xref: /qemu/target/arm/cpu64.c (revision 7a21bee2)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #ifdef CONFIG_TCG
25 #include "hw/core/tcg-cpu-ops.h"
26 #endif /* CONFIG_TCG */
27 #include "qemu/module.h"
28 #if !defined(CONFIG_USER_ONLY)
29 #include "hw/loader.h"
30 #endif
31 #include "sysemu/kvm.h"
32 #include "sysemu/hvf.h"
33 #include "kvm_arm.h"
34 #include "hvf_arm.h"
35 #include "qapi/visitor.h"
36 #include "hw/qdev-properties.h"
37 #include "internals.h"
38 
39 
40 static void aarch64_a57_initfn(Object *obj)
41 {
42     ARMCPU *cpu = ARM_CPU(obj);
43 
44     cpu->dtb_compatible = "arm,cortex-a57";
45     set_feature(&cpu->env, ARM_FEATURE_V8);
46     set_feature(&cpu->env, ARM_FEATURE_NEON);
47     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
48     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
49     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
50     set_feature(&cpu->env, ARM_FEATURE_EL2);
51     set_feature(&cpu->env, ARM_FEATURE_EL3);
52     set_feature(&cpu->env, ARM_FEATURE_PMU);
53     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
54     cpu->midr = 0x411fd070;
55     cpu->revidr = 0x00000000;
56     cpu->reset_fpsid = 0x41034070;
57     cpu->isar.mvfr0 = 0x10110222;
58     cpu->isar.mvfr1 = 0x12111111;
59     cpu->isar.mvfr2 = 0x00000043;
60     cpu->ctr = 0x8444c004;
61     cpu->reset_sctlr = 0x00c50838;
62     cpu->isar.id_pfr0 = 0x00000131;
63     cpu->isar.id_pfr1 = 0x00011011;
64     cpu->isar.id_dfr0 = 0x03010066;
65     cpu->id_afr0 = 0x00000000;
66     cpu->isar.id_mmfr0 = 0x10101105;
67     cpu->isar.id_mmfr1 = 0x40000000;
68     cpu->isar.id_mmfr2 = 0x01260000;
69     cpu->isar.id_mmfr3 = 0x02102211;
70     cpu->isar.id_isar0 = 0x02101110;
71     cpu->isar.id_isar1 = 0x13112111;
72     cpu->isar.id_isar2 = 0x21232042;
73     cpu->isar.id_isar3 = 0x01112131;
74     cpu->isar.id_isar4 = 0x00011142;
75     cpu->isar.id_isar5 = 0x00011121;
76     cpu->isar.id_isar6 = 0;
77     cpu->isar.id_aa64pfr0 = 0x00002222;
78     cpu->isar.id_aa64dfr0 = 0x10305106;
79     cpu->isar.id_aa64isar0 = 0x00011120;
80     cpu->isar.id_aa64mmfr0 = 0x00001124;
81     cpu->isar.dbgdidr = 0x3516d000;
82     cpu->isar.dbgdevid = 0x01110f13;
83     cpu->isar.dbgdevid1 = 0x2;
84     cpu->isar.reset_pmcr_el0 = 0x41013000;
85     cpu->clidr = 0x0a200023;
86     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
87     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
88     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
89     cpu->dcz_blocksize = 4; /* 64 bytes */
90     cpu->gic_num_lrs = 4;
91     cpu->gic_vpribits = 5;
92     cpu->gic_vprebits = 5;
93     cpu->gic_pribits = 5;
94     define_cortex_a72_a57_a53_cp_reginfo(cpu);
95 }
96 
97 static void aarch64_a53_initfn(Object *obj)
98 {
99     ARMCPU *cpu = ARM_CPU(obj);
100 
101     cpu->dtb_compatible = "arm,cortex-a53";
102     set_feature(&cpu->env, ARM_FEATURE_V8);
103     set_feature(&cpu->env, ARM_FEATURE_NEON);
104     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
105     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
106     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
107     set_feature(&cpu->env, ARM_FEATURE_EL2);
108     set_feature(&cpu->env, ARM_FEATURE_EL3);
109     set_feature(&cpu->env, ARM_FEATURE_PMU);
110     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
111     cpu->midr = 0x410fd034;
112     cpu->revidr = 0x00000000;
113     cpu->reset_fpsid = 0x41034070;
114     cpu->isar.mvfr0 = 0x10110222;
115     cpu->isar.mvfr1 = 0x12111111;
116     cpu->isar.mvfr2 = 0x00000043;
117     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
118     cpu->reset_sctlr = 0x00c50838;
119     cpu->isar.id_pfr0 = 0x00000131;
120     cpu->isar.id_pfr1 = 0x00011011;
121     cpu->isar.id_dfr0 = 0x03010066;
122     cpu->id_afr0 = 0x00000000;
123     cpu->isar.id_mmfr0 = 0x10101105;
124     cpu->isar.id_mmfr1 = 0x40000000;
125     cpu->isar.id_mmfr2 = 0x01260000;
126     cpu->isar.id_mmfr3 = 0x02102211;
127     cpu->isar.id_isar0 = 0x02101110;
128     cpu->isar.id_isar1 = 0x13112111;
129     cpu->isar.id_isar2 = 0x21232042;
130     cpu->isar.id_isar3 = 0x01112131;
131     cpu->isar.id_isar4 = 0x00011142;
132     cpu->isar.id_isar5 = 0x00011121;
133     cpu->isar.id_isar6 = 0;
134     cpu->isar.id_aa64pfr0 = 0x00002222;
135     cpu->isar.id_aa64dfr0 = 0x10305106;
136     cpu->isar.id_aa64isar0 = 0x00011120;
137     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
138     cpu->isar.dbgdidr = 0x3516d000;
139     cpu->isar.dbgdevid = 0x00110f13;
140     cpu->isar.dbgdevid1 = 0x1;
141     cpu->isar.reset_pmcr_el0 = 0x41033000;
142     cpu->clidr = 0x0a200023;
143     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
144     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
145     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
146     cpu->dcz_blocksize = 4; /* 64 bytes */
147     cpu->gic_num_lrs = 4;
148     cpu->gic_vpribits = 5;
149     cpu->gic_vprebits = 5;
