xref: /qemu/target/arm/helper.c (revision 433a4fdc)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 #include "cpregs.h"
40 
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 
44 #ifndef CONFIG_USER_ONLY
45 
46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
47                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
48                                bool s1_is_el0,
49                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
50                                target_ulong *page_size_ptr,
51                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
52     __attribute__((nonnull));
53 #endif
54 
55 static void switch_mode(CPUARMState *env, int mode);
56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 
58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     assert(ri->fieldoffset);
61     if (cpreg_field_is_64bit(ri)) {
62         return CPREG_FIELD64(env, ri);
63     } else {
64         return CPREG_FIELD32(env, ri);
65     }
66 }
67 
68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
69                       uint64_t value)
70 {
71     assert(ri->fieldoffset);
72     if (cpreg_field_is_64bit(ri)) {
73         CPREG_FIELD64(env, ri) = value;
74     } else {
75         CPREG_FIELD32(env, ri) = value;
76     }
77 }
78 
79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
80 {
81     return (char *)env + ri->fieldoffset;
82 }
83 
84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
85 {
86     /* Raw read of a coprocessor register (as needed for migration, etc). */
87     if (ri->type & ARM_CP_CONST) {
88         return ri->resetvalue;
89     } else if (ri->raw_readfn) {
90         return ri->raw_readfn(env, ri);
91     } else if (ri->readfn) {
92         return ri->readfn(env, ri);
93     } else {
94         return raw_read(env, ri);
95     }
96 }
97 
98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
99                              uint64_t v)
100 {
101     /* Raw write of a coprocessor register (as needed for migration, etc).
102      * Note that constant registers are treated as write-ignored; the
103      * caller should check for success by whether a readback gives the
104      * value written.
105      */
106     if (ri->type & ARM_CP_CONST) {
107         return;
108     } else if (ri->raw_writefn) {
109         ri->raw_writefn(env, ri, v);
110     } else if (ri->writefn) {
111         ri->writefn(env, ri, v);
112     } else {
113         raw_write(env, ri, v);
114     }
115 }
116 
117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
118 {
119    /* Return true if the regdef would cause an assertion if you called
120     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
121     * program bug for it not to have the NO_RAW flag).
122     * NB that returning false here doesn't necessarily mean that calling
123     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
124     * read/write access functions which are safe for raw use" from "has
125     * read/write access functions which have side effects but has forgotten
126     * to provide raw access functions".
127     * The tests here line up with the conditions in read/write_raw_cp_reg()
128     * and assertions in raw_read()/raw_write().
129     */
130     if ((ri->type & ARM_CP_CONST) ||
131         ri->fieldoffset ||
132         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
133         return false;
134     }
135     return true;
136 }
137 
138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
139 {
140     /* Write the coprocessor state from cpu->env to the (index,value) list. */
141     int i;
142     bool ok = true;
143 
144     for (i = 0; i < cpu->cpreg_array_len; i++) {
145         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
146         const ARMCPRegInfo *ri;
147         uint64_t newval;
148 
149         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
150         if (!ri) {
151             ok = false;
152             continue;
153         }
154         if (ri->type & ARM_CP_NO_RAW) {
155             continue;
156         }
157 
158         newval = read_raw_cp_reg(&cpu->env, ri);
159         if (kvm_sync) {
160             /*
161              * Only sync if the previous list->cpustate sync succeeded.
162              * Rather than tracking the success/failure state for every
163              * item in the list, we just recheck "does the raw write we must
164              * have made in write_list_to_cpustate() read back OK" here.
165              */
166             uint64_t oldval = cpu->cpreg_values[i];
167 
168             if (oldval == newval) {
169                 continue;
170             }
171 
172             write_raw_cp_reg(&cpu->env, ri, oldval);
173             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
174                 continue;
175             }
176 
177             write_raw_cp_reg(&cpu->env, ri, newval);
178         }
179         cpu->cpreg_values[i] = newval;
180     }
181     return ok;
182 }
183 
184 bool write_list_to_cpustate(ARMCPU *cpu)
185 {
186     int i;
187     bool ok = true;
188 
189     for (i = 0; i < cpu->cpreg_array_len; i++) {
190         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
191         uint64_t v = cpu->cpreg_values[i];
192         const ARMCPRegInfo *ri;
193 
194         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
195         if (!ri) {
196             ok = false;
197             continue;
198         }
199         if (ri->type & ARM_CP_NO_RAW) {
200             continue;
201         }
202         /* Write value and confirm it reads back as written
203          * (to catch read-only registers and partially read-only
204          * registers where the incoming migration value doesn't match)
205          */
206         write_raw_cp_reg(&cpu->env, ri, v);
207         if (read_raw_cp_reg(&cpu->env, ri) != v) {
208             ok = false;
209         }
210     }
211     return ok;
212 }
213 
214 static void add_cpreg_to_list(gpointer key, gpointer opaque)
215 {
216     ARMCPU *cpu = opaque;
217     uint32_t regidx = (uintptr_t)key;
218     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
219 
220     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
221         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
222         /* The value array need not be initialized at this point */
223         cpu->cpreg_array_len++;
224     }
225 }
226 
227 static void count_cpreg(gpointer key, gpointer opaque)
228 {
229     ARMCPU *cpu = opaque;
230     const ARMCPRegInfo *ri;
231 
232     ri = g_hash_table_lookup(cpu->cp_regs, key);
233 
234     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
235         cpu->cpreg_array_len++;
236     }
237 }
238 
239 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
240 {
241     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
242     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
243 
244     if (aidx > bidx) {
245         return 1;
246     }
247     if (aidx < bidx) {
248         return -1;
249     }
250     return 0;
251 }
252 
253 void init_cpreg_list(ARMCPU *cpu)
254 {
255     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
256      * Note that we require cpreg_tuples[] to be sorted by key ID.
257      */
258     GList *keys;
259     int arraylen;
260 
261     keys = g_hash_table_get_keys(cpu->cp_regs);
262     keys = g_list_sort(keys, cpreg_key_compare);
263 
264     cpu->cpreg_array_len = 0;
265 
266     g_list_foreach(keys, count_cpreg, cpu);
267 
268     arraylen = cpu->cpreg_array_len;
269     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
270     cpu->cpreg_values = g_new(uint64_t, arraylen);
271     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
272     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
273     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
274     cpu->cpreg_array_len = 0;
275 
276     g_list_foreach(keys, add_cpreg_to_list, cpu);
277 
278     assert(cpu->cpreg_array_len == arraylen);
279 
280     g_list_free(keys);
281 }
282 
283 /*
284  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
285  */
286 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
287                                         const ARMCPRegInfo *ri,
288                                         bool isread)
289 {
290     if (!is_a64(env) && arm_current_el(env) == 3 &&
291         arm_is_secure_below_el3(env)) {
292         return CP_ACCESS_TRAP_UNCATEGORIZED;
293     }
294     return CP_ACCESS_OK;
295 }
296 
297 /* Some secure-only AArch32 registers trap to EL3 if used from
298  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
299  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
300  * We assume that the .access field is set to PL1_RW.
301  */
302 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
303                                             const ARMCPRegInfo *ri,
304                                             bool isread)
305 {
306     if (arm_current_el(env) == 3) {
307         return CP_ACCESS_OK;
308     }
309     if (arm_is_secure_below_el3(env)) {
310         if (env->cp15.scr_el3 & SCR_EEL2) {
311             return CP_ACCESS_TRAP_EL2;
312         }
313         return CP_ACCESS_TRAP_EL3;
314     }
315     /* This will be EL1 NS and EL2 NS, which just UNDEF */
316     return CP_ACCESS_TRAP_UNCATEGORIZED;
317 }
318 
319 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
320 {
321     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
322 }
323 
324 /* Check for traps to "powerdown debug" registers, which are controlled
325  * by MDCR.TDOSA
326  */
327 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
328                                    bool isread)
329 {
330     int el = arm_current_el(env);
331     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
332     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
333         (arm_hcr_el2_eff(env) & HCR_TGE);
334 
335     if (el < 2 && mdcr_el2_tdosa) {
336         return CP_ACCESS_TRAP_EL2;
337     }
338     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
339         return CP_ACCESS_TRAP_EL3;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps to "debug ROM" registers, which are controlled
345  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
346  */
347 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
348                                   bool isread)
349 {
350     int el = arm_current_el(env);
351     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
352     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
353         (arm_hcr_el2_eff(env) & HCR_TGE);
354 
355     if (el < 2 && mdcr_el2_tdra) {
356         return CP_ACCESS_TRAP_EL2;
357     }
358     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
359         return CP_ACCESS_TRAP_EL3;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps to general debug registers, which are controlled
365  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
366  */
367 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
368                                   bool isread)
369 {
370     int el = arm_current_el(env);
371     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
372     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
373         (arm_hcr_el2_eff(env) & HCR_TGE);
374 
375     if (el < 2 && mdcr_el2_tda) {
376         return CP_ACCESS_TRAP_EL2;
377     }
378     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
379         return CP_ACCESS_TRAP_EL3;
380     }
381     return CP_ACCESS_OK;
382 }
383 
384 /* Check for traps to performance monitor registers, which are controlled
385  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
386  */
387 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
388                                  bool isread)
389 {
390     int el = arm_current_el(env);
391     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
392 
393     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
394         return CP_ACCESS_TRAP_EL2;
395     }
396     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
397         return CP_ACCESS_TRAP_EL3;
398     }
399     return CP_ACCESS_OK;
400 }
401 
402 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
403 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
404                                       bool isread)
405 {
406     if (arm_current_el(env) == 1) {
407         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
408         if (arm_hcr_el2_eff(env) & trap) {
409             return CP_ACCESS_TRAP_EL2;
410         }
411     }
412     return CP_ACCESS_OK;
413 }
414 
415 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
416 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
417                                  bool isread)
418 {
419     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
420         return CP_ACCESS_TRAP_EL2;
421     }
422     return CP_ACCESS_OK;
423 }
424 
425 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
426 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
427                                   bool isread)
428 {
429     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
430         return CP_ACCESS_TRAP_EL2;
431     }
432     return CP_ACCESS_OK;
433 }
434 
435 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
436 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
437                                   bool isread)
438 {
439     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
440         return CP_ACCESS_TRAP_EL2;
441     }
442     return CP_ACCESS_OK;
443 }
444 
445 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
446 {
447     ARMCPU *cpu = env_archcpu(env);
448 
449     raw_write(env, ri, value);
450     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
451 }
452 
453 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
454 {
455     ARMCPU *cpu = env_archcpu(env);
456 
457     if (raw_read(env, ri) != value) {
458         /* Unlike real hardware the qemu TLB uses virtual addresses,
459          * not modified virtual addresses, so this causes a TLB flush.
460          */
461         tlb_flush(CPU(cpu));
462         raw_write(env, ri, value);
463     }
464 }
465 
466 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
467                              uint64_t value)
468 {
469     ARMCPU *cpu = env_archcpu(env);
470 
471     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
472         && !extended_addresses_enabled(env)) {
473         /* For VMSA (when not using the LPAE long descriptor page table
474          * format) this register includes the ASID, so do a TLB flush.
475          * For PMSA it is purely a process ID and no action is needed.
476          */
477         tlb_flush(CPU(cpu));
478     }
479     raw_write(env, ri, value);
480 }
481 
482 /* IS variants of TLB operations must affect all cores */
483 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                              uint64_t value)
485 {
486     CPUState *cs = env_cpu(env);
487 
488     tlb_flush_all_cpus_synced(cs);
489 }
490 
491 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
492                              uint64_t value)
493 {
494     CPUState *cs = env_cpu(env);
495 
496     tlb_flush_all_cpus_synced(cs);
497 }
498 
499 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                              uint64_t value)
501 {
502     CPUState *cs = env_cpu(env);
503 
504     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
505 }
506 
507 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
508                              uint64_t value)
509 {
510     CPUState *cs = env_cpu(env);
511 
512     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
513 }
514 
515 /*
516  * Non-IS variants of TLB operations are upgraded to
517  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
518  * force broadcast of these operations.
519  */
520 static bool tlb_force_broadcast(CPUARMState *env)
521 {
522     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
523 }
524 
525 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                           uint64_t value)
527 {
528     /* Invalidate all (TLBIALL) */
529     CPUState *cs = env_cpu(env);
530 
531     if (tlb_force_broadcast(env)) {
532         tlb_flush_all_cpus_synced(cs);
533     } else {
534         tlb_flush(cs);
535     }
536 }
537 
538 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
539                           uint64_t value)
540 {
541     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
542     CPUState *cs = env_cpu(env);
543 
544     value &= TARGET_PAGE_MASK;
545     if (tlb_force_broadcast(env)) {
546         tlb_flush_page_all_cpus_synced(cs, value);
547     } else {
548         tlb_flush_page(cs, value);
549     }
550 }
551 
552 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                            uint64_t value)
554 {
555     /* Invalidate by ASID (TLBIASID) */
556     CPUState *cs = env_cpu(env);
557 
558     if (tlb_force_broadcast(env)) {
559         tlb_flush_all_cpus_synced(cs);
560     } else {
561         tlb_flush(cs);
562     }
563 }
564 
565 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
566                            uint64_t value)
567 {
568     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
569     CPUState *cs = env_cpu(env);
570 
571     value &= TARGET_PAGE_MASK;
572     if (tlb_force_broadcast(env)) {
573         tlb_flush_page_all_cpus_synced(cs, value);
574     } else {
575         tlb_flush_page(cs, value);
576     }
577 }
578 
579 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                                uint64_t value)
581 {
582     CPUState *cs = env_cpu(env);
583 
584     tlb_flush_by_mmuidx(cs,
585                         ARMMMUIdxBit_E10_1 |
586                         ARMMMUIdxBit_E10_1_PAN |
587                         ARMMMUIdxBit_E10_0);
588 }
589 
590 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                                   uint64_t value)
592 {
593     CPUState *cs = env_cpu(env);
594 
595     tlb_flush_by_mmuidx_all_cpus_synced(cs,
596                                         ARMMMUIdxBit_E10_1 |
597                                         ARMMMUIdxBit_E10_1_PAN |
598                                         ARMMMUIdxBit_E10_0);
599 }
600 
601 
602 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
603                               uint64_t value)
604 {
605     CPUState *cs = env_cpu(env);
606 
607     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
608 }
609 
610 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
611                                  uint64_t value)
612 {
613     CPUState *cs = env_cpu(env);
614 
615     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
616 }
617 
618 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
619                               uint64_t value)
620 {
621     CPUState *cs = env_cpu(env);
622     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
623 
624     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
625 }
626 
627 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                                  uint64_t value)
629 {
630     CPUState *cs = env_cpu(env);
631     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
632 
633     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
634                                              ARMMMUIdxBit_E2);
635 }
636 
637 static const ARMCPRegInfo cp_reginfo[] = {
638     /* Define the secure and non-secure FCSE identifier CP registers
639      * separately because there is no secure bank in V8 (no _EL3).  This allows
640      * the secure register to be properly reset and migrated. There is also no
641      * v8 EL1 version of the register so the non-secure instance stands alone.
642      */
643     { .name = "FCSEIDR",
644       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
645       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
646       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
647       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
648     { .name = "FCSEIDR_S",
649       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
650       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
651       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
652       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
653     /* Define the secure and non-secure context identifier CP registers
654      * separately because there is no secure bank in V8 (no _EL3).  This allows
655      * the secure register to be properly reset and migrated.  In the
656      * non-secure case, the 32-bit register will have reset and migration
657      * disabled during registration as it is handled by the 64-bit instance.
658      */
659     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
660       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
661       .access = PL1_RW, .accessfn = access_tvm_trvm,
662       .secure = ARM_CP_SECSTATE_NS,
663       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
664       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
665     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
666       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
667       .access = PL1_RW, .accessfn = access_tvm_trvm,
668       .secure = ARM_CP_SECSTATE_S,
669       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
670       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
671 };
672 
673 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
674     /* NB: Some of these registers exist in v8 but with more precise
675      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
676      */
677     /* MMU Domain access control / MPU write buffer control */
678     { .name = "DACR",
679       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
680       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
681       .writefn = dacr_write, .raw_writefn = raw_write,
682       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
683                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
684     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
685      * For v6 and v5, these mappings are overly broad.
686      */
687     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
688       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
689     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
690       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
691     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
692       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     /* Cache maintenance ops; some of this space may be overridden later. */
696     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
697       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
698       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
699 };
700 
701 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
702     /* Not all pre-v6 cores implemented this WFI, so this is slightly
703      * over-broad.
704      */
705     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
706       .access = PL1_W, .type = ARM_CP_WFI },
707 };
708 
709 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
710     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
711      * is UNPREDICTABLE; we choose to NOP as most implementations do).
712      */
713     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
714       .access = PL1_W, .type = ARM_CP_WFI },
715     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
716      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
717      * OMAPCP will override this space.
718      */
719     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
720       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
721       .resetvalue = 0 },
722     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
723       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
724       .resetvalue = 0 },
725     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
726     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
727       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
728       .resetvalue = 0 },
729     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
730      * implementing it as RAZ means the "debug architecture version" bits
731      * will read as a reserved value, which should cause Linux to not try
732      * to use the debug hardware.
733      */
734     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
735       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
736     /* MMU TLB control. Note that the wildcarding means we cover not just
737      * the unified TLB ops but also the dside/iside/inner-shareable variants.
738      */
739     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
740       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
741       .type = ARM_CP_NO_RAW },
742     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
743       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
744       .type = ARM_CP_NO_RAW },
745     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
749       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
750       .type = ARM_CP_NO_RAW },
751     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
752       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
753     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
754       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
755 };
756 
757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
758                         uint64_t value)
759 {
760     uint32_t mask = 0;
761 
762     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
763     if (!arm_feature(env, ARM_FEATURE_V8)) {
764         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
765          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
766          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
767          */
768         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
769             /* VFP coprocessor: cp10 & cp11 [23:20] */
770             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
771 
772             if (!arm_feature(env, ARM_FEATURE_NEON)) {
773                 /* ASEDIS [31] bit is RAO/WI */
774                 value |= (1 << 31);
775             }
776 
777             /* VFPv3 and upwards with NEON implement 32 double precision
778              * registers (D0-D31).
779              */
780             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
781                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
782                 value |= (1 << 30);
783             }
784         }
785         value &= mask;
786     }
787 
788     /*
789      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
790      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
791      */
792     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
793         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
794         value &= ~(0xf << 20);
795         value |= env->cp15.cpacr_el1 & (0xf << 20);
796     }
797 
798     env->cp15.cpacr_el1 = value;
799 }
800 
801 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
802 {
803     /*
804      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
805      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
806      */
807     uint64_t value = env->cp15.cpacr_el1;
808 
809     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
810         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
811         value &= ~(0xf << 20);
812     }
813     return value;
814 }
815 
816 
817 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
818 {
819     /* Call cpacr_write() so that we reset with the correct RAO bits set
820      * for our CPU features.
821      */
822     cpacr_write(env, ri, 0);
823 }
824 
825 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
826                                    bool isread)
827 {
828     if (arm_feature(env, ARM_FEATURE_V8)) {
829         /* Check if CPACR accesses are to be trapped to EL2 */
830         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
831             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
832             return CP_ACCESS_TRAP_EL2;
833         /* Check if CPACR accesses are to be trapped to EL3 */
834         } else if (arm_current_el(env) < 3 &&
835                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
836             return CP_ACCESS_TRAP_EL3;
837         }
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
844                                   bool isread)
845 {
846     /* Check if CPTR accesses are set to trap to EL3 */
847     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
848         return CP_ACCESS_TRAP_EL3;
849     }
850 
851     return CP_ACCESS_OK;
852 }
853 
854 static const ARMCPRegInfo v6_cp_reginfo[] = {
855     /* prefetch by MVA in v6, NOP in v7 */
856     { .name = "MVA_prefetch",
857       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
858       .access = PL1_W, .type = ARM_CP_NOP },
859     /* We need to break the TB after ISB to execute self-modifying code
860      * correctly and also to take any pending interrupts immediately.
861      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
862      */
863     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
864       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
865     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
866       .access = PL0_W, .type = ARM_CP_NOP },
867     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
868       .access = PL0_W, .type = ARM_CP_NOP },
869     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
870       .access = PL1_RW, .accessfn = access_tvm_trvm,
871       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
872                              offsetof(CPUARMState, cp15.ifar_ns) },
873       .resetvalue = 0, },
874     /* Watchpoint Fault Address Register : should actually only be present
875      * for 1136, 1176, 11MPCore.
876      */
877     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
878       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
879     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
880       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
881       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
882       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
883 };
884 
885 typedef struct pm_event {
886     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
887     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
888     bool (*supported)(CPUARMState *);
889     /*
890      * Retrieve the current count of the underlying event. The programmed
891      * counters hold a difference from the return value from this function
892      */
893     uint64_t (*get_count)(CPUARMState *);
894     /*
895      * Return how many nanoseconds it will take (at a minimum) for count events
896      * to occur. A negative value indicates the counter will never overflow, or
897      * that the counter has otherwise arranged for the overflow bit to be set
898      * and the PMU interrupt to be raised on overflow.
899      */
900     int64_t (*ns_per_count)(uint64_t);
901 } pm_event;
902 
903 static bool event_always_supported(CPUARMState *env)
904 {
905     return true;
906 }
907 
908 static uint64_t swinc_get_count(CPUARMState *env)
909 {
910     /*
911      * SW_INCR events are written directly to the pmevcntr's by writes to
912      * PMSWINC, so there is no underlying count maintained by the PMU itself
913      */
914     return 0;
915 }
916 
917 static int64_t swinc_ns_per(uint64_t ignored)
918 {
919     return -1;
920 }
921 
922 /*
923  * Return the underlying cycle count for the PMU cycle counters. If we're in
924  * usermode, simply return 0.
925  */
926 static uint64_t cycles_get_count(CPUARMState *env)
927 {
928 #ifndef CONFIG_USER_ONLY
929     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
930                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
931 #else
932     return cpu_get_host_ticks();
933 #endif
934 }
935 
936 #ifndef CONFIG_USER_ONLY
937 static int64_t cycles_ns_per(uint64_t cycles)
938 {
939     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
940 }
941 
942 static bool instructions_supported(CPUARMState *env)
943 {
944     return icount_enabled() == 1; /* Precise instruction counting */
945 }
946 
947 static uint64_t instructions_get_count(CPUARMState *env)
948 {
949     return (uint64_t)icount_get_raw();
950 }
951 
952 static int64_t instructions_ns_per(uint64_t icount)
953 {
954     return icount_to_ns((int64_t)icount);
955 }
956 #endif
957 
958 static bool pmu_8_1_events_supported(CPUARMState *env)
959 {
960     /* For events which are supported in any v8.1 PMU */
961     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
962 }
963 
964 static bool pmu_8_4_events_supported(CPUARMState *env)
965 {
966     /* For events which are supported in any v8.1 PMU */
967     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
968 }
969 
970 static uint64_t zero_event_get_count(CPUARMState *env)
971 {
972     /* For events which on QEMU never fire, so their count is always zero */
973     return 0;
974 }
975 
976 static int64_t zero_event_ns_per(uint64_t cycles)
977 {
978     /* An event which never fires can never overflow */
979     return -1;
980 }
981 
982 static const pm_event pm_events[] = {
983     { .number = 0x000, /* SW_INCR */
984       .supported = event_always_supported,
985       .get_count = swinc_get_count,
986       .ns_per_count = swinc_ns_per,
987     },
988 #ifndef CONFIG_USER_ONLY
989     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
990       .supported = instructions_supported,
991       .get_count = instructions_get_count,
992       .ns_per_count = instructions_ns_per,
993     },
994     { .number = 0x011, /* CPU_CYCLES, Cycle */
995       .supported = event_always_supported,
996       .get_count = cycles_get_count,
997       .ns_per_count = cycles_ns_per,
998     },
999 #endif
1000     { .number = 0x023, /* STALL_FRONTEND */
1001       .supported = pmu_8_1_events_supported,
1002       .get_count = zero_event_get_count,
1003       .ns_per_count = zero_event_ns_per,
1004     },
1005     { .number = 0x024, /* STALL_BACKEND */
1006       .supported = pmu_8_1_events_supported,
1007       .get_count = zero_event_get_count,
1008       .ns_per_count = zero_event_ns_per,
1009     },
1010     { .number = 0x03c, /* STALL */
1011       .supported = pmu_8_4_events_supported,
1012       .get_count = zero_event_get_count,
1013       .ns_per_count = zero_event_ns_per,
1014     },
1015 };
1016 
1017 /*
1018  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1019  * events (i.e. the statistical profiling extension), this implementation
1020  * should first be updated to something sparse instead of the current
1021  * supported_event_map[] array.
1022  */
1023 #define MAX_EVENT_ID 0x3c
1024 #define UNSUPPORTED_EVENT UINT16_MAX
1025 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1026 
1027 /*
1028  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1029  * of ARM event numbers to indices in our pm_events array.
1030  *
1031  * Note: Events in the 0x40XX range are not currently supported.
1032  */
1033 void pmu_init(ARMCPU *cpu)
1034 {
1035     unsigned int i;
1036 
1037     /*
1038      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1039      * events to them
1040      */
1041     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1042         supported_event_map[i] = UNSUPPORTED_EVENT;
1043     }
1044     cpu->pmceid0 = 0;
1045     cpu->pmceid1 = 0;
1046 
1047     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1048         const pm_event *cnt = &pm_events[i];
1049         assert(cnt->number <= MAX_EVENT_ID);
1050         /* We do not currently support events in the 0x40xx range */
1051         assert(cnt->number <= 0x3f);
1052 
1053         if (cnt->supported(&cpu->env)) {
1054             supported_event_map[cnt->number] = i;
1055             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1056             if (cnt->number & 0x20) {
1057                 cpu->pmceid1 |= event_mask;
1058             } else {
1059                 cpu->pmceid0 |= event_mask;
1060             }
1061         }
1062     }
1063 }
1064 
1065 /*
1066  * Check at runtime whether a PMU event is supported for the current machine
1067  */
1068 static bool event_supported(uint16_t number)
1069 {
1070     if (number > MAX_EVENT_ID) {
1071         return false;
1072     }
1073     return supported_event_map[number] != UNSUPPORTED_EVENT;
1074 }
1075 
1076 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1077                                    bool isread)
1078 {
1079     /* Performance monitor registers user accessibility is controlled
1080      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1081      * trapping to EL2 or EL3 for other accesses.
1082      */
1083     int el = arm_current_el(env);
1084     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1085 
1086     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1087         return CP_ACCESS_TRAP;
1088     }
1089     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1090         return CP_ACCESS_TRAP_EL2;
1091     }
1092     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1093         return CP_ACCESS_TRAP_EL3;
1094     }
1095 
1096     return CP_ACCESS_OK;
1097 }
1098 
1099 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1100                                            const ARMCPRegInfo *ri,
1101                                            bool isread)
1102 {
1103     /* ER: event counter read trap control */
1104     if (arm_feature(env, ARM_FEATURE_V8)
1105         && arm_current_el(env) == 0
1106         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1107         && isread) {
1108         return CP_ACCESS_OK;
1109     }
1110 
1111     return pmreg_access(env, ri, isread);
1112 }
1113 
1114 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1115                                          const ARMCPRegInfo *ri,
1116                                          bool isread)
1117 {
1118     /* SW: software increment write trap control */
1119     if (arm_feature(env, ARM_FEATURE_V8)
1120         && arm_current_el(env) == 0
1121         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1122         && !isread) {
1123         return CP_ACCESS_OK;
1124     }
1125 
1126     return pmreg_access(env, ri, isread);
1127 }
1128 
1129 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1130                                         const ARMCPRegInfo *ri,
1131                                         bool isread)
1132 {
1133     /* ER: event counter read trap control */
1134     if (arm_feature(env, ARM_FEATURE_V8)
1135         && arm_current_el(env) == 0
1136         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1137         return CP_ACCESS_OK;
1138     }
1139 
1140     return pmreg_access(env, ri, isread);
1141 }
1142 
1143 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1144                                          const ARMCPRegInfo *ri,
1145                                          bool isread)
1146 {
1147     /* CR: cycle counter read trap control */
1148     if (arm_feature(env, ARM_FEATURE_V8)
1149         && arm_current_el(env) == 0
1150         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1151         && isread) {
1152         return CP_ACCESS_OK;
1153     }
1154 
1155     return pmreg_access(env, ri, isread);
1156 }
1157 
1158 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1159  * the current EL, security state, and register configuration.
1160  */
1161 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1162 {
1163     uint64_t filter;
1164     bool e, p, u, nsk, nsu, nsh, m;
1165     bool enabled, prohibited, filtered;
1166     bool secure = arm_is_secure(env);
1167     int el = arm_current_el(env);
1168     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1169     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1170 
1171     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1172         return false;
1173     }
1174 
1175     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1176             (counter < hpmn || counter == 31)) {
1177         e = env->cp15.c9_pmcr & PMCRE;
1178     } else {
1179         e = mdcr_el2 & MDCR_HPME;
1180     }
1181     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1182 
1183     if (!secure) {
1184         if (el == 2 && (counter < hpmn || counter == 31)) {
1185             prohibited = mdcr_el2 & MDCR_HPMD;
1186         } else {
1187             prohibited = false;
1188         }
1189     } else {
1190         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1191            !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (prohibited && counter == 31) {
1195         prohibited = env->cp15.c9_pmcr & PMCRDP;
1196     }
1197 
1198     if (counter == 31) {
1199         filter = env->cp15.pmccfiltr_el0;
1200     } else {
1201         filter = env->cp15.c14_pmevtyper[counter];
1202     }
1203 
1204     p   = filter & PMXEVTYPER_P;
1205     u   = filter & PMXEVTYPER_U;
1206     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1207     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1208     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1209     m   = arm_el_is_aa64(env, 1) &&
1210               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1211 
1212     if (el == 0) {
1213         filtered = secure ? u : u != nsu;
1214     } else if (el == 1) {
1215         filtered = secure ? p : p != nsk;
1216     } else if (el == 2) {
1217         filtered = !nsh;
1218     } else { /* EL3 */
1219         filtered = m != p;
1220     }
1221 
1222     if (counter != 31) {
1223         /*
1224          * If not checking PMCCNTR, ensure the counter is setup to an event we
1225          * support
1226          */
1227         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1228         if (!event_supported(event)) {
1229             return false;
1230         }
1231     }
1232 
1233     return enabled && !prohibited && !filtered;
1234 }
1235 
1236 static void pmu_update_irq(CPUARMState *env)
1237 {
1238     ARMCPU *cpu = env_archcpu(env);
1239     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1240             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1241 }
1242 
1243 /*
1244  * Ensure c15_ccnt is the guest-visible count so that operations such as
1245  * enabling/disabling the counter or filtering, modifying the count itself,
1246  * etc. can be done logically. This is essentially a no-op if the counter is
1247  * not enabled at the time of the call.
1248  */
1249 static void pmccntr_op_start(CPUARMState *env)
1250 {
1251     uint64_t cycles = cycles_get_count(env);
1252 
1253     if (pmu_counter_enabled(env, 31)) {
1254         uint64_t eff_cycles = cycles;
1255         if (env->cp15.c9_pmcr & PMCRD) {
1256             /* Increment once every 64 processor clock cycles */
1257             eff_cycles /= 64;
1258         }
1259 
1260         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1261 
1262         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1263                                  1ull << 63 : 1ull << 31;
1264         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1265             env->cp15.c9_pmovsr |= (1 << 31);
1266             pmu_update_irq(env);
1267         }
1268 
1269         env->cp15.c15_ccnt = new_pmccntr;
1270     }
1271     env->cp15.c15_ccnt_delta = cycles;
1272 }
1273 
1274 /*
1275  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1276  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1277  * pmccntr_op_start.
1278  */
1279 static void pmccntr_op_finish(CPUARMState *env)
1280 {
1281     if (pmu_counter_enabled(env, 31)) {
1282 #ifndef CONFIG_USER_ONLY
1283         /* Calculate when the counter will next overflow */
1284         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1285         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1286             remaining_cycles = (uint32_t)remaining_cycles;
1287         }
1288         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1289 
1290         if (overflow_in > 0) {
1291             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1292                 overflow_in;
1293             ARMCPU *cpu = env_archcpu(env);
1294             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1295         }
1296 #endif
1297 
1298         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1299         if (env->cp15.c9_pmcr & PMCRD) {
1300             /* Increment once every 64 processor clock cycles */
1301             prev_cycles /= 64;
1302         }
1303         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1304     }
1305 }
1306 
1307 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1308 {
1309 
1310     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1311     uint64_t count = 0;
1312     if (event_supported(event)) {
1313         uint16_t event_idx = supported_event_map[event];
1314         count = pm_events[event_idx].get_count(env);
1315     }
1316 
1317     if (pmu_counter_enabled(env, counter)) {
1318         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1319 
1320         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1321             env->cp15.c9_pmovsr |= (1 << counter);
1322             pmu_update_irq(env);
1323         }
1324         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1325     }
1326     env->cp15.c14_pmevcntr_delta[counter] = count;
1327 }
1328 
1329 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1330 {
1331     if (pmu_counter_enabled(env, counter)) {
1332 #ifndef CONFIG_USER_ONLY
1333         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1334         uint16_t event_idx = supported_event_map[event];
1335         uint64_t delta = UINT32_MAX -
1336             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1337         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1341                 overflow_in;
1342             ARMCPU *cpu = env_archcpu(env);
1343             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1344         }
1345 #endif
1346 
1347         env->cp15.c14_pmevcntr_delta[counter] -=
1348             env->cp15.c14_pmevcntr[counter];
1349     }
1350 }
1351 
1352 void pmu_op_start(CPUARMState *env)
1353 {
1354     unsigned int i;
1355     pmccntr_op_start(env);
1356     for (i = 0; i < pmu_num_counters(env); i++) {
1357         pmevcntr_op_start(env, i);
1358     }
1359 }
1360 
1361 void pmu_op_finish(CPUARMState *env)
1362 {
1363     unsigned int i;
1364     pmccntr_op_finish(env);
1365     for (i = 0; i < pmu_num_counters(env); i++) {
1366         pmevcntr_op_finish(env, i);
1367     }
1368 }
1369 
1370 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1371 {
1372     pmu_op_start(&cpu->env);
1373 }
1374 
1375 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1376 {
1377     pmu_op_finish(&cpu->env);
1378 }
1379 
1380 void arm_pmu_timer_cb(void *opaque)
1381 {
1382     ARMCPU *cpu = opaque;
1383 
1384     /*
1385      * Update all the counter values based on the current underlying counts,
1386      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1387      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1388      * counter may expire.
1389      */
1390     pmu_op_start(&cpu->env);
1391     pmu_op_finish(&cpu->env);
1392 }
1393 
1394 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1395                        uint64_t value)
1396 {
1397     pmu_op_start(env);
1398 
1399     if (value & PMCRC) {
1400         /* The counter has been reset */
1401         env->cp15.c15_ccnt = 0;
1402     }
1403 
1404     if (value & PMCRP) {
1405         unsigned int i;
1406         for (i = 0; i < pmu_num_counters(env); i++) {
1407             env->cp15.c14_pmevcntr[i] = 0;
1408         }
1409     }
1410 
1411     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1412     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1413 
1414     pmu_op_finish(env);
1415 }
1416 
1417 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1418                           uint64_t value)
1419 {
1420     unsigned int i;
1421     for (i = 0; i < pmu_num_counters(env); i++) {
1422         /* Increment a counter's count iff: */
1423         if ((value & (1 << i)) && /* counter's bit is set */
1424                 /* counter is enabled and not filtered */
1425                 pmu_counter_enabled(env, i) &&
1426                 /* counter is SW_INCR */
1427                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1428             pmevcntr_op_start(env, i);
1429 
1430             /*
1431              * Detect if this write causes an overflow since we can't predict
1432              * PMSWINC overflows like we can for other events
1433              */
1434             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1435 
1436             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1437                 env->cp15.c9_pmovsr |= (1 << i);
1438                 pmu_update_irq(env);
1439             }
1440 
1441             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1442 
1443             pmevcntr_op_finish(env, i);
1444         }
1445     }
1446 }
1447 
1448 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1449 {
1450     uint64_t ret;
1451     pmccntr_op_start(env);
1452     ret = env->cp15.c15_ccnt;
1453     pmccntr_op_finish(env);
1454     return ret;
1455 }
1456 
1457 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1458                          uint64_t value)
1459 {
1460     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1461      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1462      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1463      * accessed.
1464      */
1465     env->cp15.c9_pmselr = value & 0x1f;
1466 }
1467 
1468 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1469                         uint64_t value)
1470 {
1471     pmccntr_op_start(env);
1472     env->cp15.c15_ccnt = value;
1473     pmccntr_op_finish(env);
1474 }
1475 
1476 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1477                             uint64_t value)
1478 {
1479     uint64_t cur_val = pmccntr_read(env, NULL);
1480 
1481     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1482 }
1483 
1484 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1485                             uint64_t value)
1486 {
1487     pmccntr_op_start(env);
1488     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1489     pmccntr_op_finish(env);
1490 }
1491 
1492 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1493                             uint64_t value)
1494 {
1495     pmccntr_op_start(env);
1496     /* M is not accessible from AArch32 */
1497     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1498         (value & PMCCFILTR);
1499     pmccntr_op_finish(env);
1500 }
1501 
1502 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1503 {
1504     /* M is not visible in AArch32 */
1505     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1506 }
1507 
1508 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1509                             uint64_t value)
1510 {
1511     value &= pmu_counter_mask(env);
1512     env->cp15.c9_pmcnten |= value;
1513 }
1514 
1515 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516                              uint64_t value)
1517 {
1518     value &= pmu_counter_mask(env);
1519     env->cp15.c9_pmcnten &= ~value;
1520 }
1521 
1522 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     value &= pmu_counter_mask(env);
1526     env->cp15.c9_pmovsr &= ~value;
1527     pmu_update_irq(env);
1528 }
1529 
1530 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531                          uint64_t value)
1532 {
1533     value &= pmu_counter_mask(env);
1534     env->cp15.c9_pmovsr |= value;
1535     pmu_update_irq(env);
1536 }
1537 
1538 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1539                              uint64_t value, const uint8_t counter)
1540 {
1541     if (counter == 31) {
1542         pmccfiltr_write(env, ri, value);
1543     } else if (counter < pmu_num_counters(env)) {
1544         pmevcntr_op_start(env, counter);
1545 
1546         /*
1547          * If this counter's event type is changing, store the current
1548          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1549          * pmevcntr_op_finish has the correct baseline when it converts back to
1550          * a delta.
1551          */
1552         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1553             PMXEVTYPER_EVTCOUNT;
1554         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1555         if (old_event != new_event) {
1556             uint64_t count = 0;
1557             if (event_supported(new_event)) {
1558                 uint16_t event_idx = supported_event_map[new_event];
1559                 count = pm_events[event_idx].get_count(env);
1560             }
1561             env->cp15.c14_pmevcntr_delta[counter] = count;
1562         }
1563 
1564         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1565         pmevcntr_op_finish(env, counter);
1566     }
1567     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1568      * PMSELR value is equal to or greater than the number of implemented
1569      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1570      */
1571 }
1572 
1573 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1574                                const uint8_t counter)
1575 {
1576     if (counter == 31) {
1577         return env->cp15.pmccfiltr_el0;
1578     } else if (counter < pmu_num_counters(env)) {
1579         return env->cp15.c14_pmevtyper[counter];
1580     } else {
1581       /*
1582        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1583        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1584        */
1585         return 0;
1586     }
1587 }
1588 
1589 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1590                               uint64_t value)
1591 {
1592     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1593     pmevtyper_write(env, ri, value, counter);
1594 }
1595 
1596 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1597                                uint64_t value)
1598 {
1599     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1600     env->cp15.c14_pmevtyper[counter] = value;
1601 
1602     /*
1603      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1604      * pmu_op_finish calls when loading saved state for a migration. Because
1605      * we're potentially updating the type of event here, the value written to
1606      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1607      * different counter type. Therefore, we need to set this value to the
1608      * current count for the counter type we're writing so that pmu_op_finish
1609      * has the correct count for its calculation.
1610      */
1611     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1612     if (event_supported(event)) {
1613         uint16_t event_idx = supported_event_map[event];
1614         env->cp15.c14_pmevcntr_delta[counter] =
1615             pm_events[event_idx].get_count(env);
1616     }
1617 }
1618 
1619 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1620 {
1621     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1622     return pmevtyper_read(env, ri, counter);
1623 }
1624 
1625 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1626                              uint64_t value)
1627 {
1628     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1629 }
1630 
1631 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1632 {
1633     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1634 }
1635 
1636 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1637                              uint64_t value, uint8_t counter)
1638 {
1639     if (counter < pmu_num_counters(env)) {
1640         pmevcntr_op_start(env, counter);
1641         env->cp15.c14_pmevcntr[counter] = value;
1642         pmevcntr_op_finish(env, counter);
1643     }
1644     /*
1645      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1646      * are CONSTRAINED UNPREDICTABLE.
1647      */
1648 }
1649 
1650 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1651                               uint8_t counter)
1652 {
1653     if (counter < pmu_num_counters(env)) {
1654         uint64_t ret;
1655         pmevcntr_op_start(env, counter);
1656         ret = env->cp15.c14_pmevcntr[counter];
1657         pmevcntr_op_finish(env, counter);
1658         return ret;
1659     } else {
1660       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1661        * are CONSTRAINED UNPREDICTABLE. */
1662         return 0;
1663     }
1664 }
1665 
1666 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1667                              uint64_t value)
1668 {
1669     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1670     pmevcntr_write(env, ri, value, counter);
1671 }
1672 
1673 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1674 {
1675     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1676     return pmevcntr_read(env, ri, counter);
1677 }
1678 
1679 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1680                              uint64_t value)
1681 {
1682     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1683     assert(counter < pmu_num_counters(env));
1684     env->cp15.c14_pmevcntr[counter] = value;
1685     pmevcntr_write(env, ri, value, counter);
1686 }
1687 
1688 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1689 {
1690     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1691     assert(counter < pmu_num_counters(env));
1692     return env->cp15.c14_pmevcntr[counter];
1693 }
1694 
1695 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1696                              uint64_t value)
1697 {
1698     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1699 }
1700 
1701 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1702 {
1703     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1704 }
1705 
1706 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1707                             uint64_t value)
1708 {
1709     if (arm_feature(env, ARM_FEATURE_V8)) {
1710         env->cp15.c9_pmuserenr = value & 0xf;
1711     } else {
1712         env->cp15.c9_pmuserenr = value & 1;
1713     }
1714 }
1715 
1716 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717                              uint64_t value)
1718 {
1719     /* We have no event counters so only the C bit can be changed */
1720     value &= pmu_counter_mask(env);
1721     env->cp15.c9_pminten |= value;
1722     pmu_update_irq(env);
1723 }
1724 
1725 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726                              uint64_t value)
1727 {
1728     value &= pmu_counter_mask(env);
1729     env->cp15.c9_pminten &= ~value;
1730     pmu_update_irq(env);
1731 }
1732 
1733 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                        uint64_t value)
1735 {
1736     /* Note that even though the AArch64 view of this register has bits
1737      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1738      * architectural requirements for bits which are RES0 only in some
1739      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1740      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1741      */
1742     raw_write(env, ri, value & ~0x1FULL);
1743 }
1744 
1745 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1746 {
1747     /* Begin with base v8.0 state.  */
1748     uint32_t valid_mask = 0x3fff;
1749     ARMCPU *cpu = env_archcpu(env);
1750 
1751     if (ri->state == ARM_CP_STATE_AA64) {
1752         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1753             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1754                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1755         }
1756         valid_mask &= ~SCR_NET;
1757 
1758         if (cpu_isar_feature(aa64_ras, cpu)) {
1759             valid_mask |= SCR_TERR;
1760         }
1761         if (cpu_isar_feature(aa64_lor, cpu)) {
1762             valid_mask |= SCR_TLOR;
1763         }
1764         if (cpu_isar_feature(aa64_pauth, cpu)) {
1765             valid_mask |= SCR_API | SCR_APK;
1766         }
1767         if (cpu_isar_feature(aa64_sel2, cpu)) {
1768             valid_mask |= SCR_EEL2;
1769         }
1770         if (cpu_isar_feature(aa64_mte, cpu)) {
1771             valid_mask |= SCR_ATA;
1772         }
1773         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1774             valid_mask |= SCR_ENSCXT;
1775         }
1776     } else {
1777         valid_mask &= ~(SCR_RW | SCR_ST);
1778         if (cpu_isar_feature(aa32_ras, cpu)) {
1779             valid_mask |= SCR_TERR;
1780         }
1781     }
1782 
1783     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1784         valid_mask &= ~SCR_HCE;
1785 
1786         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1787          * supported if EL2 exists. The bit is UNK/SBZP when
1788          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1789          * when EL2 is unavailable.
1790          * On ARMv8, this bit is always available.
1791          */
1792         if (arm_feature(env, ARM_FEATURE_V7) &&
1793             !arm_feature(env, ARM_FEATURE_V8)) {
1794             valid_mask &= ~SCR_SMD;
1795         }
1796     }
1797 
1798     /* Clear all-context RES0 bits.  */
1799     value &= valid_mask;
1800     raw_write(env, ri, value);
1801 }
1802 
1803 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1804 {
1805     /*
1806      * scr_write will set the RES1 bits on an AArch64-only CPU.
1807      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1808      */
1809     scr_write(env, ri, 0);
1810 }
1811 
1812 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1813                                        const ARMCPRegInfo *ri,
1814                                        bool isread)
1815 {
1816     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1817         return CP_ACCESS_TRAP_EL2;
1818     }
1819 
1820     return CP_ACCESS_OK;
1821 }
1822 
1823 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1824 {
1825     ARMCPU *cpu = env_archcpu(env);
1826 
1827     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1828      * bank
1829      */
1830     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1831                                         ri->secure & ARM_CP_SECSTATE_S);
1832 
1833     return cpu->ccsidr[index];
1834 }
1835 
1836 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837                          uint64_t value)
1838 {
1839     raw_write(env, ri, value & 0xf);
1840 }
1841 
1842 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1843 {
1844     CPUState *cs = env_cpu(env);
1845     bool el1 = arm_current_el(env) == 1;
1846     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1847     uint64_t ret = 0;
1848 
1849     if (hcr_el2 & HCR_IMO) {
1850         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1851             ret |= CPSR_I;
1852         }
1853     } else {
1854         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1855             ret |= CPSR_I;
1856         }
1857     }
1858 
1859     if (hcr_el2 & HCR_FMO) {
1860         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1861             ret |= CPSR_F;
1862         }
1863     } else {
1864         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1865             ret |= CPSR_F;
1866         }
1867     }
1868 
1869     if (hcr_el2 & HCR_AMO) {
1870         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1871             ret |= CPSR_A;
1872         }
1873     }
1874 
1875     return ret;
1876 }
1877 
1878 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1879                                        bool isread)
1880 {
1881     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1882         return CP_ACCESS_TRAP_EL2;
1883     }
1884 
1885     return CP_ACCESS_OK;
1886 }
1887 
1888 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1889                                        bool isread)
1890 {
1891     if (arm_feature(env, ARM_FEATURE_V8)) {
1892         return access_aa64_tid1(env, ri, isread);
1893     }
1894 
1895     return CP_ACCESS_OK;
1896 }
1897 
1898 static const ARMCPRegInfo v7_cp_reginfo[] = {
1899     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1900     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1901       .access = PL1_W, .type = ARM_CP_NOP },
1902     /* Performance monitors are implementation defined in v7,
1903      * but with an ARM recommended set of registers, which we
1904      * follow.
