xref: /qemu/target/arm/cpu64.c (revision 775b30b3)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
38 
39 
40 static void aarch64_a57_initfn(Object *obj)
41 {
42     ARMCPU *cpu = ARM_CPU(obj);
43 
44     cpu->dtb_compatible = "arm,cortex-a57";
45     set_feature(&cpu->env, ARM_FEATURE_V8);
46     set_feature(&cpu->env, ARM_FEATURE_NEON);
47     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
48     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
49     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
50     set_feature(&cpu->env, ARM_FEATURE_EL2);
51     set_feature(&cpu->env, ARM_FEATURE_EL3);
52     set_feature(&cpu->env, ARM_FEATURE_PMU);
53     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
54     cpu->midr = 0x411fd070;
55     cpu->revidr = 0x00000000;
56     cpu->reset_fpsid = 0x41034070;
57     cpu->isar.mvfr0 = 0x10110222;
58     cpu->isar.mvfr1 = 0x12111111;
59     cpu->isar.mvfr2 = 0x00000043;
60     cpu->ctr = 0x8444c004;
61     cpu->reset_sctlr = 0x00c50838;
62     cpu->isar.id_pfr0 = 0x00000131;
63     cpu->isar.id_pfr1 = 0x00011011;
64     cpu->isar.id_dfr0 = 0x03010066;
65     cpu->id_afr0 = 0x00000000;
66     cpu->isar.id_mmfr0 = 0x10101105;
67     cpu->isar.id_mmfr1 = 0x40000000;
68     cpu->isar.id_mmfr2 = 0x01260000;
69     cpu->isar.id_mmfr3 = 0x02102211;
70     cpu->isar.id_isar0 = 0x02101110;
71     cpu->isar.id_isar1 = 0x13112111;
72     cpu->isar.id_isar2 = 0x21232042;
73     cpu->isar.id_isar3 = 0x01112131;
74     cpu->isar.id_isar4 = 0x00011142;
75     cpu->isar.id_isar5 = 0x00011121;
76     cpu->isar.id_isar6 = 0;
77     cpu->isar.id_aa64pfr0 = 0x00002222;
78     cpu->isar.id_aa64dfr0 = 0x10305106;
79     cpu->isar.id_aa64isar0 = 0x00011120;
80     cpu->isar.id_aa64mmfr0 = 0x00001124;
81     cpu->isar.dbgdidr = 0x3516d000;
82     cpu->isar.reset_pmcr_el0 = 0x41013000;
83     cpu->clidr = 0x0a200023;
84     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
85     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
86     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
87     cpu->dcz_blocksize = 4; /* 64 bytes */
88     cpu->gic_num_lrs = 4;
89     cpu->gic_vpribits = 5;
90     cpu->gic_vprebits = 5;
91     cpu->gic_pribits = 5;
92     define_cortex_a72_a57_a53_cp_reginfo(cpu);
93 }
94 
95 static void aarch64_a53_initfn(Object *obj)
96 {
97     ARMCPU *cpu = ARM_CPU(obj);
98 
99     cpu->dtb_compatible = "arm,cortex-a53";
100     set_feature(&cpu->env, ARM_FEATURE_V8);
101     set_feature(&cpu->env, ARM_FEATURE_NEON);
102     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
103     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
104     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
105     set_feature(&cpu->env, ARM_FEATURE_EL2);
106     set_feature(&cpu->env, ARM_FEATURE_EL3);
107     set_feature(&cpu->env, ARM_FEATURE_PMU);
108     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
109     cpu->midr = 0x410fd034;
110     cpu->revidr = 0x00000000;
111     cpu->reset_fpsid = 0x41034070;
112     cpu->isar.mvfr0 = 0x10110222;
113     cpu->isar.mvfr1 = 0x12111111;
114     cpu->isar.mvfr2 = 0x00000043;
115     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
116     cpu->reset_sctlr = 0x00c50838;
117     cpu->isar.id_pfr0 = 0x00000131;
118     cpu->isar.id_pfr1 = 0x00011011;
119     cpu->isar.id_dfr0 = 0x03010066;
120     cpu->id_afr0 = 0x00000000;
121     cpu->isar.id_mmfr0 = 0x10101105;
122     cpu->isar.id_mmfr1 = 0x40000000;
123     cpu->isar.id_mmfr2 = 0x01260000;
124     cpu->isar.id_mmfr3 = 0x02102211;
125     cpu->isar.id_isar0 = 0x02101110;
126     cpu->isar.id_isar1 = 0x13112111;
127     cpu->isar.id_isar2 = 0x21232042;
128     cpu->isar.id_isar3 = 0x01112131;
129     cpu->isar.id_isar4 = 0x00011142;
130     cpu->isar.id_isar5 = 0x00011121;
131     cpu->isar.id_isar6 = 0;
132     cpu->isar.id_aa64pfr0 = 0x00002222;
133     cpu->isar.id_aa64dfr0 = 0x10305106;
134     cpu->isar.id_aa64isar0 = 0x00011120;
135     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
136     cpu->isar.dbgdidr = 0x3516d000;
137     cpu->isar.reset_pmcr_el0 = 0x41033000;
138     cpu->clidr = 0x0a200023;
139     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
140     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
141     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
142     cpu->dcz_blocksize = 4; /* 64 bytes */
143     cpu->gic_num_lrs = 4;
144     cpu->gic_vpribits = 5;
