xref: /qemu/target/arm/cpu64.c (revision 65650f01)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu-common.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
32 
33 static inline void set_feature(CPUARMState *env, int feature)
34 {
35     env->features |= 1ULL << feature;
36 }
37 
38 static inline void unset_feature(CPUARMState *env, int feature)
39 {
40     env->features &= ~(1ULL << feature);
41 }
42 
43 #ifndef CONFIG_USER_ONLY
44 static uint64_t a57_a53_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
45 {
46     ARMCPU *cpu = arm_env_get_cpu(env);
47 
48     /* Number of cores is in [25:24]; otherwise we RAZ */
49     return (cpu->core_count - 1) << 24;
50 }
51 #endif
52 
53 static const ARMCPRegInfo cortex_a57_a53_cp_reginfo[] = {
54 #ifndef CONFIG_USER_ONLY
55     { .name = "L2CTLR_EL1", .state = ARM_CP_STATE_AA64,
56       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 2,
57       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
58       .writefn = arm_cp_write_ignore },
59     { .name = "L2CTLR",
60       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 2,
61       .access = PL1_RW, .readfn = a57_a53_l2ctlr_read,
62       .writefn = arm_cp_write_ignore },
63 #endif
64     { .name = "L2ECTLR_EL1", .state = ARM_CP_STATE_AA64,
65       .opc0 = 3, .opc1 = 1, .crn = 11, .crm = 0, .opc2 = 3,
66       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
67     { .name = "L2ECTLR",
68       .cp = 15, .opc1 = 1, .crn = 9, .crm = 0, .opc2 = 3,
69       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
70     { .name = "L2ACTLR", .state = ARM_CP_STATE_BOTH,
71       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 0, .opc2 = 0,
72       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
73     { .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
74       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 0,
75       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
76     { .name = "CPUACTLR",
77       .cp = 15, .opc1 = 0, .crm = 15,
78       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
79     { .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
80       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 1,
81       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
82     { .name = "CPUECTLR",
83       .cp = 15, .opc1 = 1, .crm = 15,
84       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
85     { .name = "CPUMERRSR_EL1", .state = ARM_CP_STATE_AA64,
86       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 2,
87       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
88     { .name = "CPUMERRSR",
89       .cp = 15, .opc1 = 2, .crm = 15,
90       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
91     { .name = "L2MERRSR_EL1", .state = ARM_CP_STATE_AA64,
92       .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 2, .opc2 = 3,
93       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
94     { .name = "L2MERRSR",
95       .cp = 15, .opc1 = 3, .crm = 15,
96       .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
97     REGINFO_SENTINEL
98 };
99 
100 static void aarch64_a57_initfn(Object *obj)
101 {
102     ARMCPU *cpu = ARM_CPU(obj);
103 
104     cpu->dtb_compatible = "arm,cortex-a57";
105     set_feature(&cpu->env, ARM_FEATURE_V8);
106     set_feature(&cpu->env, ARM_FEATURE_VFP4);
107     set_feature(&cpu->env, ARM_FEATURE_NEON);
108     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
109     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
110     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
111     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
112     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
113     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
114     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
115     set_feature(&cpu->env, ARM_FEATURE_CRC);
116     set_feature(&cpu->env, ARM_FEATURE_EL2);
117     set_feature(&cpu->env, ARM_FEATURE_EL3);
118     set_feature(&cpu->env, ARM_FEATURE_PMU);
119     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
120     cpu->midr = 0x411fd070;
121     cpu->revidr = 0x00000000;
122     cpu->reset_fpsid = 0x41034070;
123     cpu->mvfr0 = 0x10110222;
124     cpu->mvfr1 = 0x12111111;
125     cpu->mvfr2 = 0x00000043;
126     cpu->ctr = 0x8444c004;
127     cpu->reset_sctlr = 0x00c50838;
128     cpu->id_pfr0 = 0x00000131;
129     cpu->id_pfr1 = 0x00011011;
130     cpu->id_dfr0 = 0x03010066;
131     cpu->id_afr0 = 0x00000000;
132     cpu->id_mmfr0 = 0x10101105;
133     cpu->id_mmfr1 = 0x40000000;
134     cpu->id_mmfr2 = 0x01260000;
135     cpu->id_mmfr3 = 0x02102211;
136     cpu->id_isar0 = 0x02101110;
137     cpu->id_isar1 = 0x13112111;
138     cpu->id_isar2 = 0x21232042;
139     cpu->id_isar3 = 0x01112131;
140     cpu->id_isar4 = 0x00011142;
