xref: /qemu/target/arm/helper.c (revision 785ea711)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #include "semihosting/common-semi.h"
38 #endif
39 
40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
42 
43 #ifndef CONFIG_USER_ONLY
44 
45 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
46                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
47                                bool s1_is_el0,
48                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
49                                target_ulong *page_size_ptr,
50                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
51     __attribute__((nonnull));
52 #endif
53 
54 static void switch_mode(CPUARMState *env, int mode);
55 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
58 {
59     ARMCPU *cpu = env_archcpu(env);
60     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
61 
62     /* VFP data registers are always little-endian.  */
63     if (reg < nregs) {
64         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
65     }
66     if (arm_feature(env, ARM_FEATURE_NEON)) {
67         /* Aliases for Q regs.  */
68         nregs += 16;
69         if (reg < nregs) {
70             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
71             return gdb_get_reg128(buf, q[0], q[1]);
72         }
73     }
74     switch (reg - nregs) {
75     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
76     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
77     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
78     }
79     return 0;
80 }
81 
82 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
83 {
84     ARMCPU *cpu = env_archcpu(env);
85     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
86 
87     if (reg < nregs) {
88         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
89         return 8;
90     }
91     if (arm_feature(env, ARM_FEATURE_NEON)) {
92         nregs += 16;
93         if (reg < nregs) {
94             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
95             q[0] = ldq_le_p(buf);
96             q[1] = ldq_le_p(buf + 8);
97             return 16;
98         }
99     }
100     switch (reg - nregs) {
101     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
102     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
103     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
104     }
105     return 0;
106 }
107 
108 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
109 {
110     switch (reg) {
111     case 0 ... 31:
112     {
113         /* 128 bit FP register - quads are in LE order */
114         uint64_t *q = aa64_vfp_qreg(env, reg);
115         return gdb_get_reg128(buf, q[1], q[0]);
116     }
117     case 32:
118         /* FPSR */
119         return gdb_get_reg32(buf, vfp_get_fpsr(env));
120     case 33:
121         /* FPCR */
122         return gdb_get_reg32(buf,vfp_get_fpcr(env));
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 /**
212  * arm_get/set_gdb_*: get/set a gdb register
213  * @env: the CPU state
214  * @buf: a buffer to copy to/from
215  * @reg: register number (offset from start of group)
216  *
217  * We return the number of bytes copied
218  */
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
221 {
222     ARMCPU *cpu = env_archcpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 #ifdef TARGET_AARCH64
244 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
245 {
246     ARMCPU *cpu = env_archcpu(env);
247 
248     switch (reg) {
249     /* The first 32 registers are the zregs */
250     case 0 ... 31:
251     {
252         int vq, len = 0;
253         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
254             len += gdb_get_reg128(buf,
255                                   env->vfp.zregs[reg].d[vq * 2 + 1],
256                                   env->vfp.zregs[reg].d[vq * 2]);
257         }
258         return len;
259     }
260     case 32:
261         return gdb_get_reg32(buf, vfp_get_fpsr(env));
262     case 33:
263         return gdb_get_reg32(buf, vfp_get_fpcr(env));
264     /* then 16 predicates and the ffr */
265     case 34 ... 50:
266     {
267         int preg = reg - 34;
268         int vq, len = 0;
269         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
270             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
271         }
272         return len;
273     }
274     case 51:
275     {
276         /*
277          * We report in Vector Granules (VG) which is 64bit in a Z reg
278          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
279          */
280         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
281         return gdb_get_reg64(buf, vq * 2);
282     }
283     default:
284         /* gdbstub asked for something out our range */
285         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
286         break;
287     }
288 
289     return 0;
290 }
291 
292 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
293 {
294     ARMCPU *cpu = env_archcpu(env);
295 
296     /* The first 32 registers are the zregs */
297     switch (reg) {
298     /* The first 32 registers are the zregs */
299     case 0 ... 31:
300     {
301         int vq, len = 0;
302         uint64_t *p = (uint64_t *) buf;
303         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
304             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
305             env->vfp.zregs[reg].d[vq * 2] = *p++;
306             len += 16;
307         }
308         return len;
309     }
310     case 32:
311         vfp_set_fpsr(env, *(uint32_t *)buf);
312         return 4;
313     case 33:
314         vfp_set_fpcr(env, *(uint32_t *)buf);
315         return 4;
316     case 34 ... 50:
317     {
318         int preg = reg - 34;
319         int vq, len = 0;
320         uint64_t *p = (uint64_t *) buf;
321         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
322             env->vfp.pregs[preg].p[vq / 4] = *p++;
323             len += 8;
324         }
325         return len;
326     }
327     case 51:
328         /* cannot set vg via gdbstub */
329         return 0;
330     default:
331         /* gdbstub asked for something out our range */
332         break;
333     }
334 
335     return 0;
336 }
337 #endif /* TARGET_AARCH64 */
338 
339 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
340 {
341    /* Return true if the regdef would cause an assertion if you called
342     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
343     * program bug for it not to have the NO_RAW flag).
344     * NB that returning false here doesn't necessarily mean that calling
345     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
346     * read/write access functions which are safe for raw use" from "has
347     * read/write access functions which have side effects but has forgotten
348     * to provide raw access functions".
349     * The tests here line up with the conditions in read/write_raw_cp_reg()
350     * and assertions in raw_read()/raw_write().
351     */
352     if ((ri->type & ARM_CP_CONST) ||
353         ri->fieldoffset ||
354         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
355         return false;
356     }
357     return true;
358 }
359 
360 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
361 {
362     /* Write the coprocessor state from cpu->env to the (index,value) list. */
363     int i;
364     bool ok = true;
365 
366     for (i = 0; i < cpu->cpreg_array_len; i++) {
367         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
368         const ARMCPRegInfo *ri;
369         uint64_t newval;
370 
371         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
372         if (!ri) {
373             ok = false;
374             continue;
375         }
376         if (ri->type & ARM_CP_NO_RAW) {
377             continue;
378         }
379 
380         newval = read_raw_cp_reg(&cpu->env, ri);
381         if (kvm_sync) {
382             /*
383              * Only sync if the previous list->cpustate sync succeeded.
384              * Rather than tracking the success/failure state for every
385              * item in the list, we just recheck "does the raw write we must
386              * have made in write_list_to_cpustate() read back OK" here.
387              */
388             uint64_t oldval = cpu->cpreg_values[i];
389 
390             if (oldval == newval) {
391                 continue;
392             }
393 
394             write_raw_cp_reg(&cpu->env, ri, oldval);
395             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
396                 continue;
397             }
398 
399             write_raw_cp_reg(&cpu->env, ri, newval);
400         }
401         cpu->cpreg_values[i] = newval;
402     }
403     return ok;
404 }
405 
406 bool write_list_to_cpustate(ARMCPU *cpu)
407 {
408     int i;
409     bool ok = true;
410 
411     for (i = 0; i < cpu->cpreg_array_len; i++) {
412         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
413         uint64_t v = cpu->cpreg_values[i];
414         const ARMCPRegInfo *ri;
415 
416         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
417         if (!ri) {
418             ok = false;
419             continue;
420         }
421         if (ri->type & ARM_CP_NO_RAW) {
422             continue;
423         }
424         /* Write value and confirm it reads back as written
425          * (to catch read-only registers and partially read-only
426          * registers where the incoming migration value doesn't match)
427          */
428         write_raw_cp_reg(&cpu->env, ri, v);
429         if (read_raw_cp_reg(&cpu->env, ri) != v) {
430             ok = false;
431         }
432     }
433     return ok;
434 }
435 
436 static void add_cpreg_to_list(gpointer key, gpointer opaque)
437 {
438     ARMCPU *cpu = opaque;
439     uint64_t regidx;
440     const ARMCPRegInfo *ri;
441 
442     regidx = *(uint32_t *)key;
443     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
444 
445     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
446         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
447         /* The value array need not be initialized at this point */
448         cpu->cpreg_array_len++;
449     }
450 }
451 
452 static void count_cpreg(gpointer key, gpointer opaque)
453 {
454     ARMCPU *cpu = opaque;
455     uint64_t regidx;
456     const ARMCPRegInfo *ri;
457 
458     regidx = *(uint32_t *)key;
459     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
460 
461     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
462         cpu->cpreg_array_len++;
463     }
464 }
465 
466 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
467 {
468     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
469     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
470 
471     if (aidx > bidx) {
472         return 1;
473     }
474     if (aidx < bidx) {
475         return -1;
476     }
477     return 0;
478 }
479 
480 void init_cpreg_list(ARMCPU *cpu)
481 {
482     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
483      * Note that we require cpreg_tuples[] to be sorted by key ID.
484      */
485     GList *keys;
486     int arraylen;
487 
488     keys = g_hash_table_get_keys(cpu->cp_regs);
489     keys = g_list_sort(keys, cpreg_key_compare);
490 
491     cpu->cpreg_array_len = 0;
492 
493     g_list_foreach(keys, count_cpreg, cpu);
494 
495     arraylen = cpu->cpreg_array_len;
496     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
499     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
500     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
501     cpu->cpreg_array_len = 0;
502 
503     g_list_foreach(keys, add_cpreg_to_list, cpu);
504 
505     assert(cpu->cpreg_array_len == arraylen);
506 
507     g_list_free(keys);
508 }
509 
510 /*
511  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
512  */
513 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
514                                         const ARMCPRegInfo *ri,
515                                         bool isread)
516 {
517     if (!is_a64(env) && arm_current_el(env) == 3 &&
518         arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_UNCATEGORIZED;
520     }
521     return CP_ACCESS_OK;
522 }
523 
524 /* Some secure-only AArch32 registers trap to EL3 if used from
525  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
526  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
527  * We assume that the .access field is set to PL1_RW.
528  */
529 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
530                                             const ARMCPRegInfo *ri,
531                                             bool isread)
532 {
533     if (arm_current_el(env) == 3) {
534         return CP_ACCESS_OK;
535     }
536     if (arm_is_secure_below_el3(env)) {
537         if (env->cp15.scr_el3 & SCR_EEL2) {
538             return CP_ACCESS_TRAP_EL2;
539         }
540         return CP_ACCESS_TRAP_EL3;
541     }
542     /* This will be EL1 NS and EL2 NS, which just UNDEF */
543     return CP_ACCESS_TRAP_UNCATEGORIZED;
544 }
545 
546 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
547 {
548     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
549 }
550 
551 /* Check for traps to "powerdown debug" registers, which are controlled
552  * by MDCR.TDOSA
553  */
554 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
555                                    bool isread)
556 {
557     int el = arm_current_el(env);
558     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
559     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
560         (arm_hcr_el2_eff(env) & HCR_TGE);
561 
562     if (el < 2 && mdcr_el2_tdosa) {
563         return CP_ACCESS_TRAP_EL2;
564     }
565     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
566         return CP_ACCESS_TRAP_EL3;
567     }
568     return CP_ACCESS_OK;
569 }
570 
571 /* Check for traps to "debug ROM" registers, which are controlled
572  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
573  */
574 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
575                                   bool isread)
576 {
577     int el = arm_current_el(env);
578     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
579     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
580         (arm_hcr_el2_eff(env) & HCR_TGE);
581 
582     if (el < 2 && mdcr_el2_tdra) {
583         return CP_ACCESS_TRAP_EL2;
584     }
585     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
586         return CP_ACCESS_TRAP_EL3;
587     }
588     return CP_ACCESS_OK;
589 }
590 
591 /* Check for traps to general debug registers, which are controlled
592  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
593  */
594 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
595                                   bool isread)
596 {
597     int el = arm_current_el(env);
598     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
599     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
600         (arm_hcr_el2_eff(env) & HCR_TGE);
601 
602     if (el < 2 && mdcr_el2_tda) {
603         return CP_ACCESS_TRAP_EL2;
604     }
605     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
606         return CP_ACCESS_TRAP_EL3;
607     }
608     return CP_ACCESS_OK;
609 }
610 
611 /* Check for traps to performance monitor registers, which are controlled
612  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
613  */
614 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
615                                  bool isread)
616 {
617     int el = arm_current_el(env);
618     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
619 
620     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
621         return CP_ACCESS_TRAP_EL2;
622     }
623     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
624         return CP_ACCESS_TRAP_EL3;
625     }
626     return CP_ACCESS_OK;
627 }
628 
629 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
630 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
631                                       bool isread)
632 {
633     if (arm_current_el(env) == 1) {
634         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
635         if (arm_hcr_el2_eff(env) & trap) {
636             return CP_ACCESS_TRAP_EL2;
637         }
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
643 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
644                                  bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
653 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
663 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
664                                   bool isread)
665 {
666     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
667         return CP_ACCESS_TRAP_EL2;
668     }
669     return CP_ACCESS_OK;
670 }
671 
672 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
673 {
674     ARMCPU *cpu = env_archcpu(env);
675 
676     raw_write(env, ri, value);
677     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
678 }
679 
680 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
681 {
682     ARMCPU *cpu = env_archcpu(env);
683 
684     if (raw_read(env, ri) != value) {
685         /* Unlike real hardware the qemu TLB uses virtual addresses,
686          * not modified virtual addresses, so this causes a TLB flush.
687          */
688         tlb_flush(CPU(cpu));
689         raw_write(env, ri, value);
690     }
691 }
692 
693 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                              uint64_t value)
695 {
696     ARMCPU *cpu = env_archcpu(env);
697 
698     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
699         && !extended_addresses_enabled(env)) {
700         /* For VMSA (when not using the LPAE long descriptor page table
701          * format) this register includes the ASID, so do a TLB flush.
702          * For PMSA it is purely a process ID and no action is needed.
703          */
704         tlb_flush(CPU(cpu));
705     }
706     raw_write(env, ri, value);
707 }
708 
709 /* IS variants of TLB operations must affect all cores */
710 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                              uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714 
715     tlb_flush_all_cpus_synced(cs);
716 }
717 
718 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
719                              uint64_t value)
720 {
721     CPUState *cs = env_cpu(env);
722 
723     tlb_flush_all_cpus_synced(cs);
724 }
725 
726 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                              uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 }
733 
734 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                              uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
740 }
741 
742 /*
743  * Non-IS variants of TLB operations are upgraded to
744  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
745  * force broadcast of these operations.
746  */
747 static bool tlb_force_broadcast(CPUARMState *env)
748 {
749     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
750 }
751 
752 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
753                           uint64_t value)
754 {
755     /* Invalidate all (TLBIALL) */
756     CPUState *cs = env_cpu(env);
757 
758     if (tlb_force_broadcast(env)) {
759         tlb_flush_all_cpus_synced(cs);
760     } else {
761         tlb_flush(cs);
762     }
763 }
764 
765 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
766                           uint64_t value)
767 {
768     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
769     CPUState *cs = env_cpu(env);
770 
771     value &= TARGET_PAGE_MASK;
772     if (tlb_force_broadcast(env)) {
773         tlb_flush_page_all_cpus_synced(cs, value);
774     } else {
775         tlb_flush_page(cs, value);
776     }
777 }
778 
779 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
780                            uint64_t value)
781 {
782     /* Invalidate by ASID (TLBIASID) */
783     CPUState *cs = env_cpu(env);
784 
785     if (tlb_force_broadcast(env)) {
786         tlb_flush_all_cpus_synced(cs);
787     } else {
788         tlb_flush(cs);
789     }
790 }
791 
792 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
793                            uint64_t value)
794 {
795     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
796     CPUState *cs = env_cpu(env);
797 
798     value &= TARGET_PAGE_MASK;
799     if (tlb_force_broadcast(env)) {
800         tlb_flush_page_all_cpus_synced(cs, value);
801     } else {
802         tlb_flush_page(cs, value);
803     }
804 }
805 
806 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx(cs,
812                         ARMMMUIdxBit_E10_1 |
813                         ARMMMUIdxBit_E10_1_PAN |
814                         ARMMMUIdxBit_E10_0);
815 }
816 
817 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
818                                   uint64_t value)
819 {
820     CPUState *cs = env_cpu(env);
821 
822     tlb_flush_by_mmuidx_all_cpus_synced(cs,
823                                         ARMMMUIdxBit_E10_1 |
824                                         ARMMMUIdxBit_E10_1_PAN |
825                                         ARMMMUIdxBit_E10_0);
826 }
827 
828 
829 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
830                               uint64_t value)
831 {
832     CPUState *cs = env_cpu(env);
833 
834     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
835 }
836 
837 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
838                                  uint64_t value)
839 {
840     CPUState *cs = env_cpu(env);
841 
842     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
843 }
844 
845 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
846                               uint64_t value)
847 {
848     CPUState *cs = env_cpu(env);
849     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 
851     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
852 }
853 
854 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
855                                  uint64_t value)
856 {
857     CPUState *cs = env_cpu(env);
858     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
859 
860     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
861                                              ARMMMUIdxBit_E2);
862 }
863 
864 static const ARMCPRegInfo cp_reginfo[] = {
865     /* Define the secure and non-secure FCSE identifier CP registers
866      * separately because there is no secure bank in V8 (no _EL3).  This allows
867      * the secure register to be properly reset and migrated. There is also no
868      * v8 EL1 version of the register so the non-secure instance stands alone.
869      */
870     { .name = "FCSEIDR",
871       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
872       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
873       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
874       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
875     { .name = "FCSEIDR_S",
876       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
877       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
878       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
879       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
880     /* Define the secure and non-secure context identifier CP registers
881      * separately because there is no secure bank in V8 (no _EL3).  This allows
882      * the secure register to be properly reset and migrated.  In the
883      * non-secure case, the 32-bit register will have reset and migration
884      * disabled during registration as it is handled by the 64-bit instance.
885      */
886     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
887       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
888       .access = PL1_RW, .accessfn = access_tvm_trvm,
889       .secure = ARM_CP_SECSTATE_NS,
890       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
891       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
892     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
893       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
894       .access = PL1_RW, .accessfn = access_tvm_trvm,
895       .secure = ARM_CP_SECSTATE_S,
896       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
897       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
898     REGINFO_SENTINEL
899 };
900 
901 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
902     /* NB: Some of these registers exist in v8 but with more precise
903      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
904      */
905     /* MMU Domain access control / MPU write buffer control */
906     { .name = "DACR",
907       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
908       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
909       .writefn = dacr_write, .raw_writefn = raw_write,
910       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
911                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
912     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
913      * For v6 and v5, these mappings are overly broad.
914      */
915     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
916       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
917     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
918       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
919     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
920       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
921     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
922       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
923     /* Cache maintenance ops; some of this space may be overridden later. */
924     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
925       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
926       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
927     REGINFO_SENTINEL
928 };
929 
930 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
931     /* Not all pre-v6 cores implemented this WFI, so this is slightly
932      * over-broad.
933      */
934     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
935       .access = PL1_W, .type = ARM_CP_WFI },
936     REGINFO_SENTINEL
937 };
938 
939 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
940     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
941      * is UNPREDICTABLE; we choose to NOP as most implementations do).
942      */
943     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
944       .access = PL1_W, .type = ARM_CP_WFI },
945     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
946      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
947      * OMAPCP will override this space.
948      */
949     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
950       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
951       .resetvalue = 0 },
952     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
953       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
954       .resetvalue = 0 },
955     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
956     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
957       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
958       .resetvalue = 0 },
959     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
960      * implementing it as RAZ means the "debug architecture version" bits
961      * will read as a reserved value, which should cause Linux to not try
962      * to use the debug hardware.
963      */
964     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
965       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
966     /* MMU TLB control. Note that the wildcarding means we cover not just
967      * the unified TLB ops but also the dside/iside/inner-shareable variants.
968      */
969     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
970       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
971       .type = ARM_CP_NO_RAW },
972     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
973       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
974       .type = ARM_CP_NO_RAW },
975     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
976       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
977       .type = ARM_CP_NO_RAW },
978     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
979       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
980       .type = ARM_CP_NO_RAW },
981     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
982       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
983     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
984       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
985     REGINFO_SENTINEL
986 };
987 
988 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
989                         uint64_t value)
990 {
991     uint32_t mask = 0;
992 
993     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
994     if (!arm_feature(env, ARM_FEATURE_V8)) {
995         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
996          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
997          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
998          */
999         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
1000             /* VFP coprocessor: cp10 & cp11 [23:20] */
1001             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
1002 
1003             if (!arm_feature(env, ARM_FEATURE_NEON)) {
1004                 /* ASEDIS [31] bit is RAO/WI */
1005                 value |= (1 << 31);
1006             }
1007 
1008             /* VFPv3 and upwards with NEON implement 32 double precision
1009              * registers (D0-D31).
1010              */
1011             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1012                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1013                 value |= (1 << 30);
1014             }
1015         }
1016         value &= mask;
1017     }
1018 
1019     /*
1020      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1021      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1022      */
1023     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1024         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1025         value &= ~(0xf << 20);
1026         value |= env->cp15.cpacr_el1 & (0xf << 20);
1027     }
1028 
1029     env->cp15.cpacr_el1 = value;
1030 }
1031 
1032 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1033 {
1034     /*
1035      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1036      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1037      */
1038     uint64_t value = env->cp15.cpacr_el1;
1039 
1040     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1041         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1042         value &= ~(0xf << 20);
1043     }
1044     return value;
1045 }
1046 
1047 
1048 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1049 {
1050     /* Call cpacr_write() so that we reset with the correct RAO bits set
1051      * for our CPU features.
1052      */
1053     cpacr_write(env, ri, 0);
1054 }
1055 
1056 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1057                                    bool isread)
1058 {
1059     if (arm_feature(env, ARM_FEATURE_V8)) {
1060         /* Check if CPACR accesses are to be trapped to EL2 */
1061         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
1062             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
1063             return CP_ACCESS_TRAP_EL2;
1064         /* Check if CPACR accesses are to be trapped to EL3 */
1065         } else if (arm_current_el(env) < 3 &&
1066                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1067             return CP_ACCESS_TRAP_EL3;
1068         }
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1075                                   bool isread)
1076 {
1077     /* Check if CPTR accesses are set to trap to EL3 */
1078     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1079         return CP_ACCESS_TRAP_EL3;
1080     }
1081 
1082     return CP_ACCESS_OK;
1083 }
1084 
1085 static const ARMCPRegInfo v6_cp_reginfo[] = {
1086     /* prefetch by MVA in v6, NOP in v7 */
1087     { .name = "MVA_prefetch",
1088       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1089       .access = PL1_W, .type = ARM_CP_NOP },
1090     /* We need to break the TB after ISB to execute self-modifying code
1091      * correctly and also to take any pending interrupts immediately.
1092      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1093      */
1094     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1095       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1096     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1097       .access = PL0_W, .type = ARM_CP_NOP },
1098     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1099       .access = PL0_W, .type = ARM_CP_NOP },
1100     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1101       .access = PL1_RW, .accessfn = access_tvm_trvm,
1102       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1103                              offsetof(CPUARMState, cp15.ifar_ns) },
1104       .resetvalue = 0, },
1105     /* Watchpoint Fault Address Register : should actually only be present
1106      * for 1136, 1176, 11MPCore.
