xref: /qemu/target/arm/cpu64.c (revision c3bef3b4)
1 /*
2  * QEMU AArch64 CPU
3  *
4  * Copyright (c) 2013 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "cpu.h"
24 #include "qemu/module.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/hvf.h"
27 #include "kvm_arm.h"
28 #include "hvf_arm.h"
29 #include "qapi/visitor.h"
30 #include "hw/qdev-properties.h"
31 #include "internals.h"
32 
33 static void aarch64_a35_initfn(Object *obj)
34 {
35     ARMCPU *cpu = ARM_CPU(obj);
36 
37     cpu->dtb_compatible = "arm,cortex-a35";
38     set_feature(&cpu->env, ARM_FEATURE_V8);
39     set_feature(&cpu->env, ARM_FEATURE_NEON);
40     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
41     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
42     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
43     set_feature(&cpu->env, ARM_FEATURE_EL2);
44     set_feature(&cpu->env, ARM_FEATURE_EL3);
45     set_feature(&cpu->env, ARM_FEATURE_PMU);
46 
47     /* From B2.2 AArch64 identification registers. */
48     cpu->midr = 0x411fd040;
49     cpu->revidr = 0;
50     cpu->ctr = 0x84448004;
51     cpu->isar.id_pfr0 = 0x00000131;
52     cpu->isar.id_pfr1 = 0x00011011;
53     cpu->isar.id_dfr0 = 0x03010066;
54     cpu->id_afr0 = 0;
55     cpu->isar.id_mmfr0 = 0x10201105;
56     cpu->isar.id_mmfr1 = 0x40000000;
57     cpu->isar.id_mmfr2 = 0x01260000;
58     cpu->isar.id_mmfr3 = 0x02102211;
59     cpu->isar.id_isar0 = 0x02101110;
60     cpu->isar.id_isar1 = 0x13112111;
61     cpu->isar.id_isar2 = 0x21232042;
62     cpu->isar.id_isar3 = 0x01112131;
63     cpu->isar.id_isar4 = 0x00011142;
64     cpu->isar.id_isar5 = 0x00011121;
65     cpu->isar.id_aa64pfr0 = 0x00002222;
66     cpu->isar.id_aa64pfr1 = 0;
67     cpu->isar.id_aa64dfr0 = 0x10305106;
68     cpu->isar.id_aa64dfr1 = 0;
69     cpu->isar.id_aa64isar0 = 0x00011120;
70     cpu->isar.id_aa64isar1 = 0;
71     cpu->isar.id_aa64mmfr0 = 0x00101122;
72     cpu->isar.id_aa64mmfr1 = 0;
73     cpu->clidr = 0x0a200023;
74     cpu->dcz_blocksize = 4;
75 
76     /* From B2.4 AArch64 Virtual Memory control registers */
77     cpu->reset_sctlr = 0x00c50838;
78 
79     /* From B2.10 AArch64 performance monitor registers */
80     cpu->isar.reset_pmcr_el0 = 0x410a3000;
81 
82     /* From B2.29 Cache ID registers */
83     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
84     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
85     cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
86 
87     /* From B3.5 VGIC Type register */
88     cpu->gic_num_lrs = 4;
89     cpu->gic_vpribits = 5;
90     cpu->gic_vprebits = 5;
91     cpu->gic_pribits = 5;
92 
93     /* From C6.4 Debug ID Register */
94     cpu->isar.dbgdidr = 0x3516d000;
95     /* From C6.5 Debug Device ID Register */
96     cpu->isar.dbgdevid = 0x00110f13;
97     /* From C6.6 Debug Device ID Register 1 */
98     cpu->isar.dbgdevid1 = 0x2;
99 
100     /* From Cortex-A35 SIMD and Floating-point Support r1p0 */
101     /* From 3.2 AArch32 register summary */
102     cpu->reset_fpsid = 0x41034043;
103 
104     /* From 2.2 AArch64 register summary */
105     cpu->isar.mvfr0 = 0x10110222;
106     cpu->isar.mvfr1 = 0x12111111;
107     cpu->isar.mvfr2 = 0x00000043;
108 
109     /* These values are the same with A53/A57/A72. */
110     define_cortex_a72_a57_a53_cp_reginfo(cpu);
111 }
112 
113 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
114 {
115     /*
116      * If any vector lengths are explicitly enabled with sve<N> properties,
117      * then all other lengths are implicitly disabled.  If sve-max-vq is
118      * specified then it is the same as explicitly enabling all lengths
119      * up to and including the specified maximum, which means all larger
120      * lengths will be implicitly disabled.  If no sve<N> properties
121      * are enabled and sve-max-vq is not specified, then all lengths not
122      * explicitly disabled will be enabled.  Additionally, all power-of-two
123      * vector lengths less than the maximum enabled length will be
124      * automatically enabled and all vector lengths larger than the largest
125      * disabled power-of-two vector length will be automatically disabled.
126      * Errors are generated if the user provided input that interferes with
127      * any of the above.  Finally, if SVE is not disabled, then at least one
128      * vector length must be enabled.
129      */
130     uint32_t vq_map = cpu->sve_vq.map;
131     uint32_t vq_init = cpu->sve_vq.init;
132     uint32_t vq_supported;
133     uint32_t vq_mask = 0;
134     uint32_t tmp, vq, max_vq = 0;
135 
136     /*
137      * CPU models specify a set of supported vector lengths which are
138      * enabled by default.  Attempting to enable any vector length not set
139      * in the supported bitmap results in an error.  When KVM is enabled we
140      * fetch the supported bitmap from the host.
141      */
142     if (kvm_enabled()) {
143         if (kvm_arm_sve_supported()) {
144             cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
145             vq_supported = cpu->sve_vq.supported;
146         } else {
147             assert(!cpu_isar_feature(aa64_sve, cpu));
148             vq_supported = 0;
149         }
150     } else {
151         vq_supported = cpu->sve_vq.supported;
152     }
153 
154     /*
155      * Process explicit sve<N> properties.
156      * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
157      * Check first for any sve<N> enabled.
158      */
159     if (vq_map != 0) {
160         max_vq = 32 - clz32(vq_map);
161         vq_mask = MAKE_64BIT_MASK(0, max_vq);
162 
163         if (cpu->sve_max_vq && max_vq > cpu->sve_max_vq) {
164             error_setg(errp, "cannot enable sve%d", max_vq * 128);
165             error_append_hint(errp, "sve%d is larger than the maximum vector "
166                               "length, sve-max-vq=%d (%d bits)\n",
167                               max_vq * 128, cpu->sve_max_vq,
168                               cpu->sve_max_vq * 128);
169             return;
170         }
171 
172         if (kvm_enabled()) {
173             /*
174              * For KVM we have to automatically enable all supported unitialized
175              * lengths, even when the smaller lengths are not all powers-of-two.
176              */
177             vq_map |= vq_supported & ~vq_init & vq_mask;
178         } else {
179             /* Propagate enabled bits down through required powers-of-two. */
180             vq_map |= SVE_VQ_POW2_MAP & ~vq_init & vq_mask;
181         }
182     } else if (cpu->sve_max_vq == 0) {
183         /*
184          * No explicit bits enabled, and no implicit bits from sve-max-vq.