150     cpu->gic_pribits = 5;
151     define_cortex_a72_a57_a53_cp_reginfo(cpu);
152 }
153 
154 static void aarch64_a72_initfn(Object *obj)
155 {
156     ARMCPU *cpu = ARM_CPU(obj);
157 
158     cpu->dtb_compatible = "arm,cortex-a72";
159     set_feature(&cpu->env, ARM_FEATURE_V8);
160     set_feature(&cpu->env, ARM_FEATURE_NEON);
161     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
162     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
163     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
164     set_feature(&cpu->env, ARM_FEATURE_EL2);
165     set_feature(&cpu->env, ARM_FEATURE_EL3);
166     set_feature(&cpu->env, ARM_FEATURE_PMU);
167     cpu->midr = 0x410fd083;
168     cpu->revidr = 0x00000000;
169     cpu->reset_fpsid = 0x41034080;
170     cpu->isar.mvfr0 = 0x10110222;
171     cpu->isar.mvfr1 = 0x12111111;
172     cpu->isar.mvfr2 = 0x00000043;
173     cpu->ctr = 0x8444c004;
174     cpu->reset_sctlr = 0x00c50838;
175     cpu->isar.id_pfr0 = 0x00000131;
176     cpu->isar.id_pfr1 = 0x00011011;
177     cpu->isar.id_dfr0 = 0x03010066;
178     cpu->id_afr0 = 0x00000000;
179     cpu->isar.id_mmfr0 = 0x10201105;
180     cpu->isar.id_mmfr1 = 0x40000000;
181     cpu->isar.id_mmfr2 = 0x01260000;
182     cpu->isar.id_mmfr3 = 0x02102211;
183     cpu->isar.id_isar0 = 0x02101110;
184     cpu->isar.id_isar1 = 0x13112111;
185     cpu->isar.id_isar2 = 0x21232042;
186     cpu->isar.id_isar3 = 0x01112131;
187     cpu->isar.id_isar4 = 0x00011142;
188     cpu->isar.id_isar5 = 0x00011121;
189     cpu->isar.id_aa64pfr0 = 0x00002222;
190     cpu->isar.id_aa64dfr0 = 0x10305106;
191     cpu->isar.id_aa64isar0 = 0x00011120;
192     cpu->isar.id_aa64mmfr0 = 0x00001124;
193     cpu->isar.dbgdidr = 0x3516d000;
194     cpu->isar.dbgdevid = 0x01110f13;
195     cpu->isar.dbgdevid1 = 0x2;
196     cpu->isar.reset_pmcr_el0 = 0x41023000;
197     cpu->clidr = 0x0a200023;
198     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
199     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
200     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
201     cpu->dcz_blocksize = 4; /* 64 bytes */
202     cpu->gic_num_lrs = 4;
203     cpu->gic_vpribits = 5;
204     cpu->gic_vprebits = 5;
205     cpu->gic_pribits = 5;
206     define_cortex_a72_a57_a53_cp_reginfo(cpu);
207 }
208 
209 static void aarch64_a76_initfn(Object *obj)
210 {
211     ARMCPU *cpu = ARM_CPU(obj);
212 
213     cpu->dtb_compatible = "arm,cortex-a76";
214     set_feature(&cpu->env, ARM_FEATURE_V8);
215     set_feature(&cpu->env, ARM_FEATURE_NEON);
216     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
217     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
218     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
219     set_feature(&cpu->env, ARM_FEATURE_EL2);
220     set_feature(&cpu->env, ARM_FEATURE_EL3);
221     set_feature(&cpu->env, ARM_FEATURE_PMU);
222 
223     /* Ordered by B2.4 AArch64 registers by functional group */
224     cpu->clidr = 0x82000023;
225     cpu->ctr = 0x8444C004;
226     cpu->dcz_blocksize = 4;
227     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
228     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
229     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
230     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
231     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
232     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
233     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
234     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
235     cpu->id_afr0       = 0x00000000;
236     cpu->isar.id_dfr0  = 0x04010088;
237     cpu->isar.id_isar0 = 0x02101110;
238     cpu->isar.id_isar1 = 0x13112111;
239     cpu->isar.id_isar2 = 0x21232042;
240     cpu->isar.id_isar3 = 0x01112131;
241     cpu->isar.id_isar4 = 0x00010142;
242     cpu->isar.id_isar5 = 0x01011121;
243     cpu->isar.id_isar6 = 0x00000010;
244     cpu->isar.id_mmfr0 = 0x10201105;
245     cpu->isar.id_mmfr1 = 0x40000000;
246     cpu->isar.id_mmfr2 = 0x01260000;
247     cpu->isar.id_mmfr3 = 0x02122211;
248     cpu->isar.id_mmfr4 = 0x00021110;
249     cpu->isar.id_pfr0  = 0x10010131;
250     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
251     cpu->isar.id_pfr2  = 0x00000011;
252     cpu->midr = 0x414fd0b1;          /* r4p1 */
253     cpu->revidr = 0;
254 
255     /* From B2.18 CCSIDR_EL1 */
256     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
257     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
258     cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
259 
260     /* From B2.93 SCTLR_EL3 */
261     cpu->reset_sctlr = 0x30c50838;
262 
263     /* From B4.23 ICH_VTR_EL2 */
264     cpu->gic_num_lrs = 4;
265     cpu->gic_vpribits = 5;
266     cpu->gic_vprebits = 5;
267     cpu->gic_pribits = 5;
268 
269     /* From B5.1 AdvSIMD AArch64 register summary */
270     cpu->isar.mvfr0 = 0x10110222;
271     cpu->isar.mvfr1 = 0x13211111;
272     cpu->isar.mvfr2 = 0x00000043;
273 
274     /* From D5.1 AArch64 PMU register summary */