1107      */
1108     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1110     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1111       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1112       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1113       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1114     REGINFO_SENTINEL
1115 };
1116 
1117 /* Definitions for the PMU registers */
1118 #define PMCRN_MASK  0xf800
1119 #define PMCRN_SHIFT 11
1120 #define PMCRLC  0x40
1121 #define PMCRDP  0x20
1122 #define PMCRX   0x10
1123 #define PMCRD   0x8
1124 #define PMCRC   0x4
1125 #define PMCRP   0x2
1126 #define PMCRE   0x1
1127 /*
1128  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1129  * which can be written as 1 to trigger behaviour but which stay RAZ).
1130  */
1131 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1132 
1133 #define PMXEVTYPER_P          0x80000000
1134 #define PMXEVTYPER_U          0x40000000
1135 #define PMXEVTYPER_NSK        0x20000000
1136 #define PMXEVTYPER_NSU        0x10000000
1137 #define PMXEVTYPER_NSH        0x08000000
1138 #define PMXEVTYPER_M          0x04000000
1139 #define PMXEVTYPER_MT         0x02000000
1140 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1141 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1142                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1143                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1144                                PMXEVTYPER_EVTCOUNT)
1145 
1146 #define PMCCFILTR             0xf8000000
1147 #define PMCCFILTR_M           PMXEVTYPER_M
1148 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1149 
1150 static inline uint32_t pmu_num_counters(CPUARMState *env)
1151 {
1152   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1153 }
1154 
1155 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1156 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1157 {
1158   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1159 }
1160 
1161 typedef struct pm_event {
1162     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1163     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1164     bool (*supported)(CPUARMState *);
1165     /*
1166      * Retrieve the current count of the underlying event. The programmed
1167      * counters hold a difference from the return value from this function
1168      */
1169     uint64_t (*get_count)(CPUARMState *);
1170     /*
1171      * Return how many nanoseconds it will take (at a minimum) for count events
1172      * to occur. A negative value indicates the counter will never overflow, or
1173      * that the counter has otherwise arranged for the overflow bit to be set
1174      * and the PMU interrupt to be raised on overflow.
1175      */
1176     int64_t (*ns_per_count)(uint64_t);
1177 } pm_event;
1178 
1179 static bool event_always_supported(CPUARMState *env)
1180 {
1181     return true;
1182 }
1183 
1184 static uint64_t swinc_get_count(CPUARMState *env)
1185 {
1186     /*
1187      * SW_INCR events are written directly to the pmevcntr's by writes to
1188      * PMSWINC, so there is no underlying count maintained by the PMU itself
1189      */
1190     return 0;
1191 }
1192 
1193 static int64_t swinc_ns_per(uint64_t ignored)
1194 {
1195     return -1;
1196 }
1197 
1198 /*
1199  * Return the underlying cycle count for the PMU cycle counters. If we're in
1200  * usermode, simply return 0.
1201  */
1202 static uint64_t cycles_get_count(CPUARMState *env)
1203 {
1204 #ifndef CONFIG_USER_ONLY
1205     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1206                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1207 #else
1208     return cpu_get_host_ticks();
1209 #endif
1210 }
1211 
1212 #ifndef CONFIG_USER_ONLY
1213 static int64_t cycles_ns_per(uint64_t cycles)
1214 {
1215     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1216 }
1217 
1218 static bool instructions_supported(CPUARMState *env)
1219 {
1220     return icount_enabled() == 1; /* Precise instruction counting */
1221 }
1222 
1223 static uint64_t instructions_get_count(CPUARMState *env)
1224 {
1225     return (uint64_t)icount_get_raw();
1226 }
1227 
1228 static int64_t instructions_ns_per(uint64_t icount)
1229 {
1230     return icount_to_ns((int64_t)icount);
1231 }
1232 #endif
1233 
1234 static bool pmu_8_1_events_supported(CPUARMState *env)
1235 {
1236     /* For events which are supported in any v8.1 PMU */
1237     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1238 }
1239 
1240 static bool pmu_8_4_events_supported(CPUARMState *env)
1241 {
1242     /* For events which are supported in any v8.1 PMU */
1243     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1244 }
1245 
1246 static uint64_t zero_event_get_count(CPUARMState *env)
1247 {
1248     /* For events which on QEMU never fire, so their count is always zero */
1249     return 0;
1250 }
1251 
1252 static int64_t zero_event_ns_per(uint64_t cycles)
1253 {
1254     /* An event which never fires can never overflow */
1255     return -1;
1256 }
1257 
1258 static const pm_event pm_events[] = {
1259     { .number = 0x000, /* SW_INCR */
1260       .supported = event_always_supported,
1261       .get_count = swinc_get_count,
1262       .ns_per_count = swinc_ns_per,
1263     },
1264 #ifndef CONFIG_USER_ONLY
1265     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1266       .supported = instructions_supported,
1267       .get_count = instructions_get_count,
1268       .ns_per_count = instructions_ns_per,
1269     },
1270     { .number = 0x011, /* CPU_CYCLES, Cycle */
1271       .supported = event_always_supported,
1272       .get_count = cycles_get_count,
1273       .ns_per_count = cycles_ns_per,
1274     },
1275 #endif
1276     { .number = 0x023, /* STALL_FRONTEND */
1277       .supported = pmu_8_1_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281     { .number = 0x024, /* STALL_BACKEND */
1282       .supported = pmu_8_1_events_supported,
1283       .get_count = zero_event_get_count,
1284       .ns_per_count = zero_event_ns_per,
1285     },
1286     { .number = 0x03c, /* STALL */
1287       .supported = pmu_8_4_events_supported,
1288       .get_count = zero_event_get_count,
1289       .ns_per_count = zero_event_ns_per,
1290     },
1291 };
1292 
1293 /*
1294  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1295  * events (i.e. the statistical profiling extension), this implementation
1296  * should first be updated to something sparse instead of the current
1297  * supported_event_map[] array.
1298  */
1299 #define MAX_EVENT_ID 0x3c
1300 #define UNSUPPORTED_EVENT UINT16_MAX
1301 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1302 
1303 /*
1304  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1305  * of ARM event numbers to indices in our pm_events array.
1306  *
1307  * Note: Events in the 0x40XX range are not currently supported.
1308  */
1309 void pmu_init(ARMCPU *cpu)
1310 {
1311     unsigned int i;
1312 
1313     /*
1314      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1315      * events to them
1316      */
1317     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1318         supported_event_map[i] = UNSUPPORTED_EVENT;
1319     }
1320     cpu->pmceid0 = 0;
1321     cpu->pmceid1 = 0;
1322 
1323     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1324         const pm_event *cnt = &pm_events[i];
1325         assert(cnt->number <= MAX_EVENT_ID);
1326         /* We do not currently support events in the 0x40xx range */
1327         assert(cnt->number <= 0x3f);
1328 
1329         if (cnt->supported(&cpu->env)) {
1330             supported_event_map[cnt->number] = i;
1331             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1332             if (cnt->number & 0x20) {
1333                 cpu->pmceid1 |= event_mask;
1334             } else {
1335                 cpu->pmceid0 |= event_mask;
1336             }
1337         }
1338     }
1339 }
1340 
1341 /*
1342  * Check at runtime whether a PMU event is supported for the current machine
1343  */
1344 static bool event_supported(uint16_t number)
1345 {
1346     if (number > MAX_EVENT_ID) {
1347         return false;
1348     }
1349     return supported_event_map[number] != UNSUPPORTED_EVENT;
1350 }
1351 
1352 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1353                                    bool isread)
1354 {
1355     /* Performance monitor registers user accessibility is controlled
1356      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1357      * trapping to EL2 or EL3 for other accesses.
1358      */
1359     int el = arm_current_el(env);
1360     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1361 
1362     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1363         return CP_ACCESS_TRAP;
1364     }
1365     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1366         return CP_ACCESS_TRAP_EL2;
1367     }
1368     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1369         return CP_ACCESS_TRAP_EL3;
1370     }
1371 
1372     return CP_ACCESS_OK;
1373 }
1374 
1375 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1376                                            const ARMCPRegInfo *ri,
1377                                            bool isread)
1378 {
1379     /* ER: event counter read trap control */
1380     if (arm_feature(env, ARM_FEATURE_V8)
1381         && arm_current_el(env) == 0
1382         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1383         && isread) {
1384         return CP_ACCESS_OK;
1385     }
1386 
1387     return pmreg_access(env, ri, isread);
1388 }
1389 
1390 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1391                                          const ARMCPRegInfo *ri,
1392                                          bool isread)
1393 {
1394     /* SW: software increment write trap control */
1395     if (arm_feature(env, ARM_FEATURE_V8)
1396         && arm_current_el(env) == 0
1397         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1398         && !isread) {
1399         return CP_ACCESS_OK;
1400     }
1401 
1402     return pmreg_access(env, ri, isread);
1403 }
1404 
1405 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1406                                         const ARMCPRegInfo *ri,
1407                                         bool isread)
1408 {
1409     /* ER: event counter read trap control */
1410     if (arm_feature(env, ARM_FEATURE_V8)
1411         && arm_current_el(env) == 0
1412         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1413         return CP_ACCESS_OK;
1414     }
1415 
1416     return pmreg_access(env, ri, isread);
1417 }
1418 
1419 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1420                                          const ARMCPRegInfo *ri,
1421                                          bool isread)
1422 {
1423     /* CR: cycle counter read trap control */
1424     if (arm_feature(env, ARM_FEATURE_V8)
1425         && arm_current_el(env) == 0
1426         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1427         && isread) {
1428         return CP_ACCESS_OK;
1429     }
1430 
1431     return pmreg_access(env, ri, isread);
1432 }
1433 
1434 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1435  * the current EL, security state, and register configuration.
1436  */
1437 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1438 {
1439     uint64_t filter;
1440     bool e, p, u, nsk, nsu, nsh, m;
1441     bool enabled, prohibited, filtered;
1442     bool secure = arm_is_secure(env);
1443     int el = arm_current_el(env);
1444     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1445     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1446 
1447     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1448         return false;
1449     }
1450 
1451     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1452             (counter < hpmn || counter == 31)) {
1453         e = env->cp15.c9_pmcr & PMCRE;
1454     } else {
1455         e = mdcr_el2 & MDCR_HPME;
1456     }
1457     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1458 
1459     if (!secure) {
1460         if (el == 2 && (counter < hpmn || counter == 31)) {
1461             prohibited = mdcr_el2 & MDCR_HPMD;
1462         } else {
1463             prohibited = false;
1464         }
1465     } else {
1466         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1467            !(env->cp15.mdcr_el3 & MDCR_SPME);
1468     }
1469 
1470     if (prohibited && counter == 31) {
1471         prohibited = env->cp15.c9_pmcr & PMCRDP;
1472     }
1473 
1474     if (counter == 31) {
1475         filter = env->cp15.pmccfiltr_el0;
1476     } else {
1477         filter = env->cp15.c14_pmevtyper[counter];
1478     }
1479 
1480     p   = filter & PMXEVTYPER_P;
1481     u   = filter & PMXEVTYPER_U;
1482     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1483     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1484     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1485     m   = arm_el_is_aa64(env, 1) &&
1486               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1487 
1488     if (el == 0) {
1489         filtered = secure ? u : u != nsu;
1490     } else if (el == 1) {
1491         filtered = secure ? p : p != nsk;
1492     } else if (el == 2) {
1493         filtered = !nsh;
1494     } else { /* EL3 */
1495         filtered = m != p;
1496     }
1497 
1498     if (counter != 31) {
1499         /*
1500          * If not checking PMCCNTR, ensure the counter is setup to an event we
1501          * support
1502          */
1503         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1504         if (!event_supported(event)) {
1505             return false;
1506         }
1507     }
1508 
1509     return enabled && !prohibited && !filtered;
1510 }
1511 
1512 static void pmu_update_irq(CPUARMState *env)
1513 {
1514     ARMCPU *cpu = env_archcpu(env);
1515     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1516             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1517 }
1518 
1519 /*
1520  * Ensure c15_ccnt is the guest-visible count so that operations such as
1521  * enabling/disabling the counter or filtering, modifying the count itself,
1522  * etc. can be done logically. This is essentially a no-op if the counter is
1523  * not enabled at the time of the call.
1524  */
1525 static void pmccntr_op_start(CPUARMState *env)
1526 {
1527     uint64_t cycles = cycles_get_count(env);
1528 
1529     if (pmu_counter_enabled(env, 31)) {
1530         uint64_t eff_cycles = cycles;
1531         if (env->cp15.c9_pmcr & PMCRD) {
1532             /* Increment once every 64 processor clock cycles */
1533             eff_cycles /= 64;
1534         }
1535 
1536         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1537 
1538         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1539                                  1ull << 63 : 1ull << 31;
1540         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1541             env->cp15.c9_pmovsr |= (1 << 31);
1542             pmu_update_irq(env);
1543         }
1544 
1545         env->cp15.c15_ccnt = new_pmccntr;
1546     }
1547     env->cp15.c15_ccnt_delta = cycles;
1548 }
1549 
1550 /*
1551  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1552  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1553  * pmccntr_op_start.
1554  */
1555 static void pmccntr_op_finish(CPUARMState *env)
1556 {
1557     if (pmu_counter_enabled(env, 31)) {
1558 #ifndef CONFIG_USER_ONLY
1559         /* Calculate when the counter will next overflow */
1560         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1561         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1562             remaining_cycles = (uint32_t)remaining_cycles;
1563         }
1564         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1565 
1566         if (overflow_in > 0) {
1567             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1568                 overflow_in;
1569             ARMCPU *cpu = env_archcpu(env);
1570             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1571         }
1572 #endif
1573 
1574         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1575         if (env->cp15.c9_pmcr & PMCRD) {
1576             /* Increment once every 64 processor clock cycles */
1577             prev_cycles /= 64;
1578         }
1579         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1580     }
1581 }
1582 
1583 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1584 {
1585 
1586     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1587     uint64_t count = 0;
1588     if (event_supported(event)) {
1589         uint16_t event_idx = supported_event_map[event];
1590         count = pm_events[event_idx].get_count(env);
1591     }
1592 
1593     if (pmu_counter_enabled(env, counter)) {
1594         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1595 
1596         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1597             env->cp15.c9_pmovsr |= (1 << counter);
1598             pmu_update_irq(env);
1599         }
1600         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1601     }
1602     env->cp15.c14_pmevcntr_delta[counter] = count;
1603 }
1604 
1605 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1606 {
1607     if (pmu_counter_enabled(env, counter)) {
1608 #ifndef CONFIG_USER_ONLY
1609         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1610         uint16_t event_idx = supported_event_map[event];
1611         uint64_t delta = UINT32_MAX -
1612             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1613         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1614 
1615         if (overflow_in > 0) {
1616             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1617                 overflow_in;
1618             ARMCPU *cpu = env_archcpu(env);
1619             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1620         }
1621 #endif
1622 
1623         env->cp15.c14_pmevcntr_delta[counter] -=
1624             env->cp15.c14_pmevcntr[counter];
1625     }
1626 }
1627 
1628 void pmu_op_start(CPUARMState *env)
1629 {
1630     unsigned int i;
1631     pmccntr_op_start(env);
1632     for (i = 0; i < pmu_num_counters(env); i++) {
1633         pmevcntr_op_start(env, i);
1634     }
1635 }
1636 
1637 void pmu_op_finish(CPUARMState *env)
1638 {
1639     unsigned int i;
1640     pmccntr_op_finish(env);
1641     for (i = 0; i < pmu_num_counters(env); i++) {
1642         pmevcntr_op_finish(env, i);
1643     }
1644 }
1645 
1646 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1647 {
1648     pmu_op_start(&cpu->env);
1649 }
1650 
1651 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1652 {
1653     pmu_op_finish(&cpu->env);
1654 }
1655 
1656 void arm_pmu_timer_cb(void *opaque)
1657 {
1658     ARMCPU *cpu = opaque;
1659 
1660     /*
1661      * Update all the counter values based on the current underlying counts,
1662      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1663      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1664      * counter may expire.
1665      */
1666     pmu_op_start(&cpu->env);
1667     pmu_op_finish(&cpu->env);
1668 }
1669 
1670 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1671                        uint64_t value)
1672 {
1673     pmu_op_start(env);
1674 
1675     if (value & PMCRC) {
1676         /* The counter has been reset */
1677         env->cp15.c15_ccnt = 0;
1678     }
1679 
1680     if (value & PMCRP) {
1681         unsigned int i;
1682         for (i = 0; i < pmu_num_counters(env); i++) {
1683             env->cp15.c14_pmevcntr[i] = 0;
1684         }
1685     }
1686 
1687     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1688     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1689 
1690     pmu_op_finish(env);
1691 }
1692 
1693 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1694                           uint64_t value)
1695 {
1696     unsigned int i;
1697     for (i = 0; i < pmu_num_counters(env); i++) {
1698         /* Increment a counter's count iff: */
1699         if ((value & (1 << i)) && /* counter's bit is set */
1700                 /* counter is enabled and not filtered */
1701                 pmu_counter_enabled(env, i) &&
1702                 /* counter is SW_INCR */
1703                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1704             pmevcntr_op_start(env, i);
1705 
1706             /*
1707              * Detect if this write causes an overflow since we can't predict
1708              * PMSWINC overflows like we can for other events
1709              */
1710             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1711 
1712             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1713                 env->cp15.c9_pmovsr |= (1 << i);
1714                 pmu_update_irq(env);
1715             }
1716 
1717             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1718 
1719             pmevcntr_op_finish(env, i);
1720         }
1721     }
1722 }
1723 
1724 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1725 {
1726     uint64_t ret;
1727     pmccntr_op_start(env);
1728     ret = env->cp15.c15_ccnt;
1729     pmccntr_op_finish(env);
1730     return ret;
1731 }
1732 
1733 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                          uint64_t value)
1735 {
1736     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1737      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1738      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1739      * accessed.
1740      */
1741     env->cp15.c9_pmselr = value & 0x1f;
1742 }
1743 
1744 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745                         uint64_t value)
1746 {
1747     pmccntr_op_start(env);
1748     env->cp15.c15_ccnt = value;
1749     pmccntr_op_finish(env);
1750 }
1751 
1752 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1753                             uint64_t value)
1754 {
1755     uint64_t cur_val = pmccntr_read(env, NULL);
1756 
1757     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1758 }
1759 
1760 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1761                             uint64_t value)
1762 {
1763     pmccntr_op_start(env);
1764     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1765     pmccntr_op_finish(env);
1766 }
1767 
1768 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1769                             uint64_t value)
1770 {
1771     pmccntr_op_start(env);
1772     /* M is not accessible from AArch32 */
1773     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1774         (value & PMCCFILTR);
1775     pmccntr_op_finish(env);
1776 }
1777 
1778 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     /* M is not visible in AArch32 */
1781     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1782 }
1783 
1784 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1785                             uint64_t value)
1786 {
1787     value &= pmu_counter_mask(env);
1788     env->cp15.c9_pmcnten |= value;
1789 }
1790 
1791 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                              uint64_t value)
1793 {
1794     value &= pmu_counter_mask(env);
1795     env->cp15.c9_pmcnten &= ~value;
1796 }
1797 
1798 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                          uint64_t value)
1800 {
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pmovsr &= ~value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                          uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pmovsr |= value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                              uint64_t value, const uint8_t counter)
1816 {
1817     if (counter == 31) {
1818         pmccfiltr_write(env, ri, value);
1819     } else if (counter < pmu_num_counters(env)) {
1820         pmevcntr_op_start(env, counter);
1821 
1822         /*
1823          * If this counter's event type is changing, store the current
1824          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1825          * pmevcntr_op_finish has the correct baseline when it converts back to
1826          * a delta.
1827          */
1828         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1829             PMXEVTYPER_EVTCOUNT;
1830         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1831         if (old_event != new_event) {
1832             uint64_t count = 0;
1833             if (event_supported(new_event)) {
1834                 uint16_t event_idx = supported_event_map[new_event];
1835                 count = pm_events[event_idx].get_count(env);
1836             }
1837             env->cp15.c14_pmevcntr_delta[counter] = count;
1838         }
1839 
1840         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1841         pmevcntr_op_finish(env, counter);
1842     }
1843     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1844      * PMSELR value is equal to or greater than the number of implemented
1845      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1846      */
1847 }
1848 
1849 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                const uint8_t counter)
1851 {
1852     if (counter == 31) {
1853         return env->cp15.pmccfiltr_el0;
1854     } else if (counter < pmu_num_counters(env)) {
1855         return env->cp15.c14_pmevtyper[counter];
1856     } else {
1857       /*
1858        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1859        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1860        */
1861         return 0;
1862     }
1863 }
1864 
1865 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1866                               uint64_t value)
1867 {
1868     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1869     pmevtyper_write(env, ri, value, counter);
1870 }
1871 
1872 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                uint64_t value)
1874 {
1875     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1876     env->cp15.c14_pmevtyper[counter] = value;
1877 
1878     /*
1879      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1880      * pmu_op_finish calls when loading saved state for a migration. Because
1881      * we're potentially updating the type of event here, the value written to
1882      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1883      * different counter type. Therefore, we need to set this value to the
1884      * current count for the counter type we're writing so that pmu_op_finish
1885      * has the correct count for its calculation.
1886      */
1887     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1888     if (event_supported(event)) {
1889         uint16_t event_idx = supported_event_map[event];
1890         env->cp15.c14_pmevcntr_delta[counter] =
1891             pm_events[event_idx].get_count(env);
1892     }
1893 }
1894 
1895 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1898     return pmevtyper_read(env, ri, counter);
1899 }
1900 
1901 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value)
1903 {
1904     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1905 }
1906 
1907 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1910 }
1911 
1912 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                              uint64_t value, uint8_t counter)
1914 {
1915     if (counter < pmu_num_counters(env)) {
1916         pmevcntr_op_start(env, counter);
1917         env->cp15.c14_pmevcntr[counter] = value;
1918         pmevcntr_op_finish(env, counter);
1919     }
1920     /*
1921      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1922      * are CONSTRAINED UNPREDICTABLE.