145     cpu->gic_vprebits = 5;
146     cpu->gic_pribits = 5;
147     define_cortex_a72_a57_a53_cp_reginfo(cpu);
148 }
149 
150 static void aarch64_a72_initfn(Object *obj)
151 {
152     ARMCPU *cpu = ARM_CPU(obj);
153 
154     cpu->dtb_compatible = "arm,cortex-a72";
155     set_feature(&cpu->env, ARM_FEATURE_V8);
156     set_feature(&cpu->env, ARM_FEATURE_NEON);
157     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
158     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
159     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
160     set_feature(&cpu->env, ARM_FEATURE_EL2);
161     set_feature(&cpu->env, ARM_FEATURE_EL3);
162     set_feature(&cpu->env, ARM_FEATURE_PMU);
163     cpu->midr = 0x410fd083;
164     cpu->revidr = 0x00000000;
165     cpu->reset_fpsid = 0x41034080;
166     cpu->isar.mvfr0 = 0x10110222;
167     cpu->isar.mvfr1 = 0x12111111;
168     cpu->isar.mvfr2 = 0x00000043;
169     cpu->ctr = 0x8444c004;
170     cpu->reset_sctlr = 0x00c50838;
171     cpu->isar.id_pfr0 = 0x00000131;
172     cpu->isar.id_pfr1 = 0x00011011;
173     cpu->isar.id_dfr0 = 0x03010066;
174     cpu->id_afr0 = 0x00000000;
175     cpu->isar.id_mmfr0 = 0x10201105;
176     cpu->isar.id_mmfr1 = 0x40000000;
177     cpu->isar.id_mmfr2 = 0x01260000;
178     cpu->isar.id_mmfr3 = 0x02102211;
179     cpu->isar.id_isar0 = 0x02101110;
180     cpu->isar.id_isar1 = 0x13112111;
181     cpu->isar.id_isar2 = 0x21232042;
182     cpu->isar.id_isar3 = 0x01112131;
183     cpu->isar.id_isar4 = 0x00011142;
184     cpu->isar.id_isar5 = 0x00011121;
185     cpu->isar.id_aa64pfr0 = 0x00002222;
186     cpu->isar.id_aa64dfr0 = 0x10305106;
187     cpu->isar.id_aa64isar0 = 0x00011120;
188     cpu->isar.id_aa64mmfr0 = 0x00001124;
189     cpu->isar.dbgdidr = 0x3516d000;
190     cpu->isar.reset_pmcr_el0 = 0x41023000;
191     cpu->clidr = 0x0a200023;
192     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
193     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
194     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
195     cpu->dcz_blocksize = 4; /* 64 bytes */
196     cpu->gic_num_lrs = 4;
197     cpu->gic_vpribits = 5;
198     cpu->gic_vprebits = 5;
199     cpu->gic_pribits = 5;
200     define_cortex_a72_a57_a53_cp_reginfo(cpu);
201 }
202 
203 static void aarch64_a76_initfn(Object *obj)
204 {
205     ARMCPU *cpu = ARM_CPU(obj);
206 
207     cpu->dtb_compatible = "arm,cortex-a76";
208     set_feature(&cpu->env, ARM_FEATURE_V8);
209     set_feature(&cpu->env, ARM_FEATURE_NEON);
210     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
211     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
212     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
213     set_feature(&cpu->env, ARM_FEATURE_EL2);
214     set_feature(&cpu->env, ARM_FEATURE_EL3);
215     set_feature(&cpu->env, ARM_FEATURE_PMU);
216 
217     /* Ordered by B2.4 AArch64 registers by functional group */
218     cpu->clidr = 0x82000023;
219     cpu->ctr = 0x8444C004;
220     cpu->dcz_blocksize = 4;
221     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
222     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
223     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
224     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
225     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
226     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
227     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
228     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
229     cpu->id_afr0       = 0x00000000;
230     cpu->isar.id_dfr0  = 0x04010088;
231     cpu->isar.id_isar0 = 0x02101110;
232     cpu->isar.id_isar1 = 0x13112111;
233     cpu->isar.id_isar2 = 0x21232042;
234     cpu->isar.id_isar3 = 0x01112131;
235     cpu->isar.id_isar4 = 0x00010142;
236     cpu->isar.id_isar5 = 0x01011121;
237     cpu->isar.id_isar6 = 0x00000010;
238     cpu->isar.id_mmfr0 = 0x10201105;
239     cpu->isar.id_mmfr1 = 0x40000000;
240     cpu->isar.id_mmfr2 = 0x01260000;
241     cpu->isar.id_mmfr3 = 0x02122211;
242     cpu->isar.id_mmfr4 = 0x00021110;
243     cpu->isar.id_pfr0  = 0x10010131;
244     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
245     cpu->isar.id_pfr2  = 0x00000011;
246     cpu->midr = 0x414fd0b1;          /* r4p1 */
247     cpu->revidr = 0;
248 
249     /* From B2.18 CCSIDR_EL1 */
250     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
251     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