275     cpu->isar.reset_pmcr_el0 = 0x410b3000;
276 }
277 
278 static void aarch64_neoverse_n1_initfn(Object *obj)
279 {
280     ARMCPU *cpu = ARM_CPU(obj);
281 
282     cpu->dtb_compatible = "arm,neoverse-n1";
283     set_feature(&cpu->env, ARM_FEATURE_V8);
284     set_feature(&cpu->env, ARM_FEATURE_NEON);
285     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
286     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
287     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
288     set_feature(&cpu->env, ARM_FEATURE_EL2);
289     set_feature(&cpu->env, ARM_FEATURE_EL3);
290     set_feature(&cpu->env, ARM_FEATURE_PMU);
291 
292     /* Ordered by B2.4 AArch64 registers by functional group */
293     cpu->clidr = 0x82000023;
294     cpu->ctr = 0x8444c004;
295     cpu->dcz_blocksize = 4;
296     cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
297     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
298     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
299     cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
300     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
301     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
302     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
303     cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
304     cpu->id_afr0       = 0x00000000;
305     cpu->isar.id_dfr0  = 0x04010088;
306     cpu->isar.id_isar0 = 0x02101110;
307     cpu->isar.id_isar1 = 0x13112111;
308     cpu->isar.id_isar2 = 0x21232042;
309     cpu->isar.id_isar3 = 0x01112131;
310     cpu->isar.id_isar4 = 0x00010142;
311     cpu->isar.id_isar5 = 0x01011121;
312     cpu->isar.id_isar6 = 0x00000010;
313     cpu->isar.id_mmfr0 = 0x10201105;
314     cpu->isar.id_mmfr1 = 0x40000000;
315     cpu->isar.id_mmfr2 = 0x01260000;
316     cpu->isar.id_mmfr3 = 0x02122211;
317     cpu->isar.id_mmfr4 = 0x00021110;
318     cpu->isar.id_pfr0  = 0x10010131;
319     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
320     cpu->isar.id_pfr2  = 0x00000011;
321     cpu->midr = 0x414fd0c1;          /* r4p1 */
322     cpu->revidr = 0;
323 
324     /* From B2.23 CCSIDR_EL1 */
325     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
326     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
327     cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
328 
329     /* From B2.98 SCTLR_EL3 */
330     cpu->reset_sctlr = 0x30c50838;
331 
332     /* From B4.23 ICH_VTR_EL2 */
333     cpu->gic_num_lrs = 4;
334     cpu->gic_vpribits = 5;
335     cpu->gic_vprebits = 5;
336     cpu->gic_pribits = 5;
337 
338     /* From B5.1 AdvSIMD AArch64 register summary */
339     cpu->isar.mvfr0 = 0x10110222;
340     cpu->isar.mvfr1 = 0x13211111;
341     cpu->isar.mvfr2 = 0x00000043;
342 
343     /* From D5.1 AArch64 PMU register summary */
344     cpu->isar.reset_pmcr_el0 = 0x410c3000;
345 }
346 
347 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
348 {
349     /*
350      * If any vector lengths are explicitly enabled with sve<N> properties,
351      * then all other lengths are implicitly disabled.  If sve-max-vq is
352      * specified then it is the same as explicitly enabling all lengths
353      * up to and including the specified maximum, which means all larger
354      * lengths will be implicitly disabled.  If no sve<N> properties
355      * are enabled and sve-max-vq is not specified, then all lengths not
356      * explicitly disabled will be enabled.  Additionally, all power-of-two
357      * vector lengths less than the maximum enabled length will be
358      * automatically enabled and all vector lengths larger than the largest
359      * disabled power-of-two vector length will be automatically disabled.
360      * Errors are generated if the user provided input that interferes with
361      * any of the above.  Finally, if SVE is not disabled, then at least one
362      * vector length must be enabled.
363      */
364     uint32_t vq_map = cpu->sve_vq.map;
365     uint32_t vq_init = cpu->sve_vq.init;
366     uint32_t vq_supported;
367     uint32_t vq_mask = 0;
368     uint32_t tmp, vq, max_vq = 0;
369 
370     /*
371      * CPU models specify a set of supported vector lengths which are
372      * enabled by default.  Attempting to enable any vector length not set
373      * in the supported bitmap results in an error.  When KVM is enabled we
374      * fetch the supported bitmap from the host.
375      */
376     if (kvm_enabled()) {
377         if (kvm_arm_sve_supported()) {
378             cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
379             vq_supported = cpu->sve_vq.supported;
380         } else {
381             assert(!cpu_isar_feature(aa64_sve, cpu));
382             vq_supported = 0;
383         }
384     } else {
385         vq_supported = cpu->sve_vq.supported;
386     }
387 
388     /*
389      * Process explicit sve<N> properties.
390      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
391      * Check first for any sve<N> enabled.