1923      */
1924 }
1925 
1926 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1927                               uint8_t counter)
1928 {
1929     if (counter < pmu_num_counters(env)) {
1930         uint64_t ret;
1931         pmevcntr_op_start(env, counter);
1932         ret = env->cp15.c14_pmevcntr[counter];
1933         pmevcntr_op_finish(env, counter);
1934         return ret;
1935     } else {
1936       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1937        * are CONSTRAINED UNPREDICTABLE. */
1938         return 0;
1939     }
1940 }
1941 
1942 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1943                              uint64_t value)
1944 {
1945     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1946     pmevcntr_write(env, ri, value, counter);
1947 }
1948 
1949 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1950 {
1951     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1952     return pmevcntr_read(env, ri, counter);
1953 }
1954 
1955 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1956                              uint64_t value)
1957 {
1958     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1959     assert(counter < pmu_num_counters(env));
1960     env->cp15.c14_pmevcntr[counter] = value;
1961     pmevcntr_write(env, ri, value, counter);
1962 }
1963 
1964 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1965 {
1966     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1967     assert(counter < pmu_num_counters(env));
1968     return env->cp15.c14_pmevcntr[counter];
1969 }
1970 
1971 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                              uint64_t value)
1973 {
1974     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1975 }
1976 
1977 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1978 {
1979     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1980 }
1981 
1982 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1983                             uint64_t value)
1984 {
1985     if (arm_feature(env, ARM_FEATURE_V8)) {
1986         env->cp15.c9_pmuserenr = value & 0xf;
1987     } else {
1988         env->cp15.c9_pmuserenr = value & 1;
1989     }
1990 }
1991 
1992 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1993                              uint64_t value)
1994 {
1995     /* We have no event counters so only the C bit can be changed */
1996     value &= pmu_counter_mask(env);
1997     env->cp15.c9_pminten |= value;
1998     pmu_update_irq(env);
1999 }
2000 
2001 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                              uint64_t value)
2003 {
2004     value &= pmu_counter_mask(env);
2005     env->cp15.c9_pminten &= ~value;
2006     pmu_update_irq(env);
2007 }
2008 
2009 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2010                        uint64_t value)
2011 {
2012     /* Note that even though the AArch64 view of this register has bits
2013      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2014      * architectural requirements for bits which are RES0 only in some
2015      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2016      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2017      */
2018     raw_write(env, ri, value & ~0x1FULL);
2019 }
2020 
2021 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2022 {
2023     /* Begin with base v8.0 state.  */
2024     uint32_t valid_mask = 0x3fff;
2025     ARMCPU *cpu = env_archcpu(env);
2026 
2027     if (ri->state == ARM_CP_STATE_AA64) {
2028         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
2029             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
2030                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2031         }
2032         valid_mask &= ~SCR_NET;
2033 
2034         if (cpu_isar_feature(aa64_lor, cpu)) {
2035             valid_mask |= SCR_TLOR;
2036         }
2037         if (cpu_isar_feature(aa64_pauth, cpu)) {
2038             valid_mask |= SCR_API | SCR_APK;
2039         }
2040         if (cpu_isar_feature(aa64_sel2, cpu)) {
2041             valid_mask |= SCR_EEL2;
2042         }
2043         if (cpu_isar_feature(aa64_mte, cpu)) {
2044             valid_mask |= SCR_ATA;
2045         }
2046     } else {
2047         valid_mask &= ~(SCR_RW | SCR_ST);
2048     }
2049 
2050     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2051         valid_mask &= ~SCR_HCE;
2052 
2053         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2054          * supported if EL2 exists. The bit is UNK/SBZP when
2055          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2056          * when EL2 is unavailable.
2057          * On ARMv8, this bit is always available.
2058          */
2059         if (arm_feature(env, ARM_FEATURE_V7) &&
2060             !arm_feature(env, ARM_FEATURE_V8)) {
2061             valid_mask &= ~SCR_SMD;
2062         }
2063     }
2064 
2065     /* Clear all-context RES0 bits.  */
2066     value &= valid_mask;
2067     raw_write(env, ri, value);
2068 }
2069 
2070 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2071 {
2072     /*
2073      * scr_write will set the RES1 bits on an AArch64-only CPU.
2074      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
2075      */
2076     scr_write(env, ri, 0);
2077 }
2078 
2079 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2080                                        const ARMCPRegInfo *ri,
2081                                        bool isread)
2082 {
2083     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2084         return CP_ACCESS_TRAP_EL2;
2085     }
2086 
2087     return CP_ACCESS_OK;
2088 }
2089 
2090 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2091 {
2092     ARMCPU *cpu = env_archcpu(env);
2093 
2094     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2095      * bank
2096      */
2097     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2098                                         ri->secure & ARM_CP_SECSTATE_S);
2099 
2100     return cpu->ccsidr[index];
2101 }
2102 
2103 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2104                          uint64_t value)
2105 {
2106     raw_write(env, ri, value & 0xf);
2107 }
2108 
2109 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2110 {
2111     CPUState *cs = env_cpu(env);
2112     bool el1 = arm_current_el(env) == 1;
2113     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
2114     uint64_t ret = 0;
2115 
2116     if (hcr_el2 & HCR_IMO) {
2117         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2118             ret |= CPSR_I;
2119         }
2120     } else {
2121         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2122             ret |= CPSR_I;
2123         }
2124     }
2125 
2126     if (hcr_el2 & HCR_FMO) {
2127         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2128             ret |= CPSR_F;
2129         }
2130     } else {
2131         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2132             ret |= CPSR_F;
2133         }
2134     }
2135 
2136     /* External aborts are not possible in QEMU so A bit is always clear */
2137     return ret;
2138 }
2139 
2140 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2141                                        bool isread)
2142 {
2143     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2144         return CP_ACCESS_TRAP_EL2;
2145     }
2146 
2147     return CP_ACCESS_OK;
2148 }
2149 
2150 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2151                                        bool isread)
2152 {
2153     if (arm_feature(env, ARM_FEATURE_V8)) {
2154         return access_aa64_tid1(env, ri, isread);
2155     }
2156 
2157     return CP_ACCESS_OK;
2158 }
2159 
2160 static const ARMCPRegInfo v7_cp_reginfo[] = {
2161     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2162     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2163       .access = PL1_W, .type = ARM_CP_NOP },
2164     /* Performance monitors are implementation defined in v7,
2165      * but with an ARM recommended set of registers, which we
2166      * follow.
2167      *
2168      * Performance registers fall into three categories:
2169      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2170      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2171      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2172      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2173      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2174      */
2175     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2176       .access = PL0_RW, .type = ARM_CP_ALIAS,
2177       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2178       .writefn = pmcntenset_write,
2179       .accessfn = pmreg_access,
2180       .raw_writefn = raw_write },
2181     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2182       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2183       .access = PL0_RW, .accessfn = pmreg_access,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2185       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2186     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2187       .access = PL0_RW,
2188       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2189       .accessfn = pmreg_access,
2190       .writefn = pmcntenclr_write,
2191       .type = ARM_CP_ALIAS },
2192     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2194       .access = PL0_RW, .accessfn = pmreg_access,
2195       .type = ARM_CP_ALIAS,
2196       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2197       .writefn = pmcntenclr_write },
2198     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2199       .access = PL0_RW, .type = ARM_CP_IO,
2200       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2201       .accessfn = pmreg_access,
2202       .writefn = pmovsr_write,
2203       .raw_writefn = raw_write },
2204     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2205       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2206       .access = PL0_RW, .accessfn = pmreg_access,
2207       .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2209       .writefn = pmovsr_write,
2210       .raw_writefn = raw_write },
2211     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2212       .access = PL0_W, .accessfn = pmreg_access_swinc,
2213       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2214       .writefn = pmswinc_write },
2215     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2216       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2217       .access = PL0_W, .accessfn = pmreg_access_swinc,
2218       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2219       .writefn = pmswinc_write },
2220     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2221       .access = PL0_RW, .type = ARM_CP_ALIAS,
2222       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2223       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2224       .raw_writefn = raw_write},
2225     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2227       .access = PL0_RW, .accessfn = pmreg_access_selr,
2228       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2229       .writefn = pmselr_write, .raw_writefn = raw_write, },
2230     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2231       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2232       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2233       .accessfn = pmreg_access_ccntr },
2234     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2236       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2237       .type = ARM_CP_IO,
2238       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2239       .readfn = pmccntr_read, .writefn = pmccntr_write,
2240       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2241     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2242       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2243       .access = PL0_RW, .accessfn = pmreg_access,
2244       .type = ARM_CP_ALIAS | ARM_CP_IO,
2245       .resetvalue = 0, },
2246     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2247       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2248       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2249       .access = PL0_RW, .accessfn = pmreg_access,
2250       .type = ARM_CP_IO,
2251       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2252       .resetvalue = 0, },
2253     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2254       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2255       .accessfn = pmreg_access,
2256       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2257     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2258       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2259       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2260       .accessfn = pmreg_access,
2261       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2262     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2263       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2264       .accessfn = pmreg_access_xevcntr,
2265       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2266     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2267       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2268       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2269       .accessfn = pmreg_access_xevcntr,
2270       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2271     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2272       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2273       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2274       .resetvalue = 0,
2275       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2276     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2278       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2280       .resetvalue = 0,
2281       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2282     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2283       .access = PL1_RW, .accessfn = access_tpm,
2284       .type = ARM_CP_ALIAS | ARM_CP_IO,
2285       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2286       .resetvalue = 0,
2287       .writefn = pmintenset_write, .raw_writefn = raw_write },
2288     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2289       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2290       .access = PL1_RW, .accessfn = access_tpm,
2291       .type = ARM_CP_IO,
2292       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2293       .writefn = pmintenset_write, .raw_writefn = raw_write,
2294       .resetvalue = 0x0 },
2295     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2296       .access = PL1_RW, .accessfn = access_tpm,
2297       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2298       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2299       .writefn = pmintenclr_write, },
2300     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2301       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2302       .access = PL1_RW, .accessfn = access_tpm,
2303       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2304       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2305       .writefn = pmintenclr_write },
2306     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2307       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2308       .access = PL1_R,
2309       .accessfn = access_aa64_tid2,
2310       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2311     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2313       .access = PL1_RW,
2314       .accessfn = access_aa64_tid2,
2315       .writefn = csselr_write, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2317                              offsetof(CPUARMState, cp15.csselr_ns) } },
2318     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2319      * just RAZ for all cores:
2320      */
2321     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2322       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2323       .access = PL1_R, .type = ARM_CP_CONST,
2324       .accessfn = access_aa64_tid1,
2325       .resetvalue = 0 },
2326     /* Auxiliary fault status registers: these also are IMPDEF, and we
2327      * choose to RAZ/WI for all cores.
2328      */
2329     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2330       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2331       .access = PL1_RW, .accessfn = access_tvm_trvm,
2332       .type = ARM_CP_CONST, .resetvalue = 0 },
2333     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2334       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2335       .access = PL1_RW, .accessfn = access_tvm_trvm,
2336       .type = ARM_CP_CONST, .resetvalue = 0 },
2337     /* MAIR can just read-as-written because we don't implement caches
2338      * and so don't need to care about memory attributes.
2339      */
2340     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2341       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2342       .access = PL1_RW, .accessfn = access_tvm_trvm,
2343       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2344       .resetvalue = 0 },
2345     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2346       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2347       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2348       .resetvalue = 0 },
2349     /* For non-long-descriptor page tables these are PRRR and NMRR;
2350      * regardless they still act as reads-as-written for QEMU.
2351      */
2352      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2353       * allows them to assign the correct fieldoffset based on the endianness
2354       * handled in the field definitions.
2355       */
2356     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2357       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2358       .access = PL1_RW, .accessfn = access_tvm_trvm,
2359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2360                              offsetof(CPUARMState, cp15.mair0_ns) },
2361       .resetfn = arm_cp_reset_ignore },
2362     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2363       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2364       .access = PL1_RW, .accessfn = access_tvm_trvm,
2365       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2366                              offsetof(CPUARMState, cp15.mair1_ns) },
2367       .resetfn = arm_cp_reset_ignore },
2368     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2369       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2370       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2371     /* 32 bit ITLB invalidates */
2372     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2373       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2374       .writefn = tlbiall_write },
2375     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2376       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2377       .writefn = tlbimva_write },
2378     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2379       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2380       .writefn = tlbiasid_write },
2381     /* 32 bit DTLB invalidates */
2382     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2383       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2384       .writefn = tlbiall_write },
2385     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbimva_write },
2388     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbiasid_write },
2391     /* 32 bit TLB invalidates */
2392     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2393       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2394       .writefn = tlbiall_write },
2395     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2396       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2397       .writefn = tlbimva_write },
2398     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2399       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2400       .writefn = tlbiasid_write },
2401     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2402       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2403       .writefn = tlbimvaa_write },
2404     REGINFO_SENTINEL
2405 };
2406 
2407 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2408     /* 32 bit TLB invalidates, Inner Shareable */
2409     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2410       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2411       .writefn = tlbiall_is_write },
2412     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2413       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2414       .writefn = tlbimva_is_write },
2415     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2416       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2417       .writefn = tlbiasid_is_write },
2418     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2419       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2420       .writefn = tlbimvaa_is_write },
2421     REGINFO_SENTINEL
2422 };
2423 
2424 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2425     /* PMOVSSET is not implemented in v7 before v7ve */
2426     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2427       .access = PL0_RW, .accessfn = pmreg_access,
2428       .type = ARM_CP_ALIAS | ARM_CP_IO,
2429       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2430       .writefn = pmovsset_write,
2431       .raw_writefn = raw_write },
2432     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2433       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2434       .access = PL0_RW, .accessfn = pmreg_access,
2435       .type = ARM_CP_ALIAS | ARM_CP_IO,
2436       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2437       .writefn = pmovsset_write,
2438       .raw_writefn = raw_write },
2439     REGINFO_SENTINEL
2440 };
2441 
2442 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2443                         uint64_t value)
2444 {
2445     value &= 1;
2446     env->teecr = value;
2447 }
2448 
2449 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2450                                     bool isread)
2451 {
2452     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2453         return CP_ACCESS_TRAP;
2454     }
2455     return CP_ACCESS_OK;
2456 }
2457 
2458 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2459     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2460       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2461       .resetvalue = 0,
2462       .writefn = teecr_write },
2463     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2464       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2465       .accessfn = teehbr_access, .resetvalue = 0 },
2466     REGINFO_SENTINEL
2467 };
2468 
2469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2470     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2471       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2472       .access = PL0_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2474     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2475       .access = PL0_RW,
2476       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2477                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2478       .resetfn = arm_cp_reset_ignore },
2479     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2480       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2481       .access = PL0_R|PL1_W,
2482       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2483       .resetvalue = 0},
2484     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2485       .access = PL0_R|PL1_W,
2486       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2487                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2488       .resetfn = arm_cp_reset_ignore },
2489     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2490       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2493     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2494       .access = PL1_RW,
2495       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2496                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2497       .resetvalue = 0 },
2498     REGINFO_SENTINEL
2499 };
2500 
2501 #ifndef CONFIG_USER_ONLY
2502 
2503 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                        bool isread)
2505 {
2506     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2507      * Writable only at the highest implemented exception level.
2508      */
2509     int el = arm_current_el(env);
2510     uint64_t hcr;
2511     uint32_t cntkctl;
2512 
2513     switch (el) {
2514     case 0:
2515         hcr = arm_hcr_el2_eff(env);
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             cntkctl = env->cp15.cnthctl_el2;
2518         } else {
2519             cntkctl = env->cp15.c14_cntkctl;
2520         }
2521         if (!extract32(cntkctl, 0, 2)) {
2522             return CP_ACCESS_TRAP;
2523         }
2524         break;
2525     case 1:
2526         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2527             arm_is_secure_below_el3(env)) {
2528             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2529             return CP_ACCESS_TRAP_UNCATEGORIZED;
2530         }
2531         break;
2532     case 2:
2533     case 3:
2534         break;
2535     }
2536 
2537     if (!isread && el < arm_highest_el(env)) {
2538         return CP_ACCESS_TRAP_UNCATEGORIZED;
2539     }
2540 
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2545                                         bool isread)
2546 {
2547     unsigned int cur_el = arm_current_el(env);
2548     bool has_el2 = arm_is_el2_enabled(env);
2549     uint64_t hcr = arm_hcr_el2_eff(env);
2550 
2551     switch (cur_el) {
2552     case 0:
2553         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2554         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2555             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2556                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2557         }
2558 
2559         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2560         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2561             return CP_ACCESS_TRAP;
2562         }
2563 
2564         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2565         if (hcr & HCR_E2H) {
2566             if (timeridx == GTIMER_PHYS &&
2567                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2568                 return CP_ACCESS_TRAP_EL2;
2569             }
2570         } else {
2571             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2572             if (has_el2 && timeridx == GTIMER_PHYS &&
2573                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2574                 return CP_ACCESS_TRAP_EL2;
2575             }
2576         }
2577         break;
2578 
2579     case 1:
2580         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2581         if (has_el2 && timeridx == GTIMER_PHYS &&
2582             (hcr & HCR_E2H
2583              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2584              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2585             return CP_ACCESS_TRAP_EL2;
2586         }
2587         break;
2588     }
2589     return CP_ACCESS_OK;
2590 }
2591 
2592 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2593                                       bool isread)
2594 {
2595     unsigned int cur_el = arm_current_el(env);
2596     bool has_el2 = arm_is_el2_enabled(env);
2597     uint64_t hcr = arm_hcr_el2_eff(env);
2598 
2599     switch (cur_el) {
2600     case 0:
2601         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2602             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2603             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2604                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2605         }
2606 
2607         /*
2608          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2609          * EL0 if EL0[PV]TEN is zero.
2610          */
2611         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2612             return CP_ACCESS_TRAP;
2613         }
2614         /* fall through */
2615 
2616     case 1:
2617         if (has_el2 && timeridx == GTIMER_PHYS) {
2618             if (hcr & HCR_E2H) {
2619                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2620                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2621                     return CP_ACCESS_TRAP_EL2;
2622                 }
2623             } else {
2624                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2625                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2626                     return CP_ACCESS_TRAP_EL2;
2627                 }
2628             }
2629         }
2630         break;
2631     }
2632     return CP_ACCESS_OK;
2633 }
2634 
2635 static CPAccessResult gt_pct_access(CPUARMState *env,
2636                                     const ARMCPRegInfo *ri,
2637                                     bool isread)
2638 {
2639     return gt_counter_access(env, GTIMER_PHYS, isread);
2640 }
2641 
2642 static CPAccessResult gt_vct_access(CPUARMState *env,
2643                                     const ARMCPRegInfo *ri,
2644                                     bool isread)
2645 {
2646     return gt_counter_access(env, GTIMER_VIRT, isread);
2647 }
2648 
2649 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2650                                        bool isread)
2651 {
2652     return gt_timer_access(env, GTIMER_PHYS, isread);
2653 }
2654 
2655 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2656                                        bool isread)
2657 {
2658     return gt_timer_access(env, GTIMER_VIRT, isread);
2659 }
2660 
2661 static CPAccessResult gt_stimer_access(CPUARMState *env,
2662                                        const ARMCPRegInfo *ri,
2663                                        bool isread)
2664 {
2665     /* The AArch64 register view of the secure physical timer is
2666      * always accessible from EL3, and configurably accessible from
2667      * Secure EL1.
2668      */
2669     switch (arm_current_el(env)) {
2670     case 1:
2671         if (!arm_is_secure(env)) {
2672             return CP_ACCESS_TRAP;
2673         }
2674         if (!(env->cp15.scr_el3 & SCR_ST)) {
2675             return CP_ACCESS_TRAP_EL3;
2676         }
2677         return CP_ACCESS_OK;
2678     case 0:
2679     case 2:
2680         return CP_ACCESS_TRAP;
2681     case 3:
2682         return CP_ACCESS_OK;
2683     default:
2684         g_assert_not_reached();
2685     }
2686 }
2687 
2688 static uint64_t gt_get_countervalue(CPUARMState *env)
2689 {
2690     ARMCPU *cpu = env_archcpu(env);
2691 
2692     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2693 }
2694 
2695 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2696 {
2697     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2698 
2699     if (gt->ctl & 1) {
2700         /* Timer enabled: calculate and set current ISTATUS, irq, and
2701          * reset timer to when ISTATUS next has to change
2702          */
2703         uint64_t offset = timeridx == GTIMER_VIRT ?
2704                                       cpu->env.cp15.cntvoff_el2 : 0;
2705         uint64_t count = gt_get_countervalue(&cpu->env);
2706         /* Note that this must be unsigned 64 bit arithmetic: */
2707         int istatus = count - offset >= gt->cval;
2708         uint64_t nexttick;
2709         int irqstate;
2710 
2711         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2712 
2713         irqstate = (istatus && !(gt->ctl & 2));
2714         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2715 
2716         if (istatus) {
2717             /* Next transition is when count rolls back over to zero */
2718             nexttick = UINT64_MAX;
2719         } else {
2720             /* Next transition is when we hit cval */
2721             nexttick = gt->cval + offset;
2722         }
2723         /* Note that the desired next expiry time might be beyond the
2724          * signed-64-bit range of a QEMUTimer -- in this case we just
2725          * set the timer for as far in the future as possible. When the
2726          * timer expires we will reset the timer for any remaining period.