1905      *
1906      * Performance registers fall into three categories:
1907      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1908      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1909      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1910      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1911      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1912      */
1913     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1914       .access = PL0_RW, .type = ARM_CP_ALIAS,
1915       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1916       .writefn = pmcntenset_write,
1917       .accessfn = pmreg_access,
1918       .raw_writefn = raw_write },
1919     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1920       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1921       .access = PL0_RW, .accessfn = pmreg_access,
1922       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1923       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1924     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1925       .access = PL0_RW,
1926       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1927       .accessfn = pmreg_access,
1928       .writefn = pmcntenclr_write,
1929       .type = ARM_CP_ALIAS },
1930     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1931       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1932       .access = PL0_RW, .accessfn = pmreg_access,
1933       .type = ARM_CP_ALIAS,
1934       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1935       .writefn = pmcntenclr_write },
1936     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1937       .access = PL0_RW, .type = ARM_CP_IO,
1938       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1939       .accessfn = pmreg_access,
1940       .writefn = pmovsr_write,
1941       .raw_writefn = raw_write },
1942     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1943       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1944       .access = PL0_RW, .accessfn = pmreg_access,
1945       .type = ARM_CP_ALIAS | ARM_CP_IO,
1946       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1947       .writefn = pmovsr_write,
1948       .raw_writefn = raw_write },
1949     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1950       .access = PL0_W, .accessfn = pmreg_access_swinc,
1951       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1952       .writefn = pmswinc_write },
1953     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1954       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1955       .access = PL0_W, .accessfn = pmreg_access_swinc,
1956       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1957       .writefn = pmswinc_write },
1958     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1959       .access = PL0_RW, .type = ARM_CP_ALIAS,
1960       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1961       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1962       .raw_writefn = raw_write},
1963     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1964       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1965       .access = PL0_RW, .accessfn = pmreg_access_selr,
1966       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1967       .writefn = pmselr_write, .raw_writefn = raw_write, },
1968     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1969       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1970       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1971       .accessfn = pmreg_access_ccntr },
1972     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1973       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1974       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1975       .type = ARM_CP_IO,
1976       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1977       .readfn = pmccntr_read, .writefn = pmccntr_write,
1978       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1979     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1980       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1981       .access = PL0_RW, .accessfn = pmreg_access,
1982       .type = ARM_CP_ALIAS | ARM_CP_IO,
1983       .resetvalue = 0, },
1984     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1986       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1987       .access = PL0_RW, .accessfn = pmreg_access,
1988       .type = ARM_CP_IO,
1989       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1990       .resetvalue = 0, },
1991     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1992       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1993       .accessfn = pmreg_access,
1994       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1995     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1996       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1997       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998       .accessfn = pmreg_access,
1999       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2000     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2001       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2002       .accessfn = pmreg_access_xevcntr,
2003       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2004     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2005       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2006       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2007       .accessfn = pmreg_access_xevcntr,
2008       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2009     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2010       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2011       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2012       .resetvalue = 0,
2013       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2014     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2015       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2016       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2017       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2018       .resetvalue = 0,
2019       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2020     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2021       .access = PL1_RW, .accessfn = access_tpm,
2022       .type = ARM_CP_ALIAS | ARM_CP_IO,
2023       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2024       .resetvalue = 0,
2025       .writefn = pmintenset_write, .raw_writefn = raw_write },
2026     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2027       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2028       .access = PL1_RW, .accessfn = access_tpm,
2029       .type = ARM_CP_IO,
2030       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2031       .writefn = pmintenset_write, .raw_writefn = raw_write,
2032       .resetvalue = 0x0 },
2033     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2034       .access = PL1_RW, .accessfn = access_tpm,
2035       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2037       .writefn = pmintenclr_write, },
2038     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2039       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2040       .access = PL1_RW, .accessfn = access_tpm,
2041       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2042       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2043       .writefn = pmintenclr_write },
2044     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2045       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2046       .access = PL1_R,
2047       .accessfn = access_aa64_tid2,
2048       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2049     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2050       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2051       .access = PL1_RW,
2052       .accessfn = access_aa64_tid2,
2053       .writefn = csselr_write, .resetvalue = 0,
2054       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2055                              offsetof(CPUARMState, cp15.csselr_ns) } },
2056     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2057      * just RAZ for all cores:
2058      */
2059     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2060       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2061       .access = PL1_R, .type = ARM_CP_CONST,
2062       .accessfn = access_aa64_tid1,
2063       .resetvalue = 0 },
2064     /* Auxiliary fault status registers: these also are IMPDEF, and we
2065      * choose to RAZ/WI for all cores.
2066      */
2067     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2068       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2069       .access = PL1_RW, .accessfn = access_tvm_trvm,
2070       .type = ARM_CP_CONST, .resetvalue = 0 },
2071     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2072       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2073       .access = PL1_RW, .accessfn = access_tvm_trvm,
2074       .type = ARM_CP_CONST, .resetvalue = 0 },
2075     /* MAIR can just read-as-written because we don't implement caches
2076      * and so don't need to care about memory attributes.
2077      */
2078     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2079       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2080       .access = PL1_RW, .accessfn = access_tvm_trvm,
2081       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2082       .resetvalue = 0 },
2083     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2085       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2086       .resetvalue = 0 },
2087     /* For non-long-descriptor page tables these are PRRR and NMRR;
2088      * regardless they still act as reads-as-written for QEMU.
2089      */
2090      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2091       * allows them to assign the correct fieldoffset based on the endianness
2092       * handled in the field definitions.
2093       */
2094     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2095       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2096       .access = PL1_RW, .accessfn = access_tvm_trvm,
2097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2098                              offsetof(CPUARMState, cp15.mair0_ns) },
2099       .resetfn = arm_cp_reset_ignore },
2100     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2101       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2102       .access = PL1_RW, .accessfn = access_tvm_trvm,
2103       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2104                              offsetof(CPUARMState, cp15.mair1_ns) },
2105       .resetfn = arm_cp_reset_ignore },
2106     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2107       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2108       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2109     /* 32 bit ITLB invalidates */
2110     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2111       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2112       .writefn = tlbiall_write },
2113     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2114       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2115       .writefn = tlbimva_write },
2116     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2117       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118       .writefn = tlbiasid_write },
2119     /* 32 bit DTLB invalidates */
2120     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2121       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2122       .writefn = tlbiall_write },
2123     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2124       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2125       .writefn = tlbimva_write },
2126     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2127       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128       .writefn = tlbiasid_write },
2129     /* 32 bit TLB invalidates */
2130     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2131       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2132       .writefn = tlbiall_write },
2133     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2134       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2135       .writefn = tlbimva_write },
2136     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2137       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2138       .writefn = tlbiasid_write },
2139     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2140       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2141       .writefn = tlbimvaa_write },
2142 };
2143 
2144 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2145     /* 32 bit TLB invalidates, Inner Shareable */
2146     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2147       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148       .writefn = tlbiall_is_write },
2149     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151       .writefn = tlbimva_is_write },
2152     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154       .writefn = tlbiasid_is_write },
2155     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2156       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2157       .writefn = tlbimvaa_is_write },
2158 };
2159 
2160 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2161     /* PMOVSSET is not implemented in v7 before v7ve */
2162     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2163       .access = PL0_RW, .accessfn = pmreg_access,
2164       .type = ARM_CP_ALIAS | ARM_CP_IO,
2165       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2166       .writefn = pmovsset_write,
2167       .raw_writefn = raw_write },
2168     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2169       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2170       .access = PL0_RW, .accessfn = pmreg_access,
2171       .type = ARM_CP_ALIAS | ARM_CP_IO,
2172       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2173       .writefn = pmovsset_write,
2174       .raw_writefn = raw_write },
2175 };
2176 
2177 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2178                         uint64_t value)
2179 {
2180     value &= 1;
2181     env->teecr = value;
2182 }
2183 
2184 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2185                                    bool isread)
2186 {
2187     /*
2188      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2189      * at all, so we don't need to check whether we're v8A.
2190      */
2191     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2192         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2193         return CP_ACCESS_TRAP_EL2;
2194     }
2195     return CP_ACCESS_OK;
2196 }
2197 
2198 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2199                                     bool isread)
2200 {
2201     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2202         return CP_ACCESS_TRAP;
2203     }
2204     return teecr_access(env, ri, isread);
2205 }
2206 
2207 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2208     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2209       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2210       .resetvalue = 0,
2211       .writefn = teecr_write, .accessfn = teecr_access },
2212     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2213       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2214       .accessfn = teehbr_access, .resetvalue = 0 },
2215 };
2216 
2217 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2218     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2219       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2220       .access = PL0_RW,
2221       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2222     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2223       .access = PL0_RW,
2224       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2225                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2226       .resetfn = arm_cp_reset_ignore },
2227     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2228       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2229       .access = PL0_R|PL1_W,
2230       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2231       .resetvalue = 0},
2232     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2233       .access = PL0_R|PL1_W,
2234       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2235                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2236       .resetfn = arm_cp_reset_ignore },
2237     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2238       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2239       .access = PL1_RW,
2240       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2241     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2242       .access = PL1_RW,
2243       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2244                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2245       .resetvalue = 0 },
2246 };
2247 
2248 #ifndef CONFIG_USER_ONLY
2249 
2250 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2251                                        bool isread)
2252 {
2253     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2254      * Writable only at the highest implemented exception level.
2255      */
2256     int el = arm_current_el(env);
2257     uint64_t hcr;
2258     uint32_t cntkctl;
2259 
2260     switch (el) {
2261     case 0:
2262         hcr = arm_hcr_el2_eff(env);
2263         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2264             cntkctl = env->cp15.cnthctl_el2;
2265         } else {
2266             cntkctl = env->cp15.c14_cntkctl;
2267         }
2268         if (!extract32(cntkctl, 0, 2)) {
2269             return CP_ACCESS_TRAP;
2270         }
2271         break;
2272     case 1:
2273         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2274             arm_is_secure_below_el3(env)) {
2275             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2276             return CP_ACCESS_TRAP_UNCATEGORIZED;
2277         }
2278         break;
2279     case 2:
2280     case 3:
2281         break;
2282     }
2283 
2284     if (!isread && el < arm_highest_el(env)) {
2285         return CP_ACCESS_TRAP_UNCATEGORIZED;
2286     }
2287 
2288     return CP_ACCESS_OK;
2289 }
2290 
2291 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2292                                         bool isread)
2293 {
2294     unsigned int cur_el = arm_current_el(env);
2295     bool has_el2 = arm_is_el2_enabled(env);
2296     uint64_t hcr = arm_hcr_el2_eff(env);
2297 
2298     switch (cur_el) {
2299     case 0:
2300         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2301         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2302             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2303                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2304         }
2305 
2306         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2307         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2308             return CP_ACCESS_TRAP;
2309         }
2310 
2311         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2312         if (hcr & HCR_E2H) {
2313             if (timeridx == GTIMER_PHYS &&
2314                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2315                 return CP_ACCESS_TRAP_EL2;
2316             }
2317         } else {
2318             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2319             if (has_el2 && timeridx == GTIMER_PHYS &&
2320                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2321                 return CP_ACCESS_TRAP_EL2;
2322             }
2323         }
2324         break;
2325 
2326     case 1:
2327         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2328         if (has_el2 && timeridx == GTIMER_PHYS &&
2329             (hcr & HCR_E2H
2330              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2331              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2332             return CP_ACCESS_TRAP_EL2;
2333         }
2334         break;
2335     }
2336     return CP_ACCESS_OK;
2337 }
2338 
2339 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2340                                       bool isread)
2341 {
2342     unsigned int cur_el = arm_current_el(env);
2343     bool has_el2 = arm_is_el2_enabled(env);
2344     uint64_t hcr = arm_hcr_el2_eff(env);
2345 
2346     switch (cur_el) {
2347     case 0:
2348         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2349             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2350             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2351                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2352         }
2353 
2354         /*
2355          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2356          * EL0 if EL0[PV]TEN is zero.
2357          */
2358         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2359             return CP_ACCESS_TRAP;
2360         }
2361         /* fall through */
2362 
2363     case 1:
2364         if (has_el2 && timeridx == GTIMER_PHYS) {
2365             if (hcr & HCR_E2H) {
2366                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2367                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2368                     return CP_ACCESS_TRAP_EL2;
2369                 }
2370             } else {
2371                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2372                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2373                     return CP_ACCESS_TRAP_EL2;
2374                 }
2375             }
2376         }
2377         break;
2378     }
2379     return CP_ACCESS_OK;
2380 }
2381 
2382 static CPAccessResult gt_pct_access(CPUARMState *env,
2383                                     const ARMCPRegInfo *ri,
2384                                     bool isread)
2385 {
2386     return gt_counter_access(env, GTIMER_PHYS, isread);
2387 }
2388 
2389 static CPAccessResult gt_vct_access(CPUARMState *env,
2390                                     const ARMCPRegInfo *ri,
2391                                     bool isread)
2392 {
2393     return gt_counter_access(env, GTIMER_VIRT, isread);
2394 }
2395 
2396 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2397                                        bool isread)
2398 {
2399     return gt_timer_access(env, GTIMER_PHYS, isread);
2400 }
2401 
2402 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2403                                        bool isread)
2404 {
2405     return gt_timer_access(env, GTIMER_VIRT, isread);
2406 }
2407 
2408 static CPAccessResult gt_stimer_access(CPUARMState *env,
2409                                        const ARMCPRegInfo *ri,
2410                                        bool isread)
2411 {
2412     /* The AArch64 register view of the secure physical timer is
2413      * always accessible from EL3, and configurably accessible from
2414      * Secure EL1.
2415      */
2416     switch (arm_current_el(env)) {
2417     case 1:
2418         if (!arm_is_secure(env)) {
2419             return CP_ACCESS_TRAP;
2420         }
2421         if (!(env->cp15.scr_el3 & SCR_ST)) {
2422             return CP_ACCESS_TRAP_EL3;
2423         }
2424         return CP_ACCESS_OK;
2425     case 0:
2426     case 2:
2427         return CP_ACCESS_TRAP;
2428     case 3:
2429         return CP_ACCESS_OK;
2430     default:
2431         g_assert_not_reached();
2432     }
2433 }
2434 
2435 static uint64_t gt_get_countervalue(CPUARMState *env)
2436 {
2437     ARMCPU *cpu = env_archcpu(env);
2438 
2439     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2440 }
2441 
2442 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2443 {
2444     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2445 
2446     if (gt->ctl & 1) {
2447         /* Timer enabled: calculate and set current ISTATUS, irq, and
2448          * reset timer to when ISTATUS next has to change
2449          */
2450         uint64_t offset = timeridx == GTIMER_VIRT ?
2451                                       cpu->env.cp15.cntvoff_el2 : 0;
2452         uint64_t count = gt_get_countervalue(&cpu->env);
2453         /* Note that this must be unsigned 64 bit arithmetic: */
2454         int istatus = count - offset >= gt->cval;
2455         uint64_t nexttick;
2456         int irqstate;
2457 
2458         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2459 
2460         irqstate = (istatus && !(gt->ctl & 2));
2461         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2462 
2463         if (istatus) {
2464             /* Next transition is when count rolls back over to zero */
2465             nexttick = UINT64_MAX;
2466         } else {
2467             /* Next transition is when we hit cval */
2468             nexttick = gt->cval + offset;
2469         }
2470         /* Note that the desired next expiry time might be beyond the
2471          * signed-64-bit range of a QEMUTimer -- in this case we just
2472          * set the timer for as far in the future as possible. When the
2473          * timer expires we will reset the timer for any remaining period.
2474          */
2475         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2476             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2477         } else {
2478             timer_mod(cpu->gt_timer[timeridx], nexttick);
2479         }
2480         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2481     } else {
2482         /* Timer disabled: ISTATUS and timer output always clear */
2483         gt->ctl &= ~4;
2484         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2485         timer_del(cpu->gt_timer[timeridx]);
2486         trace_arm_gt_recalc_disabled(timeridx);
2487     }
2488 }
2489 
2490 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2491                            int timeridx)
2492 {
2493     ARMCPU *cpu = env_archcpu(env);
2494 
2495     timer_del(cpu->gt_timer[timeridx]);
2496 }
2497 
2498 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499 {
2500     return gt_get_countervalue(env);
2501 }
2502 
2503 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2504 {
2505     uint64_t hcr;
2506 
2507     switch (arm_current_el(env)) {
2508     case 2:
2509         hcr = arm_hcr_el2_eff(env);
2510         if (hcr & HCR_E2H) {
2511             return 0;
2512         }
2513         break;
2514     case 0:
2515         hcr = arm_hcr_el2_eff(env);
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             return 0;
2518         }
2519         break;
2520     }
2521 
2522     return env->cp15.cntvoff_el2;
2523 }
2524 
2525 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2526 {
2527     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2528 }
2529 
2530 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2531                           int timeridx,
2532                           uint64_t value)
2533 {
2534     trace_arm_gt_cval_write(timeridx, value);
2535     env->cp15.c14_timer[timeridx].cval = value;
2536     gt_recalc_timer(env_archcpu(env), timeridx);
2537 }
2538 
2539 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2540                              int timeridx)
2541 {
2542     uint64_t offset = 0;
2543 
2544     switch (timeridx) {
2545     case GTIMER_VIRT:
2546     case GTIMER_HYPVIRT:
2547         offset = gt_virt_cnt_offset(env);
2548         break;
2549     }
2550 
2551     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2552                       (gt_get_countervalue(env) - offset));
2553 }
2554 
2555 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556                           int timeridx,
2557                           uint64_t value)
2558 {
2559     uint64_t offset = 0;
2560 
2561     switch (timeridx) {
2562     case GTIMER_VIRT:
2563     case GTIMER_HYPVIRT:
2564         offset = gt_virt_cnt_offset(env);
2565         break;
2566     }
2567 
2568     trace_arm_gt_tval_write(timeridx, value);
2569     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2570                                          sextract64(value, 0, 32);
2571     gt_recalc_timer(env_archcpu(env), timeridx);
2572 }
2573 
2574 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2575                          int timeridx,
2576                          uint64_t value)
2577 {
2578     ARMCPU *cpu = env_archcpu(env);
2579     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2580 
2581     trace_arm_gt_ctl_write(timeridx, value);
2582     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2583     if ((oldval ^ value) & 1) {
2584         /* Enable toggled */
2585         gt_recalc_timer(cpu, timeridx);
2586     } else if ((oldval ^ value) & 2) {
2587         /* IMASK toggled: don't need to recalculate,
2588          * just set the interrupt line based on ISTATUS
2589          */
2590         int irqstate = (oldval & 4) && !(value & 2);
2591 
2592         trace_arm_gt_imask_toggle(timeridx, irqstate);
2593         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2594     }
2595 }
2596 
2597 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2598 {
2599     gt_timer_reset(env, ri, GTIMER_PHYS);
2600 }
2601 
2602 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2603                                uint64_t value)
2604 {
2605     gt_cval_write(env, ri, GTIMER_PHYS, value);
2606 }
2607 
2608 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2609 {
2610     return gt_tval_read(env, ri, GTIMER_PHYS);
2611 }
2612 
2613 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2614                                uint64_t value)
2615 {
2616     gt_tval_write(env, ri, GTIMER_PHYS, value);
2617 }
2618 
2619 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2620                               uint64_t value)
2621 {
2622     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2623 }
2624 
2625 static int gt_phys_redir_timeridx(CPUARMState *env)
2626 {
2627     switch (arm_mmu_idx(env)) {
2628     case ARMMMUIdx_E20_0:
2629     case ARMMMUIdx_E20_2:
2630     case ARMMMUIdx_E20_2_PAN:
2631     case ARMMMUIdx_SE20_0:
2632     case ARMMMUIdx_SE20_2:
2633     case ARMMMUIdx_SE20_2_PAN:
2634         return GTIMER_HYP;
2635     default:
2636         return GTIMER_PHYS;
2637     }
2638 }
2639 
2640 static int gt_virt_redir_timeridx(CPUARMState *env)
2641 {
2642     switch (arm_mmu_idx(env)) {
2643     case ARMMMUIdx_E20_0:
2644     case ARMMMUIdx_E20_2:
2645     case ARMMMUIdx_E20_2_PAN:
2646     case ARMMMUIdx_SE20_0:
2647     case ARMMMUIdx_SE20_2:
2648     case ARMMMUIdx_SE20_2_PAN:
2649         return GTIMER_HYPVIRT;
2650     default:
2651         return GTIMER_VIRT;
2652     }
2653 }
2654 
2655 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2656                                         const ARMCPRegInfo *ri)
2657 {
2658     int timeridx = gt_phys_redir_timeridx(env);
2659     return env->cp15.c14_timer[timeridx].cval;
2660 }
2661 
2662 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2663                                      uint64_t value)
2664 {
2665     int timeridx = gt_phys_redir_timeridx(env);
2666     gt_cval_write(env, ri, timeridx, value);
2667 }
2668 
2669 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2670                                         const ARMCPRegInfo *ri)
2671 {
2672     int timeridx = gt_phys_redir_timeridx(env);
2673     return gt_tval_read(env, ri, timeridx);
2674 }
2675 
2676 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2677                                      uint64_t value)
2678 {
2679     int timeridx = gt_phys_redir_timeridx(env);
2680     gt_tval_write(env, ri, timeridx, value);
2681 }
2682 
2683 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2684                                        const ARMCPRegInfo *ri)
2685 {
2686     int timeridx = gt_phys_redir_timeridx(env);
2687     return env->cp15.c14_timer[timeridx].ctl;
2688 }
2689 
2690 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2691                                     uint64_t value)
2692 {
2693     int timeridx = gt_phys_redir_timeridx(env);
2694     gt_ctl_write(env, ri, timeridx, value);
2695 }
2696 
2697 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2698 {
2699     gt_timer_reset(env, ri, GTIMER_VIRT);
2700 }
2701 
2702 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2703                                uint64_t value)
2704 {
2705     gt_cval_write(env, ri, GTIMER_VIRT, value);
2706 }
2707 
2708 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2709 {
2710     return gt_tval_read(env, ri, GTIMER_VIRT);
2711 }
2712 
2713 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2714                                uint64_t value)
2715 {
2716     gt_tval_write(env, ri, GTIMER_VIRT, value);
2717 }
2718 
2719 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2720                               uint64_t value)
2721 {
2722     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2723 }
2724 
2725 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2726                               uint64_t value)
2727 {
2728     ARMCPU *cpu = env_archcpu(env);
2729 
2730     trace_arm_gt_cntvoff_write(value);
2731     raw_write(env, ri, value);
2732     gt_recalc_timer(cpu, GTIMER_VIRT);
2733 }
2734 
2735 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2736                                         const ARMCPRegInfo *ri)
2737 {
2738     int timeridx = gt_virt_redir_timeridx(env);
2739     return env->cp15.c14_timer[timeridx].cval;
2740 }
2741 
2742 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2743                                      uint64_t value)
2744 {
2745     int timeridx = gt_virt_redir_timeridx(env);
2746     gt_cval_write(env, ri, timeridx, value);
2747 }
2748 
2749 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2750                                         const ARMCPRegInfo *ri)
2751 {
2752     int timeridx = gt_virt_redir_timeridx(env);
2753     return gt_tval_read(env, ri, timeridx);
2754 }
2755 
2756 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2757                                      uint64_t value)
2758 {
2759     int timeridx = gt_virt_redir_timeridx(env);
2760     gt_tval_write(env, ri, timeridx, value);
2761 }
2762 
2763 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2764                                        const ARMCPRegInfo *ri)
2765 {
2766     int timeridx = gt_virt_redir_timeridx(env);
2767     return env->cp15.c14_timer[timeridx].ctl;
2768 }
2769 
2770 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771                                     uint64_t value)
2772 {
2773     int timeridx = gt_virt_redir_timeridx(env);
2774     gt_ctl_write(env, ri, timeridx, value);
2775 }
2776 
2777 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2778 {
2779     gt_timer_reset(env, ri, GTIMER_HYP);
2780 }
2781 
2782 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2783                               uint64_t value)
2784 {
2785     gt_cval_write(env, ri, GTIMER_HYP, value);
2786 }
2787 
2788 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2789 {
2790     return gt_tval_read(env, ri, GTIMER_HYP);
2791 }
2792 
2793 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794                               uint64_t value)
2795 {
2796     gt_tval_write(env, ri, GTIMER_HYP, value);
2797 }
2798 
2799 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800                               uint64_t value)
2801 {
2802     gt_ctl_write(env, ri, GTIMER_HYP, value);
2803 }
2804 
2805 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2806 {
2807     gt_timer_reset(env, ri, GTIMER_SEC);
2808 }
2809 
2810 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2811                               uint64_t value)
2812 {
2813     gt_cval_write(env, ri, GTIMER_SEC, value);
2814 }
2815 
2816 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2817 {
2818     return gt_tval_read(env, ri, GTIMER_SEC);
2819 }
2820 
2821 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822                               uint64_t value)
2823 {
2824     gt_tval_write(env, ri, GTIMER_SEC, value);
2825 }
2826 
2827 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                               uint64_t value)
2829 {
2830     gt_ctl_write(env, ri, GTIMER_SEC, value);
2831 }
2832 
2833 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2834 {
2835     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2836 }
2837 
2838 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839                              uint64_t value)
2840 {
2841     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2842 }
2843 
2844 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2845 {
2846     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2847 }
2848 
2849 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850                              uint64_t value)
2851 {
2852     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2853 }
2854 
2855 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                             uint64_t value)
2857 {
2858     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2859 }
2860 
2861 void arm_gt_ptimer_cb(void *opaque)
2862 {
2863     ARMCPU *cpu = opaque;
2864 
2865     gt_recalc_timer(cpu, GTIMER_PHYS);
2866 }
2867 
2868 void arm_gt_vtimer_cb(void *opaque)
2869 {
2870     ARMCPU *cpu = opaque;
2871 
2872     gt_recalc_timer(cpu, GTIMER_VIRT);
2873 }
2874 
2875 void arm_gt_htimer_cb(void *opaque)
2876 {
2877     ARMCPU *cpu = opaque;
2878 
2879     gt_recalc_timer(cpu, GTIMER_HYP);
2880 }
2881 
2882 void arm_gt_stimer_cb(void *opaque)
2883 {
2884     ARMCPU *cpu = opaque;
2885 
2886     gt_recalc_timer(cpu, GTIMER_SEC);
2887 }
2888 
2889 void arm_gt_hvtimer_cb(void *opaque)
2890 {
2891     ARMCPU *cpu = opaque;
2892 
2893     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2894 }
2895 
2896 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2897 {
2898     ARMCPU *cpu = env_archcpu(env);
2899 
2900     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2901 }
2902 
2903 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2904     /* Note that CNTFRQ is purely reads-as-written for the benefit
2905      * of software; writing it doesn't actually change the timer frequency.
2906      * Our reset value matches the fixed frequency we implement the timer at.
2907      */
2908     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2909       .type = ARM_CP_ALIAS,
2910       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2911       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2912     },
2913     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2914       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2915       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2916       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2917       .resetfn = arm_gt_cntfrq_reset,
2918     },
2919     /* overall control: mostly access permissions */
2920     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2921       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2922       .access = PL1_RW,
2923       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2924       .resetvalue = 0,
2925     },
2926     /* per-timer control */
2927     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2928       .secure = ARM_CP_SECSTATE_NS,
2929       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2930       .accessfn = gt_ptimer_access,
2931       .fieldoffset = offsetoflow32(CPUARMState,
2932                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2933       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2934       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2935     },
2936     { .name = "CNTP_CTL_S",
2937       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2938       .secure = ARM_CP_SECSTATE_S,
2939       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2940       .accessfn = gt_ptimer_access,
2941       .fieldoffset = offsetoflow32(CPUARMState,
2942                                    cp15.c14_timer[GTIMER_SEC].ctl),
2943       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2944     },
2945     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2946       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2947       .type = ARM_CP_IO, .access = PL0_RW,
2948       .accessfn = gt_ptimer_access,
2949       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2950       .resetvalue = 0,
2951       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2952       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2953     },
2954     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2955       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2956       .accessfn = gt_vtimer_access,
2957       .fieldoffset = offsetoflow32(CPUARMState,
2958                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2959       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2960       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2961     },
2962     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2963       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2964       .type = ARM_CP_IO, .access = PL0_RW,
2965       .accessfn = gt_vtimer_access,
2966       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2967       .resetvalue = 0,
2968       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2969       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2970     },
2971     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2972     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2973       .secure = ARM_CP_SECSTATE_NS,
2974       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2975       .accessfn = gt_ptimer_access,
2976       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2977     },
2978     { .name = "CNTP_TVAL_S",
2979       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2980       .secure = ARM_CP_SECSTATE_S,
2981       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2982       .accessfn = gt_ptimer_access,
2983       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2984     },
2985     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2986       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2987       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2988       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2989       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2990     },
2991     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2992       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2993       .accessfn = gt_vtimer_access,
2994       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2995     },
2996     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2997       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2998       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2999       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3000       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3001     },
3002     /* The counter itself */
3003     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3004       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3005       .accessfn = gt_pct_access,
3006       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3007     },
3008     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3009       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3010       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3011       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3012     },
3013     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3014       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3015       .accessfn = gt_vct_access,
3016       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3017     },
3018     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3019       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3020       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3021       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3022     },
3023     /* Comparison value, indicating when the timer goes off */
3024     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3025       .secure = ARM_CP_SECSTATE_NS,
3026       .access = PL0_RW,
3027       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3028       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3029       .accessfn = gt_ptimer_access,
3030       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3031       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3032     },
3033     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3034       .secure = ARM_CP_SECSTATE_S,
3035       .access = PL0_RW,
3036       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3038       .accessfn = gt_ptimer_access,
3039       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3040     },
3041     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3042       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3043       .access = PL0_RW,
3044       .type = ARM_CP_IO,
3045       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3046       .resetvalue = 0, .accessfn = gt_ptimer_access,
3047       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3048       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3049     },
3050     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3051       .access = PL0_RW,
3052       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3053       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3054       .accessfn = gt_vtimer_access,
3055       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3056       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3057     },
3058     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3059       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3060       .access = PL0_RW,
3061       .type = ARM_CP_IO,
3062       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3063       .resetvalue = 0, .accessfn = gt_vtimer_access,
3064       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3065       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3066     },
3067     /* Secure timer -- this is actually restricted to only EL3
3068      * and configurably Secure-EL1 via the accessfn.
3069      */
3070     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3071       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3072       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3073       .accessfn = gt_stimer_access,
3074       .readfn = gt_sec_tval_read,
3075       .writefn = gt_sec_tval_write,
3076       .resetfn = gt_sec_timer_reset,
3077     },
3078     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3079       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3080       .type = ARM_CP_IO, .access = PL1_RW,
3081       .accessfn = gt_stimer_access,
3082       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3083       .resetvalue = 0,
3084       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3085     },
3086     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3087       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3088       .type = ARM_CP_IO, .access = PL1_RW,
3089       .accessfn = gt_stimer_access,
3090       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3091       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3092     },
3093 };
3094 
3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3096                                  bool isread)
3097 {
3098     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3099         return CP_ACCESS_TRAP;
3100     }
3101     return CP_ACCESS_OK;
3102 }
3103 
3104 #else
3105 
3106 /* In user-mode most of the generic timer registers are inaccessible
3107  * however modern kernels (4.12+) allow access to cntvct_el0
3108  */
3109 
3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3111 {
3112     ARMCPU *cpu = env_archcpu(env);
3113 
3114     /* Currently we have no support for QEMUTimer in linux-user so we
3115      * can't call gt_get_countervalue(env), instead we directly
3116      * call the lower level functions.
3117      */
3118     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3119 }
3120 
3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3122     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3123       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3124       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3125       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3126       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3127     },
3128     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3129       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3130       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3131       .readfn = gt_virt_cnt_read,
3132     },
3133 };
3134 
3135 #endif
3136 
3137 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3138 {
3139     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3140         raw_write(env, ri, value);
3141     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3142         raw_write(env, ri, value & 0xfffff6ff);
3143     } else {
3144         raw_write(env, ri, value & 0xfffff1ff);
3145     }
3146 }
3147 
3148 #ifndef CONFIG_USER_ONLY
3149 /* get_phys_addr() isn't present for user-mode-only targets */
3150 
3151 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3152                                  bool isread)
3153 {
3154     if (ri->opc2 & 4) {
3155         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3156          * Secure EL1 (which can only happen if EL3 is AArch64).
3157          * They are simply UNDEF if executed from NS EL1.
3158          * They function normally from EL2 or EL3.
3159          */
3160         if (arm_current_el(env) == 1) {
3161             if (arm_is_secure_below_el3(env)) {
3162                 if (env->cp15.scr_el3 & SCR_EEL2) {
3163                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3164                 }
3165                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3166             }
3167             return CP_ACCESS_TRAP_UNCATEGORIZED;
3168         }
3169     }
3170     return CP_ACCESS_OK;
3171 }
3172 
3173 #ifdef CONFIG_TCG
3174 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3175                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3176 {
3177     hwaddr phys_addr;
3178     target_ulong page_size;
3179     int prot;
3180     bool ret;
3181     uint64_t par64;
3182     bool format64 = false;
3183     MemTxAttrs attrs = {};
3184     ARMMMUFaultInfo fi = {};
3185     ARMCacheAttrs cacheattrs = {};
3186 
3187     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3188                         &prot, &page_size, &fi, &cacheattrs);
3189 
3190     if (ret) {
3191         /*
3192          * Some kinds of translation fault must cause exceptions rather
3193          * than being reported in the PAR.
3194          */
3195         int current_el = arm_current_el(env);
3196         int target_el;
3197         uint32_t syn, fsr, fsc;
3198         bool take_exc = false;
3199 
3200         if (fi.s1ptw && current_el == 1
3201             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3202             /*
3203              * Synchronous stage 2 fault on an access made as part of the
3204              * translation table walk for AT S1E0* or AT S1E1* insn
3205              * executed from NS EL1. If this is a synchronous external abort
3206              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3207              * to EL3. Otherwise the fault is taken as an exception to EL2,
3208              * and HPFAR_EL2 holds the faulting IPA.
3209              */
3210             if (fi.type == ARMFault_SyncExternalOnWalk &&
3211                 (env->cp15.scr_el3 & SCR_EA)) {
3212                 target_el = 3;
3213             } else {
3214                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3215                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3216                     env->cp15.hpfar_el2 |= HPFAR_NS;
3217                 }
3218                 target_el = 2;
3219             }
3220             take_exc = true;
3221         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3222             /*
3223              * Synchronous external aborts during a translation table walk
3224              * are taken as Data Abort exceptions.
3225              */
3226             if (fi.stage2) {
3227                 if (current_el == 3) {
3228                     target_el = 3;
3229                 } else {
3230                     target_el = 2;
3231                 }
3232             } else {
3233                 target_el = exception_target_el(env);
3234             }
3235             take_exc = true;
3236         }
3237 
3238         if (take_exc) {
3239             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3240             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3241                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3242                 fsr = arm_fi_to_lfsc(&fi);
3243                 fsc = extract32(fsr, 0, 6);
3244             } else {
3245                 fsr = arm_fi_to_sfsc(&fi);
3246                 fsc = 0x3f;
3247             }
3248             /*
3249              * Report exception with ESR indicating a fault due to a
3250              * translation table walk for a cache maintenance instruction.
3251              */
3252             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3253                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3254             env->exception.vaddress = value;
3255             env->exception.fsr = fsr;
3256             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3257         }
3258     }
3259 
3260     if (is_a64(env)) {
3261         format64 = true;
3262     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3263         /*
3264          * ATS1Cxx:
3265          * * TTBCR.EAE determines whether the result is returned using the
3266          *   32-bit or the 64-bit PAR format
3267          * * Instructions executed in Hyp mode always use the 64bit format
3268          *
3269          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3270          * * The Non-secure TTBCR.EAE bit is set to 1
3271          * * The implementation includes EL2, and the value of HCR.VM is 1
3272          *
3273          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3274          *
3275          * ATS1Hx always uses the 64bit format.
3276          */
3277         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3278 
3279         if (arm_feature(env, ARM_FEATURE_EL2)) {
3280             if (mmu_idx == ARMMMUIdx_E10_0 ||
3281                 mmu_idx == ARMMMUIdx_E10_1 ||
3282                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3283                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3284             } else {
3285                 format64 |= arm_current_el(env) == 2;
3286             }
3287         }
3288     }
3289 
3290     if (format64) {
3291         /* Create a 64-bit PAR */
3292         par64 = (1 << 11); /* LPAE bit always set */
3293         if (!ret) {
3294             par64 |= phys_addr & ~0xfffULL;
3295             if (!attrs.secure) {
3296                 par64 |= (1 << 9); /* NS */
3297             }
3298             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3299             par64 |= cacheattrs.shareability << 7; /* SH */
3300         } else {
3301             uint32_t fsr = arm_fi_to_lfsc(&fi);
3302 
3303             par64 |= 1; /* F */
3304             par64 |= (fsr & 0x3f) << 1; /* FS */
3305             if (fi.stage2) {
3306                 par64 |= (1 << 9); /* S */
3307             }
3308             if (fi.s1ptw) {
3309                 par64 |= (1 << 8); /* PTW */
3310             }
3311         }
3312     } else {
3313         /* fsr is a DFSR/IFSR value for the short descriptor
3314          * translation table format (with WnR always clear).
3315          * Convert it to a 32-bit PAR.
3316          */
3317         if (!ret) {
3318             /* We do not set any attribute bits in the PAR */
3319             if (page_size == (1 << 24)
3320                 && arm_feature(env, ARM_FEATURE_V7)) {
3321                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3322             } else {
3323                 par64 = phys_addr & 0xfffff000;
3324             }
3325             if (!attrs.secure) {
3326                 par64 |= (1 << 9); /* NS */
3327             }
3328         } else {
3329             uint32_t fsr = arm_fi_to_sfsc(&fi);
3330 
3331             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3332                     ((fsr & 0xf) << 1) | 1;
3333         }
3334     }
3335     return par64;
3336 }
3337 #endif /* CONFIG_TCG */
3338 
3339 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3340 {
3341 #ifdef CONFIG_TCG
3342     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3343     uint64_t par64;
3344     ARMMMUIdx mmu_idx;
3345     int el = arm_current_el(env);
3346     bool secure = arm_is_secure_below_el3(env);
3347 
3348     switch (ri->opc2 & 6) {
3349     case 0:
3350         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3351         switch (el) {
3352         case 3:
3353             mmu_idx = ARMMMUIdx_SE3;
3354             break;
3355         case 2:
3356             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3357             /* fall through */
3358         case 1:
3359             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3360                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3361                            : ARMMMUIdx_Stage1_E1_PAN);
3362             } else {
3363                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3364             }
3365             break;
3366         default:
3367             g_assert_not_reached();
3368         }
3369         break;
3370     case 2:
3371         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3372         switch (el) {
3373         case 3:
3374             mmu_idx = ARMMMUIdx_SE10_0;
3375             break;
3376         case 2:
3377             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3378             mmu_idx = ARMMMUIdx_Stage1_E0;
3379             break;
3380         case 1:
3381             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3382             break;
3383         default:
3384             g_assert_not_reached();
3385         }
3386         break;
3387     case 4:
3388         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3389         mmu_idx = ARMMMUIdx_E10_1;
3390         break;
3391     case 6:
3392         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3393         mmu_idx = ARMMMUIdx_E10_0;
3394         break;
3395     default:
3396         g_assert_not_reached();
3397     }
3398 
3399     par64 = do_ats_write(env, value, access_type, mmu_idx);
3400 
3401     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3402 #else
3403     /* Handled by hardware accelerator. */
3404     g_assert_not_reached();
3405 #endif /* CONFIG_TCG */
3406 }
3407 
3408 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3409                         uint64_t value)
3410 {
3411 #ifdef CONFIG_TCG
3412     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3413     uint64_t par64;
3414 
3415     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3416 
3417     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3418 #else
3419     /* Handled by hardware accelerator. */
3420     g_assert_not_reached();
3421 #endif /* CONFIG_TCG */
3422 }
3423 
3424 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3425                                      bool isread)
3426 {
3427     if (arm_current_el(env) == 3 &&
3428         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3429         return CP_ACCESS_TRAP;
3430     }
3431     return CP_ACCESS_OK;
3432 }
3433 
3434 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3435                         uint64_t value)
3436 {
3437 #ifdef CONFIG_TCG
3438     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3439     ARMMMUIdx mmu_idx;
3440     int secure = arm_is_secure_below_el3(env);
3441 
3442     switch (ri->opc2 & 6) {
3443     case 0:
3444         switch (ri->opc1) {
3445         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3446             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3447                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3448                            : ARMMMUIdx_Stage1_E1_PAN);
3449             } else {
3450                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3451             }
3452             break;
3453         case 4: /* AT S1E2R, AT S1E2W */
3454             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3455             break;
3456         case 6: /* AT S1E3R, AT S1E3W */
3457             mmu_idx = ARMMMUIdx_SE3;
3458             break;
3459         default:
3460             g_assert_not_reached();
3461         }
3462         break;
3463     case 2: /* AT S1E0R, AT S1E0W */
3464         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3465         break;
3466     case 4: /* AT S12E1R, AT S12E1W */
3467         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3468         break;
3469     case 6: /* AT S12E0R, AT S12E0W */
3470         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3471         break;
3472     default:
3473         g_assert_not_reached();
3474     }
3475 
3476     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3477 #else
3478     /* Handled by hardware accelerator. */
3479     g_assert_not_reached();
3480 #endif /* CONFIG_TCG */
3481 }
3482 #endif
3483 
3484 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3485     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3486       .access = PL1_RW, .resetvalue = 0,
3487       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3488                              offsetoflow32(CPUARMState, cp15.par_ns) },
3489       .writefn = par_write },
3490 #ifndef CONFIG_USER_ONLY
3491     /* This underdecoding is safe because the reginfo is NO_RAW. */
3492     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3493       .access = PL1_W, .accessfn = ats_access,
3494       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3495 #endif
3496 };
3497 
3498 /* Return basic MPU access permission bits.  */
3499 static uint32_t simple_mpu_ap_bits(uint32_t val)
3500 {
3501     uint32_t ret;
3502     uint32_t mask;
3503     int i;
3504     ret = 0;
3505     mask = 3;
3506     for (i = 0; i < 16; i += 2) {
3507         ret |= (val >> i) & mask;
3508         mask <<= 2;
3509     }
3510     return ret;
3511 }
3512 
3513 /* Pad basic MPU access permission bits to extended format.  */
3514 static uint32_t extended_mpu_ap_bits(uint32_t val)
3515 {
3516     uint32_t ret;
3517     uint32_t mask;
3518     int i;
3519     ret = 0;
3520     mask = 3;
3521     for (i = 0; i < 16; i += 2) {
3522         ret |= (val & mask) << i;
3523         mask <<= 2;
3524     }
3525     return ret;
3526 }
3527 
3528 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3529                                  uint64_t value)
3530 {
3531     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3532 }
3533 
3534 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3535 {
3536     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3537 }
3538 
3539 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3540                                  uint64_t value)
3541 {
3542     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3543 }
3544 
3545 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3546 {
3547     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3548 }
3549 
3550 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3551 {
3552     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3553 
3554     if (!u32p) {
3555         return 0;
3556     }
3557 
3558     u32p += env->pmsav7.rnr[M_REG_NS];
3559     return *u32p;
3560 }
3561 
3562 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3563                          uint64_t value)
3564 {
3565     ARMCPU *cpu = env_archcpu(env);
3566     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3567 
3568     if (!u32p) {
3569         return;
3570     }
3571 
3572     u32p += env->pmsav7.rnr[M_REG_NS];
3573     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3574     *u32p = value;
3575 }
3576 
3577 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3578                               uint64_t value)
3579 {
3580     ARMCPU *cpu = env_archcpu(env);
3581     uint32_t nrgs = cpu->pmsav7_dregion;
3582 
3583     if (value >= nrgs) {
3584         qemu_log_mask(LOG_GUEST_ERROR,
3585                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3586                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3587         return;
3588     }
3589 
3590     raw_write(env, ri, value);
3591 }
3592 
3593 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3594     /* Reset for all these registers is handled in arm_cpu_reset(),
3595      * because the PMSAv7 is also used by M-profile CPUs, which do
3596      * not register cpregs but still need the state to be reset.
3597      */
3598     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3599       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3600       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3601       .readfn = pmsav7_read, .writefn = pmsav7_write,
3602       .resetfn = arm_cp_reset_ignore },
3603     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3604       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3605       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3606       .readfn = pmsav7_read, .writefn = pmsav7_write,
3607       .resetfn = arm_cp_reset_ignore },
3608     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3609       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3610       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3611       .readfn = pmsav7_read, .writefn = pmsav7_write,
3612       .resetfn = arm_cp_reset_ignore },
3613     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3614       .access = PL1_RW,
3615       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3616       .writefn = pmsav7_rgnr_write,
3617       .resetfn = arm_cp_reset_ignore },
3618 };
3619 
3620 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3621     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3622       .access = PL1_RW, .type = ARM_CP_ALIAS,
3623       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3624       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3625     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3626       .access = PL1_RW, .type = ARM_CP_ALIAS,
3627       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3628       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3629     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3630       .access = PL1_RW,
3631       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3632       .resetvalue = 0, },
3633     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3634       .access = PL1_RW,
3635       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3636       .resetvalue = 0, },
3637     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3638       .access = PL1_RW,
3639       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3640     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3641       .access = PL1_RW,
3642       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3643     /* Protection region base and size registers */
3644     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3645       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3646       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3647     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3648       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3649       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3650     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3651       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3652       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3653     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3654       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3655       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3656     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3657       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3658       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3659     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3660       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3661       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3662     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3663       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3664       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3665     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3666       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3667       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3668 };
3669 
3670 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3671                                  uint64_t value)
3672 {
3673     TCR *tcr = raw_ptr(env, ri);
3674     int maskshift = extract32(value, 0, 3);
3675 
3676     if (!arm_feature(env, ARM_FEATURE_V8)) {
3677         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3678             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3679              * using Long-desciptor translation table format */
3680             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3681         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3682             /* In an implementation that includes the Security Extensions
3683              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3684              * Short-descriptor translation table format.
3685              */
3686             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3687         } else {
3688             value &= TTBCR_N;
3689         }
3690     }
3691 
3692     /* Update the masks corresponding to the TCR bank being written
3693      * Note that we always calculate mask and base_mask, but
3694      * they are only used for short-descriptor tables (ie if EAE is 0);
3695      * for long-descriptor tables the TCR fields are used differently
3696      * and the mask and base_mask values are meaningless.
3697      */
3698     tcr->raw_tcr = value;
3699     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3700     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3701 }
3702 
3703 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3704                              uint64_t value)
3705 {
3706     ARMCPU *cpu = env_archcpu(env);
3707     TCR *tcr = raw_ptr(env, ri);
3708 
3709     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3710         /* With LPAE the TTBCR could result in a change of ASID
3711          * via the TTBCR.A1 bit, so do a TLB flush.
3712          */
3713         tlb_flush(CPU(cpu));
3714     }
3715     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3716     value = deposit64(tcr->raw_tcr, 0, 32, value);
3717     vmsa_ttbcr_raw_write(env, ri, value);
3718 }
3719 
3720 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3721 {
3722     TCR *tcr = raw_ptr(env, ri);
3723 
3724     /* Reset both the TCR as well as the masks corresponding to the bank of
3725      * the TCR being reset.
3726      */
3727     tcr->raw_tcr = 0;
3728     tcr->mask = 0;
3729     tcr->base_mask = 0xffffc000u;
3730 }
3731 
3732 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3733                                uint64_t value)
3734 {
3735     ARMCPU *cpu = env_archcpu(env);
3736     TCR *tcr = raw_ptr(env, ri);
3737 
3738     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3739     tlb_flush(CPU(cpu));
3740     tcr->raw_tcr = value;
3741 }
3742 
3743 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3744                             uint64_t value)
3745 {
3746     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3747     if (cpreg_field_is_64bit(ri) &&
3748         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3749         ARMCPU *cpu = env_archcpu(env);
3750         tlb_flush(CPU(cpu));
3751     }
3752     raw_write(env, ri, value);
3753 }
3754 
3755 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3756                                     uint64_t value)
3757 {
3758     /*
3759      * If we are running with E2&0 regime, then an ASID is active.
3760      * Flush if that might be changing.  Note we're not checking
3761      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3762      * holds the active ASID, only checking the field that might.