185          */
186         if (!cpu_isar_feature(aa64_sve, cpu)) {
187             /* SVE is disabled and so are all vector lengths.  Good. */
188             return;
189         }
190 
191         if (kvm_enabled()) {
192             /* Disabling a supported length disables all larger lengths. */
193             tmp = vq_init & vq_supported;
194         } else {
195             /* Disabling a power-of-two disables all larger lengths. */
196             tmp = vq_init & SVE_VQ_POW2_MAP;
197         }
198         vq = ctz32(tmp) + 1;
199 
200         max_vq = vq <= ARM_MAX_VQ ? vq - 1 : ARM_MAX_VQ;
201         vq_mask = MAKE_64BIT_MASK(0, max_vq);
202         vq_map = vq_supported & ~vq_init & vq_mask;
203 
204         if (max_vq == 0 || vq_map == 0) {
205             error_setg(errp, "cannot disable sve%d", vq * 128);
206             error_append_hint(errp, "Disabling sve%d results in all "
207                               "vector lengths being disabled.\n",
208                               vq * 128);
209             error_append_hint(errp, "With SVE enabled, at least one "
210                               "vector length must be enabled.\n");
211             return;
212         }
213 
214         max_vq = 32 - clz32(vq_map);
215         vq_mask = MAKE_64BIT_MASK(0, max_vq);
216     }
217 
218     /*
219      * Process the sve-max-vq property.
220      * Note that we know from the above that no bit above
221      * sve-max-vq is currently set.
222      */
223     if (cpu->sve_max_vq != 0) {
224         max_vq = cpu->sve_max_vq;
225         vq_mask = MAKE_64BIT_MASK(0, max_vq);
226 
227         if (vq_init & ~vq_map & (1 << (max_vq - 1))) {
228             error_setg(errp, "cannot disable sve%d", max_vq * 128);
229             error_append_hint(errp, "The maximum vector length must be "
230                               "enabled, sve-max-vq=%d (%d bits)\n",
231                               max_vq, max_vq * 128);
232             return;
233         }
234 
235         /* Set all bits not explicitly set within sve-max-vq. */
236         vq_map |= ~vq_init & vq_mask;
237     }
238 
239     /*
240      * We should know what max-vq is now.  Also, as we're done
241      * manipulating sve-vq-map, we ensure any bits above max-vq
242      * are clear, just in case anybody looks.
243      */
244     assert(max_vq != 0);
245     assert(vq_mask != 0);
246     vq_map &= vq_mask;
247 
248     /* Ensure the set of lengths matches what is supported. */
249     tmp = vq_map ^ (vq_supported & vq_mask);
250     if (tmp) {
251         vq = 32 - clz32(tmp);
252         if (vq_map & (1 << (vq - 1))) {
253             if (cpu->sve_max_vq) {
254                 error_setg(errp, "cannot set sve-max-vq=%d", cpu->sve_max_vq);
255                 error_append_hint(errp, "This CPU does not support "
256                                   "the vector length %d-bits.\n", vq * 128);
257                 error_append_hint(errp, "It may not be possible to use "
258                                   "sve-max-vq with this CPU. Try "
259                                   "using only sve<N> properties.\n");
260             } else {
261                 error_setg(errp, "cannot enable sve%d", vq * 128);
262                 if (vq_supported) {
263                     error_append_hint(errp, "This CPU does not support "
264                                       "the vector length %d-bits.\n", vq * 128);
265                 } else {
266                     error_append_hint(errp, "SVE not supported by KVM "
267                                       "on this host\n");
268                 }
269             }
270             return;
271         } else {
272             if (kvm_enabled()) {
273                 error_setg(errp, "cannot disable sve%d", vq * 128);
274                 error_append_hint(errp, "The KVM host requires all "
275                                   "supported vector lengths smaller "
276                                   "than %d bits to also be enabled.\n",
277                                   max_vq * 128);
278                 return;
279             } else {
280                 /* Ensure all required powers-of-two are enabled. */
281                 tmp = SVE_VQ_POW2_MAP & vq_mask & ~vq_map;
282                 if (tmp) {
283                     vq = 32 - clz32(tmp);
284                     error_setg(errp, "cannot disable sve%d", vq * 128);
285                     error_append_hint(errp, "sve%d is required as it "
286                                       "is a power-of-two length smaller "
287                                       "than the maximum, sve%d\n",
288                                       vq * 128, max_vq * 128);
289                     return;
290                 }
291             }
292         }
293     }
294 
295     /*
296      * Now that we validated all our vector lengths, the only question
297      * left to answer is if we even want SVE at all.
298      */
299     if (!cpu_isar_feature(aa64_sve, cpu)) {
300         error_setg(errp, "cannot enable sve%d", max_vq * 128);
301         error_append_hint(errp, "SVE must be enabled to enable vector "
302                           "lengths.\n");
303         error_append_hint(errp, "Add sve=on to the CPU property list.\n");
304         return;
305     }
306 
307     /* From now on sve_max_vq is the actual maximum supported length. */
308     cpu->sve_max_vq = max_vq;
309     cpu->sve_vq.map = vq_map;
310 }
311 
312 static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
313                                    void *opaque, Error **errp)
314 {
315     ARMCPU *cpu = ARM_CPU(obj);
316     uint32_t value;
317 
318     /* All vector lengths are disabled when SVE is off. */
319     if (!cpu_isar_feature(aa64_sve, cpu)) {
320         value = 0;
321     } else {
322         value = cpu->sve_max_vq;
323     }
324     visit_type_uint32(v, name, &value, errp);
325 }
326 
327 static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
328                                    void *opaque, Error **errp)
329 {
330     ARMCPU *cpu = ARM_CPU(obj);
331     uint32_t max_vq;
332 
333     if (!visit_type_uint32(v, name, &max_vq, errp)) {
334         return;
335     }
336 
337     if (kvm_enabled() && !kvm_arm_sve_supported()) {
338         error_setg(errp, "cannot set sve-max-vq");
339         error_append_hint(errp, "SVE not supported by KVM on this host\n");
340         return;
341     }
342 
343     if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
344         error_setg(errp, "unsupported SVE vector length");
345         error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
346                           ARM_MAX_VQ);
347         return;
348     }
349 
350     cpu->sve_max_vq = max_vq;
351 }
352 
353 /*
354  * Note that cpu_arm_{get,set}_vq cannot use the simpler
355  * object_property_add_bool interface because they make use of the
356  * contents of "name" to determine which bit on which to operate.