141     cpu->id_isar5 = 0x00011121;
142     cpu->id_isar6 = 0;
143     cpu->id_aa64pfr0 = 0x00002222;
144     cpu->id_aa64dfr0 = 0x10305106;
145     cpu->pmceid0 = 0x00000000;
146     cpu->pmceid1 = 0x00000000;
147     cpu->id_aa64isar0 = 0x00011120;
148     cpu->id_aa64mmfr0 = 0x00001124;
149     cpu->dbgdidr = 0x3516d000;
150     cpu->clidr = 0x0a200023;
151     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
152     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
153     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
154     cpu->dcz_blocksize = 4; /* 64 bytes */
155     cpu->gic_num_lrs = 4;
156     cpu->gic_vpribits = 5;
157     cpu->gic_vprebits = 5;
158     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
159 }
160 
161 static void aarch64_a53_initfn(Object *obj)
162 {
163     ARMCPU *cpu = ARM_CPU(obj);
164 
165     cpu->dtb_compatible = "arm,cortex-a53";
166     set_feature(&cpu->env, ARM_FEATURE_V8);
167     set_feature(&cpu->env, ARM_FEATURE_VFP4);
168     set_feature(&cpu->env, ARM_FEATURE_NEON);
169     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
170     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
171     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
172     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
173     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
174     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
175     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
176     set_feature(&cpu->env, ARM_FEATURE_CRC);
177     set_feature(&cpu->env, ARM_FEATURE_EL2);
178     set_feature(&cpu->env, ARM_FEATURE_EL3);
179     set_feature(&cpu->env, ARM_FEATURE_PMU);
180     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
181     cpu->midr = 0x410fd034;
182     cpu->revidr = 0x00000000;
183     cpu->reset_fpsid = 0x41034070;
184     cpu->mvfr0 = 0x10110222;
185     cpu->mvfr1 = 0x12111111;
186     cpu->mvfr2 = 0x00000043;
187     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
188     cpu->reset_sctlr = 0x00c50838;
189     cpu->id_pfr0 = 0x00000131;
190     cpu->id_pfr1 = 0x00011011;
191     cpu->id_dfr0 = 0x03010066;
192     cpu->id_afr0 = 0x00000000;
193     cpu->id_mmfr0 = 0x10101105;
194     cpu->id_mmfr1 = 0x40000000;
195     cpu->id_mmfr2 = 0x01260000;
196     cpu->id_mmfr3 = 0x02102211;
197     cpu->id_isar0 = 0x02101110;
198     cpu->id_isar1 = 0x13112111;
199     cpu->id_isar2 = 0x21232042;
200     cpu->id_isar3 = 0x01112131;
201     cpu->id_isar4 = 0x00011142;
202     cpu->id_isar5 = 0x00011121;
203     cpu->id_isar6 = 0;
204     cpu->id_aa64pfr0 = 0x00002222;
205     cpu->id_aa64dfr0 = 0x10305106;
206     cpu->id_aa64isar0 = 0x00011120;
207     cpu->id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
208     cpu->dbgdidr = 0x3516d000;
209     cpu->clidr = 0x0a200023;
210     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
211     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
212     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
213     cpu->dcz_blocksize = 4; /* 64 bytes */
214     cpu->gic_num_lrs = 4;
215     cpu->gic_vpribits = 5;
216     cpu->gic_vprebits = 5;
217     define_arm_cp_regs(cpu, cortex_a57_a53_cp_reginfo);
218 }
219 
220 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
221  * otherwise, a CPU with as many features enabled as our emulation supports.
222  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
223  * this only needs to handle 64 bits.
224  */
225 static void aarch64_max_initfn(Object *obj)
226 {
227     ARMCPU *cpu = ARM_CPU(obj);
228 
229     if (kvm_enabled()) {
230         kvm_arm_set_cpu_features_from_host(cpu);
231     } else {
232         aarch64_a57_initfn(obj);
233 #ifdef CONFIG_USER_ONLY
234         /* We don't set these in system emulation mode for the moment,
235          * since we don't correctly set the ID registers to advertise them,
236          * and in some cases they're only available in AArch64 and not AArch32,
237          * whereas the architecture requires them to be present in both if
238          * present in either.
239          */
240         set_feature(&cpu->env, ARM_FEATURE_V8_SHA512);
241         set_feature(&cpu->env, ARM_FEATURE_V8_SHA3);
242         set_feature(&cpu->env, ARM_FEATURE_V8_SM3);
243         set_feature(&cpu->env, ARM_FEATURE_V8_SM4);
244         set_feature(&cpu->env, ARM_FEATURE_V8_ATOMICS);
245         set_feature(&cpu->env, ARM_FEATURE_V8_RDM);
246         set_feature(&cpu->env, ARM_FEATURE_V8_DOTPROD);
247         set_feature(&cpu->env, ARM_FEATURE_V8_FP16);
248         set_feature(&cpu->env, ARM_FEATURE_V8_FCMA);
249         set_feature(&cpu->env, ARM_FEATURE_SVE);
250         /* For usermode -cpu max we can use a larger and more efficient DCZ
251          * blocksize since we don't have to follow what the hardware does.