2727          */
2728         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2729             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2730         } else {
2731             timer_mod(cpu->gt_timer[timeridx], nexttick);
2732         }
2733         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2734     } else {
2735         /* Timer disabled: ISTATUS and timer output always clear */
2736         gt->ctl &= ~4;
2737         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2738         timer_del(cpu->gt_timer[timeridx]);
2739         trace_arm_gt_recalc_disabled(timeridx);
2740     }
2741 }
2742 
2743 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2744                            int timeridx)
2745 {
2746     ARMCPU *cpu = env_archcpu(env);
2747 
2748     timer_del(cpu->gt_timer[timeridx]);
2749 }
2750 
2751 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752 {
2753     return gt_get_countervalue(env);
2754 }
2755 
2756 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2757 {
2758     uint64_t hcr;
2759 
2760     switch (arm_current_el(env)) {
2761     case 2:
2762         hcr = arm_hcr_el2_eff(env);
2763         if (hcr & HCR_E2H) {
2764             return 0;
2765         }
2766         break;
2767     case 0:
2768         hcr = arm_hcr_el2_eff(env);
2769         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2770             return 0;
2771         }
2772         break;
2773     }
2774 
2775     return env->cp15.cntvoff_el2;
2776 }
2777 
2778 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2781 }
2782 
2783 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                           int timeridx,
2785                           uint64_t value)
2786 {
2787     trace_arm_gt_cval_write(timeridx, value);
2788     env->cp15.c14_timer[timeridx].cval = value;
2789     gt_recalc_timer(env_archcpu(env), timeridx);
2790 }
2791 
2792 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2793                              int timeridx)
2794 {
2795     uint64_t offset = 0;
2796 
2797     switch (timeridx) {
2798     case GTIMER_VIRT:
2799     case GTIMER_HYPVIRT:
2800         offset = gt_virt_cnt_offset(env);
2801         break;
2802     }
2803 
2804     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2805                       (gt_get_countervalue(env) - offset));
2806 }
2807 
2808 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                           int timeridx,
2810                           uint64_t value)
2811 {
2812     uint64_t offset = 0;
2813 
2814     switch (timeridx) {
2815     case GTIMER_VIRT:
2816     case GTIMER_HYPVIRT:
2817         offset = gt_virt_cnt_offset(env);
2818         break;
2819     }
2820 
2821     trace_arm_gt_tval_write(timeridx, value);
2822     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2823                                          sextract64(value, 0, 32);
2824     gt_recalc_timer(env_archcpu(env), timeridx);
2825 }
2826 
2827 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                          int timeridx,
2829                          uint64_t value)
2830 {
2831     ARMCPU *cpu = env_archcpu(env);
2832     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2833 
2834     trace_arm_gt_ctl_write(timeridx, value);
2835     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2836     if ((oldval ^ value) & 1) {
2837         /* Enable toggled */
2838         gt_recalc_timer(cpu, timeridx);
2839     } else if ((oldval ^ value) & 2) {
2840         /* IMASK toggled: don't need to recalculate,
2841          * just set the interrupt line based on ISTATUS
2842          */
2843         int irqstate = (oldval & 4) && !(value & 2);
2844 
2845         trace_arm_gt_imask_toggle(timeridx, irqstate);
2846         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2847     }
2848 }
2849 
2850 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     gt_timer_reset(env, ri, GTIMER_PHYS);
2853 }
2854 
2855 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                uint64_t value)
2857 {
2858     gt_cval_write(env, ri, GTIMER_PHYS, value);
2859 }
2860 
2861 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2862 {
2863     return gt_tval_read(env, ri, GTIMER_PHYS);
2864 }
2865 
2866 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2867                                uint64_t value)
2868 {
2869     gt_tval_write(env, ri, GTIMER_PHYS, value);
2870 }
2871 
2872 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2873                               uint64_t value)
2874 {
2875     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2876 }
2877 
2878 static int gt_phys_redir_timeridx(CPUARMState *env)
2879 {
2880     switch (arm_mmu_idx(env)) {
2881     case ARMMMUIdx_E20_0:
2882     case ARMMMUIdx_E20_2:
2883     case ARMMMUIdx_E20_2_PAN:
2884     case ARMMMUIdx_SE20_0:
2885     case ARMMMUIdx_SE20_2:
2886     case ARMMMUIdx_SE20_2_PAN:
2887         return GTIMER_HYP;
2888     default:
2889         return GTIMER_PHYS;
2890     }
2891 }
2892 
2893 static int gt_virt_redir_timeridx(CPUARMState *env)
2894 {
2895     switch (arm_mmu_idx(env)) {
2896     case ARMMMUIdx_E20_0:
2897     case ARMMMUIdx_E20_2:
2898     case ARMMMUIdx_E20_2_PAN:
2899     case ARMMMUIdx_SE20_0:
2900     case ARMMMUIdx_SE20_2:
2901     case ARMMMUIdx_SE20_2_PAN:
2902         return GTIMER_HYPVIRT;
2903     default:
2904         return GTIMER_VIRT;
2905     }
2906 }
2907 
2908 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2909                                         const ARMCPRegInfo *ri)
2910 {
2911     int timeridx = gt_phys_redir_timeridx(env);
2912     return env->cp15.c14_timer[timeridx].cval;
2913 }
2914 
2915 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                      uint64_t value)
2917 {
2918     int timeridx = gt_phys_redir_timeridx(env);
2919     gt_cval_write(env, ri, timeridx, value);
2920 }
2921 
2922 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2923                                         const ARMCPRegInfo *ri)
2924 {
2925     int timeridx = gt_phys_redir_timeridx(env);
2926     return gt_tval_read(env, ri, timeridx);
2927 }
2928 
2929 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2930                                      uint64_t value)
2931 {
2932     int timeridx = gt_phys_redir_timeridx(env);
2933     gt_tval_write(env, ri, timeridx, value);
2934 }
2935 
2936 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2937                                        const ARMCPRegInfo *ri)
2938 {
2939     int timeridx = gt_phys_redir_timeridx(env);
2940     return env->cp15.c14_timer[timeridx].ctl;
2941 }
2942 
2943 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                                     uint64_t value)
2945 {
2946     int timeridx = gt_phys_redir_timeridx(env);
2947     gt_ctl_write(env, ri, timeridx, value);
2948 }
2949 
2950 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2951 {
2952     gt_timer_reset(env, ri, GTIMER_VIRT);
2953 }
2954 
2955 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2956                                uint64_t value)
2957 {
2958     gt_cval_write(env, ri, GTIMER_VIRT, value);
2959 }
2960 
2961 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2962 {
2963     return gt_tval_read(env, ri, GTIMER_VIRT);
2964 }
2965 
2966 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2967                                uint64_t value)
2968 {
2969     gt_tval_write(env, ri, GTIMER_VIRT, value);
2970 }
2971 
2972 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2973                               uint64_t value)
2974 {
2975     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2976 }
2977 
2978 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2979                               uint64_t value)
2980 {
2981     ARMCPU *cpu = env_archcpu(env);
2982 
2983     trace_arm_gt_cntvoff_write(value);
2984     raw_write(env, ri, value);
2985     gt_recalc_timer(cpu, GTIMER_VIRT);
2986 }
2987 
2988 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2989                                         const ARMCPRegInfo *ri)
2990 {
2991     int timeridx = gt_virt_redir_timeridx(env);
2992     return env->cp15.c14_timer[timeridx].cval;
2993 }
2994 
2995 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                      uint64_t value)
2997 {
2998     int timeridx = gt_virt_redir_timeridx(env);
2999     gt_cval_write(env, ri, timeridx, value);
3000 }
3001 
3002 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
3003                                         const ARMCPRegInfo *ri)
3004 {
3005     int timeridx = gt_virt_redir_timeridx(env);
3006     return gt_tval_read(env, ri, timeridx);
3007 }
3008 
3009 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                                      uint64_t value)
3011 {
3012     int timeridx = gt_virt_redir_timeridx(env);
3013     gt_tval_write(env, ri, timeridx, value);
3014 }
3015 
3016 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
3017                                        const ARMCPRegInfo *ri)
3018 {
3019     int timeridx = gt_virt_redir_timeridx(env);
3020     return env->cp15.c14_timer[timeridx].ctl;
3021 }
3022 
3023 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3024                                     uint64_t value)
3025 {
3026     int timeridx = gt_virt_redir_timeridx(env);
3027     gt_ctl_write(env, ri, timeridx, value);
3028 }
3029 
3030 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 {
3032     gt_timer_reset(env, ri, GTIMER_HYP);
3033 }
3034 
3035 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_cval_write(env, ri, GTIMER_HYP, value);
3039 }
3040 
3041 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     return gt_tval_read(env, ri, GTIMER_HYP);
3044 }
3045 
3046 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_tval_write(env, ri, GTIMER_HYP, value);
3050 }
3051 
3052 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                               uint64_t value)
3054 {
3055     gt_ctl_write(env, ri, GTIMER_HYP, value);
3056 }
3057 
3058 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 {
3060     gt_timer_reset(env, ri, GTIMER_SEC);
3061 }
3062 
3063 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                               uint64_t value)
3065 {
3066     gt_cval_write(env, ri, GTIMER_SEC, value);
3067 }
3068 
3069 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     return gt_tval_read(env, ri, GTIMER_SEC);
3072 }
3073 
3074 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                               uint64_t value)
3076 {
3077     gt_tval_write(env, ri, GTIMER_SEC, value);
3078 }
3079 
3080 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                               uint64_t value)
3082 {
3083     gt_ctl_write(env, ri, GTIMER_SEC, value);
3084 }
3085 
3086 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3087 {
3088     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3089 }
3090 
3091 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3092                              uint64_t value)
3093 {
3094     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3095 }
3096 
3097 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3098 {
3099     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3100 }
3101 
3102 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3103                              uint64_t value)
3104 {
3105     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3106 }
3107 
3108 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                             uint64_t value)
3110 {
3111     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3112 }
3113 
3114 void arm_gt_ptimer_cb(void *opaque)
3115 {
3116     ARMCPU *cpu = opaque;
3117 
3118     gt_recalc_timer(cpu, GTIMER_PHYS);
3119 }
3120 
3121 void arm_gt_vtimer_cb(void *opaque)
3122 {
3123     ARMCPU *cpu = opaque;
3124 
3125     gt_recalc_timer(cpu, GTIMER_VIRT);
3126 }
3127 
3128 void arm_gt_htimer_cb(void *opaque)
3129 {
3130     ARMCPU *cpu = opaque;
3131 
3132     gt_recalc_timer(cpu, GTIMER_HYP);
3133 }
3134 
3135 void arm_gt_stimer_cb(void *opaque)
3136 {
3137     ARMCPU *cpu = opaque;
3138 
3139     gt_recalc_timer(cpu, GTIMER_SEC);
3140 }
3141 
3142 void arm_gt_hvtimer_cb(void *opaque)
3143 {
3144     ARMCPU *cpu = opaque;
3145 
3146     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3147 }
3148 
3149 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3150 {
3151     ARMCPU *cpu = env_archcpu(env);
3152 
3153     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3154 }
3155 
3156 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3157     /* Note that CNTFRQ is purely reads-as-written for the benefit
3158      * of software; writing it doesn't actually change the timer frequency.
3159      * Our reset value matches the fixed frequency we implement the timer at.
3160      */
3161     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3162       .type = ARM_CP_ALIAS,
3163       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3165     },
3166     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3167       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3168       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3169       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3170       .resetfn = arm_gt_cntfrq_reset,
3171     },
3172     /* overall control: mostly access permissions */
3173     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3174       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3175       .access = PL1_RW,
3176       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3177       .resetvalue = 0,
3178     },
3179     /* per-timer control */
3180     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3181       .secure = ARM_CP_SECSTATE_NS,
3182       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3183       .accessfn = gt_ptimer_access,
3184       .fieldoffset = offsetoflow32(CPUARMState,
3185                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3186       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3187       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3188     },
3189     { .name = "CNTP_CTL_S",
3190       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3191       .secure = ARM_CP_SECSTATE_S,
3192       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3193       .accessfn = gt_ptimer_access,
3194       .fieldoffset = offsetoflow32(CPUARMState,
3195                                    cp15.c14_timer[GTIMER_SEC].ctl),
3196       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3197     },
3198     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3200       .type = ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_ptimer_access,
3202       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3203       .resetvalue = 0,
3204       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3205       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3206     },
3207     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3208       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3209       .accessfn = gt_vtimer_access,
3210       .fieldoffset = offsetoflow32(CPUARMState,
3211                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3212       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3213       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3214     },
3215     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3216       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3217       .type = ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_vtimer_access,
3219       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3220       .resetvalue = 0,
3221       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3222       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3223     },
3224     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3225     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3226       .secure = ARM_CP_SECSTATE_NS,
3227       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3228       .accessfn = gt_ptimer_access,
3229       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3230     },
3231     { .name = "CNTP_TVAL_S",
3232       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3233       .secure = ARM_CP_SECSTATE_S,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3235       .accessfn = gt_ptimer_access,
3236       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3237     },
3238     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3241       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3242       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3243     },
3244     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3245       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3246       .accessfn = gt_vtimer_access,
3247       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3248     },
3249     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3251       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3252       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3253       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3254     },
3255     /* The counter itself */
3256     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3257       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3258       .accessfn = gt_pct_access,
3259       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3260     },
3261     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3262       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3263       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3264       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3265     },
3266     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3267       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3268       .accessfn = gt_vct_access,
3269       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3270     },
3271     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3272       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3273       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3274       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3275     },
3276     /* Comparison value, indicating when the timer goes off */
3277     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3278       .secure = ARM_CP_SECSTATE_NS,
3279       .access = PL0_RW,
3280       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3281       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3282       .accessfn = gt_ptimer_access,
3283       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3284       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3285     },
3286     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3287       .secure = ARM_CP_SECSTATE_S,
3288       .access = PL0_RW,
3289       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3290       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3291       .accessfn = gt_ptimer_access,
3292       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3293     },
3294     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3295       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3296       .access = PL0_RW,
3297       .type = ARM_CP_IO,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3299       .resetvalue = 0, .accessfn = gt_ptimer_access,
3300       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3301       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3302     },
3303     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3304       .access = PL0_RW,
3305       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3306       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3307       .accessfn = gt_vtimer_access,
3308       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3309       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3310     },
3311     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3312       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3313       .access = PL0_RW,
3314       .type = ARM_CP_IO,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3316       .resetvalue = 0, .accessfn = gt_vtimer_access,
3317       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3318       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3319     },
3320     /* Secure timer -- this is actually restricted to only EL3
3321      * and configurably Secure-EL1 via the accessfn.
3322      */
3323     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3324       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3325       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3326       .accessfn = gt_stimer_access,
3327       .readfn = gt_sec_tval_read,
3328       .writefn = gt_sec_tval_write,
3329       .resetfn = gt_sec_timer_reset,
3330     },
3331     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3333       .type = ARM_CP_IO, .access = PL1_RW,
3334       .accessfn = gt_stimer_access,
3335       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3336       .resetvalue = 0,
3337       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3338     },
3339     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3341       .type = ARM_CP_IO, .access = PL1_RW,
3342       .accessfn = gt_stimer_access,
3343       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3344       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3345     },
3346     REGINFO_SENTINEL
3347 };
3348 
3349 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                  bool isread)
3351 {
3352     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3353         return CP_ACCESS_TRAP;
3354     }
3355     return CP_ACCESS_OK;
3356 }
3357 
3358 #else
3359 
3360 /* In user-mode most of the generic timer registers are inaccessible
3361  * however modern kernels (4.12+) allow access to cntvct_el0
3362  */
3363 
3364 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3365 {
3366     ARMCPU *cpu = env_archcpu(env);
3367 
3368     /* Currently we have no support for QEMUTimer in linux-user so we
3369      * can't call gt_get_countervalue(env), instead we directly
3370      * call the lower level functions.
3371      */
3372     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3373 }
3374 
3375 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3376     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3378       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3379       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3380       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3381     },
3382     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3384       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3385       .readfn = gt_virt_cnt_read,
3386     },
3387     REGINFO_SENTINEL
3388 };
3389 
3390 #endif
3391 
3392 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3393 {
3394     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3395         raw_write(env, ri, value);
3396     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3397         raw_write(env, ri, value & 0xfffff6ff);
3398     } else {
3399         raw_write(env, ri, value & 0xfffff1ff);
3400     }
3401 }
3402 
3403 #ifndef CONFIG_USER_ONLY
3404 /* get_phys_addr() isn't present for user-mode-only targets */
3405 
3406 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3407                                  bool isread)
3408 {
3409     if (ri->opc2 & 4) {
3410         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3411          * Secure EL1 (which can only happen if EL3 is AArch64).
3412          * They are simply UNDEF if executed from NS EL1.
3413          * They function normally from EL2 or EL3.
3414          */
3415         if (arm_current_el(env) == 1) {
3416             if (arm_is_secure_below_el3(env)) {
3417                 if (env->cp15.scr_el3 & SCR_EEL2) {
3418                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3419                 }
3420                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3421             }
3422             return CP_ACCESS_TRAP_UNCATEGORIZED;
3423         }
3424     }
3425     return CP_ACCESS_OK;
3426 }
3427 
3428 #ifdef CONFIG_TCG
3429 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3430                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3431 {
3432     hwaddr phys_addr;
3433     target_ulong page_size;
3434     int prot;
3435     bool ret;
3436     uint64_t par64;
3437     bool format64 = false;
3438     MemTxAttrs attrs = {};
3439     ARMMMUFaultInfo fi = {};
3440     ARMCacheAttrs cacheattrs = {};
3441 
3442     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3443                         &prot, &page_size, &fi, &cacheattrs);
3444 
3445     if (ret) {
3446         /*
3447          * Some kinds of translation fault must cause exceptions rather
3448          * than being reported in the PAR.
3449          */
3450         int current_el = arm_current_el(env);
3451         int target_el;
3452         uint32_t syn, fsr, fsc;
3453         bool take_exc = false;
3454 
3455         if (fi.s1ptw && current_el == 1
3456             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3457             /*
3458              * Synchronous stage 2 fault on an access made as part of the
3459              * translation table walk for AT S1E0* or AT S1E1* insn
3460              * executed from NS EL1. If this is a synchronous external abort
3461              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3462              * to EL3. Otherwise the fault is taken as an exception to EL2,
3463              * and HPFAR_EL2 holds the faulting IPA.
3464              */
3465             if (fi.type == ARMFault_SyncExternalOnWalk &&
3466                 (env->cp15.scr_el3 & SCR_EA)) {
3467                 target_el = 3;
3468             } else {
3469                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3470                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3471                     env->cp15.hpfar_el2 |= HPFAR_NS;
3472                 }
3473                 target_el = 2;
3474             }
3475             take_exc = true;
3476         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3477             /*
3478              * Synchronous external aborts during a translation table walk
3479              * are taken as Data Abort exceptions.
3480              */
3481             if (fi.stage2) {
3482                 if (current_el == 3) {
3483                     target_el = 3;
3484                 } else {
3485                     target_el = 2;
3486                 }
3487             } else {
3488                 target_el = exception_target_el(env);
3489             }
3490             take_exc = true;
3491         }
3492 
3493         if (take_exc) {
3494             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3495             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3496                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3497                 fsr = arm_fi_to_lfsc(&fi);
3498                 fsc = extract32(fsr, 0, 6);
3499             } else {
3500                 fsr = arm_fi_to_sfsc(&fi);
3501                 fsc = 0x3f;
3502             }
3503             /*
3504              * Report exception with ESR indicating a fault due to a
3505              * translation table walk for a cache maintenance instruction.
3506              */
3507             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3508                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3509             env->exception.vaddress = value;
3510             env->exception.fsr = fsr;
3511             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3512         }
3513     }
3514 
3515     if (is_a64(env)) {
3516         format64 = true;
3517     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3518         /*
3519          * ATS1Cxx:
3520          * * TTBCR.EAE determines whether the result is returned using the
3521          *   32-bit or the 64-bit PAR format
3522          * * Instructions executed in Hyp mode always use the 64bit format
3523          *
3524          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3525          * * The Non-secure TTBCR.EAE bit is set to 1
3526          * * The implementation includes EL2, and the value of HCR.VM is 1
3527          *
3528          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3529          *
3530          * ATS1Hx always uses the 64bit format.
3531          */
3532         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3533 
3534         if (arm_feature(env, ARM_FEATURE_EL2)) {
3535             if (mmu_idx == ARMMMUIdx_E10_0 ||
3536                 mmu_idx == ARMMMUIdx_E10_1 ||
3537                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3538                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3539             } else {
3540                 format64 |= arm_current_el(env) == 2;
3541             }
3542         }
3543     }
3544 
3545     if (format64) {
3546         /* Create a 64-bit PAR */
3547         par64 = (1 << 11); /* LPAE bit always set */
3548         if (!ret) {
3549             par64 |= phys_addr & ~0xfffULL;
3550             if (!attrs.secure) {
3551                 par64 |= (1 << 9); /* NS */
3552             }
3553             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3554             par64 |= cacheattrs.shareability << 7; /* SH */
3555         } else {
3556             uint32_t fsr = arm_fi_to_lfsc(&fi);
3557 
3558             par64 |= 1; /* F */
3559             par64 |= (fsr & 0x3f) << 1; /* FS */
3560             if (fi.stage2) {
3561                 par64 |= (1 << 9); /* S */
3562             }
3563             if (fi.s1ptw) {
3564                 par64 |= (1 << 8); /* PTW */
3565             }
3566         }
3567     } else {
3568         /* fsr is a DFSR/IFSR value for the short descriptor
3569          * translation table format (with WnR always clear).
3570          * Convert it to a 32-bit PAR.
3571          */
3572         if (!ret) {
3573             /* We do not set any attribute bits in the PAR */
3574             if (page_size == (1 << 24)
3575                 && arm_feature(env, ARM_FEATURE_V7)) {
3576                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3577             } else {
3578                 par64 = phys_addr & 0xfffff000;
3579             }
3580             if (!attrs.secure) {
3581                 par64 |= (1 << 9); /* NS */
3582             }
3583         } else {
3584             uint32_t fsr = arm_fi_to_sfsc(&fi);
3585 
3586             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3587                     ((fsr & 0xf) << 1) | 1;
3588         }
3589     }
3590     return par64;
3591 }
3592 #endif /* CONFIG_TCG */
3593 
3594 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3595 {
3596 #ifdef CONFIG_TCG
3597     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3598     uint64_t par64;
3599     ARMMMUIdx mmu_idx;
3600     int el = arm_current_el(env);
3601     bool secure = arm_is_secure_below_el3(env);
3602 
3603     switch (ri->opc2 & 6) {
3604     case 0:
3605         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3606         switch (el) {
3607         case 3:
3608             mmu_idx = ARMMMUIdx_SE3;
3609             break;
3610         case 2:
3611             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3612             /* fall through */
3613         case 1:
3614             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3615                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3616                            : ARMMMUIdx_Stage1_E1_PAN);
3617             } else {
3618                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3619             }
3620             break;
3621         default:
3622             g_assert_not_reached();
3623         }
3624         break;
3625     case 2:
3626         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3627         switch (el) {
3628         case 3:
3629             mmu_idx = ARMMMUIdx_SE10_0;
3630             break;
3631         case 2:
3632             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3633             mmu_idx = ARMMMUIdx_Stage1_E0;
3634             break;
3635         case 1:
3636             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3637             break;
3638         default:
3639             g_assert_not_reached();
3640         }
3641         break;
3642     case 4:
3643         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3644         mmu_idx = ARMMMUIdx_E10_1;
3645         break;
3646     case 6:
3647         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3648         mmu_idx = ARMMMUIdx_E10_0;
3649         break;
3650     default:
3651         g_assert_not_reached();
3652     }
3653 
3654     par64 = do_ats_write(env, value, access_type, mmu_idx);
3655 
3656     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3657 #else
3658     /* Handled by hardware accelerator. */
3659     g_assert_not_reached();
3660 #endif /* CONFIG_TCG */
3661 }
3662 
3663 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3664                         uint64_t value)
3665 {
3666 #ifdef CONFIG_TCG
3667     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3668     uint64_t par64;
3669 
3670     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3671 
3672     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3673 #else
3674     /* Handled by hardware accelerator. */
3675     g_assert_not_reached();
3676 #endif /* CONFIG_TCG */
3677 }
3678 
3679 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3680                                      bool isread)
3681 {
3682     if (arm_current_el(env) == 3 &&
3683         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3684         return CP_ACCESS_TRAP;
3685     }
3686     return CP_ACCESS_OK;
3687 }
3688 
3689 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3690                         uint64_t value)
3691 {
3692 #ifdef CONFIG_TCG
3693     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3694     ARMMMUIdx mmu_idx;
3695     int secure = arm_is_secure_below_el3(env);
3696 
3697     switch (ri->opc2 & 6) {
3698     case 0:
3699         switch (ri->opc1) {
3700         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3701             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3702                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3703                            : ARMMMUIdx_Stage1_E1_PAN);
3704             } else {
3705                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3706             }
3707             break;
3708         case 4: /* AT S1E2R, AT S1E2W */
3709             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3710             break;
3711         case 6: /* AT S1E3R, AT S1E3W */
3712             mmu_idx = ARMMMUIdx_SE3;
3713             break;
3714         default:
3715             g_assert_not_reached();
3716         }
3717         break;
3718     case 2: /* AT S1E0R, AT S1E0W */
3719         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3720         break;
3721     case 4: /* AT S12E1R, AT S12E1W */
3722         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3723         break;
3724     case 6: /* AT S12E0R, AT S12E0W */
3725         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3726         break;
3727     default:
3728         g_assert_not_reached();
3729     }
3730 
3731     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3732 #else
3733     /* Handled by hardware accelerator. */
3734     g_assert_not_reached();
3735 #endif /* CONFIG_TCG */
3736 }
3737 #endif
3738 
3739 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3740     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3741       .access = PL1_RW, .resetvalue = 0,
3742       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3743                              offsetoflow32(CPUARMState, cp15.par_ns) },
3744       .writefn = par_write },
3745 #ifndef CONFIG_USER_ONLY
3746     /* This underdecoding is safe because the reginfo is NO_RAW. */
3747     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3748       .access = PL1_W, .accessfn = ats_access,
3749       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3750 #endif
3751     REGINFO_SENTINEL
3752 };
3753 
3754 /* Return basic MPU access permission bits.  */
3755 static uint32_t simple_mpu_ap_bits(uint32_t val)
3756 {
3757     uint32_t ret;
3758     uint32_t mask;
3759     int i;
3760     ret = 0;
3761     mask = 3;
3762     for (i = 0; i < 16; i += 2) {
3763         ret |= (val >> i) & mask;
3764         mask <<= 2;
3765     }
3766     return ret;
3767 }
3768 
3769 /* Pad basic MPU access permission bits to extended format.  */
3770 static uint32_t extended_mpu_ap_bits(uint32_t val)
3771 {
3772     uint32_t ret;
3773     uint32_t mask;
3774     int i;
3775     ret = 0;
3776     mask = 3;
3777     for (i = 0; i < 16; i += 2) {
3778         ret |= (val & mask) << i;
3779         mask <<= 2;
3780     }
3781     return ret;
3782 }
3783 
3784 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                                  uint64_t value)
3786 {
3787     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3788 }
3789 
3790 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3791 {
3792     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3793 }
3794 
3795 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3796                                  uint64_t value)
3797 {
3798     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3799 }
3800 
3801 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3802 {
3803     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3804 }
3805 
3806 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3807 {
3808     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3809 
3810     if (!u32p) {
3811         return 0;
3812     }
3813 
3814     u32p += env->pmsav7.rnr[M_REG_NS];
3815     return *u32p;
3816 }
3817 
3818 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3819                          uint64_t value)
3820 {
3821     ARMCPU *cpu = env_archcpu(env);
3822     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3823 
3824     if (!u32p) {
3825         return;
3826     }
3827 
3828     u32p += env->pmsav7.rnr[M_REG_NS];
3829     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3830     *u32p = value;
3831 }
3832 
3833 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3834                               uint64_t value)
3835 {
3836     ARMCPU *cpu = env_archcpu(env);
3837     uint32_t nrgs = cpu->pmsav7_dregion;
3838 
3839     if (value >= nrgs) {
3840         qemu_log_mask(LOG_GUEST_ERROR,
3841                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3842                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3843         return;
3844     }
3845 
3846     raw_write(env, ri, value);
3847 }
3848 
3849 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3850     /* Reset for all these registers is handled in arm_cpu_reset(),
3851      * because the PMSAv7 is also used by M-profile CPUs, which do
3852      * not register cpregs but still need the state to be reset.