357  */
358 static void cpu_arm_get_vq(Object *obj, Visitor *v, const char *name,
359                            void *opaque, Error **errp)
360 {
361     ARMCPU *cpu = ARM_CPU(obj);
362     ARMVQMap *vq_map = opaque;
363     uint32_t vq = atoi(&name[3]) / 128;
364     bool sve = vq_map == &cpu->sve_vq;
365     bool value;
366 
367     /* All vector lengths are disabled when feature is off. */
368     if (sve
369         ? !cpu_isar_feature(aa64_sve, cpu)
370         : !cpu_isar_feature(aa64_sme, cpu)) {
371         value = false;
372     } else {
373         value = extract32(vq_map->map, vq - 1, 1);
374     }
375     visit_type_bool(v, name, &value, errp);
376 }
377 
378 static void cpu_arm_set_vq(Object *obj, Visitor *v, const char *name,
379                            void *opaque, Error **errp)
380 {
381     ARMVQMap *vq_map = opaque;
382     uint32_t vq = atoi(&name[3]) / 128;
383     bool value;
384 
385     if (!visit_type_bool(v, name, &value, errp)) {
386         return;
387     }
388 
389     vq_map->map = deposit32(vq_map->map, vq - 1, 1, value);
390     vq_map->init |= 1 << (vq - 1);
391 }
392 
393 static bool cpu_arm_get_sve(Object *obj, Error **errp)
394 {
395     ARMCPU *cpu = ARM_CPU(obj);
396     return cpu_isar_feature(aa64_sve, cpu);
397 }
398 
399 static void cpu_arm_set_sve(Object *obj, bool value, Error **errp)
400 {
401     ARMCPU *cpu = ARM_CPU(obj);
402     uint64_t t;
403 
404     if (value && kvm_enabled() && !kvm_arm_sve_supported()) {
405         error_setg(errp, "'sve' feature not supported by KVM on this host");
406         return;
407     }
408 
409     t = cpu->isar.id_aa64pfr0;
410     t = FIELD_DP64(t, ID_AA64PFR0, SVE, value);
411     cpu->isar.id_aa64pfr0 = t;
412 }
413 
414 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp)
415 {
416     uint32_t vq_map = cpu->sme_vq.map;
417     uint32_t vq_init = cpu->sme_vq.init;
418     uint32_t vq_supported = cpu->sme_vq.supported;
419     uint32_t vq;
420 
421     if (vq_map == 0) {
422         if (!cpu_isar_feature(aa64_sme, cpu)) {
423             cpu->isar.id_aa64smfr0 = 0;
424             return;
425         }
426 
427         /* TODO: KVM will require limitations via SMCR_EL2. */
428         vq_map = vq_supported & ~vq_init;
429 
430         if (vq_map == 0) {
431             vq = ctz32(vq_supported) + 1;
432             error_setg(errp, "cannot disable sme%d", vq * 128);
433             error_append_hint(errp, "All SME vector lengths are disabled.\n");
434             error_append_hint(errp, "With SME enabled, at least one "
435                               "vector length must be enabled.\n");
436             return;
437         }
438     } else {
439         if (!cpu_isar_feature(aa64_sme, cpu)) {
440             vq = 32 - clz32(vq_map);
441             error_setg(errp, "cannot enable sme%d", vq * 128);
442             error_append_hint(errp, "SME must be enabled to enable "
443                               "vector lengths.\n");
444             error_append_hint(errp, "Add sme=on to the CPU property list.\n");
445             return;
446         }
447         /* TODO: KVM will require limitations via SMCR_EL2. */
448     }
449 
450     cpu->sme_vq.map = vq_map;
451 }
452 
453 static bool cpu_arm_get_sme(Object *obj, Error **errp)
454 {
455     ARMCPU *cpu = ARM_CPU(obj);
456     return cpu_isar_feature(aa64_sme, cpu);
457 }
458 
459 static void cpu_arm_set_sme(Object *obj, bool value, Error **errp)
460 {
461     ARMCPU *cpu = ARM_CPU(obj);
462     uint64_t t;
463 
464     t = cpu->isar.id_aa64pfr1;
465     t = FIELD_DP64(t, ID_AA64PFR1, SME, value);
466     cpu->isar.id_aa64pfr1 = t;
467 }
468 
469 static bool cpu_arm_get_sme_fa64(Object *obj, Error **errp)
470 {
471     ARMCPU *cpu = ARM_CPU(obj);
472     return cpu_isar_feature(aa64_sme, cpu) &&
473            cpu_isar_feature(aa64_sme_fa64, cpu);
474 }
475 
476 static void cpu_arm_set_sme_fa64(Object *obj, bool value, Error **errp)
477 {
478     ARMCPU *cpu = ARM_CPU(obj);
479     uint64_t t;
480 
481     t = cpu->isar.id_aa64smfr0;
482     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, value);
483     cpu->isar.id_aa64smfr0 = t;
484 }
485 
486 #ifdef CONFIG_USER_ONLY
487 /* Mirror linux /proc/sys/abi/{sve,sme}_default_vector_length. */
488 static void cpu_arm_set_default_vec_len(Object *obj, Visitor *v,
489                                         const char *name, void *opaque,
490                                         Error **errp)
491 {
492     uint32_t *ptr_default_vq = opaque;
493     int32_t default_len, default_vq, remainder;
494 
495     if (!visit_type_int32(v, name, &default_len, errp)) {
496         return;
497     }
498 
499     /* Undocumented, but the kernel allows -1 to indicate "maximum". */
500     if (default_len == -1) {
501         *ptr_default_vq = ARM_MAX_VQ;
502         return;
503     }
504 
505     default_vq = default_len / 16;
506     remainder = default_len % 16;
507 
508     /*
509      * Note that the 512 max comes from include/uapi/asm/sve_context.h
510      * and is the maximum architectural width of ZCR_ELx.LEN.
511      */
512     if (remainder || default_vq < 1 || default_vq > 512) {
513         ARMCPU *cpu = ARM_CPU(obj);
514         const char *which =
515             (ptr_default_vq == &cpu->sve_default_vq ? "sve" : "sme");
516 
517         error_setg(errp, "cannot set %s-default-vector-length", which);
518         if (remainder) {
519             error_append_hint(errp, "Vector length not a multiple of 16\n");
520         } else if (default_vq < 1) {
521             error_append_hint(errp, "Vector length smaller than 16\n");
522         } else {
523             error_append_hint(errp, "Vector length larger than %d\n",
524                               512 * 16);
525         }
526         return;
527     }
528 
529     *ptr_default_vq = default_vq;
530 }
531 
532 static void cpu_arm_get_default_vec_len(Object *obj, Visitor *v,
533                                         const char *name, void *opaque,
534                                         Error **errp)
535 {
536     uint32_t *ptr_default_vq = opaque;
537     int32_t value = *ptr_default_vq * 16;
538 
539     visit_type_int32(v, name, &value, errp);
540 }
541 #endif
542 
543 static void aarch64_add_sve_properties(Object *obj)
544 {
545     ARMCPU *cpu = ARM_CPU(obj);
546     uint32_t vq;
547 
548     object_property_add_bool(obj, "sve", cpu_arm_get_sve, cpu_arm_set_sve);
549 
550     for (vq = 1; vq <= ARM_MAX_VQ; ++vq) {
551         char name[8];
552         sprintf(name, "sve%d", vq * 128);
553         object_property_add(obj, name, "bool", cpu_arm_get_vq,
554                             cpu_arm_set_vq, NULL, &cpu->sve_vq);
555     }
556 
557 #ifdef CONFIG_USER_ONLY
558     /* Mirror linux /proc/sys/abi/sve_default_vector_length. */
559     object_property_add(obj, "sve-default-vector-length", "int32",
560                         cpu_arm_get_default_vec_len,
561                         cpu_arm_set_default_vec_len, NULL,
562                         &cpu->sve_default_vq);
563 #endif
564 }
565 
566 static void aarch64_add_sme_properties(Object *obj)
567 {
568     ARMCPU *cpu = ARM_CPU(obj);
569     uint32_t vq;
570 
571     object_property_add_bool(obj, "sme", cpu_arm_get_sme, cpu_arm_set_sme);
572     object_property_add_bool(obj, "sme_fa64", cpu_arm_get_sme_fa64,
573                              cpu_arm_set_sme_fa64);
574 
575     for (vq = 1; vq <= ARM_MAX_VQ; vq <<= 1) {
576         char name[8];
577         sprintf(name, "sme%d", vq * 128);
578         object_property_add(obj, name, "bool", cpu_arm_get_vq,
579                             cpu_arm_set_vq, NULL, &cpu->sme_vq);
580     }
581 
582 #ifdef CONFIG_USER_ONLY
583     /* Mirror linux /proc/sys/abi/sme_default_vector_length. */
584     object_property_add(obj, "sme-default-vector-length", "int32",
585                         cpu_arm_get_default_vec_len,
586                         cpu_arm_set_default_vec_len, NULL,
587                         &cpu->sme_default_vq);
588 #endif
589 }
590 
591 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp)
592 {
593     int arch_val = 0, impdef_val = 0;
594     uint64_t t;
595 
596     /* Exit early if PAuth is enabled, and fall through to disable it */
597     if ((kvm_enabled() || hvf_enabled()) && cpu->prop_pauth) {
598         if (!cpu_isar_feature(aa64_pauth, cpu)) {
599             error_setg(errp, "'pauth' feature not supported by %s on this host",
600                        kvm_enabled() ? "KVM" : "hvf");
601         }
602 
603         return;
604     }
605 
606     /* TODO: Handle HaveEnhancedPAC, HaveEnhancedPAC2, HaveFPAC. */
607     if (cpu->prop_pauth) {
608         if (cpu->prop_pauth_impdef) {
609             impdef_val = 1;
610         } else {
611             arch_val = 1;
612         }
613     } else if (cpu->prop_pauth_impdef) {
614         error_setg(errp, "cannot enable pauth-impdef without pauth");
615         error_append_hint(errp, "Add pauth=on to the CPU property list.\n");
616     }
617 
618     t = cpu->isar.id_aa64isar1;
619     t = FIELD_DP64(t, ID_AA64ISAR1, APA, arch_val);
620     t = FIELD_DP64(t, ID_AA64ISAR1, GPA, arch_val);
621     t = FIELD_DP64(t, ID_AA64ISAR1, API, impdef_val);
622     t = FIELD_DP64(t, ID_AA64ISAR1, GPI, impdef_val);
623     cpu->isar.id_aa64isar1 = t;
624 }
625 
626 static Property arm_cpu_pauth_property =
627     DEFINE_PROP_BOOL("pauth", ARMCPU, prop_pauth, true);
628 static Property arm_cpu_pauth_impdef_property =
629     DEFINE_PROP_BOOL("pauth-impdef", ARMCPU, prop_pauth_impdef, false);
630 
631 static void aarch64_add_pauth_properties(Object *obj)
632 {
633     ARMCPU *cpu = ARM_CPU(obj);
634 
635     /* Default to PAUTH on, with the architected algorithm on TCG. */
636     qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_property);
637     if (kvm_enabled() || hvf_enabled()) {
638         /*
639          * Mirror PAuth support from the probed sysregs back into the
640          * property for KVM or hvf. Is it just a bit backward? Yes it is!