392      */
393     if (vq_map != 0) {
394         max_vq = 32 - clz32(vq_map);
395         vq_mask = MAKE_64BIT_MASK(0, max_vq);
396 
397         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
398             error_setg(errp, "cannot enable sve%d", max_vq * 128);
399             error_append_hint(errp, "sve%d is larger than the maximum vector "
400                               "length, sve-max-vq=%d (%d bits)\n",
401                               max_vq * 128, cpu->sve_max_vq,
402                               cpu->sve_max_vq * 128);
403             return;
404         }
405 
406         if (kvm_enabled()) {
407             /*
408              * For KVM we have to automatically enable all supported unitialized
409              * lengths, even when the smaller lengths are not all powers-of-two.
410              */
411             vq_map |= vq_supported & ~vq_init & vq_mask;
412         } else {
413             /* Propagate enabled bits down through required powers-of-two. */
414             vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
415         }
416     } else if (cpu->sve_max_vq == 0) {
417         /*
418          * No explicit bits enabled, and no implicit bits from sve-max-vq.
419          */
420         if (!cpu_isar_feature(aa64_sve, cpu)) {
421             /* SVE is disabled and so are all vector lengths.  Good. */
422             return;
423         }
424 
425         if (kvm_enabled()) {
426             /* Disabling a supported length disables all larger lengths. */
427             tmp = vq_init & vq_supported;
428         } else {
429             /* Disabling a power-of-two disables all larger lengths. */
430             tmp = vq_init & SVE_VQ_POW2_MAP;
431         }
432         vq = ctz32(tmp) + 1;
433 
434         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
435         vq_mask = MAKE_64BIT_MASK(0, max_vq);
436         vq_map = vq_supported & ~vq_init & vq_mask;
437 
438         if (max_vq == 0 || vq_map == 0) {
439             error_setg(errp, "cannot disable sve%d", vq * 128);
440             error_append_hint(errp, "Disabling sve%d results in all "
441                               "vector lengths being disabled.\n",
442                               vq * 128);
443             error_append_hint(errp, "With SVE enabled, at least one "
444                               "vector length must be enabled.\n");
445             return;
446         }
447 
448         max_vq = 32 - clz32(vq_map);
449         vq_mask = MAKE_64BIT_MASK(0, max_vq);
450     }
451 
452     /*
453      * Process the sve-max-vq property.
454      * Note that we know from the above that no bit above
455      * sve-max-vq is currently set.
456      */
457     if (cpu->sve_max_vq != 0) {
458         max_vq = cpu->sve_max_vq;
459         vq_mask = MAKE_64BIT_MASK(0, max_vq);
460 
461         if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
462             error_setg(errp, "cannot disable sve%d", max_vq * 128);
463             error_append_hint(errp, "The maximum vector length must be "
464                               "enabled, sve-max-vq=%d (%d bits)\n",
465                               max_vq, max_vq * 128);
466             return;
467         }
468 
469         /* Set all bits not explicitly set within sve-max-vq. */
470         vq_map |= ~vq_init & vq_mask;
471     }
472 
473     /*
474      * We should know what max-vq is now.  Also, as we're done
475      * manipulating sve-vq-map, we ensure any bits above max-vq
476      * are clear, just in case anybody looks.
477      */
478     assert(max_vq != 0);
479     assert(vq_mask != 0);
480     vq_map &= vq_mask;
481 
482     /* Ensure the set of lengths matches what is supported. */
483     tmp = vq_map ^ (vq_supported & vq_mask);
484     if (tmp) {
485         vq = 32 - clz32(tmp);
486         if (vq_map & (1 << (vq - 1))) {
487             if (cpu->sve_max_vq) {
488                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
489                 error_append_hint(errp, "This CPU does not support "
490                                   "the vector length %d-bits.\n", vq * 128);
491                 error_append_hint(errp, "It may not be possible to use "
492                                   "sve-max-vq with this CPU. Try "
493                                   "using only sve<N> properties.\n");
494             } else {
495                 error_setg(errp, "cannot enable sve%d", vq * 128);
496                 if (vq_supported) {
497                     error_append_hint(errp, "This CPU does not support "
498                                       "the vector length %d-bits.\n", vq * 128);
499                 } else {
500                     error_append_hint(errp, "SVE not supported by KVM "
501                                       "on this host\n");
502                 }
503             }
504             return;
505         } else {
506             if (kvm_enabled()) {
507                 error_setg(errp, "cannot disable sve%d", vq * 128);
508                 error_append_hint(errp, "The KVM host requires all "
509                                   "supported vector lengths smaller "
510                                   "than %d bits to also be enabled.\n",
511                                   max_vq * 128);
512                 return;
513             } else {
514                 /* Ensure all required powers-of-two are enabled. */
515                 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
516                 if (tmp) {
517                     vq = 32 - clz32(tmp);
518                     error_setg(errp, "cannot disable sve%d", vq * 128);
519                     error_append_hint(errp, "sve%d is required as it "
520                                       "is a power-of-two length smaller "
521                                       "than the maximum, sve%d\n",
522                                       vq * 128, max_vq * 128);
523                     return;
524                 }
525             }
526         }
527     }
528 
529     /*
530      * Now that we validated all our vector lengths, the only question
531      * left to answer is if we even want SVE at all.