3853      */
3854     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3855       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3856       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3857       .readfn = pmsav7_read, .writefn = pmsav7_write,
3858       .resetfn = arm_cp_reset_ignore },
3859     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3860       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3861       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3862       .readfn = pmsav7_read, .writefn = pmsav7_write,
3863       .resetfn = arm_cp_reset_ignore },
3864     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3865       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3866       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3867       .readfn = pmsav7_read, .writefn = pmsav7_write,
3868       .resetfn = arm_cp_reset_ignore },
3869     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3870       .access = PL1_RW,
3871       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3872       .writefn = pmsav7_rgnr_write,
3873       .resetfn = arm_cp_reset_ignore },
3874     REGINFO_SENTINEL
3875 };
3876 
3877 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3878     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3879       .access = PL1_RW, .type = ARM_CP_ALIAS,
3880       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3881       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3882     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3883       .access = PL1_RW, .type = ARM_CP_ALIAS,
3884       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3885       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3886     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3887       .access = PL1_RW,
3888       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3889       .resetvalue = 0, },
3890     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3891       .access = PL1_RW,
3892       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3893       .resetvalue = 0, },
3894     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3895       .access = PL1_RW,
3896       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3897     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3898       .access = PL1_RW,
3899       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3900     /* Protection region base and size registers */
3901     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3902       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3903       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3904     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3905       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3906       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3907     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3908       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3909       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3910     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3911       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3912       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3913     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3914       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3916     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3917       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3918       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3919     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3920       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3922     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3923       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3925     REGINFO_SENTINEL
3926 };
3927 
3928 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                                  uint64_t value)
3930 {
3931     TCR *tcr = raw_ptr(env, ri);
3932     int maskshift = extract32(value, 0, 3);
3933 
3934     if (!arm_feature(env, ARM_FEATURE_V8)) {
3935         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3936             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3937              * using Long-desciptor translation table format */
3938             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3939         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3940             /* In an implementation that includes the Security Extensions
3941              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3942              * Short-descriptor translation table format.
3943              */
3944             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3945         } else {
3946             value &= TTBCR_N;
3947         }
3948     }
3949 
3950     /* Update the masks corresponding to the TCR bank being written
3951      * Note that we always calculate mask and base_mask, but
3952      * they are only used for short-descriptor tables (ie if EAE is 0);
3953      * for long-descriptor tables the TCR fields are used differently
3954      * and the mask and base_mask values are meaningless.
3955      */
3956     tcr->raw_tcr = value;
3957     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3958     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3959 }
3960 
3961 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3962                              uint64_t value)
3963 {
3964     ARMCPU *cpu = env_archcpu(env);
3965     TCR *tcr = raw_ptr(env, ri);
3966 
3967     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3968         /* With LPAE the TTBCR could result in a change of ASID
3969          * via the TTBCR.A1 bit, so do a TLB flush.
3970          */
3971         tlb_flush(CPU(cpu));
3972     }
3973     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3974     value = deposit64(tcr->raw_tcr, 0, 32, value);
3975     vmsa_ttbcr_raw_write(env, ri, value);
3976 }
3977 
3978 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3979 {
3980     TCR *tcr = raw_ptr(env, ri);
3981 
3982     /* Reset both the TCR as well as the masks corresponding to the bank of
3983      * the TCR being reset.
3984      */
3985     tcr->raw_tcr = 0;
3986     tcr->mask = 0;
3987     tcr->base_mask = 0xffffc000u;
3988 }
3989 
3990 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3991                                uint64_t value)
3992 {
3993     ARMCPU *cpu = env_archcpu(env);
3994     TCR *tcr = raw_ptr(env, ri);
3995 
3996     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3997     tlb_flush(CPU(cpu));
3998     tcr->raw_tcr = value;
3999 }
4000 
4001 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4002                             uint64_t value)
4003 {
4004     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4005     if (cpreg_field_is_64bit(ri) &&
4006         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4007         ARMCPU *cpu = env_archcpu(env);
4008         tlb_flush(CPU(cpu));
4009     }
4010     raw_write(env, ri, value);
4011 }
4012 
4013 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4014                                     uint64_t value)
4015 {
4016     /*
4017      * If we are running with E2&0 regime, then an ASID is active.
4018      * Flush if that might be changing.  Note we're not checking
4019      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4020      * holds the active ASID, only checking the field that might.
4021      */
4022     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4023         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4024         uint16_t mask = ARMMMUIdxBit_E20_2 |
4025                         ARMMMUIdxBit_E20_2_PAN |
4026                         ARMMMUIdxBit_E20_0;
4027 
4028         if (arm_is_secure_below_el3(env)) {
4029             mask >>= ARM_MMU_IDX_A_NS;
4030         }
4031 
4032         tlb_flush_by_mmuidx(env_cpu(env), mask);
4033     }
4034     raw_write(env, ri, value);
4035 }
4036 
4037 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4038                         uint64_t value)
4039 {
4040     ARMCPU *cpu = env_archcpu(env);
4041     CPUState *cs = CPU(cpu);
4042 
4043     /*
4044      * A change in VMID to the stage2 page table (Stage2) invalidates
4045      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4046      */
4047     if (raw_read(env, ri) != value) {
4048         uint16_t mask = ARMMMUIdxBit_E10_1 |
4049                         ARMMMUIdxBit_E10_1_PAN |
4050                         ARMMMUIdxBit_E10_0;
4051 
4052         if (arm_is_secure_below_el3(env)) {
4053             mask >>= ARM_MMU_IDX_A_NS;
4054         }
4055 
4056         tlb_flush_by_mmuidx(cs, mask);
4057         raw_write(env, ri, value);
4058     }
4059 }
4060 
4061 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4062     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4063       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4064       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4065                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4066     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4067       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4068       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4069                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4070     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4071       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4072       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4073                              offsetof(CPUARMState, cp15.dfar_ns) } },
4074     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4075       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4076       .access = PL1_RW, .accessfn = access_tvm_trvm,
4077       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4078       .resetvalue = 0, },
4079     REGINFO_SENTINEL
4080 };
4081 
4082 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4083     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4084       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4085       .access = PL1_RW, .accessfn = access_tvm_trvm,
4086       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4087     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4089       .access = PL1_RW, .accessfn = access_tvm_trvm,
4090       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4092                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4093     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4095       .access = PL1_RW, .accessfn = access_tvm_trvm,
4096       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4098                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4099     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4100       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4101       .access = PL1_RW, .accessfn = access_tvm_trvm,
4102       .writefn = vmsa_tcr_el12_write,
4103       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4104       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4105     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4106       .access = PL1_RW, .accessfn = access_tvm_trvm,
4107       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4108       .raw_writefn = vmsa_ttbcr_raw_write,
4109       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
4110       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
4111                              offsetof(CPUARMState, cp15.tcr_el[1])} },
4112     REGINFO_SENTINEL
4113 };
4114 
4115 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4116  * qemu tlbs nor adjusting cached masks.
4117  */
4118 static const ARMCPRegInfo ttbcr2_reginfo = {
4119     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4120     .access = PL1_RW, .accessfn = access_tvm_trvm,
4121     .type = ARM_CP_ALIAS,
4122     .bank_fieldoffsets = {
4123         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
4124         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
4125     },
4126 };
4127 
4128 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4129                                 uint64_t value)
4130 {
4131     env->cp15.c15_ticonfig = value & 0xe7;
4132     /* The OS_TYPE bit in this register changes the reported CPUID! */
4133     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4134         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4135 }
4136 
4137 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4138                                 uint64_t value)
4139 {
4140     env->cp15.c15_threadid = value & 0xffff;
4141 }
4142 
4143 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4144                            uint64_t value)
4145 {
4146     /* Wait-for-interrupt (deprecated) */
4147     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4148 }
4149 
4150 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4151                                   uint64_t value)
4152 {
4153     /* On OMAP there are registers indicating the max/min index of dcache lines
4154      * containing a dirty line; cache flush operations have to reset these.
4155      */
4156     env->cp15.c15_i_max = 0x000;
4157     env->cp15.c15_i_min = 0xff0;
4158 }
4159 
4160 static const ARMCPRegInfo omap_cp_reginfo[] = {
4161     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4162       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4163       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4164       .resetvalue = 0, },
4165     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4166       .access = PL1_RW, .type = ARM_CP_NOP },
4167     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4168       .access = PL1_RW,
4169       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4170       .writefn = omap_ticonfig_write },
4171     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4172       .access = PL1_RW,
4173       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4174     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4175       .access = PL1_RW, .resetvalue = 0xff0,
4176       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4177     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4178       .access = PL1_RW,
4179       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4180       .writefn = omap_threadid_write },
4181     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4182       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4183       .type = ARM_CP_NO_RAW,
4184       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4185     /* TODO: Peripheral port remap register:
4186      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4187      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4188      * when MMU is off.
4189      */
4190     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4191       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4192       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4193       .writefn = omap_cachemaint_write },
4194     { .name = "C9", .cp = 15, .crn = 9,
4195       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4196       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4197     REGINFO_SENTINEL
4198 };
4199 
4200 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4201                               uint64_t value)
4202 {
4203     env->cp15.c15_cpar = value & 0x3fff;
4204 }
4205 
4206 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4207     { .name = "XSCALE_CPAR",
4208       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4209       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4210       .writefn = xscale_cpar_write, },
4211     { .name = "XSCALE_AUXCR",
4212       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4213       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4214       .resetvalue = 0, },
4215     /* XScale specific cache-lockdown: since we have no cache we NOP these
4216      * and hope the guest does not really rely on cache behaviour.
4217      */
4218     { .name = "XSCALE_LOCK_ICACHE_LINE",
4219       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4220       .access = PL1_W, .type = ARM_CP_NOP },
4221     { .name = "XSCALE_UNLOCK_ICACHE",
4222       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4223       .access = PL1_W, .type = ARM_CP_NOP },
4224     { .name = "XSCALE_DCACHE_LOCK",
4225       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4226       .access = PL1_RW, .type = ARM_CP_NOP },
4227     { .name = "XSCALE_UNLOCK_DCACHE",
4228       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4229       .access = PL1_W, .type = ARM_CP_NOP },
4230     REGINFO_SENTINEL
4231 };
4232 
4233 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4234     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4235      * implementation of this implementation-defined space.
4236      * Ideally this should eventually disappear in favour of actually
4237      * implementing the correct behaviour for all cores.
4238      */
4239     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4240       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4241       .access = PL1_RW,
4242       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4243       .resetvalue = 0 },
4244     REGINFO_SENTINEL
4245 };
4246 
4247 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4248     /* Cache status: RAZ because we have no cache so it's always clean */
4249     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4250       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4251       .resetvalue = 0 },
4252     REGINFO_SENTINEL
4253 };
4254 
4255 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4256     /* We never have a a block transfer operation in progress */
4257     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4258       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4259       .resetvalue = 0 },
4260     /* The cache ops themselves: these all NOP for QEMU */
4261     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4262       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4263     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4264       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4265     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4266       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4267     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4268       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4269     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4270       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4271     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4272       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4273     REGINFO_SENTINEL
4274 };
4275 
4276 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4277     /* The cache test-and-clean instructions always return (1 << 30)
4278      * to indicate that there are no dirty cache lines.
4279      */
4280     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4281       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4282       .resetvalue = (1 << 30) },
4283     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4284       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4285       .resetvalue = (1 << 30) },
4286     REGINFO_SENTINEL
4287 };
4288 
4289 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4290     /* Ignore ReadBuffer accesses */
4291     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4292       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4293       .access = PL1_RW, .resetvalue = 0,
4294       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4295     REGINFO_SENTINEL
4296 };
4297 
4298 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4299 {
4300     unsigned int cur_el = arm_current_el(env);
4301 
4302     if (arm_is_el2_enabled(env) && cur_el == 1) {
4303         return env->cp15.vpidr_el2;
4304     }
4305     return raw_read(env, ri);
4306 }
4307 
4308 static uint64_t mpidr_read_val(CPUARMState *env)
4309 {
4310     ARMCPU *cpu = env_archcpu(env);
4311     uint64_t mpidr = cpu->mp_affinity;
4312 
4313     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4314         mpidr |= (1U << 31);
4315         /* Cores which are uniprocessor (non-coherent)
4316          * but still implement the MP extensions set
4317          * bit 30. (For instance, Cortex-R5).
4318          */
4319         if (cpu->mp_is_up) {
4320             mpidr |= (1u << 30);
4321         }
4322     }
4323     return mpidr;
4324 }
4325 
4326 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4327 {
4328     unsigned int cur_el = arm_current_el(env);
4329 
4330     if (arm_is_el2_enabled(env) && cur_el == 1) {
4331         return env->cp15.vmpidr_el2;
4332     }
4333     return mpidr_read_val(env);
4334 }
4335 
4336 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4337     /* NOP AMAIR0/1 */
4338     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4339       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4340       .access = PL1_RW, .accessfn = access_tvm_trvm,
4341       .type = ARM_CP_CONST, .resetvalue = 0 },
4342     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4343     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4344       .access = PL1_RW, .accessfn = access_tvm_trvm,
4345       .type = ARM_CP_CONST, .resetvalue = 0 },
4346     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4347       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4348       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4349                              offsetof(CPUARMState, cp15.par_ns)} },
4350     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4351       .access = PL1_RW, .accessfn = access_tvm_trvm,
4352       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4353       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4354                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4355       .writefn = vmsa_ttbr_write, },
4356     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4357       .access = PL1_RW, .accessfn = access_tvm_trvm,
4358       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4359       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4360                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4361       .writefn = vmsa_ttbr_write, },
4362     REGINFO_SENTINEL
4363 };
4364 
4365 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4366 {
4367     return vfp_get_fpcr(env);
4368 }
4369 
4370 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4371                             uint64_t value)
4372 {
4373     vfp_set_fpcr(env, value);
4374 }
4375 
4376 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4377 {
4378     return vfp_get_fpsr(env);
4379 }
4380 
4381 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4382                             uint64_t value)
4383 {
4384     vfp_set_fpsr(env, value);
4385 }
4386 
4387 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4388                                        bool isread)
4389 {
4390     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4391         return CP_ACCESS_TRAP;
4392     }
4393     return CP_ACCESS_OK;
4394 }
4395 
4396 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4397                             uint64_t value)
4398 {
4399     env->daif = value & PSTATE_DAIF;
4400 }
4401 
4402 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4403 {
4404     return env->pstate & PSTATE_PAN;
4405 }
4406 
4407 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4408                            uint64_t value)
4409 {
4410     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4411 }
4412 
4413 static const ARMCPRegInfo pan_reginfo = {
4414     .name = "PAN", .state = ARM_CP_STATE_AA64,
4415     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4416     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4417     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4418 };
4419 
4420 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4421 {
4422     return env->pstate & PSTATE_UAO;
4423 }
4424 
4425 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4426                            uint64_t value)
4427 {
4428     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4429 }
4430 
4431 static const ARMCPRegInfo uao_reginfo = {
4432     .name = "UAO", .state = ARM_CP_STATE_AA64,
4433     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4434     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4435     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4436 };
4437 
4438 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4439 {
4440     return env->pstate & PSTATE_DIT;
4441 }
4442 
4443 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4444                            uint64_t value)
4445 {
4446     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4447 }
4448 
4449 static const ARMCPRegInfo dit_reginfo = {
4450     .name = "DIT", .state = ARM_CP_STATE_AA64,
4451     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4452     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4453     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4454 };
4455 
4456 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4457 {
4458     return env->pstate & PSTATE_SSBS;
4459 }
4460 
4461 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4462                            uint64_t value)
4463 {
4464     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4465 }
4466 
4467 static const ARMCPRegInfo ssbs_reginfo = {
4468     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4469     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4470     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4471     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4472 };
4473 
4474 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4475                                               const ARMCPRegInfo *ri,
4476                                               bool isread)
4477 {
4478     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4479     switch (arm_current_el(env)) {
4480     case 0:
4481         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4482         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4483             return CP_ACCESS_TRAP;
4484         }
4485         /* fall through */
4486     case 1:
4487         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4488         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4489             return CP_ACCESS_TRAP_EL2;
4490         }
4491         break;
4492     }
4493     return CP_ACCESS_OK;
4494 }
4495 
4496 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4497                                               const ARMCPRegInfo *ri,
4498                                               bool isread)
4499 {
4500     /* Cache invalidate/clean to Point of Unification... */
4501     switch (arm_current_el(env)) {
4502     case 0:
4503         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4504         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4505             return CP_ACCESS_TRAP;
4506         }
4507         /* fall through */
4508     case 1:
4509         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4510         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4511             return CP_ACCESS_TRAP_EL2;
4512         }
4513         break;
4514     }
4515     return CP_ACCESS_OK;
4516 }
4517 
4518 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4519  * Page D4-1736 (DDI0487A.b)
4520  */
4521 
4522 static int vae1_tlbmask(CPUARMState *env)
4523 {
4524     uint64_t hcr = arm_hcr_el2_eff(env);
4525     uint16_t mask;
4526 
4527     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4528         mask = ARMMMUIdxBit_E20_2 |
4529                ARMMMUIdxBit_E20_2_PAN |
4530                ARMMMUIdxBit_E20_0;
4531     } else {
4532         mask = ARMMMUIdxBit_E10_1 |
4533                ARMMMUIdxBit_E10_1_PAN |
4534                ARMMMUIdxBit_E10_0;
4535     }
4536 
4537     if (arm_is_secure_below_el3(env)) {
4538         mask >>= ARM_MMU_IDX_A_NS;
4539     }
4540 
4541     return mask;
4542 }
4543 
4544 /* Return 56 if TBI is enabled, 64 otherwise. */
4545 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4546                               uint64_t addr)
4547 {
4548     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4549     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4550     int select = extract64(addr, 55, 1);
4551 
4552     return (tbi >> select) & 1 ? 56 : 64;
4553 }
4554 
4555 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4556 {
4557     uint64_t hcr = arm_hcr_el2_eff(env);
4558     ARMMMUIdx mmu_idx;
4559 
4560     /* Only the regime of the mmu_idx below is significant. */
4561     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4562         mmu_idx = ARMMMUIdx_E20_0;
4563     } else {
4564         mmu_idx = ARMMMUIdx_E10_0;
4565     }
4566 
4567     if (arm_is_secure_below_el3(env)) {
4568         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4569     }
4570 
4571     return tlbbits_for_regime(env, mmu_idx, addr);
4572 }
4573 
4574 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4575                                       uint64_t value)
4576 {
4577     CPUState *cs = env_cpu(env);
4578     int mask = vae1_tlbmask(env);
4579 
4580     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4581 }
4582 
4583 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584                                     uint64_t value)
4585 {
4586     CPUState *cs = env_cpu(env);
4587     int mask = vae1_tlbmask(env);
4588 
4589     if (tlb_force_broadcast(env)) {
4590         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4591     } else {
4592         tlb_flush_by_mmuidx(cs, mask);
4593     }
4594 }
4595 
4596 static int alle1_tlbmask(CPUARMState *env)
4597 {
4598     /*
4599      * Note that the 'ALL' scope must invalidate both stage 1 and
4600      * stage 2 translations, whereas most other scopes only invalidate
4601      * stage 1 translations.