641          * Note that prop_pauth is true whether the host CPU supports the
642          * architected QARMA5 algorithm or the IMPDEF one. We don't
643          * provide the separate pauth-impdef property for KVM or hvf,
644          * only for TCG.
645          */
646         cpu->prop_pauth = cpu_isar_feature(aa64_pauth, cpu);
647     } else {
648         qdev_property_add_static(DEVICE(obj), &arm_cpu_pauth_impdef_property);
649     }
650 }
651 
652 static Property arm_cpu_lpa2_property =
653     DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
654 
655 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp)
656 {
657     uint64_t t;
658 
659     /*
660      * We only install the property for tcg -cpu max; this is the
661      * only situation in which the cpu field can be true.
662      */
663     if (!cpu->prop_lpa2) {
664         return;
665     }
666 
667     t = cpu->isar.id_aa64mmfr0;
668     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 2);   /* 16k pages w/ LPA2 */
669     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4, 1);    /*  4k pages w/ LPA2 */
670     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 3); /* 16k stage2 w/ LPA2 */
671     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 3);  /*  4k stage2 w/ LPA2 */
672     cpu->isar.id_aa64mmfr0 = t;
673 }
674 
675 static void aarch64_a57_initfn(Object *obj)
676 {
677     ARMCPU *cpu = ARM_CPU(obj);
678 
679     cpu->dtb_compatible = "arm,cortex-a57";
680     set_feature(&cpu->env, ARM_FEATURE_V8);
681     set_feature(&cpu->env, ARM_FEATURE_NEON);
682     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
683     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
684     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
685     set_feature(&cpu->env, ARM_FEATURE_EL2);
686     set_feature(&cpu->env, ARM_FEATURE_EL3);
687     set_feature(&cpu->env, ARM_FEATURE_PMU);
688     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A57;
689     cpu->midr = 0x411fd070;
690     cpu->revidr = 0x00000000;
691     cpu->reset_fpsid = 0x41034070;
692     cpu->isar.mvfr0 = 0x10110222;
693     cpu->isar.mvfr1 = 0x12111111;
694     cpu->isar.mvfr2 = 0x00000043;
695     cpu->ctr = 0x8444c004;
696     cpu->reset_sctlr = 0x00c50838;
697     cpu->isar.id_pfr0 = 0x00000131;
698     cpu->isar.id_pfr1 = 0x00011011;
699     cpu->isar.id_dfr0 = 0x03010066;
700     cpu->id_afr0 = 0x00000000;
701     cpu->isar.id_mmfr0 = 0x10101105;
702     cpu->isar.id_mmfr1 = 0x40000000;
703     cpu->isar.id_mmfr2 = 0x01260000;
704     cpu->isar.id_mmfr3 = 0x02102211;
705     cpu->isar.id_isar0 = 0x02101110;
706     cpu->isar.id_isar1 = 0x13112111;
707     cpu->isar.id_isar2 = 0x21232042;
708     cpu->isar.id_isar3 = 0x01112131;
709     cpu->isar.id_isar4 = 0x00011142;
710     cpu->isar.id_isar5 = 0x00011121;
711     cpu->isar.id_isar6 = 0;
712     cpu->isar.id_aa64pfr0 = 0x00002222;
713     cpu->isar.id_aa64dfr0 = 0x10305106;
714     cpu->isar.id_aa64isar0 = 0x00011120;
715     cpu->isar.id_aa64mmfr0 = 0x00001124;
716     cpu->isar.dbgdidr = 0x3516d000;
717     cpu->isar.dbgdevid = 0x01110f13;
718     cpu->isar.dbgdevid1 = 0x2;
719     cpu->isar.reset_pmcr_el0 = 0x41013000;
720     cpu->clidr = 0x0a200023;
721     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
722     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
723     cpu->ccsidr[2] = 0x70ffe07a; /* 2048KB L2 cache */
724     cpu->dcz_blocksize = 4; /* 64 bytes */
725     cpu->gic_num_lrs = 4;
726     cpu->gic_vpribits = 5;
727     cpu->gic_vprebits = 5;
728     cpu->gic_pribits = 5;
729     define_cortex_a72_a57_a53_cp_reginfo(cpu);
730 }
731 
732 static void aarch64_a53_initfn(Object *obj)
733 {
734     ARMCPU *cpu = ARM_CPU(obj);
735 
736     cpu->dtb_compatible = "arm,cortex-a53";
737     set_feature(&cpu->env, ARM_FEATURE_V8);
738     set_feature(&cpu->env, ARM_FEATURE_NEON);
739     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
740     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
741     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
742     set_feature(&cpu->env, ARM_FEATURE_EL2);
743     set_feature(&cpu->env, ARM_FEATURE_EL3);
744     set_feature(&cpu->env, ARM_FEATURE_PMU);
745     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A53;
746     cpu->midr = 0x410fd034;
747     cpu->revidr = 0x00000000;
748     cpu->reset_fpsid = 0x41034070;
749     cpu->isar.mvfr0 = 0x10110222;
750     cpu->isar.mvfr1 = 0x12111111;
751     cpu->isar.mvfr2 = 0x00000043;
752     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
753     cpu->reset_sctlr = 0x00c50838;
754     cpu->isar.id_pfr0 = 0x00000131;
755     cpu->isar.id_pfr1 = 0x00011011;
756     cpu->isar.id_dfr0 = 0x03010066;
757     cpu->id_afr0 = 0x00000000;
758     cpu->isar.id_mmfr0 = 0x10101105;
759     cpu->isar.id_mmfr1 = 0x40000000;
760     cpu->isar.id_mmfr2 = 0x01260000;
761     cpu->isar.id_mmfr3 = 0x02102211;
762     cpu->isar.id_isar0 = 0x02101110;
763     cpu->isar.id_isar1 = 0x13112111;
764     cpu->isar.id_isar2 = 0x21232042;
765     cpu->isar.id_isar3 = 0x01112131;
766     cpu->isar.id_isar4 = 0x00011142;
767     cpu->isar.id_isar5 = 0x00011121;
768     cpu->isar.id_isar6 = 0;
769     cpu->isar.id_aa64pfr0 = 0x00002222;
770     cpu->isar.id_aa64dfr0 = 0x10305106;
771     cpu->isar.id_aa64isar0 = 0x00011120;
772     cpu->isar.id_aa64mmfr0 = 0x00001122; /* 40 bit physical addr */
773     cpu->isar.dbgdidr = 0x3516d000;
774     cpu->isar.dbgdevid = 0x00110f13;
775     cpu->isar.dbgdevid1 = 0x1;
776     cpu->isar.reset_pmcr_el0 = 0x41033000;
777     cpu->clidr = 0x0a200023;
778     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
779     cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
780     cpu->ccsidr[2] = 0x707fe07a; /* 1024KB L2 cache */
781     cpu->dcz_blocksize = 4; /* 64 bytes */
782     cpu->gic_num_lrs = 4;
783     cpu->gic_vpribits = 5;
784     cpu->gic_vprebits = 5;
785     cpu->gic_pribits = 5;
786     define_cortex_a72_a57_a53_cp_reginfo(cpu);
787 }
788 
789 static void aarch64_a55_initfn(Object *obj)
790 {
791     ARMCPU *cpu = ARM_CPU(obj);
792 
793     cpu->dtb_compatible = "arm,cortex-a55";
794     set_feature(&cpu->env, ARM_FEATURE_V8);
795     set_feature(&cpu->env, ARM_FEATURE_NEON);
796     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
797     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
798     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
799     set_feature(&cpu->env, ARM_FEATURE_EL2);