532      */
533     if (!cpu_isar_feature(aa64_sve, cpu)) {
534         error_setg(errp, "cannot enable sve%d", max_vq * 128);
535         error_append_hint(errp, "SVE must be enabled to enable vector "
536                           "lengths.\n");
537         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
538         return;
539     }
540 
541     /* From now on sve_max_vq is the actual maximum supported length. */
542     cpu->sve_max_vq = max_vq;
543     cpu->sve_vq.map = vq_map;
544 }
545 
546 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
547                                    void *opaque, Error **errp)
548 {
549     ARMCPU *cpu = ARM_CPU(obj);
550     uint32_t value;
551 
552     /* All vector lengths are disabled when SVE is off. */
553     if (!cpu_isar_feature(aa64_sve, cpu)) {
554         value = 0;
555     } else {
556         value = cpu->sve_max_vq;
557     }
558     visit_type_uint32(v, name, &value, errp);
559 }
560 
561 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
562                                    void *opaque, Error **errp)
563 {
564     ARMCPU *cpu = ARM_CPU(obj);
565     uint32_t max_vq;
566 
567     if (!visit_type_uint32(v, name, &max_vq, errp)) {
568         return;
569     }
570 
571     if (kvm_enabled() && !kvm_arm_sve_supported()) {
572         error_setg(errp, "cannot set sve-max-vq");
573         error_append_hint(errp, "SVE not supported by KVM on this host\n");
574         return;
575     }
576 
577     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
578         error_setg(errp, "unsupported SVE vector length");
579         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
580                           ARM_MAX_VQ);
581         return;
582     }
583 
584     cpu->sve_max_vq = max_vq;
585 }
586 
587 /*
588  * Note that cpu_arm_{get,set}_vq cannot use the simpler
589  * object_property_add_bool interface because they make use of the
590  * contents of "name" to determine which bit on which to operate.
591  */
592 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
593                            void *opaque, Error **errp)
594 {
595     ARMCPU *cpu = ARM_CPU(obj);
596     ARMVQMap *vq_map = opaque;
597     uint32_t vq = atoi(&name[3]) / 128;
598     bool sve = vq_map == &cpu->sve_vq;
599     bool value;
600 
601     /* All vector lengths are disabled when feature is off. */
602     if (sve
603         ? !cpu_isar_feature(aa64_sve, cpu)
604         : !cpu_isar_feature(aa64_sme, cpu)) {
605         value = false;
606     } else {
607         value = extract32(vq_map->map, vq - 1, 1);
608     }
609     visit_type_bool(v, name, &value, errp);
610 }
611 
612 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
613                            void *opaque, Error **errp)
614 {
615     ARMVQMap *vq_map = opaque;
616     uint32_t vq = atoi(&name[3]) / 128;
617     bool value;
618 
619     if (!visit_type_bool(v, name, &value, errp)) {
620         return;
621     }
622 
623     vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
624     vq_map->init |= 1 << (vq - 1);
625 }
626 
627 static bool cpu_arm_get_sve(Object *obj, Error **errp)
628 {
629     ARMCPU *cpu = ARM_CPU(obj);
630     return cpu_isar_feature(aa64_sve, cpu);
631 }
632 
633 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
634 {
635     ARMCPU *cpu = ARM_CPU(obj);
636     uint64_t t;
637 
638     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
639         error_setg(errp, "'sve' feature not supported by KVM on this host");
640         return;
641     }
642 
643     t = cpu->isar.id_aa64pfr0;
644     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
645     cpu->isar.id_aa64pfr0 = t;
646 }
647 
648 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
649 {
650     uint32_t vq_map = cpu->sme_vq.map;
651     uint32_t vq_init = cpu->sme_vq.init;
652     uint32_t vq_supported = cpu->sme_vq.supported;
653     uint32_t vq;
654 
655     if (vq_map == 0) {
656         if (!cpu_isar_feature(aa64_sme, cpu)) {
657             cpu->isar.id_aa64smfr0 = 0;
658             return;
659         }
660 
661         /* TODO: KVM will require limitations via SMCR_EL2. */
662         vq_map = vq_supported & ~vq_init;
663 
664         if (vq_map == 0) {
665             vq = ctz32(vq_supported) + 1;
666             error_setg(errp, "cannot disable sme%d", vq * 128);
667             error_append_hint(errp, "All SME vector lengths are disabled.\n");
668             error_append_hint(errp, "With SME enabled, at least one "
669                               "vector length must be enabled.\n");
670             return;
671         }
672     } else {
673         if (!cpu_isar_feature(aa64_sme, cpu)) {
674             vq = 32 - clz32(vq_map);
675             error_setg(errp, "cannot enable sme%d", vq * 128);
676             error_append_hint(errp, "SME must be enabled to enable "
677                               "vector lengths.\n");
678             error_append_hint(errp, "Add sme=on to the CPU property list.\n");
679             return;
680         }
681         /* TODO: KVM will require limitations via SMCR_EL2. */
682     }
683 
684     cpu->sme_vq.map = vq_map;
685 }
686 
687 static bool cpu_arm_get_sme(Object *obj, Error **errp)
688 {
689     ARMCPU *cpu = ARM_CPU(obj);
690     return cpu_isar_feature(aa64_sme, cpu);
691 }
692 
693 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
694 {
695     ARMCPU *cpu = ARM_CPU(obj);
696     uint64_t t;
697 
698     t = cpu->isar.id_aa64pfr1;
699     t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
700     cpu->isar.id_aa64pfr1 = t;
701 }
702 
703 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
704 {
705     ARMCPU *cpu = ARM_CPU(obj);
706     return cpu_isar_feature(aa64_sme, cpu) &&
707            cpu_isar_feature(aa64_sme_fa64, cpu);
708 }
709 
710 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
711 {
712     ARMCPU *cpu = ARM_CPU(obj);
713     uint64_t t;
714 
715     t = cpu->isar.id_aa64smfr0;
716     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
717     cpu->isar.id_aa64smfr0 = t;
718 }
719 
720 #ifdef CONFIG_USER_ONLY
721 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
722 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
723                                         const char *name, void *opaque,
724                                         Error **errp)
725 {
726     uint32_t *ptr_default_vq = opaque;
727     int32_t default_len, default_vq, remainder;
728 
729     if (!visit_type_int32(v, name, &default_len, errp)) {
730         return;
731     }
732 
733     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
734     if (default_len == -1) {
735         *ptr_default_vq = ARM_MAX_VQ;
736         return;
737     }
738 
739     default_vq = default_len / 16;
740     remainder = default_len % 16;
741 
742     /*
743      * Note that the 512 max comes from include/uapi/asm/sve_context.h
744      * and is the maximum architectural width of ZCR_ELx.LEN.