3763      */
3764     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3765         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3766         uint16_t mask = ARMMMUIdxBit_E20_2 |
3767                         ARMMMUIdxBit_E20_2_PAN |
3768                         ARMMMUIdxBit_E20_0;
3769 
3770         if (arm_is_secure_below_el3(env)) {
3771             mask >>= ARM_MMU_IDX_A_NS;
3772         }
3773 
3774         tlb_flush_by_mmuidx(env_cpu(env), mask);
3775     }
3776     raw_write(env, ri, value);
3777 }
3778 
3779 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3780                         uint64_t value)
3781 {
3782     ARMCPU *cpu = env_archcpu(env);
3783     CPUState *cs = CPU(cpu);
3784 
3785     /*
3786      * A change in VMID to the stage2 page table (Stage2) invalidates
3787      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3788      */
3789     if (raw_read(env, ri) != value) {
3790         uint16_t mask = ARMMMUIdxBit_E10_1 |
3791                         ARMMMUIdxBit_E10_1_PAN |
3792                         ARMMMUIdxBit_E10_0;
3793 
3794         if (arm_is_secure_below_el3(env)) {
3795             mask >>= ARM_MMU_IDX_A_NS;
3796         }
3797 
3798         tlb_flush_by_mmuidx(cs, mask);
3799         raw_write(env, ri, value);
3800     }
3801 }
3802 
3803 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3804     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3805       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3806       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3807                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3808     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3809       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3810       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3811                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3812     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3813       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3814       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3815                              offsetof(CPUARMState, cp15.dfar_ns) } },
3816     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3817       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3818       .access = PL1_RW, .accessfn = access_tvm_trvm,
3819       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3820       .resetvalue = 0, },
3821 };
3822 
3823 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3824     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3825       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3826       .access = PL1_RW, .accessfn = access_tvm_trvm,
3827       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3828     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3829       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3830       .access = PL1_RW, .accessfn = access_tvm_trvm,
3831       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3832       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3833                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3834     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3835       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3836       .access = PL1_RW, .accessfn = access_tvm_trvm,
3837       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3838       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3839                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3840     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3841       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3842       .access = PL1_RW, .accessfn = access_tvm_trvm,
3843       .writefn = vmsa_tcr_el12_write,
3844       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3845       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3846     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3847       .access = PL1_RW, .accessfn = access_tvm_trvm,
3848       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3849       .raw_writefn = vmsa_ttbcr_raw_write,
3850       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3851       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3852                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3853 };
3854 
3855 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3856  * qemu tlbs nor adjusting cached masks.
3857  */
3858 static const ARMCPRegInfo ttbcr2_reginfo = {
3859     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3860     .access = PL1_RW, .accessfn = access_tvm_trvm,
3861     .type = ARM_CP_ALIAS,
3862     .bank_fieldoffsets = {
3863         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3864         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3865     },
3866 };
3867 
3868 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3869                                 uint64_t value)
3870 {
3871     env->cp15.c15_ticonfig = value & 0xe7;
3872     /* The OS_TYPE bit in this register changes the reported CPUID! */
3873     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3874         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3875 }
3876 
3877 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3878                                 uint64_t value)
3879 {
3880     env->cp15.c15_threadid = value & 0xffff;
3881 }
3882 
3883 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884                            uint64_t value)
3885 {
3886     /* Wait-for-interrupt (deprecated) */
3887     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3888 }
3889 
3890 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3891                                   uint64_t value)
3892 {
3893     /* On OMAP there are registers indicating the max/min index of dcache lines
3894      * containing a dirty line; cache flush operations have to reset these.
3895      */
3896     env->cp15.c15_i_max = 0x000;
3897     env->cp15.c15_i_min = 0xff0;
3898 }
3899 
3900 static const ARMCPRegInfo omap_cp_reginfo[] = {
3901     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3902       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3903       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3904       .resetvalue = 0, },
3905     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3906       .access = PL1_RW, .type = ARM_CP_NOP },
3907     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3908       .access = PL1_RW,
3909       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3910       .writefn = omap_ticonfig_write },
3911     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3912       .access = PL1_RW,
3913       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3914     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3915       .access = PL1_RW, .resetvalue = 0xff0,
3916       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3917     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3918       .access = PL1_RW,
3919       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3920       .writefn = omap_threadid_write },
3921     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3922       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3923       .type = ARM_CP_NO_RAW,
3924       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3925     /* TODO: Peripheral port remap register:
3926      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3927      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3928      * when MMU is off.
3929      */
3930     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3931       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3932       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3933       .writefn = omap_cachemaint_write },
3934     { .name = "C9", .cp = 15, .crn = 9,
3935       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3936       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3937 };
3938 
3939 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3940                               uint64_t value)
3941 {
3942     env->cp15.c15_cpar = value & 0x3fff;
3943 }
3944 
3945 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3946     { .name = "XSCALE_CPAR",
3947       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3948       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3949       .writefn = xscale_cpar_write, },
3950     { .name = "XSCALE_AUXCR",
3951       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3952       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3953       .resetvalue = 0, },
3954     /* XScale specific cache-lockdown: since we have no cache we NOP these
3955      * and hope the guest does not really rely on cache behaviour.
3956      */
3957     { .name = "XSCALE_LOCK_ICACHE_LINE",
3958       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3959       .access = PL1_W, .type = ARM_CP_NOP },
3960     { .name = "XSCALE_UNLOCK_ICACHE",
3961       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3962       .access = PL1_W, .type = ARM_CP_NOP },
3963     { .name = "XSCALE_DCACHE_LOCK",
3964       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3965       .access = PL1_RW, .type = ARM_CP_NOP },
3966     { .name = "XSCALE_UNLOCK_DCACHE",
3967       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3968       .access = PL1_W, .type = ARM_CP_NOP },
3969 };
3970 
3971 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3972     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3973      * implementation of this implementation-defined space.
3974      * Ideally this should eventually disappear in favour of actually
3975      * implementing the correct behaviour for all cores.
3976      */
3977     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3978       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3979       .access = PL1_RW,
3980       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3981       .resetvalue = 0 },
3982 };
3983 
3984 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3985     /* Cache status: RAZ because we have no cache so it's always clean */
3986     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3987       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3988       .resetvalue = 0 },
3989 };
3990 
3991 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3992     /* We never have a a block transfer operation in progress */
3993     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3994       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3995       .resetvalue = 0 },
3996     /* The cache ops themselves: these all NOP for QEMU */
3997     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3998       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3999     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4000       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4001     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4002       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4003     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4004       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4005     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4006       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4007     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4008       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4009 };
4010 
4011 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4012     /* The cache test-and-clean instructions always return (1 << 30)
4013      * to indicate that there are no dirty cache lines.
4014      */
4015     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4016       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4017       .resetvalue = (1 << 30) },
4018     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4019       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4020       .resetvalue = (1 << 30) },
4021 };
4022 
4023 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4024     /* Ignore ReadBuffer accesses */
4025     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4026       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4027       .access = PL1_RW, .resetvalue = 0,
4028       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4029 };
4030 
4031 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4032 {
4033     unsigned int cur_el = arm_current_el(env);
4034 
4035     if (arm_is_el2_enabled(env) && cur_el == 1) {
4036         return env->cp15.vpidr_el2;
4037     }
4038     return raw_read(env, ri);
4039 }
4040 
4041 static uint64_t mpidr_read_val(CPUARMState *env)
4042 {
4043     ARMCPU *cpu = env_archcpu(env);
4044     uint64_t mpidr = cpu->mp_affinity;
4045 
4046     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4047         mpidr |= (1U << 31);
4048         /* Cores which are uniprocessor (non-coherent)
4049          * but still implement the MP extensions set
4050          * bit 30. (For instance, Cortex-R5).
4051          */
4052         if (cpu->mp_is_up) {
4053             mpidr |= (1u << 30);
4054         }
4055     }
4056     return mpidr;
4057 }
4058 
4059 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4060 {
4061     unsigned int cur_el = arm_current_el(env);
4062 
4063     if (arm_is_el2_enabled(env) && cur_el == 1) {
4064         return env->cp15.vmpidr_el2;
4065     }
4066     return mpidr_read_val(env);
4067 }
4068 
4069 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4070     /* NOP AMAIR0/1 */
4071     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4072       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4073       .access = PL1_RW, .accessfn = access_tvm_trvm,
4074       .type = ARM_CP_CONST, .resetvalue = 0 },
4075     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4076     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4077       .access = PL1_RW, .accessfn = access_tvm_trvm,
4078       .type = ARM_CP_CONST, .resetvalue = 0 },
4079     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4080       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4081       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4082                              offsetof(CPUARMState, cp15.par_ns)} },
4083     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4084       .access = PL1_RW, .accessfn = access_tvm_trvm,
4085       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4086       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4087                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4088       .writefn = vmsa_ttbr_write, },
4089     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4090       .access = PL1_RW, .accessfn = access_tvm_trvm,
4091       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4092       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4093                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4094       .writefn = vmsa_ttbr_write, },
4095 };
4096 
4097 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4098 {
4099     return vfp_get_fpcr(env);
4100 }
4101 
4102 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4103                             uint64_t value)
4104 {
4105     vfp_set_fpcr(env, value);
4106 }
4107 
4108 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4109 {
4110     return vfp_get_fpsr(env);
4111 }
4112 
4113 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4114                             uint64_t value)
4115 {
4116     vfp_set_fpsr(env, value);
4117 }
4118 
4119 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4120                                        bool isread)
4121 {
4122     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4123         return CP_ACCESS_TRAP;
4124     }
4125     return CP_ACCESS_OK;
4126 }
4127 
4128 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129                             uint64_t value)
4130 {
4131     env->daif = value & PSTATE_DAIF;
4132 }
4133 
4134 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4135 {
4136     return env->pstate & PSTATE_PAN;
4137 }
4138 
4139 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140                            uint64_t value)
4141 {
4142     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4143 }
4144 
4145 static const ARMCPRegInfo pan_reginfo = {
4146     .name = "PAN", .state = ARM_CP_STATE_AA64,
4147     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4148     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4149     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4150 };
4151 
4152 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4153 {
4154     return env->pstate & PSTATE_UAO;
4155 }
4156 
4157 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4158                            uint64_t value)
4159 {
4160     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4161 }
4162 
4163 static const ARMCPRegInfo uao_reginfo = {
4164     .name = "UAO", .state = ARM_CP_STATE_AA64,
4165     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4166     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4167     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4168 };
4169 
4170 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4171 {
4172     return env->pstate & PSTATE_DIT;
4173 }
4174 
4175 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4176                            uint64_t value)
4177 {
4178     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4179 }
4180 
4181 static const ARMCPRegInfo dit_reginfo = {
4182     .name = "DIT", .state = ARM_CP_STATE_AA64,
4183     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4184     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4185     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4186 };
4187 
4188 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4189 {
4190     return env->pstate & PSTATE_SSBS;
4191 }
4192 
4193 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4194                            uint64_t value)
4195 {
4196     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4197 }
4198 
4199 static const ARMCPRegInfo ssbs_reginfo = {
4200     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4201     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4202     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4203     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4204 };
4205 
4206 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4207                                               const ARMCPRegInfo *ri,
4208                                               bool isread)
4209 {
4210     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4211     switch (arm_current_el(env)) {
4212     case 0:
4213         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4214         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4215             return CP_ACCESS_TRAP;
4216         }
4217         /* fall through */
4218     case 1:
4219         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4220         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4221             return CP_ACCESS_TRAP_EL2;
4222         }
4223         break;
4224     }
4225     return CP_ACCESS_OK;
4226 }
4227 
4228 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4229                                               const ARMCPRegInfo *ri,
4230                                               bool isread)
4231 {
4232     /* Cache invalidate/clean to Point of Unification... */
4233     switch (arm_current_el(env)) {
4234     case 0:
4235         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4236         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4237             return CP_ACCESS_TRAP;
4238         }
4239         /* fall through */
4240     case 1:
4241         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4242         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4243             return CP_ACCESS_TRAP_EL2;
4244         }
4245         break;
4246     }
4247     return CP_ACCESS_OK;
4248 }
4249 
4250 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4251  * Page D4-1736 (DDI0487A.b)
4252  */
4253 
4254 static int vae1_tlbmask(CPUARMState *env)
4255 {
4256     uint64_t hcr = arm_hcr_el2_eff(env);
4257     uint16_t mask;
4258 
4259     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4260         mask = ARMMMUIdxBit_E20_2 |
4261                ARMMMUIdxBit_E20_2_PAN |
4262                ARMMMUIdxBit_E20_0;
4263     } else {
4264         mask = ARMMMUIdxBit_E10_1 |
4265                ARMMMUIdxBit_E10_1_PAN |
4266                ARMMMUIdxBit_E10_0;
4267     }
4268 
4269     if (arm_is_secure_below_el3(env)) {
4270         mask >>= ARM_MMU_IDX_A_NS;
4271     }
4272 
4273     return mask;
4274 }
4275 
4276 /* Return 56 if TBI is enabled, 64 otherwise. */
4277 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4278                               uint64_t addr)
4279 {
4280     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4281     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4282     int select = extract64(addr, 55, 1);
4283 
4284     return (tbi >> select) & 1 ? 56 : 64;
4285 }
4286 
4287 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4288 {
4289     uint64_t hcr = arm_hcr_el2_eff(env);
4290     ARMMMUIdx mmu_idx;
4291 
4292     /* Only the regime of the mmu_idx below is significant. */
4293     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4294         mmu_idx = ARMMMUIdx_E20_0;
4295     } else {
4296         mmu_idx = ARMMMUIdx_E10_0;
4297     }
4298 
4299     if (arm_is_secure_below_el3(env)) {
4300         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4301     }
4302 
4303     return tlbbits_for_regime(env, mmu_idx, addr);
4304 }
4305 
4306 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4307                                       uint64_t value)
4308 {
4309     CPUState *cs = env_cpu(env);
4310     int mask = vae1_tlbmask(env);
4311 
4312     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4313 }
4314 
4315 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4316                                     uint64_t value)
4317 {
4318     CPUState *cs = env_cpu(env);
4319     int mask = vae1_tlbmask(env);
4320 
4321     if (tlb_force_broadcast(env)) {
4322         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4323     } else {
4324         tlb_flush_by_mmuidx(cs, mask);
4325     }
4326 }
4327 
4328 static int alle1_tlbmask(CPUARMState *env)
4329 {
4330     /*
4331      * Note that the 'ALL' scope must invalidate both stage 1 and
4332      * stage 2 translations, whereas most other scopes only invalidate
4333      * stage 1 translations.
4334      */
4335     if (arm_is_secure_below_el3(env)) {
4336         return ARMMMUIdxBit_SE10_1 |
4337                ARMMMUIdxBit_SE10_1_PAN |
4338                ARMMMUIdxBit_SE10_0;
4339     } else {
4340         return ARMMMUIdxBit_E10_1 |
4341                ARMMMUIdxBit_E10_1_PAN |
4342                ARMMMUIdxBit_E10_0;
4343     }
4344 }
4345 
4346 static int e2_tlbmask(CPUARMState *env)
4347 {
4348     if (arm_is_secure_below_el3(env)) {
4349         return ARMMMUIdxBit_SE20_0 |
4350                ARMMMUIdxBit_SE20_2 |
4351                ARMMMUIdxBit_SE20_2_PAN |
4352                ARMMMUIdxBit_SE2;
4353     } else {
4354         return ARMMMUIdxBit_E20_0 |
4355                ARMMMUIdxBit_E20_2 |
4356                ARMMMUIdxBit_E20_2_PAN |
4357                ARMMMUIdxBit_E2;
4358     }
4359 }
4360 
4361 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362                                   uint64_t value)
4363 {
4364     CPUState *cs = env_cpu(env);
4365     int mask = alle1_tlbmask(env);
4366 
4367     tlb_flush_by_mmuidx(cs, mask);
4368 }
4369 
4370 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371                                   uint64_t value)
4372 {
4373     CPUState *cs = env_cpu(env);
4374     int mask = e2_tlbmask(env);
4375 
4376     tlb_flush_by_mmuidx(cs, mask);
4377 }
4378 
4379 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4380                                   uint64_t value)
4381 {
4382     ARMCPU *cpu = env_archcpu(env);
4383     CPUState *cs = CPU(cpu);
4384 
4385     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4386 }
4387 
4388 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4389                                     uint64_t value)
4390 {
4391     CPUState *cs = env_cpu(env);
4392     int mask = alle1_tlbmask(env);
4393 
4394     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4395 }
4396 
4397 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4398                                     uint64_t value)
4399 {
4400     CPUState *cs = env_cpu(env);
4401     int mask = e2_tlbmask(env);
4402 
4403     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4404 }
4405 
4406 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4407                                     uint64_t value)
4408 {
4409     CPUState *cs = env_cpu(env);
4410 
4411     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4412 }
4413 
4414 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4415                                  uint64_t value)
4416 {
4417     /* Invalidate by VA, EL2
4418      * Currently handles both VAE2 and VALE2, since we don't support
4419      * flush-last-level-only.
4420      */
4421     CPUState *cs = env_cpu(env);
4422     int mask = e2_tlbmask(env);
4423     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4424 
4425     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4426 }
4427 
4428 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                                  uint64_t value)
4430 {
4431     /* Invalidate by VA, EL3
4432      * Currently handles both VAE3 and VALE3, since we don't support
4433      * flush-last-level-only.
4434      */
4435     ARMCPU *cpu = env_archcpu(env);
4436     CPUState *cs = CPU(cpu);
4437     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4438 
4439     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4440 }
4441 
4442 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4443                                    uint64_t value)
4444 {
4445     CPUState *cs = env_cpu(env);
4446     int mask = vae1_tlbmask(env);
4447     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4448     int bits = vae1_tlbbits(env, pageaddr);
4449 
4450     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4451 }
4452 
4453 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4454                                  uint64_t value)
4455 {
4456     /* Invalidate by VA, EL1&0 (AArch64 version).
4457      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4458      * since we don't support flush-for-specific-ASID-only or
4459      * flush-last-level-only.
4460      */
4461     CPUState *cs = env_cpu(env);
4462     int mask = vae1_tlbmask(env);
4463     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4464     int bits = vae1_tlbbits(env, pageaddr);
4465 
4466     if (tlb_force_broadcast(env)) {
4467         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4468     } else {
4469         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4470     }
4471 }
4472 
4473 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474                                    uint64_t value)
4475 {
4476     CPUState *cs = env_cpu(env);
4477     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4478     bool secure = arm_is_secure_below_el3(env);
4479     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4480     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4481                                   pageaddr);
4482 
4483     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4484 }
4485 
4486 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4487                                    uint64_t value)
4488 {
4489     CPUState *cs = env_cpu(env);
4490     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4491     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4492 
4493     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4494                                                   ARMMMUIdxBit_SE3, bits);
4495 }
4496 
4497 #ifdef TARGET_AARCH64
4498 typedef struct {
4499     uint64_t base;
4500     uint64_t length;
4501 } TLBIRange;
4502 
4503 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4504                                      uint64_t value)
4505 {
4506     unsigned int page_size_granule, page_shift, num, scale, exponent;
4507     /* Extract one bit to represent the va selector in use. */
4508     uint64_t select = sextract64(value, 36, 1);
4509     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4510     TLBIRange ret = { };
4511 
4512     page_size_granule = extract64(value, 46, 2);
4513 
4514     /* The granule encoded in value must match the granule in use. */
4515     if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) {
4516         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4517                       page_size_granule);
4518         return ret;
4519     }
4520 
4521     page_shift = (page_size_granule - 1) * 2 + 12;
4522     num = extract64(value, 39, 5);
4523     scale = extract64(value, 44, 2);
4524     exponent = (5 * scale) + 1;
4525 
4526     ret.length = (num + 1) << (exponent + page_shift);
4527 
4528     if (param.select) {
4529         ret.base = sextract64(value, 0, 37);
4530     } else {
4531         ret.base = extract64(value, 0, 37);
4532     }
4533     if (param.ds) {
4534         /*
4535          * With DS=1, BaseADDR is always shifted 16 so that it is able
4536          * to address all 52 va bits.  The input address is perforce
4537          * aligned on a 64k boundary regardless of translation granule.
4538          */
4539         page_shift = 16;
4540     }
4541     ret.base <<= page_shift;
4542 
4543     return ret;
4544 }
4545 
4546 static void do_rvae_write(CPUARMState *env, uint64_t value,
4547                           int idxmap, bool synced)
4548 {
4549     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4550     TLBIRange range;
4551     int bits;
4552 
4553     range = tlbi_aa64_get_range(env, one_idx, value);
4554     bits = tlbbits_for_regime(env, one_idx, range.base);
4555 
4556     if (synced) {
4557         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4558                                                   range.base,
4559                                                   range.length,
4560                                                   idxmap,
4561                                                   bits);
4562     } else {
4563         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4564                                   range.length, idxmap, bits);
4565     }
4566 }
4567 
4568 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4569                                   const ARMCPRegInfo *ri,
4570                                   uint64_t value)
4571 {
4572     /*
4573      * Invalidate by VA range, EL1&0.
4574      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4575      * since we don't support flush-for-specific-ASID-only or
4576      * flush-last-level-only.
4577      */
4578 
4579     do_rvae_write(env, value, vae1_tlbmask(env),
4580                   tlb_force_broadcast(env));
4581 }
4582 
4583 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4584                                     const ARMCPRegInfo *ri,
4585                                     uint64_t value)
4586 {
4587     /*
4588      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4589      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4590      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4591      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4592      * shareable specific flushes.
4593      */
4594 
4595     do_rvae_write(env, value, vae1_tlbmask(env), true);
4596 }
4597 
4598 static int vae2_tlbmask(CPUARMState *env)
4599 {
4600     return (arm_is_secure_below_el3(env)
4601             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4602 }
4603 
4604 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4605                                   const ARMCPRegInfo *ri,
4606                                   uint64_t value)
4607 {
4608     /*
4609      * Invalidate by VA range, EL2.
4610      * Currently handles all of RVAE2 and RVALE2,
4611      * since we don't support flush-for-specific-ASID-only or
4612      * flush-last-level-only.
4613      */
4614 
4615     do_rvae_write(env, value, vae2_tlbmask(env),
4616                   tlb_force_broadcast(env));
4617 
4618 
4619 }
4620 
4621 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4622                                     const ARMCPRegInfo *ri,
4623                                     uint64_t value)
4624 {
4625     /*
4626      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4627      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4628      * since we don't support flush-for-specific-ASID-only,
4629      * flush-last-level-only or inner/outer shareable specific flushes.
4630      */
4631 
4632     do_rvae_write(env, value, vae2_tlbmask(env), true);
4633 
4634 }
4635 
4636 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4637                                   const ARMCPRegInfo *ri,
4638                                   uint64_t value)
4639 {
4640     /*
4641      * Invalidate by VA range, EL3.
4642      * Currently handles all of RVAE3 and RVALE3,
4643      * since we don't support flush-for-specific-ASID-only or
4644      * flush-last-level-only.
4645      */
4646 
4647     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4648                   tlb_force_broadcast(env));
4649 }
4650 
4651 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4652                                     const ARMCPRegInfo *ri,
4653                                     uint64_t value)
4654 {
4655     /*
4656      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4657      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4658      * since we don't support flush-for-specific-ASID-only,
4659      * flush-last-level-only or inner/outer specific flushes.
4660      */
4661 
4662     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4663 }
4664 #endif
4665 
4666 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4667                                       bool isread)
4668 {
4669     int cur_el = arm_current_el(env);
4670 
4671     if (cur_el < 2) {
4672         uint64_t hcr = arm_hcr_el2_eff(env);
4673 
4674         if (cur_el == 0) {
4675             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4676                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4677                     return CP_ACCESS_TRAP_EL2;
4678                 }
4679             } else {
4680                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4681                     return CP_ACCESS_TRAP;
4682                 }
4683                 if (hcr & HCR_TDZ) {
4684                     return CP_ACCESS_TRAP_EL2;
4685                 }
4686             }
4687         } else if (hcr & HCR_TDZ) {
4688             return CP_ACCESS_TRAP_EL2;
4689         }
4690     }
4691     return CP_ACCESS_OK;
4692 }
4693 
4694 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4695 {
4696     ARMCPU *cpu = env_archcpu(env);
4697     int dzp_bit = 1 << 4;
4698 
4699     /* DZP indicates whether DC ZVA access is allowed */
4700     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4701         dzp_bit = 0;
4702     }
4703     return cpu->dcz_blocksize | dzp_bit;
4704 }
4705 
4706 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4707                                     bool isread)
4708 {
4709     if (!(env->pstate & PSTATE_SP)) {
4710         /* Access to SP_EL0 is undefined if it's being used as
4711          * the stack pointer.
4712          */
4713         return CP_ACCESS_TRAP_UNCATEGORIZED;
4714     }
4715     return CP_ACCESS_OK;
4716 }
4717 
4718 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4719 {
4720     return env->pstate & PSTATE_SP;
4721 }
4722 
4723 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4724 {
4725     update_spsel(env, val);
4726 }
4727 
4728 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4729                         uint64_t value)
4730 {
4731     ARMCPU *cpu = env_archcpu(env);
4732 
4733     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4734         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4735         value &= ~SCTLR_M;
4736     }
4737 
4738     /* ??? Lots of these bits are not implemented.  */
4739 
4740     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4741         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4742             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4743         } else {
4744             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4745                        SCTLR_ATA0 | SCTLR_ATA);
4746         }
4747     }
4748 
4749     if (raw_read(env, ri) == value) {
4750         /* Skip the TLB flush if nothing actually changed; Linux likes
4751          * to do a lot of pointless SCTLR writes.
4752          */
4753         return;
4754     }
4755 
4756     raw_write(env, ri, value);
4757 
4758     /* This may enable/disable the MMU, so do a TLB flush.  */
4759     tlb_flush(CPU(cpu));
4760 
4761     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4762         /*
4763          * Normally we would always end the TB on an SCTLR write; see the
4764          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4765          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4766          * of hflags from the translator, so do it here.
4767          */
4768         arm_rebuild_hflags(env);
4769     }
4770 }
4771 
4772 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4773                        uint64_t value)
4774 {
4775     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4776 }
4777 
4778 static const ARMCPRegInfo v8_cp_reginfo[] = {
4779     /* Minimal set of EL0-visible registers. This will need to be expanded
4780      * significantly for system emulation of AArch64 CPUs.
4781      */
4782     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4783       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4784       .access = PL0_RW, .type = ARM_CP_NZCV },
4785     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4786       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4787       .type = ARM_CP_NO_RAW,
4788       .access = PL0_RW, .accessfn = aa64_daif_access,
4789       .fieldoffset = offsetof(CPUARMState, daif),
4790       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4791     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4792       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4793       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4794       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4795     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4796       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4797       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4798       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4799     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4800       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4801       .access = PL0_R, .type = ARM_CP_NO_RAW,
4802       .readfn = aa64_dczid_read },
4803     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4804       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4805       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4806 #ifndef CONFIG_USER_ONLY
4807       /* Avoid overhead of an access check that always passes in user-mode */
4808       .accessfn = aa64_zva_access,
4809 #endif
4810     },
4811     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4812       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4813       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4814     /* Cache ops: all NOPs since we don't emulate caches */
4815     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4817       .access = PL1_W, .type = ARM_CP_NOP,
4818       .accessfn = aa64_cacheop_pou_access },
4819     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4821       .access = PL1_W, .type = ARM_CP_NOP,
4822       .accessfn = aa64_cacheop_pou_access },
4823     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4824       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4825       .access = PL0_W, .type = ARM_CP_NOP,
4826       .accessfn = aa64_cacheop_pou_access },
4827     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4829       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4830       .type = ARM_CP_NOP },
4831     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4832       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4833       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4834     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4835       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4836       .access = PL0_W, .type = ARM_CP_NOP,
4837       .accessfn = aa64_cacheop_poc_access },
4838     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4839       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4840       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4841     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4842       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4843       .access = PL0_W, .type = ARM_CP_NOP,
4844       .accessfn = aa64_cacheop_pou_access },
4845     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4846       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4847       .access = PL0_W, .type = ARM_CP_NOP,
4848       .accessfn = aa64_cacheop_poc_access },
4849     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4850       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4851       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4852     /* TLBI operations */
4853     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4854       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4855       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4856       .writefn = tlbi_aa64_vmalle1is_write },
4857     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4859       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4860       .writefn = tlbi_aa64_vae1is_write },
4861     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4863       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4864       .writefn = tlbi_aa64_vmalle1is_write },
4865     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4867       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868       .writefn = tlbi_aa64_vae1is_write },
4869     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4871       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872       .writefn = tlbi_aa64_vae1is_write },
4873     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876       .writefn = tlbi_aa64_vae1is_write },
4877     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vmalle1_write },
4881     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1_write },
4885     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4887       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888       .writefn = tlbi_aa64_vmalle1_write },
4889     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892       .writefn = tlbi_aa64_vae1_write },
4893     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4895       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896       .writefn = tlbi_aa64_vae1_write },
4897     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900       .writefn = tlbi_aa64_vae1_write },
4901     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4902       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4903       .access = PL2_W, .type = ARM_CP_NOP },
4904     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4905       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4906       .access = PL2_W, .type = ARM_CP_NOP },
4907     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4908       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4909       .access = PL2_W, .type = ARM_CP_NO_RAW,
4910       .writefn = tlbi_aa64_alle1is_write },
4911     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4912       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4913       .access = PL2_W, .type = ARM_CP_NO_RAW,
4914       .writefn = tlbi_aa64_alle1is_write },
4915     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4916       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4917       .access = PL2_W, .type = ARM_CP_NOP },
4918     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4919       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4920       .access = PL2_W, .type = ARM_CP_NOP },
4921     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4922       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4923       .access = PL2_W, .type = ARM_CP_NO_RAW,
4924       .writefn = tlbi_aa64_alle1_write },
4925     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4926       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4927       .access = PL2_W, .type = ARM_CP_NO_RAW,
4928       .writefn = tlbi_aa64_alle1is_write },
4929 #ifndef CONFIG_USER_ONLY
4930     /* 64 bit address translation operations */
4931     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4933       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4934       .writefn = ats_write64 },
4935     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4937       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4938       .writefn = ats_write64 },
4939     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4941       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4942       .writefn = ats_write64 },
4943     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4945       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4946       .writefn = ats_write64 },
4947     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4948       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4949       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4950       .writefn = ats_write64 },
4951     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4952       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4953       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4954       .writefn = ats_write64 },
4955     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4956       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4957       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4958       .writefn = ats_write64 },
4959     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4961       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962       .writefn = ats_write64 },
4963     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4964     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4965       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4966       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4967       .writefn = ats_write64 },
4968     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4969       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4970       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4971       .writefn = ats_write64 },
4972     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4973       .type = ARM_CP_ALIAS,
4974       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4975       .access = PL1_RW, .resetvalue = 0,
4976       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4977       .writefn = par_write },
4978 #endif
4979     /* TLB invalidate last level of translation table walk */
4980     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4981       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4982       .writefn = tlbimva_is_write },
4983     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4984       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4985       .writefn = tlbimvaa_is_write },
4986     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4987       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4988       .writefn = tlbimva_write },
4989     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4990       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4991       .writefn = tlbimvaa_write },
4992     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4993       .type = ARM_CP_NO_RAW, .access = PL2_W,
4994       .writefn = tlbimva_hyp_write },
4995     { .name = "TLBIMVALHIS",
4996       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4997       .type = ARM_CP_NO_RAW, .access = PL2_W,
4998       .writefn = tlbimva_hyp_is_write },
4999     { .name = "TLBIIPAS2",
5000       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5001       .type = ARM_CP_NOP, .access = PL2_W },
5002     { .name = "TLBIIPAS2IS",
5003       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5004       .type = ARM_CP_NOP, .access = PL2_W },
5005     { .name = "TLBIIPAS2L",
5006       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5007       .type = ARM_CP_NOP, .access = PL2_W },
5008     { .name = "TLBIIPAS2LIS",
5009       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5010       .type = ARM_CP_NOP, .access = PL2_W },
5011     /* 32 bit cache operations */
5012     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5013       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5014     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5015       .type = ARM_CP_NOP, .access = PL1_W },
5016     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5017       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5018     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5019       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5020     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5021       .type = ARM_CP_NOP, .access = PL1_W },
5022     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5023       .type = ARM_CP_NOP, .access = PL1_W },
5024     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5025       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5026     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5027       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5028     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5029       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5030     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5031       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5032     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5033       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5034     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5035       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5036     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5037       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5038     /* MMU Domain access control / MPU write buffer control */
5039     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5040       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5041       .writefn = dacr_write, .raw_writefn = raw_write,
5042       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5043                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5044     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5045       .type = ARM_CP_ALIAS,
5046       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5047       .access = PL1_RW,
5048       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5049     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5050       .type = ARM_CP_ALIAS,
5051       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5052       .access = PL1_RW,
5053       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5054     /* We rely on the access checks not allowing the guest to write to the
5055      * state field when SPSel indicates that it's being used as the stack
5056      * pointer.
5057      */
5058     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5059       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5060       .access = PL1_RW, .accessfn = sp_el0_access,
5061       .type = ARM_CP_ALIAS,
5062       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5063     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5064       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5065       .access = PL2_RW, .type = ARM_CP_ALIAS,
5066       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5067     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5068       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5069       .type = ARM_CP_NO_RAW,
5070       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5071     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5072       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5073       .access = PL2_RW,
5074       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5075       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5076     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5077       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5078       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5079       .writefn = dacr_write, .raw_writefn = raw_write,
5080       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5081     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5082       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5083       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5084       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5085     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5086       .type = ARM_CP_ALIAS,
5087       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5088       .access = PL2_RW,
5089       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5090     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5091       .type = ARM_CP_ALIAS,
5092       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5093       .access = PL2_RW,
5094       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5095     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5096       .type = ARM_CP_ALIAS,
5097       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5098       .access = PL2_RW,
5099       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5100     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5101       .type = ARM_CP_ALIAS,
5102       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5103       .access = PL2_RW,
5104       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5105     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5106       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5107       .resetvalue = 0,
5108       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5109     { .name = "SDCR", .type = ARM_CP_ALIAS,
5110       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5111       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5112       .writefn = sdcr_write,
5113       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5114 };
5115 
5116 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5117 {
5118     ARMCPU *cpu = env_archcpu(env);
5119 
5120     if (arm_feature(env, ARM_FEATURE_V8)) {
5121         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5122     } else {
5123         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5124     }
5125 
5126     if (arm_feature(env, ARM_FEATURE_EL3)) {
5127         valid_mask &= ~HCR_HCD;
5128     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5129         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5130          * However, if we're using the SMC PSCI conduit then QEMU is
5131          * effectively acting like EL3 firmware and so the guest at
5132          * EL2 should retain the ability to prevent EL1 from being
5133          * able to make SMC calls into the ersatz firmware, so in
5134          * that case HCR.TSC should be read/write.
5135          */
5136         valid_mask &= ~HCR_TSC;
5137     }
5138 
5139     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5140         if (cpu_isar_feature(aa64_vh, cpu)) {
5141             valid_mask |= HCR_E2H;
5142         }
5143         if (cpu_isar_feature(aa64_ras, cpu)) {
5144             valid_mask |= HCR_TERR | HCR_TEA;
5145         }
5146         if (cpu_isar_feature(aa64_lor, cpu)) {
5147             valid_mask |= HCR_TLOR;
5148         }
5149         if (cpu_isar_feature(aa64_pauth, cpu)) {
5150             valid_mask |= HCR_API | HCR_APK;
5151         }
5152         if (cpu_isar_feature(aa64_mte, cpu)) {
5153             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5154         }
5155         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5156             valid_mask |= HCR_ENSCXT;
5157         }
5158     }
5159 
5160     /* Clear RES0 bits.  */
5161     value &= valid_mask;
5162 
5163     /*
5164      * These bits change the MMU setup:
5165      * HCR_VM enables stage 2 translation
5166      * HCR_PTW forbids certain page-table setups
5167      * HCR_DC disables stage1 and enables stage2 translation
5168      * HCR_DCT enables tagging on (disabled) stage1 translation
5169      */
5170     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5171         tlb_flush(CPU(cpu));
5172     }
5173     env->cp15.hcr_el2 = value;
5174 
5175     /*
5176      * Updates to VI and VF require us to update the status of
5177      * virtual interrupts, which are the logical OR of these bits
5178      * and the state of the input lines from the GIC. (This requires
5179      * that we have the iothread lock, which is done by marking the
5180      * reginfo structs as ARM_CP_IO.)
5181      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5182      * possible for it to be taken immediately, because VIRQ and
5183      * VFIQ are masked unless running at EL0 or EL1, and HCR
5184      * can only be written at EL2.
5185      */
5186     g_assert(qemu_mutex_iothread_locked());
5187     arm_cpu_update_virq(cpu);
5188     arm_cpu_update_vfiq(cpu);
5189     arm_cpu_update_vserr(cpu);
5190 }
5191 
5192 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5193 {
5194     do_hcr_write(env, value, 0);
5195 }
5196 
5197 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5198                           uint64_t value)
5199 {
5200     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5201     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5202     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5203 }
5204 
5205 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5206                          uint64_t value)
5207 {
5208     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5209     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5210     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5211 }
5212 
5213 /*
5214  * Return the effective value of HCR_EL2.
5215  * Bits that are not included here:
5216  * RW       (read from SCR_EL3.RW as needed)
5217  */
5218 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5219 {
5220     uint64_t ret = env->cp15.hcr_el2;
5221 
5222     if (!arm_is_el2_enabled(env)) {
5223         /*
5224          * "This register has no effect if EL2 is not enabled in the
5225          * current Security state".  This is ARMv8.4-SecEL2 speak for
5226          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5227          *
5228          * Prior to that, the language was "In an implementation that
5229          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5230          * as if this field is 0 for all purposes other than a direct
5231          * read or write access of HCR_EL2".  With lots of enumeration
5232          * on a per-field basis.  In current QEMU, this is condition
5233          * is arm_is_secure_below_el3.
5234          *
5235          * Since the v8.4 language applies to the entire register, and
5236          * appears to be backward compatible, use that.
5237          */
5238         return 0;
5239     }
5240 
5241     /*
5242      * For a cpu that supports both aarch64 and aarch32, we can set bits
5243      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5244      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5245      */
5246     if (!arm_el_is_aa64(env, 2)) {
5247         uint64_t aa32_valid;
5248 
5249         /*
5250          * These bits are up-to-date as of ARMv8.6.
5251          * For HCR, it's easiest to list just the 2 bits that are invalid.
5252          * For HCR2, list those that are valid.
5253          */
5254         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5255         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5256                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5257         ret &= aa32_valid;
5258     }
5259 
5260     if (ret & HCR_TGE) {
5261         /* These bits are up-to-date as of ARMv8.6.  */
5262         if (ret & HCR_E2H) {
5263             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5264                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5265                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5266                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5267                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5268                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5269         } else {
5270             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5271         }
5272         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5273                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5274                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5275                  HCR_TLOR);
5276     }
5277 
5278     return ret;
5279 }
5280 
5281 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5282                            uint64_t value)
5283 {
5284     /*
5285      * For A-profile AArch32 EL3, if NSACR.CP10
5286      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5287      */
5288     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5289         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5290         value &= ~(0x3 << 10);
5291         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5292     }
5293     env->cp15.cptr_el[2] = value;
5294 }
5295 
5296 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5297 {
5298     /*
5299      * For A-profile AArch32 EL3, if NSACR.CP10
5300      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5301      */
5302     uint64_t value = env->cp15.cptr_el[2];
5303 
5304     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5305         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5306         value |= 0x3 << 10;
5307     }
5308     return value;
5309 }
5310 
5311 static const ARMCPRegInfo el2_cp_reginfo[] = {
5312     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5313       .type = ARM_CP_IO,
5314       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5315       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5316       .writefn = hcr_write },
5317     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5318       .type = ARM_CP_ALIAS | ARM_CP_IO,
5319       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5320       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5321       .writefn = hcr_writelow },
5322     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5323       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5324       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5325     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5326       .type = ARM_CP_ALIAS,
5327       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5328       .access = PL2_RW,
5329       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5330     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5331       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5332       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5333     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5334       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5335       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5336     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5337       .type = ARM_CP_ALIAS,
5338       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5339       .access = PL2_RW,
5340       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5341     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5342       .type = ARM_CP_ALIAS,
5343       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5344       .access = PL2_RW,
5345       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5346     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5347       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5348       .access = PL2_RW, .writefn = vbar_write,
5349       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5350       .resetvalue = 0 },
5351     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5352       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5353       .access = PL3_RW, .type = ARM_CP_ALIAS,
5354       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5355     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5356       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5357       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5358       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5359       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5360     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5361       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5362       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5363       .resetvalue = 0 },
5364     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5365       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5366       .access = PL2_RW, .type = ARM_CP_ALIAS,
5367       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5368     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5369       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5370       .access = PL2_RW, .type = ARM_CP_CONST,
5371       .resetvalue = 0 },
5372     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5373     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5374       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5375       .access = PL2_RW, .type = ARM_CP_CONST,
5376       .resetvalue = 0 },
5377     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5378       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5379       .access = PL2_RW, .type = ARM_CP_CONST,
5380       .resetvalue = 0 },
5381     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5382       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5383       .access = PL2_RW, .type = ARM_CP_CONST,
5384       .resetvalue = 0 },
5385     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5386       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5387       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5388       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5389       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5390     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5391       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5392       .type = ARM_CP_ALIAS,
5393       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5394       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5395     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5396       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5397       .access = PL2_RW,
5398       /* no .writefn needed as this can't cause an ASID change;
5399        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5400        */
5401       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5402     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5403       .cp = 15, .opc1 = 6, .crm = 2,
5404       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5405       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5406       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5407       .writefn = vttbr_write },
5408     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5409       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5410       .access = PL2_RW, .writefn = vttbr_write,
5411       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5412     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5413       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5414       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5415       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5416     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5417       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5418       .access = PL2_RW, .resetvalue = 0,
5419       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5420     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5421       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5422       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5423       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5424     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5425       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5426       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5427     { .name = "TLBIALLNSNH",
5428       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5429       .type = ARM_CP_NO_RAW, .access = PL2_W,
5430       .writefn = tlbiall_nsnh_write },
5431     { .name = "TLBIALLNSNHIS",
5432       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5433       .type = ARM_CP_NO_RAW, .access = PL2_W,
5434       .writefn = tlbiall_nsnh_is_write },
5435     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5436       .type = ARM_CP_NO_RAW, .access = PL2_W,
5437       .writefn = tlbiall_hyp_write },
5438     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5439       .type = ARM_CP_NO_RAW, .access = PL2_W,
5440       .writefn = tlbiall_hyp_is_write },
5441     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5442       .type = ARM_CP_NO_RAW, .access = PL2_W,
5443       .writefn = tlbimva_hyp_write },
5444     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5445       .type = ARM_CP_NO_RAW, .access = PL2_W,
5446       .writefn = tlbimva_hyp_is_write },
5447     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5448       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5449       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5450       .writefn = tlbi_aa64_alle2_write },
5451     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5452       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5453       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5454       .writefn = tlbi_aa64_vae2_write },
5455     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5456       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5457       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5458       .writefn = tlbi_aa64_vae2_write },
5459     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5460       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5461       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5462       .writefn = tlbi_aa64_alle2is_write },
5463     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5464       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5465       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5466       .writefn = tlbi_aa64_vae2is_write },
5467     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5468       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5469       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
5470       .writefn = tlbi_aa64_vae2is_write },
5471 #ifndef CONFIG_USER_ONLY
5472     /* Unlike the other EL2-related AT operations, these must
5473      * UNDEF from EL3 if EL2 is not implemented, which is why we
5474      * define them here rather than with the rest of the AT ops.
5475      */
5476     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5477       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5478       .access = PL2_W, .accessfn = at_s1e2_access,
5479       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5480       .writefn = ats_write64 },
5481     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5482       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5483       .access = PL2_W, .accessfn = at_s1e2_access,
5484       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
5485       .writefn = ats_write64 },
5486     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5487      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5488      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5489      * to behave as if SCR.NS was 1.
5490      */
5491     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5492       .access = PL2_W,
5493       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5494     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5495       .access = PL2_W,
5496       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5497     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5498       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5499       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5500        * reset values as IMPDEF. We choose to reset to 3 to comply with
5501        * both ARMv7 and ARMv8.
5502        */
5503       .access = PL2_RW, .resetvalue = 3,
5504       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5505     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5506       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5507       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5508       .writefn = gt_cntvoff_write,
5509       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5510     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5511       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5512       .writefn = gt_cntvoff_write,
5513       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5514     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5515       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5516       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5517       .type = ARM_CP_IO, .access = PL2_RW,
5518       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5519     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5520       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5521       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5522       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5523     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5524       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5525       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5526       .resetfn = gt_hyp_timer_reset,
5527       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5528     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5529       .type = ARM_CP_IO,
5530       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5531       .access = PL2_RW,
5532       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5533       .resetvalue = 0,
5534       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5535 #endif
5536     /* The only field of MDCR_EL2 that has a defined architectural reset value
5537      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5538      */
5539     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5540       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5541       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5542       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5543     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5544       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5545       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5546       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5547     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5548       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5549       .access = PL2_RW,
5550       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5551     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5552       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5553       .access = PL2_RW,
5554       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5555 };
5556 
5557 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5558     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5559       .type = ARM_CP_ALIAS | ARM_CP_IO,
5560       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5561       .access = PL2_RW,
5562       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5563       .writefn = hcr_writehigh },
5564 };
5565 
5566 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5567                                   bool isread)
5568 {
5569     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5570         return CP_ACCESS_OK;
5571     }
5572     return CP_ACCESS_TRAP_UNCATEGORIZED;
5573 }
5574 
5575 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5576     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5577       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5578       .access = PL2_RW, .accessfn = sel2_access,
5579       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5580     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5581       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5582       .access = PL2_RW, .accessfn = sel2_access,
5583       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5584 };
5585 
5586 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5587                                    bool isread)
5588 {
5589     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5590      * At Secure EL1 it traps to EL3 or EL2.
5591      */
5592     if (arm_current_el(env) == 3) {
5593         return CP_ACCESS_OK;
5594     }
5595     if (arm_is_secure_below_el3(env)) {
5596         if (env->cp15.scr_el3 & SCR_EEL2) {
5597             return CP_ACCESS_TRAP_EL2;
5598         }
5599         return CP_ACCESS_TRAP_EL3;
5600     }
5601     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5602     if (isread) {
5603         return CP_ACCESS_OK;
5604     }
5605     return CP_ACCESS_TRAP_UNCATEGORIZED;
5606 }
5607 
5608 static const ARMCPRegInfo el3_cp_reginfo[] = {
5609     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5610       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5611       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5612       .resetfn = scr_reset, .writefn = scr_write },
5613     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5614       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5615       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5616       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5617       .writefn = scr_write },
5618     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5619       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5620       .access = PL3_RW, .resetvalue = 0,
5621       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5622     { .name = "SDER",
5623       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5624       .access = PL3_RW, .resetvalue = 0,
5625       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5626     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5627       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5628       .writefn = vbar_write, .resetvalue = 0,
5629       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5630     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5631       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5632       .access = PL3_RW, .resetvalue = 0,
5633       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5634     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5635       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5636       .access = PL3_RW,
5637       /* no .writefn needed as this can't cause an ASID change;
5638        * we must provide a .raw_writefn and .resetfn because we handle
5639        * reset and migration for the AArch32 TTBCR(S), which might be
5640        * using mask and base_mask.
5641        */
5642       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5643       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5644     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5645       .type = ARM_CP_ALIAS,
5646       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5647       .access = PL3_RW,
5648       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5649     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5650       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5651       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5652     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5653       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5654       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5655     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5656       .type = ARM_CP_ALIAS,
5657       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5658       .access = PL3_RW,
5659       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5660     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5661       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5662       .access = PL3_RW, .writefn = vbar_write,
5663       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5664       .resetvalue = 0 },
5665     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5666       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5667       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5668       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5669     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5670       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5671       .access = PL3_RW, .resetvalue = 0,
5672       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5673     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5674       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5675       .access = PL3_RW, .type = ARM_CP_CONST,
5676       .resetvalue = 0 },
5677     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5678       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5679       .access = PL3_RW, .type = ARM_CP_CONST,
5680       .resetvalue = 0 },
5681     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5682       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5683       .access = PL3_RW, .type = ARM_CP_CONST,
5684       .resetvalue = 0 },
5685     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5686       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5687       .access = PL3_W, .type = ARM_CP_NO_RAW,
5688       .writefn = tlbi_aa64_alle3is_write },
5689     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5690       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5691       .access = PL3_W, .type = ARM_CP_NO_RAW,
5692       .writefn = tlbi_aa64_vae3is_write },
5693     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5694       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5695       .access = PL3_W, .type = ARM_CP_NO_RAW,
5696       .writefn = tlbi_aa64_vae3is_write },
5697     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5698       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5699       .access = PL3_W, .type = ARM_CP_NO_RAW,
5700       .writefn = tlbi_aa64_alle3_write },
5701     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5702       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5703       .access = PL3_W, .type = ARM_CP_NO_RAW,
5704       .writefn = tlbi_aa64_vae3_write },
5705     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5706       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5707       .access = PL3_W, .type = ARM_CP_NO_RAW,
5708       .writefn = tlbi_aa64_vae3_write },
5709 };
5710 
5711 #ifndef CONFIG_USER_ONLY
5712 /* Test if system register redirection is to occur in the current state.  */
5713 static bool redirect_for_e2h(CPUARMState *env)
5714 {
5715     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5716 }
5717 
5718 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5719 {
5720     CPReadFn *readfn;
5721 
5722     if (redirect_for_e2h(env)) {
5723         /* Switch to the saved EL2 version of the register.  */
5724         ri = ri->opaque;
5725         readfn = ri->readfn;
5726     } else {
5727         readfn = ri->orig_readfn;
5728     }
5729     if (readfn == NULL) {
5730         readfn = raw_read;
5731     }
5732     return readfn(env, ri);
5733 }
5734 
5735 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5736                           uint64_t value)
5737 {
5738     CPWriteFn *writefn;
5739 
5740     if (redirect_for_e2h(env)) {
5741         /* Switch to the saved EL2 version of the register.  */
5742         ri = ri->opaque;
5743         writefn = ri->writefn;
5744     } else {
5745         writefn = ri->orig_writefn;
5746     }
5747     if (writefn == NULL) {
5748         writefn = raw_write;
5749     }
5750     writefn(env, ri, value);
5751 }
5752 
5753 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5754 {
5755     struct E2HAlias {
5756         uint32_t src_key, dst_key, new_key;
5757         const char *src_name, *dst_name, *new_name;
5758         bool (*feature)(const ARMISARegisters *id);
5759     };
5760 
5761 #define K(op0, op1, crn, crm, op2) \
5762     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5763 
5764     static const struct E2HAlias aliases[] = {
5765         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5766           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5767         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5768           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5769         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5770           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5771         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5772           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5773         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5774           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5775         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5776           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5777         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5778           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5779         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5780           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5781         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5782           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5783         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5784           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5785         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5786           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5787         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5788           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5789         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5790           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5791         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5792           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5793         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5794           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5795         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5796           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5797 
5798         /*
5799          * Note that redirection of ZCR is mentioned in the description
5800          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5801          * not in the summary table.