800     set_feature(&cpu->env, ARM_FEATURE_EL3);
801     set_feature(&cpu->env, ARM_FEATURE_PMU);
802 
803     /* Ordered by B2.4 AArch64 registers by functional group */
804     cpu->clidr = 0x82000023;
805     cpu->ctr = 0x84448004; /* L1Ip = VIPT */
806     cpu->dcz_blocksize = 4; /* 64 bytes */
807     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
808     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
809     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
810     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
811     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
812     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
813     cpu->isar.id_aa64pfr0  = 0x0000000010112222ull;
814     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
815     cpu->id_afr0       = 0x00000000;
816     cpu->isar.id_dfr0  = 0x04010088;
817     cpu->isar.id_isar0 = 0x02101110;
818     cpu->isar.id_isar1 = 0x13112111;
819     cpu->isar.id_isar2 = 0x21232042;
820     cpu->isar.id_isar3 = 0x01112131;
821     cpu->isar.id_isar4 = 0x00011142;
822     cpu->isar.id_isar5 = 0x01011121;
823     cpu->isar.id_isar6 = 0x00000010;
824     cpu->isar.id_mmfr0 = 0x10201105;
825     cpu->isar.id_mmfr1 = 0x40000000;
826     cpu->isar.id_mmfr2 = 0x01260000;
827     cpu->isar.id_mmfr3 = 0x02122211;
828     cpu->isar.id_mmfr4 = 0x00021110;
829     cpu->isar.id_pfr0  = 0x10010131;
830     cpu->isar.id_pfr1  = 0x00011011;
831     cpu->isar.id_pfr2  = 0x00000011;
832     cpu->midr = 0x412FD050;          /* r2p0 */
833     cpu->revidr = 0;
834 
835     /* From B2.23 CCSIDR_EL1 */
836     cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
837     cpu->ccsidr[1] = 0x200fe01a; /* 32KB L1 icache */
838     cpu->ccsidr[2] = 0x703fe07a; /* 512KB L2 cache */
839 
840     /* From B2.96 SCTLR_EL3 */
841     cpu->reset_sctlr = 0x30c50838;
842 
843     /* From B4.45 ICH_VTR_EL2 */
844     cpu->gic_num_lrs = 4;
845     cpu->gic_vpribits = 5;
846     cpu->gic_vprebits = 5;
847     cpu->gic_pribits = 5;
848 
849     cpu->isar.mvfr0 = 0x10110222;
850     cpu->isar.mvfr1 = 0x13211111;
851     cpu->isar.mvfr2 = 0x00000043;
852 
853     /* From D5.4 AArch64 PMU register summary */
854     cpu->isar.reset_pmcr_el0 = 0x410b3000;
855 }
856 
857 static void aarch64_a72_initfn(Object *obj)
858 {
859     ARMCPU *cpu = ARM_CPU(obj);
860 
861     cpu->dtb_compatible = "arm,cortex-a72";
862     set_feature(&cpu->env, ARM_FEATURE_V8);
863     set_feature(&cpu->env, ARM_FEATURE_NEON);
864     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
865     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
866     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
867     set_feature(&cpu->env, ARM_FEATURE_EL2);
868     set_feature(&cpu->env, ARM_FEATURE_EL3);
869     set_feature(&cpu->env, ARM_FEATURE_PMU);
870     cpu->midr = 0x410fd083;
871     cpu->revidr = 0x00000000;
872     cpu->reset_fpsid = 0x41034080;
873     cpu->isar.mvfr0 = 0x10110222;
874     cpu->isar.mvfr1 = 0x12111111;
875     cpu->isar.mvfr2 = 0x00000043;
876     cpu->ctr = 0x8444c004;
877     cpu->reset_sctlr = 0x00c50838;
878     cpu->isar.id_pfr0 = 0x00000131;
879     cpu->isar.id_pfr1 = 0x00011011;
880     cpu->isar.id_dfr0 = 0x03010066;
881     cpu->id_afr0 = 0x00000000;
882     cpu->isar.id_mmfr0 = 0x10201105;
883     cpu->isar.id_mmfr1 = 0x40000000;
884     cpu->isar.id_mmfr2 = 0x01260000;
885     cpu->isar.id_mmfr3 = 0x02102211;
886     cpu->isar.id_isar0 = 0x02101110;
887     cpu->isar.id_isar1 = 0x13112111;
888     cpu->isar.id_isar2 = 0x21232042;
889     cpu->isar.id_isar3 = 0x01112131;
890     cpu->isar.id_isar4 = 0x00011142;
891     cpu->isar.id_isar5 = 0x00011121;
892     cpu->isar.id_aa64pfr0 = 0x00002222;
893     cpu->isar.id_aa64dfr0 = 0x10305106;
894     cpu->isar.id_aa64isar0 = 0x00011120;
895     cpu->isar.id_aa64mmfr0 = 0x00001124;
896     cpu->isar.dbgdidr = 0x3516d000;
897     cpu->isar.dbgdevid = 0x01110f13;
898     cpu->isar.dbgdevid1 = 0x2;
899     cpu->isar.reset_pmcr_el0 = 0x41023000;
900     cpu->clidr = 0x0a200023;
901     cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
902     cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
903     cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
904     cpu->dcz_blocksize = 4; /* 64 bytes */
905     cpu->gic_num_lrs = 4;
906     cpu->gic_vpribits = 5;
907     cpu->gic_vprebits = 5;
908     cpu->gic_pribits = 5;
909     define_cortex_a72_a57_a53_cp_reginfo(cpu);
910 }
911 
912 static void aarch64_a76_initfn(Object *obj)
913 {
914     ARMCPU *cpu = ARM_CPU(obj);
915 
916     cpu->dtb_compatible = "arm,cortex-a76";
917     set_feature(&cpu->env, ARM_FEATURE_V8);
918     set_feature(&cpu->env, ARM_FEATURE_NEON);
919     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
920     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
921     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
922     set_feature(&cpu->env, ARM_FEATURE_EL2);
923     set_feature(&cpu->env, ARM_FEATURE_EL3);
924     set_feature(&cpu->env, ARM_FEATURE_PMU);
925 
926     /* Ordered by B2.4 AArch64 registers by functional group */
927     cpu->clidr = 0x82000023;
928     cpu->ctr = 0x8444C004;
929     cpu->dcz_blocksize = 4;
930     cpu->isar.id_aa64dfr0  = 0x0000000010305408ull;
931     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
932     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
933     cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
934     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
935     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
936     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
937     cpu->isar.id_aa64pfr1  = 0x0000000000000010ull;
938     cpu->id_afr0       = 0x00000000;
939     cpu->isar.id_dfr0  = 0x04010088;
940     cpu->isar.id_isar0 = 0x02101110;
941     cpu->isar.id_isar1 = 0x13112111;
942     cpu->isar.id_isar2 = 0x21232042;
943     cpu->isar.id_isar3 = 0x01112131;
944     cpu->isar.id_isar4 = 0x00010142;
945     cpu->isar.id_isar5 = 0x01011121;
946     cpu->isar.id_isar6 = 0x00000010;
947     cpu->isar.id_mmfr0 = 0x10201105;
948     cpu->isar.id_mmfr1 = 0x40000000;
949     cpu->isar.id_mmfr2 = 0x01260000;
950     cpu->isar.id_mmfr3 = 0x02122211;
951     cpu->isar.id_mmfr4 = 0x00021110;
952     cpu->isar.id_pfr0  = 0x10010131;
953     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
954     cpu->isar.id_pfr2  = 0x00000011;
955     cpu->midr = 0x414fd0b1;          /* r4p1 */
956     cpu->revidr = 0;
957 
958     /* From B2.18 CCSIDR_EL1 */