745      */
746     if (remainder || default_vq < 1 || default_vq > 512) {
747         ARMCPU *cpu = ARM_CPU(obj);
748         const char *which =
749             (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
750 
751         error_setg(errp, "cannot set %s-default-vector-length", which);
752         if (remainder) {
753             error_append_hint(errp, "Vector length not a multiple of 16\n");
754         } else if (default_vq < 1) {
755             error_append_hint(errp, "Vector length smaller than 16\n");
756         } else {
757             error_append_hint(errp, "Vector length larger than %d\n",
758                               512 * 16);
759         }
760         return;
761     }
762 
763     *ptr_default_vq = default_vq;
764 }
765 
766 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
767                                         const char *name, void *opaque,
768                                         Error **errp)
769 {
770     uint32_t *ptr_default_vq = opaque;
771     int32_t value = *ptr_default_vq * 16;
772 
773     visit_type_int32(v, name, &value, errp);
774 }
775 #endif
776 
777 static void aarch64_add_sve_properties(Object *obj)
778 {
779     ARMCPU *cpu = ARM_CPU(obj);
780     uint32_t vq;
781 
782     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
783 
784     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
785         char name[8];
786         sprintf(name, "sve%d", vq * 128);
787         object_property_add(obj, name, "bool", cpu_arm_get_vq,
788                             cpu_arm_set_vq, NULL, &cpu->sve_vq);
789     }
790 
791 #ifdef CONFIG_USER_ONLY
792     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
793     object_property_add(obj, "sve-default-vector-length", "int32",
794                         cpu_arm_get_default_vec_len,
795                         cpu_arm_set_default_vec_len, NULL,
796                         &cpu->sve_default_vq);
797 #endif
798 }
799 
800 static void aarch64_add_sme_properties(Object *obj)
801 {
802     ARMCPU *cpu = ARM_CPU(obj);
803     uint32_t vq;
804 
805     object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
806     object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
807                              cpu_arm_set_sme_fa64);
808 
809     for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
810         char name[8];
811         sprintf(name, "sme%d", vq * 128);
812         object_property_add(obj, name, "bool", cpu_arm_get_vq,
813                             cpu_arm_set_vq, NULL, &cpu->sme_vq);
814     }
815 
816 #ifdef CONFIG_USER_ONLY
817     /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
818     object_property_add(obj, "sme-default-vector-length", "int32",
819                         cpu_arm_get_default_vec_len,
820                         cpu_arm_set_default_vec_len, NULL,
821                         &cpu->sme_default_vq);
822 #endif
823 }
824 
825 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
826 {
827     int arch_val = 0, impdef_val = 0;
828     uint64_t t;
829 
830     /* Exit early if PAuth is enabled, and fall through to disable it */
831     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
832         if (!cpu_isar_feature(aa64_pauth, cpu)) {
833             error_setg(errp, "'pauth' feature not supported by %s on this host",
834                        kvm_enabled() ? "KVM" : "hvf");
835         }
836 
837         return;
838     }
839 
840     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
841     if (cpu->prop_pauth) {
842         if (cpu->prop_pauth_impdef) {
843             impdef_val = 1;
844         } else {
845             arch_val = 1;
846         }
847     } else if (cpu->prop_pauth_impdef) {
848         error_setg(errp, "cannot enable pauth-impdef without pauth");
849         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
850     }
851 
852     t = cpu->isar.id_aa64isar1;
853     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
854     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
855     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
856     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
857     cpu->isar.id_aa64isar1 = t;
858 }
859 
860 static Property arm_cpu_pauth_property =
861     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
862 static Property arm_cpu_pauth_impdef_property =
863     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
864 
865 static void aarch64_add_pauth_properties(Object *obj)
866 {
867     ARMCPU *cpu = ARM_CPU(obj);
868 
869     /* Default to PAUTH on, with the architected algorithm on TCG. */
870     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
871     if (kvm_enabled() || hvf_enabled()) {
872         /*
873          * Mirror PAuth support from the probed sysregs back into the
874          * property for KVM or hvf. Is it just a bit backward? Yes it is!
875          * Note that prop_pauth is true whether the host CPU supports the
876          * architected QARMA5 algorithm or the IMPDEF one. We don't
877          * provide the separate pauth-impdef property for KVM or hvf,
878          * only for TCG.
879          */
880         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
881     } else {
882         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
883     }
884 }
885 
886 static Property arm_cpu_lpa2_property =
887     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
888 
889 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
890 {
891     uint64_t t;
892 
893     /*
894      * We only install the property for tcg -cpu max; this is the
895      * only situation in which the cpu field can be true.