252          */
253         cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
254         cpu->dcz_blocksize = 7; /*  512 bytes */
255 #endif
256     }
257 }
258 
259 typedef struct ARMCPUInfo {
260     const char *name;
261     void (*initfn)(Object *obj);
262     void (*class_init)(ObjectClass *oc, void *data);
263 } ARMCPUInfo;
264 
265 static const ARMCPUInfo aarch64_cpus[] = {
266     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
267     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
268     { .name = "max",                .initfn = aarch64_max_initfn },
269     { .name = NULL }
270 };
271 
272 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
273 {
274     ARMCPU *cpu = ARM_CPU(obj);
275 
276     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
277 }
278 
279 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
280 {
281     ARMCPU *cpu = ARM_CPU(obj);
282 
283     /* At this time, this property is only allowed if KVM is enabled.  This
284      * restriction allows us to avoid fixing up functionality that assumes a
285      * uniform execution state like do_interrupt.
286      */
287     if (!kvm_enabled()) {
288         error_setg(errp, "'aarch64' feature cannot be disabled "
289                          "unless KVM is enabled");
290         return;
291     }
292 
293     if (value == false) {
294         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
295     } else {
296         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
297     }
298 }
299 
300 static void aarch64_cpu_initfn(Object *obj)
301 {
302     object_property_add_bool(obj, "aarch64", aarch64_cpu_get_aarch64,
303                              aarch64_cpu_set_aarch64, NULL);
304     object_property_set_description(obj, "aarch64",
305                                     "Set on/off to enable/disable aarch64 "
306                                     "execution state ",
307                                     NULL);
308 }
309 
310 static void aarch64_cpu_finalizefn(Object *obj)
311 {
312 }
313 
314 static void aarch64_cpu_set_pc(CPUState *cs, vaddr value)
315 {
316     ARMCPU *cpu = ARM_CPU(cs);
317     /* It's OK to look at env for the current mode here, because it's
318      * never possible for an AArch64 TB to chain to an AArch32 TB.
319      * (Otherwise we would need to use synchronize_from_tb instead.)
320      */
321     if (is_a64(&cpu->env)) {
322         cpu->env.pc = value;
323     } else {
324         cpu->env.regs[15] = value;
325     }
326 }
327 
328 static gchar *aarch64_gdb_arch_name(CPUState *cs)
329 {
330     return g_strdup("aarch64");
331 }
332 
333 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
334 {
335     CPUClass *cc = CPU_CLASS(oc);
336 
337     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
338     cc->set_pc = aarch64_cpu_set_pc;
339     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
340     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
341     cc->gdb_num_core_regs = 34;
342     cc->gdb_core_xml_file = "aarch64-core.xml";
343     cc->gdb_arch_name = aarch64_gdb_arch_name;
344 }
345 
346 static void aarch64_cpu_register(const ARMCPUInfo *info)
347 {
348     TypeInfo type_info = {
349         .parent = TYPE_AARCH64_CPU,
350         .instance_size = sizeof(ARMCPU),
351         .instance_init = info->initfn,
352         .class_size = sizeof(ARMCPUClass),
353         .class_init = info->class_init,
354     };
355 
356     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
357     type_register(&type_info);
358     g_free((void *)type_info.name);
359 }
360 
361 static const TypeInfo aarch64_cpu_type_info = {
362     .name = TYPE_AARCH64_CPU,
363     .parent = TYPE_ARM_CPU,
364     .instance_size = sizeof(ARMCPU),
365     .instance_init = aarch64_cpu_initfn,
366     .instance_finalize = aarch64_cpu_finalizefn,
367     .abstract = true,
368     .class_size = sizeof(AArch64CPUClass),
369     .class_init = aarch64_cpu_class_init,
370 };
371 
372 static void aarch64_cpu_register_types(void)
373 {
374     const ARMCPUInfo *info = aarch64_cpus;
375 
376     type_register_static(&aarch64_cpu_type_info);
377 
378     while (info->name) {
379         aarch64_cpu_register(info);
380         info++;
381     }
382 }
383 
384 type_init(aarch64_cpu_register_types)
385 
386 /* The manual says that when SVE is enabled and VQ is widened the
387  * implementation is allowed to zero the previously inaccessible
388  * portion of the registers.  The corollary to that is that when
389  * SVE is enabled and VQ is narrowed we are also allowed to zero
390  * the now inaccessible portion of the registers.
391  *
392  * The intent of this is that no predicate bit beyond VQ is ever set.
393  * Which means that some operations on predicate registers themselves
394  * may operate on full uint64_t or even unrolled across the maximum
395  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
396  * may well be cheaper than conditionals to restrict the operation
397  * to the relevant portion of a uint16_t[16].
398  *
399  * TODO: Need to call this for changes to the real system registers
400  * and EL state changes.
401  */
402 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
403 {
404     int i, j;
405     uint64_t pmask;
406 
407     assert(vq >= 1 && vq <= ARM_MAX_VQ);
408 
409     /* Zap the high bits of the zregs.  */
410     for (i = 0; i < 32; i++) {
411         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
412     }
413 
414     /* Zap the high bits of the pregs and ffr.  */
415     pmask = 0;
416     if (vq & 3) {
417         pmask = ~(-1ULL << (16 * (vq & 3)));
418     }
419     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
420         for (i = 0; i < 17; ++i) {
421             env->vfp.pregs[i].p[j] &= pmask;
422         }
423         pmask = 0;
424     }
425 }
426