5802          */
5803         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5804           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5805 
5806         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5807           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5808 
5809         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
5810           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
5811           isar_feature_aa64_scxtnum },
5812 
5813         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5814         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5815     };
5816 #undef K
5817 
5818     size_t i;
5819 
5820     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5821         const struct E2HAlias *a = &aliases[i];
5822         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
5823         bool ok;
5824 
5825         if (a->feature && !a->feature(&cpu->isar)) {
5826             continue;
5827         }
5828 
5829         src_reg = g_hash_table_lookup(cpu->cp_regs,
5830                                       (gpointer)(uintptr_t)a->src_key);
5831         dst_reg = g_hash_table_lookup(cpu->cp_regs,
5832                                       (gpointer)(uintptr_t)a->dst_key);
5833         g_assert(src_reg != NULL);
5834         g_assert(dst_reg != NULL);
5835 
5836         /* Cross-compare names to detect typos in the keys.  */
5837         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5838         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5839 
5840         /* None of the core system registers use opaque; we will.  */
5841         g_assert(src_reg->opaque == NULL);
5842 
5843         /* Create alias before redirection so we dup the right data. */
5844         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5845 
5846         new_reg->name = a->new_name;
5847         new_reg->type |= ARM_CP_ALIAS;
5848         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5849         new_reg->access &= PL2_RW | PL3_RW;
5850 
5851         ok = g_hash_table_insert(cpu->cp_regs,
5852                                  (gpointer)(uintptr_t)a->new_key, new_reg);
5853         g_assert(ok);
5854 
5855         src_reg->opaque = dst_reg;
5856         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5857         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5858         if (!src_reg->raw_readfn) {
5859             src_reg->raw_readfn = raw_read;
5860         }
5861         if (!src_reg->raw_writefn) {
5862             src_reg->raw_writefn = raw_write;
5863         }
5864         src_reg->readfn = el2_e2h_read;
5865         src_reg->writefn = el2_e2h_write;
5866     }
5867 }
5868 #endif
5869 
5870 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5871                                      bool isread)
5872 {
5873     int cur_el = arm_current_el(env);
5874 
5875     if (cur_el < 2) {
5876         uint64_t hcr = arm_hcr_el2_eff(env);
5877 
5878         if (cur_el == 0) {
5879             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5880                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5881                     return CP_ACCESS_TRAP_EL2;
5882                 }
5883             } else {
5884                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5885                     return CP_ACCESS_TRAP;
5886                 }
5887                 if (hcr & HCR_TID2) {
5888                     return CP_ACCESS_TRAP_EL2;
5889                 }
5890             }
5891         } else if (hcr & HCR_TID2) {
5892             return CP_ACCESS_TRAP_EL2;
5893         }
5894     }
5895 
5896     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5897         return CP_ACCESS_TRAP_EL2;
5898     }
5899 
5900     return CP_ACCESS_OK;
5901 }
5902 
5903 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5904                         uint64_t value)
5905 {
5906     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5907      * read via a bit in OSLSR_EL1.
5908      */
5909     int oslock;
5910 
5911     if (ri->state == ARM_CP_STATE_AA32) {
5912         oslock = (value == 0xC5ACCE55);
5913     } else {
5914         oslock = value & 1;
5915     }
5916 
5917     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5918 }
5919 
5920 static const ARMCPRegInfo debug_cp_reginfo[] = {
5921     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5922      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5923      * unlike DBGDRAR it is never accessible from EL0.
5924      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5925      * accessor.
5926      */
5927     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5928       .access = PL0_R, .accessfn = access_tdra,
5929       .type = ARM_CP_CONST, .resetvalue = 0 },
5930     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5931       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5932       .access = PL1_R, .accessfn = access_tdra,
5933       .type = ARM_CP_CONST, .resetvalue = 0 },
5934     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5935       .access = PL0_R, .accessfn = access_tdra,
5936       .type = ARM_CP_CONST, .resetvalue = 0 },
5937     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5938     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5939       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5940       .access = PL1_RW, .accessfn = access_tda,
5941       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5942       .resetvalue = 0 },
5943     /*
5944      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
5945      * Debug Communication Channel is not implemented.
5946      */
5947     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
5948       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
5949       .access = PL0_R, .accessfn = access_tda,
5950       .type = ARM_CP_CONST, .resetvalue = 0 },
5951     /*
5952      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
5953      * it is unlikely a guest will care.
5954      * We don't implement the configurable EL0 access.
5955      */
5956     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
5957       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5958       .type = ARM_CP_ALIAS,
5959       .access = PL1_R, .accessfn = access_tda,
5960       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5961     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5962       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5963       .access = PL1_W, .type = ARM_CP_NO_RAW,
5964       .accessfn = access_tdosa,
5965       .writefn = oslar_write },
5966     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5967       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5968       .access = PL1_R, .resetvalue = 10,
5969       .accessfn = access_tdosa,
5970       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5971     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5972     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5973       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5974       .access = PL1_RW, .accessfn = access_tdosa,
5975       .type = ARM_CP_NOP },
5976     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5977      * implement vector catch debug events yet.
5978      */
5979     { .name = "DBGVCR",
5980       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5981       .access = PL1_RW, .accessfn = access_tda,
5982       .type = ARM_CP_NOP },
5983     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5984      * to save and restore a 32-bit guest's DBGVCR)
5985      */
5986     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5987       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5988       .access = PL2_RW, .accessfn = access_tda,
5989       .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
5990     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5991      * Channel but Linux may try to access this register. The 32-bit
5992      * alias is DBGDCCINT.
5993      */
5994     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5995       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5996       .access = PL1_RW, .accessfn = access_tda,
5997       .type = ARM_CP_NOP },
5998 };
5999 
6000 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6001     /* 64 bit access versions of the (dummy) debug registers */
6002     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6003       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6004     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6005       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6006 };
6007 
6008 /*
6009  * Check for traps to RAS registers, which are controlled
6010  * by HCR_EL2.TERR and SCR_EL3.TERR.
6011  */
6012 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6013                                   bool isread)
6014 {
6015     int el = arm_current_el(env);
6016 
6017     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6018         return CP_ACCESS_TRAP_EL2;
6019     }
6020     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6021         return CP_ACCESS_TRAP_EL3;
6022     }
6023     return CP_ACCESS_OK;
6024 }
6025 
6026 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6027 {
6028     int el = arm_current_el(env);
6029 
6030     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6031         return env->cp15.vdisr_el2;
6032     }
6033     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6034         return 0; /* RAZ/WI */
6035     }
6036     return env->cp15.disr_el1;
6037 }
6038 
6039 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6040 {
6041     int el = arm_current_el(env);
6042 
6043     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6044         env->cp15.vdisr_el2 = val;
6045         return;
6046     }
6047     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6048         return; /* RAZ/WI */
6049     }
6050     env->cp15.disr_el1 = val;
6051 }
6052 
6053 /*
6054  * Minimal RAS implementation with no Error Records.
6055  * Which means that all of the Error Record registers:
6056  *   ERXADDR_EL1
6057  *   ERXCTLR_EL1
6058  *   ERXFR_EL1
6059  *   ERXMISC0_EL1
6060  *   ERXMISC1_EL1
6061  *   ERXMISC2_EL1
6062  *   ERXMISC3_EL1
6063  *   ERXPFGCDN_EL1  (RASv1p1)
6064  *   ERXPFGCTL_EL1  (RASv1p1)
6065  *   ERXPFGF_EL1    (RASv1p1)
6066  *   ERXSTATUS_EL1
6067  * and
6068  *   ERRSELR_EL1
6069  * may generate UNDEFINED, which is the effect we get by not
6070  * listing them at all.
6071  */
6072 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6073     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6074       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6075       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6076       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6077     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6078       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6079       .access = PL1_R, .accessfn = access_terr,
6080       .type = ARM_CP_CONST, .resetvalue = 0 },
6081     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6082       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6083       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6084     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6085       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6086       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6087 };
6088 
6089 /* Return the exception level to which exceptions should be taken
6090  * via SVEAccessTrap.  If an exception should be routed through
6091  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6092  * take care of raising that exception.
6093  * C.f. the ARM pseudocode function CheckSVEEnabled.
6094  */
6095 int sve_exception_el(CPUARMState *env, int el)
6096 {
6097 #ifndef CONFIG_USER_ONLY
6098     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6099 
6100     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6101         /* Check CPACR.ZEN.  */
6102         switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
6103         case 1:
6104             if (el != 0) {
6105                 break;
6106             }
6107             /* fall through */
6108         case 0:
6109         case 2:
6110             /* route_to_el2 */
6111             return hcr_el2 & HCR_TGE ? 2 : 1;
6112         }
6113 
6114         /* Check CPACR.FPEN.  */
6115         switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
6116         case 1:
6117             if (el != 0) {
6118                 break;
6119             }
6120             /* fall through */
6121         case 0:
6122         case 2:
6123             return 0;
6124         }
6125     }
6126 
6127     /*
6128      * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6129      */
6130     if (el <= 2) {
6131         if (hcr_el2 & HCR_E2H) {
6132             /* Check CPTR_EL2.ZEN.  */
6133             switch (extract32(env->cp15.cptr_el[2], 16, 2)) {
6134             case 1:
6135                 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6136                     break;
6137                 }
6138                 /* fall through */
6139             case 0:
6140             case 2:
6141                 return 2;
6142             }
6143 
6144             /* Check CPTR_EL2.FPEN.  */
6145             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
6146             case 1:
6147                 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6148                     break;
6149                 }
6150                 /* fall through */
6151             case 0:
6152             case 2:
6153                 return 0;
6154             }
6155         } else if (arm_is_el2_enabled(env)) {
6156             if (env->cp15.cptr_el[2] & CPTR_TZ) {
6157                 return 2;
6158             }
6159             if (env->cp15.cptr_el[2] & CPTR_TFP) {
6160                 return 0;
6161             }
6162         }
6163     }
6164 
6165     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6166     if (arm_feature(env, ARM_FEATURE_EL3)
6167         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6168         return 3;
6169     }
6170 #endif
6171     return 0;
6172 }
6173 
6174 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6175 {
6176     uint32_t end_len;
6177 
6178     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6179     end_len = start_len;
6180 
6181     if (!test_bit(start_len, cpu->sve_vq_map)) {
6182         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6183         assert(end_len < start_len);
6184     }
6185     return end_len;
6186 }
6187 
6188 /*
6189  * Given that SVE is enabled, return the vector length for EL.
6190  */
6191 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6192 {
6193     ARMCPU *cpu = env_archcpu(env);
6194     uint32_t zcr_len = cpu->sve_max_vq - 1;
6195 
6196     if (el <= 1 &&
6197         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6198         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6199     }
6200     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6201         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6202     }
6203     if (arm_feature(env, ARM_FEATURE_EL3)) {
6204         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6205     }
6206 
6207     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6208 }
6209 
6210 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6211                       uint64_t value)
6212 {
6213     int cur_el = arm_current_el(env);
6214     int old_len = sve_zcr_len_for_el(env, cur_el);
6215     int new_len;
6216 
6217     /* Bits other than [3:0] are RAZ/WI.  */
6218     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6219     raw_write(env, ri, value & 0xf);
6220 
6221     /*
6222      * Because we arrived here, we know both FP and SVE are enabled;
6223      * otherwise we would have trapped access to the ZCR_ELn register.
6224      */
6225     new_len = sve_zcr_len_for_el(env, cur_el);
6226     if (new_len < old_len) {
6227         aarch64_sve_narrow_vq(env, new_len + 1);
6228     }
6229 }
6230 
6231 static const ARMCPRegInfo zcr_reginfo[] = {
6232     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6233       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6234       .access = PL1_RW, .type = ARM_CP_SVE,
6235       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6236       .writefn = zcr_write, .raw_writefn = raw_write },
6237     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6238       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6239       .access = PL2_RW, .type = ARM_CP_SVE,
6240       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6241       .writefn = zcr_write, .raw_writefn = raw_write },
6242     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6243       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6244       .access = PL3_RW, .type = ARM_CP_SVE,
6245       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6246       .writefn = zcr_write, .raw_writefn = raw_write },
6247 };
6248 
6249 void hw_watchpoint_update(ARMCPU *cpu, int n)
6250 {
6251     CPUARMState *env = &cpu->env;
6252     vaddr len = 0;
6253     vaddr wvr = env->cp15.dbgwvr[n];
6254     uint64_t wcr = env->cp15.dbgwcr[n];
6255     int mask;
6256     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6257 
6258     if (env->cpu_watchpoint[n]) {
6259         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6260         env->cpu_watchpoint[n] = NULL;
6261     }
6262 
6263     if (!FIELD_EX64(wcr, DBGWCR, E)) {
6264         /* E bit clear : watchpoint disabled */
6265         return;
6266     }
6267 
6268     switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
6269     case 0:
6270         /* LSC 00 is reserved and must behave as if the wp is disabled */
6271         return;
6272     case 1:
6273         flags |= BP_MEM_READ;
6274         break;
6275     case 2:
6276         flags |= BP_MEM_WRITE;
6277         break;
6278     case 3:
6279         flags |= BP_MEM_ACCESS;
6280         break;
6281     }
6282 
6283     /* Attempts to use both MASK and BAS fields simultaneously are
6284      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6285      * thus generating a watchpoint for every byte in the masked region.
6286      */
6287     mask = FIELD_EX64(wcr, DBGWCR, MASK);
6288     if (mask == 1 || mask == 2) {
6289         /* Reserved values of MASK; we must act as if the mask value was
6290          * some non-reserved value, or as if the watchpoint were disabled.
6291          * We choose the latter.
6292          */
6293         return;
6294     } else if (mask) {
6295         /* Watchpoint covers an aligned area up to 2GB in size */
6296         len = 1ULL << mask;
6297         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6298          * whether the watchpoint fires when the unmasked bits match; we opt
6299          * to generate the exceptions.
6300          */
6301         wvr &= ~(len - 1);
6302     } else {
6303         /* Watchpoint covers bytes defined by the byte address select bits */
6304         int bas = FIELD_EX64(wcr, DBGWCR, BAS);
6305         int basstart;
6306 
6307         if (extract64(wvr, 2, 1)) {
6308             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6309              * ignored, and BAS[3:0] define which bytes to watch.
6310              */
6311             bas &= 0xf;
6312         }
6313 
6314         if (bas == 0) {
6315             /* This must act as if the watchpoint is disabled */
6316             return;
6317         }
6318 
6319         /* The BAS bits are supposed to be programmed to indicate a contiguous
6320          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6321          * we fire for each byte in the word/doubleword addressed by the WVR.
6322          * We choose to ignore any non-zero bits after the first range of 1s.
6323          */
6324         basstart = ctz32(bas);
6325         len = cto32(bas >> basstart);
6326         wvr += basstart;
6327     }
6328 
6329     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6330                           &env->cpu_watchpoint[n]);
6331 }
6332 
6333 void hw_watchpoint_update_all(ARMCPU *cpu)
6334 {
6335     int i;
6336     CPUARMState *env = &cpu->env;
6337 
6338     /* Completely clear out existing QEMU watchpoints and our array, to
6339      * avoid possible stale entries following migration load.
6340      */
6341     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6342     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6343 
6344     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6345         hw_watchpoint_update(cpu, i);
6346     }
6347 }
6348 
6349 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6350                          uint64_t value)
6351 {
6352     ARMCPU *cpu = env_archcpu(env);
6353     int i = ri->crm;
6354 
6355     /*
6356      * Bits [1:0] are RES0.
6357      *
6358      * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
6359      * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
6360      * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
6361      * whether the RESS bits are ignored when comparing an address.
6362      *
6363      * Therefore we are allowed to compare the entire register, which lets
6364      * us avoid considering whether or not FEAT_LVA is actually enabled.
6365      */
6366     value &= ~3ULL;
6367 
6368     raw_write(env, ri, value);
6369     hw_watchpoint_update(cpu, i);
6370 }
6371 
6372 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6373                          uint64_t value)
6374 {
6375     ARMCPU *cpu = env_archcpu(env);
6376     int i = ri->crm;
6377 
6378     raw_write(env, ri, value);
6379     hw_watchpoint_update(cpu, i);
6380 }
6381 
6382 void hw_breakpoint_update(ARMCPU *cpu, int n)
6383 {
6384     CPUARMState *env = &cpu->env;
6385     uint64_t bvr = env->cp15.dbgbvr[n];
6386     uint64_t bcr = env->cp15.dbgbcr[n];
6387     vaddr addr;
6388     int bt;
6389     int flags = BP_CPU;
6390 
6391     if (env->cpu_breakpoint[n]) {
6392         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6393         env->cpu_breakpoint[n] = NULL;
6394     }
6395 
6396     if (!extract64(bcr, 0, 1)) {
6397         /* E bit clear : watchpoint disabled */
6398         return;
6399     }
6400 
6401     bt = extract64(bcr, 20, 4);
6402 
6403     switch (bt) {
6404     case 4: /* unlinked address mismatch (reserved if AArch64) */
6405     case 5: /* linked address mismatch (reserved if AArch64) */
6406         qemu_log_mask(LOG_UNIMP,
6407                       "arm: address mismatch breakpoint types not implemented\n");
6408         return;
6409     case 0: /* unlinked address match */
6410     case 1: /* linked address match */
6411     {
6412         /*
6413          * Bits [1:0] are RES0.
6414          *
6415          * It is IMPLEMENTATION DEFINED whether bits [63:49]
6416          * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
6417          * of the VA field ([48] or [52] for FEAT_LVA), or whether the
6418          * value is read as written.  It is CONSTRAINED UNPREDICTABLE
6419          * whether the RESS bits are ignored when comparing an address.
6420          * Therefore we are allowed to compare the entire register, which
6421          * lets us avoid considering whether FEAT_LVA is actually enabled.
6422          *
6423          * The BAS field is used to allow setting breakpoints on 16-bit
6424          * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6425          * a bp will fire if the addresses covered by the bp and the addresses
6426          * covered by the insn overlap but the insn doesn't start at the
6427          * start of the bp address range. We choose to require the insn and
6428          * the bp to have the same address. The constraints on writing to
6429          * BAS enforced in dbgbcr_write mean we have only four cases:
6430          *  0b0000  => no breakpoint
6431          *  0b0011  => breakpoint on addr
6432          *  0b1100  => breakpoint on addr + 2
6433          *  0b1111  => breakpoint on addr
6434          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6435          */
6436         int bas = extract64(bcr, 5, 4);
6437         addr = bvr & ~3ULL;
6438         if (bas == 0) {
6439             return;
6440         }
6441         if (bas == 0xc) {
6442             addr += 2;
6443         }
6444         break;
6445     }
6446     case 2: /* unlinked context ID match */
6447     case 8: /* unlinked VMID match (reserved if no EL2) */
6448     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6449         qemu_log_mask(LOG_UNIMP,
6450                       "arm: unlinked context breakpoint types not implemented\n");
6451         return;
6452     case 9: /* linked VMID match (reserved if no EL2) */
6453     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6454     case 3: /* linked context ID match */
6455     default:
6456         /* We must generate no events for Linked context matches (unless
6457          * they are linked to by some other bp/wp, which is handled in
6458          * updates for the linking bp/wp). We choose to also generate no events
6459          * for reserved values.
6460          */
6461         return;
6462     }
6463 
6464     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6465 }
6466 
6467 void hw_breakpoint_update_all(ARMCPU *cpu)
6468 {
6469     int i;
6470     CPUARMState *env = &cpu->env;
6471 
6472     /* Completely clear out existing QEMU breakpoints and our array, to
6473      * avoid possible stale entries following migration load.
6474      */
6475     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6476     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6477 
6478     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6479         hw_breakpoint_update(cpu, i);
6480     }
6481 }
6482 
6483 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6484                          uint64_t value)
6485 {
6486     ARMCPU *cpu = env_archcpu(env);
6487     int i = ri->crm;
6488 
6489     raw_write(env, ri, value);
6490     hw_breakpoint_update(cpu, i);
6491 }
6492 
6493 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6494                          uint64_t value)
6495 {
6496     ARMCPU *cpu = env_archcpu(env);
6497     int i = ri->crm;
6498 
6499     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6500      * copy of BAS[0].
6501      */
6502     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6503     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6504 
6505     raw_write(env, ri, value);
6506     hw_breakpoint_update(cpu, i);
6507 }
6508 
6509 static void define_debug_regs(ARMCPU *cpu)
6510 {
6511     /* Define v7 and v8 architectural debug registers.
6512      * These are just dummy implementations for now.
6513      */
6514     int i;
6515     int wrps, brps, ctx_cmps;
6516 
6517     /*
6518      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6519      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6520      * the register must not exist for this cpu.
6521      */
6522     if (cpu->isar.dbgdidr != 0) {
6523         ARMCPRegInfo dbgdidr = {
6524             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6525             .opc1 = 0, .opc2 = 0,
6526             .access = PL0_R, .accessfn = access_tda,
6527             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6528         };
6529         define_one_arm_cp_reg(cpu, &dbgdidr);
6530     }
6531 
6532     /* Note that all these register fields hold "number of Xs minus 1". */
6533     brps = arm_num_brps(cpu);
6534     wrps = arm_num_wrps(cpu);
6535     ctx_cmps = arm_num_ctx_cmps(cpu);
6536 
6537     assert(ctx_cmps <= brps);
6538 
6539     define_arm_cp_regs(cpu, debug_cp_reginfo);
6540 
6541     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6542         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6543     }
6544 
6545     for (i = 0; i < brps; i++) {
6546         ARMCPRegInfo dbgregs[] = {
6547             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6548               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6549               .access = PL1_RW, .accessfn = access_tda,
6550               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6551               .writefn = dbgbvr_write, .raw_writefn = raw_write
6552             },
6553             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6554               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6555               .access = PL1_RW, .accessfn = access_tda,
6556               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6557               .writefn = dbgbcr_write, .raw_writefn = raw_write
6558             },
6559         };
6560         define_arm_cp_regs(cpu, dbgregs);
6561     }
6562 
6563     for (i = 0; i < wrps; i++) {
6564         ARMCPRegInfo dbgregs[] = {
6565             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6566               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6567               .access = PL1_RW, .accessfn = access_tda,
6568               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6569               .writefn = dbgwvr_write, .raw_writefn = raw_write
6570             },
6571             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6572               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6573               .access = PL1_RW, .accessfn = access_tda,
6574               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6575               .writefn = dbgwcr_write, .raw_writefn = raw_write
6576             },
6577         };
6578         define_arm_cp_regs(cpu, dbgregs);
6579     }
6580 }
6581 
6582 static void define_pmu_regs(ARMCPU *cpu)
6583 {
6584     /*
6585      * v7 performance monitor control register: same implementor
6586      * field as main ID register, and we implement four counters in
6587      * addition to the cycle count register.
6588      */
6589     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6590     ARMCPRegInfo pmcr = {
6591         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6592         .access = PL0_RW,
6593         .type = ARM_CP_IO | ARM_CP_ALIAS,
6594         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6595         .accessfn = pmreg_access, .writefn = pmcr_write,
6596         .raw_writefn = raw_write,
6597     };
6598     ARMCPRegInfo pmcr64 = {
6599         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6600         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6601         .access = PL0_RW, .accessfn = pmreg_access,
6602         .type = ARM_CP_IO,
6603         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6604         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6605                       PMCRLC,
6606         .writefn = pmcr_write, .raw_writefn = raw_write,
6607     };
6608     define_one_arm_cp_reg(cpu, &pmcr);
6609     define_one_arm_cp_reg(cpu, &pmcr64);
6610     for (i = 0; i < pmcrn; i++) {
6611         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6612         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6613         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6614         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6615         ARMCPRegInfo pmev_regs[] = {
6616             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6617               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6618               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6619               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6620               .accessfn = pmreg_access_xevcntr },
6621             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6622               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6623               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6624               .type = ARM_CP_IO,
6625               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6626               .raw_readfn = pmevcntr_rawread,
6627               .raw_writefn = pmevcntr_rawwrite },
6628             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6629               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6630               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6631               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6632               .accessfn = pmreg_access },
6633             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6634               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6635               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6636               .type = ARM_CP_IO,
6637               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6638               .raw_writefn = pmevtyper_rawwrite },
6639         };
6640         define_arm_cp_regs(cpu, pmev_regs);
6641         g_free(pmevcntr_name);
6642         g_free(pmevcntr_el0_name);
6643         g_free(pmevtyper_name);
6644         g_free(pmevtyper_el0_name);
6645     }
6646     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6647         ARMCPRegInfo v81_pmu_regs[] = {
6648             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6649               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6650               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6651               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6652             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6653               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6654               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6655               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6656         };
6657         define_arm_cp_regs(cpu, v81_pmu_regs);
6658     }
6659     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6660         static const ARMCPRegInfo v84_pmmir = {
6661             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6662             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6663             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6664             .resetvalue = 0
6665         };
6666         define_one_arm_cp_reg(cpu, &v84_pmmir);
6667     }
6668 }
6669 
6670 /* We don't know until after realize whether there's a GICv3
6671  * attached, and that is what registers the gicv3 sysregs.
6672  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6673  * at runtime.
6674  */
6675 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6676 {
6677     ARMCPU *cpu = env_archcpu(env);
6678     uint64_t pfr1 = cpu->isar.id_pfr1;
6679 
6680     if (env->gicv3state) {
6681         pfr1 |= 1 << 28;
6682     }
6683     return pfr1;
6684 }
6685 
6686 #ifndef CONFIG_USER_ONLY
6687 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6688 {
6689     ARMCPU *cpu = env_archcpu(env);
6690     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6691 
6692     if (env->gicv3state) {
6693         pfr0 |= 1 << 24;
6694     }
6695     return pfr0;
6696 }
6697 #endif
6698 
6699 /* Shared logic between LORID and the rest of the LOR* registers.
6700  * Secure state exclusion has already been dealt with.
6701  */
6702 static CPAccessResult access_lor_ns(CPUARMState *env,
6703                                     const ARMCPRegInfo *ri, bool isread)
6704 {
6705     int el = arm_current_el(env);
6706 
6707     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6708         return CP_ACCESS_TRAP_EL2;
6709     }
6710     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6711         return CP_ACCESS_TRAP_EL3;
6712     }
6713     return CP_ACCESS_OK;
6714 }
6715 
6716 static CPAccessResult access_lor_other(CPUARMState *env,
6717                                        const ARMCPRegInfo *ri, bool isread)
6718 {
6719     if (arm_is_secure_below_el3(env)) {
6720         /* Access denied in secure mode.  */
6721         return CP_ACCESS_TRAP;
6722     }
6723     return access_lor_ns(env, ri, isread);
6724 }
6725 
6726 /*
6727  * A trivial implementation of ARMv8.1-LOR leaves all of these
6728  * registers fixed at 0, which indicates that there are zero
6729  * supported Limited Ordering regions.
6730  */
6731 static const ARMCPRegInfo lor_reginfo[] = {
6732     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6733       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6734       .access = PL1_RW, .accessfn = access_lor_other,
6735       .type = ARM_CP_CONST, .resetvalue = 0 },
6736     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6737       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6738       .access = PL1_RW, .accessfn = access_lor_other,
6739       .type = ARM_CP_CONST, .resetvalue = 0 },
6740     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6741       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6742       .access = PL1_RW, .accessfn = access_lor_other,
6743       .type = ARM_CP_CONST, .resetvalue = 0 },
6744     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6745       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6746       .access = PL1_RW, .accessfn = access_lor_other,
6747       .type = ARM_CP_CONST, .resetvalue = 0 },
6748     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6749       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6750       .access = PL1_R, .accessfn = access_lor_ns,
6751       .type = ARM_CP_CONST, .resetvalue = 0 },
6752 };
6753 
6754 #ifdef TARGET_AARCH64
6755 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6756                                    bool isread)
6757 {
6758     int el = arm_current_el(env);
6759 
6760     if (el < 2 &&
6761         arm_feature(env, ARM_FEATURE_EL2) &&
6762         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6763         return CP_ACCESS_TRAP_EL2;
6764     }
6765     if (el < 3 &&
6766         arm_feature(env, ARM_FEATURE_EL3) &&
6767         !(env->cp15.scr_el3 & SCR_APK)) {
6768         return CP_ACCESS_TRAP_EL3;
6769     }
6770     return CP_ACCESS_OK;
6771 }
6772 
6773 static const ARMCPRegInfo pauth_reginfo[] = {
6774     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6775       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6776       .access = PL1_RW, .accessfn = access_pauth,
6777       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6778     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6779       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6780       .access = PL1_RW, .accessfn = access_pauth,
6781       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6782     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6783       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6784       .access = PL1_RW, .accessfn = access_pauth,
6785       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6786     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6787       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6788       .access = PL1_RW, .accessfn = access_pauth,
6789       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6790     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6791       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6792       .access = PL1_RW, .accessfn = access_pauth,
6793       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6794     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6795       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6796       .access = PL1_RW, .accessfn = access_pauth,
6797       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6798     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6799       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6800       .access = PL1_RW, .accessfn = access_pauth,
6801       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6802     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6803       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6804       .access = PL1_RW, .accessfn = access_pauth,
6805       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6806     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6807       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6808       .access = PL1_RW, .accessfn = access_pauth,
6809       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6810     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6811       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6812       .access = PL1_RW, .accessfn = access_pauth,
6813       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6814 };
6815 
6816 static const ARMCPRegInfo tlbirange_reginfo[] = {
6817     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6818       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6819       .access = PL1_W, .type = ARM_CP_NO_RAW,
6820       .writefn = tlbi_aa64_rvae1is_write },
6821     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6822       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6823       .access = PL1_W, .type = ARM_CP_NO_RAW,
6824       .writefn = tlbi_aa64_rvae1is_write },
6825    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6826       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6827       .access = PL1_W, .type = ARM_CP_NO_RAW,
6828       .writefn = tlbi_aa64_rvae1is_write },
6829     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6830       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6831       .access = PL1_W, .type = ARM_CP_NO_RAW,
6832       .writefn = tlbi_aa64_rvae1is_write },
6833     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6834       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6835       .access = PL1_W, .type = ARM_CP_NO_RAW,
6836       .writefn = tlbi_aa64_rvae1is_write },
6837     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6838       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6839       .access = PL1_W, .type = ARM_CP_NO_RAW,
6840       .writefn = tlbi_aa64_rvae1is_write },
6841    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6842       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6843       .access = PL1_W, .type = ARM_CP_NO_RAW,
6844       .writefn = tlbi_aa64_rvae1is_write },
6845     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6846       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6847       .access = PL1_W, .type = ARM_CP_NO_RAW,
6848       .writefn = tlbi_aa64_rvae1is_write },
6849     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6850       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6851       .access = PL1_W, .type = ARM_CP_NO_RAW,
6852       .writefn = tlbi_aa64_rvae1_write },
6853     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6854       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6855       .access = PL1_W, .type = ARM_CP_NO_RAW,
6856       .writefn = tlbi_aa64_rvae1_write },
6857    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6858       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6859       .access = PL1_W, .type = ARM_CP_NO_RAW,
6860       .writefn = tlbi_aa64_rvae1_write },
6861     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6862       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6863       .access = PL1_W, .type = ARM_CP_NO_RAW,
6864       .writefn = tlbi_aa64_rvae1_write },
6865     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6866       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6867       .access = PL2_W, .type = ARM_CP_NOP },
6868     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6869       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6870       .access = PL2_W, .type = ARM_CP_NOP },
6871     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6872       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6873       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6874       .writefn = tlbi_aa64_rvae2is_write },
6875    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6876       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6877       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6878       .writefn = tlbi_aa64_rvae2is_write },
6879     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6880       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6881       .access = PL2_W, .type = ARM_CP_NOP },
6882    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6883       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6884       .access = PL2_W, .type = ARM_CP_NOP },
6885    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6886       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6887       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6888       .writefn = tlbi_aa64_rvae2is_write },
6889    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6890       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6891       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6892       .writefn = tlbi_aa64_rvae2is_write },
6893     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6894       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6895       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6896       .writefn = tlbi_aa64_rvae2_write },
6897    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6898       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6899       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6900       .writefn = tlbi_aa64_rvae2_write },
6901    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6902       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6903       .access = PL3_W, .type = ARM_CP_NO_RAW,
6904       .writefn = tlbi_aa64_rvae3is_write },
6905    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6907       .access = PL3_W, .type = ARM_CP_NO_RAW,
6908       .writefn = tlbi_aa64_rvae3is_write },
6909    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6911       .access = PL3_W, .type = ARM_CP_NO_RAW,
6912       .writefn = tlbi_aa64_rvae3is_write },
6913    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6915       .access = PL3_W, .type = ARM_CP_NO_RAW,
6916       .writefn = tlbi_aa64_rvae3is_write },
6917    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6918       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6919       .access = PL3_W, .type = ARM_CP_NO_RAW,
6920       .writefn = tlbi_aa64_rvae3_write },
6921    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6922       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6923       .access = PL3_W, .type = ARM_CP_NO_RAW,
6924       .writefn = tlbi_aa64_rvae3_write },
6925 };
6926 
6927 static const ARMCPRegInfo tlbios_reginfo[] = {
6928     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6929       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6930       .access = PL1_W, .type = ARM_CP_NO_RAW,
6931       .writefn = tlbi_aa64_vmalle1is_write },
6932     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6933       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6934       .access = PL1_W, .type = ARM_CP_NO_RAW,
6935       .writefn = tlbi_aa64_vae1is_write },
6936     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6937       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6938       .access = PL1_W, .type = ARM_CP_NO_RAW,
6939       .writefn = tlbi_aa64_vmalle1is_write },
6940     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6941       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6942       .access = PL1_W, .type = ARM_CP_NO_RAW,
6943       .writefn = tlbi_aa64_vae1is_write },
6944     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6945       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6946       .access = PL1_W, .type = ARM_CP_NO_RAW,
6947       .writefn = tlbi_aa64_vae1is_write },
6948     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6949       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6950       .access = PL1_W, .type = ARM_CP_NO_RAW,
6951       .writefn = tlbi_aa64_vae1is_write },
6952     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6953       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6954       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6955       .writefn = tlbi_aa64_alle2is_write },
6956     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6957       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6958       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6959       .writefn = tlbi_aa64_vae2is_write },
6960    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6961       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6962       .access = PL2_W, .type = ARM_CP_NO_RAW,
6963       .writefn = tlbi_aa64_alle1is_write },
6964     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
6965       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
6966       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6967       .writefn = tlbi_aa64_vae2is_write },
6968     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6969       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6970       .access = PL2_W, .type = ARM_CP_NO_RAW,
6971       .writefn = tlbi_aa64_alle1is_write },
6972     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6973       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6974       .access = PL2_W, .type = ARM_CP_NOP },
6975     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6976       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6977       .access = PL2_W, .type = ARM_CP_NOP },
6978     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6979       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6980       .access = PL2_W, .type = ARM_CP_NOP },
6981     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6982       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6983       .access = PL2_W, .type = ARM_CP_NOP },
6984     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6985       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6986       .access = PL3_W, .type = ARM_CP_NO_RAW,
6987       .writefn = tlbi_aa64_alle3is_write },
6988     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
6989       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
6990       .access = PL3_W, .type = ARM_CP_NO_RAW,
6991       .writefn = tlbi_aa64_vae3is_write },
6992     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
6993       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
6994       .access = PL3_W, .type = ARM_CP_NO_RAW,
6995       .writefn = tlbi_aa64_vae3is_write },
6996 };
6997 
6998 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6999 {
7000     Error *err = NULL;
7001     uint64_t ret;
7002 
7003     /* Success sets NZCV = 0000.  */
7004     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7005 
7006     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7007         /*
7008          * ??? Failed, for unknown reasons in the crypto subsystem.
7009          * The best we can do is log the reason and return the
7010          * timed-out indication to the guest.  There is no reason
7011          * we know to expect this failure to be transitory, so the
7012          * guest may well hang retrying the operation.
7013          */
7014         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7015                       ri->name, error_get_pretty(err));
7016         error_free(err);
7017 
7018         env->ZF = 0; /* NZCF = 0100 */
7019         return 0;
7020     }
7021     return ret;
7022 }
7023 
7024 /* We do not support re-seeding, so the two registers operate the same.  */
7025 static const ARMCPRegInfo rndr_reginfo[] = {
7026     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7027       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7028       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7029       .access = PL0_R, .readfn = rndr_readfn },
7030     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7031       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7032       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7033       .access = PL0_R, .readfn = rndr_readfn },
7034 };
7035 
7036 #ifndef CONFIG_USER_ONLY
7037 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7038                           uint64_t value)
7039 {
7040     ARMCPU *cpu = env_archcpu(env);
7041     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7042     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7043     uint64_t vaddr_in = (uint64_t) value;
7044     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7045     void *haddr;
7046     int mem_idx = cpu_mmu_index(env, false);
7047 
7048     /* This won't be crossing page boundaries */
7049     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7050     if (haddr) {
7051 
7052         ram_addr_t offset;
7053         MemoryRegion *mr;
7054 
7055         /* RCU lock is already being held */
7056         mr = memory_region_from_host(haddr, &offset);
7057 
7058         if (mr) {
7059             memory_region_writeback(mr, offset, dline_size);
7060         }
7061     }
7062 }
7063 
7064 static const ARMCPRegInfo dcpop_reg[] = {
7065     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7066       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7067       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7068       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7069 };
7070 
7071 static const ARMCPRegInfo dcpodp_reg[] = {
7072     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7073       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7074       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7075       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7076 };
7077 #endif /*CONFIG_USER_ONLY*/
7078 
7079 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7080                                        bool isread)
7081 {
7082     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7083         return CP_ACCESS_TRAP_EL2;
7084     }
7085 
7086     return CP_ACCESS_OK;
7087 }
7088 
7089 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7090                                  bool isread)
7091 {
7092     int el = arm_current_el(env);
7093 
7094     if (el < 2 && arm_is_el2_enabled(env)) {
7095         uint64_t hcr = arm_hcr_el2_eff(env);
7096         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7097             return CP_ACCESS_TRAP_EL2;
7098         }
7099     }
7100     if (el < 3 &&
7101         arm_feature(env, ARM_FEATURE_EL3) &&
7102         !(env->cp15.scr_el3 & SCR_ATA)) {
7103         return CP_ACCESS_TRAP_EL3;
7104     }
7105     return CP_ACCESS_OK;
7106 }
7107 
7108 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7109 {
7110     return env->pstate & PSTATE_TCO;
7111 }
7112 
7113 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7114 {
7115     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7116 }
7117 
7118 static const ARMCPRegInfo mte_reginfo[] = {
7119     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7121       .access = PL1_RW, .accessfn = access_mte,
7122       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7123     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7124       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7125       .access = PL1_RW, .accessfn = access_mte,
7126       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7127     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7128       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7129       .access = PL2_RW, .accessfn = access_mte,
7130       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7131     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7133       .access = PL3_RW,
7134       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7135     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7137       .access = PL1_RW, .accessfn = access_mte,
7138       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7139     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7141       .access = PL1_RW, .accessfn = access_mte,
7142       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7143     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7144       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7145       .access = PL1_R, .accessfn = access_aa64_tid5,
7146       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7147     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7148       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7149       .type = ARM_CP_NO_RAW,
7150       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7151     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7153       .type = ARM_CP_NOP, .access = PL1_W,
7154       .accessfn = aa64_cacheop_poc_access },
7155     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7156       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7157       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7158     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7160       .type = ARM_CP_NOP, .access = PL1_W,
7161       .accessfn = aa64_cacheop_poc_access },
7162     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7163       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7164       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7165     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7167       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7168     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7169       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7170       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7171     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7172       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7173       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7174     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7175       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7176       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7177 };
7178 
7179 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7180     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7181       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7182       .type = ARM_CP_CONST, .access = PL0_RW, },
7183 };
7184 
7185 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7186     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7187       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7188       .type = ARM_CP_NOP, .access = PL0_W,
7189       .accessfn = aa64_cacheop_poc_access },
7190     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7191       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7192       .type = ARM_CP_NOP, .access = PL0_W,
7193       .accessfn = aa64_cacheop_poc_access },
7194     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7196       .type = ARM_CP_NOP, .access = PL0_W,
7197       .accessfn = aa64_cacheop_poc_access },
7198     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7199       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7200       .type = ARM_CP_NOP, .access = PL0_W,
7201       .accessfn = aa64_cacheop_poc_access },
7202     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7203       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7204       .type = ARM_CP_NOP, .access = PL0_W,
7205       .accessfn = aa64_cacheop_poc_access },
7206     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7207       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7208       .type = ARM_CP_NOP, .access = PL0_W,
7209       .accessfn = aa64_cacheop_poc_access },
7210     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7211       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7212       .type = ARM_CP_NOP, .access = PL0_W,
7213       .accessfn = aa64_cacheop_poc_access },
7214     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7215       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7216       .type = ARM_CP_NOP, .access = PL0_W,
7217       .accessfn = aa64_cacheop_poc_access },
7218     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7219       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7220       .access = PL0_W, .type = ARM_CP_DC_GVA,
7221 #ifndef CONFIG_USER_ONLY
7222       /* Avoid overhead of an access check that always passes in user-mode */
7223       .accessfn = aa64_zva_access,
7224 #endif
7225     },
7226     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7227       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7228       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7229 #ifndef CONFIG_USER_ONLY
7230       /* Avoid overhead of an access check that always passes in user-mode */
7231       .accessfn = aa64_zva_access,
7232 #endif
7233     },
7234 };
7235 
7236 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7237                                      bool isread)
7238 {
7239     uint64_t hcr = arm_hcr_el2_eff(env);
7240     int el = arm_current_el(env);
7241 
7242     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7243         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7244             if (hcr & HCR_TGE) {
7245                 return CP_ACCESS_TRAP_EL2;
7246             }
7247             return CP_ACCESS_TRAP;
7248         }
7249     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7250         return CP_ACCESS_TRAP_EL2;
7251     }
7252     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7253         return CP_ACCESS_TRAP_EL2;
7254     }
7255     if (el < 3
7256         && arm_feature(env, ARM_FEATURE_EL3)
7257         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7258         return CP_ACCESS_TRAP_EL3;
7259     }
7260     return CP_ACCESS_OK;
7261 }
7262 
7263 static const ARMCPRegInfo scxtnum_reginfo[] = {
7264     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7265       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7266       .access = PL0_RW, .accessfn = access_scxtnum,
7267       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7268     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7270       .access = PL1_RW, .accessfn = access_scxtnum,
7271       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7272     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7273       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7274       .access = PL2_RW, .accessfn = access_scxtnum,
7275       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7276     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7277       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7278       .access = PL3_RW,
7279       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7280 };
7281 #endif /* TARGET_AARCH64 */
7282 
7283 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7284                                      bool isread)
7285 {
7286     int el = arm_current_el(env);
7287 
7288     if (el == 0) {
7289         uint64_t sctlr = arm_sctlr(env, el);
7290         if (!(sctlr & SCTLR_EnRCTX)) {
7291             return CP_ACCESS_TRAP;
7292         }
7293     } else if (el == 1) {
7294         uint64_t hcr = arm_hcr_el2_eff(env);
7295         if (hcr & HCR_NV) {
7296             return CP_ACCESS_TRAP_EL2;
7297         }
7298     }
7299     return CP_ACCESS_OK;
7300 }
7301 
7302 static const ARMCPRegInfo predinv_reginfo[] = {
7303     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7304       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7305       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7306     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7307       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7308       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7309     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7311       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7312     /*
7313      * Note the AArch32 opcodes have a different OPC1.
7314      */
7315     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7316       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7317       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7318     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7319       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7320       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7321     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7322       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7323       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7324 };
7325 
7326 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7327 {
7328     /* Read the high 32 bits of the current CCSIDR */
7329     return extract64(ccsidr_read(env, ri), 32, 32);
7330 }
7331 
7332 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7333     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7334       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7335       .access = PL1_R,
7336       .accessfn = access_aa64_tid2,
7337       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7338 };
7339 
7340 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7341                                        bool isread)
7342 {
7343     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7344         return CP_ACCESS_TRAP_EL2;
7345     }
7346 
7347     return CP_ACCESS_OK;
7348 }
7349 
7350 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7351                                        bool isread)
7352 {
7353     if (arm_feature(env, ARM_FEATURE_V8)) {
7354         return access_aa64_tid3(env, ri, isread);
7355     }
7356 
7357     return CP_ACCESS_OK;
7358 }
7359 
7360 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7361                                      bool isread)
7362 {
7363     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7364         return CP_ACCESS_TRAP_EL2;
7365     }
7366 
7367     return CP_ACCESS_OK;
7368 }
7369 
7370 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7371                                         const ARMCPRegInfo *ri, bool isread)
7372 {
7373     /*
7374      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7375      * in v7A, not in v8A.
7376      */
7377     if (!arm_feature(env, ARM_FEATURE_V8) &&
7378         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7379         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7380         return CP_ACCESS_TRAP_EL2;
7381     }
7382     return CP_ACCESS_OK;
7383 }
7384 
7385 static const ARMCPRegInfo jazelle_regs[] = {
7386     { .name = "JIDR",
7387       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7388       .access = PL1_R, .accessfn = access_jazelle,
7389       .type = ARM_CP_CONST, .resetvalue = 0 },
7390     { .name = "JOSCR",
7391       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7392       .accessfn = access_joscr_jmcr,
7393       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7394     { .name = "JMCR",
7395       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7396       .accessfn = access_joscr_jmcr,
7397       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7398 };
7399 
7400 static const ARMCPRegInfo contextidr_el2 = {
7401     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7402     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7403     .access = PL2_RW,
7404     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7405 };
7406 
7407 static const ARMCPRegInfo vhe_reginfo[] = {
7408     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7409       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7410       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7411       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7412 #ifndef CONFIG_USER_ONLY
7413     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7414       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7415       .fieldoffset =
7416         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7417       .type = ARM_CP_IO, .access = PL2_RW,
7418       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7419     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7420       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7421       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7422       .resetfn = gt_hv_timer_reset,
7423       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7424     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7425       .type = ARM_CP_IO,
7426       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7427       .access = PL2_RW,
7428       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7429       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7430     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7431       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7432       .type = ARM_CP_IO | ARM_CP_ALIAS,
7433       .access = PL2_RW, .accessfn = e2h_access,
7434       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7435       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7436     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7437       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7438       .type = ARM_CP_IO | ARM_CP_ALIAS,
7439       .access = PL2_RW, .accessfn = e2h_access,
7440       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7441       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7442     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7444       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7445       .access = PL2_RW, .accessfn = e2h_access,
7446       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7447     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7448       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7449       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7450       .access = PL2_RW, .accessfn = e2h_access,
7451       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7452     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7453       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7454       .type = ARM_CP_IO | ARM_CP_ALIAS,
7455       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7456       .access = PL2_RW, .accessfn = e2h_access,
7457       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7458     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7459       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7460       .type = ARM_CP_IO | ARM_CP_ALIAS,
7461       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7462       .access = PL2_RW, .accessfn = e2h_access,
7463       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7464 #endif
7465 };
7466 
7467 #ifndef CONFIG_USER_ONLY
7468 static const ARMCPRegInfo ats1e1_reginfo[] = {
7469     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7470       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7471       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7472       .writefn = ats_write64 },
7473     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7475       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7476       .writefn = ats_write64 },
7477 };
7478 
7479 static const ARMCPRegInfo ats1cp_reginfo[] = {
7480     { .name = "ATS1CPRP",
7481       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7482       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7483       .writefn = ats_write },
7484     { .name = "ATS1CPWP",
7485       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7486       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7487       .writefn = ats_write },
7488 };
7489 #endif
7490 
7491 /*
7492  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7493  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7494  * is non-zero, which is never for ARMv7, optionally in ARMv8
7495  * and mandatorily for ARMv8.2 and up.