896      */
897     if (!cpu->prop_lpa2) {
898         return;
899     }
900 
901     t = cpu->isar.id_aa64mmfr0;
902     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
903     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
904     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
905     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
906     cpu->isar.id_aa64mmfr0 = t;
907 }
908 
909 static void aarch64_host_initfn(Object *obj)
910 {
911 #if defined(CONFIG_KVM)
912     ARMCPU *cpu = ARM_CPU(obj);
913     kvm_arm_set_cpu_features_from_host(cpu);
914     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
915         aarch64_add_sve_properties(obj);
916         aarch64_add_pauth_properties(obj);
917     }
918 #elif defined(CONFIG_HVF)
919     ARMCPU *cpu = ARM_CPU(obj);
920     hvf_arm_set_cpu_features_from_host(cpu);
921     aarch64_add_pauth_properties(obj);
922 #else
923     g_assert_not_reached();
924 #endif
925 }
926 
927 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
928  * otherwise, a CPU with as many features enabled as our emulation supports.
929  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
930  * this only needs to handle 64 bits.
931  */
932 static void aarch64_max_initfn(Object *obj)
933 {
934     ARMCPU *cpu = ARM_CPU(obj);
935     uint64_t t;
936     uint32_t u;
937 
938     if (kvm_enabled() || hvf_enabled()) {
939         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
940         aarch64_host_initfn(obj);
941         return;
942     }
943 
944     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
945 
946     aarch64_a57_initfn(obj);
947 
948     /*
949      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
950      * one and try to apply errata workarounds or use impdef features we
951      * don't provide.
952      * An IMPLEMENTER field of 0 means "reserved for software use";
953      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
954      * to see which features are present";
955      * the VARIANT, PARTNUM and REVISION fields are all implementation
956      * defined and we choose to define PARTNUM just in case guest
957      * code needs to distinguish this QEMU CPU from other software
958      * implementations, though this shouldn't be needed.
959      */
960     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
961     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
962     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
963     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
964     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
965     cpu->midr = t;
966 
967     /*
968      * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
969      * are zero.
970      */
971     u = cpu->clidr;
972     u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
973     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
974     cpu->clidr = u;
975 
976     t = cpu->isar.id_aa64isar0;
977     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
978     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
979     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
980     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
981     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
982     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
983     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
984     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
985     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
986     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
987     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
988     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
989     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
990     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
991     cpu->isar.id_aa64isar0 = t;
992 
993     t = cpu->isar.id_aa64isar1;
994     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
995     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
996     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
997     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
998     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
999     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
1000     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
1001     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
1002     t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
1003     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
1004     cpu->isar.id_aa64isar1 = t;
1005 
1006     t = cpu->isar.id_aa64pfr0;
1007     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
1008     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
1009     t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2);       /* FEAT_RASv1p1 + FEAT_DoubleFault */
1010     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1011     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
1012     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
1013     t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
1014     t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
1015     cpu->isar.id_aa64pfr0 = t;
1016 
1017     t = cpu->isar.id_aa64pfr1;
1018     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
1019     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
1020     /*
1021      * Begin with full support for MTE. This will be downgraded to MTE=0
1022      * during realize if the board provides no tag memory, much like
1023      * we do for EL2 with the virtualization=on property.
1024      */
1025     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
1026     t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0);  /* FEAT_RASv1p1 + FEAT_DoubleFault */
1027     t = FIELD_DP64(t, ID_AA64PFR1, SME, 1);       /* FEAT_SME */
1028     t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1029     cpu->isar.id_aa64pfr1 = t;
1030 
1031     t = cpu->isar.id_aa64mmfr0;
1032     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1033     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
1034     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1035     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1036     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
1037     cpu->isar.id_aa64mmfr0 = t;
1038 
1039     t = cpu->isar.id_aa64mmfr1;
1040     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1041     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
1042     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
1043     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
1044     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
1045     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
1046     t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
1047     cpu->isar.id_aa64mmfr1 = t;
1048 
1049     t = cpu->isar.id_aa64mmfr2;
1050     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
1051     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
1052     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
1053     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
1054     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
1055     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
1056     t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
1057     t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
1058     t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
1059     cpu->isar.id_aa64mmfr2 = t;
1060 
1061     t = cpu->isar.id_aa64zfr0;
1062     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1063     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
1064     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
1065     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
1066     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
1067     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
1068     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
1069     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
1070     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
1071     cpu->isar.id_aa64zfr0 = t;
1072 
1073     t = cpu->isar.id_aa64dfr0;
1074     t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
1075     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 5);    /* FEAT_PMUv3p4 */
1076     cpu->isar.id_aa64dfr0 = t;
1077 
1078     t = cpu->isar.id_aa64smfr0;
1079     t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1);   /* FEAT_SME */
1080     t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1);   /* FEAT_SME */
1081     t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1);   /* FEAT_SME */
1082     t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf);  /* FEAT_SME */
1083     t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1);   /* FEAT_SME_F64F64 */
1084     t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1085     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1);     /* FEAT_SME_FA64 */
1086     cpu->isar.id_aa64smfr0 = t;
1087 
1088     /* Replicate the same data to the 32-bit id registers.  */
1089     aa32_max_features(cpu);
1090 
1091 #ifdef CONFIG_USER_ONLY
1092     /*
1093      * For usermode -cpu max we can use a larger and more efficient DCZ
1094      * blocksize since we don't have to follow what the hardware does.