4602      */
4603     if (arm_is_secure_below_el3(env)) {
4604         return ARMMMUIdxBit_SE10_1 |
4605                ARMMMUIdxBit_SE10_1_PAN |
4606                ARMMMUIdxBit_SE10_0;
4607     } else {
4608         return ARMMMUIdxBit_E10_1 |
4609                ARMMMUIdxBit_E10_1_PAN |
4610                ARMMMUIdxBit_E10_0;
4611     }
4612 }
4613 
4614 static int e2_tlbmask(CPUARMState *env)
4615 {
4616     if (arm_is_secure_below_el3(env)) {
4617         return ARMMMUIdxBit_SE20_0 |
4618                ARMMMUIdxBit_SE20_2 |
4619                ARMMMUIdxBit_SE20_2_PAN |
4620                ARMMMUIdxBit_SE2;
4621     } else {
4622         return ARMMMUIdxBit_E20_0 |
4623                ARMMMUIdxBit_E20_2 |
4624                ARMMMUIdxBit_E20_2_PAN |
4625                ARMMMUIdxBit_E2;
4626     }
4627 }
4628 
4629 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630                                   uint64_t value)
4631 {
4632     CPUState *cs = env_cpu(env);
4633     int mask = alle1_tlbmask(env);
4634 
4635     tlb_flush_by_mmuidx(cs, mask);
4636 }
4637 
4638 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4639                                   uint64_t value)
4640 {
4641     CPUState *cs = env_cpu(env);
4642     int mask = e2_tlbmask(env);
4643 
4644     tlb_flush_by_mmuidx(cs, mask);
4645 }
4646 
4647 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4648                                   uint64_t value)
4649 {
4650     ARMCPU *cpu = env_archcpu(env);
4651     CPUState *cs = CPU(cpu);
4652 
4653     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4654 }
4655 
4656 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4657                                     uint64_t value)
4658 {
4659     CPUState *cs = env_cpu(env);
4660     int mask = alle1_tlbmask(env);
4661 
4662     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4663 }
4664 
4665 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4666                                     uint64_t value)
4667 {
4668     CPUState *cs = env_cpu(env);
4669     int mask = e2_tlbmask(env);
4670 
4671     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4672 }
4673 
4674 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4675                                     uint64_t value)
4676 {
4677     CPUState *cs = env_cpu(env);
4678 
4679     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4680 }
4681 
4682 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                  uint64_t value)
4684 {
4685     /* Invalidate by VA, EL2
4686      * Currently handles both VAE2 and VALE2, since we don't support
4687      * flush-last-level-only.
4688      */
4689     CPUState *cs = env_cpu(env);
4690     int mask = e2_tlbmask(env);
4691     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4692 
4693     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4694 }
4695 
4696 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4697                                  uint64_t value)
4698 {
4699     /* Invalidate by VA, EL3
4700      * Currently handles both VAE3 and VALE3, since we don't support
4701      * flush-last-level-only.
4702      */
4703     ARMCPU *cpu = env_archcpu(env);
4704     CPUState *cs = CPU(cpu);
4705     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4706 
4707     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4708 }
4709 
4710 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4711                                    uint64_t value)
4712 {
4713     CPUState *cs = env_cpu(env);
4714     int mask = vae1_tlbmask(env);
4715     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4716     int bits = vae1_tlbbits(env, pageaddr);
4717 
4718     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4719 }
4720 
4721 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                  uint64_t value)
4723 {
4724     /* Invalidate by VA, EL1&0 (AArch64 version).
4725      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4726      * since we don't support flush-for-specific-ASID-only or
4727      * flush-last-level-only.
4728      */
4729     CPUState *cs = env_cpu(env);
4730     int mask = vae1_tlbmask(env);
4731     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4732     int bits = vae1_tlbbits(env, pageaddr);
4733 
4734     if (tlb_force_broadcast(env)) {
4735         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4736     } else {
4737         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4738     }
4739 }
4740 
4741 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4742                                    uint64_t value)
4743 {
4744     CPUState *cs = env_cpu(env);
4745     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4746     bool secure = arm_is_secure_below_el3(env);
4747     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4748     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4749                                   pageaddr);
4750 
4751     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4752 }
4753 
4754 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                    uint64_t value)
4756 {
4757     CPUState *cs = env_cpu(env);
4758     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4759     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4760 
4761     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4762                                                   ARMMMUIdxBit_SE3, bits);
4763 }
4764 
4765 #ifdef TARGET_AARCH64
4766 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4767                                            uint64_t value)
4768 {
4769     unsigned int page_shift;
4770     unsigned int page_size_granule;
4771     uint64_t num;
4772     uint64_t scale;
4773     uint64_t exponent;
4774     uint64_t length;
4775 
4776     num = extract64(value, 39, 4);
4777     scale = extract64(value, 44, 2);
4778     page_size_granule = extract64(value, 46, 2);
4779 
4780     page_shift = page_size_granule * 2 + 12;
4781 
4782     if (page_size_granule == 0) {
4783         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4784                       page_size_granule);
4785         return 0;
4786     }
4787 
4788     exponent = (5 * scale) + 1;
4789     length = (num + 1) << (exponent + page_shift);
4790 
4791     return length;
4792 }
4793 
4794 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4795                                         bool two_ranges)
4796 {
4797     /* TODO: ARMv8.7 FEAT_LPA2 */
4798     uint64_t pageaddr;
4799 
4800     if (two_ranges) {
4801         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4802     } else {
4803         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4804     }
4805 
4806     return pageaddr;
4807 }
4808 
4809 static void do_rvae_write(CPUARMState *env, uint64_t value,
4810                           int idxmap, bool synced)
4811 {
4812     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4813     bool two_ranges = regime_has_2_ranges(one_idx);
4814     uint64_t baseaddr, length;
4815     int bits;
4816 
4817     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4818     length = tlbi_aa64_range_get_length(env, value);
4819     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4820 
4821     if (synced) {
4822         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4823                                                   baseaddr,
4824                                                   length,
4825                                                   idxmap,
4826                                                   bits);
4827     } else {
4828         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4829                                   length, idxmap, bits);
4830     }
4831 }
4832 
4833 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4834                                   const ARMCPRegInfo *ri,
4835                                   uint64_t value)
4836 {
4837     /*
4838      * Invalidate by VA range, EL1&0.
4839      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4840      * since we don't support flush-for-specific-ASID-only or
4841      * flush-last-level-only.
4842      */
4843 
4844     do_rvae_write(env, value, vae1_tlbmask(env),
4845                   tlb_force_broadcast(env));
4846 }
4847 
4848 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4849                                     const ARMCPRegInfo *ri,
4850                                     uint64_t value)
4851 {
4852     /*
4853      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4854      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4855      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4856      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4857      * shareable specific flushes.
4858      */
4859 
4860     do_rvae_write(env, value, vae1_tlbmask(env), true);
4861 }
4862 
4863 static int vae2_tlbmask(CPUARMState *env)
4864 {
4865     return (arm_is_secure_below_el3(env)
4866             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4867 }
4868 
4869 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4870                                   const ARMCPRegInfo *ri,
4871                                   uint64_t value)
4872 {
4873     /*
4874      * Invalidate by VA range, EL2.
4875      * Currently handles all of RVAE2 and RVALE2,
4876      * since we don't support flush-for-specific-ASID-only or
4877      * flush-last-level-only.
4878      */
4879 
4880     do_rvae_write(env, value, vae2_tlbmask(env),
4881                   tlb_force_broadcast(env));
4882 
4883 
4884 }
4885 
4886 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4887                                     const ARMCPRegInfo *ri,
4888                                     uint64_t value)
4889 {
4890     /*
4891      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4892      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4893      * since we don't support flush-for-specific-ASID-only,
4894      * flush-last-level-only or inner/outer shareable specific flushes.
4895      */
4896 
4897     do_rvae_write(env, value, vae2_tlbmask(env), true);
4898 
4899 }
4900 
4901 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4902                                   const ARMCPRegInfo *ri,
4903                                   uint64_t value)
4904 {
4905     /*
4906      * Invalidate by VA range, EL3.
4907      * Currently handles all of RVAE3 and RVALE3,
4908      * since we don't support flush-for-specific-ASID-only or
4909      * flush-last-level-only.
4910      */
4911 
4912     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4913                   tlb_force_broadcast(env));
4914 }
4915 
4916 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4917                                     const ARMCPRegInfo *ri,
4918                                     uint64_t value)
4919 {
4920     /*
4921      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4922      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4923      * since we don't support flush-for-specific-ASID-only,
4924      * flush-last-level-only or inner/outer specific flushes.
4925      */
4926 
4927     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4928 }
4929 #endif
4930 
4931 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4932                                       bool isread)
4933 {
4934     int cur_el = arm_current_el(env);
4935 
4936     if (cur_el < 2) {
4937         uint64_t hcr = arm_hcr_el2_eff(env);
4938 
4939         if (cur_el == 0) {
4940             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4941                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4942                     return CP_ACCESS_TRAP_EL2;
4943                 }
4944             } else {
4945                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4946                     return CP_ACCESS_TRAP;
4947                 }
4948                 if (hcr & HCR_TDZ) {
4949                     return CP_ACCESS_TRAP_EL2;
4950                 }
4951             }
4952         } else if (hcr & HCR_TDZ) {
4953             return CP_ACCESS_TRAP_EL2;
4954         }
4955     }
4956     return CP_ACCESS_OK;
4957 }
4958 
4959 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4960 {
4961     ARMCPU *cpu = env_archcpu(env);
4962     int dzp_bit = 1 << 4;
4963 
4964     /* DZP indicates whether DC ZVA access is allowed */
4965     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4966         dzp_bit = 0;
4967     }
4968     return cpu->dcz_blocksize | dzp_bit;
4969 }
4970 
4971 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4972                                     bool isread)
4973 {
4974     if (!(env->pstate & PSTATE_SP)) {
4975         /* Access to SP_EL0 is undefined if it's being used as
4976          * the stack pointer.
4977          */
4978         return CP_ACCESS_TRAP_UNCATEGORIZED;
4979     }
4980     return CP_ACCESS_OK;
4981 }
4982 
4983 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4984 {
4985     return env->pstate & PSTATE_SP;
4986 }
4987 
4988 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4989 {
4990     update_spsel(env, val);
4991 }
4992 
4993 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4994                         uint64_t value)
4995 {
4996     ARMCPU *cpu = env_archcpu(env);
4997 
4998     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4999         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5000         value &= ~SCTLR_M;
5001     }
5002 
5003     /* ??? Lots of these bits are not implemented.  */
5004 
5005     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5006         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5007             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5008         } else {
5009             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5010                        SCTLR_ATA0 | SCTLR_ATA);
5011         }
5012     }
5013 
5014     if (raw_read(env, ri) == value) {
5015         /* Skip the TLB flush if nothing actually changed; Linux likes
5016          * to do a lot of pointless SCTLR writes.
5017          */
5018         return;
5019     }
5020 
5021     raw_write(env, ri, value);
5022 
5023     /* This may enable/disable the MMU, so do a TLB flush.  */
5024     tlb_flush(CPU(cpu));
5025 
5026     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5027         /*
5028          * Normally we would always end the TB on an SCTLR write; see the
5029          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5030          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5031          * of hflags from the translator, so do it here.
5032          */
5033         arm_rebuild_hflags(env);
5034     }
5035 }
5036 
5037 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
5038                                      bool isread)
5039 {
5040     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
5041         return CP_ACCESS_TRAP_FP_EL2;
5042     }
5043     if (env->cp15.cptr_el[3] & CPTR_TFP) {
5044         return CP_ACCESS_TRAP_FP_EL3;
5045     }
5046     return CP_ACCESS_OK;
5047 }
5048 
5049 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5050                        uint64_t value)
5051 {
5052     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
5053 }
5054 
5055 static const ARMCPRegInfo v8_cp_reginfo[] = {
5056     /* Minimal set of EL0-visible registers. This will need to be expanded
5057      * significantly for system emulation of AArch64 CPUs.
5058      */
5059     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5060       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5061       .access = PL0_RW, .type = ARM_CP_NZCV },
5062     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5063       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5064       .type = ARM_CP_NO_RAW,
5065       .access = PL0_RW, .accessfn = aa64_daif_access,
5066       .fieldoffset = offsetof(CPUARMState, daif),
5067       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5068     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5069       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5070       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5071       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5072     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5073       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5074       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5075       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5076     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5077       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5078       .access = PL0_R, .type = ARM_CP_NO_RAW,
5079       .readfn = aa64_dczid_read },
5080     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5081       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5082       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5083 #ifndef CONFIG_USER_ONLY
5084       /* Avoid overhead of an access check that always passes in user-mode */
5085       .accessfn = aa64_zva_access,
5086 #endif
5087     },
5088     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5089       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5090       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5091     /* Cache ops: all NOPs since we don't emulate caches */
5092     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5093       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5094       .access = PL1_W, .type = ARM_CP_NOP,
5095       .accessfn = aa64_cacheop_pou_access },
5096     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5097       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5098       .access = PL1_W, .type = ARM_CP_NOP,
5099       .accessfn = aa64_cacheop_pou_access },
5100     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5101       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5102       .access = PL0_W, .type = ARM_CP_NOP,
5103       .accessfn = aa64_cacheop_pou_access },
5104     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5106       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5107       .type = ARM_CP_NOP },
5108     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5109       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5110       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5111     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5112       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5113       .access = PL0_W, .type = ARM_CP_NOP,
5114       .accessfn = aa64_cacheop_poc_access },
5115     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5116       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5117       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5118     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5119       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5120       .access = PL0_W, .type = ARM_CP_NOP,
5121       .accessfn = aa64_cacheop_pou_access },
5122     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5123       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5124       .access = PL0_W, .type = ARM_CP_NOP,
5125       .accessfn = aa64_cacheop_poc_access },
5126     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5127       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5128       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5129     /* TLBI operations */
5130     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5131       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5132       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5133       .writefn = tlbi_aa64_vmalle1is_write },
5134     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5135       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5136       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5137       .writefn = tlbi_aa64_vae1is_write },
5138     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5139       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5140       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5141       .writefn = tlbi_aa64_vmalle1is_write },
5142     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5143       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5144       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5145       .writefn = tlbi_aa64_vae1is_write },
5146     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5147       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5148       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5149       .writefn = tlbi_aa64_vae1is_write },
5150     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5151       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5152       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5153       .writefn = tlbi_aa64_vae1is_write },
5154     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5155       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5156       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5157       .writefn = tlbi_aa64_vmalle1_write },
5158     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5159       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5160       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5161       .writefn = tlbi_aa64_vae1_write },
5162     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5163       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5164       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5165       .writefn = tlbi_aa64_vmalle1_write },
5166     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5167       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5168       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5169       .writefn = tlbi_aa64_vae1_write },
5170     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5171       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5172       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5173       .writefn = tlbi_aa64_vae1_write },
5174     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5175       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5176       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5177       .writefn = tlbi_aa64_vae1_write },
5178     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5179       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5180       .access = PL2_W, .type = ARM_CP_NOP },
5181     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5182       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5183       .access = PL2_W, .type = ARM_CP_NOP },
5184     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5185       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5186       .access = PL2_W, .type = ARM_CP_NO_RAW,
5187       .writefn = tlbi_aa64_alle1is_write },
5188     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5189       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5190       .access = PL2_W, .type = ARM_CP_NO_RAW,
5191       .writefn = tlbi_aa64_alle1is_write },
5192     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5193       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5194       .access = PL2_W, .type = ARM_CP_NOP },
5195     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5197       .access = PL2_W, .type = ARM_CP_NOP },
5198     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5199       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5200       .access = PL2_W, .type = ARM_CP_NO_RAW,
5201       .writefn = tlbi_aa64_alle1_write },
5202     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5203       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5204       .access = PL2_W, .type = ARM_CP_NO_RAW,
5205       .writefn = tlbi_aa64_alle1is_write },
5206 #ifndef CONFIG_USER_ONLY
5207     /* 64 bit address translation operations */
5208     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5209       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5210       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5211       .writefn = ats_write64 },
5212     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5214       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5215       .writefn = ats_write64 },
5216     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5217       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5218       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5219       .writefn = ats_write64 },
5220     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5221       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5222       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5223       .writefn = ats_write64 },
5224     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5225       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5226       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5227       .writefn = ats_write64 },
5228     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5229       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5230       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5231       .writefn = ats_write64 },
5232     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5233       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5234       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5235       .writefn = ats_write64 },
5236     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5237       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5238       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5239       .writefn = ats_write64 },
5240     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5241     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5242       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5243       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5244       .writefn = ats_write64 },
5245     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5247       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5248       .writefn = ats_write64 },
5249     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5250       .type = ARM_CP_ALIAS,
5251       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5252       .access = PL1_RW, .resetvalue = 0,
5253       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5254       .writefn = par_write },
5255 #endif
5256     /* TLB invalidate last level of translation table walk */
5257     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5258       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5259       .writefn = tlbimva_is_write },
5260     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5261       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5262       .writefn = tlbimvaa_is_write },
5263     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5264       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5265       .writefn = tlbimva_write },
5266     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5267       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5268       .writefn = tlbimvaa_write },
5269     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5270       .type = ARM_CP_NO_RAW, .access = PL2_W,
5271       .writefn = tlbimva_hyp_write },
5272     { .name = "TLBIMVALHIS",
5273       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5274       .type = ARM_CP_NO_RAW, .access = PL2_W,
5275       .writefn = tlbimva_hyp_is_write },
5276     { .name = "TLBIIPAS2",
5277       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5278       .type = ARM_CP_NOP, .access = PL2_W },
5279     { .name = "TLBIIPAS2IS",
5280       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5281       .type = ARM_CP_NOP, .access = PL2_W },
5282     { .name = "TLBIIPAS2L",
5283       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5284       .type = ARM_CP_NOP, .access = PL2_W },
5285     { .name = "TLBIIPAS2LIS",
5286       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5287       .type = ARM_CP_NOP, .access = PL2_W },
5288     /* 32 bit cache operations */
5289     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5290       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5291     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5292       .type = ARM_CP_NOP, .access = PL1_W },
5293     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5294       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5295     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5296       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5297     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5298       .type = ARM_CP_NOP, .access = PL1_W },
5299     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5300       .type = ARM_CP_NOP, .access = PL1_W },
5301     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5302       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5303     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5304       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5305     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5306       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5307     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5309     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5310       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5311     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5312       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5313     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5314       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5315     /* MMU Domain access control / MPU write buffer control */
5316     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5317       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5318       .writefn = dacr_write, .raw_writefn = raw_write,
5319       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5320                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5321     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5322       .type = ARM_CP_ALIAS,
5323       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5324       .access = PL1_RW,
5325       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5326     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5327       .type = ARM_CP_ALIAS,
5328       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5329       .access = PL1_RW,
5330       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5331     /* We rely on the access checks not allowing the guest to write to the
5332      * state field when SPSel indicates that it's being used as the stack
5333      * pointer.
5334      */
5335     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5336       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5337       .access = PL1_RW, .accessfn = sp_el0_access,
5338       .type = ARM_CP_ALIAS,
5339       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5340     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5342       .access = PL2_RW, .type = ARM_CP_ALIAS,
5343       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5344     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5346       .type = ARM_CP_NO_RAW,
5347       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5348     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5349       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5350       .type = ARM_CP_ALIAS,
5351       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5352       .access = PL2_RW, .accessfn = fpexc32_access },
5353     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5354       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5355       .access = PL2_RW, .resetvalue = 0,
5356       .writefn = dacr_write, .raw_writefn = raw_write,
5357       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5358     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5359       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5360       .access = PL2_RW, .resetvalue = 0,
5361       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5362     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5363       .type = ARM_CP_ALIAS,
5364       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5365       .access = PL2_RW,
5366       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5367     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5368       .type = ARM_CP_ALIAS,
5369       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5370       .access = PL2_RW,
5371       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5372     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5373       .type = ARM_CP_ALIAS,
5374       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5375       .access = PL2_RW,
5376       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5377     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5378       .type = ARM_CP_ALIAS,
5379       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5380       .access = PL2_RW,
5381       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5382     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5383       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5384       .resetvalue = 0,
5385       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5386     { .name = "SDCR", .type = ARM_CP_ALIAS,
5387       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5388       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5389       .writefn = sdcr_write,
5390       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5391     REGINFO_SENTINEL
5392 };
5393 
5394 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5395 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5396     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5397       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5398       .access = PL2_RW,
5399       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5400     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5401       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5402       .access = PL2_RW,
5403       .type = ARM_CP_CONST, .resetvalue = 0 },
5404     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5405       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5406       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5407     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5408       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5409       .access = PL2_RW,
5410       .type = ARM_CP_CONST, .resetvalue = 0 },
5411     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5412       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5413       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5414     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5415       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5416       .access = PL2_RW, .type = ARM_CP_CONST,
5417       .resetvalue = 0 },
5418     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5419       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5420       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5421     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5422       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5423       .access = PL2_RW, .type = ARM_CP_CONST,
5424       .resetvalue = 0 },
5425     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5426       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5427       .access = PL2_RW, .type = ARM_CP_CONST,
5428       .resetvalue = 0 },
5429     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5430       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5431       .access = PL2_RW, .type = ARM_CP_CONST,
5432       .resetvalue = 0 },
5433     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5434       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5435       .access = PL2_RW, .type = ARM_CP_CONST,
5436       .resetvalue = 0 },
5437     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5438       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5439       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5440     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5441       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5442       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5443       .type = ARM_CP_CONST, .resetvalue = 0 },
5444     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5445       .cp = 15, .opc1 = 6, .crm = 2,
5446       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5447       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5448     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5449       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5450       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5451     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5452       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5453       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5454     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5455       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5456       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5457     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5458       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5459       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5460     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5461       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5462       .resetvalue = 0 },
5463     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5464       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5465       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5466     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5467       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5468       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5469     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5470       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5471       .resetvalue = 0 },
5472     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5473       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5474       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5475     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5476       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5477       .resetvalue = 0 },
5478     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5479       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5480       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5481     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5482       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5483       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5484     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5485       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5486       .access = PL2_RW, .accessfn = access_tda,
5487       .type = ARM_CP_CONST, .resetvalue = 0 },
5488     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5489       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5490       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5491       .type = ARM_CP_CONST, .resetvalue = 0 },
5492     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5494       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5495     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5496       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5497       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5498     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5499       .type = ARM_CP_CONST,
5500       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5501       .access = PL2_RW, .resetvalue = 0 },
5502     REGINFO_SENTINEL
5503 };
5504 
5505 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5506 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5507     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5508       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5509       .access = PL2_RW,
5510       .type = ARM_CP_CONST, .resetvalue = 0 },
5511     REGINFO_SENTINEL
5512 };
5513 
5514 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5515 {
5516     ARMCPU *cpu = env_archcpu(env);
5517 
5518     if (arm_feature(env, ARM_FEATURE_V8)) {
5519         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5520     } else {
5521         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5522     }
5523 
5524     if (arm_feature(env, ARM_FEATURE_EL3)) {
5525         valid_mask &= ~HCR_HCD;
5526     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5527         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5528          * However, if we're using the SMC PSCI conduit then QEMU is
5529          * effectively acting like EL3 firmware and so the guest at
5530          * EL2 should retain the ability to prevent EL1 from being
5531          * able to make SMC calls into the ersatz firmware, so in
5532          * that case HCR.TSC should be read/write.
5533          */
5534         valid_mask &= ~HCR_TSC;
5535     }
5536 
5537     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5538         if (cpu_isar_feature(aa64_vh, cpu)) {
5539             valid_mask |= HCR_E2H;
5540         }
5541         if (cpu_isar_feature(aa64_lor, cpu)) {
5542             valid_mask |= HCR_TLOR;
5543         }
5544         if (cpu_isar_feature(aa64_pauth, cpu)) {
5545             valid_mask |= HCR_API | HCR_APK;
5546         }
5547         if (cpu_isar_feature(aa64_mte, cpu)) {
5548             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5549         }
5550     }
5551 
5552     /* Clear RES0 bits.  */
5553     value &= valid_mask;
5554 
5555     /*
5556      * These bits change the MMU setup:
5557      * HCR_VM enables stage 2 translation
5558      * HCR_PTW forbids certain page-table setups
5559      * HCR_DC disables stage1 and enables stage2 translation
5560      * HCR_DCT enables tagging on (disabled) stage1 translation
5561      */
5562     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5563         tlb_flush(CPU(cpu));
5564     }
5565     env->cp15.hcr_el2 = value;
5566 
5567     /*
5568      * Updates to VI and VF require us to update the status of
5569      * virtual interrupts, which are the logical OR of these bits
5570      * and the state of the input lines from the GIC. (This requires
5571      * that we have the iothread lock, which is done by marking the
5572      * reginfo structs as ARM_CP_IO.)