7496  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7497  * implementation is RAZ/WI we can ignore this detail, as we
7498  * do for ACTLR.
7499  */
7500 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7501     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7502       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7503       .access = PL1_RW, .accessfn = access_tacr,
7504       .type = ARM_CP_CONST, .resetvalue = 0 },
7505     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7506       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7507       .access = PL2_RW, .type = ARM_CP_CONST,
7508       .resetvalue = 0 },
7509 };
7510 
7511 void register_cp_regs_for_features(ARMCPU *cpu)
7512 {
7513     /* Register all the coprocessor registers based on feature bits */
7514     CPUARMState *env = &cpu->env;
7515     if (arm_feature(env, ARM_FEATURE_M)) {
7516         /* M profile has no coprocessor registers */
7517         return;
7518     }
7519 
7520     define_arm_cp_regs(cpu, cp_reginfo);
7521     if (!arm_feature(env, ARM_FEATURE_V8)) {
7522         /* Must go early as it is full of wildcards that may be
7523          * overridden by later definitions.
7524          */
7525         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7526     }
7527 
7528     if (arm_feature(env, ARM_FEATURE_V6)) {
7529         /* The ID registers all have impdef reset values */
7530         ARMCPRegInfo v6_idregs[] = {
7531             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7532               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7533               .access = PL1_R, .type = ARM_CP_CONST,
7534               .accessfn = access_aa32_tid3,
7535               .resetvalue = cpu->isar.id_pfr0 },
7536             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7537              * the value of the GIC field until after we define these regs.
7538              */
7539             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7540               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7541               .access = PL1_R, .type = ARM_CP_NO_RAW,
7542               .accessfn = access_aa32_tid3,
7543               .readfn = id_pfr1_read,
7544               .writefn = arm_cp_write_ignore },
7545             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7546               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7547               .access = PL1_R, .type = ARM_CP_CONST,
7548               .accessfn = access_aa32_tid3,
7549               .resetvalue = cpu->isar.id_dfr0 },
7550             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7551               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7552               .access = PL1_R, .type = ARM_CP_CONST,
7553               .accessfn = access_aa32_tid3,
7554               .resetvalue = cpu->id_afr0 },
7555             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7556               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7557               .access = PL1_R, .type = ARM_CP_CONST,
7558               .accessfn = access_aa32_tid3,
7559               .resetvalue = cpu->isar.id_mmfr0 },
7560             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7561               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7562               .access = PL1_R, .type = ARM_CP_CONST,
7563               .accessfn = access_aa32_tid3,
7564               .resetvalue = cpu->isar.id_mmfr1 },
7565             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7566               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7567               .access = PL1_R, .type = ARM_CP_CONST,
7568               .accessfn = access_aa32_tid3,
7569               .resetvalue = cpu->isar.id_mmfr2 },
7570             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7571               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7572               .access = PL1_R, .type = ARM_CP_CONST,
7573               .accessfn = access_aa32_tid3,
7574               .resetvalue = cpu->isar.id_mmfr3 },
7575             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7576               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7577               .access = PL1_R, .type = ARM_CP_CONST,
7578               .accessfn = access_aa32_tid3,
7579               .resetvalue = cpu->isar.id_isar0 },
7580             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7581               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7582               .access = PL1_R, .type = ARM_CP_CONST,
7583               .accessfn = access_aa32_tid3,
7584               .resetvalue = cpu->isar.id_isar1 },
7585             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7586               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7587               .access = PL1_R, .type = ARM_CP_CONST,
7588               .accessfn = access_aa32_tid3,
7589               .resetvalue = cpu->isar.id_isar2 },
7590             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7591               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7592               .access = PL1_R, .type = ARM_CP_CONST,
7593               .accessfn = access_aa32_tid3,
7594               .resetvalue = cpu->isar.id_isar3 },
7595             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7596               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7597               .access = PL1_R, .type = ARM_CP_CONST,
7598               .accessfn = access_aa32_tid3,
7599               .resetvalue = cpu->isar.id_isar4 },
7600             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7601               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7602               .access = PL1_R, .type = ARM_CP_CONST,
7603               .accessfn = access_aa32_tid3,
7604               .resetvalue = cpu->isar.id_isar5 },
7605             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7606               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7607               .access = PL1_R, .type = ARM_CP_CONST,
7608               .accessfn = access_aa32_tid3,
7609               .resetvalue = cpu->isar.id_mmfr4 },
7610             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7611               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7612               .access = PL1_R, .type = ARM_CP_CONST,
7613               .accessfn = access_aa32_tid3,
7614               .resetvalue = cpu->isar.id_isar6 },
7615         };
7616         define_arm_cp_regs(cpu, v6_idregs);
7617         define_arm_cp_regs(cpu, v6_cp_reginfo);
7618     } else {
7619         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7620     }
7621     if (arm_feature(env, ARM_FEATURE_V6K)) {
7622         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7623     }
7624     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7625         !arm_feature(env, ARM_FEATURE_PMSA)) {
7626         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7627     }
7628     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7629         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7630     }
7631     if (arm_feature(env, ARM_FEATURE_V7)) {
7632         ARMCPRegInfo clidr = {
7633             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7634             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7635             .access = PL1_R, .type = ARM_CP_CONST,
7636             .accessfn = access_aa64_tid2,
7637             .resetvalue = cpu->clidr
7638         };
7639         define_one_arm_cp_reg(cpu, &clidr);
7640         define_arm_cp_regs(cpu, v7_cp_reginfo);
7641         define_debug_regs(cpu);
7642         define_pmu_regs(cpu);
7643     } else {
7644         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7645     }
7646     if (arm_feature(env, ARM_FEATURE_V8)) {
7647         /* AArch64 ID registers, which all have impdef reset values.
7648          * Note that within the ID register ranges the unused slots
7649          * must all RAZ, not UNDEF; future architecture versions may
7650          * define new registers here.
7651          */
7652         ARMCPRegInfo v8_idregs[] = {
7653             /*
7654              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7655              * emulation because we don't know the right value for the
7656              * GIC field until after we define these regs.
7657              */
7658             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7659               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7660               .access = PL1_R,
7661 #ifdef CONFIG_USER_ONLY
7662               .type = ARM_CP_CONST,
7663               .resetvalue = cpu->isar.id_aa64pfr0
7664 #else
7665               .type = ARM_CP_NO_RAW,
7666               .accessfn = access_aa64_tid3,
7667               .readfn = id_aa64pfr0_read,
7668               .writefn = arm_cp_write_ignore
7669 #endif
7670             },
7671             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7672               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7673               .access = PL1_R, .type = ARM_CP_CONST,
7674               .accessfn = access_aa64_tid3,
7675               .resetvalue = cpu->isar.id_aa64pfr1},
7676             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7677               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7678               .access = PL1_R, .type = ARM_CP_CONST,
7679               .accessfn = access_aa64_tid3,
7680               .resetvalue = 0 },
7681             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7683               .access = PL1_R, .type = ARM_CP_CONST,
7684               .accessfn = access_aa64_tid3,
7685               .resetvalue = 0 },
7686             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7688               .access = PL1_R, .type = ARM_CP_CONST,
7689               .accessfn = access_aa64_tid3,
7690               .resetvalue = cpu->isar.id_aa64zfr0 },
7691             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7692               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7693               .access = PL1_R, .type = ARM_CP_CONST,
7694               .accessfn = access_aa64_tid3,
7695               .resetvalue = 0 },
7696             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7697               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7698               .access = PL1_R, .type = ARM_CP_CONST,
7699               .accessfn = access_aa64_tid3,
7700               .resetvalue = 0 },
7701             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7703               .access = PL1_R, .type = ARM_CP_CONST,
7704               .accessfn = access_aa64_tid3,
7705               .resetvalue = 0 },
7706             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7708               .access = PL1_R, .type = ARM_CP_CONST,
7709               .accessfn = access_aa64_tid3,
7710               .resetvalue = cpu->isar.id_aa64dfr0 },
7711             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7713               .access = PL1_R, .type = ARM_CP_CONST,
7714               .accessfn = access_aa64_tid3,
7715               .resetvalue = cpu->isar.id_aa64dfr1 },
7716             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7717               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7718               .access = PL1_R, .type = ARM_CP_CONST,
7719               .accessfn = access_aa64_tid3,
7720               .resetvalue = 0 },
7721             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7723               .access = PL1_R, .type = ARM_CP_CONST,
7724               .accessfn = access_aa64_tid3,
7725               .resetvalue = 0 },
7726             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7728               .access = PL1_R, .type = ARM_CP_CONST,
7729               .accessfn = access_aa64_tid3,
7730               .resetvalue = cpu->id_aa64afr0 },
7731             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7733               .access = PL1_R, .type = ARM_CP_CONST,
7734               .accessfn = access_aa64_tid3,
7735               .resetvalue = cpu->id_aa64afr1 },
7736             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7738               .access = PL1_R, .type = ARM_CP_CONST,
7739               .accessfn = access_aa64_tid3,
7740               .resetvalue = 0 },
7741             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7743               .access = PL1_R, .type = ARM_CP_CONST,
7744               .accessfn = access_aa64_tid3,
7745               .resetvalue = 0 },
7746             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7748               .access = PL1_R, .type = ARM_CP_CONST,
7749               .accessfn = access_aa64_tid3,
7750               .resetvalue = cpu->isar.id_aa64isar0 },
7751             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7753               .access = PL1_R, .type = ARM_CP_CONST,
7754               .accessfn = access_aa64_tid3,
7755               .resetvalue = cpu->isar.id_aa64isar1 },
7756             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7758               .access = PL1_R, .type = ARM_CP_CONST,
7759               .accessfn = access_aa64_tid3,
7760               .resetvalue = 0 },
7761             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7763               .access = PL1_R, .type = ARM_CP_CONST,
7764               .accessfn = access_aa64_tid3,
7765               .resetvalue = 0 },
7766             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7768               .access = PL1_R, .type = ARM_CP_CONST,
7769               .accessfn = access_aa64_tid3,
7770               .resetvalue = 0 },
7771             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7773               .access = PL1_R, .type = ARM_CP_CONST,
7774               .accessfn = access_aa64_tid3,
7775               .resetvalue = 0 },
7776             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7778               .access = PL1_R, .type = ARM_CP_CONST,
7779               .accessfn = access_aa64_tid3,
7780               .resetvalue = 0 },
7781             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7783               .access = PL1_R, .type = ARM_CP_CONST,
7784               .accessfn = access_aa64_tid3,
7785               .resetvalue = 0 },
7786             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7788               .access = PL1_R, .type = ARM_CP_CONST,
7789               .accessfn = access_aa64_tid3,
7790               .resetvalue = cpu->isar.id_aa64mmfr0 },
7791             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7793               .access = PL1_R, .type = ARM_CP_CONST,
7794               .accessfn = access_aa64_tid3,
7795               .resetvalue = cpu->isar.id_aa64mmfr1 },
7796             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7798               .access = PL1_R, .type = ARM_CP_CONST,
7799               .accessfn = access_aa64_tid3,
7800               .resetvalue = cpu->isar.id_aa64mmfr2 },
7801             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7803               .access = PL1_R, .type = ARM_CP_CONST,
7804               .accessfn = access_aa64_tid3,
7805               .resetvalue = 0 },
7806             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7808               .access = PL1_R, .type = ARM_CP_CONST,
7809               .accessfn = access_aa64_tid3,
7810               .resetvalue = 0 },
7811             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7813               .access = PL1_R, .type = ARM_CP_CONST,
7814               .accessfn = access_aa64_tid3,
7815               .resetvalue = 0 },
7816             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7817               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7818               .access = PL1_R, .type = ARM_CP_CONST,
7819               .accessfn = access_aa64_tid3,
7820               .resetvalue = 0 },
7821             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7823               .access = PL1_R, .type = ARM_CP_CONST,
7824               .accessfn = access_aa64_tid3,
7825               .resetvalue = 0 },
7826             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7827               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7828               .access = PL1_R, .type = ARM_CP_CONST,
7829               .accessfn = access_aa64_tid3,
7830               .resetvalue = cpu->isar.mvfr0 },
7831             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7833               .access = PL1_R, .type = ARM_CP_CONST,
7834               .accessfn = access_aa64_tid3,
7835               .resetvalue = cpu->isar.mvfr1 },
7836             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7837               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7838               .access = PL1_R, .type = ARM_CP_CONST,
7839               .accessfn = access_aa64_tid3,
7840               .resetvalue = cpu->isar.mvfr2 },
7841             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7842               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7843               .access = PL1_R, .type = ARM_CP_CONST,
7844               .accessfn = access_aa64_tid3,
7845               .resetvalue = 0 },
7846             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7847               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7848               .access = PL1_R, .type = ARM_CP_CONST,
7849               .accessfn = access_aa64_tid3,
7850               .resetvalue = cpu->isar.id_pfr2 },
7851             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7853               .access = PL1_R, .type = ARM_CP_CONST,
7854               .accessfn = access_aa64_tid3,
7855               .resetvalue = 0 },
7856             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7857               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7858               .access = PL1_R, .type = ARM_CP_CONST,
7859               .accessfn = access_aa64_tid3,
7860               .resetvalue = 0 },
7861             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7862               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7863               .access = PL1_R, .type = ARM_CP_CONST,
7864               .accessfn = access_aa64_tid3,
7865               .resetvalue = 0 },
7866             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7867               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7868               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7869               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7870             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7871               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7872               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7873               .resetvalue = cpu->pmceid0 },
7874             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7875               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7876               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7877               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7878             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7879               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7880               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7881               .resetvalue = cpu->pmceid1 },
7882         };
7883 #ifdef CONFIG_USER_ONLY
7884         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7885             { .name = "ID_AA64PFR0_EL1",
7886               .exported_bits = 0x000f000f00ff0000,
7887               .fixed_bits    = 0x0000000000000011 },
7888             { .name = "ID_AA64PFR1_EL1",
7889               .exported_bits = 0x00000000000000f0 },
7890             { .name = "ID_AA64PFR*_EL1_RESERVED",
7891               .is_glob = true                     },
7892             { .name = "ID_AA64ZFR0_EL1"           },
7893             { .name = "ID_AA64MMFR0_EL1",
7894               .fixed_bits    = 0x00000000ff000000 },
7895             { .name = "ID_AA64MMFR1_EL1"          },
7896             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7897               .is_glob = true                     },
7898             { .name = "ID_AA64DFR0_EL1",
7899               .fixed_bits    = 0x0000000000000006 },
7900             { .name = "ID_AA64DFR1_EL1"           },
7901             { .name = "ID_AA64DFR*_EL1_RESERVED",
7902               .is_glob = true                     },
7903             { .name = "ID_AA64AFR*",
7904               .is_glob = true                     },
7905             { .name = "ID_AA64ISAR0_EL1",
7906               .exported_bits = 0x00fffffff0fffff0 },
7907             { .name = "ID_AA64ISAR1_EL1",
7908               .exported_bits = 0x000000f0ffffffff },
7909             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7910               .is_glob = true                     },
7911         };
7912         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7913 #endif
7914         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7915         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7916             !arm_feature(env, ARM_FEATURE_EL2)) {
7917             ARMCPRegInfo rvbar = {
7918                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7919                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7920                 .access = PL1_R,
7921                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7922             };
7923             define_one_arm_cp_reg(cpu, &rvbar);
7924         }
7925         define_arm_cp_regs(cpu, v8_idregs);
7926         define_arm_cp_regs(cpu, v8_cp_reginfo);
7927     }
7928 
7929     /*
7930      * Register the base EL2 cpregs.
7931      * Pre v8, these registers are implemented only as part of the
7932      * Virtualization Extensions (EL2 present).  Beginning with v8,
7933      * if EL2 is missing but EL3 is enabled, mostly these become
7934      * RES0 from EL3, with some specific exceptions.
7935      */
7936     if (arm_feature(env, ARM_FEATURE_EL2)
7937         || (arm_feature(env, ARM_FEATURE_EL3)
7938             && arm_feature(env, ARM_FEATURE_V8))) {
7939         uint64_t vmpidr_def = mpidr_read_val(env);
7940         ARMCPRegInfo vpidr_regs[] = {
7941             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7942               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7943               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7944               .resetvalue = cpu->midr,
7945               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7946               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7947             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7948               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7949               .access = PL2_RW, .resetvalue = cpu->midr,
7950               .type = ARM_CP_EL3_NO_EL2_C_NZ,
7951               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7952             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7953               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7954               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7955               .resetvalue = vmpidr_def,
7956               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
7957               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7958             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7959               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7960               .access = PL2_RW, .resetvalue = vmpidr_def,
7961               .type = ARM_CP_EL3_NO_EL2_C_NZ,
7962               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7963         };
7964         define_arm_cp_regs(cpu, vpidr_regs);
7965         define_arm_cp_regs(cpu, el2_cp_reginfo);
7966         if (arm_feature(env, ARM_FEATURE_V8)) {
7967             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7968         }
7969         if (cpu_isar_feature(aa64_sel2, cpu)) {
7970             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7971         }
7972         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7973         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7974             ARMCPRegInfo rvbar = {
7975                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7976                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7977                 .access = PL2_R,
7978                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7979             };
7980             define_one_arm_cp_reg(cpu, &rvbar);
7981         }
7982     }
7983 
7984     /* Register the base EL3 cpregs. */
7985     if (arm_feature(env, ARM_FEATURE_EL3)) {
7986         define_arm_cp_regs(cpu, el3_cp_reginfo);
7987         ARMCPRegInfo el3_regs[] = {
7988             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7989               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7990               .access = PL3_R,
7991               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
7992             },
7993             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7994               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7995               .access = PL3_RW,
7996               .raw_writefn = raw_write, .writefn = sctlr_write,
7997               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7998               .resetvalue = cpu->reset_sctlr },
7999         };
8000 
8001         define_arm_cp_regs(cpu, el3_regs);
8002     }
8003     /* The behaviour of NSACR is sufficiently various that we don't
8004      * try to describe it in a single reginfo:
8005      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8006      *     reads as constant 0xc00 from NS EL1 and NS EL2
8007      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8008      *  if v7 without EL3, register doesn't exist
8009      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8010      */
8011     if (arm_feature(env, ARM_FEATURE_EL3)) {
8012         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8013             static const ARMCPRegInfo nsacr = {
8014                 .name = "NSACR", .type = ARM_CP_CONST,
8015                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8016                 .access = PL1_RW, .accessfn = nsacr_access,
8017                 .resetvalue = 0xc00
8018             };
8019             define_one_arm_cp_reg(cpu, &nsacr);
8020         } else {
8021             static const ARMCPRegInfo nsacr = {
8022                 .name = "NSACR",
8023                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8024                 .access = PL3_RW | PL1_R,
8025                 .resetvalue = 0,
8026                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8027             };
8028             define_one_arm_cp_reg(cpu, &nsacr);
8029         }
8030     } else {
8031         if (arm_feature(env, ARM_FEATURE_V8)) {
8032             static const ARMCPRegInfo nsacr = {
8033                 .name = "NSACR", .type = ARM_CP_CONST,
8034                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8035                 .access = PL1_R,
8036                 .resetvalue = 0xc00
8037             };
8038             define_one_arm_cp_reg(cpu, &nsacr);
8039         }
8040     }
8041 
8042     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8043         if (arm_feature(env, ARM_FEATURE_V6)) {
8044             /* PMSAv6 not implemented */
8045             assert(arm_feature(env, ARM_FEATURE_V7));
8046             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8047             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8048         } else {
8049             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8050         }
8051     } else {
8052         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8053         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8054         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8055         if (cpu_isar_feature(aa32_hpd, cpu)) {
8056             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8057         }
8058     }
8059     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8060         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8061     }
8062     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8063         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8064     }
8065     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8066         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8067     }
8068     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8069         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8070     }
8071     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8072         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8073     }
8074     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8075         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8076     }
8077     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8078         define_arm_cp_regs(cpu, omap_cp_reginfo);
8079     }
8080     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8081         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8082     }
8083     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8084         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8085     }
8086     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8087         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8088     }
8089     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8090         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8091     }
8092     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8093         define_arm_cp_regs(cpu, jazelle_regs);
8094     }
8095     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8096      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8097      * be read-only (ie write causes UNDEF exception).
8098      */
8099     {
8100         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8101             /* Pre-v8 MIDR space.
8102              * Note that the MIDR isn't a simple constant register because
8103              * of the TI925 behaviour where writes to another register can
8104              * cause the MIDR value to change.
8105              *
8106              * Unimplemented registers in the c15 0 0 0 space default to
8107              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8108              * and friends override accordingly.
8109              */
8110             { .name = "MIDR",
8111               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8112               .access = PL1_R, .resetvalue = cpu->midr,
8113               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8114               .readfn = midr_read,
8115               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8116               .type = ARM_CP_OVERRIDE },
8117             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8118             { .name = "DUMMY",
8119               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8120               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8121             { .name = "DUMMY",
8122               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8123               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8124             { .name = "DUMMY",
8125               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8126               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8127             { .name = "DUMMY",
8128               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8129               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8130             { .name = "DUMMY",
8131               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8132               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8133         };
8134         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8135             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8137               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8138               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8139               .readfn = midr_read },
8140             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8141             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8142               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8143               .access = PL1_R, .resetvalue = cpu->midr },
8144             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8145               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8146               .access = PL1_R, .resetvalue = cpu->midr },
8147             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8148               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8149               .access = PL1_R,
8150               .accessfn = access_aa64_tid1,
8151               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8152         };
8153         ARMCPRegInfo id_cp_reginfo[] = {
8154             /* These are common to v8 and pre-v8 */
8155             { .name = "CTR",
8156               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8157               .access = PL1_R, .accessfn = ctr_el0_access,
8158               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8159             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8160               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8161               .access = PL0_R, .accessfn = ctr_el0_access,
8162               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8163             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8164             { .name = "TCMTR",
8165               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8166               .access = PL1_R,
8167               .accessfn = access_aa32_tid1,
8168               .type = ARM_CP_CONST, .resetvalue = 0 },
8169         };
8170         /* TLBTR is specific to VMSA */
8171         ARMCPRegInfo id_tlbtr_reginfo = {
8172               .name = "TLBTR",
8173               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8174               .access = PL1_R,
8175               .accessfn = access_aa32_tid1,
8176               .type = ARM_CP_CONST, .resetvalue = 0,
8177         };
8178         /* MPUIR is specific to PMSA V6+ */
8179         ARMCPRegInfo id_mpuir_reginfo = {
8180               .name = "MPUIR",
8181               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8182               .access = PL1_R, .type = ARM_CP_CONST,
8183               .resetvalue = cpu->pmsav7_dregion << 8
8184         };
8185         static const ARMCPRegInfo crn0_wi_reginfo = {
8186             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8187             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8188             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8189         };
8190 #ifdef CONFIG_USER_ONLY
8191         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8192             { .name = "MIDR_EL1",
8193               .exported_bits = 0x00000000ffffffff },
8194             { .name = "REVIDR_EL1"                },
8195         };
8196         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8197 #endif
8198         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8199             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8200             size_t i;
8201             /* Register the blanket "writes ignored" value first to cover the
8202              * whole space. Then update the specific ID registers to allow write
8203              * access, so that they ignore writes rather than causing them to
8204              * UNDEF.
8205              */
8206             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8207             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8208                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8209             }
8210             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8211                 id_cp_reginfo[i].access = PL1_RW;
8212             }
8213             id_mpuir_reginfo.access = PL1_RW;
8214             id_tlbtr_reginfo.access = PL1_RW;
8215         }
8216         if (arm_feature(env, ARM_FEATURE_V8)) {
8217             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8218         } else {
8219             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8220         }
8221         define_arm_cp_regs(cpu, id_cp_reginfo);
8222         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8223             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8224         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8225             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8226         }
8227     }
8228 
8229     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8230         ARMCPRegInfo mpidr_cp_reginfo[] = {
8231             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8232               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8233               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8234         };
8235 #ifdef CONFIG_USER_ONLY
8236         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8237             { .name = "MPIDR_EL1",
8238               .fixed_bits = 0x0000000080000000 },
8239         };
8240         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8241 #endif
8242         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8243     }
8244 
8245     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8246         ARMCPRegInfo auxcr_reginfo[] = {
8247             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8248               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8249               .access = PL1_RW, .accessfn = access_tacr,
8250               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8251             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8252               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8253               .access = PL2_RW, .type = ARM_CP_CONST,
8254               .resetvalue = 0 },
8255             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8256               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8257               .access = PL3_RW, .type = ARM_CP_CONST,
8258               .resetvalue = 0 },
8259         };
8260         define_arm_cp_regs(cpu, auxcr_reginfo);
8261         if (cpu_isar_feature(aa32_ac2, cpu)) {
8262             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8263         }
8264     }
8265 
8266     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8267         /*
8268          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8269          * There are two flavours:
8270          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8271          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8272          *      32-bit register visible to AArch32 at a different encoding
8273          *      to the "flavour 1" register and with the bits rearranged to
8274          *      be able to squash a 64-bit address into the 32-bit view.
8275          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8276          * in future if we support AArch32-only configs of some of the
8277          * AArch64 cores we might need to add a specific feature flag
8278          * to indicate cores with "flavour 2" CBAR.
8279          */
8280         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8281             /* 32 bit view is [31:18] 0...0 [43:32]. */
8282             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8283                 | extract64(cpu->reset_cbar, 32, 12);
8284             ARMCPRegInfo cbar_reginfo[] = {
8285                 { .name = "CBAR",
8286                   .type = ARM_CP_CONST,
8287                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8288                   .access = PL1_R, .resetvalue = cbar32 },
8289                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8290                   .type = ARM_CP_CONST,
8291                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8292                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8293             };
8294             /* We don't implement a r/w 64 bit CBAR currently */
8295             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8296             define_arm_cp_regs(cpu, cbar_reginfo);
8297         } else {
8298             ARMCPRegInfo cbar = {
8299                 .name = "CBAR",
8300                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8301                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8302                 .fieldoffset = offsetof(CPUARMState,
8303                                         cp15.c15_config_base_address)
8304             };
8305             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8306                 cbar.access = PL1_R;
8307                 cbar.fieldoffset = 0;
8308                 cbar.type = ARM_CP_CONST;
8309             }
8310             define_one_arm_cp_reg(cpu, &cbar);
8311         }
8312     }
8313 
8314     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8315         static const ARMCPRegInfo vbar_cp_reginfo[] = {
8316             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8317               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8318               .access = PL1_RW, .writefn = vbar_write,
8319               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8320                                      offsetof(CPUARMState, cp15.vbar_ns) },
8321               .resetvalue = 0 },
8322         };
8323         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8324     }
8325 
8326     /* Generic registers whose values depend on the implementation */
8327     {
8328         ARMCPRegInfo sctlr = {
8329             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8330             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8331             .access = PL1_RW, .accessfn = access_tvm_trvm,
8332             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8333                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8334             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8335             .raw_writefn = raw_write,
8336         };
8337         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8338             /* Normally we would always end the TB on an SCTLR write, but Linux
8339              * arch/arm/mach-pxa/sleep.S expects two instructions following
8340              * an MMU enable to execute from cache.  Imitate this behaviour.
8341              */
8342             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8343         }
8344         define_one_arm_cp_reg(cpu, &sctlr);
8345     }
8346 
8347     if (cpu_isar_feature(aa64_lor, cpu)) {
8348         define_arm_cp_regs(cpu, lor_reginfo);
8349     }
8350     if (cpu_isar_feature(aa64_pan, cpu)) {
8351         define_one_arm_cp_reg(cpu, &pan_reginfo);
8352     }
8353 #ifndef CONFIG_USER_ONLY
8354     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8355         define_arm_cp_regs(cpu, ats1e1_reginfo);
8356     }
8357     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8358         define_arm_cp_regs(cpu, ats1cp_reginfo);
8359     }
8360 #endif
8361     if (cpu_isar_feature(aa64_uao, cpu)) {
8362         define_one_arm_cp_reg(cpu, &uao_reginfo);
8363     }
8364 
8365     if (cpu_isar_feature(aa64_dit, cpu)) {
8366         define_one_arm_cp_reg(cpu, &dit_reginfo);
8367     }
8368     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8369         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8370     }
8371     if (cpu_isar_feature(any_ras, cpu)) {
8372         define_arm_cp_regs(cpu, minimal_ras_reginfo);
8373     }
8374 
8375     if (cpu_isar_feature(aa64_vh, cpu) ||
8376         cpu_isar_feature(aa64_debugv8p2, cpu)) {
8377         define_one_arm_cp_reg(cpu, &contextidr_el2);
8378     }
8379     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8380         define_arm_cp_regs(cpu, vhe_reginfo);
8381     }
8382 
8383     if (cpu_isar_feature(aa64_sve, cpu)) {
8384         define_arm_cp_regs(cpu, zcr_reginfo);
8385     }
8386 
8387 #ifdef TARGET_AARCH64
8388     if (cpu_isar_feature(aa64_pauth, cpu)) {
8389         define_arm_cp_regs(cpu, pauth_reginfo);
8390     }
8391     if (cpu_isar_feature(aa64_rndr, cpu)) {
8392         define_arm_cp_regs(cpu, rndr_reginfo);
8393     }
8394     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8395         define_arm_cp_regs(cpu, tlbirange_reginfo);
8396     }
8397     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8398         define_arm_cp_regs(cpu, tlbios_reginfo);
8399     }
8400 #ifndef CONFIG_USER_ONLY
8401     /* Data Cache clean instructions up to PoP */
8402     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8403         define_one_arm_cp_reg(cpu, dcpop_reg);
8404 
8405         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8406             define_one_arm_cp_reg(cpu, dcpodp_reg);
8407         }
8408     }
8409 #endif /*CONFIG_USER_ONLY*/
8410 
8411     /*
8412      * If full MTE is enabled, add all of the system registers.
8413      * If only "instructions available at EL0" are enabled,
8414      * then define only a RAZ/WI version of PSTATE.TCO.
8415      */
8416     if (cpu_isar_feature(aa64_mte, cpu)) {
8417         define_arm_cp_regs(cpu, mte_reginfo);
8418         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8419     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8420         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8421         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8422     }
8423 
8424     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
8425         define_arm_cp_regs(cpu, scxtnum_reginfo);
8426     }
8427 #endif
8428 
8429     if (cpu_isar_feature(any_predinv, cpu)) {
8430         define_arm_cp_regs(cpu, predinv_reginfo);
8431     }
8432 
8433     if (cpu_isar_feature(any_ccidx, cpu)) {
8434         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8435     }
8436 
8437 #ifndef CONFIG_USER_ONLY
8438     /*
8439      * Register redirections and aliases must be done last,
8440      * after the registers from the other extensions have been defined.
8441      */
8442     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8443         define_arm_vh_e2h_redirects_aliases(cpu);
8444     }
8445 #endif
8446 }
8447 
8448 /* Sort alphabetically by type name, except for "any". */
8449 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8450 {
8451     ObjectClass *class_a = (ObjectClass *)a;
8452     ObjectClass *class_b = (ObjectClass *)b;
8453     const char *name_a, *name_b;
8454 
8455     name_a = object_class_get_name(class_a);
8456     name_b = object_class_get_name(class_b);
8457     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8458         return 1;
8459     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8460         return -1;
8461     } else {
8462         return strcmp(name_a, name_b);
8463     }
8464 }
8465 
8466 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8467 {
8468     ObjectClass *oc = data;
8469     const char *typename;
8470     char *name;
8471 
8472     typename = object_class_get_name(oc);
8473     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8474     qemu_printf("  %s\n", name);
8475     g_free(name);
8476 }
8477 
8478 void arm_cpu_list(void)
8479 {
8480     GSList *list;
8481 
8482     list = object_class_get_list(TYPE_ARM_CPU, false);
8483     list = g_slist_sort(list, arm_cpu_list_compare);
8484     qemu_printf("Available CPUs:\n");
8485     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8486     g_slist_free(list);
8487 }
8488 
8489 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8490 {
8491     ObjectClass *oc = data;
8492     CpuDefinitionInfoList **cpu_list = user_data;
8493     CpuDefinitionInfo *info;
8494     const char *typename;
8495 
8496     typename = object_class_get_name(oc);
8497     info = g_malloc0(sizeof(*info));
8498     info->name = g_strndup(typename,
8499                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8500     info->q_typename = g_strdup(typename);
8501 
8502     QAPI_LIST_PREPEND(*cpu_list, info);
8503 }
8504 
8505 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8506 {
8507     CpuDefinitionInfoList *cpu_list = NULL;
8508     GSList *list;
8509 
8510     list = object_class_get_list(TYPE_ARM_CPU, false);
8511     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8512     g_slist_free(list);
8513 
8514     return cpu_list;
8515 }
8516 
8517 /*
8518  * Private utility function for define_one_arm_cp_reg_with_opaque():
8519  * add a single reginfo struct to the hash table.
8520  */
8521 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8522                                    void *opaque, CPState state,
8523                                    CPSecureState secstate,
8524                                    int crm, int opc1, int opc2,
8525                                    const char *name)
8526 {
8527     CPUARMState *env = &cpu->env;
8528     uint32_t key;
8529     ARMCPRegInfo *r2;
8530     bool is64 = r->type & ARM_CP_64BIT;
8531     bool ns = secstate & ARM_CP_SECSTATE_NS;
8532     int cp = r->cp;
8533     size_t name_len;
8534     bool make_const;
8535 
8536     switch (state) {
8537     case ARM_CP_STATE_AA32:
8538         /* We assume it is a cp15 register if the .cp field is left unset. */
8539         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
8540             cp = 15;
8541         }
8542         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
8543         break;
8544     case ARM_CP_STATE_AA64:
8545         /*
8546          * To allow abbreviation of ARMCPRegInfo definitions, we treat
8547          * cp == 0 as equivalent to the value for "standard guest-visible
8548          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
8549          * in their AArch64 view (the .cp value may be non-zero for the
8550          * benefit of the AArch32 view).
8551          */
8552         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8553             cp = CP_REG_ARM64_SYSREG_CP;
8554         }
8555         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
8556         break;
8557     default:
8558         g_assert_not_reached();
8559     }
8560 
8561     /* Overriding of an existing definition must be explicitly requested. */
8562     if (!(r->type & ARM_CP_OVERRIDE)) {
8563         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
8564         if (oldreg) {
8565             assert(oldreg->type & ARM_CP_OVERRIDE);
8566         }
8567     }
8568 
8569     /*
8570      * Eliminate registers that are not present because the EL is missing.
8571      * Doing this here makes it easier to put all registers for a given
8572      * feature into the same ARMCPRegInfo array and define them all at once.
8573      */
8574     make_const = false;
8575     if (arm_feature(env, ARM_FEATURE_EL3)) {
8576         /*
8577          * An EL2 register without EL2 but with EL3 is (usually) RES0.
8578          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
8579          */
8580         int min_el = ctz32(r->access) / 2;
8581         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
8582             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
8583                 return;
8584             }
8585             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
8586         }
8587     } else {
8588         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
8589                                  ? PL2_RW : PL1_RW);
8590         if ((r->access & max_el) == 0) {
8591             return;
8592         }
8593     }
8594 
8595     /* Combine cpreg and name into one allocation. */
8596     name_len = strlen(name) + 1;
8597     r2 = g_malloc(sizeof(*r2) + name_len);
8598     *r2 = *r;
8599     r2->name = memcpy(r2 + 1, name, name_len);
8600 
8601     /*
8602      * Update fields to match the instantiation, overwiting wildcards
8603      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
8604      */
8605     r2->cp = cp;
8606     r2->crm = crm;
8607     r2->opc1 = opc1;
8608     r2->opc2 = opc2;
8609     r2->state = state;
8610     r2->secure = secstate;
8611     if (opaque) {
8612         r2->opaque = opaque;
8613     }
8614 
8615     if (make_const) {
8616         /* This should not have been a very special register to begin. */
8617         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
8618         assert(old_special == 0 || old_special == ARM_CP_NOP);
8619         /*
8620          * Set the special function to CONST, retaining the other flags.
8621          * This is important for e.g. ARM_CP_SVE so that we still
8622          * take the SVE trap if CPTR_EL3.EZ == 0.
8623          */
8624         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
8625         /*
8626          * Usually, these registers become RES0, but there are a few
8627          * special cases like VPIDR_EL2 which have a constant non-zero
8628          * value with writes ignored.
8629          */
8630         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
8631             r2->resetvalue = 0;
8632         }
8633         /*
8634          * ARM_CP_CONST has precedence, so removing the callbacks and
8635          * offsets are not strictly necessary, but it is potentially
8636          * less confusing to debug later.
8637          */
8638         r2->readfn = NULL;
8639         r2->writefn = NULL;
8640         r2->raw_readfn = NULL;
8641         r2->raw_writefn = NULL;
8642         r2->resetfn = NULL;
8643         r2->fieldoffset = 0;
8644         r2->bank_fieldoffsets[0] = 0;
8645         r2->bank_fieldoffsets[1] = 0;
8646     } else {
8647         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
8648 
8649         if (isbanked) {
8650             /*
8651              * Register is banked (using both entries in array).
8652              * Overwriting fieldoffset as the array is only used to define
8653              * banked registers but later only fieldoffset is used.
8654              */
8655             r2->fieldoffset = r->bank_fieldoffsets[ns];
8656         }
8657         if (state == ARM_CP_STATE_AA32) {
8658             if (isbanked) {
8659                 /*
8660                  * If the register is banked then we don't need to migrate or
8661                  * reset the 32-bit instance in certain cases:
8662                  *
8663                  * 1) If the register has both 32-bit and 64-bit instances
8664                  *    then we can count on the 64-bit instance taking care
8665                  *    of the non-secure bank.
8666                  * 2) If ARMv8 is enabled then we can count on a 64-bit
8667                  *    version taking care of the secure bank.  This requires
8668                  *    that separate 32 and 64-bit definitions are provided.
8669                  */
8670                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8671                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
8672                     r2->type |= ARM_CP_ALIAS;
8673                 }
8674             } else if ((secstate != r->secure) && !ns) {
8675                 /*
8676                  * The register is not banked so we only want to allow
8677                  * migration of the non-secure instance.
8678                  */
8679                 r2->type |= ARM_CP_ALIAS;
8680             }
8681 
8682             if (HOST_BIG_ENDIAN &&
8683                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
8684                 r2->fieldoffset += sizeof(uint32_t);
8685             }
8686         }
8687     }
8688 
8689     /*
8690      * By convention, for wildcarded registers only the first
8691      * entry is used for migration; the others are marked as
8692      * ALIAS so we don't try to transfer the register
8693      * multiple times. Special registers (ie NOP/WFI) are
8694      * never migratable and not even raw-accessible.
8695      */
8696     if (r2->type & ARM_CP_SPECIAL_MASK) {
8697         r2->type |= ARM_CP_NO_RAW;
8698     }
8699     if (((r->crm == CP_ANY) && crm != 0) ||
8700         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8701         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8702         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8703     }
8704 
8705     /*
8706      * Check that raw accesses are either forbidden or handled. Note that
8707      * we can't assert this earlier because the setup of fieldoffset for
8708      * banked registers has to be done first.
8709      */
8710     if (!(r2->type & ARM_CP_NO_RAW)) {
8711         assert(!raw_accessors_invalid(r2));
8712     }
8713 
8714     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
8715 }
8716 
8717 
8718 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8719                                        const ARMCPRegInfo *r, void *opaque)
8720 {
8721     /* Define implementations of coprocessor registers.
8722      * We store these in a hashtable because typically
8723      * there are less than 150 registers in a space which
8724      * is 16*16*16*8*8 = 262144 in size.
8725      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8726      * If a register is defined twice then the second definition is
8727      * used, so this can be used to define some generic registers and
8728      * then override them with implementation specific variations.
8729      * At least one of the original and the second definition should
8730      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8731      * against accidental use.
8732      *
8733      * The state field defines whether the register is to be
8734      * visible in the AArch32 or AArch64 execution state. If the
8735      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8736      * reginfo structure for the AArch32 view, which sees the lower
8737      * 32 bits of the 64 bit register.
8738      *
8739      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8740      * be wildcarded. AArch64 registers are always considered to be 64
8741      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8742      * the register, if any.
8743      */
8744     int crm, opc1, opc2;
8745     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8746     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8747     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8748     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8749     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8750     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8751     CPState state;
8752 
8753     /* 64 bit registers have only CRm and Opc1 fields */
8754     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8755     /* op0 only exists in the AArch64 encodings */
8756     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8757     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8758     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8759     /*
8760      * This API is only for Arm's system coprocessors (14 and 15) or
8761      * (M-profile or v7A-and-earlier only) for implementation defined
8762      * coprocessors in the range 0..7.  Our decode assumes this, since
8763      * 8..13 can be used for other insns including VFP and Neon. See
8764      * valid_cp() in translate.c.  Assert here that we haven't tried
8765      * to use an invalid coprocessor number.
8766      */
8767     switch (r->state) {
8768     case ARM_CP_STATE_BOTH:
8769         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8770         if (r->cp == 0) {
8771             break;
8772         }
8773         /* fall through */
8774     case ARM_CP_STATE_AA32:
8775         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8776             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8777             assert(r->cp >= 14 && r->cp <= 15);
8778         } else {
8779             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8780         }
8781         break;
8782     case ARM_CP_STATE_AA64:
8783         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8784         break;
8785     default:
8786         g_assert_not_reached();
8787     }
8788     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8789      * encodes a minimum access level for the register. We roll this
8790      * runtime check into our general permission check code, so check
8791      * here that the reginfo's specified permissions are strict enough
8792      * to encompass the generic architectural permission check.
8793      */
8794     if (r->state != ARM_CP_STATE_AA32) {
8795         CPAccessRights mask;
8796         switch (r->opc1) {
8797         case 0:
8798             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8799             mask = PL0U_R | PL1_RW;
8800             break;
8801         case 1: case 2:
8802             /* min_EL EL1 */
8803             mask = PL1_RW;
8804             break;
8805         case 3:
8806             /* min_EL EL0 */
8807             mask = PL0_RW;
8808             break;
8809         case 4:
8810         case 5:
8811             /* min_EL EL2 */
8812             mask = PL2_RW;
8813             break;
8814         case 6:
8815             /* min_EL EL3 */
8816             mask = PL3_RW;
8817             break;
8818         case 7:
8819             /* min_EL EL1, secure mode only (we don't check the latter) */
8820             mask = PL1_RW;
8821             break;
8822         default:
8823             /* broken reginfo with out-of-range opc1 */
8824             g_assert_not_reached();
8825         }
8826         /* assert our permissions are not too lax (stricter is fine) */
8827         assert((r->access & ~mask) == 0);
8828     }
8829 
8830     /* Check that the register definition has enough info to handle
8831      * reads and writes if they are permitted.
8832      */
8833     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
8834         if (r->access & PL3_R) {
8835             assert((r->fieldoffset ||
8836                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8837                    r->readfn);
8838         }
8839         if (r->access & PL3_W) {
8840             assert((r->fieldoffset ||
8841                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8842                    r->writefn);
8843         }
8844     }
8845 
8846     for (crm = crmmin; crm <= crmmax; crm++) {
8847         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8848             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8849                 for (state = ARM_CP_STATE_AA32;
8850                      state <= ARM_CP_STATE_AA64; state++) {
8851                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8852                         continue;
8853                     }
8854                     if (state == ARM_CP_STATE_AA32) {
8855                         /* Under AArch32 CP registers can be common
8856                          * (same for secure and non-secure world) or banked.
8857                          */
8858                         char *name;
8859 
8860                         switch (r->secure) {
8861                         case ARM_CP_SECSTATE_S:
8862                         case ARM_CP_SECSTATE_NS:
8863                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8864                                                    r->secure, crm, opc1, opc2,
8865                                                    r->name);
8866                             break;
8867                         case ARM_CP_SECSTATE_BOTH:
8868                             name = g_strdup_printf("%s_S", r->name);
8869                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8870                                                    ARM_CP_SECSTATE_S,
8871                                                    crm, opc1, opc2, name);
8872                             g_free(name);
8873                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8874                                                    ARM_CP_SECSTATE_NS,
8875                                                    crm, opc1, opc2, r->name);
8876                             break;
8877                         default:
8878                             g_assert_not_reached();
8879                         }
8880                     } else {
8881                         /* AArch64 registers get mapped to non-secure instance
8882                          * of AArch32 */
8883                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8884                                                ARM_CP_SECSTATE_NS,
8885                                                crm, opc1, opc2, r->name);
8886                     }
8887                 }
8888             }
8889         }
8890     }
8891 }
8892 
8893 /* Define a whole list of registers */
8894 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
8895                                         void *opaque, size_t len)
8896 {
8897     size_t i;
8898     for (i = 0; i < len; ++i) {
8899         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
8900     }
8901 }
8902 
8903 /*
8904  * Modify ARMCPRegInfo for access from userspace.
8905  *
8906  * This is a data driven modification directed by
8907  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8908  * user-space cannot alter any values and dynamic values pertaining to
8909  * execution state are hidden from user space view anyway.
8910  */
8911 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
8912                                  const ARMCPRegUserSpaceInfo *mods,
8913                                  size_t mods_len)
8914 {
8915     for (size_t mi = 0; mi < mods_len; ++mi) {
8916         const ARMCPRegUserSpaceInfo *m = mods + mi;
8917         GPatternSpec *pat = NULL;
8918 
8919         if (m->is_glob) {
8920             pat = g_pattern_spec_new(m->name);
8921         }
8922         for (size_t ri = 0; ri < regs_len; ++ri) {
8923             ARMCPRegInfo *r = regs + ri;
8924 
8925             if (pat && g_pattern_match_string(pat, r->name)) {
8926                 r->type = ARM_CP_CONST;
8927                 r->access = PL0U_R;
8928                 r->resetvalue = 0;
8929                 /* continue */
8930             } else if (strcmp(r->name, m->name) == 0) {
8931                 r->type = ARM_CP_CONST;
8932                 r->access = PL0U_R;
8933                 r->resetvalue &= m->exported_bits;
8934                 r->resetvalue |= m->fixed_bits;
8935                 break;
8936             }
8937         }
8938         if (pat) {
8939             g_pattern_spec_free(pat);
8940         }
8941     }
8942 }
8943 
8944 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8945 {
8946     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
8947 }
8948 
8949 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8950                          uint64_t value)
8951 {
8952     /* Helper coprocessor write function for write-ignore registers */
8953 }
8954 
8955 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8956 {
8957     /* Helper coprocessor write function for read-as-zero registers */
8958     return 0;
8959 }
8960 
8961 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8962 {
8963     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8964 }
8965 
8966 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8967 {
8968     /* Return true if it is not valid for us to switch to
8969      * this CPU mode (ie all the UNPREDICTABLE cases in
8970      * the ARM ARM CPSRWriteByInstr pseudocode).
8971      */
8972 
8973     /* Changes to or from Hyp via MSR and CPS are illegal. */
8974     if (write_type == CPSRWriteByInstr &&
8975         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8976          mode == ARM_CPU_MODE_HYP)) {
8977         return 1;
8978     }
8979 
8980     switch (mode) {
8981     case ARM_CPU_MODE_USR:
8982         return 0;
8983     case ARM_CPU_MODE_SYS:
8984     case ARM_CPU_MODE_SVC:
8985     case ARM_CPU_MODE_ABT:
8986     case ARM_CPU_MODE_UND:
8987     case ARM_CPU_MODE_IRQ:
8988     case ARM_CPU_MODE_FIQ:
8989         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8990          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8991          */
8992         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8993          * and CPS are treated as illegal mode changes.