1095      */
1096     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1097     cpu->dcz_blocksize = 7; /*  512 bytes */
1098 #endif
1099 
1100     cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1101     cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1102 
1103     aarch64_add_pauth_properties(obj);
1104     aarch64_add_sve_properties(obj);
1105     aarch64_add_sme_properties(obj);
1106     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1107                         cpu_max_set_sve_max_vq, NULL, NULL);
1108     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1109 }
1110 
1111 static void aarch64_a64fx_initfn(Object *obj)
1112 {
1113     ARMCPU *cpu = ARM_CPU(obj);
1114 
1115     cpu->dtb_compatible = "arm,a64fx";
1116     set_feature(&cpu->env, ARM_FEATURE_V8);
1117     set_feature(&cpu->env, ARM_FEATURE_NEON);
1118     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1119     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1120     set_feature(&cpu->env, ARM_FEATURE_EL2);
1121     set_feature(&cpu->env, ARM_FEATURE_EL3);
1122     set_feature(&cpu->env, ARM_FEATURE_PMU);
1123     cpu->midr = 0x461f0010;
1124     cpu->revidr = 0x00000000;
1125     cpu->ctr = 0x86668006;
1126     cpu->reset_sctlr = 0x30000180;
1127     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
1128     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
1129     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1130     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1131     cpu->id_aa64afr0 = 0x0000000000000000;
1132     cpu->id_aa64afr1 = 0x0000000000000000;
1133     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1134     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1135     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1136     cpu->isar.id_aa64isar0 = 0x0000000010211120;
1137     cpu->isar.id_aa64isar1 = 0x0000000000010001;
1138     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1139     cpu->clidr = 0x0000000080000023;
1140     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1141     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1142     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1143     cpu->dcz_blocksize = 6; /* 256 bytes */
1144     cpu->gic_num_lrs = 4;
1145     cpu->gic_vpribits = 5;
1146     cpu->gic_vprebits = 5;
1147     cpu->gic_pribits = 5;
1148 
1149     /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1150     aarch64_add_sve_properties(obj);
1151     cpu->sve_vq.supported = (1 << 0)  /* 128bit */
1152                           | (1 << 1)  /* 256bit */
1153                           | (1 << 3); /* 512bit */
1154 
1155     cpu->isar.reset_pmcr_el0 = 0x46014040;
1156 
1157     /* TODO:  Add A64FX specific HPC extension registers */
1158 }
1159 
1160 static const ARMCPUInfo aarch64_cpus[] = {
1161     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1162     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1163     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1164     { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1165     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1166     { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1167     { .name = "max",                .initfn = aarch64_max_initfn },
1168 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1169     { .name = "host",               .initfn = aarch64_host_initfn },
1170 #endif
1171 };
1172 
1173 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1174 {
1175     ARMCPU *cpu = ARM_CPU(obj);
1176 
1177     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1178 }
1179 
1180 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1181 {
1182     ARMCPU *cpu = ARM_CPU(obj);
1183 
1184     /* At this time, this property is only allowed if KVM is enabled.  This
1185      * restriction allows us to avoid fixing up functionality that assumes a
1186      * uniform execution state like do_interrupt.
1187      */
1188     if (value == false) {
1189         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1190             error_setg(errp, "'aarch64' feature cannot be disabled "
1191                              "unless KVM is enabled and 32-bit EL1 "
1192                              "is supported");
1193             return;
1194         }
1195         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1196     } else {
1197         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1198     }
1199 }
1200 
1201 static void aarch64_cpu_finalizefn(Object *obj)
1202 {
1203 }
1204 
1205 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1206 {
1207     return g_strdup("aarch64");
1208 }
1209 
1210 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1211 {
1212     CPUClass *cc = CPU_CLASS(oc);
1213 
1214     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1215     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1216     cc->gdb_num_core_regs = 34;
1217     cc->gdb_core_xml_file = "aarch64-core.xml";
1218     cc->gdb_arch_name = aarch64_gdb_arch_name;
1219 
1220     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1221                                    aarch64_cpu_set_aarch64);
1222     object_class_property_set_description(oc, "aarch64",
1223                                           "Set on/off to enable/disable aarch64 "
1224                                           "execution state ");
1225 }
1226 
1227 static void aarch64_cpu_instance_init(Object *obj)
1228 {
1229     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1230 
1231     acc->info->initfn(obj);
1232     arm_cpu_post_init(obj);
1233 }
1234 
1235 static void cpu_register_class_init(ObjectClass *oc, void *data)
1236 {
1237     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1238 
1239     acc->info = data;
1240 }
1241 
1242 void aarch64_cpu_register(const ARMCPUInfo *info)
1243 {
1244     TypeInfo type_info = {
1245         .parent = TYPE_AARCH64_CPU,
1246         .instance_size = sizeof(ARMCPU),
1247         .instance_init = aarch64_cpu_instance_init,
1248         .class_size = sizeof(ARMCPUClass),
1249         .class_init = info->class_init ?: cpu_register_class_init,
1250         .class_data = (void *)info,
1251     };
1252 
1253     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1254     type_register(&type_info);
1255     g_free((void *)type_info.name);
1256 }
1257 
1258 static const TypeInfo aarch64_cpu_type_info = {
1259     .name = TYPE_AARCH64_CPU,
1260     .parent = TYPE_ARM_CPU,
1261     .instance_size = sizeof(ARMCPU),
1262     .instance_finalize = aarch64_cpu_finalizefn,
1263     .abstract = true,
1264     .class_size = sizeof(AArch64CPUClass),
1265     .class_init = aarch64_cpu_class_init,
1266 };
1267 
1268 static void aarch64_cpu_register_types(void)
1269 {
1270     size_t i;
1271 
1272     type_register_static(&aarch64_cpu_type_info);
1273 
1274     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1275         aarch64_cpu_register(&aarch64_cpus[i]);
1276     }
1277 }
1278 
1279 type_init(aarch64_cpu_register_types)
1280