5573      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5574      * possible for it to be taken immediately, because VIRQ and
5575      * VFIQ are masked unless running at EL0 or EL1, and HCR
5576      * can only be written at EL2.
5577      */
5578     g_assert(qemu_mutex_iothread_locked());
5579     arm_cpu_update_virq(cpu);
5580     arm_cpu_update_vfiq(cpu);
5581 }
5582 
5583 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5584 {
5585     do_hcr_write(env, value, 0);
5586 }
5587 
5588 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5589                           uint64_t value)
5590 {
5591     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5592     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5593     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5594 }
5595 
5596 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5597                          uint64_t value)
5598 {
5599     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5600     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5601     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5602 }
5603 
5604 /*
5605  * Return the effective value of HCR_EL2.
5606  * Bits that are not included here:
5607  * RW       (read from SCR_EL3.RW as needed)
5608  */
5609 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5610 {
5611     uint64_t ret = env->cp15.hcr_el2;
5612 
5613     if (!arm_is_el2_enabled(env)) {
5614         /*
5615          * "This register has no effect if EL2 is not enabled in the
5616          * current Security state".  This is ARMv8.4-SecEL2 speak for
5617          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5618          *
5619          * Prior to that, the language was "In an implementation that
5620          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5621          * as if this field is 0 for all purposes other than a direct
5622          * read or write access of HCR_EL2".  With lots of enumeration
5623          * on a per-field basis.  In current QEMU, this is condition
5624          * is arm_is_secure_below_el3.
5625          *
5626          * Since the v8.4 language applies to the entire register, and
5627          * appears to be backward compatible, use that.
5628          */
5629         return 0;
5630     }
5631 
5632     /*
5633      * For a cpu that supports both aarch64 and aarch32, we can set bits
5634      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5635      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5636      */
5637     if (!arm_el_is_aa64(env, 2)) {
5638         uint64_t aa32_valid;
5639 
5640         /*
5641          * These bits are up-to-date as of ARMv8.6.
5642          * For HCR, it's easiest to list just the 2 bits that are invalid.
5643          * For HCR2, list those that are valid.
5644          */
5645         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5646         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5647                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5648         ret &= aa32_valid;
5649     }
5650 
5651     if (ret & HCR_TGE) {
5652         /* These bits are up-to-date as of ARMv8.6.  */
5653         if (ret & HCR_E2H) {
5654             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5655                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5656                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5657                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5658                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5659                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5660         } else {
5661             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5662         }
5663         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5664                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5665                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5666                  HCR_TLOR);
5667     }
5668 
5669     return ret;
5670 }
5671 
5672 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5673                            uint64_t value)
5674 {
5675     /*
5676      * For A-profile AArch32 EL3, if NSACR.CP10
5677      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5678      */
5679     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5680         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5681         value &= ~(0x3 << 10);
5682         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5683     }
5684     env->cp15.cptr_el[2] = value;
5685 }
5686 
5687 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5688 {
5689     /*
5690      * For A-profile AArch32 EL3, if NSACR.CP10
5691      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5692      */
5693     uint64_t value = env->cp15.cptr_el[2];
5694 
5695     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5696         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5697         value |= 0x3 << 10;
5698     }
5699     return value;
5700 }
5701 
5702 static const ARMCPRegInfo el2_cp_reginfo[] = {
5703     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5704       .type = ARM_CP_IO,
5705       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5706       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5707       .writefn = hcr_write },
5708     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5709       .type = ARM_CP_ALIAS | ARM_CP_IO,
5710       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5711       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5712       .writefn = hcr_writelow },
5713     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5714       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5715       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5716     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5717       .type = ARM_CP_ALIAS,
5718       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5719       .access = PL2_RW,
5720       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5721     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5722       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5723       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5724     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5725       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5726       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5727     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5728       .type = ARM_CP_ALIAS,
5729       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5730       .access = PL2_RW,
5731       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5732     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5733       .type = ARM_CP_ALIAS,
5734       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5735       .access = PL2_RW,
5736       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5737     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5738       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5739       .access = PL2_RW, .writefn = vbar_write,
5740       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5741       .resetvalue = 0 },
5742     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5743       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5744       .access = PL3_RW, .type = ARM_CP_ALIAS,
5745       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5746     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5747       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5748       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5749       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5750       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5751     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5752       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5753       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5754       .resetvalue = 0 },
5755     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5756       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5757       .access = PL2_RW, .type = ARM_CP_ALIAS,
5758       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5759     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5760       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5761       .access = PL2_RW, .type = ARM_CP_CONST,
5762       .resetvalue = 0 },
5763     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5764     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5765       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5766       .access = PL2_RW, .type = ARM_CP_CONST,
5767       .resetvalue = 0 },
5768     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5769       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5770       .access = PL2_RW, .type = ARM_CP_CONST,
5771       .resetvalue = 0 },
5772     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5773       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5774       .access = PL2_RW, .type = ARM_CP_CONST,
5775       .resetvalue = 0 },
5776     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5777       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5778       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5779       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5780       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5781     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5782       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5783       .type = ARM_CP_ALIAS,
5784       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5785       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5786     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5787       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5788       .access = PL2_RW,
5789       /* no .writefn needed as this can't cause an ASID change;
5790        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5791        */
5792       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5793     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5794       .cp = 15, .opc1 = 6, .crm = 2,
5795       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5796       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5797       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5798       .writefn = vttbr_write },
5799     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5800       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5801       .access = PL2_RW, .writefn = vttbr_write,
5802       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5803     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5804       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5805       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5806       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5807     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5808       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5809       .access = PL2_RW, .resetvalue = 0,
5810       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5811     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5813       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5814       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5815     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5816       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5817       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5818     { .name = "TLBIALLNSNH",
5819       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5820       .type = ARM_CP_NO_RAW, .access = PL2_W,
5821       .writefn = tlbiall_nsnh_write },
5822     { .name = "TLBIALLNSNHIS",
5823       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5824       .type = ARM_CP_NO_RAW, .access = PL2_W,
5825       .writefn = tlbiall_nsnh_is_write },
5826     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5827       .type = ARM_CP_NO_RAW, .access = PL2_W,
5828       .writefn = tlbiall_hyp_write },
5829     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5830       .type = ARM_CP_NO_RAW, .access = PL2_W,
5831       .writefn = tlbiall_hyp_is_write },
5832     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5833       .type = ARM_CP_NO_RAW, .access = PL2_W,
5834       .writefn = tlbimva_hyp_write },
5835     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5836       .type = ARM_CP_NO_RAW, .access = PL2_W,
5837       .writefn = tlbimva_hyp_is_write },
5838     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5839       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5840       .type = ARM_CP_NO_RAW, .access = PL2_W,
5841       .writefn = tlbi_aa64_alle2_write },
5842     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5843       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5844       .type = ARM_CP_NO_RAW, .access = PL2_W,
5845       .writefn = tlbi_aa64_vae2_write },
5846     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5847       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5848       .access = PL2_W, .type = ARM_CP_NO_RAW,
5849       .writefn = tlbi_aa64_vae2_write },
5850     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5851       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5852       .access = PL2_W, .type = ARM_CP_NO_RAW,
5853       .writefn = tlbi_aa64_alle2is_write },
5854     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5855       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5856       .type = ARM_CP_NO_RAW, .access = PL2_W,
5857       .writefn = tlbi_aa64_vae2is_write },
5858     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5859       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5860       .access = PL2_W, .type = ARM_CP_NO_RAW,
5861       .writefn = tlbi_aa64_vae2is_write },
5862 #ifndef CONFIG_USER_ONLY
5863     /* Unlike the other EL2-related AT operations, these must
5864      * UNDEF from EL3 if EL2 is not implemented, which is why we
5865      * define them here rather than with the rest of the AT ops.
5866      */
5867     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5868       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5869       .access = PL2_W, .accessfn = at_s1e2_access,
5870       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5871     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5872       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5873       .access = PL2_W, .accessfn = at_s1e2_access,
5874       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5875     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5876      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5877      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5878      * to behave as if SCR.NS was 1.
5879      */
5880     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5881       .access = PL2_W,
5882       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5883     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5884       .access = PL2_W,
5885       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5886     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5887       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5888       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5889        * reset values as IMPDEF. We choose to reset to 3 to comply with
5890        * both ARMv7 and ARMv8.
5891        */
5892       .access = PL2_RW, .resetvalue = 3,
5893       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5894     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5895       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5896       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5897       .writefn = gt_cntvoff_write,
5898       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5899     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5900       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5901       .writefn = gt_cntvoff_write,
5902       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5903     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5904       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5905       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5906       .type = ARM_CP_IO, .access = PL2_RW,
5907       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5908     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5909       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5910       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5911       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5912     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5913       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5914       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5915       .resetfn = gt_hyp_timer_reset,
5916       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5917     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5918       .type = ARM_CP_IO,
5919       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5920       .access = PL2_RW,
5921       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5922       .resetvalue = 0,
5923       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5924 #endif
5925     /* The only field of MDCR_EL2 that has a defined architectural reset value
5926      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5927      */
5928     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5929       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5930       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5931       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5932     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5933       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5934       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5935       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5936     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5937       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5938       .access = PL2_RW,
5939       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5940     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5941       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5942       .access = PL2_RW,
5943       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5944     REGINFO_SENTINEL
5945 };
5946 
5947 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5948     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5949       .type = ARM_CP_ALIAS | ARM_CP_IO,
5950       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5951       .access = PL2_RW,
5952       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5953       .writefn = hcr_writehigh },
5954     REGINFO_SENTINEL
5955 };
5956 
5957 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5958                                   bool isread)
5959 {
5960     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5961         return CP_ACCESS_OK;
5962     }
5963     return CP_ACCESS_TRAP_UNCATEGORIZED;
5964 }
5965 
5966 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5967     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5968       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5969       .access = PL2_RW, .accessfn = sel2_access,
5970       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5971     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5972       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5973       .access = PL2_RW, .accessfn = sel2_access,
5974       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5975     REGINFO_SENTINEL
5976 };
5977 
5978 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5979                                    bool isread)
5980 {
5981     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5982      * At Secure EL1 it traps to EL3 or EL2.
5983      */
5984     if (arm_current_el(env) == 3) {
5985         return CP_ACCESS_OK;
5986     }
5987     if (arm_is_secure_below_el3(env)) {
5988         if (env->cp15.scr_el3 & SCR_EEL2) {
5989             return CP_ACCESS_TRAP_EL2;
5990         }
5991         return CP_ACCESS_TRAP_EL3;
5992     }
5993     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5994     if (isread) {
5995         return CP_ACCESS_OK;
5996     }
5997     return CP_ACCESS_TRAP_UNCATEGORIZED;
5998 }
5999 
6000 static const ARMCPRegInfo el3_cp_reginfo[] = {
6001     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6002       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6003       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6004       .resetfn = scr_reset, .writefn = scr_write },
6005     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6006       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6007       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6008       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6009       .writefn = scr_write },
6010     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6011       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6012       .access = PL3_RW, .resetvalue = 0,
6013       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6014     { .name = "SDER",
6015       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6016       .access = PL3_RW, .resetvalue = 0,
6017       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6018     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6019       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6020       .writefn = vbar_write, .resetvalue = 0,
6021       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6022     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6023       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6024       .access = PL3_RW, .resetvalue = 0,
6025       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6026     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6027       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6028       .access = PL3_RW,
6029       /* no .writefn needed as this can't cause an ASID change;
6030        * we must provide a .raw_writefn and .resetfn because we handle
6031        * reset and migration for the AArch32 TTBCR(S), which might be
6032        * using mask and base_mask.
6033        */
6034       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
6035       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6036     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6037       .type = ARM_CP_ALIAS,
6038       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6039       .access = PL3_RW,
6040       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6041     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6042       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6043       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6044     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6045       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6046       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6047     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6048       .type = ARM_CP_ALIAS,
6049       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6050       .access = PL3_RW,
6051       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6052     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6053       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6054       .access = PL3_RW, .writefn = vbar_write,
6055       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6056       .resetvalue = 0 },
6057     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6058       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6059       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6060       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6061     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6062       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6063       .access = PL3_RW, .resetvalue = 0,
6064       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6065     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6066       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6067       .access = PL3_RW, .type = ARM_CP_CONST,
6068       .resetvalue = 0 },
6069     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6070       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6071       .access = PL3_RW, .type = ARM_CP_CONST,
6072       .resetvalue = 0 },
6073     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6074       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6075       .access = PL3_RW, .type = ARM_CP_CONST,
6076       .resetvalue = 0 },
6077     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6078       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6079       .access = PL3_W, .type = ARM_CP_NO_RAW,
6080       .writefn = tlbi_aa64_alle3is_write },
6081     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6082       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6083       .access = PL3_W, .type = ARM_CP_NO_RAW,
6084       .writefn = tlbi_aa64_vae3is_write },
6085     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6086       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6087       .access = PL3_W, .type = ARM_CP_NO_RAW,
6088       .writefn = tlbi_aa64_vae3is_write },
6089     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6090       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6091       .access = PL3_W, .type = ARM_CP_NO_RAW,
6092       .writefn = tlbi_aa64_alle3_write },
6093     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6094       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6095       .access = PL3_W, .type = ARM_CP_NO_RAW,
6096       .writefn = tlbi_aa64_vae3_write },
6097     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6099       .access = PL3_W, .type = ARM_CP_NO_RAW,
6100       .writefn = tlbi_aa64_vae3_write },
6101     REGINFO_SENTINEL
6102 };
6103 
6104 #ifndef CONFIG_USER_ONLY
6105 /* Test if system register redirection is to occur in the current state.  */
6106 static bool redirect_for_e2h(CPUARMState *env)
6107 {
6108     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6109 }
6110 
6111 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6112 {
6113     CPReadFn *readfn;
6114 
6115     if (redirect_for_e2h(env)) {
6116         /* Switch to the saved EL2 version of the register.  */
6117         ri = ri->opaque;
6118         readfn = ri->readfn;
6119     } else {
6120         readfn = ri->orig_readfn;
6121     }
6122     if (readfn == NULL) {
6123         readfn = raw_read;
6124     }
6125     return readfn(env, ri);
6126 }
6127 
6128 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6129                           uint64_t value)
6130 {
6131     CPWriteFn *writefn;
6132 
6133     if (redirect_for_e2h(env)) {
6134         /* Switch to the saved EL2 version of the register.  */
6135         ri = ri->opaque;
6136         writefn = ri->writefn;
6137     } else {
6138         writefn = ri->orig_writefn;
6139     }
6140     if (writefn == NULL) {
6141         writefn = raw_write;
6142     }
6143     writefn(env, ri, value);
6144 }
6145 
6146 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6147 {
6148     struct E2HAlias {
6149         uint32_t src_key, dst_key, new_key;
6150         const char *src_name, *dst_name, *new_name;
6151         bool (*feature)(const ARMISARegisters *id);
6152     };
6153 
6154 #define K(op0, op1, crn, crm, op2) \
6155     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6156 
6157     static const struct E2HAlias aliases[] = {
6158         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6159           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6160         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6161           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6162         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6163           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6164         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6165           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6166         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6167           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6168         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6169           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6170         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6171           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6172         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6173           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6174         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6175           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6176         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6177           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6178         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6179           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6180         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6181           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6182         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6183           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6184         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6185           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6186         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6187           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6188         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6189           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6190 
6191         /*
6192          * Note that redirection of ZCR is mentioned in the description
6193          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6194          * not in the summary table.
6195          */
6196         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6197           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6198 
6199         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6200           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6201 
6202         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6203         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6204     };
6205 #undef K
6206 
6207     size_t i;
6208 
6209     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6210         const struct E2HAlias *a = &aliases[i];
6211         ARMCPRegInfo *src_reg, *dst_reg;
6212 
6213         if (a->feature && !a->feature(&cpu->isar)) {
6214             continue;
6215         }
6216 
6217         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
6218         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
6219         g_assert(src_reg != NULL);
6220         g_assert(dst_reg != NULL);
6221 
6222         /* Cross-compare names to detect typos in the keys.  */
6223         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6224         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6225 
6226         /* None of the core system registers use opaque; we will.  */
6227         g_assert(src_reg->opaque == NULL);
6228 
6229         /* Create alias before redirection so we dup the right data. */
6230         if (a->new_key) {
6231             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6232             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
6233             bool ok;
6234 
6235             new_reg->name = a->new_name;
6236             new_reg->type |= ARM_CP_ALIAS;
6237             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6238             new_reg->access &= PL2_RW | PL3_RW;
6239 
6240             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
6241             g_assert(ok);
6242         }
6243 
6244         src_reg->opaque = dst_reg;
6245         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6246         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6247         if (!src_reg->raw_readfn) {
6248             src_reg->raw_readfn = raw_read;
6249         }
6250         if (!src_reg->raw_writefn) {
6251             src_reg->raw_writefn = raw_write;
6252         }
6253         src_reg->readfn = el2_e2h_read;
6254         src_reg->writefn = el2_e2h_write;
6255     }
6256 }
6257 #endif
6258 
6259 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6260                                      bool isread)
6261 {
6262     int cur_el = arm_current_el(env);
6263 
6264     if (cur_el < 2) {
6265         uint64_t hcr = arm_hcr_el2_eff(env);
6266 
6267         if (cur_el == 0) {
6268             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6269                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6270                     return CP_ACCESS_TRAP_EL2;
6271                 }
6272             } else {
6273                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6274                     return CP_ACCESS_TRAP;
6275                 }
6276                 if (hcr & HCR_TID2) {
6277                     return CP_ACCESS_TRAP_EL2;
6278                 }
6279             }
6280         } else if (hcr & HCR_TID2) {
6281             return CP_ACCESS_TRAP_EL2;
6282         }
6283     }
6284 
6285     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6286         return CP_ACCESS_TRAP_EL2;
6287     }
6288 
6289     return CP_ACCESS_OK;
6290 }
6291 
6292 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6293                         uint64_t value)
6294 {
6295     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6296      * read via a bit in OSLSR_EL1.
6297      */
6298     int oslock;
6299 
6300     if (ri->state == ARM_CP_STATE_AA32) {
6301         oslock = (value == 0xC5ACCE55);
6302     } else {
6303         oslock = value & 1;
6304     }
6305 
6306     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6307 }
6308 
6309 static const ARMCPRegInfo debug_cp_reginfo[] = {
6310     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6311      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6312      * unlike DBGDRAR it is never accessible from EL0.
6313      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6314      * accessor.
6315      */
6316     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6317       .access = PL0_R, .accessfn = access_tdra,
6318       .type = ARM_CP_CONST, .resetvalue = 0 },
6319     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6320       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6321       .access = PL1_R, .accessfn = access_tdra,
6322       .type = ARM_CP_CONST, .resetvalue = 0 },
6323     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6324       .access = PL0_R, .accessfn = access_tdra,
6325       .type = ARM_CP_CONST, .resetvalue = 0 },
6326     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6327     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6328       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6329       .access = PL1_RW, .accessfn = access_tda,
6330       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6331       .resetvalue = 0 },
6332     /*
6333      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6334      * Debug Communication Channel is not implemented.
6335      */
6336     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6337       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6338       .access = PL0_R, .accessfn = access_tda,
6339       .type = ARM_CP_CONST, .resetvalue = 0 },
6340     /*
6341      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6342      * it is unlikely a guest will care.
6343      * We don't implement the configurable EL0 access.
6344      */
6345     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6346       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6347       .type = ARM_CP_ALIAS,
6348       .access = PL1_R, .accessfn = access_tda,
6349       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6350     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6351       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6352       .access = PL1_W, .type = ARM_CP_NO_RAW,
6353       .accessfn = access_tdosa,
6354       .writefn = oslar_write },
6355     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6356       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6357       .access = PL1_R, .resetvalue = 10,
6358       .accessfn = access_tdosa,
6359       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6360     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6361     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6362       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6363       .access = PL1_RW, .accessfn = access_tdosa,
6364       .type = ARM_CP_NOP },
6365     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6366      * implement vector catch debug events yet.
6367      */
6368     { .name = "DBGVCR",
6369       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6370       .access = PL1_RW, .accessfn = access_tda,
6371       .type = ARM_CP_NOP },
6372     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6373      * to save and restore a 32-bit guest's DBGVCR)
6374      */
6375     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6376       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6377       .access = PL2_RW, .accessfn = access_tda,
6378       .type = ARM_CP_NOP },
6379     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6380      * Channel but Linux may try to access this register. The 32-bit
6381      * alias is DBGDCCINT.
6382      */
6383     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6384       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6385       .access = PL1_RW, .accessfn = access_tda,
6386       .type = ARM_CP_NOP },
6387     REGINFO_SENTINEL
6388 };
6389 
6390 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6391     /* 64 bit access versions of the (dummy) debug registers */
6392     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6393       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6394     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6395       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6396     REGINFO_SENTINEL
6397 };
6398 
6399 /* Return the exception level to which exceptions should be taken
6400  * via SVEAccessTrap.  If an exception should be routed through
6401  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6402  * take care of raising that exception.
6403  * C.f. the ARM pseudocode function CheckSVEEnabled.
6404  */
6405 int sve_exception_el(CPUARMState *env, int el)
6406 {
6407 #ifndef CONFIG_USER_ONLY
6408     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6409 
6410     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6411         bool disabled = false;
6412 
6413         /* The CPACR.ZEN controls traps to EL1:
6414          * 0, 2 : trap EL0 and EL1 accesses
6415          * 1    : trap only EL0 accesses
6416          * 3    : trap no accesses
6417          */
6418         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6419             disabled = true;
6420         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6421             disabled = el == 0;
6422         }
6423         if (disabled) {
6424             /* route_to_el2 */
6425             return hcr_el2 & HCR_TGE ? 2 : 1;
6426         }
6427 
6428         /* Check CPACR.FPEN.  */
6429         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6430             disabled = true;
6431         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6432             disabled = el == 0;
6433         }
6434         if (disabled) {
6435             return 0;
6436         }
6437     }
6438 
6439     /* CPTR_EL2.  Since TZ and TFP are positive,
6440      * they will be zero when EL2 is not present.
6441      */
6442     if (el <= 2 && arm_is_el2_enabled(env)) {
6443         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6444             return 2;
6445         }
6446         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6447             return 0;
6448         }
6449     }
6450 
6451     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6452     if (arm_feature(env, ARM_FEATURE_EL3)
6453         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6454         return 3;
6455     }
6456 #endif
6457     return 0;
6458 }
6459 
6460 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6461 {
6462     uint32_t end_len;
6463 
6464     end_len = start_len &= 0xf;
6465     if (!test_bit(start_len, cpu->sve_vq_map)) {
6466         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6467         assert(end_len < start_len);
6468     }
6469     return end_len;
6470 }
6471 
6472 /*
6473  * Given that SVE is enabled, return the vector length for EL.