8994          */
8995         if (write_type == CPSRWriteByInstr &&
8996             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8997             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8998             return 1;
8999         }
9000         return 0;
9001     case ARM_CPU_MODE_HYP:
9002         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9003     case ARM_CPU_MODE_MON:
9004         return arm_current_el(env) < 3;
9005     default:
9006         return 1;
9007     }
9008 }
9009 
9010 uint32_t cpsr_read(CPUARMState *env)
9011 {
9012     int ZF;
9013     ZF = (env->ZF == 0);
9014     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9015         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9016         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9017         | ((env->condexec_bits & 0xfc) << 8)
9018         | (env->GE << 16) | (env->daif & CPSR_AIF);
9019 }
9020 
9021 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9022                 CPSRWriteType write_type)
9023 {
9024     uint32_t changed_daif;
9025     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9026         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9027 
9028     if (mask & CPSR_NZCV) {
9029         env->ZF = (~val) & CPSR_Z;
9030         env->NF = val;
9031         env->CF = (val >> 29) & 1;
9032         env->VF = (val << 3) & 0x80000000;
9033     }
9034     if (mask & CPSR_Q)
9035         env->QF = ((val & CPSR_Q) != 0);
9036     if (mask & CPSR_T)
9037         env->thumb = ((val & CPSR_T) != 0);
9038     if (mask & CPSR_IT_0_1) {
9039         env->condexec_bits &= ~3;
9040         env->condexec_bits |= (val >> 25) & 3;
9041     }
9042     if (mask & CPSR_IT_2_7) {
9043         env->condexec_bits &= 3;
9044         env->condexec_bits |= (val >> 8) & 0xfc;
9045     }
9046     if (mask & CPSR_GE) {
9047         env->GE = (val >> 16) & 0xf;
9048     }
9049 
9050     /* In a V7 implementation that includes the security extensions but does
9051      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9052      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9053      * bits respectively.
9054      *
9055      * In a V8 implementation, it is permitted for privileged software to
9056      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9057      */
9058     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9059         arm_feature(env, ARM_FEATURE_EL3) &&
9060         !arm_feature(env, ARM_FEATURE_EL2) &&
9061         !arm_is_secure(env)) {
9062 
9063         changed_daif = (env->daif ^ val) & mask;
9064 
9065         if (changed_daif & CPSR_A) {
9066             /* Check to see if we are allowed to change the masking of async
9067              * abort exceptions from a non-secure state.
9068              */
9069             if (!(env->cp15.scr_el3 & SCR_AW)) {
9070                 qemu_log_mask(LOG_GUEST_ERROR,
9071                               "Ignoring attempt to switch CPSR_A flag from "
9072                               "non-secure world with SCR.AW bit clear\n");
9073                 mask &= ~CPSR_A;
9074             }
9075         }
9076 
9077         if (changed_daif & CPSR_F) {
9078             /* Check to see if we are allowed to change the masking of FIQ
9079              * exceptions from a non-secure state.
9080              */
9081             if (!(env->cp15.scr_el3 & SCR_FW)) {
9082                 qemu_log_mask(LOG_GUEST_ERROR,
9083                               "Ignoring attempt to switch CPSR_F flag from "
9084                               "non-secure world with SCR.FW bit clear\n");
9085                 mask &= ~CPSR_F;
9086             }
9087 
9088             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9089              * If this bit is set software is not allowed to mask
9090              * FIQs, but is allowed to set CPSR_F to 0.
9091              */
9092             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9093                 (val & CPSR_F)) {
9094                 qemu_log_mask(LOG_GUEST_ERROR,
9095                               "Ignoring attempt to enable CPSR_F flag "
9096                               "(non-maskable FIQ [NMFI] support enabled)\n");
9097                 mask &= ~CPSR_F;
9098             }
9099         }
9100     }
9101 
9102     env->daif &= ~(CPSR_AIF & mask);
9103     env->daif |= val & CPSR_AIF & mask;
9104 
9105     if (write_type != CPSRWriteRaw &&
9106         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9107         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9108             /* Note that we can only get here in USR mode if this is a
9109              * gdb stub write; for this case we follow the architectural
9110              * behaviour for guest writes in USR mode of ignoring an attempt
9111              * to switch mode. (Those are caught by translate.c for writes
9112              * triggered by guest instructions.)
9113              */
9114             mask &= ~CPSR_M;
9115         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9116             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9117              * v7, and has defined behaviour in v8:
9118              *  + leave CPSR.M untouched
9119              *  + allow changes to the other CPSR fields
9120              *  + set PSTATE.IL
9121              * For user changes via the GDB stub, we don't set PSTATE.IL,
9122              * as this would be unnecessarily harsh for a user error.
9123              */
9124             mask &= ~CPSR_M;
9125             if (write_type != CPSRWriteByGDBStub &&
9126                 arm_feature(env, ARM_FEATURE_V8)) {
9127                 mask |= CPSR_IL;
9128                 val |= CPSR_IL;
9129             }
9130             qemu_log_mask(LOG_GUEST_ERROR,
9131                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9132                           aarch32_mode_name(env->uncached_cpsr),
9133                           aarch32_mode_name(val));
9134         } else {
9135             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9136                           write_type == CPSRWriteExceptionReturn ?
9137                           "Exception return from AArch32" :
9138                           "AArch32 mode switch from",
9139                           aarch32_mode_name(env->uncached_cpsr),
9140                           aarch32_mode_name(val), env->regs[15]);
9141             switch_mode(env, val & CPSR_M);
9142         }
9143     }
9144     mask &= ~CACHED_CPSR_BITS;
9145     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9146     if (rebuild_hflags) {
9147         arm_rebuild_hflags(env);
9148     }
9149 }
9150 
9151 /* Sign/zero extend */
9152 uint32_t HELPER(sxtb16)(uint32_t x)
9153 {
9154     uint32_t res;
9155     res = (uint16_t)(int8_t)x;
9156     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9157     return res;
9158 }
9159 
9160 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9161 {
9162     /*
9163      * Take a division-by-zero exception if necessary; otherwise return
9164      * to get the usual non-trapping division behaviour (result of 0)
9165      */
9166     if (arm_feature(env, ARM_FEATURE_M)
9167         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9168         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9169     }
9170 }
9171 
9172 uint32_t HELPER(uxtb16)(uint32_t x)
9173 {
9174     uint32_t res;
9175     res = (uint16_t)(uint8_t)x;
9176     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9177     return res;
9178 }
9179 
9180 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9181 {
9182     if (den == 0) {
9183         handle_possible_div0_trap(env, GETPC());
9184         return 0;
9185     }
9186     if (num == INT_MIN && den == -1) {
9187         return INT_MIN;
9188     }
9189     return num / den;
9190 }
9191 
9192 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9193 {
9194     if (den == 0) {
9195         handle_possible_div0_trap(env, GETPC());
9196         return 0;
9197     }
9198     return num / den;
9199 }
9200 
9201 uint32_t HELPER(rbit)(uint32_t x)
9202 {
9203     return revbit32(x);
9204 }
9205 
9206 #ifdef CONFIG_USER_ONLY
9207 
9208 static void switch_mode(CPUARMState *env, int mode)
9209 {
9210     ARMCPU *cpu = env_archcpu(env);
9211 
9212     if (mode != ARM_CPU_MODE_USR) {
9213         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9214     }
9215 }
9216 
9217 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9218                                  uint32_t cur_el, bool secure)
9219 {
9220     return 1;
9221 }
9222 
9223 void aarch64_sync_64_to_32(CPUARMState *env)
9224 {
9225     g_assert_not_reached();
9226 }
9227 
9228 #else
9229 
9230 static void switch_mode(CPUARMState *env, int mode)
9231 {
9232     int old_mode;
9233     int i;
9234 
9235     old_mode = env->uncached_cpsr & CPSR_M;
9236     if (mode == old_mode)
9237         return;
9238 
9239     if (old_mode == ARM_CPU_MODE_FIQ) {
9240         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9241         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9242     } else if (mode == ARM_CPU_MODE_FIQ) {
9243         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9244         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9245     }
9246 
9247     i = bank_number(old_mode);
9248     env->banked_r13[i] = env->regs[13];
9249     env->banked_spsr[i] = env->spsr;
9250 
9251     i = bank_number(mode);
9252     env->regs[13] = env->banked_r13[i];
9253     env->spsr = env->banked_spsr[i];
9254 
9255     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9256     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9257 }
9258 
9259 /* Physical Interrupt Target EL Lookup Table
9260  *
9261  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9262  *
9263  * The below multi-dimensional table is used for looking up the target
9264  * exception level given numerous condition criteria.  Specifically, the
9265  * target EL is based on SCR and HCR routing controls as well as the
9266  * currently executing EL and secure state.
9267  *
9268  *    Dimensions:
9269  *    target_el_table[2][2][2][2][2][4]
9270  *                    |  |  |  |  |  +--- Current EL
9271  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9272  *                    |  |  |  +--------- HCR mask override
9273  *                    |  |  +------------ SCR exec state control
9274  *                    |  +--------------- SCR mask override
9275  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9276  *
9277  *    The table values are as such:
9278  *    0-3 = EL0-EL3
9279  *     -1 = Cannot occur
9280  *
9281  * The ARM ARM target EL table includes entries indicating that an "exception
9282  * is not taken".  The two cases where this is applicable are:
9283  *    1) An exception is taken from EL3 but the SCR does not have the exception
9284  *    routed to EL3.
9285  *    2) An exception is taken from EL2 but the HCR does not have the exception
9286  *    routed to EL2.
9287  * In these two cases, the below table contain a target of EL1.  This value is
9288  * returned as it is expected that the consumer of the table data will check
9289  * for "target EL >= current EL" to ensure the exception is not taken.
9290  *
9291  *            SCR     HCR
9292  *         64  EA     AMO                 From
9293  *        BIT IRQ     IMO      Non-secure         Secure
9294  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9295  */
9296 static const int8_t target_el_table[2][2][2][2][2][4] = {
9297     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9298        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9299       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9300        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9301      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9302        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9303       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9304        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9305     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9306        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9307       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9308        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9309      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9310        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9311       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9312        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9313 };
9314 
9315 /*
9316  * Determine the target EL for physical exceptions
9317  */
9318 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9319                                  uint32_t cur_el, bool secure)
9320 {
9321     CPUARMState *env = cs->env_ptr;
9322     bool rw;
9323     bool scr;
9324     bool hcr;
9325     int target_el;
9326     /* Is the highest EL AArch64? */
9327     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9328     uint64_t hcr_el2;
9329 
9330     if (arm_feature(env, ARM_FEATURE_EL3)) {
9331         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9332     } else {
9333         /* Either EL2 is the highest EL (and so the EL2 register width
9334          * is given by is64); or there is no EL2 or EL3, in which case
9335          * the value of 'rw' does not affect the table lookup anyway.
9336          */
9337         rw = is64;
9338     }
9339 
9340     hcr_el2 = arm_hcr_el2_eff(env);
9341     switch (excp_idx) {
9342     case EXCP_IRQ:
9343         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9344         hcr = hcr_el2 & HCR_IMO;
9345         break;
9346     case EXCP_FIQ:
9347         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9348         hcr = hcr_el2 & HCR_FMO;
9349         break;
9350     default:
9351         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9352         hcr = hcr_el2 & HCR_AMO;
9353         break;
9354     };
9355 
9356     /*
9357      * For these purposes, TGE and AMO/IMO/FMO both force the
9358      * interrupt to EL2.  Fold TGE into the bit extracted above.
9359      */
9360     hcr |= (hcr_el2 & HCR_TGE) != 0;
9361 
9362     /* Perform a table-lookup for the target EL given the current state */
9363     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9364 
9365     assert(target_el > 0);
9366 
9367     return target_el;
9368 }
9369 
9370 void arm_log_exception(CPUState *cs)
9371 {
9372     int idx = cs->exception_index;
9373 
9374     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9375         const char *exc = NULL;
9376         static const char * const excnames[] = {
9377             [EXCP_UDEF] = "Undefined Instruction",
9378             [EXCP_SWI] = "SVC",
9379             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9380             [EXCP_DATA_ABORT] = "Data Abort",
9381             [EXCP_IRQ] = "IRQ",
9382             [EXCP_FIQ] = "FIQ",
9383             [EXCP_BKPT] = "Breakpoint",
9384             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9385             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9386             [EXCP_HVC] = "Hypervisor Call",
9387             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9388             [EXCP_SMC] = "Secure Monitor Call",
9389             [EXCP_VIRQ] = "Virtual IRQ",
9390             [EXCP_VFIQ] = "Virtual FIQ",
9391             [EXCP_SEMIHOST] = "Semihosting call",
9392             [EXCP_NOCP] = "v7M NOCP UsageFault",
9393             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9394             [EXCP_STKOF] = "v8M STKOF UsageFault",
9395             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9396             [EXCP_LSERR] = "v8M LSERR UsageFault",
9397             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9398             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9399             [EXCP_VSERR] = "Virtual SERR",
9400         };
9401 
9402         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9403             exc = excnames[idx];
9404         }
9405         if (!exc) {
9406             exc = "unknown";
9407         }
9408         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9409                       idx, exc, cs->cpu_index);
9410     }
9411 }
9412 
9413 /*
9414  * Function used to synchronize QEMU's AArch64 register set with AArch32
9415  * register set.  This is necessary when switching between AArch32 and AArch64
9416  * execution state.
9417  */
9418 void aarch64_sync_32_to_64(CPUARMState *env)
9419 {
9420     int i;
9421     uint32_t mode = env->uncached_cpsr & CPSR_M;
9422 
9423     /* We can blanket copy R[0:7] to X[0:7] */
9424     for (i = 0; i < 8; i++) {
9425         env->xregs[i] = env->regs[i];
9426     }
9427 
9428     /*
9429      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9430      * Otherwise, they come from the banked user regs.
9431      */
9432     if (mode == ARM_CPU_MODE_FIQ) {
9433         for (i = 8; i < 13; i++) {
9434             env->xregs[i] = env->usr_regs[i - 8];
9435         }
9436     } else {
9437         for (i = 8; i < 13; i++) {
9438             env->xregs[i] = env->regs[i];
9439         }
9440     }
9441 
9442     /*
9443      * Registers x13-x23 are the various mode SP and FP registers. Registers
9444      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9445      * from the mode banked register.
9446      */
9447     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9448         env->xregs[13] = env->regs[13];
9449         env->xregs[14] = env->regs[14];
9450     } else {
9451         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9452         /* HYP is an exception in that it is copied from r14 */
9453         if (mode == ARM_CPU_MODE_HYP) {
9454             env->xregs[14] = env->regs[14];
9455         } else {
9456             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9457         }
9458     }
9459 
9460     if (mode == ARM_CPU_MODE_HYP) {
9461         env->xregs[15] = env->regs[13];
9462     } else {
9463         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9464     }
9465 
9466     if (mode == ARM_CPU_MODE_IRQ) {
9467         env->xregs[16] = env->regs[14];
9468         env->xregs[17] = env->regs[13];
9469     } else {
9470         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9471         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9472     }
9473 
9474     if (mode == ARM_CPU_MODE_SVC) {
9475         env->xregs[18] = env->regs[14];
9476         env->xregs[19] = env->regs[13];
9477     } else {
9478         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9479         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9480     }
9481 
9482     if (mode == ARM_CPU_MODE_ABT) {
9483         env->xregs[20] = env->regs[14];
9484         env->xregs[21] = env->regs[13];
9485     } else {
9486         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9487         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9488     }
9489 
9490     if (mode == ARM_CPU_MODE_UND) {
9491         env->xregs[22] = env->regs[14];
9492         env->xregs[23] = env->regs[13];
9493     } else {
9494         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9495         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9496     }
9497 
9498     /*
9499      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9500      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9501      * FIQ bank for r8-r14.
9502      */
9503     if (mode == ARM_CPU_MODE_FIQ) {
9504         for (i = 24; i < 31; i++) {
9505             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9506         }
9507     } else {
9508         for (i = 24; i < 29; i++) {
9509             env->xregs[i] = env->fiq_regs[i - 24];
9510         }
9511         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9512         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9513     }
9514 
9515     env->pc = env->regs[15];
9516 }
9517 
9518 /*
9519  * Function used to synchronize QEMU's AArch32 register set with AArch64
9520  * register set.  This is necessary when switching between AArch32 and AArch64
9521  * execution state.
9522  */
9523 void aarch64_sync_64_to_32(CPUARMState *env)
9524 {
9525     int i;
9526     uint32_t mode = env->uncached_cpsr & CPSR_M;
9527 
9528     /* We can blanket copy X[0:7] to R[0:7] */
9529     for (i = 0; i < 8; i++) {
9530         env->regs[i] = env->xregs[i];
9531     }
9532 
9533     /*
9534      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9535      * Otherwise, we copy x8-x12 into the banked user regs.
9536      */
9537     if (mode == ARM_CPU_MODE_FIQ) {
9538         for (i = 8; i < 13; i++) {
9539             env->usr_regs[i - 8] = env->xregs[i];
9540         }
9541     } else {
9542         for (i = 8; i < 13; i++) {
9543             env->regs[i] = env->xregs[i];
9544         }
9545     }
9546 
9547     /*
9548      * Registers r13 & r14 depend on the current mode.
9549      * If we are in a given mode, we copy the corresponding x registers to r13
9550      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9551      * for the mode.
9552      */
9553     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9554         env->regs[13] = env->xregs[13];
9555         env->regs[14] = env->xregs[14];
9556     } else {
9557         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9558 
9559         /*
9560          * HYP is an exception in that it does not have its own banked r14 but
9561          * shares the USR r14
9562          */
9563         if (mode == ARM_CPU_MODE_HYP) {
9564             env->regs[14] = env->xregs[14];
9565         } else {
9566             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9567         }
9568     }
9569 
9570     if (mode == ARM_CPU_MODE_HYP) {
9571         env->regs[13] = env->xregs[15];
9572     } else {
9573         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9574     }
9575 
9576     if (mode == ARM_CPU_MODE_IRQ) {
9577         env->regs[14] = env->xregs[16];
9578         env->regs[13] = env->xregs[17];
9579     } else {
9580         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9581         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9582     }
9583 
9584     if (mode == ARM_CPU_MODE_SVC) {
9585         env->regs[14] = env->xregs[18];
9586         env->regs[13] = env->xregs[19];
9587     } else {
9588         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9589         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9590     }
9591 
9592     if (mode == ARM_CPU_MODE_ABT) {
9593         env->regs[14] = env->xregs[20];
9594         env->regs[13] = env->xregs[21];
9595     } else {
9596         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9597         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9598     }
9599 
9600     if (mode == ARM_CPU_MODE_UND) {
9601         env->regs[14] = env->xregs[22];
9602         env->regs[13] = env->xregs[23];
9603     } else {
9604         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9605         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9606     }
9607 
9608     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9609      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9610      * FIQ bank for r8-r14.
9611      */
9612     if (mode == ARM_CPU_MODE_FIQ) {
9613         for (i = 24; i < 31; i++) {
9614             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9615         }
9616     } else {
9617         for (i = 24; i < 29; i++) {
9618             env->fiq_regs[i - 24] = env->xregs[i];
9619         }
9620         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9621         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9622     }
9623 
9624     env->regs[15] = env->pc;
9625 }
9626 
9627 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9628                                    uint32_t mask, uint32_t offset,
9629                                    uint32_t newpc)
9630 {
9631     int new_el;
9632 
9633     /* Change the CPU state so as to actually take the exception. */
9634     switch_mode(env, new_mode);
9635 
9636     /*
9637      * For exceptions taken to AArch32 we must clear the SS bit in both
9638      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9639      */
9640     env->pstate &= ~PSTATE_SS;
9641     env->spsr = cpsr_read(env);
9642     /* Clear IT bits.  */
9643     env->condexec_bits = 0;
9644     /* Switch to the new mode, and to the correct instruction set.  */
9645     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9646 
9647     /* This must be after mode switching. */
9648     new_el = arm_current_el(env);
9649 
9650     /* Set new mode endianness */
9651     env->uncached_cpsr &= ~CPSR_E;
9652     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9653         env->uncached_cpsr |= CPSR_E;
9654     }
9655     /* J and IL must always be cleared for exception entry */
9656     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9657     env->daif |= mask;
9658 
9659     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9660         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9661             env->uncached_cpsr |= CPSR_SSBS;
9662         } else {
9663             env->uncached_cpsr &= ~CPSR_SSBS;
9664         }
9665     }
9666 
9667     if (new_mode == ARM_CPU_MODE_HYP) {
9668         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9669         env->elr_el[2] = env->regs[15];
9670     } else {
9671         /* CPSR.PAN is normally preserved preserved unless...  */
9672         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9673             switch (new_el) {
9674             case 3:
9675                 if (!arm_is_secure_below_el3(env)) {
9676                     /* ... the target is EL3, from non-secure state.  */
9677                     env->uncached_cpsr &= ~CPSR_PAN;
9678                     break;
9679                 }
9680                 /* ... the target is EL3, from secure state ... */
9681                 /* fall through */
9682             case 1:
9683                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9684                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9685                     env->uncached_cpsr |= CPSR_PAN;
9686                 }
9687                 break;
9688             }
9689         }
9690         /*
9691          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9692          * and we should just guard the thumb mode on V4
9693          */
9694         if (arm_feature(env, ARM_FEATURE_V4T)) {
9695             env->thumb =
9696                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9697         }
9698         env->regs[14] = env->regs[15] + offset;
9699     }
9700     env->regs[15] = newpc;
9701     arm_rebuild_hflags(env);
9702 }
9703 
9704 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9705 {
9706     /*
9707      * Handle exception entry to Hyp mode; this is sufficiently
9708      * different to entry to other AArch32 modes that we handle it
9709      * separately here.
9710      *
9711      * The vector table entry used is always the 0x14 Hyp mode entry point,
9712      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9713      * The offset applied to the preferred return address is always zero
9714      * (see DDI0487C.a section G1.12.3).
9715      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9716      */
9717     uint32_t addr, mask;
9718     ARMCPU *cpu = ARM_CPU(cs);
9719     CPUARMState *env = &cpu->env;
9720 
9721     switch (cs->exception_index) {
9722     case EXCP_UDEF:
9723         addr = 0x04;
9724         break;
9725     case EXCP_SWI:
9726         addr = 0x08;
9727         break;
9728     case EXCP_BKPT:
9729         /* Fall through to prefetch abort.  */
9730     case EXCP_PREFETCH_ABORT:
9731         env->cp15.ifar_s = env->exception.vaddress;
9732         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9733                       (uint32_t)env->exception.vaddress);
9734         addr = 0x0c;
9735         break;
9736     case EXCP_DATA_ABORT:
9737         env->cp15.dfar_s = env->exception.vaddress;
9738         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9739                       (uint32_t)env->exception.vaddress);
9740         addr = 0x10;
9741         break;
9742     case EXCP_IRQ:
9743         addr = 0x18;
9744         break;
9745     case EXCP_FIQ:
9746         addr = 0x1c;
9747         break;
9748     case EXCP_HVC:
9749         addr = 0x08;
9750         break;
9751     case EXCP_HYP_TRAP:
9752         addr = 0x14;
9753         break;
9754     default:
9755         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9756     }
9757 
9758     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9759         if (!arm_feature(env, ARM_FEATURE_V8)) {
9760             /*
9761              * QEMU syndrome values are v8-style. v7 has the IL bit
9762              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9763              * If this is a v7 CPU, squash the IL bit in those cases.
9764              */
9765             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9766                 (cs->exception_index == EXCP_DATA_ABORT &&
9767                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9768                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9769                 env->exception.syndrome &= ~ARM_EL_IL;
9770             }
9771         }
9772         env->cp15.esr_el[2] = env->exception.syndrome;
9773     }
9774 
9775     if (arm_current_el(env) != 2 && addr < 0x14) {
9776         addr = 0x14;
9777     }
9778 
9779     mask = 0;
9780     if (!(env->cp15.scr_el3 & SCR_EA)) {
9781         mask |= CPSR_A;
9782     }
9783     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9784         mask |= CPSR_I;
9785     }
9786     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9787         mask |= CPSR_F;
9788     }
9789 
9790     addr += env->cp15.hvbar;
9791 
9792     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9793 }
9794 
9795 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9796 {
9797     ARMCPU *cpu = ARM_CPU(cs);
9798     CPUARMState *env = &cpu->env;
9799     uint32_t addr;
9800     uint32_t mask;
9801     int new_mode;
9802     uint32_t offset;
9803     uint32_t moe;
9804 
9805     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9806     switch (syn_get_ec(env->exception.syndrome)) {
9807     case EC_BREAKPOINT:
9808     case EC_BREAKPOINT_SAME_EL:
9809         moe = 1;
9810         break;
9811     case EC_WATCHPOINT:
9812     case EC_WATCHPOINT_SAME_EL:
9813         moe = 10;
9814         break;
9815     case EC_AA32_BKPT:
9816         moe = 3;
9817         break;
9818     case EC_VECTORCATCH:
9819         moe = 5;
9820         break;
9821     default:
9822         moe = 0;
9823         break;
9824     }
9825 
9826     if (moe) {
9827         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9828     }
9829 
9830     if (env->exception.target_el == 2) {
9831         arm_cpu_do_interrupt_aarch32_hyp(cs);
9832         return;
9833     }
9834 
9835     switch (cs->exception_index) {
9836     case EXCP_UDEF:
9837         new_mode = ARM_CPU_MODE_UND;
9838         addr = 0x04;
9839         mask = CPSR_I;
9840         if (env->thumb)
9841             offset = 2;
9842         else
9843             offset = 4;
9844         break;
9845     case EXCP_SWI:
9846         new_mode = ARM_CPU_MODE_SVC;
9847         addr = 0x08;
9848         mask = CPSR_I;
9849         /* The PC already points to the next instruction.  */
9850         offset = 0;
9851         break;
9852     case EXCP_BKPT:
9853         /* Fall through to prefetch abort.  */
9854     case EXCP_PREFETCH_ABORT:
9855         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9856         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9857         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9858                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9859         new_mode = ARM_CPU_MODE_ABT;
9860         addr = 0x0c;
9861         mask = CPSR_A | CPSR_I;
9862         offset = 4;
9863         break;
9864     case EXCP_DATA_ABORT:
9865         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9866         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9867         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9868                       env->exception.fsr,
9869                       (uint32_t)env->exception.vaddress);
9870         new_mode = ARM_CPU_MODE_ABT;
9871         addr = 0x10;
9872         mask = CPSR_A | CPSR_I;
9873         offset = 8;
9874         break;
9875     case EXCP_IRQ:
9876         new_mode = ARM_CPU_MODE_IRQ;
9877         addr = 0x18;
9878         /* Disable IRQ and imprecise data aborts.  */
9879         mask = CPSR_A | CPSR_I;
9880         offset = 4;
9881         if (env->cp15.scr_el3 & SCR_IRQ) {
9882             /* IRQ routed to monitor mode */
9883             new_mode = ARM_CPU_MODE_MON;
9884             mask |= CPSR_F;
9885         }
9886         break;
9887     case EXCP_FIQ:
9888         new_mode = ARM_CPU_MODE_FIQ;
9889         addr = 0x1c;
9890         /* Disable FIQ, IRQ and imprecise data aborts.  */
9891         mask = CPSR_A | CPSR_I | CPSR_F;
9892         if (env->cp15.scr_el3 & SCR_FIQ) {
9893             /* FIQ routed to monitor mode */
9894             new_mode = ARM_CPU_MODE_MON;
9895         }
9896         offset = 4;
9897         break;
9898     case EXCP_VIRQ:
9899         new_mode = ARM_CPU_MODE_IRQ;
9900         addr = 0x18;
9901         /* Disable IRQ and imprecise data aborts.  */
9902         mask = CPSR_A | CPSR_I;
9903         offset = 4;
9904         break;
9905     case EXCP_VFIQ:
9906         new_mode = ARM_CPU_MODE_FIQ;
9907         addr = 0x1c;
9908         /* Disable FIQ, IRQ and imprecise data aborts.  */
9909         mask = CPSR_A | CPSR_I | CPSR_F;
9910         offset = 4;
9911         break;
9912     case EXCP_VSERR:
9913         {
9914             /*
9915              * Note that this is reported as a data abort, but the DFAR
9916              * has an UNKNOWN value.  Construct the SError syndrome from
9917              * AET and ExT fields.
9918              */
9919             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
9920 
9921             if (extended_addresses_enabled(env)) {
9922                 env->exception.fsr = arm_fi_to_lfsc(&fi);
9923             } else {
9924                 env->exception.fsr = arm_fi_to_sfsc(&fi);
9925             }
9926             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
9927             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9928             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
9929                           env->exception.fsr);
9930 
9931             new_mode = ARM_CPU_MODE_ABT;
9932             addr = 0x10;
9933             mask = CPSR_A | CPSR_I;
9934             offset = 8;
9935         }
9936         break;
9937     case EXCP_SMC:
9938         new_mode = ARM_CPU_MODE_MON;
9939         addr = 0x08;
9940         mask = CPSR_A | CPSR_I | CPSR_F;
9941         offset = 0;
9942         break;
9943     default:
9944         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9945         return; /* Never happens.  Keep compiler happy.  */
9946     }
9947 
9948     if (new_mode == ARM_CPU_MODE_MON) {
9949         addr += env->cp15.mvbar;
9950     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9951         /* High vectors. When enabled, base address cannot be remapped. */
9952         addr += 0xffff0000;
9953     } else {
9954         /* ARM v7 architectures provide a vector base address register to remap
9955          * the interrupt vector table.
9956          * This register is only followed in non-monitor mode, and is banked.
9957          * Note: only bits 31:5 are valid.
9958          */
9959         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9960     }
9961 
9962     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9963         env->cp15.scr_el3 &= ~SCR_NS;
9964     }
9965 
9966     take_aarch32_exception(env, new_mode, mask, offset, addr);
9967 }
9968 
9969 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9970 {
9971     /*
9972      * Return the register number of the AArch64 view of the AArch32
9973      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9974      * be that of the AArch32 mode the exception came from.
9975      */
9976     int mode = env->uncached_cpsr & CPSR_M;
9977 
9978     switch (aarch32_reg) {
9979     case 0 ... 7:
9980         return aarch32_reg;
9981     case 8 ... 12:
9982         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9983     case 13:
9984         switch (mode) {
9985         case ARM_CPU_MODE_USR:
9986         case ARM_CPU_MODE_SYS:
9987             return 13;
9988         case ARM_CPU_MODE_HYP:
9989             return 15;
9990         case ARM_CPU_MODE_IRQ:
9991             return 17;
9992         case ARM_CPU_MODE_SVC:
9993             return 19;
9994         case ARM_CPU_MODE_ABT:
9995             return 21;
9996         case ARM_CPU_MODE_UND:
9997             return 23;
9998         case ARM_CPU_MODE_FIQ:
9999             return 29;
10000         default:
10001             g_assert_not_reached();
10002         }
10003     case 14:
10004         switch (mode) {
10005         case ARM_CPU_MODE_USR:
10006         case ARM_CPU_MODE_SYS:
10007         case ARM_CPU_MODE_HYP:
10008             return 14;
10009         case ARM_CPU_MODE_IRQ:
10010             return 16;
10011         case ARM_CPU_MODE_SVC:
10012             return 18;
10013         case ARM_CPU_MODE_ABT:
10014             return 20;
10015         case ARM_CPU_MODE_UND:
10016             return 22;
10017         case ARM_CPU_MODE_FIQ:
10018             return 30;
10019         default:
10020             g_assert_not_reached();
10021         }
10022     case 15:
10023         return 31;
10024     default:
10025         g_assert_not_reached();
10026     }
10027 }
10028 
10029 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10030 {
10031     uint32_t ret = cpsr_read(env);
10032 
10033     /* Move DIT to the correct location for SPSR_ELx */
10034     if (ret & CPSR_DIT) {
10035         ret &= ~CPSR_DIT;
10036         ret |= PSTATE_DIT;
10037     }
10038     /* Merge PSTATE.SS into SPSR_ELx */
10039     ret |= env->pstate & PSTATE_SS;
10040 
10041     return ret;
10042 }
10043 
10044 /* Handle exception entry to a target EL which is using AArch64 */
10045 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10046 {
10047     ARMCPU *cpu = ARM_CPU(cs);
10048     CPUARMState *env = &cpu->env;
10049     unsigned int new_el = env->exception.target_el;
10050     target_ulong addr = env->cp15.vbar_el[new_el];
10051     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10052     unsigned int old_mode;
10053     unsigned int cur_el = arm_current_el(env);
10054     int rt;
10055 
10056     /*
10057      * Note that new_el can never be 0.  If cur_el is 0, then
10058      * el0_a64 is is_a64(), else el0_a64 is ignored.
10059      */
10060     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10061 
10062     if (cur_el < new_el) {
10063         /* Entry vector offset depends on whether the implemented EL
10064          * immediately lower than the target level is using AArch32 or AArch64
10065          */
10066         bool is_aa64;
10067         uint64_t hcr;
10068 
10069         switch (new_el) {
10070         case 3:
10071             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10072             break;
10073         case 2:
10074             hcr = arm_hcr_el2_eff(env);
10075             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10076                 is_aa64 = (hcr & HCR_RW) != 0;
10077                 break;
10078             }
10079             /* fall through */
10080         case 1:
10081             is_aa64 = is_a64(env);
10082             break;
10083         default:
10084             g_assert_not_reached();
10085         }
10086 
10087         if (is_aa64) {
10088             addr += 0x400;
10089         } else {
10090             addr += 0x600;
10091         }
10092     } else if (pstate_read(env) & PSTATE_SP) {
10093         addr += 0x200;
10094     }
10095 
10096     switch (cs->exception_index) {
10097     case EXCP_PREFETCH_ABORT:
10098     case EXCP_DATA_ABORT:
10099         env->cp15.far_el[new_el] = env->exception.vaddress;
10100         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10101                       env->cp15.far_el[new_el]);
10102         /* fall through */
10103     case EXCP_BKPT:
10104     case EXCP_UDEF:
10105     case EXCP_SWI:
10106     case EXCP_HVC:
10107     case EXCP_HYP_TRAP:
10108     case EXCP_SMC:
10109         switch (syn_get_ec(env->exception.syndrome)) {
10110         case EC_ADVSIMDFPACCESSTRAP:
10111             /*
10112              * QEMU internal FP/SIMD syndromes from AArch32 include the
10113              * TA and coproc fields which are only exposed if the exception
10114              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10115              * AArch64 format syndrome.
10116              */
10117             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10118             break;
10119         case EC_CP14RTTRAP:
10120         case EC_CP15RTTRAP:
10121         case EC_CP14DTTRAP:
10122             /*
10123              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10124              * the raw register field from the insn; when taking this to
10125              * AArch64 we must convert it to the AArch64 view of the register
10126              * number. Notice that we read a 4-bit AArch32 register number and
10127              * write back a 5-bit AArch64 one.
10128              */
10129             rt = extract32(env->exception.syndrome, 5, 4);
10130             rt = aarch64_regnum(env, rt);
10131             env->exception.syndrome = deposit32(env->exception.syndrome,
10132                                                 5, 5, rt);
10133             break;
10134         case EC_CP15RRTTRAP:
10135         case EC_CP14RRTTRAP:
10136             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10137             rt = extract32(env->exception.syndrome, 5, 4);
10138             rt = aarch64_regnum(env, rt);
10139             env->exception.syndrome = deposit32(env->exception.syndrome,
10140                                                 5, 5, rt);
10141             rt = extract32(env->exception.syndrome, 10, 4);
10142             rt = aarch64_regnum(env, rt);
10143             env->exception.syndrome = deposit32(env->exception.syndrome,
10144                                                 10, 5, rt);
10145             break;
10146         }
10147         env->cp15.esr_el[new_el] = env->exception.syndrome;
10148         break;
10149     case EXCP_IRQ:
10150     case EXCP_VIRQ:
10151         addr += 0x80;
10152         break;
10153     case EXCP_FIQ:
10154     case EXCP_VFIQ:
10155         addr += 0x100;
10156         break;
10157     case EXCP_VSERR:
10158         addr += 0x180;
10159         /* Construct the SError syndrome from IDS and ISS fields. */
10160         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10161         env->cp15.esr_el[new_el] = env->exception.syndrome;
10162         break;
10163     default:
10164         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10165     }
10166 
10167     if (is_a64(env)) {
10168         old_mode = pstate_read(env);
10169         aarch64_save_sp(env, arm_current_el(env));
10170         env->elr_el[new_el] = env->pc;
10171     } else {
10172         old_mode = cpsr_read_for_spsr_elx(env);
10173         env->elr_el[new_el] = env->regs[15];
10174 
10175         aarch64_sync_32_to_64(env);
10176 
10177         env->condexec_bits = 0;
10178     }
10179     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10180 
10181     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10182                   env->elr_el[new_el]);
10183 
10184     if (cpu_isar_feature(aa64_pan, cpu)) {
10185         /* The value of PSTATE.PAN is normally preserved, except when ... */
10186         new_mode |= old_mode & PSTATE_PAN;
10187         switch (new_el) {
10188         case 2:
10189             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10190             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10191                 != (HCR_E2H | HCR_TGE)) {
10192                 break;
10193             }
10194             /* fall through */
10195         case 1:
10196             /* ... the target is EL1 ... */
10197             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10198             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10199                 new_mode |= PSTATE_PAN;
10200             }
10201             break;
10202         }
10203     }
10204     if (cpu_isar_feature(aa64_mte, cpu)) {
10205         new_mode |= PSTATE_TCO;
10206     }
10207 
10208     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10209         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10210             new_mode |= PSTATE_SSBS;
10211         } else {
10212             new_mode &= ~PSTATE_SSBS;
10213         }
10214     }
10215 
10216     pstate_write(env, PSTATE_DAIF | new_mode);
10217     env->aarch64 = true;
10218     aarch64_restore_sp(env, new_el);
10219     helper_rebuild_hflags_a64(env, new_el);
10220 
10221     env->pc = addr;
10222 
10223     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10224                   new_el, env->pc, pstate_read(env));
10225 }
10226 
10227 /*
10228  * Do semihosting call and set the appropriate return value. All the
10229  * permission and validity checks have been done at translate time.
10230  *
10231  * We only see semihosting exceptions in TCG only as they are not
10232  * trapped to the hypervisor in KVM.
10233  */
10234 #ifdef CONFIG_TCG
10235 static void handle_semihosting(CPUState *cs)
10236 {
10237     ARMCPU *cpu = ARM_CPU(cs);
10238     CPUARMState *env = &cpu->env;
10239 
10240     if (is_a64(env)) {
10241         qemu_log_mask(CPU_LOG_INT,
10242                       "...handling as semihosting call 0x%" PRIx64 "\n",
10243                       env->xregs[0]);
10244         env->xregs[0] = do_common_semihosting(cs);
10245         env->pc += 4;
10246     } else {
10247         qemu_log_mask(CPU_LOG_INT,
10248                       "...handling as semihosting call 0x%x\n",
10249                       env->regs[0]);
10250         env->regs[0] = do_common_semihosting(cs);
10251         env->regs[15] += env->thumb ? 2 : 4;
10252     }
10253 }
10254 #endif
10255 
10256 /* Handle a CPU exception for A and R profile CPUs.
10257  * Do any appropriate logging, handle PSCI calls, and then hand off
10258  * to the AArch64-entry or AArch32-entry function depending on the
10259  * target exception level's register width.
10260  *
10261  * Note: this is used for both TCG (as the do_interrupt tcg op),
10262  *       and KVM to re-inject guest debug exceptions, and to
10263  *       inject a Synchronous-External-Abort.
10264  */
10265 void arm_cpu_do_interrupt(CPUState *cs)
10266 {
10267     ARMCPU *cpu = ARM_CPU(cs);
10268     CPUARMState *env = &cpu->env;
10269     unsigned int new_el = env->exception.target_el;
10270 
10271     assert(!arm_feature(env, ARM_FEATURE_M));
10272 
10273     arm_log_exception(cs);
10274     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10275                   new_el);
10276     if (qemu_loglevel_mask(CPU_LOG_INT)
10277         && !excp_is_internal(cs->exception_index)) {
10278         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10279                       syn_get_ec(env->exception.syndrome),
10280                       env->exception.syndrome);
10281     }
10282 
10283     if (arm_is_psci_call(cpu, cs->exception_index)) {
10284         arm_handle_psci_call(cpu);
10285         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10286         return;
10287     }
10288 
10289     /*
10290      * Semihosting semantics depend on the register width of the code
10291      * that caused the exception, not the target exception level, so
10292      * must be handled here.
10293      */
10294 #ifdef CONFIG_TCG
10295     if (cs->exception_index == EXCP_SEMIHOST) {
10296         handle_semihosting(cs);
10297         return;
10298     }
10299 #endif
10300 
10301     /* Hooks may change global state so BQL should be held, also the
10302      * BQL needs to be held for any modification of
10303      * cs->interrupt_request.
10304      */
10305     g_assert(qemu_mutex_iothread_locked());
10306 
10307     arm_call_pre_el_change_hook(cpu);
10308 
10309     assert(!excp_is_internal(cs->exception_index));
10310     if (arm_el_is_aa64(env, new_el)) {
10311         arm_cpu_do_interrupt_aarch64(cs);
10312     } else {
10313         arm_cpu_do_interrupt_aarch32(cs);
10314     }
10315 
10316     arm_call_el_change_hook(cpu);
10317 
10318     if (!kvm_enabled()) {
10319         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10320     }
10321 }
10322 #endif /* !CONFIG_USER_ONLY */
10323 
10324 uint64_t arm_sctlr(CPUARMState *env, int el)
10325 {
10326     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10327     if (el == 0) {
10328         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10329         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10330              ? 2 : 1;
10331     }
10332     return env->cp15.sctlr_el[el];
10333 }
10334 
10335 /* Return the SCTLR value which controls this address translation regime */
10336 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10337 {
10338     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10339 }
10340 
10341 #ifndef CONFIG_USER_ONLY
10342 
10343 /* Return true if the specified stage of address translation is disabled */
10344 static inline bool regime_translation_disabled(CPUARMState *env,
10345                                                ARMMMUIdx mmu_idx)
10346 {
10347     uint64_t hcr_el2;
10348 
10349     if (arm_feature(env, ARM_FEATURE_M)) {
10350         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10351                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10352         case R_V7M_MPU_CTRL_ENABLE_MASK:
10353             /* Enabled, but not for HardFault and NMI */
10354             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10355         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10356             /* Enabled for all cases */
10357             return false;
10358         case 0:
10359         default:
10360             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10361              * we warned about that in armv7m_nvic.c when the guest set it.
10362              */
10363             return true;
10364         }
10365     }
10366 
10367     hcr_el2 = arm_hcr_el2_eff(env);
10368 
10369     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10370         /* HCR.DC means HCR.VM behaves as 1 */
10371         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10372     }
10373 
10374     if (hcr_el2 & HCR_TGE) {
10375         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10376         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10377             return true;
10378         }
10379     }
10380 
10381     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10382         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10383         return true;
10384     }
10385 
10386     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10387 }
10388 
10389 static inline bool regime_translation_big_endian(CPUARMState *env,
10390                                                  ARMMMUIdx mmu_idx)
10391 {
10392     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10393 }
10394 
10395 /* Return the TTBR associated with this translation regime */
10396 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10397                                    int ttbrn)
10398 {
10399     if (mmu_idx == ARMMMUIdx_Stage2) {
10400         return env->cp15.vttbr_el2;
10401     }
10402     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10403         return env->cp15.vsttbr_el2;
10404     }
10405     if (ttbrn == 0) {
10406         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10407     } else {
10408         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10409     }
10410 }
10411 
10412 #endif /* !CONFIG_USER_ONLY */
10413 
10414 /* Convert a possible stage1+2 MMU index into the appropriate
10415  * stage 1 MMU index
10416  */
10417 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10418 {
10419     switch (mmu_idx) {
10420     case ARMMMUIdx_SE10_0:
10421         return ARMMMUIdx_Stage1_SE0;
10422     case ARMMMUIdx_SE10_1:
10423         return ARMMMUIdx_Stage1_SE1;
10424     case ARMMMUIdx_SE10_1_PAN:
10425         return ARMMMUIdx_Stage1_SE1_PAN;
10426     case ARMMMUIdx_E10_0:
10427         return ARMMMUIdx_Stage1_E0;
10428     case ARMMMUIdx_E10_1:
10429         return ARMMMUIdx_Stage1_E1;
10430     case ARMMMUIdx_E10_1_PAN:
10431         return ARMMMUIdx_Stage1_E1_PAN;
10432     default:
10433         return mmu_idx;
10434     }
10435 }
10436 
10437 /* Return true if the translation regime is using LPAE format page tables */
10438 static inline bool regime_using_lpae_format(CPUARMState *env,
10439                                             ARMMMUIdx mmu_idx)
10440 {
10441     int el = regime_el(env, mmu_idx);
10442     if (el == 2 || arm_el_is_aa64(env, el)) {
10443         return true;
10444     }
10445     if (arm_feature(env, ARM_FEATURE_LPAE)
10446         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10447         return true;
10448     }
10449     return false;
10450 }
10451 
10452 /* Returns true if the stage 1 translation regime is using LPAE format page
10453  * tables. Used when raising alignment exceptions, whose FSR changes depending
10454  * on whether the long or short descriptor format is in use. */
10455 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10456 {
10457     mmu_idx = stage_1_mmu_idx(mmu_idx);
10458 
10459     return regime_using_lpae_format(env, mmu_idx);
10460 }
10461 
10462 #ifndef CONFIG_USER_ONLY
10463 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10464 {
10465     switch (mmu_idx) {
10466     case ARMMMUIdx_SE10_0:
10467     case ARMMMUIdx_E20_0:
10468     case ARMMMUIdx_SE20_0:
10469     case ARMMMUIdx_Stage1_E0:
10470     case ARMMMUIdx_Stage1_SE0:
10471     case ARMMMUIdx_MUser:
10472     case ARMMMUIdx_MSUser:
10473     case ARMMMUIdx_MUserNegPri:
10474     case ARMMMUIdx_MSUserNegPri:
10475         return true;
10476     default:
10477         return false;
10478     case ARMMMUIdx_E10_0:
10479     case ARMMMUIdx_E10_1:
10480     case ARMMMUIdx_E10_1_PAN:
10481         g_assert_not_reached();
10482     }
10483 }
10484 
10485 /* Translate section/page access permissions to page
10486  * R/W protection flags
10487  *
10488  * @env:         CPUARMState
10489  * @mmu_idx:     MMU index indicating required translation regime
10490  * @ap:          The 3-bit access permissions (AP[2:0])
10491  * @domain_prot: The 2-bit domain access permissions
10492  */
10493 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10494                                 int ap, int domain_prot)
10495 {
10496     bool is_user = regime_is_user(env, mmu_idx);
10497 
10498     if (domain_prot == 3) {
10499         return PAGE_READ | PAGE_WRITE;
10500     }
10501 
10502     switch (ap) {
10503     case 0:
10504         if (arm_feature(env, ARM_FEATURE_V7)) {
10505             return 0;
10506         }
10507         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10508         case SCTLR_S:
10509             return is_user ? 0 : PAGE_READ;
10510         case SCTLR_R:
10511             return PAGE_READ;
10512         default:
10513             return 0;
10514         }
10515     case 1:
10516         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10517     case 2:
10518         if (is_user) {
10519             return PAGE_READ;
10520         } else {
10521             return PAGE_READ | PAGE_WRITE;
10522         }
10523     case 3:
10524         return PAGE_READ | PAGE_WRITE;
10525     case 4: /* Reserved.  */
10526         return 0;
10527     case 5:
10528         return is_user ? 0 : PAGE_READ;
10529     case 6:
10530         return PAGE_READ;
10531     case 7:
10532         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10533             return 0;
10534         }
10535         return PAGE_READ;
10536     default:
10537         g_assert_not_reached();
10538     }
10539 }
10540 
10541 /* Translate section/page access permissions to page
10542  * R/W protection flags.