959     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
960     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
961     cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
962 
963     /* From B2.93 SCTLR_EL3 */
964     cpu->reset_sctlr = 0x30c50838;
965 
966     /* From B4.23 ICH_VTR_EL2 */
967     cpu->gic_num_lrs = 4;
968     cpu->gic_vpribits = 5;
969     cpu->gic_vprebits = 5;
970     cpu->gic_pribits = 5;
971 
972     /* From B5.1 AdvSIMD AArch64 register summary */
973     cpu->isar.mvfr0 = 0x10110222;
974     cpu->isar.mvfr1 = 0x13211111;
975     cpu->isar.mvfr2 = 0x00000043;
976 
977     /* From D5.1 AArch64 PMU register summary */
978     cpu->isar.reset_pmcr_el0 = 0x410b3000;
979 }
980 
981 static void aarch64_a64fx_initfn(Object *obj)
982 {
983     ARMCPU *cpu = ARM_CPU(obj);
984 
985     cpu->dtb_compatible = "arm,a64fx";
986     set_feature(&cpu->env, ARM_FEATURE_V8);
987     set_feature(&cpu->env, ARM_FEATURE_NEON);
988     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
989     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
990     set_feature(&cpu->env, ARM_FEATURE_EL2);
991     set_feature(&cpu->env, ARM_FEATURE_EL3);
992     set_feature(&cpu->env, ARM_FEATURE_PMU);
993     cpu->midr = 0x461f0010;
994     cpu->revidr = 0x00000000;
995     cpu->ctr = 0x86668006;
996     cpu->reset_sctlr = 0x30000180;
997     cpu->isar.id_aa64pfr0 =   0x0000000101111111; /* No RAS Extensions */
998     cpu->isar.id_aa64pfr1 = 0x0000000000000000;
999     cpu->isar.id_aa64dfr0 = 0x0000000010305408;
1000     cpu->isar.id_aa64dfr1 = 0x0000000000000000;
1001     cpu->id_aa64afr0 = 0x0000000000000000;
1002     cpu->id_aa64afr1 = 0x0000000000000000;
1003     cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
1004     cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
1005     cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
1006     cpu->isar.id_aa64isar0 = 0x0000000010211120;
1007     cpu->isar.id_aa64isar1 = 0x0000000000010001;
1008     cpu->isar.id_aa64zfr0 = 0x0000000000000000;
1009     cpu->clidr = 0x0000000080000023;
1010     cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
1011     cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
1012     cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
1013     cpu->dcz_blocksize = 6; /* 256 bytes */
1014     cpu->gic_num_lrs = 4;
1015     cpu->gic_vpribits = 5;
1016     cpu->gic_vprebits = 5;
1017     cpu->gic_pribits = 5;
1018 
1019     /* The A64FX supports only 128, 256 and 512 bit vector lengths */
1020     aarch64_add_sve_properties(obj);
1021     cpu->sve_vq.supported = (1 << 0)  /* 128bit */
1022                           | (1 << 1)  /* 256bit */
1023                           | (1 << 3); /* 512bit */
1024 
1025     cpu->isar.reset_pmcr_el0 = 0x46014040;
1026 
1027     /* TODO:  Add A64FX specific HPC extension registers */
1028 }
1029 
1030 static void aarch64_neoverse_n1_initfn(Object *obj)
1031 {
1032     ARMCPU *cpu = ARM_CPU(obj);
1033 
1034     cpu->dtb_compatible = "arm,neoverse-n1";
1035     set_feature(&cpu->env, ARM_FEATURE_V8);
1036     set_feature(&cpu->env, ARM_FEATURE_NEON);
1037     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1038     set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1039     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1040     set_feature(&cpu->env, ARM_FEATURE_EL2);
1041     set_feature(&cpu->env, ARM_FEATURE_EL3);
1042     set_feature(&cpu->env, ARM_FEATURE_PMU);
1043 
1044     /* Ordered by B2.4 AArch64 registers by functional group */
1045     cpu->clidr = 0x82000023;
1046     cpu->ctr = 0x8444c004;
1047     cpu->dcz_blocksize = 4;
1048     cpu->isar.id_aa64dfr0  = 0x0000000110305408ull;
1049     cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
1050     cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
1051     cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
1052     cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
1053     cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
1054     cpu->isar.id_aa64pfr0  = 0x1100000010111112ull; /* GIC filled in later */
1055     cpu->isar.id_aa64pfr1  = 0x0000000000000020ull;
1056     cpu->id_afr0       = 0x00000000;
1057     cpu->isar.id_dfr0  = 0x04010088;
1058     cpu->isar.id_isar0 = 0x02101110;
1059     cpu->isar.id_isar1 = 0x13112111;
1060     cpu->isar.id_isar2 = 0x21232042;
1061     cpu->isar.id_isar3 = 0x01112131;
1062     cpu->isar.id_isar4 = 0x00010142;
1063     cpu->isar.id_isar5 = 0x01011121;
1064     cpu->isar.id_isar6 = 0x00000010;
1065     cpu->isar.id_mmfr0 = 0x10201105;
1066     cpu->isar.id_mmfr1 = 0x40000000;
1067     cpu->isar.id_mmfr2 = 0x01260000;
1068     cpu->isar.id_mmfr3 = 0x02122211;
1069     cpu->isar.id_mmfr4 = 0x00021110;
1070     cpu->isar.id_pfr0  = 0x10010131;
1071     cpu->isar.id_pfr1  = 0x00010000; /* GIC filled in later */
1072     cpu->isar.id_pfr2  = 0x00000011;
1073     cpu->midr = 0x414fd0c1;          /* r4p1 */
1074     cpu->revidr = 0;
1075 
1076     /* From B2.23 CCSIDR_EL1 */
1077     cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
1078     cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
1079     cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
1080 
1081     /* From B2.98 SCTLR_EL3 */
1082     cpu->reset_sctlr = 0x30c50838;
1083 
1084     /* From B4.23 ICH_VTR_EL2 */
1085     cpu->gic_num_lrs = 4;
1086     cpu->gic_vpribits = 5;
1087     cpu->gic_vprebits = 5;
1088     cpu->gic_pribits = 5;
1089 
1090     /* From B5.1 AdvSIMD AArch64 register summary */
1091     cpu->isar.mvfr0 = 0x10110222;
1092     cpu->isar.mvfr1 = 0x13211111;
1093     cpu->isar.mvfr2 = 0x00000043;
1094 
1095     /* From D5.1 AArch64 PMU register summary */
1096     cpu->isar.reset_pmcr_el0 = 0x410c3000;
1097 }
1098 
1099 static void aarch64_host_initfn(Object *obj)
1100 {
1101 #if defined(CONFIG_KVM)
1102     ARMCPU *cpu = ARM_CPU(obj);
1103     kvm_arm_set_cpu_features_from_host(cpu);
1104     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1105         aarch64_add_sve_properties(obj);
1106         aarch64_add_pauth_properties(obj);
1107     }
1108 #elif defined(CONFIG_HVF)
1109     ARMCPU *cpu = ARM_CPU(obj);
1110     hvf_arm_set_cpu_features_from_host(cpu);
1111     aarch64_add_pauth_properties(obj);
1112 #else
1113     g_assert_not_reached();
1114 #endif
1115 }
1116 
1117 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1118  * otherwise, a CPU with as many features enabled as our emulation supports.