252     cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
253 
254     /* From B2.93 SCTLR_EL3 */
255     cpu->reset_sctlr = 0x30c50838;
256 
257     /* From B4.23 ICH_VTR_EL2 */
258     cpu->gic_num_lrs = 4;
259     cpu->gic_vpribits = 5;
260     cpu->gic_vprebits = 5;
261     cpu->gic_pribits = 5;
262 
263     /* From B5.1 AdvSIMD AArch64 register summary */
264     cpu->isar.mvfr0 = 0x10110222;
265     cpu->isar.mvfr1 = 0x13211111;
266     cpu->isar.mvfr2 = 0x00000043;
267 
268     /* From D5.1 AArch64 PMU register summary */
269     cpu->isar.reset_pmcr_el0 = 0x410b3000;
270 }
271 
272 static void aarch64_neoverse_n1_initfn(Object *obj)
273 {
274     ARMCPU *cpu = ARM_CPU(obj);
275 
276     cpu->dtb_compatible = "arm,neoverse-n1";
277     set_feature(&cpu->env, ARM_FEATURE_V8);
278     set_feature(&cpu->env, ARM_FEATURE_NEON);
279     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
280     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
281     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
282     set_feature(&cpu->env, ARM_FEATURE_EL2);
283     set_feature(&cpu->env, ARM_FEATURE_EL3);
284     set_feature(&cpu->env, ARM_FEATURE_PMU);
285 
286     /* Ordered by B2.4 AArch64 registers by functional group */
287     cpu->clidr = 0x82000023;
288     cpu->ctr = 0x8444c004;
289     cpu->dcz_blocksize = 4;
290     cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
291     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
292     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
293     cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
294     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
295     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
296     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
297     cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
298     cpu->id_afr0       = 0x00000000;
299     cpu->isar.id_dfr0  = 0x04010088;
300     cpu->isar.id_isar0 = 0x02101110;
301     cpu->isar.id_isar1 = 0x13112111;
302     cpu->isar.id_isar2 = 0x21232042;
303     cpu->isar.id_isar3 = 0x01112131;
304     cpu->isar.id_isar4 = 0x00010142;
305     cpu->isar.id_isar5 = 0x01011121;
306     cpu->isar.id_isar6 = 0x00000010;
307     cpu->isar.id_mmfr0 = 0x10201105;
308     cpu->isar.id_mmfr1 = 0x40000000;
309     cpu->isar.id_mmfr2 = 0x01260000;
310     cpu->isar.id_mmfr3 = 0x02122211;
311     cpu->isar.id_mmfr4 = 0x00021110;
312     cpu->isar.id_pfr0  = 0x10010131;
313     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
314     cpu->isar.id_pfr2  = 0x00000011;
315     cpu->midr = 0x414fd0c1;          /* r4p1 */
316     cpu->revidr = 0;
317 
318     /* From B2.23 CCSIDR_EL1 */
319     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
320     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
321     cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
322 
323     /* From B2.98 SCTLR_EL3 */
324     cpu->reset_sctlr = 0x30c50838;
325 
326     /* From B4.23 ICH_VTR_EL2 */
327     cpu->gic_num_lrs = 4;
328     cpu->gic_vpribits = 5;
329     cpu->gic_vprebits = 5;
330     cpu->gic_pribits = 5;
331 
332     /* From B5.1 AdvSIMD AArch64 register summary */
333     cpu->isar.mvfr0 = 0x10110222;
334     cpu->isar.mvfr1 = 0x13211111;
335     cpu->isar.mvfr2 = 0x00000043;
336 
337     /* From D5.1 AArch64 PMU register summary */
338     cpu->isar.reset_pmcr_el0 = 0x410c3000;
339 }
340 
341 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
342 {
343     /*
344      * If any vector lengths are explicitly enabled with sve<N> properties,
345      * then all other lengths are implicitly disabled.  If sve-max-vq is
346      * specified then it is the same as explicitly enabling all lengths
347      * up to and including the specified maximum, which means all larger
348      * lengths will be implicitly disabled.  If no sve<N> properties
349      * are enabled and sve-max-vq is not specified, then all lengths not
350      * explicitly disabled will be enabled.  Additionally, all power-of-two
351      * vector lengths less than the maximum enabled length will be
352      * automatically enabled and all vector lengths larger than the largest
353      * disabled power-of-two vector length will be automatically disabled.
354      * Errors are generated if the user provided input that interferes with
355      * any of the above.  Finally, if SVE is not disabled, then at least one
356      * vector length must be enabled.