10543  *
10544  * @ap:      The 2-bit simple AP (AP[2:1])
10545  * @is_user: TRUE if accessing from PL0
10546  */
10547 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10548 {
10549     switch (ap) {
10550     case 0:
10551         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10552     case 1:
10553         return PAGE_READ | PAGE_WRITE;
10554     case 2:
10555         return is_user ? 0 : PAGE_READ;
10556     case 3:
10557         return PAGE_READ;
10558     default:
10559         g_assert_not_reached();
10560     }
10561 }
10562 
10563 static inline int
10564 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10565 {
10566     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10567 }
10568 
10569 /* Translate S2 section/page access permissions to protection flags
10570  *
10571  * @env:     CPUARMState
10572  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10573  * @xn:      XN (execute-never) bits
10574  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10575  */
10576 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10577 {
10578     int prot = 0;
10579 
10580     if (s2ap & 1) {
10581         prot |= PAGE_READ;
10582     }
10583     if (s2ap & 2) {
10584         prot |= PAGE_WRITE;
10585     }
10586 
10587     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10588         switch (xn) {
10589         case 0:
10590             prot |= PAGE_EXEC;
10591             break;
10592         case 1:
10593             if (s1_is_el0) {
10594                 prot |= PAGE_EXEC;
10595             }
10596             break;
10597         case 2:
10598             break;
10599         case 3:
10600             if (!s1_is_el0) {
10601                 prot |= PAGE_EXEC;
10602             }
10603             break;
10604         default:
10605             g_assert_not_reached();
10606         }
10607     } else {
10608         if (!extract32(xn, 1, 1)) {
10609             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10610                 prot |= PAGE_EXEC;
10611             }
10612         }
10613     }
10614     return prot;
10615 }
10616 
10617 /* Translate section/page access permissions to protection flags
10618  *
10619  * @env:     CPUARMState
10620  * @mmu_idx: MMU index indicating required translation regime
10621  * @is_aa64: TRUE if AArch64
10622  * @ap:      The 2-bit simple AP (AP[2:1])
10623  * @ns:      NS (non-secure) bit
10624  * @xn:      XN (execute-never) bit
10625  * @pxn:     PXN (privileged execute-never) bit
10626  */
10627 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10628                       int ap, int ns, int xn, int pxn)
10629 {
10630     bool is_user = regime_is_user(env, mmu_idx);
10631     int prot_rw, user_rw;
10632     bool have_wxn;
10633     int wxn = 0;
10634 
10635     assert(mmu_idx != ARMMMUIdx_Stage2);
10636     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10637 
10638     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10639     if (is_user) {
10640         prot_rw = user_rw;
10641     } else {
10642         if (user_rw && regime_is_pan(env, mmu_idx)) {
10643             /* PAN forbids data accesses but doesn't affect insn fetch */
10644             prot_rw = 0;
10645         } else {
10646             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10647         }
10648     }
10649 
10650     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10651         return prot_rw;
10652     }
10653 
10654     /* TODO have_wxn should be replaced with
10655      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10656      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10657      * compatible processors have EL2, which is required for [U]WXN.
10658      */
10659     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10660 
10661     if (have_wxn) {
10662         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10663     }
10664 
10665     if (is_aa64) {
10666         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10667             xn = pxn || (user_rw & PAGE_WRITE);
10668         }
10669     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10670         switch (regime_el(env, mmu_idx)) {
10671         case 1:
10672         case 3:
10673             if (is_user) {
10674                 xn = xn || !(user_rw & PAGE_READ);
10675             } else {
10676                 int uwxn = 0;
10677                 if (have_wxn) {
10678                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10679                 }
10680                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10681                      (uwxn && (user_rw & PAGE_WRITE));
10682             }
10683             break;
10684         case 2:
10685             break;
10686         }
10687     } else {
10688         xn = wxn = 0;
10689     }
10690 
10691     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10692         return prot_rw;
10693     }
10694     return prot_rw | PAGE_EXEC;
10695 }
10696 
10697 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10698                                      uint32_t *table, uint32_t address)
10699 {
10700     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10701     TCR *tcr = regime_tcr(env, mmu_idx);
10702 
10703     if (address & tcr->mask) {
10704         if (tcr->raw_tcr & TTBCR_PD1) {
10705             /* Translation table walk disabled for TTBR1 */
10706             return false;
10707         }
10708         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10709     } else {
10710         if (tcr->raw_tcr & TTBCR_PD0) {
10711             /* Translation table walk disabled for TTBR0 */
10712             return false;
10713         }
10714         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10715     }
10716     *table |= (address >> 18) & 0x3ffc;
10717     return true;
10718 }
10719 
10720 /* Translate a S1 pagetable walk through S2 if needed.  */
10721 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10722                                hwaddr addr, bool *is_secure,
10723                                ARMMMUFaultInfo *fi)
10724 {
10725     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10726         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10727         target_ulong s2size;
10728         hwaddr s2pa;
10729         int s2prot;
10730         int ret;
10731         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10732                                           : ARMMMUIdx_Stage2;
10733         ARMCacheAttrs cacheattrs = {};
10734         MemTxAttrs txattrs = {};
10735 
10736         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10737                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10738                                  &cacheattrs);
10739         if (ret) {
10740             assert(fi->type != ARMFault_None);
10741             fi->s2addr = addr;
10742             fi->stage2 = true;
10743             fi->s1ptw = true;
10744             fi->s1ns = !*is_secure;
10745             return ~0;
10746         }
10747         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10748             (cacheattrs.attrs & 0xf0) == 0) {
10749             /*
10750              * PTW set and S1 walk touched S2 Device memory:
10751              * generate Permission fault.
10752              */
10753             fi->type = ARMFault_Permission;
10754             fi->s2addr = addr;
10755             fi->stage2 = true;
10756             fi->s1ptw = true;
10757             fi->s1ns = !*is_secure;
10758             return ~0;
10759         }
10760 
10761         if (arm_is_secure_below_el3(env)) {
10762             /* Check if page table walk is to secure or non-secure PA space. */
10763             if (*is_secure) {
10764                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10765             } else {
10766                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10767             }
10768         } else {
10769             assert(!*is_secure);
10770         }
10771 
10772         addr = s2pa;
10773     }
10774     return addr;
10775 }
10776 
10777 /* All loads done in the course of a page table walk go through here. */
10778 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10779                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10780 {
10781     ARMCPU *cpu = ARM_CPU(cs);
10782     CPUARMState *env = &cpu->env;
10783     MemTxAttrs attrs = {};
10784     MemTxResult result = MEMTX_OK;
10785     AddressSpace *as;
10786     uint32_t data;
10787 
10788     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10789     attrs.secure = is_secure;
10790     as = arm_addressspace(cs, attrs);
10791     if (fi->s1ptw) {
10792         return 0;
10793     }
10794     if (regime_translation_big_endian(env, mmu_idx)) {
10795         data = address_space_ldl_be(as, addr, attrs, &result);
10796     } else {
10797         data = address_space_ldl_le(as, addr, attrs, &result);
10798     }
10799     if (result == MEMTX_OK) {
10800         return data;
10801     }
10802     fi->type = ARMFault_SyncExternalOnWalk;
10803     fi->ea = arm_extabort_type(result);
10804     return 0;
10805 }
10806 
10807 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10808                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10809 {
10810     ARMCPU *cpu = ARM_CPU(cs);
10811     CPUARMState *env = &cpu->env;
10812     MemTxAttrs attrs = {};
10813     MemTxResult result = MEMTX_OK;
10814     AddressSpace *as;
10815     uint64_t data;
10816 
10817     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10818     attrs.secure = is_secure;
10819     as = arm_addressspace(cs, attrs);
10820     if (fi->s1ptw) {
10821         return 0;
10822     }
10823     if (regime_translation_big_endian(env, mmu_idx)) {
10824         data = address_space_ldq_be(as, addr, attrs, &result);
10825     } else {
10826         data = address_space_ldq_le(as, addr, attrs, &result);
10827     }
10828     if (result == MEMTX_OK) {
10829         return data;
10830     }
10831     fi->type = ARMFault_SyncExternalOnWalk;
10832     fi->ea = arm_extabort_type(result);
10833     return 0;
10834 }
10835 
10836 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10837                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10838                              hwaddr *phys_ptr, int *prot,
10839                              target_ulong *page_size,
10840                              ARMMMUFaultInfo *fi)
10841 {
10842     CPUState *cs = env_cpu(env);
10843     int level = 1;
10844     uint32_t table;
10845     uint32_t desc;
10846     int type;
10847     int ap;
10848     int domain = 0;
10849     int domain_prot;
10850     hwaddr phys_addr;
10851     uint32_t dacr;
10852 
10853     /* Pagetable walk.  */
10854     /* Lookup l1 descriptor.  */
10855     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10856         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10857         fi->type = ARMFault_Translation;
10858         goto do_fault;
10859     }
10860     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10861                        mmu_idx, fi);
10862     if (fi->type != ARMFault_None) {
10863         goto do_fault;
10864     }
10865     type = (desc & 3);
10866     domain = (desc >> 5) & 0x0f;
10867     if (regime_el(env, mmu_idx) == 1) {
10868         dacr = env->cp15.dacr_ns;
10869     } else {
10870         dacr = env->cp15.dacr_s;
10871     }
10872     domain_prot = (dacr >> (domain * 2)) & 3;
10873     if (type == 0) {
10874         /* Section translation fault.  */
10875         fi->type = ARMFault_Translation;
10876         goto do_fault;
10877     }
10878     if (type != 2) {
10879         level = 2;
10880     }
10881     if (domain_prot == 0 || domain_prot == 2) {
10882         fi->type = ARMFault_Domain;
10883         goto do_fault;
10884     }
10885     if (type == 2) {
10886         /* 1Mb section.  */
10887         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10888         ap = (desc >> 10) & 3;
10889         *page_size = 1024 * 1024;
10890     } else {
10891         /* Lookup l2 entry.  */
10892         if (type == 1) {
10893             /* Coarse pagetable.  */
10894             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10895         } else {
10896             /* Fine pagetable.  */
10897             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10898         }
10899         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10900                            mmu_idx, fi);
10901         if (fi->type != ARMFault_None) {
10902             goto do_fault;
10903         }
10904         switch (desc & 3) {
10905         case 0: /* Page translation fault.  */
10906             fi->type = ARMFault_Translation;
10907             goto do_fault;
10908         case 1: /* 64k page.  */
10909             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10910             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10911             *page_size = 0x10000;
10912             break;
10913         case 2: /* 4k page.  */
10914             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10915             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10916             *page_size = 0x1000;
10917             break;
10918         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10919             if (type == 1) {
10920                 /* ARMv6/XScale extended small page format */
10921                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10922                     || arm_feature(env, ARM_FEATURE_V6)) {
10923                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10924                     *page_size = 0x1000;
10925                 } else {
10926                     /* UNPREDICTABLE in ARMv5; we choose to take a
10927                      * page translation fault.
10928                      */
10929                     fi->type = ARMFault_Translation;
10930                     goto do_fault;
10931                 }
10932             } else {
10933                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10934                 *page_size = 0x400;
10935             }
10936             ap = (desc >> 4) & 3;
10937             break;
10938         default:
10939             /* Never happens, but compiler isn't smart enough to tell.  */
10940             g_assert_not_reached();
10941         }
10942     }
10943     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10944     *prot |= *prot ? PAGE_EXEC : 0;
10945     if (!(*prot & (1 << access_type))) {
10946         /* Access permission fault.  */
10947         fi->type = ARMFault_Permission;
10948         goto do_fault;
10949     }
10950     *phys_ptr = phys_addr;
10951     return false;
10952 do_fault:
10953     fi->domain = domain;
10954     fi->level = level;
10955     return true;
10956 }
10957 
10958 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10959                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10960                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10961                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10962 {
10963     CPUState *cs = env_cpu(env);
10964     ARMCPU *cpu = env_archcpu(env);
10965     int level = 1;
10966     uint32_t table;
10967     uint32_t desc;
10968     uint32_t xn;
10969     uint32_t pxn = 0;
10970     int type;
10971     int ap;
10972     int domain = 0;
10973     int domain_prot;
10974     hwaddr phys_addr;
10975     uint32_t dacr;
10976     bool ns;
10977 
10978     /* Pagetable walk.  */
10979     /* Lookup l1 descriptor.  */
10980     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10981         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10982         fi->type = ARMFault_Translation;
10983         goto do_fault;
10984     }
10985     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10986                        mmu_idx, fi);
10987     if (fi->type != ARMFault_None) {
10988         goto do_fault;
10989     }
10990     type = (desc & 3);
10991     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10992         /* Section translation fault, or attempt to use the encoding
10993          * which is Reserved on implementations without PXN.
10994          */
10995         fi->type = ARMFault_Translation;
10996         goto do_fault;
10997     }
10998     if ((type == 1) || !(desc & (1 << 18))) {
10999         /* Page or Section.  */
11000         domain = (desc >> 5) & 0x0f;
11001     }
11002     if (regime_el(env, mmu_idx) == 1) {
11003         dacr = env->cp15.dacr_ns;
11004     } else {
11005         dacr = env->cp15.dacr_s;
11006     }
11007     if (type == 1) {
11008         level = 2;
11009     }
11010     domain_prot = (dacr >> (domain * 2)) & 3;
11011     if (domain_prot == 0 || domain_prot == 2) {
11012         /* Section or Page domain fault */
11013         fi->type = ARMFault_Domain;
11014         goto do_fault;
11015     }
11016     if (type != 1) {
11017         if (desc & (1 << 18)) {
11018             /* Supersection.  */
11019             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11020             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11021             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11022             *page_size = 0x1000000;
11023         } else {
11024             /* Section.  */
11025             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11026             *page_size = 0x100000;
11027         }
11028         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11029         xn = desc & (1 << 4);
11030         pxn = desc & 1;
11031         ns = extract32(desc, 19, 1);
11032     } else {
11033         if (cpu_isar_feature(aa32_pxn, cpu)) {
11034             pxn = (desc >> 2) & 1;
11035         }
11036         ns = extract32(desc, 3, 1);
11037         /* Lookup l2 entry.  */
11038         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11039         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11040                            mmu_idx, fi);
11041         if (fi->type != ARMFault_None) {
11042             goto do_fault;
11043         }
11044         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11045         switch (desc & 3) {
11046         case 0: /* Page translation fault.  */
11047             fi->type = ARMFault_Translation;
11048             goto do_fault;
11049         case 1: /* 64k page.  */
11050             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11051             xn = desc & (1 << 15);
11052             *page_size = 0x10000;
11053             break;
11054         case 2: case 3: /* 4k page.  */
11055             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11056             xn = desc & 1;
11057             *page_size = 0x1000;
11058             break;
11059         default:
11060             /* Never happens, but compiler isn't smart enough to tell.  */
11061             g_assert_not_reached();
11062         }
11063     }
11064     if (domain_prot == 3) {
11065         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11066     } else {
11067         if (pxn && !regime_is_user(env, mmu_idx)) {
11068             xn = 1;
11069         }
11070         if (xn && access_type == MMU_INST_FETCH) {
11071             fi->type = ARMFault_Permission;
11072             goto do_fault;
11073         }
11074 
11075         if (arm_feature(env, ARM_FEATURE_V6K) &&
11076                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11077             /* The simplified model uses AP[0] as an access control bit.  */
11078             if ((ap & 1) == 0) {
11079                 /* Access flag fault.  */
11080                 fi->type = ARMFault_AccessFlag;
11081                 goto do_fault;
11082             }
11083             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11084         } else {
11085             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11086         }
11087         if (*prot && !xn) {
11088             *prot |= PAGE_EXEC;
11089         }
11090         if (!(*prot & (1 << access_type))) {
11091             /* Access permission fault.  */
11092             fi->type = ARMFault_Permission;
11093             goto do_fault;
11094         }
11095     }
11096     if (ns) {
11097         /* The NS bit will (as required by the architecture) have no effect if
11098          * the CPU doesn't support TZ or this is a non-secure translation
11099          * regime, because the attribute will already be non-secure.
11100          */
11101         attrs->secure = false;
11102     }
11103     *phys_ptr = phys_addr;
11104     return false;
11105 do_fault:
11106     fi->domain = domain;
11107     fi->level = level;
11108     return true;
11109 }
11110 
11111 /*
11112  * check_s2_mmu_setup
11113  * @cpu:        ARMCPU
11114  * @is_aa64:    True if the translation regime is in AArch64 state
11115  * @startlevel: Suggested starting level
11116  * @inputsize:  Bitsize of IPAs
11117  * @stride:     Page-table stride (See the ARM ARM)
11118  *
11119  * Returns true if the suggested S2 translation parameters are OK and
11120  * false otherwise.
11121  */
11122 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11123                                int inputsize, int stride, int outputsize)
11124 {
11125     const int grainsize = stride + 3;
11126     int startsizecheck;
11127 
11128     /*
11129      * Negative levels are usually not allowed...
11130      * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
11131      * begins with level -1.  Note that previous feature tests will have
11132      * eliminated this combination if it is not enabled.
11133      */
11134     if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
11135         return false;
11136     }
11137 
11138     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11139     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11140         return false;
11141     }
11142 
11143     if (is_aa64) {
11144         switch (stride) {
11145         case 13: /* 64KB Pages.  */
11146             if (level == 0 || (level == 1 && outputsize <= 42)) {
11147                 return false;
11148             }
11149             break;
11150         case 11: /* 16KB Pages.  */
11151             if (level == 0 || (level == 1 && outputsize <= 40)) {
11152                 return false;
11153             }
11154             break;
11155         case 9: /* 4KB Pages.  */
11156             if (level == 0 && outputsize <= 42) {
11157                 return false;
11158             }
11159             break;
11160         default:
11161             g_assert_not_reached();
11162         }
11163 
11164         /* Inputsize checks.  */
11165         if (inputsize > outputsize &&
11166             (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
11167             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11168             return false;
11169         }
11170     } else {
11171         /* AArch32 only supports 4KB pages. Assert on that.  */
11172         assert(stride == 9);
11173 
11174         if (level == 0) {
11175             return false;
11176         }
11177     }
11178     return true;
11179 }
11180 
11181 /* Translate from the 4-bit stage 2 representation of
11182  * memory attributes (without cache-allocation hints) to
11183  * the 8-bit representation of the stage 1 MAIR registers
11184  * (which includes allocation hints).
11185  *
11186  * ref: shared/translation/attrs/S2AttrDecode()
11187  *      .../S2ConvertAttrsHints()
11188  */
11189 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11190 {
11191     uint8_t hiattr = extract32(s2attrs, 2, 2);
11192     uint8_t loattr = extract32(s2attrs, 0, 2);
11193     uint8_t hihint = 0, lohint = 0;
11194 
11195     if (hiattr != 0) { /* normal memory */
11196         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11197             hiattr = loattr = 1; /* non-cacheable */
11198         } else {
11199             if (hiattr != 1) { /* Write-through or write-back */
11200                 hihint = 3; /* RW allocate */
11201             }
11202             if (loattr != 1) { /* Write-through or write-back */
11203                 lohint = 3; /* RW allocate */
11204             }
11205         }
11206     }
11207 
11208     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11209 }
11210 #endif /* !CONFIG_USER_ONLY */
11211 
11212 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
11213 static const uint8_t pamax_map[] = {
11214     [0] = 32,
11215     [1] = 36,
11216     [2] = 40,
11217     [3] = 42,
11218     [4] = 44,
11219     [5] = 48,
11220     [6] = 52,
11221 };
11222 
11223 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
11224 unsigned int arm_pamax(ARMCPU *cpu)
11225 {
11226     unsigned int parange =
11227         FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11228 
11229     /*
11230      * id_aa64mmfr0 is a read-only register so values outside of the
11231      * supported mappings can be considered an implementation error.
11232      */
11233     assert(parange < ARRAY_SIZE(pamax_map));
11234     return pamax_map[parange];
11235 }
11236 
11237 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11238 {
11239     if (regime_has_2_ranges(mmu_idx)) {
11240         return extract64(tcr, 37, 2);
11241     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11242         return 0; /* VTCR_EL2 */
11243     } else {
11244         /* Replicate the single TBI bit so we always have 2 bits.  */
11245         return extract32(tcr, 20, 1) * 3;
11246     }
11247 }
11248 
11249 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11250 {
11251     if (regime_has_2_ranges(mmu_idx)) {
11252         return extract64(tcr, 51, 2);
11253     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11254         return 0; /* VTCR_EL2 */
11255     } else {
11256         /* Replicate the single TBID bit so we always have 2 bits.  */
11257         return extract32(tcr, 29, 1) * 3;
11258     }
11259 }
11260 
11261 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11262 {
11263     if (regime_has_2_ranges(mmu_idx)) {
11264         return extract64(tcr, 57, 2);
11265     } else {
11266         /* Replicate the single TCMA bit so we always have 2 bits.  */
11267         return extract32(tcr, 30, 1) * 3;
11268     }
11269 }
11270 
11271 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11272                                    ARMMMUIdx mmu_idx, bool data)
11273 {
11274     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11275     bool epd, hpd, using16k, using64k, tsz_oob, ds;
11276     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11277     ARMCPU *cpu = env_archcpu(env);
11278 
11279     if (!regime_has_2_ranges(mmu_idx)) {
11280         select = 0;
11281         tsz = extract32(tcr, 0, 6);
11282         using64k = extract32(tcr, 14, 1);
11283         using16k = extract32(tcr, 15, 1);
11284         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11285             /* VTCR_EL2 */
11286             hpd = false;
11287         } else {
11288             hpd = extract32(tcr, 24, 1);
11289         }
11290         epd = false;
11291         sh = extract32(tcr, 12, 2);
11292         ps = extract32(tcr, 16, 3);
11293         ds = extract64(tcr, 32, 1);
11294     } else {
11295         /*
11296          * Bit 55 is always between the two regions, and is canonical for
11297          * determining if address tagging is enabled.
11298          */
11299         select = extract64(va, 55, 1);
11300         if (!select) {
11301             tsz = extract32(tcr, 0, 6);
11302             epd = extract32(tcr, 7, 1);
11303             sh = extract32(tcr, 12, 2);
11304             using64k = extract32(tcr, 14, 1);
11305             using16k = extract32(tcr, 15, 1);
11306             hpd = extract64(tcr, 41, 1);
11307         } else {
11308             int tg = extract32(tcr, 30, 2);
11309             using16k = tg == 1;
11310             using64k = tg == 3;
11311             tsz = extract32(tcr, 16, 6);
11312             epd = extract32(tcr, 23, 1);
11313             sh = extract32(tcr, 28, 2);
11314             hpd = extract64(tcr, 42, 1);
11315         }
11316         ps = extract64(tcr, 32, 3);
11317         ds = extract64(tcr, 59, 1);
11318     }
11319 
11320     if (cpu_isar_feature(aa64_st, cpu)) {
11321         max_tsz = 48 - using64k;
11322     } else {
11323         max_tsz = 39;
11324     }
11325 
11326     /*
11327      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11328      * adjust the effective value of DS, as documented.
11329      */
11330     min_tsz = 16;
11331     if (using64k) {
11332         if (cpu_isar_feature(aa64_lva, cpu)) {
11333             min_tsz = 12;
11334         }
11335         ds = false;
11336     } else if (ds) {
11337         switch (mmu_idx) {
11338         case ARMMMUIdx_Stage2:
11339         case ARMMMUIdx_Stage2_S:
11340             if (using16k) {
11341                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11342             } else {
11343                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11344             }
11345             break;
11346         default:
11347             if (using16k) {
11348                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11349             } else {
11350                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11351             }
11352             break;
11353         }
11354         if (ds) {
11355             min_tsz = 12;
11356         }
11357     }
11358 
11359     if (tsz > max_tsz) {
11360         tsz = max_tsz;
11361         tsz_oob = true;
11362     } else if (tsz < min_tsz) {
11363         tsz = min_tsz;
11364         tsz_oob = true;
11365     } else {
11366         tsz_oob = false;
11367     }
11368 
11369     /* Present TBI as a composite with TBID.  */
11370     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11371     if (!data) {
11372         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11373     }
11374     tbi = (tbi >> select) & 1;
11375 
11376     return (ARMVAParameters) {
11377         .tsz = tsz,
11378         .ps = ps,
11379         .sh = sh,
11380         .select = select,
11381         .tbi = tbi,
11382         .epd = epd,
11383         .hpd = hpd,
11384         .using16k = using16k,
11385         .using64k = using64k,
11386         .tsz_oob = tsz_oob,
11387         .ds = ds,
11388     };
11389 }
11390 
11391 #ifndef CONFIG_USER_ONLY
11392 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11393                                           ARMMMUIdx mmu_idx)
11394 {
11395     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11396     uint32_t el = regime_el(env, mmu_idx);
11397     int select, tsz;
11398     bool epd, hpd;
11399 
11400     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11401 
11402     if (mmu_idx == ARMMMUIdx_Stage2) {
11403         /* VTCR */
11404         bool sext = extract32(tcr, 4, 1);
11405         bool sign = extract32(tcr, 3, 1);
11406 
11407         /*
11408          * If the sign-extend bit is not the same as t0sz[3], the result
11409          * is unpredictable. Flag this as a guest error.
11410          */
11411         if (sign != sext) {
11412             qemu_log_mask(LOG_GUEST_ERROR,
11413                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11414         }
11415         tsz = sextract32(tcr, 0, 4) + 8;
11416         select = 0;
11417         hpd = false;
11418         epd = false;
11419     } else if (el == 2) {
11420         /* HTCR */
11421         tsz = extract32(tcr, 0, 3);
11422         select = 0;
11423         hpd = extract64(tcr, 24, 1);
11424         epd = false;
11425     } else {
11426         int t0sz = extract32(tcr, 0, 3);
11427         int t1sz = extract32(tcr, 16, 3);
11428 
11429         if (t1sz == 0) {
11430             select = va > (0xffffffffu >> t0sz);
11431         } else {
11432             /* Note that we will detect errors later.  */
11433             select = va >= ~(0xffffffffu >> t1sz);
11434         }
11435         if (!select) {
11436             tsz = t0sz;
11437             epd = extract32(tcr, 7, 1);
11438             hpd = extract64(tcr, 41, 1);
11439         } else {
11440             tsz = t1sz;
11441             epd = extract32(tcr, 23, 1);
11442             hpd = extract64(tcr, 42, 1);
11443         }
11444         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11445         hpd &= extract32(tcr, 6, 1);
11446     }
11447 
11448     return (ARMVAParameters) {
11449         .tsz = tsz,
11450         .select = select,
11451         .epd = epd,
11452         .hpd = hpd,
11453     };
11454 }
11455 
11456 /**
11457  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11458  *
11459  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11460  * prot and page_size may not be filled in, and the populated fsr value provides
11461  * information on why the translation aborted, in the format of a long-format
11462  * DFSR/IFSR fault register, with the following caveats:
11463  *  * the WnR bit is never set (the caller must do this).
11464  *
11465  * @env: CPUARMState
11466  * @address: virtual address to get physical address for
11467  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11468  * @mmu_idx: MMU index indicating required translation regime
11469  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11470  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11471  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11472  * @phys_ptr: set to the physical address corresponding to the virtual address
11473  * @attrs: set to the memory transaction attributes to use
11474  * @prot: set to the permissions for the page containing phys_ptr
11475  * @page_size_ptr: set to the size of the page containing phys_ptr
11476  * @fi: set to fault info if the translation fails
11477  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11478  */
11479 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11480                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11481                                bool s1_is_el0,
11482                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11483                                target_ulong *page_size_ptr,
11484                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11485 {
11486     ARMCPU *cpu = env_archcpu(env);
11487     CPUState *cs = CPU(cpu);
11488     /* Read an LPAE long-descriptor translation table. */
11489     ARMFaultType fault_type = ARMFault_Translation;
11490     uint32_t level;
11491     ARMVAParameters param;
11492     uint64_t ttbr;
11493     hwaddr descaddr, indexmask, indexmask_grainsize;
11494     uint32_t tableattrs;
11495     target_ulong page_size;
11496     uint32_t attrs;
11497     int32_t stride;
11498     int addrsize, inputsize, outputsize;
11499     TCR *tcr = regime_tcr(env, mmu_idx);
11500     int ap, ns, xn, pxn;
11501     uint32_t el = regime_el(env, mmu_idx);
11502     uint64_t descaddrmask;
11503     bool aarch64 = arm_el_is_aa64(env, el);
11504     bool guarded = false;
11505 
11506     /* TODO: This code does not support shareability levels. */
11507     if (aarch64) {
11508         int ps;
11509 
11510         param = aa64_va_parameters(env, address, mmu_idx,
11511                                    access_type != MMU_INST_FETCH);
11512         level = 0;
11513 
11514         /*
11515          * If TxSZ is programmed to a value larger than the maximum,
11516          * or smaller than the effective minimum, it is IMPLEMENTATION
11517          * DEFINED whether we behave as if the field were programmed
11518          * within bounds, or if a level 0 Translation fault is generated.
11519          *
11520          * With FEAT_LVA, fault on less than minimum becomes required,
11521          * so our choice is to always raise the fault.
11522          */
11523         if (param.tsz_oob) {
11524             fault_type = ARMFault_Translation;
11525             goto do_fault;
11526         }
11527 
11528         addrsize = 64 - 8 * param.tbi;
11529         inputsize = 64 - param.tsz;
11530 
11531         /*
11532          * Bound PS by PARANGE to find the effective output address size.
11533          * ID_AA64MMFR0 is a read-only register so values outside of the
11534          * supported mappings can be considered an implementation error.
11535          */
11536         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
11537         ps = MIN(ps, param.ps);
11538         assert(ps < ARRAY_SIZE(pamax_map));
11539         outputsize = pamax_map[ps];
11540     } else {
11541         param = aa32_va_parameters(env, address, mmu_idx);
11542         level = 1;
11543         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11544         inputsize = addrsize - param.tsz;
11545         outputsize = 40;
11546     }
11547 
11548     /*
11549      * We determined the region when collecting the parameters, but we
11550      * have not yet validated that the address is valid for the region.
11551      * Extract the top bits and verify that they all match select.
11552      *
11553      * For aa32, if inputsize == addrsize, then we have selected the
11554      * region by exclusion in aa32_va_parameters and there is no more
11555      * validation to do here.
11556      */
11557     if (inputsize < addrsize) {
11558         target_ulong top_bits = sextract64(address, inputsize,
11559                                            addrsize - inputsize);
11560         if (-top_bits != param.select) {
11561             /* The gap between the two regions is a Translation fault */
11562             fault_type = ARMFault_Translation;
11563             goto do_fault;
11564         }
11565     }
11566 
11567     if (param.using64k) {
11568         stride = 13;
11569     } else if (param.using16k) {
11570         stride = 11;
11571     } else {
11572         stride = 9;
11573     }
11574 
11575     /* Note that QEMU ignores shareability and cacheability attributes,
11576      * so we don't need to do anything with the SH, ORGN, IRGN fields
11577      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11578      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11579      * implement any ASID-like capability so we can ignore it (instead
11580      * we will always flush the TLB any time the ASID is changed).
11581      */
11582     ttbr = regime_ttbr(env, mmu_idx, param.select);
11583 
11584     /* Here we should have set up all the parameters for the translation:
11585      * inputsize, ttbr, epd, stride, tbi
11586      */
11587 
11588     if (param.epd) {
11589         /* Translation table walk disabled => Translation fault on TLB miss
11590          * Note: This is always 0 on 64-bit EL2 and EL3.
11591          */
11592         goto do_fault;
11593     }
11594 
11595     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11596         /* The starting level depends on the virtual address size (which can
11597          * be up to 48 bits) and the translation granule size. It indicates
11598          * the number of strides (stride bits at a time) needed to
11599          * consume the bits of the input address. In the pseudocode this is:
11600          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11601          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11602          * our 'stride + 3' and 'stride' is our 'stride'.
11603          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11604          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11605          * = 4 - (inputsize - 4) / stride;
11606          */
11607         level = 4 - (inputsize - 4) / stride;
11608     } else {
11609         /* For stage 2 translations the starting level is specified by the
11610          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11611          */
11612         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11613         uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1);
11614         uint32_t startlevel;
11615         bool ok;
11616 
11617         /* SL2 is RES0 unless DS=1 & 4kb granule. */
11618         if (param.ds && stride == 9 && sl2) {
11619             if (sl0 != 0) {
11620                 level = 0;
11621                 fault_type = ARMFault_Translation;
11622                 goto do_fault;
11623             }
11624             startlevel = -1;
11625         } else if (!aarch64 || stride == 9) {
11626             /* AArch32 or 4KB pages */
11627             startlevel = 2 - sl0;
11628 
11629             if (cpu_isar_feature(aa64_st, cpu)) {
11630                 startlevel &= 3;
11631             }
11632         } else {
11633             /* 16KB or 64KB pages */
11634             startlevel = 3 - sl0;
11635         }
11636 
11637         /* Check that the starting level is valid. */
11638         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11639                                 inputsize, stride, outputsize);
11640         if (!ok) {
11641             fault_type = ARMFault_Translation;
11642             goto do_fault;
11643         }
11644         level = startlevel;
11645     }
11646 
11647     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
11648     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
11649 
11650     /* Now we can extract the actual base address from the TTBR */
11651     descaddr = extract64(ttbr, 0, 48);
11652 
11653     /*
11654      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
11655      *
11656      * Otherwise, if the base address is out of range, raise AddressSizeFault.
11657      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
11658      * but we've just cleared the bits above 47, so simplify the test.
11659      */
11660     if (outputsize > 48) {
11661         descaddr |= extract64(ttbr, 2, 4) << 48;
11662     } else if (descaddr >> outputsize) {
11663         level = 0;
11664         fault_type = ARMFault_AddressSize;
11665         goto do_fault;
11666     }
11667 
11668     /*
11669      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11670      * and also to mask out CnP (bit 0) which could validly be non-zero.
11671      */
11672     descaddr &= ~indexmask;
11673 
11674     /*
11675      * For AArch32, the address field in the descriptor goes up to bit 39
11676      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
11677      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
11678      * bits as part of the address, which will be checked via outputsize.
11679      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
11680      * the highest bits of a 52-bit output are placed elsewhere.
11681      */
11682     if (param.ds) {
11683         descaddrmask = MAKE_64BIT_MASK(0, 50);
11684     } else if (arm_feature(env, ARM_FEATURE_V8)) {
11685         descaddrmask = MAKE_64BIT_MASK(0, 48);
11686     } else {
11687         descaddrmask = MAKE_64BIT_MASK(0, 40);
11688     }
11689     descaddrmask &= ~indexmask_grainsize;
11690 
11691     /* Secure accesses start with the page table in secure memory and
11692      * can be downgraded to non-secure at any step. Non-secure accesses
11693      * remain non-secure. We implement this by just ORing in the NSTable/NS
11694      * bits at each step.
11695      */
11696     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11697     for (;;) {
11698         uint64_t descriptor;
11699         bool nstable;
11700 
11701         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11702         descaddr &= ~7ULL;
11703         nstable = extract32(tableattrs, 4, 1);
11704         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11705         if (fi->type != ARMFault_None) {
11706             goto do_fault;
11707         }
11708 
11709         if (!(descriptor & 1) ||
11710             (!(descriptor & 2) && (level == 3))) {
11711             /* Invalid, or the Reserved level 3 encoding */
11712             goto do_fault;
11713         }
11714 
11715         descaddr = descriptor & descaddrmask;
11716 
11717         /*
11718          * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
11719          * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
11720          * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
11721          * raise AddressSizeFault.
11722          */
11723         if (outputsize > 48) {
11724             if (param.ds) {
11725                 descaddr |= extract64(descriptor, 8, 2) << 50;
11726             } else {
11727                 descaddr |= extract64(descriptor, 12, 4) << 48;
11728             }
11729         } else if (descaddr >> outputsize) {
11730             fault_type = ARMFault_AddressSize;
11731             goto do_fault;
11732         }
11733 
11734         if ((descriptor & 2) && (level < 3)) {
11735             /* Table entry. The top five bits are attributes which may
11736              * propagate down through lower levels of the table (and
11737              * which are all arranged so that 0 means "no effect", so
11738              * we can gather them up by ORing in the bits at each level).
11739              */
11740             tableattrs |= extract64(descriptor, 59, 5);
11741             level++;
11742             indexmask = indexmask_grainsize;
11743             continue;
11744         }
11745         /*
11746          * Block entry at level 1 or 2, or page entry at level 3.
11747          * These are basically the same thing, although the number
11748          * of bits we pull in from the vaddr varies. Note that although
11749          * descaddrmask masks enough of the low bits of the descriptor
11750          * to give a correct page or table address, the address field
11751          * in a block descriptor is smaller; so we need to explicitly
11752          * clear the lower bits here before ORing in the low vaddr bits.
11753          */
11754         page_size = (1ULL << ((stride * (4 - level)) + 3));
11755         descaddr &= ~(page_size - 1);
11756         descaddr |= (address & (page_size - 1));
11757         /* Extract attributes from the descriptor */
11758         attrs = extract64(descriptor, 2, 10)
11759             | (extract64(descriptor, 52, 12) << 10);
11760 
11761         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11762             /* Stage 2 table descriptors do not include any attribute fields */
11763             break;
11764         }
11765         /* Merge in attributes from table descriptors */
11766         attrs |= nstable << 3; /* NS */
11767         guarded = extract64(descriptor, 50, 1);  /* GP */
11768         if (param.hpd) {
11769             /* HPD disables all the table attributes except NSTable.  */
11770             break;
11771         }
11772         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11773         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11774          * means "force PL1 access only", which means forcing AP[1] to 0.
11775          */
11776         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11777         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11778         break;
11779     }
11780     /* Here descaddr is the final physical address, and attributes
11781      * are all in attrs.
11782      */
11783     fault_type = ARMFault_AccessFlag;
11784     if ((attrs & (1 << 8)) == 0) {
11785         /* Access flag */
11786         goto do_fault;
11787     }
11788 
11789     ap = extract32(attrs, 4, 2);
11790 
11791     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11792         ns = mmu_idx == ARMMMUIdx_Stage2;
11793         xn = extract32(attrs, 11, 2);
11794         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11795     } else {
11796         ns = extract32(attrs, 3, 1);
11797         xn = extract32(attrs, 12, 1);
11798         pxn = extract32(attrs, 11, 1);
11799         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11800     }
11801 
11802     fault_type = ARMFault_Permission;
11803     if (!(*prot & (1 << access_type))) {
11804         goto do_fault;
11805     }
11806 
11807     if (ns) {
11808         /* The NS bit will (as required by the architecture) have no effect if
11809          * the CPU doesn't support TZ or this is a non-secure translation
11810          * regime, because the attribute will already be non-secure.
11811          */
11812         txattrs->secure = false;
11813     }
11814     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11815     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11816         arm_tlb_bti_gp(txattrs) = true;
11817     }
11818 
11819     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11820         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11821     } else {
11822         /* Index into MAIR registers for cache attributes */
11823         uint8_t attrindx = extract32(attrs, 0, 3);
11824         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11825         assert(attrindx <= 7);
11826         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11827     }
11828 
11829     /*
11830      * For FEAT_LPA2 and effective DS, the SH field in the attributes
11831      * was re-purposed for output address bits.  The SH attribute in
11832      * that case comes from TCR_ELx, which we extracted earlier.
11833      */
11834     if (param.ds) {
11835         cacheattrs->shareability = param.sh;
11836     } else {
11837         cacheattrs->shareability = extract32(attrs, 6, 2);
11838     }
11839 
11840     *phys_ptr = descaddr;
11841     *page_size_ptr = page_size;
11842     return false;
11843 
11844 do_fault:
11845     fi->type = fault_type;
11846     fi->level = level;
11847     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11848     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11849                                mmu_idx == ARMMMUIdx_Stage2_S);
11850     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11851     return true;
11852 }
11853 
11854 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11855                                                 ARMMMUIdx mmu_idx,
11856                                                 int32_t address, int *prot)
11857 {
11858     if (!arm_feature(env, ARM_FEATURE_M)) {
11859         *prot = PAGE_READ | PAGE_WRITE;
11860         switch (address) {
11861         case 0xF0000000 ... 0xFFFFFFFF:
11862             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11863                 /* hivecs execing is ok */
11864                 *prot |= PAGE_EXEC;
11865             }
11866             break;
11867         case 0x00000000 ... 0x7FFFFFFF:
11868             *prot |= PAGE_EXEC;
11869             break;
11870         }
11871     } else {
11872         /* Default system address map for M profile cores.
11873          * The architecture specifies which regions are execute-never;
11874          * at the MPU level no other checks are defined.
11875          */
11876         switch (address) {
11877         case 0x00000000 ... 0x1fffffff: /* ROM */
11878         case 0x20000000 ... 0x3fffffff: /* SRAM */
11879         case 0x60000000 ... 0x7fffffff: /* RAM */
11880         case 0x80000000 ... 0x9fffffff: /* RAM */
11881             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11882             break;
11883         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11884         case 0xa0000000 ... 0xbfffffff: /* Device */
11885         case 0xc0000000 ... 0xdfffffff: /* Device */
11886         case 0xe0000000 ... 0xffffffff: /* System */
11887             *prot = PAGE_READ | PAGE_WRITE;
11888             break;
11889         default:
11890             g_assert_not_reached();
11891         }
11892     }
11893 }
11894 
11895 static bool pmsav7_use_background_region(ARMCPU *cpu,
11896                                          ARMMMUIdx mmu_idx, bool is_user)
11897 {
11898     /* Return true if we should use the default memory map as a
11899      * "background" region if there are no hits against any MPU regions.
11900      */
11901     CPUARMState *env = &cpu->env;
11902 
11903     if (is_user) {
11904         return false;
11905     }
11906 
11907     if (arm_feature(env, ARM_FEATURE_M)) {
11908         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11909             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11910     } else {
11911         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11912     }
11913 }
11914 
11915 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11916 {
11917     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11918     return arm_feature(env, ARM_FEATURE_M) &&
11919         extract32(address, 20, 12) == 0xe00;
11920 }
11921 
11922 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11923 {
11924     /* True if address is in the M profile system region
11925      * 0xe0000000 - 0xffffffff
11926      */
11927     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11928 }
11929 
11930 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11931                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11932                                  hwaddr *phys_ptr, int *prot,
11933                                  target_ulong *page_size,
11934                                  ARMMMUFaultInfo *fi)
11935 {
11936     ARMCPU *cpu = env_archcpu(env);
11937     int n;
11938     bool is_user = regime_is_user(env, mmu_idx);
11939 
11940     *phys_ptr = address;
11941     *page_size = TARGET_PAGE_SIZE;
11942     *prot = 0;
11943 
11944     if (regime_translation_disabled(env, mmu_idx) ||
11945         m_is_ppb_region(env, address)) {
11946         /* MPU disabled or M profile PPB access: use default memory map.
11947          * The other case which uses the default memory map in the
11948          * v7M ARM ARM pseudocode is exception vector reads from the vector
11949          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11950          * which always does a direct read using address_space_ldl(), rather
11951          * than going via this function, so we don't need to check that here.
11952          */
11953         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11954     } else { /* MPU enabled */
11955         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11956             /* region search */
11957             uint32_t base = env->pmsav7.drbar[n];
11958             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11959             uint32_t rmask;
11960             bool srdis = false;
11961 
11962             if (!(env->pmsav7.drsr[n] & 0x1)) {
11963                 continue;
11964             }
11965 
11966             if (!rsize) {
11967                 qemu_log_mask(LOG_GUEST_ERROR,
11968                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11969                 continue;
11970             }
11971             rsize++;
11972             rmask = (1ull << rsize) - 1;
11973 
11974             if (base & rmask) {
11975                 qemu_log_mask(LOG_GUEST_ERROR,
11976                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11977                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11978                               n, base, rmask);
11979                 continue;
11980             }
11981 
11982             if (address < base || address > base + rmask) {
11983                 /*
11984                  * Address not in this region. We must check whether the
11985                  * region covers addresses in the same page as our address.
11986                  * In that case we must not report a size that covers the
11987                  * whole page for a subsequent hit against a different MPU
11988                  * region or the background region, because it would result in
11989                  * incorrect TLB hits for subsequent accesses to addresses that
11990                  * are in this MPU region.
11991                  */
11992                 if (ranges_overlap(base, rmask,
11993                                    address & TARGET_PAGE_MASK,
11994                                    TARGET_PAGE_SIZE)) {
11995                     *page_size = 1;
11996                 }
11997                 continue;
11998             }
11999 
12000             /* Region matched */
12001 
12002             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
12003                 int i, snd;
12004                 uint32_t srdis_mask;
12005 
12006                 rsize -= 3; /* sub region size (power of 2) */
12007                 snd = ((address - base) >> rsize) & 0x7;
12008                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
12009 
12010                 srdis_mask = srdis ? 0x3 : 0x0;
12011                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
12012                     /* This will check in groups of 2, 4 and then 8, whether
12013                      * the subregion bits are consistent. rsize is incremented
12014                      * back up to give the region size, considering consistent
12015                      * adjacent subregions as one region. Stop testing if rsize
12016                      * is already big enough for an entire QEMU page.
12017                      */
12018                     int snd_rounded = snd & ~(i - 1);
12019                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
12020                                                      snd_rounded + 8, i);
12021                     if (srdis_mask ^ srdis_multi) {
12022                         break;
12023                     }
12024                     srdis_mask = (srdis_mask << i) | srdis_mask;
12025                     rsize++;
12026                 }
12027             }
12028             if (srdis) {
12029                 continue;
12030             }
12031             if (rsize < TARGET_PAGE_BITS) {
12032                 *page_size = 1 << rsize;
12033             }
12034             break;
12035         }
12036 
12037         if (n == -1) { /* no hits */
12038             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12039                 /* background fault */
12040                 fi->type = ARMFault_Background;
12041                 return true;
12042             }
12043             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12044         } else { /* a MPU hit! */
12045             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12046             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12047 
12048             if (m_is_system_region(env, address)) {
12049                 /* System space is always execute never */
12050                 xn = 1;
12051             }
12052 
12053             if (is_user) { /* User mode AP bit decoding */
12054                 switch (ap) {
12055                 case 0:
12056                 case 1:
12057                 case 5:
12058                     break; /* no access */
12059                 case 3:
12060                     *prot |= PAGE_WRITE;
12061                     /* fall through */
12062                 case 2:
12063                 case 6:
12064                     *prot |= PAGE_READ | PAGE_EXEC;
12065                     break;
12066                 case 7:
12067                     /* for v7M, same as 6; for R profile a reserved value */
12068                     if (arm_feature(env, ARM_FEATURE_M)) {
12069                         *prot |= PAGE_READ | PAGE_EXEC;
12070                         break;
12071                     }
12072                     /* fall through */
12073                 default:
12074                     qemu_log_mask(LOG_GUEST_ERROR,
12075                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12076                                   PRIx32 "\n", n, ap);
12077                 }
12078             } else { /* Priv. mode AP bits decoding */
12079                 switch (ap) {
12080                 case 0:
12081                     break; /* no access */
12082                 case 1:
12083                 case 2:
12084                 case 3:
12085                     *prot |= PAGE_WRITE;
12086                     /* fall through */
12087                 case 5:
12088                 case 6:
12089                     *prot |= PAGE_READ | PAGE_EXEC;
12090                     break;
12091                 case 7:
12092                     /* for v7M, same as 6; for R profile a reserved value */
12093                     if (arm_feature(env, ARM_FEATURE_M)) {
12094                         *prot |= PAGE_READ | PAGE_EXEC;
12095                         break;
12096                     }
12097                     /* fall through */
12098                 default:
12099                     qemu_log_mask(LOG_GUEST_ERROR,
12100                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12101                                   PRIx32 "\n", n, ap);
12102                 }
12103             }
12104 
12105             /* execute never */
12106             if (xn) {
12107                 *prot &= ~PAGE_EXEC;
12108             }
12109         }
12110     }
12111 
12112     fi->type = ARMFault_Permission;
12113     fi->level = 1;
12114     return !(*prot & (1 << access_type));
12115 }
12116 
12117 static bool v8m_is_sau_exempt(CPUARMState *env,
12118                               uint32_t address, MMUAccessType access_type)
12119 {
12120     /* The architecture specifies that certain address ranges are
12121      * exempt from v8M SAU/IDAU checks.
12122      */
12123     return
12124         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12125         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12126         (address >= 0xe000e000 && address <= 0xe000efff) ||
12127         (address >= 0xe002e000 && address <= 0xe002efff) ||
12128         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12129         (address >= 0xe00ff000 && address <= 0xe00fffff);
12130 }
12131 
12132 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12133                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12134                                 V8M_SAttributes *sattrs)
12135 {
12136     /* Look up the security attributes for this address. Compare the
12137      * pseudocode SecurityCheck() function.
12138      * We assume the caller has zero-initialized *sattrs.
12139      */
12140     ARMCPU *cpu = env_archcpu(env);
12141     int r;
12142     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12143     int idau_region = IREGION_NOTVALID;
12144     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12145     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12146 
12147     if (cpu->idau) {
12148         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12149         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12150 
12151         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12152                    &idau_nsc);
12153     }
12154 
12155     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12156         /* 0xf0000000..0xffffffff is always S for insn fetches */
12157         return;
12158     }
12159 
12160     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12161         sattrs->ns = !regime_is_secure(env, mmu_idx);
12162         return;
12163     }
12164 
12165     if (idau_region != IREGION_NOTVALID) {
12166         sattrs->irvalid = true;
12167         sattrs->iregion = idau_region;
12168     }
12169 
12170     switch (env->sau.ctrl & 3) {
12171     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12172         break;
12173     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12174         sattrs->ns = true;
12175         break;
12176     default: /* SAU.ENABLE == 1 */
12177         for (r = 0; r < cpu->sau_sregion; r++) {
12178             if (env->sau.rlar[r] & 1) {
12179                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12180                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12181 
12182                 if (base <= address && limit >= address) {
12183                     if (base > addr_page_base || limit < addr_page_limit) {
12184                         sattrs->subpage = true;
12185                     }
12186                     if (sattrs->srvalid) {
12187                         /* If we hit in more than one region then we must report
12188                          * as Secure, not NS-Callable, with no valid region
12189                          * number info.