1119  * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
1120  * this only needs to handle 64 bits.
1121  */
1122 static void aarch64_max_initfn(Object *obj)
1123 {
1124     ARMCPU *cpu = ARM_CPU(obj);
1125     uint64_t t;
1126     uint32_t u;
1127 
1128     if (kvm_enabled() || hvf_enabled()) {
1129         /* With KVM or HVF, '-cpu max' is identical to '-cpu host' */
1130         aarch64_host_initfn(obj);
1131         return;
1132     }
1133 
1134     /* '-cpu max' for TCG: we currently do this as "A57 with extra things" */
1135 
1136     aarch64_a57_initfn(obj);
1137 
1138     /*
1139      * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
1140      * one and try to apply errata workarounds or use impdef features we
1141      * don't provide.
1142      * An IMPLEMENTER field of 0 means "reserved for software use";
1143      * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
1144      * to see which features are present";
1145      * the VARIANT, PARTNUM and REVISION fields are all implementation
1146      * defined and we choose to define PARTNUM just in case guest
1147      * code needs to distinguish this QEMU CPU from other software
1148      * implementations, though this shouldn't be needed.
1149      */
1150     t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
1151     t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
1152     t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
1153     t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
1154     t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
1155     cpu->midr = t;
1156 
1157     /*
1158      * We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
1159      * are zero.
1160      */
1161     u = cpu->clidr;
1162     u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
1163     u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
1164     cpu->clidr = u;
1165 
1166     t = cpu->isar.id_aa64isar0;
1167     t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2);      /* FEAT_PMULL */
1168     t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1);     /* FEAT_SHA1 */
1169     t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2);     /* FEAT_SHA512 */
1170     t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1);
1171     t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2);   /* FEAT_LSE */
1172     t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1);      /* FEAT_RDM */
1173     t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1);     /* FEAT_SHA3 */
1174     t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1);      /* FEAT_SM3 */
1175     t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1);      /* FEAT_SM4 */
1176     t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1);       /* FEAT_DotProd */
1177     t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1);      /* FEAT_FHM */
1178     t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2);       /* FEAT_FlagM2 */
1179     t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2);      /* FEAT_TLBIRANGE */
1180     t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1);     /* FEAT_RNG */
1181     cpu->isar.id_aa64isar0 = t;
1182 
1183     t = cpu->isar.id_aa64isar1;
1184     t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2);      /* FEAT_DPB2 */
1185     t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1);    /* FEAT_JSCVT */
1186     t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1);     /* FEAT_FCMA */
1187     t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2);    /* FEAT_LRCPC2 */
1188     t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1);  /* FEAT_FRINTTS */
1189     t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1);       /* FEAT_SB */
1190     t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1);  /* FEAT_SPECRES */
1191     t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1);     /* FEAT_BF16 */
1192     t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1);      /* FEAT_DGH */
1193     t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1);     /* FEAT_I8MM */
1194     cpu->isar.id_aa64isar1 = t;
1195 
1196     t = cpu->isar.id_aa64pfr0;
1197     t = FIELD_DP64(t, ID_AA64PFR0, FP, 1);        /* FEAT_FP16 */
1198     t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1);   /* FEAT_FP16 */
1199     t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2);       /* FEAT_RASv1p1 + FEAT_DoubleFault */
1200     t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
1201     t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1);      /* FEAT_SEL2 */
1202     t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1);       /* FEAT_DIT */
1203     t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2);      /* FEAT_CSV2_2 */
1204     t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1);      /* FEAT_CSV3 */
1205     cpu->isar.id_aa64pfr0 = t;
1206 
1207     t = cpu->isar.id_aa64pfr1;
1208     t = FIELD_DP64(t, ID_AA64PFR1, BT, 1);        /* FEAT_BTI */
1209     t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2);      /* FEAT_SSBS2 */
1210     /*
1211      * Begin with full support for MTE. This will be downgraded to MTE=0
1212      * during realize if the board provides no tag memory, much like
1213      * we do for EL2 with the virtualization=on property.