357      */
358     uint32_t vq_map = cpu->sve_vq_map;
359     uint32_t vq_init = cpu->sve_vq_init;
360     uint32_t vq_supported;
361     uint32_t vq_mask = 0;
362     uint32_t tmp, vq, max_vq = 0;
363 
364     /*
365      * CPU models specify a set of supported vector lengths which are
366      * enabled by default.  Attempting to enable any vector length not set
367      * in the supported bitmap results in an error.  When KVM is enabled we
368      * fetch the supported bitmap from the host.
369      */
370     if (kvm_enabled()) {
371         if (kvm_arm_sve_supported()) {
372             cpu->sve_vq_supported = kvm_arm_sve_get_vls(CPU(cpu));
373             vq_supported = cpu->sve_vq_supported;
374         } else {
375             assert(!cpu_isar_feature(aa64_sve, cpu));
376             vq_supported = 0;
377         }
378     } else {
379         vq_supported = cpu->sve_vq_supported;
380     }
381 
382     /*
383      * Process explicit sve<N> properties.
384      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
385      * Check first for any sve<N> enabled.
386      */
387     if (vq_map != 0) {
388         max_vq = 32 - clz32(vq_map);
389         vq_mask = MAKE_64BIT_MASK(0, max_vq);
390 
391         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
392             error_setg(errp, "cannot enable sve%d", max_vq * 128);
393             error_append_hint(errp, "sve%d is larger than the maximum vector "
394                               "length, sve-max-vq=%d (%d bits)\n",
395                               max_vq * 128, cpu->sve_max_vq,
396                               cpu->sve_max_vq * 128);
397             return;
398         }
399 
400         if (kvm_enabled()) {
401             /*
402              * For KVM we have to automatically enable all supported unitialized
403              * lengths, even when the smaller lengths are not all powers-of-two.
404              */
405             vq_map |= vq_supported & ~vq_init & vq_mask;
406         } else {
407             /* Propagate enabled bits down through required powers-of-two. */
408             vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
409         }
410     } else if (cpu->sve_max_vq == 0) {
411         /*
412          * No explicit bits enabled, and no implicit bits from sve-max-vq.
413          */
414         if (!cpu_isar_feature(aa64_sve, cpu)) {
415             /* SVE is disabled and so are all vector lengths.  Good. */
416             return;
417         }
418 
419         if (kvm_enabled()) {
420             /* Disabling a supported length disables all larger lengths. */
421             tmp = vq_init & vq_supported;
422         } else {
423             /* Disabling a power-of-two disables all larger lengths. */
424             tmp = vq_init & SVE_VQ_POW2_MAP;
425         }
426         vq = ctz32(tmp) + 1;
427 
428         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
429         vq_mask = MAKE_64BIT_MASK(0, max_vq);
430         vq_map = vq_supported & ~vq_init & vq_mask;
431 
432         if (max_vq == 0 || vq_map == 0) {
433             error_setg(errp, "cannot disable sve%d", vq * 128);
434             error_append_hint(errp, "Disabling sve%d results in all "
435                               "vector lengths being disabled.\n",
436                               vq * 128);
437             error_append_hint(errp, "With SVE enabled, at least one "
438                               "vector length must be enabled.\n");
439             return;
440         }
441 
442         max_vq = 32 - clz32(vq_map);
443         vq_mask = MAKE_64BIT_MASK(0, max_vq);
444     }
445 
446     /*
447      * Process the sve-max-vq property.
448      * Note that we know from the above that no bit above
449      * sve-max-vq is currently set.
450      */
451     if (cpu->sve_max_vq != 0) {
452         max_vq = cpu->sve_max_vq;
453         vq_mask = MAKE_64BIT_MASK(0, max_vq);
454 
455         if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
456             error_setg(errp, "cannot disable sve%d", max_vq * 128);
457             error_append_hint(errp, "The maximum vector length must be "
458                               "enabled, sve-max-vq=%d (%d bits)\n",
459                               max_vq, max_vq * 128);
460             return;
461         }
462 
463         /* Set all bits not explicitly set within sve-max-vq. */
464         vq_map |= ~vq_init & vq_mask;
465     }
466 
467     /*
468      * We should know what max-vq is now.  Also, as we're done
469      * manipulating sve-vq-map, we ensure any bits above max-vq
470      * are clear, just in case anybody looks.