12190                          */
12191                         sattrs->ns = false;
12192                         sattrs->nsc = false;
12193                         sattrs->sregion = 0;
12194                         sattrs->srvalid = false;
12195                         break;
12196                     } else {
12197                         if (env->sau.rlar[r] & 2) {
12198                             sattrs->nsc = true;
12199                         } else {
12200                             sattrs->ns = true;
12201                         }
12202                         sattrs->srvalid = true;
12203                         sattrs->sregion = r;
12204                     }
12205                 } else {
12206                     /*
12207                      * Address not in this region. We must check whether the
12208                      * region covers addresses in the same page as our address.
12209                      * In that case we must not report a size that covers the
12210                      * whole page for a subsequent hit against a different MPU
12211                      * region or the background region, because it would result
12212                      * in incorrect TLB hits for subsequent accesses to
12213                      * addresses that are in this MPU region.
12214                      */
12215                     if (limit >= base &&
12216                         ranges_overlap(base, limit - base + 1,
12217                                        addr_page_base,
12218                                        TARGET_PAGE_SIZE)) {
12219                         sattrs->subpage = true;
12220                     }
12221                 }
12222             }
12223         }
12224         break;
12225     }
12226 
12227     /*
12228      * The IDAU will override the SAU lookup results if it specifies
12229      * higher security than the SAU does.
12230      */
12231     if (!idau_ns) {
12232         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12233             sattrs->ns = false;
12234             sattrs->nsc = idau_nsc;
12235         }
12236     }
12237 }
12238 
12239 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12240                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12241                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12242                               int *prot, bool *is_subpage,
12243                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12244 {
12245     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12246      * that a full phys-to-virt translation does).
12247      * mregion is (if not NULL) set to the region number which matched,
12248      * or -1 if no region number is returned (MPU off, address did not
12249      * hit a region, address hit in multiple regions).
12250      * We set is_subpage to true if the region hit doesn't cover the
12251      * entire TARGET_PAGE the address is within.
12252      */
12253     ARMCPU *cpu = env_archcpu(env);
12254     bool is_user = regime_is_user(env, mmu_idx);
12255     uint32_t secure = regime_is_secure(env, mmu_idx);
12256     int n;
12257     int matchregion = -1;
12258     bool hit = false;
12259     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12260     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12261 
12262     *is_subpage = false;
12263     *phys_ptr = address;
12264     *prot = 0;
12265     if (mregion) {
12266         *mregion = -1;
12267     }
12268 
12269     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12270      * was an exception vector read from the vector table (which is always
12271      * done using the default system address map), because those accesses
12272      * are done in arm_v7m_load_vector(), which always does a direct
12273      * read using address_space_ldl(), rather than going via this function.
12274      */
12275     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12276         hit = true;
12277     } else if (m_is_ppb_region(env, address)) {
12278         hit = true;
12279     } else {
12280         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12281             hit = true;
12282         }
12283 
12284         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12285             /* region search */
12286             /* Note that the base address is bits [31:5] from the register
12287              * with bits [4:0] all zeroes, but the limit address is bits
12288              * [31:5] from the register with bits [4:0] all ones.
12289              */
12290             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12291             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12292 
12293             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12294                 /* Region disabled */
12295                 continue;
12296             }
12297 
12298             if (address < base || address > limit) {
12299                 /*
12300                  * Address not in this region. We must check whether the
12301                  * region covers addresses in the same page as our address.
12302                  * In that case we must not report a size that covers the
12303                  * whole page for a subsequent hit against a different MPU
12304                  * region or the background region, because it would result in
12305                  * incorrect TLB hits for subsequent accesses to addresses that
12306                  * are in this MPU region.
12307                  */
12308                 if (limit >= base &&
12309                     ranges_overlap(base, limit - base + 1,
12310                                    addr_page_base,
12311                                    TARGET_PAGE_SIZE)) {
12312                     *is_subpage = true;
12313                 }
12314                 continue;
12315             }
12316 
12317             if (base > addr_page_base || limit < addr_page_limit) {
12318                 *is_subpage = true;
12319             }
12320 
12321             if (matchregion != -1) {
12322                 /* Multiple regions match -- always a failure (unlike
12323                  * PMSAv7 where highest-numbered-region wins)
12324                  */
12325                 fi->type = ARMFault_Permission;
12326                 fi->level = 1;
12327                 return true;
12328             }
12329 
12330             matchregion = n;
12331             hit = true;
12332         }
12333     }
12334 
12335     if (!hit) {
12336         /* background fault */
12337         fi->type = ARMFault_Background;
12338         return true;
12339     }
12340 
12341     if (matchregion == -1) {
12342         /* hit using the background region */
12343         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12344     } else {
12345         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12346         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12347         bool pxn = false;
12348 
12349         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12350             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12351         }
12352 
12353         if (m_is_system_region(env, address)) {
12354             /* System space is always execute never */
12355             xn = 1;
12356         }
12357 
12358         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12359         if (*prot && !xn && !(pxn && !is_user)) {
12360             *prot |= PAGE_EXEC;
12361         }
12362         /* We don't need to look the attribute up in the MAIR0/MAIR1
12363          * registers because that only tells us about cacheability.
12364          */
12365         if (mregion) {
12366             *mregion = matchregion;
12367         }
12368     }
12369 
12370     fi->type = ARMFault_Permission;
12371     fi->level = 1;
12372     return !(*prot & (1 << access_type));
12373 }
12374 
12375 
12376 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12377                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12378                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12379                                  int *prot, target_ulong *page_size,
12380                                  ARMMMUFaultInfo *fi)
12381 {
12382     uint32_t secure = regime_is_secure(env, mmu_idx);
12383     V8M_SAttributes sattrs = {};
12384     bool ret;
12385     bool mpu_is_subpage;
12386 
12387     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12388         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12389         if (access_type == MMU_INST_FETCH) {
12390             /* Instruction fetches always use the MMU bank and the
12391              * transaction attribute determined by the fetch address,
12392              * regardless of CPU state. This is painful for QEMU
12393              * to handle, because it would mean we need to encode
12394              * into the mmu_idx not just the (user, negpri) information
12395              * for the current security state but also that for the
12396              * other security state, which would balloon the number
12397              * of mmu_idx values needed alarmingly.
12398              * Fortunately we can avoid this because it's not actually
12399              * possible to arbitrarily execute code from memory with
12400              * the wrong security attribute: it will always generate
12401              * an exception of some kind or another, apart from the
12402              * special case of an NS CPU executing an SG instruction
12403              * in S&NSC memory. So we always just fail the translation
12404              * here and sort things out in the exception handler
12405              * (including possibly emulating an SG instruction).
12406              */
12407             if (sattrs.ns != !secure) {
12408                 if (sattrs.nsc) {
12409                     fi->type = ARMFault_QEMU_NSCExec;
12410                 } else {
12411                     fi->type = ARMFault_QEMU_SFault;
12412                 }
12413                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12414                 *phys_ptr = address;
12415                 *prot = 0;
12416                 return true;
12417             }
12418         } else {
12419             /* For data accesses we always use the MMU bank indicated
12420              * by the current CPU state, but the security attributes
12421              * might downgrade a secure access to nonsecure.
12422              */
12423             if (sattrs.ns) {
12424                 txattrs->secure = false;
12425             } else if (!secure) {
12426                 /* NS access to S memory must fault.
12427                  * Architecturally we should first check whether the
12428                  * MPU information for this address indicates that we
12429                  * are doing an unaligned access to Device memory, which
12430                  * should generate a UsageFault instead. QEMU does not
12431                  * currently check for that kind of unaligned access though.
12432                  * If we added it we would need to do so as a special case
12433                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12434                  */
12435                 fi->type = ARMFault_QEMU_SFault;
12436                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12437                 *phys_ptr = address;
12438                 *prot = 0;
12439                 return true;
12440             }
12441         }
12442     }
12443 
12444     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12445                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12446     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12447     return ret;
12448 }
12449 
12450 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12451                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12452                                  hwaddr *phys_ptr, int *prot,
12453                                  ARMMMUFaultInfo *fi)
12454 {
12455     int n;
12456     uint32_t mask;
12457     uint32_t base;
12458     bool is_user = regime_is_user(env, mmu_idx);
12459 
12460     if (regime_translation_disabled(env, mmu_idx)) {
12461         /* MPU disabled.  */
12462         *phys_ptr = address;
12463         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12464         return false;
12465     }
12466 
12467     *phys_ptr = address;
12468     for (n = 7; n >= 0; n--) {
12469         base = env->cp15.c6_region[n];
12470         if ((base & 1) == 0) {
12471             continue;
12472         }
12473         mask = 1 << ((base >> 1) & 0x1f);
12474         /* Keep this shift separate from the above to avoid an
12475            (undefined) << 32.  */
12476         mask = (mask << 1) - 1;
12477         if (((base ^ address) & ~mask) == 0) {
12478             break;
12479         }
12480     }
12481     if (n < 0) {
12482         fi->type = ARMFault_Background;
12483         return true;
12484     }
12485 
12486     if (access_type == MMU_INST_FETCH) {
12487         mask = env->cp15.pmsav5_insn_ap;
12488     } else {
12489         mask = env->cp15.pmsav5_data_ap;
12490     }
12491     mask = (mask >> (n * 4)) & 0xf;
12492     switch (mask) {
12493     case 0:
12494         fi->type = ARMFault_Permission;
12495         fi->level = 1;
12496         return true;
12497     case 1:
12498         if (is_user) {
12499             fi->type = ARMFault_Permission;
12500             fi->level = 1;
12501             return true;
12502         }
12503         *prot = PAGE_READ | PAGE_WRITE;
12504         break;
12505     case 2:
12506         *prot = PAGE_READ;
12507         if (!is_user) {
12508             *prot |= PAGE_WRITE;
12509         }
12510         break;
12511     case 3:
12512         *prot = PAGE_READ | PAGE_WRITE;
12513         break;
12514     case 5:
12515         if (is_user) {
12516             fi->type = ARMFault_Permission;
12517             fi->level = 1;
12518             return true;
12519         }
12520         *prot = PAGE_READ;
12521         break;
12522     case 6:
12523         *prot = PAGE_READ;
12524         break;
12525     default:
12526         /* Bad permission.  */
12527         fi->type = ARMFault_Permission;
12528         fi->level = 1;
12529         return true;
12530     }
12531     *prot |= PAGE_EXEC;
12532     return false;
12533 }
12534 
12535 /* Combine either inner or outer cacheability attributes for normal
12536  * memory, according to table D4-42 and pseudocode procedure
12537  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12538  *
12539  * NB: only stage 1 includes allocation hints (RW bits), leading to
12540  * some asymmetry.
12541  */
12542 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12543 {
12544     if (s1 == 4 || s2 == 4) {
12545         /* non-cacheable has precedence */
12546         return 4;
12547     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12548         /* stage 1 write-through takes precedence */
12549         return s1;
12550     } else if (extract32(s2, 2, 2) == 2) {
12551         /* stage 2 write-through takes precedence, but the allocation hint
12552          * is still taken from stage 1
12553          */
12554         return (2 << 2) | extract32(s1, 0, 2);
12555     } else { /* write-back */
12556         return s1;
12557     }
12558 }
12559 
12560 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12561  * and CombineS1S2Desc()
12562  *
12563  * @s1:      Attributes from stage 1 walk
12564  * @s2:      Attributes from stage 2 walk
12565  */
12566 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12567 {
12568     uint8_t s1lo, s2lo, s1hi, s2hi;
12569     ARMCacheAttrs ret;
12570     bool tagged = false;
12571 
12572     if (s1.attrs == 0xf0) {
12573         tagged = true;
12574         s1.attrs = 0xff;
12575     }
12576 
12577     s1lo = extract32(s1.attrs, 0, 4);
12578     s2lo = extract32(s2.attrs, 0, 4);
12579     s1hi = extract32(s1.attrs, 4, 4);
12580     s2hi = extract32(s2.attrs, 4, 4);
12581 
12582     /* Combine shareability attributes (table D4-43) */
12583     if (s1.shareability == 2 || s2.shareability == 2) {
12584         /* if either are outer-shareable, the result is outer-shareable */
12585         ret.shareability = 2;
12586     } else if (s1.shareability == 3 || s2.shareability == 3) {
12587         /* if either are inner-shareable, the result is inner-shareable */
12588         ret.shareability = 3;
12589     } else {
12590         /* both non-shareable */
12591         ret.shareability = 0;
12592     }
12593 
12594     /* Combine memory type and cacheability attributes */
12595     if (s1hi == 0 || s2hi == 0) {
12596         /* Device has precedence over normal */
12597         if (s1lo == 0 || s2lo == 0) {
12598             /* nGnRnE has precedence over anything */
12599             ret.attrs = 0;
12600         } else if (s1lo == 4 || s2lo == 4) {
12601             /* non-Reordering has precedence over Reordering */
12602             ret.attrs = 4;  /* nGnRE */
12603         } else if (s1lo == 8 || s2lo == 8) {
12604             /* non-Gathering has precedence over Gathering */
12605             ret.attrs = 8;  /* nGRE */
12606         } else {
12607             ret.attrs = 0xc; /* GRE */
12608         }
12609 
12610         /* Any location for which the resultant memory type is any
12611          * type of Device memory is always treated as Outer Shareable.
12612          */
12613         ret.shareability = 2;
12614     } else { /* Normal memory */
12615         /* Outer/inner cacheability combine independently */
12616         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12617                   | combine_cacheattr_nibble(s1lo, s2lo);
12618 
12619         if (ret.attrs == 0x44) {
12620             /* Any location for which the resultant memory type is Normal
12621              * Inner Non-cacheable, Outer Non-cacheable is always treated
12622              * as Outer Shareable.
12623              */
12624             ret.shareability = 2;
12625         }
12626     }
12627 
12628     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12629     if (tagged && ret.attrs == 0xff) {
12630         ret.attrs = 0xf0;
12631     }
12632 
12633     return ret;
12634 }
12635 
12636 
12637 /* get_phys_addr - get the physical address for this virtual address
12638  *
12639  * Find the physical address corresponding to the given virtual address,
12640  * by doing a translation table walk on MMU based systems or using the
12641  * MPU state on MPU based systems.
12642  *
12643  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12644  * prot and page_size may not be filled in, and the populated fsr value provides
12645  * information on why the translation aborted, in the format of a
12646  * DFSR/IFSR fault register, with the following caveats:
12647  *  * we honour the short vs long DFSR format differences.
12648  *  * the WnR bit is never set (the caller must do this).
12649  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12650  *    value.
12651  *
12652  * @env: CPUARMState
12653  * @address: virtual address to get physical address for
12654  * @access_type: 0 for read, 1 for write, 2 for execute
12655  * @mmu_idx: MMU index indicating required translation regime
12656  * @phys_ptr: set to the physical address corresponding to the virtual address
12657  * @attrs: set to the memory transaction attributes to use
12658  * @prot: set to the permissions for the page containing phys_ptr
12659  * @page_size: set to the size of the page containing phys_ptr
12660  * @fi: set to fault info if the translation fails
12661  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12662  */
12663 bool get_phys_addr(CPUARMState *env, target_ulong address,
12664                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12665                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12666                    target_ulong *page_size,
12667                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12668 {
12669     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12670 
12671     if (mmu_idx != s1_mmu_idx) {
12672         /* Call ourselves recursively to do the stage 1 and then stage 2
12673          * translations if mmu_idx is a two-stage regime.
12674          */
12675         if (arm_feature(env, ARM_FEATURE_EL2)) {
12676             hwaddr ipa;
12677             int s2_prot;
12678             int ret;
12679             bool ipa_secure;
12680             ARMCacheAttrs cacheattrs2 = {};
12681             ARMMMUIdx s2_mmu_idx;
12682             bool is_el0;
12683 
12684             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12685                                 attrs, prot, page_size, fi, cacheattrs);
12686 
12687             /* If S1 fails or S2 is disabled, return early.  */
12688             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12689                 *phys_ptr = ipa;
12690                 return ret;
12691             }
12692 
12693             ipa_secure = attrs->secure;
12694             if (arm_is_secure_below_el3(env)) {
12695                 if (ipa_secure) {
12696                     attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
12697                 } else {
12698                     attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
12699                 }
12700             } else {
12701                 assert(!ipa_secure);
12702             }
12703 
12704             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12705             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12706 
12707             /* S1 is done. Now do S2 translation.  */
12708             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12709                                      phys_ptr, attrs, &s2_prot,
12710                                      page_size, fi, &cacheattrs2);
12711             fi->s2addr = ipa;
12712             /* Combine the S1 and S2 perms.  */
12713             *prot &= s2_prot;
12714 
12715             /* If S2 fails, return early.  */
12716             if (ret) {
12717                 return ret;
12718             }
12719 
12720             /* Combine the S1 and S2 cache attributes. */
12721             if (arm_hcr_el2_eff(env) & HCR_DC) {
12722                 /*
12723                  * HCR.DC forces the first stage attributes to
12724                  *  Normal Non-Shareable,
12725                  *  Inner Write-Back Read-Allocate Write-Allocate,
12726                  *  Outer Write-Back Read-Allocate Write-Allocate.
12727                  * Do not overwrite Tagged within attrs.
12728                  */
12729                 if (cacheattrs->attrs != 0xf0) {
12730                     cacheattrs->attrs = 0xff;
12731                 }
12732                 cacheattrs->shareability = 0;
12733             }
12734             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12735 
12736             /* Check if IPA translates to secure or non-secure PA space. */
12737             if (arm_is_secure_below_el3(env)) {
12738                 if (ipa_secure) {
12739                     attrs->secure =
12740                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12741                 } else {
12742                     attrs->secure =
12743                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12744                         || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
12745                 }
12746             }
12747             return 0;
12748         } else {
12749             /*
12750              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12751              */
12752             mmu_idx = stage_1_mmu_idx(mmu_idx);
12753         }
12754     }
12755 
12756     /* The page table entries may downgrade secure to non-secure, but
12757      * cannot upgrade an non-secure translation regime's attributes
12758      * to secure.
12759      */
12760     attrs->secure = regime_is_secure(env, mmu_idx);
12761     attrs->user = regime_is_user(env, mmu_idx);
12762 
12763     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12764      * In v7 and earlier it affects all stage 1 translations.
12765      */
12766     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12767         && !arm_feature(env, ARM_FEATURE_V8)) {
12768         if (regime_el(env, mmu_idx) == 3) {
12769             address += env->cp15.fcseidr_s;
12770         } else {
12771             address += env->cp15.fcseidr_ns;
12772         }
12773     }
12774 
12775     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12776         bool ret;
12777         *page_size = TARGET_PAGE_SIZE;
12778 
12779         if (arm_feature(env, ARM_FEATURE_V8)) {
12780             /* PMSAv8 */
12781             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12782                                        phys_ptr, attrs, prot, page_size, fi);
12783         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12784             /* PMSAv7 */
12785             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12786                                        phys_ptr, prot, page_size, fi);
12787         } else {
12788             /* Pre-v7 MPU */
12789             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12790                                        phys_ptr, prot, fi);
12791         }
12792         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12793                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12794                       access_type == MMU_DATA_LOAD ? "reading" :
12795                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12796                       (uint32_t)address, mmu_idx,
12797                       ret ? "Miss" : "Hit",
12798                       *prot & PAGE_READ ? 'r' : '-',
12799                       *prot & PAGE_WRITE ? 'w' : '-',
12800                       *prot & PAGE_EXEC ? 'x' : '-');
12801 
12802         return ret;
12803     }
12804 
12805     /* Definitely a real MMU, not an MPU */
12806 
12807     if (regime_translation_disabled(env, mmu_idx)) {
12808         uint64_t hcr;
12809         uint8_t memattr;
12810 
12811         /*
12812          * MMU disabled.  S1 addresses within aa64 translation regimes are
12813          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12814          */
12815         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12816             int r_el = regime_el(env, mmu_idx);
12817             if (arm_el_is_aa64(env, r_el)) {
12818                 int pamax = arm_pamax(env_archcpu(env));
12819                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12820                 int addrtop, tbi;
12821 
12822                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12823                 if (access_type == MMU_INST_FETCH) {
12824                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12825                 }
12826                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12827                 addrtop = (tbi ? 55 : 63);
12828 
12829                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12830                     fi->type = ARMFault_AddressSize;
12831                     fi->level = 0;
12832                     fi->stage2 = false;
12833                     return 1;
12834                 }
12835 
12836                 /*
12837                  * When TBI is disabled, we've just validated that all of the
12838                  * bits above PAMax are zero, so logically we only need to
12839                  * clear the top byte for TBI.  But it's clearer to follow
12840                  * the pseudocode set of addrdesc.paddress.
12841                  */
12842                 address = extract64(address, 0, 52);
12843             }
12844         }
12845         *phys_ptr = address;
12846         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12847         *page_size = TARGET_PAGE_SIZE;
12848 
12849         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12850         hcr = arm_hcr_el2_eff(env);
12851         cacheattrs->shareability = 0;
12852         if (hcr & HCR_DC) {
12853             if (hcr & HCR_DCT) {
12854                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12855             } else {
12856                 memattr = 0xff;  /* Normal, WB, RWA */
12857             }
12858         } else if (access_type == MMU_INST_FETCH) {
12859             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12860                 memattr = 0xee;  /* Normal, WT, RA, NT */
12861             } else {
12862                 memattr = 0x44;  /* Normal, NC, No */
12863             }
12864             cacheattrs->shareability = 2; /* outer sharable */
12865         } else {
12866             memattr = 0x00;      /* Device, nGnRnE */
12867         }
12868         cacheattrs->attrs = memattr;
12869         return 0;
12870     }
12871 
12872     if (regime_using_lpae_format(env, mmu_idx)) {
12873         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12874                                   phys_ptr, attrs, prot, page_size,
12875                                   fi, cacheattrs);
12876     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12877         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12878                                 phys_ptr, attrs, prot, page_size, fi);
12879     } else {
12880         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12881                                     phys_ptr, prot, page_size, fi);
12882     }
12883 }
12884 
12885 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12886                                          MemTxAttrs *attrs)
12887 {
12888     ARMCPU *cpu = ARM_CPU(cs);
12889     CPUARMState *env = &cpu->env;
12890     hwaddr phys_addr;
12891     target_ulong page_size;
12892     int prot;
12893     bool ret;
12894     ARMMMUFaultInfo fi = {};
12895     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12896     ARMCacheAttrs cacheattrs = {};
12897 
12898     *attrs = (MemTxAttrs) {};
12899 
12900     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12901                         attrs, &prot, &page_size, &fi, &cacheattrs);
12902 
12903     if (ret) {
12904         return -1;
12905     }
12906     return phys_addr;
12907 }
12908 
12909 #endif
12910 
12911 /* Note that signed overflow is undefined in C.  The following routines are
12912    careful to use unsigned types where modulo arithmetic is required.
12913    Failure to do so _will_ break on newer gcc.  */
12914 
12915 /* Signed saturating arithmetic.  */
12916 
12917 /* Perform 16-bit signed saturating addition.  */
12918 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12919 {
12920     uint16_t res;
12921 
12922     res = a + b;
12923     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12924         if (a & 0x8000)
12925             res = 0x8000;
12926         else
12927             res = 0x7fff;
12928     }
12929     return res;
12930 }
12931 
12932 /* Perform 8-bit signed saturating addition.  */
12933 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12934 {
12935     uint8_t res;
12936 
12937     res = a + b;
12938     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12939         if (a & 0x80)
12940             res = 0x80;
12941         else
12942             res = 0x7f;
12943     }
12944     return res;
12945 }
12946 
12947 /* Perform 16-bit signed saturating subtraction.  */
12948 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12949 {
12950     uint16_t res;
12951 
12952     res = a - b;
12953     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12954         if (a & 0x8000)
12955             res = 0x8000;
12956         else
12957             res = 0x7fff;
12958     }
12959     return res;
12960 }
12961 
12962 /* Perform 8-bit signed saturating subtraction.  */
12963 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12964 {
12965     uint8_t res;
12966 
12967     res = a - b;
12968     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12969         if (a & 0x80)
12970             res = 0x80;
12971         else
12972             res = 0x7f;
12973     }
12974     return res;
12975 }
12976 
12977 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12978 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12979 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12980 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12981 #define PFX q
12982 
12983 #include "op_addsub.h"
12984 
12985 /* Unsigned saturating arithmetic.  */
12986 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12987 {
12988     uint16_t res;
12989     res = a + b;
12990     if (res < a)
12991         res = 0xffff;
12992     return res;
12993 }
12994 
12995 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12996 {
12997     if (a > b)
12998         return a - b;
12999     else
13000         return 0;
13001 }
13002 
13003 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
13004 {
13005     uint8_t res;
13006     res = a + b;
13007     if (res < a)
13008         res = 0xff;
13009     return res;
13010 }
13011 
13012 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
13013 {
13014     if (a > b)
13015         return a - b;
13016     else
13017         return 0;
13018 }
13019 
13020 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
13021 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
13022 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
13023 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
13024 #define PFX uq
13025 
13026 #include "op_addsub.h"
13027 
13028 /* Signed modulo arithmetic.  */
13029 #define SARITH16(a, b, n, op) do { \
13030     int32_t sum; \
13031     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
13032     RESULT(sum, n, 16); \
13033     if (sum >= 0) \
13034         ge |= 3 << (n * 2); \
13035     } while(0)
13036 
13037 #define SARITH8(a, b, n, op) do { \
13038     int32_t sum; \
13039     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
13040     RESULT(sum, n, 8); \
13041     if (sum >= 0) \
13042         ge |= 1 << n; \
13043     } while(0)
13044 
13045 
13046 #define ADD16(a, b, n) SARITH16(a, b, n, +)
13047 #define SUB16(a, b, n) SARITH16(a, b, n, -)
13048 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
13049 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
13050 #define PFX s
13051 #define ARITH_GE
13052 
13053 #include "op_addsub.h"
13054 
13055 /* Unsigned modulo arithmetic.  */
13056 #define ADD16(a, b, n) do { \
13057     uint32_t sum; \
13058     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13059     RESULT(sum, n, 16); \
13060     if ((sum >> 16) == 1) \
13061         ge |= 3 << (n * 2); \
13062     } while(0)
13063 
13064 #define ADD8(a, b, n) do { \
13065     uint32_t sum; \
13066     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13067     RESULT(sum, n, 8); \
13068     if ((sum >> 8) == 1) \
13069         ge |= 1 << n; \
13070     } while(0)
13071 
13072 #define SUB16(a, b, n) do { \
13073     uint32_t sum; \
13074     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13075     RESULT(sum, n, 16); \
13076     if ((sum >> 16) == 0) \
13077         ge |= 3 << (n * 2); \
13078     } while(0)
13079 
13080 #define SUB8(a, b, n) do { \
13081     uint32_t sum; \
13082     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13083     RESULT(sum, n, 8); \
13084     if ((sum >> 8) == 0) \
13085         ge |= 1 << n; \
13086     } while(0)
13087 
13088 #define PFX u
13089 #define ARITH_GE
13090 
13091 #include "op_addsub.h"
13092 
13093 /* Halved signed arithmetic.  */
13094 #define ADD16(a, b, n) \
13095   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13096 #define SUB16(a, b, n) \
13097   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13098 #define ADD8(a, b, n) \
13099   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13100 #define SUB8(a, b, n) \
13101   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13102 #define PFX sh
13103 
13104 #include "op_addsub.h"
13105 
13106 /* Halved unsigned arithmetic.  */
13107 #define ADD16(a, b, n) \
13108   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13109 #define SUB16(a, b, n) \
13110   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13111 #define ADD8(a, b, n) \
13112   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13113 #define SUB8(a, b, n) \
13114   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13115 #define PFX uh
13116 
13117 #include "op_addsub.h"
13118 
13119 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13120 {
13121     if (a > b)
13122         return a - b;
13123     else
13124         return b - a;
13125 }
13126 
13127 /* Unsigned sum of absolute byte differences.  */
13128 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13129 {
13130     uint32_t sum;
13131     sum = do_usad(a, b);
13132     sum += do_usad(a >> 8, b >> 8);
13133     sum += do_usad(a >> 16, b >> 16);
13134     sum += do_usad(a >> 24, b >> 24);
13135     return sum;
13136 }
13137 
13138 /* For ARMv6 SEL instruction.  */
13139 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13140 {
13141     uint32_t mask;
13142 
13143     mask = 0;
13144     if (flags & 1)
13145         mask |= 0xff;
13146     if (flags & 2)
13147         mask |= 0xff00;
13148     if (flags & 4)
13149         mask |= 0xff0000;
13150     if (flags & 8)
13151         mask |= 0xff000000;
13152     return (a & mask) | (b & ~mask);
13153 }
13154 
13155 /* CRC helpers.
13156  * The upper bytes of val (above the number specified by 'bytes') must have
13157  * been zeroed out by the caller.
13158  */
13159 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13160 {
13161     uint8_t buf[4];
13162 
13163     stl_le_p(buf, val);
13164 
13165     /* zlib crc32 converts the accumulator and output to one's complement.  */
13166     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13167 }
13168 
13169 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13170 {
13171     uint8_t buf[4];
13172 
13173     stl_le_p(buf, val);
13174 
13175     /* Linux crc32c converts the output to one's complement.  */
13176     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13177 }
13178 
13179 /* Return the exception level to which FP-disabled exceptions should
13180  * be taken, or 0 if FP is enabled.
13181  */
13182 int fp_exception_el(CPUARMState *env, int cur_el)
13183 {
13184 #ifndef CONFIG_USER_ONLY
13185     uint64_t hcr_el2;
13186 
13187     /* CPACR and the CPTR registers don't exist before v6, so FP is
13188      * always accessible
13189      */
13190     if (!arm_feature(env, ARM_FEATURE_V6)) {
13191         return 0;
13192     }
13193 
13194     if (arm_feature(env, ARM_FEATURE_M)) {
13195         /* CPACR can cause a NOCP UsageFault taken to current security state */
13196         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13197             return 1;
13198         }
13199 
13200         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13201             if (!extract32(env->v7m.nsacr, 10, 1)) {
13202                 /* FP insns cause a NOCP UsageFault taken to Secure */
13203                 return 3;
13204             }
13205         }
13206 
13207         return 0;
13208     }
13209 
13210     hcr_el2 = arm_hcr_el2_eff(env);
13211 
13212     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13213      * 0, 2 : trap EL0 and EL1/PL1 accesses
13214      * 1    : trap only EL0 accesses
13215      * 3    : trap no accesses
13216      * This register is ignored if E2H+TGE are both set.
13217      */
13218     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13219         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13220 
13221         switch (fpen) {
13222         case 0:
13223         case 2:
13224             if (cur_el == 0 || cur_el == 1) {
13225                 /* Trap to PL1, which might be EL1 or EL3 */
13226                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13227                     return 3;
13228                 }
13229                 return 1;
13230             }
13231             if (cur_el == 3 && !is_a64(env)) {
13232                 /* Secure PL1 running at EL3 */
13233                 return 3;
13234             }
13235             break;
13236         case 1:
13237             if (cur_el == 0) {
13238                 return 1;
13239             }
13240             break;
13241         case 3:
13242             break;
13243         }
13244     }
13245 
13246     /*
13247      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13248      * to control non-secure access to the FPU. It doesn't have any
13249      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13250      */
13251     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13252          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13253         if (!extract32(env->cp15.nsacr, 10, 1)) {
13254             /* FP insns act as UNDEF */
13255             return cur_el == 2 ? 2 : 1;
13256         }
13257     }
13258 
13259     /*
13260      * CPTR_EL2 is present in v7VE or v8, and changes format
13261      * with HCR_EL2.E2H (regardless of TGE).
13262      */
13263     if (cur_el <= 2) {
13264         if (hcr_el2 & HCR_E2H) {
13265             /* Check CPTR_EL2.FPEN.  */
13266             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
13267             case 1:
13268                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13269                     break;
13270                 }
13271                 /* fall through */
13272             case 0:
13273             case 2:
13274                 return 2;
13275             }
13276         } else if (arm_is_el2_enabled(env)) {
13277             if (env->cp15.cptr_el[2] & CPTR_TFP) {
13278                 return 2;
13279             }
13280         }
13281     }
13282 
13283     /* CPTR_EL3 : present in v8 */
13284     if (env->cp15.cptr_el[3] & CPTR_TFP) {
13285         /* Trap all FP ops to EL3 */
13286         return 3;
13287     }
13288 #endif
13289     return 0;
13290 }
13291 
13292 /* Return the exception level we're running at if this is our mmu_idx */
13293 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13294 {
13295     if (mmu_idx & ARM_MMU_IDX_M) {
13296         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13297     }
13298 
13299     switch (mmu_idx) {
13300     case ARMMMUIdx_E10_0:
13301     case ARMMMUIdx_E20_0:
13302     case ARMMMUIdx_SE10_0:
13303     case ARMMMUIdx_SE20_0:
13304         return 0;
13305     case ARMMMUIdx_E10_1:
13306     case ARMMMUIdx_E10_1_PAN:
13307     case ARMMMUIdx_SE10_1:
13308     case ARMMMUIdx_SE10_1_PAN:
13309         return 1;
13310     case ARMMMUIdx_E2:
13311     case ARMMMUIdx_E20_2:
13312     case ARMMMUIdx_E20_2_PAN:
13313     case ARMMMUIdx_SE2:
13314     case ARMMMUIdx_SE20_2:
13315     case ARMMMUIdx_SE20_2_PAN:
13316         return 2;
13317     case ARMMMUIdx_SE3:
13318         return 3;
13319     default:
13320         g_assert_not_reached();
13321     }
13322 }
13323 
13324 #ifndef CONFIG_TCG
13325 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13326 {
13327     g_assert_not_reached();
13328 }
13329 #endif
13330 
13331 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13332 {
13333     ARMMMUIdx idx;
13334     uint64_t hcr;
13335 
13336     if (arm_feature(env, ARM_FEATURE_M)) {
13337         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13338     }
13339 
13340     /* See ARM pseudo-function ELIsInHost.  */
13341     switch (el) {
13342     case 0:
13343         hcr = arm_hcr_el2_eff(env);
13344         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13345             idx = ARMMMUIdx_E20_0;
13346         } else {
13347             idx = ARMMMUIdx_E10_0;
13348         }
13349         break;
13350     case 1:
13351         if (env->pstate & PSTATE_PAN) {
13352             idx = ARMMMUIdx_E10_1_PAN;
13353         } else {
13354             idx = ARMMMUIdx_E10_1;
13355         }
13356         break;
13357     case 2:
13358         /* Note that TGE does not apply at EL2.  */
13359         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13360             if (env->pstate & PSTATE_PAN) {
13361                 idx = ARMMMUIdx_E20_2_PAN;
13362             } else {
13363                 idx = ARMMMUIdx_E20_2;
13364             }
13365         } else {
13366             idx = ARMMMUIdx_E2;
13367         }
13368         break;
13369     case 3:
13370         return ARMMMUIdx_SE3;
13371     default:
13372         g_assert_not_reached();
13373     }
13374 
13375     if (arm_is_secure_below_el3(env)) {
13376         idx &= ~ARM_MMU_IDX_A_NS;
13377     }
13378 
13379     return idx;
13380 }
13381 
13382 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13383 {
13384     return arm_mmu_idx_el(env, arm_current_el(env));
13385 }
13386 
13387 #ifndef CONFIG_USER_ONLY
13388 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13389 {
13390     return stage_1_mmu_idx(arm_mmu_idx(env));
13391 }
13392 #endif
13393 
13394 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13395                                            ARMMMUIdx mmu_idx,
13396                                            CPUARMTBFlags flags)
13397 {
13398     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13399     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13400 
13401     if (arm_singlestep_active(env)) {
13402         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13403     }
13404     return flags;
13405 }
13406 
13407 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13408                                               ARMMMUIdx mmu_idx,
13409                                               CPUARMTBFlags flags)
13410 {
13411     bool sctlr_b = arm_sctlr_b(env);
13412 
13413     if (sctlr_b) {
13414         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13415     }
13416     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13417         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13418     }
13419     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13420 
13421     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13422 }
13423 
13424 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13425                                         ARMMMUIdx mmu_idx)
13426 {
13427     CPUARMTBFlags flags = {};
13428     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13429 
13430     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13431     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13432         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13433     }
13434 
13435     if (arm_v7m_is_handler_mode(env)) {
13436         DP_TBFLAG_M32(flags, HANDLER, 1);
13437     }
13438 
13439     /*
13440      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13441      * is suppressing them because the requested execution priority
13442      * is less than 0.
13443      */
13444     if (arm_feature(env, ARM_FEATURE_V8) &&
13445         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13446           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13447         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13448     }
13449 
13450     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13451 }
13452 
13453 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13454 {
13455     CPUARMTBFlags flags = {};
13456 
13457     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13458     return flags;
13459 }
13460 
13461 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13462                                         ARMMMUIdx mmu_idx)
13463 {
13464     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13465     int el = arm_current_el(env);
13466 
13467     if (arm_sctlr(env, el) & SCTLR_A) {
13468         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13469     }
13470 
13471     if (arm_el_is_aa64(env, 1)) {
13472         DP_TBFLAG_A32(flags, VFPEN, 1);
13473     }
13474 
13475     if (el < 2 && env->cp15.hstr_el2 &&
13476         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13477         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13478     }
13479 
13480     if (env->uncached_cpsr & CPSR_IL) {
13481         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13482     }
13483 
13484     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13485 }
13486 
13487 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13488                                         ARMMMUIdx mmu_idx)
13489 {
13490     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13491     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13492     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13493     uint64_t sctlr;
13494     int tbii, tbid;
13495 
13496     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13497 
13498     /* Get control bits for tagged addresses.  */
13499     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13500     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13501 
13502     DP_TBFLAG_A64(flags, TBII, tbii);
13503     DP_TBFLAG_A64(flags, TBID, tbid);
13504 
13505     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13506         int sve_el = sve_exception_el(env, el);
13507         uint32_t zcr_len;
13508 
13509         /*
13510          * If SVE is disabled, but FP is enabled,
13511          * then the effective len is 0.
13512          */
13513         if (sve_el != 0 && fp_el == 0) {
13514             zcr_len = 0;
13515         } else {
13516             zcr_len = sve_zcr_len_for_el(env, el);
13517         }
13518         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13519         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13520     }
13521 
13522     sctlr = regime_sctlr(env, stage1);
13523 
13524     if (sctlr & SCTLR_A) {
13525         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13526     }
13527 
13528     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13529         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13530     }
13531 
13532     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13533         /*
13534          * In order to save space in flags, we record only whether
13535          * pauth is "inactive", meaning all insns are implemented as
13536          * a nop, or "active" when some action must be performed.
13537          * The decision of which action to take is left to a helper.
13538          */
13539         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13540             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13541         }
13542     }
13543 
13544     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13545         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13546         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13547             DP_TBFLAG_A64(flags, BT, 1);
13548         }
13549     }
13550 
13551     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13552     if (!(env->pstate & PSTATE_UAO)) {
13553         switch (mmu_idx) {
13554         case ARMMMUIdx_E10_1:
13555         case ARMMMUIdx_E10_1_PAN:
13556         case ARMMMUIdx_SE10_1:
13557         case ARMMMUIdx_SE10_1_PAN:
13558             /* TODO: ARMv8.3-NV */
13559             DP_TBFLAG_A64(flags, UNPRIV, 1);
13560             break;
13561         case ARMMMUIdx_E20_2:
13562         case ARMMMUIdx_E20_2_PAN:
13563         case ARMMMUIdx_SE20_2:
13564         case ARMMMUIdx_SE20_2_PAN:
13565             /*
13566              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13567              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13568              */
13569             if (env->cp15.hcr_el2 & HCR_TGE) {
13570                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13571             }
13572             break;
13573         default:
13574             break;
13575         }
13576     }
13577 
13578     if (env->pstate & PSTATE_IL) {
13579         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13580     }
13581 
13582     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13583         /*
13584          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13585          * if all accesses must be Unchecked:
13586          * 1) If no TBI, then there are no tags in the address to check,
13587          * 2) If Tag Check Override, then all accesses are Unchecked,
13588          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13589          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13590          */
13591         if (allocation_tag_access_enabled(env, el, sctlr)) {
13592             DP_TBFLAG_A64(flags, ATA, 1);
13593             if (tbid
13594                 && !(env->pstate & PSTATE_TCO)
13595                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13596                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13597             }
13598         }
13599         /* And again for unprivileged accesses, if required.  */
13600         if (EX_TBFLAG_A64(flags, UNPRIV)
13601             && tbid
13602             && !(env->pstate & PSTATE_TCO)
13603             && (sctlr & SCTLR_TCF0)
13604             && allocation_tag_access_enabled(env, 0, sctlr)) {
13605             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13606         }
13607         /* Cache TCMA as well as TBI. */
13608         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13609     }
13610 
13611     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13612 }
13613 
13614 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13615 {
13616     int el = arm_current_el(env);
13617     int fp_el = fp_exception_el(env, el);
13618     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13619 
13620     if (is_a64(env)) {
13621         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13622     } else if (arm_feature(env, ARM_FEATURE_M)) {
13623         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13624     } else {
13625         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13626     }
13627 }
13628 
13629 void arm_rebuild_hflags(CPUARMState *env)
13630 {
13631     env->hflags = rebuild_hflags_internal(env);
13632 }
13633 
13634 /*
13635  * If we have triggered a EL state change we can't rely on the
13636  * translator having passed it to us, we need to recompute.
13637  */
13638 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13639 {
13640     int el = arm_current_el(env);
13641     int fp_el = fp_exception_el(env, el);
13642     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13643 
13644     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13645 }
13646 
13647 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13648 {
13649     int fp_el = fp_exception_el(env, el);
13650     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13651 
13652     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13653 }
13654 
13655 /*
13656  * If we have triggered a EL state change we can't rely on the
13657  * translator having passed it to us, we need to recompute.
13658  */
13659 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13660 {
13661     int el = arm_current_el(env);
13662     int fp_el = fp_exception_el(env, el);
13663     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13664     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13665 }
13666 
13667 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13668 {
13669     int fp_el = fp_exception_el(env, el);
13670     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13671 
13672     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13673 }
13674 
13675 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13676 {
13677     int fp_el = fp_exception_el(env, el);
13678     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13679 
13680     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13681 }
13682 
13683 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13684 {
13685 #ifdef CONFIG_DEBUG_TCG
13686     CPUARMTBFlags c = env->hflags;
13687     CPUARMTBFlags r = rebuild_hflags_internal(env);
13688 
13689     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13690         fprintf(stderr, "TCG hflags mismatch "
13691                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13692                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13693                 c.flags, c.flags2, r.flags, r.flags2);
13694         abort();
13695     }
13696 #endif
13697 }
13698 
13699 static bool mve_no_pred(CPUARMState *env)
13700 {
13701     /*
13702      * Return true if there is definitely no predication of MVE
13703      * instructions by VPR or LTPSIZE. (Returning false even if there
13704      * isn't any predication is OK; generated code will just be
13705      * a little worse.)
13706      * If the CPU does not implement MVE then this TB flag is always 0.
13707      *
13708      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13709      * logic in gen_update_fp_context() needs to be updated to match.
13710      *
13711      * We do not include the effect of the ECI bits here -- they are
13712      * tracked in other TB flags. This simplifies the logic for
13713      * "when did we emit code that changes the MVE_NO_PRED TB flag
13714      * and thus need to end the TB?".
13715      */
13716     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13717         return false;
13718     }
13719     if (env->v7m.vpr) {
13720         return false;
13721     }
13722     if (env->v7m.ltpsize < 4) {
13723         return false;
13724     }
13725     return true;
13726 }
13727 
13728 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13729                           target_ulong *cs_base, uint32_t *pflags)
13730 {
13731     CPUARMTBFlags flags;
13732 
13733     assert_hflags_rebuild_correctly(env);
13734     flags = env->hflags;
13735 
13736     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13737         *pc = env->pc;
13738         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13739             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13740         }
13741     } else {
13742         *pc = env->regs[15];
13743 
13744         if (arm_feature(env, ARM_FEATURE_M)) {
13745             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13746                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13747                 != env->v7m.secure) {
13748                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13749             }
13750 
13751             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13752                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13753                  (env->v7m.secure &&
13754                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13755                 /*
13756                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13757                  * active FP context; we must create a new FP context before
13758                  * executing any FP insn.
13759                  */
13760                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13761             }
13762 
13763             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13764             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13765                 DP_TBFLAG_M32(flags, LSPACT, 1);
13766             }
13767 
13768             if (mve_no_pred(env)) {
13769                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13770             }
13771         } else {
13772             /*
13773              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13774              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13775              */
13776             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13777                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13778             } else {
13779                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13780                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13781             }
13782             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13783                 DP_TBFLAG_A32(flags, VFPEN, 1);
13784             }
13785         }
13786 
13787         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13788         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13789     }
13790 
13791     /*
13792      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13793      * states defined in the ARM ARM for software singlestep:
13794      *  SS_ACTIVE   PSTATE.SS   State
13795      *     0            x       Inactive (the TB flag for SS is always 0)
13796      *     1            0       Active-pending
13797      *     1            1       Active-not-pending
13798      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13799      */
13800     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13801         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13802     }
13803 
13804     *pflags = flags.flags;
13805     *cs_base = flags.flags2;
13806 }
13807 
13808 #ifdef TARGET_AARCH64
13809 /*
13810  * The manual says that when SVE is enabled and VQ is widened the
13811  * implementation is allowed to zero the previously inaccessible
13812  * portion of the registers.  The corollary to that is that when
13813  * SVE is enabled and VQ is narrowed we are also allowed to zero
13814  * the now inaccessible portion of the registers.
13815  *
13816  * The intent of this is that no predicate bit beyond VQ is ever set.
13817  * Which means that some operations on predicate registers themselves
13818  * may operate on full uint64_t or even unrolled across the maximum
13819  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13820  * may well be cheaper than conditionals to restrict the operation
13821  * to the relevant portion of a uint16_t[16].
13822  */
13823 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13824 {
13825     int i, j;
13826     uint64_t pmask;
13827 
13828     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13829     assert(vq <= env_archcpu(env)->sve_max_vq);
13830 
13831     /* Zap the high bits of the zregs.  */
13832     for (i = 0; i < 32; i++) {
13833         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13834     }
13835 
13836     /* Zap the high bits of the pregs and ffr.  */
13837     pmask = 0;
13838     if (vq & 3) {
13839         pmask = ~(-1ULL << (16 * (vq & 3)));
13840     }
13841     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13842         for (i = 0; i < 17; ++i) {
13843             env->vfp.pregs[i].p[j] &= pmask;
13844         }
13845         pmask = 0;
13846     }
13847 }
13848 
13849 /*
13850  * Notice a change in SVE vector size when changing EL.
13851  */
13852 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13853                            int new_el, bool el0_a64)
13854 {
13855     ARMCPU *cpu = env_archcpu(env);
13856     int old_len, new_len;
13857     bool old_a64, new_a64;
13858 
13859     /* Nothing to do if no SVE.  */
13860     if (!cpu_isar_feature(aa64_sve, cpu)) {
13861         return;
13862     }
13863 
13864     /* Nothing to do if FP is disabled in either EL.  */
13865     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13866         return;
13867     }
13868 
13869     /*
13870      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13871      * at ELx, or not available because the EL is in AArch32 state, then
13872      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13873      * has an effective value of 0".
13874      *
13875      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13876      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13877      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13878      * we already have the correct register contents when encountering the
13879      * vq0->vq0 transition between EL0->EL1.
13880      */
13881     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13882     old_len = (old_a64 && !sve_exception_el(env, old_el)
13883                ? sve_zcr_len_for_el(env, old_el) : 0);
13884     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13885     new_len = (new_a64 && !sve_exception_el(env, new_el)
13886                ? sve_zcr_len_for_el(env, new_el) : 0);
13887 
13888     /* When changing vector length, clear inaccessible state.  */
13889     if (new_len < old_len) {
13890         aarch64_sve_narrow_vq(env, new_len + 1);
13891     }
13892 }
13893 #endif
13894