1214      */
1215     t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3);       /* FEAT_MTE3 */
1216     t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0);  /* FEAT_RASv1p1 + FEAT_DoubleFault */
1217     t = FIELD_DP64(t, ID_AA64PFR1, SME, 1);       /* FEAT_SME */
1218     t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
1219     cpu->isar.id_aa64pfr1 = t;
1220 
1221     t = cpu->isar.id_aa64mmfr0;
1222     t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
1223     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1);   /* 16k pages supported */
1224     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
1225     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
1226     t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2);  /*  4k stage2 supported */
1227     t = FIELD_DP64(t, ID_AA64MMFR0, FGT, 1);       /* FEAT_FGT */
1228     cpu->isar.id_aa64mmfr0 = t;
1229 
1230     t = cpu->isar.id_aa64mmfr1;
1231     t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2);   /* FEAT_HAFDBS */
1232     t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
1233     t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1);       /* FEAT_VHE */
1234     t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 1);     /* FEAT_HPDS */
1235     t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1);       /* FEAT_LOR */
1236     t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 2);      /* FEAT_PAN2 */
1237     t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1);      /* FEAT_XNX */
1238     t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1);      /* FEAT_ETS */
1239     t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1);      /* FEAT_HCX */
1240     cpu->isar.id_aa64mmfr1 = t;
1241 
1242     t = cpu->isar.id_aa64mmfr2;
1243     t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1);      /* FEAT_TTCNP */
1244     t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1);      /* FEAT_UAO */
1245     t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1);     /* FEAT_IESB */
1246     t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1);  /* FEAT_LVA */
1247     t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1);       /* FEAT_TTST */
1248     t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1);      /* FEAT_IDST */
1249     t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1);      /* FEAT_S2FWB */
1250     t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1);      /* FEAT_TTL */
1251     t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2);      /* FEAT_BBM at level 2 */
1252     t = FIELD_DP64(t, ID_AA64MMFR2, EVT, 2);      /* FEAT_EVT */
1253     t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1);     /* FEAT_E0PD */
1254     cpu->isar.id_aa64mmfr2 = t;
1255 
1256     t = cpu->isar.id_aa64zfr0;
1257     t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
1258     t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2);       /* FEAT_SVE_PMULL128 */
1259     t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1);   /* FEAT_SVE_BitPerm */
1260     t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1);  /* FEAT_BF16 */
1261     t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1);      /* FEAT_SVE_SHA3 */
1262     t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1);       /* FEAT_SVE_SM4 */
1263     t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1);      /* FEAT_I8MM */
1264     t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1);     /* FEAT_F32MM */
1265     t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1);     /* FEAT_F64MM */
1266     cpu->isar.id_aa64zfr0 = t;
1267 
1268     t = cpu->isar.id_aa64dfr0;
1269     t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9);  /* FEAT_Debugv8p4 */
1270     t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6);    /* FEAT_PMUv3p5 */
1271     cpu->isar.id_aa64dfr0 = t;
1272 
1273     t = cpu->isar.id_aa64smfr0;
1274     t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1);   /* FEAT_SME */
1275     t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1);   /* FEAT_SME */
1276     t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1);   /* FEAT_SME */
1277     t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf);  /* FEAT_SME */
1278     t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1);   /* FEAT_SME_F64F64 */
1279     t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
1280     t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1);     /* FEAT_SME_FA64 */
1281     cpu->isar.id_aa64smfr0 = t;
1282 
1283     /* Replicate the same data to the 32-bit id registers.  */
1284     aa32_max_features(cpu);
1285 
1286 #ifdef CONFIG_USER_ONLY
1287     /*
1288      * For usermode -cpu max we can use a larger and more efficient DCZ
1289      * blocksize since we don't have to follow what the hardware does.
1290      */
1291     cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
1292     cpu->dcz_blocksize = 7; /*  512 bytes */
1293 #endif
1294 
1295     cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1296     cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
1297 
1298     aarch64_add_pauth_properties(obj);
1299     aarch64_add_sve_properties(obj);
1300     aarch64_add_sme_properties(obj);
1301     object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
1302                         cpu_max_set_sve_max_vq, NULL, NULL);
1303     qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
1304 }
1305 
1306 static const ARMCPUInfo aarch64_cpus[] = {
1307     { .name = "cortex-a35",         .initfn = aarch64_a35_initfn },
1308     { .name = "cortex-a57",         .initfn = aarch64_a57_initfn },
1309     { .name = "cortex-a53",         .initfn = aarch64_a53_initfn },
1310     { .name = "cortex-a55",         .initfn = aarch64_a55_initfn },
1311     { .name = "cortex-a72",         .initfn = aarch64_a72_initfn },
1312     { .name = "cortex-a76",         .initfn = aarch64_a76_initfn },
1313     { .name = "a64fx",              .initfn = aarch64_a64fx_initfn },
1314     { .name = "neoverse-n1",        .initfn = aarch64_neoverse_n1_initfn },
1315     { .name = "max",                .initfn = aarch64_max_initfn },
1316 #if defined(CONFIG_KVM) || defined(CONFIG_HVF)
1317     { .name = "host",               .initfn = aarch64_host_initfn },
1318 #endif
1319 };
1320 
1321 static bool aarch64_cpu_get_aarch64(Object *obj, Error **errp)
1322 {
1323     ARMCPU *cpu = ARM_CPU(obj);
1324 
1325     return arm_feature(&cpu->env, ARM_FEATURE_AARCH64);
1326 }
1327 
1328 static void aarch64_cpu_set_aarch64(Object *obj, bool value, Error **errp)
1329 {
1330     ARMCPU *cpu = ARM_CPU(obj);
1331 
1332     /* At this time, this property is only allowed if KVM is enabled.  This
1333      * restriction allows us to avoid fixing up functionality that assumes a
1334      * uniform execution state like do_interrupt.
1335      */
1336     if (value == false) {
1337         if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
1338             error_setg(errp, "'aarch64' feature cannot be disabled "
1339                              "unless KVM is enabled and 32-bit EL1 "
1340                              "is supported");
1341             return;
1342         }
1343         unset_feature(&cpu->env, ARM_FEATURE_AARCH64);
1344     } else {
1345         set_feature(&cpu->env, ARM_FEATURE_AARCH64);
1346     }
1347 }
1348 
1349 static void aarch64_cpu_finalizefn(Object *obj)
1350 {
1351 }
1352 
1353 static gchar *aarch64_gdb_arch_name(CPUState *cs)
1354 {
1355     return g_strdup("aarch64");
1356 }
1357 
1358 static void aarch64_cpu_class_init(ObjectClass *oc, void *data)
1359 {
1360     CPUClass *cc = CPU_CLASS(oc);
1361 
1362     cc->gdb_read_register = aarch64_cpu_gdb_read_register;
1363     cc->gdb_write_register = aarch64_cpu_gdb_write_register;
1364     cc->gdb_num_core_regs = 34;
1365     cc->gdb_core_xml_file = "aarch64-core.xml";
1366     cc->gdb_arch_name = aarch64_gdb_arch_name;
1367 
1368     object_class_property_add_bool(oc, "aarch64", aarch64_cpu_get_aarch64,
1369                                    aarch64_cpu_set_aarch64);
1370     object_class_property_set_description(oc, "aarch64",
1371                                           "Set on/off to enable/disable aarch64 "
1372                                           "execution state ");
1373 }
1374 
1375 static void aarch64_cpu_instance_init(Object *obj)
1376 {
1377     ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
1378 
1379     acc->info->initfn(obj);
1380     arm_cpu_post_init(obj);
1381 }
1382 
1383 static void cpu_register_class_init(ObjectClass *oc, void *data)
1384 {
1385     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1386 
1387     acc->info = data;
1388 }
1389 
1390 void aarch64_cpu_register(const ARMCPUInfo *info)
1391 {
1392     TypeInfo type_info = {
1393         .parent = TYPE_AARCH64_CPU,
1394         .instance_size = sizeof(ARMCPU),
1395         .instance_init = aarch64_cpu_instance_init,
1396         .class_size = sizeof(ARMCPUClass),
1397         .class_init = info->class_init ?: cpu_register_class_init,
1398         .class_data = (void *)info,
1399     };
1400 
1401     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1402     type_register(&type_info);
1403     g_free((void *)type_info.name);
1404 }
1405 
1406 static const TypeInfo aarch64_cpu_type_info = {
1407     .name = TYPE_AARCH64_CPU,
1408     .parent = TYPE_ARM_CPU,
1409     .instance_size = sizeof(ARMCPU),
1410     .instance_finalize = aarch64_cpu_finalizefn,
1411     .abstract = true,
1412     .class_size = sizeof(AArch64CPUClass),
1413     .class_init = aarch64_cpu_class_init,
1414 };
1415 
1416 static void aarch64_cpu_register_types(void)
1417 {
1418     size_t i;
1419 
1420     type_register_static(&aarch64_cpu_type_info);
1421 
1422     for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
1423         aarch64_cpu_register(&aarch64_cpus[i]);
1424     }
1425 }
1426 
1427 type_init(aarch64_cpu_register_types)
1428