471      */
472     assert(max_vq != 0);
473     assert(vq_mask != 0);
474     vq_map &= vq_mask;
475 
476     /* Ensure the set of lengths matches what is supported. */
477     tmp = vq_map ^ (vq_supported & vq_mask);
478     if (tmp) {
479         vq = 32 - clz32(tmp);
480         if (vq_map & (1 << (vq - 1))) {
481             if (cpu->sve_max_vq) {
482                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
483                 error_append_hint(errp, "This CPU does not support "
484                                   "the vector length %d-bits.\n", vq * 128);
485                 error_append_hint(errp, "It may not be possible to use "
486                                   "sve-max-vq with this CPU. Try "
487                                   "using only sve<N> properties.\n");
488             } else {
489                 error_setg(errp, "cannot enable sve%d", vq * 128);
490                 error_append_hint(errp, "This CPU does not support "
491                                   "the vector length %d-bits.\n", vq * 128);
492             }
493             return;
494         } else {
495             if (kvm_enabled()) {
496                 error_setg(errp, "cannot disable sve%d", vq * 128);
497                 error_append_hint(errp, "The KVM host requires all "
498                                   "supported vector lengths smaller "
499                                   "than %d bits to also be enabled.\n",
500                                   max_vq * 128);
501                 return;
502             } else {
503                 /* Ensure all required powers-of-two are enabled. */
504                 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
505                 if (tmp) {
506                     vq = 32 - clz32(tmp);
507                     error_setg(errp, "cannot disable sve%d", vq * 128);
508                     error_append_hint(errp, "sve%d is required as it "
509                                       "is a power-of-two length smaller "
510                                       "than the maximum, sve%d\n",
511                                       vq * 128, max_vq * 128);
512                     return;
513                 }
514             }
515         }
516     }
517 
518     /*
519      * Now that we validated all our vector lengths, the only question
520      * left to answer is if we even want SVE at all.
521      */
522     if (!cpu_isar_feature(aa64_sve, cpu)) {
523         error_setg(errp, "cannot enable sve%d", max_vq * 128);
524         error_append_hint(errp, "SVE must be enabled to enable vector "
525                           "lengths.\n");
526         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
527         return;
528     }
529 
530     /* From now on sve_max_vq is the actual maximum supported length. */
531     cpu->sve_max_vq = max_vq;
532     cpu->sve_vq_map = vq_map;
533 }
534 
535 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
536                                    void *opaque, Error **errp)
537 {
538     ARMCPU *cpu = ARM_CPU(obj);
539     uint32_t value;
540 
541     /* All vector lengths are disabled when SVE is off. */
542     if (!cpu_isar_feature(aa64_sve, cpu)) {
543         value = 0;
544     } else {
545         value = cpu->sve_max_vq;
546     }
547     visit_type_uint32(v, name, &value, errp);
548 }
549 
550 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
551                                    void *opaque, Error **errp)
552 {
553     ARMCPU *cpu = ARM_CPU(obj);
554     uint32_t max_vq;
555 
556     if (!visit_type_uint32(v, name, &max_vq, errp)) {
557         return;
558     }
559 
560     if (kvm_enabled() && !kvm_arm_sve_supported()) {
561         error_setg(errp, "cannot set sve-max-vq");
562         error_append_hint(errp, "SVE not supported by KVM on this host\n");
563         return;
564     }
565 
566     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
567         error_setg(errp, "unsupported SVE vector length");
568         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
569                           ARM_MAX_VQ);
570         return;
571     }
572 
573     cpu->sve_max_vq = max_vq;
574 }
575 
576 /*
577  * Note that cpu_arm_get/set_sve_vq cannot use the simpler
578  * object_property_add_bool interface because they make use
579  * of the contents of "name" to determine which bit on which
580  * to operate.
581  */
582 static void cpu_arm_get_sve_vq(Object *obj, Visitor *v, const char *name,
583                                void *opaque, Error **errp)
584 {
585     ARMCPU *cpu = ARM_CPU(obj);
586     uint32_t vq = atoi(&name[3]) / 128;
587     bool value;
588 
589     /* All vector lengths are disabled when SVE is off. */
590     if (!cpu_isar_feature(aa64_sve, cpu)) {
591         value = false;
592     } else {
593         value = extract32(cpu->sve_vq_map, vq - 1, 1);
594     }
595     visit_type_bool(v, name, &value, errp);
596 }
597 
598 static void cpu_arm_set_sve_vq(Object *obj, Visitor *v, const char *name,
599                                void *opaque, Error **errp)
600 {
601     ARMCPU *cpu = ARM_CPU(obj);
602     uint32_t vq = atoi(&name[3]) / 128;
603     bool value;
604 
605     if (!visit_type_bool(v, name, &value, errp)) {
606         return;
607     }
608 
609     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
610         error_setg(errp, "cannot enable %s", name);
611         error_append_hint(errp, "SVE not supported by KVM on this host\n");
612         return;
613     }
614 
615     cpu->sve_vq_map = deposit32(cpu->sve_vq_map, vq - 1, 1, value);
616     cpu->sve_vq_init |= 1 << (vq - 1);
617 }
618 
619 static bool cpu_arm_get_sve(Object *obj, Error **errp)
620 {
621     ARMCPU *cpu = ARM_CPU(obj);
622     return cpu_isar_feature(aa64_sve, cpu);
623 }
624 
625 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
626 {
627     ARMCPU *cpu = ARM_CPU(obj);
628     uint64_t t;
629 
630     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
631         error_setg(errp, "'sve' feature not supported by KVM on this host");
632         return;
633     }
634 
635     t = cpu->isar.id_aa64pfr0;
636     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
637     cpu->isar.id_aa64pfr0 = t;
638 }
639 
640 #ifdef CONFIG_USER_ONLY
641 /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
642 static void cpu_arm_set_sve_default_vec_len(Object *obj, Visitor *v,
643                                             const char *name, void *opaque,
644                                             Error **errp)
645 {
646     ARMCPU *cpu = ARM_CPU(obj);
647     int32_t default_len, default_vq, remainder;
648 
649     if (!visit_type_int32(v, name, &default_len, errp)) {
650         return;
651     }
652 
653     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
654     if (default_len == -1) {
655         cpu->sve_default_vq = ARM_MAX_VQ;
656         return;
657     }
658 
659     default_vq = default_len / 16;
660     remainder = default_len % 16;
661 
662     /*
663      * Note that the 512 max comes from include/uapi/asm/sve_context.h
664      * and is the maximum architectural width of ZCR_ELx.LEN.
