errp, "'aarch64' feature cannot be disabled "
785                              "unless KVM is enabled and 32-bit EL1 "
786                              "is supported");
787             return;
788         }
789         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
790     } else {
791         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
792     }
793 }
794 
795 static void aarch64_cpu_finalizefn(Object *obj)
796 {
797 }
798 
799 static gchar *aarch64_gdb_arch_name(CPUState *cs)
800 {
801     return g_strdup("aarch64");
802 }
803 
804 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
805 {
806     CPUClass *cc = CPU_CLASS(oc);
807 
808     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
809     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
810     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
811     cc->gdb_num_core_regs = 34;
812     cc->gdb_core_xml_file = "aarch64-core.xml";
813     cc->gdb_arch_name = aarch64_gdb_arch_name;
814 
815     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
816                                    aarch64_cpu_set_aarch64);
817     object_class_property_set_description(oc, "aarch64",
818                                           "Set on/off to enable/disable aarch64 "
819                                           "execution state ");
820 }
821 
822 static void aarch64_cpu_instance_init(Object *obj)
823 {
824     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
825 
826     acc->info->initfn(obj);
827     arm_cpu_post_init(obj);
828 }
829 
830 static void cpu_register_class_init(ObjectClass *oc, void *data)
831 {
832     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
833 
834     acc->info = data;
835 }
836 
837 void aarch64_cpu_register(const ARMCPUInfo *info)
838 {
839     TypeInfo type_info = {
840         .parent = TYPE_AARCH64_CPU,
841         .instance_size = sizeof(ARMCPU),
842         .instance_init = aarch64_cpu_instance_init,
843         .class_size = sizeof(ARMCPUClass),
844         .class_init = info->class_init ?: cpu_register_class_init,
845         .class_data = (void *)info,
846     };
847 
848     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
849     type_register(&type_info);
850     g_free((void *)type_info.name);
851 }
852 
853 static const TypeInfo aarch64_cpu_type_info = {
854     .name = TYPE_AARCH64_CPU,
855     .parent = TYPE_ARM_CPU,
856     .instance_size = sizeof(ARMCPU),
857     .instance_finalize = aarch64_cpu_finalizefn,
858     .abstract = true,
859     .class_size = sizeof(AArch64CPUClass),
860     .class_init = aarch64_cpu_class_init,
861 };
862 
863 static void aarch64_cpu_register_types(void)
864 {
865     size_t i;
866 
867     type_register_static(&aarch64_cpu_type_info);
868 
869     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
870         aarch64_cpu_register(&aarch64_cpus[i]);
871     }
872 }
873 
874 type_init(aarch64_cpu_register_types)
875