665      */
666     if (remainder || default_vq < 1 || default_vq > 512) {
667         error_setg(errp, "cannot set sve-default-vector-length");
668         if (remainder) {
669             error_append_hint(errp, "Vector length not a multiple of 16\n");
670         } else if (default_vq < 1) {
671             error_append_hint(errp, "Vector length smaller than 16\n");
672         } else {
673             error_append_hint(errp, "Vector length larger than %d\n",
674                               512 * 16);
675         }
676         return;
677     }
678 
679     cpu->sve_default_vq = default_vq;
680 }
681 
682 static void cpu_arm_get_sve_default_vec_len(Object *obj, Visitor *v,
683                                             const char *name, void *opaque,
684                                             Error **errp)
685 {
686     ARMCPU *cpu = ARM_CPU(obj);
687     int32_t value = cpu->sve_default_vq * 16;
688 
689     visit_type_int32(v, name, &value, errp);
690 }
691 #endif
692 
693 void aarch64_add_sve_properties(Object *obj)
694 {
695     uint32_t vq;
696 
697     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
698 
699     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
700         char name[8];
701         sprintf(name, "sve%d", vq * 128);
702         object_property_add(obj, name, "bool", cpu_arm_get_sve_vq,
703                             cpu_arm_set_sve_vq, NULL, NULL);
704     }
705 
706 #ifdef CONFIG_USER_ONLY
707     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
708     object_property_add(obj, "sve-default-vector-length", "int32",
709                         cpu_arm_get_sve_default_vec_len,
710                         cpu_arm_set_sve_default_vec_len, NULL, NULL);
711 #endif
712 }
713 
714 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
715 {
716     int arch_val = 0, impdef_val = 0;
717     uint64_t t;
718 
719     /* Exit early if PAuth is enabled, and fall through to disable it */
720     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
721         if (!cpu_isar_feature(aa64_pauth, cpu)) {
722             error_setg(errp, "'pauth' feature not supported by %s on this host",
723                        kvm_enabled() ? "KVM" : "hvf");
724         }
725 
726         return;
727     }
728 
729     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
730     if (cpu->prop_pauth) {
731         if (cpu->prop_pauth_impdef) {
732             impdef_val = 1;
733         } else {
734             arch_val = 1;
735         }
736     } else if (cpu->prop_pauth_impdef) {
737         error_setg(errp, "cannot enable pauth-impdef without pauth");
738         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
739     }
740 
741     t = cpu->isar.id_aa64isar1;
742     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
743     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
744     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
745     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
746     cpu->isar.id_aa64isar1 = t;
747 }
748 
749 static Property arm_cpu_pauth_property =
750     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
751 static Property arm_cpu_pauth_impdef_property =
752     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
753 
754 void aarch64_add_pauth_properties(Object *obj)
755 {
756     ARMCPU *cpu = ARM_CPU(obj);
757 
758     /* Default to PAUTH on, with the architected algorithm on TCG. */
759     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
760     if (kvm_enabled() || hvf_enabled()) {
761         /*
762          * Mirror PAuth support from the probed sysregs back into the
763          * property for KVM or hvf. Is it just a bit backward? Yes it is!
764          * Note that prop_pauth is true whether the host CPU supports the
765          * architected QARMA5 algorithm or the IMPDEF one. We don't
766          * provide the separate pauth-impdef property for KVM or hvf,
767          * only for TCG.
768          */
769         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
770     } else {
771         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
772     }
773 }
774 
775 static Property arm_cpu_lpa2_property =
776     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
777 
778 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
779 {
780     uint64_t t;
781 
782     /*
783      * We only install the property for tcg -cpu max; this is the
784      * only situation in which the cpu field can be true.
785      */
786     if (!cpu->prop_lpa2) {
787         return;
788     }
789 
790     t = cpu->isar.id_aa64mmfr0;
791     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
792     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
793     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
794     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
795     cpu->isar.id_aa64mmfr0 = t;
796 }
797 
798 static void aarch64_host_initfn(Object *obj)
799 {
800 #if defined(CONFIG_KVM)
801     ARMCPU *cpu = ARM_CPU(obj);
802     kvm_arm_set_cpu_features_from_host(cpu);
803     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
804         aarch64_add_sve_properties(obj);
805         aarch64_add_pauth_properties(obj);
806     }
807 #elif defined(CONFIG_HVF)
808     ARMCPU *cpu = ARM_CPU(obj);
809     hvf_arm_set_cpu_features_from_host(cpu);
810     aarch64_add_pauth_properties(obj);
811 #else
812     g_assert_not_reached();
813 #endif
814 }
815 
816 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
817  * otherwise, a CPU with as many features enabled as our emulation supports.
818  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
819  * this only needs to handle 64 bits.
820  */
821 static void aarch64_max_initfn(Object *obj)
822 {
823     ARMCPU *cpu = ARM_CPU(obj);
824     uint64_t t;
825     uint32_t u;
826 
827     if (kvm_enabled() || hvf_enabled()) {
828         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
829         aarch64_host_initfn(obj);
830         return;
831     }
832 
833     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
834 
835     aarch64_a57_initfn(obj);
836 
837     /*
838      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
839      * one and try to apply errata workarounds or use impdef features we
840      * don't provide.
841      * An IMPLEMENTER field of 0 means "reserved for software use";
842      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
843      * to see which features are present";
844      * the VARIANT, PARTNUM and REVISION fields are all implementation
845      * defined and we choose to define PARTNUM just in case guest
846      * code needs to distinguish this QEMU CPU from other software
847      * implementations, though this shouldn't be needed.
848      */
849     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
850     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
851     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
852     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
853     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
854     cpu->midr = t;
855 
856     /*
857      * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
858      * are zero.
859      */
860     u = cpu->clidr;
861     u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
862     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
863     cpu->clidr = u;
864 
865     t = cpu->isar.id_aa64isar0;
866     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
867     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
868     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
869     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
870     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
871     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
872     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
873     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
874     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
875     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
876     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
877     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
878     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
879     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
880     cpu->isar.id_aa64isar0 = t;
881 
882     t = cpu->isar.id_aa64isar1;
883     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
884     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
885     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
886     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
887     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
888     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
889     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
890     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
891     t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
892     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
893     cpu->isar.id_aa64isar1 = t;
894 
895     t = cpu->isar.id_aa64pfr0;
896     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
897     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
898     t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2);       /* FEAT_RASv1p1 + FEAT_DoubleFault */
899     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
900     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
901     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
902     t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
903     t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
904     cpu->isar.id_aa64pfr0 = t;
905 
906     t = cpu->isar.id_aa64pfr1;
907     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
908     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
909     /*
910      * Begin with full support for MTE. This will be downgraded to MTE=0
911      * during realize if the board provides no tag memory, much like
912      * we do for EL2 with the virtualization=on property.
913      */
914     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
915     t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0);  /* FEAT_RASv1p1 + FEAT_DoubleFault */
916     t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
917     cpu->isar.id_aa64pfr1 = t;
918 
919     t = cpu->isar.id_aa64mmfr0;
920     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
921     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
922     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
923     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
924     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
925     cpu->isar.id_aa64mmfr0 = t;
926 
927     t = cpu->isar.id_aa64mmfr1;
928     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
929     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
930     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
931     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
932     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
933     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
934     t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
935     cpu->isar.id_aa64mmfr1 = t;
936 
937     t = cpu->isar.id_aa64mmfr2;
938     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
939     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
940     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
941     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
942     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
943     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
944     t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
945     t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
946     t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
947     cpu->isar.id_aa64mmfr2 = t;
948 
949     t = cpu->isar.id_aa64zfr0;
950     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
951     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
952     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
953     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
954     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
955     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
956     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
957     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
958     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
959     cpu->isar.id_aa64zfr0 = t;
960 
961     t = cpu->isar.id_aa64dfr0;
962     t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
963     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5);    /* FEAT_PMUv3p4 */
964     cpu->isar.id_aa64dfr0 = t;
965 
966     /* Replicate the same data to the 32-bit id registers.  */
967     aa32_max_features(cpu);
968 
969 #ifdef CONFIG_USER_ONLY
970     /*
971      * For usermode -cpu max we can use a larger and more efficient DCZ
972      * blocksize since we don't have to follow what the hardware does.
973      */
974     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
975     cpu->dcz_blocksize = 7; /*  512 bytes */
976 #endif
977 
978     cpu->sve_vq_supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
979 
980     aarch64_add_pauth_properties(obj);
981     aarch64_add_sve_properties(obj);
982     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
983                         cpu_max_set_sve_max_vq, NULL, NULL);
984     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
985 }
986 
987 static void aarch64_a64fx_initfn(Object *obj)
988 {
989     ARMCPU *cpu = ARM_CPU(obj);
990 
991     cpu->dtb_compatible = "arm,a64fx";
992     set_feature(&cpu->env, ARM_FEATURE_V8);
993     set_feature(&cpu->env, ARM_FEATURE_NEON);
994     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
995     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
996     set_feature(&cpu->env, ARM_FEATURE_EL2);
997     set_feature(&cpu->env, ARM_FEATURE_EL3);
998     set_feature(&cpu->env, ARM_FEATURE_PMU);
999     cpu->midr = 0x461f0010;
1000     cpu->revidr = 0x00000000;
1001     cpu->ctr = 0x86668006;
1002     cpu->reset_sctlr = 0x30000180;
1003     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
1004     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1005     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1006     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1007     cpu->id_aa64afr0 = 0x0000000000000000;
1008     cpu->id_aa64afr1 = 0x0000000000000000;
1009     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1010     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1011     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1012     cpu->isar.id_aa64isar0 = 0x0000000010211120;
1013     cpu->isar.id_aa64isar1 = 0x0000000000010001;
1014     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1015     cpu->clidr = 0x0000000080000023;
1016     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1017     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1018     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1019     cpu->dcz_blocksize = 6; /* 256 bytes */
1020     cpu->gic_num_lrs = 4;
1021     cpu->gic_vpribits = 5;
1022     cpu->gic_vprebits = 5;
1023     cpu->gic_pribits = 5;
1024 
1025     /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1026     aarch64_add_sve_properties(obj);
1027     cpu->sve_vq_supported = (1 << 0)  /* 128bit */
1028                           | (1 << 1)  /* 256bit */
1029                           | (1 << 3); /* 512bit */
1030 
1031     cpu->isar.reset_pmcr_el0 = 0x46014040;
1032 
1033     /* TODO:  Add A64FX specific HPC extension registers */
1034 }
1035 
1036 static const ARMCPUInfo aarch64_cpus[] = {
1037     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1038     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1039     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1040     { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1041     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1042     { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1043     { .name = "max",                .initfn = aarch64_max_initfn },
1044 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1045     { .name = "host",               .initfn = aarch64_host_initfn },
1046 #endif
1047 };
1048 
1049 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1050 {
1051     ARMCPU *cpu = ARM_CPU(obj);
1052 
1053     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1054 }
1055 
1056 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1057 {
1058     ARMCPU *cpu = ARM_CPU(obj);
1059 
1060     /* At this time, this property is only allowed if KVM is enabled.  This
1061      * restriction allows us to avoid fixing up functionality that assumes a
1062      * uniform execution state like do_interrupt.
1063      */
1064     if (value == false) {
1065         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1066             error_setg(errp, "'aarch64' feature cannot be disabled "
1067                              "unless KVM is enabled and 32-bit EL1 "
1068                              "is supported");
1069             return;
1070         }
1071         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1072     } else {
1073         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1074     }
1075 }
1076 
1077 static void aarch64_cpu_finalizefn(Object *obj)
1078 {
1079 }
1080 
1081 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1082 {
1083     return g_strdup("aarch64");
1084 }
1085 
1086 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1087 {
1088     CPUClass *cc = CPU_CLASS(oc);
1089 
1090     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1091     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1092     cc->gdb_num_core_regs = 34;
1093     cc->gdb_core_xml_file = "aarch64-core.xml";
1094     cc->gdb_arch_name = aarch64_gdb_arch_name;
1095 
1096     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1097                                    aarch64_cpu_set_aarch64);
1098     object_class_property_set_description(oc, "aarch64",
1099                                           "Set on/off to enable/disable aarch64 "
1100                                           "execution state ");
1101 }
1102 
1103 static void aarch64_cpu_instance_init(Object *obj)
1104 {
1105     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1106 
1107     acc->info->initfn(obj);
1108     arm_cpu_post_init(obj);
1109 }
1110 
1111 static void cpu_register_class_init(ObjectClass *oc, void *data)
1112 {
1113     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1114 
1115     acc->info = data;
1116 }
1117 
1118 void aarch64_cpu_register(const ARMCPUInfo *info)
1119 {
1120     TypeInfo type_info = {
1121         .parent = TYPE_AARCH64_CPU,
1122         .instance_size = sizeof(ARMCPU),
1123         .instance_init = aarch64_cpu_instance_init,
1124         .class_size = sizeof(ARMCPUClass),
1125         .class_init = info->class_init ?: cpu_register_class_init,
1126         .class_data = (void *)info,
1127     };
1128 
1129     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1130     type_register(&type_info);
1131     g_free((void *)type_info.name);
1132 }
1133 
1134 static const TypeInfo aarch64_cpu_type_info = {
1135     .name = TYPE_AARCH64_CPU,
1136     .parent = TYPE_ARM_CPU,
1137     .instance_size = sizeof(ARMCPU),
1138     .instance_finalize = aarch64_cpu_finalizefn,
1139     .abstract = true,
1140     .class_size = sizeof(AArch64CPUClass),
1141     .class_init = aarch64_cpu_class_init,
1142 };
1143 
1144 static void aarch64_cpu_register_types(void)
1145 {
1146     size_t i;
1147 
1148     type_register_static(&aarch64_cpu_type_info);
1149 
1150     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1151         aarch64_cpu_register(&aarch64_cpus[i]);
1152     }
1153 }
1154 
1155 type_init(aarch64_cpu_register_types)
1156