6474  */
6475 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6476 {
6477     ARMCPU *cpu = env_archcpu(env);
6478     uint32_t zcr_len = cpu->sve_max_vq - 1;
6479 
6480     if (el <= 1) {
6481         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6482     }
6483     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6484         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6485     }
6486     if (arm_feature(env, ARM_FEATURE_EL3)) {
6487         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6488     }
6489 
6490     return sve_zcr_get_valid_len(cpu, zcr_len);
6491 }
6492 
6493 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6494                       uint64_t value)
6495 {
6496     int cur_el = arm_current_el(env);
6497     int old_len = sve_zcr_len_for_el(env, cur_el);
6498     int new_len;
6499 
6500     /* Bits other than [3:0] are RAZ/WI.  */
6501     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6502     raw_write(env, ri, value & 0xf);
6503 
6504     /*
6505      * Because we arrived here, we know both FP and SVE are enabled;
6506      * otherwise we would have trapped access to the ZCR_ELn register.
6507      */
6508     new_len = sve_zcr_len_for_el(env, cur_el);
6509     if (new_len < old_len) {
6510         aarch64_sve_narrow_vq(env, new_len + 1);
6511     }
6512 }
6513 
6514 static const ARMCPRegInfo zcr_el1_reginfo = {
6515     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6516     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6517     .access = PL1_RW, .type = ARM_CP_SVE,
6518     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6519     .writefn = zcr_write, .raw_writefn = raw_write
6520 };
6521 
6522 static const ARMCPRegInfo zcr_el2_reginfo = {
6523     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6524     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6525     .access = PL2_RW, .type = ARM_CP_SVE,
6526     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6527     .writefn = zcr_write, .raw_writefn = raw_write
6528 };
6529 
6530 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6531     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6532     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6533     .access = PL2_RW, .type = ARM_CP_SVE,
6534     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6535 };
6536 
6537 static const ARMCPRegInfo zcr_el3_reginfo = {
6538     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6539     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6540     .access = PL3_RW, .type = ARM_CP_SVE,
6541     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6542     .writefn = zcr_write, .raw_writefn = raw_write
6543 };
6544 
6545 void hw_watchpoint_update(ARMCPU *cpu, int n)
6546 {
6547     CPUARMState *env = &cpu->env;
6548     vaddr len = 0;
6549     vaddr wvr = env->cp15.dbgwvr[n];
6550     uint64_t wcr = env->cp15.dbgwcr[n];
6551     int mask;
6552     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6553 
6554     if (env->cpu_watchpoint[n]) {
6555         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6556         env->cpu_watchpoint[n] = NULL;
6557     }
6558 
6559     if (!extract64(wcr, 0, 1)) {
6560         /* E bit clear : watchpoint disabled */
6561         return;
6562     }
6563 
6564     switch (extract64(wcr, 3, 2)) {
6565     case 0:
6566         /* LSC 00 is reserved and must behave as if the wp is disabled */
6567         return;
6568     case 1:
6569         flags |= BP_MEM_READ;
6570         break;
6571     case 2:
6572         flags |= BP_MEM_WRITE;
6573         break;
6574     case 3:
6575         flags |= BP_MEM_ACCESS;
6576         break;
6577     }
6578 
6579     /* Attempts to use both MASK and BAS fields simultaneously are
6580      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6581      * thus generating a watchpoint for every byte in the masked region.
6582      */
6583     mask = extract64(wcr, 24, 4);
6584     if (mask == 1 || mask == 2) {
6585         /* Reserved values of MASK; we must act as if the mask value was
6586          * some non-reserved value, or as if the watchpoint were disabled.
6587          * We choose the latter.
6588          */
6589         return;
6590     } else if (mask) {
6591         /* Watchpoint covers an aligned area up to 2GB in size */
6592         len = 1ULL << mask;
6593         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6594          * whether the watchpoint fires when the unmasked bits match; we opt
6595          * to generate the exceptions.
6596          */
6597         wvr &= ~(len - 1);
6598     } else {
6599         /* Watchpoint covers bytes defined by the byte address select bits */
6600         int bas = extract64(wcr, 5, 8);
6601         int basstart;
6602 
6603         if (extract64(wvr, 2, 1)) {
6604             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6605              * ignored, and BAS[3:0] define which bytes to watch.
6606              */
6607             bas &= 0xf;
6608         }
6609 
6610         if (bas == 0) {
6611             /* This must act as if the watchpoint is disabled */
6612             return;
6613         }
6614 
6615         /* The BAS bits are supposed to be programmed to indicate a contiguous
6616          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6617          * we fire for each byte in the word/doubleword addressed by the WVR.
6618          * We choose to ignore any non-zero bits after the first range of 1s.
6619          */
6620         basstart = ctz32(bas);
6621         len = cto32(bas >> basstart);
6622         wvr += basstart;
6623     }
6624 
6625     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6626                           &env->cpu_watchpoint[n]);
6627 }
6628 
6629 void hw_watchpoint_update_all(ARMCPU *cpu)
6630 {
6631     int i;
6632     CPUARMState *env = &cpu->env;
6633 
6634     /* Completely clear out existing QEMU watchpoints and our array, to
6635      * avoid possible stale entries following migration load.
6636      */
6637     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6638     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6639 
6640     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6641         hw_watchpoint_update(cpu, i);
6642     }
6643 }
6644 
6645 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6646                          uint64_t value)
6647 {
6648     ARMCPU *cpu = env_archcpu(env);
6649     int i = ri->crm;
6650 
6651     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6652      * register reads and behaves as if values written are sign extended.
6653      * Bits [1:0] are RES0.
6654      */
6655     value = sextract64(value, 0, 49) & ~3ULL;
6656 
6657     raw_write(env, ri, value);
6658     hw_watchpoint_update(cpu, i);
6659 }
6660 
6661 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6662                          uint64_t value)
6663 {
6664     ARMCPU *cpu = env_archcpu(env);
6665     int i = ri->crm;
6666 
6667     raw_write(env, ri, value);
6668     hw_watchpoint_update(cpu, i);
6669 }
6670 
6671 void hw_breakpoint_update(ARMCPU *cpu, int n)
6672 {
6673     CPUARMState *env = &cpu->env;
6674     uint64_t bvr = env->cp15.dbgbvr[n];
6675     uint64_t bcr = env->cp15.dbgbcr[n];
6676     vaddr addr;
6677     int bt;
6678     int flags = BP_CPU;
6679 
6680     if (env->cpu_breakpoint[n]) {
6681         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6682         env->cpu_breakpoint[n] = NULL;
6683     }
6684 
6685     if (!extract64(bcr, 0, 1)) {
6686         /* E bit clear : watchpoint disabled */
6687         return;
6688     }
6689 
6690     bt = extract64(bcr, 20, 4);
6691 
6692     switch (bt) {
6693     case 4: /* unlinked address mismatch (reserved if AArch64) */
6694     case 5: /* linked address mismatch (reserved if AArch64) */
6695         qemu_log_mask(LOG_UNIMP,
6696                       "arm: address mismatch breakpoint types not implemented\n");
6697         return;
6698     case 0: /* unlinked address match */
6699     case 1: /* linked address match */
6700     {
6701         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6702          * we behave as if the register was sign extended. Bits [1:0] are
6703          * RES0. The BAS field is used to allow setting breakpoints on 16
6704          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6705          * a bp will fire if the addresses covered by the bp and the addresses
6706          * covered by the insn overlap but the insn doesn't start at the
6707          * start of the bp address range. We choose to require the insn and
6708          * the bp to have the same address. The constraints on writing to
6709          * BAS enforced in dbgbcr_write mean we have only four cases:
6710          *  0b0000  => no breakpoint
6711          *  0b0011  => breakpoint on addr
6712          *  0b1100  => breakpoint on addr + 2
6713          *  0b1111  => breakpoint on addr
6714          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6715          */
6716         int bas = extract64(bcr, 5, 4);
6717         addr = sextract64(bvr, 0, 49) & ~3ULL;
6718         if (bas == 0) {
6719             return;
6720         }
6721         if (bas == 0xc) {
6722             addr += 2;
6723         }
6724         break;
6725     }
6726     case 2: /* unlinked context ID match */
6727     case 8: /* unlinked VMID match (reserved if no EL2) */
6728     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6729         qemu_log_mask(LOG_UNIMP,
6730                       "arm: unlinked context breakpoint types not implemented\n");
6731         return;
6732     case 9: /* linked VMID match (reserved if no EL2) */
6733     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6734     case 3: /* linked context ID match */
6735     default:
6736         /* We must generate no events for Linked context matches (unless
6737          * they are linked to by some other bp/wp, which is handled in
6738          * updates for the linking bp/wp). We choose to also generate no events
6739          * for reserved values.
6740          */
6741         return;
6742     }
6743 
6744     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6745 }
6746 
6747 void hw_breakpoint_update_all(ARMCPU *cpu)
6748 {
6749     int i;
6750     CPUARMState *env = &cpu->env;
6751 
6752     /* Completely clear out existing QEMU breakpoints and our array, to
6753      * avoid possible stale entries following migration load.
6754      */
6755     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6756     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6757 
6758     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6759         hw_breakpoint_update(cpu, i);
6760     }
6761 }
6762 
6763 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6764                          uint64_t value)
6765 {
6766     ARMCPU *cpu = env_archcpu(env);
6767     int i = ri->crm;
6768 
6769     raw_write(env, ri, value);
6770     hw_breakpoint_update(cpu, i);
6771 }
6772 
6773 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6774                          uint64_t value)
6775 {
6776     ARMCPU *cpu = env_archcpu(env);
6777     int i = ri->crm;
6778 
6779     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6780      * copy of BAS[0].
6781      */
6782     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6783     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6784 
6785     raw_write(env, ri, value);
6786     hw_breakpoint_update(cpu, i);
6787 }
6788 
6789 static void define_debug_regs(ARMCPU *cpu)
6790 {
6791     /* Define v7 and v8 architectural debug registers.
6792      * These are just dummy implementations for now.
6793      */
6794     int i;
6795     int wrps, brps, ctx_cmps;
6796 
6797     /*
6798      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6799      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6800      * the register must not exist for this cpu.
6801      */
6802     if (cpu->isar.dbgdidr != 0) {
6803         ARMCPRegInfo dbgdidr = {
6804             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6805             .opc1 = 0, .opc2 = 0,
6806             .access = PL0_R, .accessfn = access_tda,
6807             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6808         };
6809         define_one_arm_cp_reg(cpu, &dbgdidr);
6810     }
6811 
6812     /* Note that all these register fields hold "number of Xs minus 1". */
6813     brps = arm_num_brps(cpu);
6814     wrps = arm_num_wrps(cpu);
6815     ctx_cmps = arm_num_ctx_cmps(cpu);
6816 
6817     assert(ctx_cmps <= brps);
6818 
6819     define_arm_cp_regs(cpu, debug_cp_reginfo);
6820 
6821     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6822         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6823     }
6824 
6825     for (i = 0; i < brps; i++) {
6826         ARMCPRegInfo dbgregs[] = {
6827             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6828               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6829               .access = PL1_RW, .accessfn = access_tda,
6830               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6831               .writefn = dbgbvr_write, .raw_writefn = raw_write
6832             },
6833             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6834               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6835               .access = PL1_RW, .accessfn = access_tda,
6836               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6837               .writefn = dbgbcr_write, .raw_writefn = raw_write
6838             },
6839             REGINFO_SENTINEL
6840         };
6841         define_arm_cp_regs(cpu, dbgregs);
6842     }
6843 
6844     for (i = 0; i < wrps; i++) {
6845         ARMCPRegInfo dbgregs[] = {
6846             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6847               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6848               .access = PL1_RW, .accessfn = access_tda,
6849               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6850               .writefn = dbgwvr_write, .raw_writefn = raw_write
6851             },
6852             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6853               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6854               .access = PL1_RW, .accessfn = access_tda,
6855               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6856               .writefn = dbgwcr_write, .raw_writefn = raw_write
6857             },
6858             REGINFO_SENTINEL
6859         };
6860         define_arm_cp_regs(cpu, dbgregs);
6861     }
6862 }
6863 
6864 static void define_pmu_regs(ARMCPU *cpu)
6865 {
6866     /*
6867      * v7 performance monitor control register: same implementor
6868      * field as main ID register, and we implement four counters in
6869      * addition to the cycle count register.
6870      */
6871     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6872     ARMCPRegInfo pmcr = {
6873         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6874         .access = PL0_RW,
6875         .type = ARM_CP_IO | ARM_CP_ALIAS,
6876         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6877         .accessfn = pmreg_access, .writefn = pmcr_write,
6878         .raw_writefn = raw_write,
6879     };
6880     ARMCPRegInfo pmcr64 = {
6881         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6882         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6883         .access = PL0_RW, .accessfn = pmreg_access,
6884         .type = ARM_CP_IO,
6885         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6886         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6887                       PMCRLC,
6888         .writefn = pmcr_write, .raw_writefn = raw_write,
6889     };
6890     define_one_arm_cp_reg(cpu, &pmcr);
6891     define_one_arm_cp_reg(cpu, &pmcr64);
6892     for (i = 0; i < pmcrn; i++) {
6893         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6894         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6895         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6896         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6897         ARMCPRegInfo pmev_regs[] = {
6898             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6899               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6900               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6901               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6902               .accessfn = pmreg_access },
6903             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6904               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6905               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6906               .type = ARM_CP_IO,
6907               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6908               .raw_readfn = pmevcntr_rawread,
6909               .raw_writefn = pmevcntr_rawwrite },
6910             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6911               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6912               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6913               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6914               .accessfn = pmreg_access },
6915             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6916               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6917               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6918               .type = ARM_CP_IO,
6919               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6920               .raw_writefn = pmevtyper_rawwrite },
6921             REGINFO_SENTINEL
6922         };
6923         define_arm_cp_regs(cpu, pmev_regs);
6924         g_free(pmevcntr_name);
6925         g_free(pmevcntr_el0_name);
6926         g_free(pmevtyper_name);
6927         g_free(pmevtyper_el0_name);
6928     }
6929     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6930         ARMCPRegInfo v81_pmu_regs[] = {
6931             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6932               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6933               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6934               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6935             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6936               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6937               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6938               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6939             REGINFO_SENTINEL
6940         };
6941         define_arm_cp_regs(cpu, v81_pmu_regs);
6942     }
6943     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6944         static const ARMCPRegInfo v84_pmmir = {
6945             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6946             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6947             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6948             .resetvalue = 0
6949         };
6950         define_one_arm_cp_reg(cpu, &v84_pmmir);
6951     }
6952 }
6953 
6954 /* We don't know until after realize whether there's a GICv3
6955  * attached, and that is what registers the gicv3 sysregs.
6956  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6957  * at runtime.
6958  */
6959 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6960 {
6961     ARMCPU *cpu = env_archcpu(env);
6962     uint64_t pfr1 = cpu->isar.id_pfr1;
6963 
6964     if (env->gicv3state) {
6965         pfr1 |= 1 << 28;
6966     }
6967     return pfr1;
6968 }
6969 
6970 #ifndef CONFIG_USER_ONLY
6971 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6972 {
6973     ARMCPU *cpu = env_archcpu(env);
6974     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6975 
6976     if (env->gicv3state) {
6977         pfr0 |= 1 << 24;
6978     }
6979     return pfr0;
6980 }
6981 #endif
6982 
6983 /* Shared logic between LORID and the rest of the LOR* registers.
6984  * Secure state exclusion has already been dealt with.
6985  */
6986 static CPAccessResult access_lor_ns(CPUARMState *env,
6987                                     const ARMCPRegInfo *ri, bool isread)
6988 {
6989     int el = arm_current_el(env);
6990 
6991     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6992         return CP_ACCESS_TRAP_EL2;
6993     }
6994     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6995         return CP_ACCESS_TRAP_EL3;
6996     }
6997     return CP_ACCESS_OK;
6998 }
6999 
7000 static CPAccessResult access_lor_other(CPUARMState *env,
7001                                        const ARMCPRegInfo *ri, bool isread)
7002 {
7003     if (arm_is_secure_below_el3(env)) {
7004         /* Access denied in secure mode.  */
7005         return CP_ACCESS_TRAP;
7006     }
7007     return access_lor_ns(env, ri, isread);
7008 }
7009 
7010 /*
7011  * A trivial implementation of ARMv8.1-LOR leaves all of these
7012  * registers fixed at 0, which indicates that there are zero
7013  * supported Limited Ordering regions.
7014  */
7015 static const ARMCPRegInfo lor_reginfo[] = {
7016     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7017       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7018       .access = PL1_RW, .accessfn = access_lor_other,
7019       .type = ARM_CP_CONST, .resetvalue = 0 },
7020     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7021       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7022       .access = PL1_RW, .accessfn = access_lor_other,
7023       .type = ARM_CP_CONST, .resetvalue = 0 },
7024     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7025       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7026       .access = PL1_RW, .accessfn = access_lor_other,
7027       .type = ARM_CP_CONST, .resetvalue = 0 },
7028     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7029       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7030       .access = PL1_RW, .accessfn = access_lor_other,
7031       .type = ARM_CP_CONST, .resetvalue = 0 },
7032     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7033       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7034       .access = PL1_R, .accessfn = access_lor_ns,
7035       .type = ARM_CP_CONST, .resetvalue = 0 },
7036     REGINFO_SENTINEL
7037 };
7038 
7039 #ifdef TARGET_AARCH64
7040 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7041                                    bool isread)
7042 {
7043     int el = arm_current_el(env);
7044 
7045     if (el < 2 &&
7046         arm_feature(env, ARM_FEATURE_EL2) &&
7047         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7048         return CP_ACCESS_TRAP_EL2;
7049     }
7050     if (el < 3 &&
7051         arm_feature(env, ARM_FEATURE_EL3) &&
7052         !(env->cp15.scr_el3 & SCR_APK)) {
7053         return CP_ACCESS_TRAP_EL3;
7054     }
7055     return CP_ACCESS_OK;
7056 }
7057 
7058 static const ARMCPRegInfo pauth_reginfo[] = {
7059     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7060       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7061       .access = PL1_RW, .accessfn = access_pauth,
7062       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7063     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7064       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7065       .access = PL1_RW, .accessfn = access_pauth,
7066       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7067     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7069       .access = PL1_RW, .accessfn = access_pauth,
7070       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7071     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7072       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7073       .access = PL1_RW, .accessfn = access_pauth,
7074       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7075     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7076       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7077       .access = PL1_RW, .accessfn = access_pauth,
7078       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7079     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7080       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7081       .access = PL1_RW, .accessfn = access_pauth,
7082       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7083     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7084       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7085       .access = PL1_RW, .accessfn = access_pauth,
7086       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7087     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7088       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7089       .access = PL1_RW, .accessfn = access_pauth,
7090       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7091     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7092       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7093       .access = PL1_RW, .accessfn = access_pauth,
7094       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7095     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7096       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7097       .access = PL1_RW, .accessfn = access_pauth,
7098       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7099     REGINFO_SENTINEL
7100 };
7101 
7102 static const ARMCPRegInfo tlbirange_reginfo[] = {
7103     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7104       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7105       .access = PL1_W, .type = ARM_CP_NO_RAW,
7106       .writefn = tlbi_aa64_rvae1is_write },
7107     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7108       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7109       .access = PL1_W, .type = ARM_CP_NO_RAW,
7110       .writefn = tlbi_aa64_rvae1is_write },
7111    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7112       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7113       .access = PL1_W, .type = ARM_CP_NO_RAW,
7114       .writefn = tlbi_aa64_rvae1is_write },
7115     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7116       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7117       .access = PL1_W, .type = ARM_CP_NO_RAW,
7118       .writefn = tlbi_aa64_rvae1is_write },
7119     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7121       .access = PL1_W, .type = ARM_CP_NO_RAW,
7122       .writefn = tlbi_aa64_rvae1is_write },
7123     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7124       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7125       .access = PL1_W, .type = ARM_CP_NO_RAW,
7126       .writefn = tlbi_aa64_rvae1is_write },
7127    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7128       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7129       .access = PL1_W, .type = ARM_CP_NO_RAW,
7130       .writefn = tlbi_aa64_rvae1is_write },
7131     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7133       .access = PL1_W, .type = ARM_CP_NO_RAW,
7134       .writefn = tlbi_aa64_rvae1is_write },
7135     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7136       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7137       .access = PL1_W, .type = ARM_CP_NO_RAW,
7138       .writefn = tlbi_aa64_rvae1_write },
7139     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7141       .access = PL1_W, .type = ARM_CP_NO_RAW,
7142       .writefn = tlbi_aa64_rvae1_write },
7143    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7144       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7145       .access = PL1_W, .type = ARM_CP_NO_RAW,
7146       .writefn = tlbi_aa64_rvae1_write },
7147     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7148       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7149       .access = PL1_W, .type = ARM_CP_NO_RAW,
7150       .writefn = tlbi_aa64_rvae1_write },
7151     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7153       .access = PL2_W, .type = ARM_CP_NOP },
7154     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7155       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7156       .access = PL2_W, .type = ARM_CP_NOP },
7157     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7158       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7159       .access = PL2_W, .type = ARM_CP_NO_RAW,
7160       .writefn = tlbi_aa64_rvae2is_write },
7161    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7162       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7163       .access = PL2_W, .type = ARM_CP_NO_RAW,
7164       .writefn = tlbi_aa64_rvae2is_write },
7165     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7167       .access = PL2_W, .type = ARM_CP_NOP },
7168    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7169       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7170       .access = PL2_W, .type = ARM_CP_NOP },
7171    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7172       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7173       .access = PL2_W, .type = ARM_CP_NO_RAW,
7174       .writefn = tlbi_aa64_rvae2is_write },
7175    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7176       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7177       .access = PL2_W, .type = ARM_CP_NO_RAW,
7178       .writefn = tlbi_aa64_rvae2is_write },
7179     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7180       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7181       .access = PL2_W, .type = ARM_CP_NO_RAW,
7182       .writefn = tlbi_aa64_rvae2_write },
7183    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7184       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7185       .access = PL2_W, .type = ARM_CP_NO_RAW,
7186       .writefn = tlbi_aa64_rvae2_write },
7187    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7188       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7189       .access = PL3_W, .type = ARM_CP_NO_RAW,
7190       .writefn = tlbi_aa64_rvae3is_write },
7191    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7192       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7193       .access = PL3_W, .type = ARM_CP_NO_RAW,
7194       .writefn = tlbi_aa64_rvae3is_write },
7195    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7196       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7197       .access = PL3_W, .type = ARM_CP_NO_RAW,
7198       .writefn = tlbi_aa64_rvae3is_write },
7199    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7201       .access = PL3_W, .type = ARM_CP_NO_RAW,
7202       .writefn = tlbi_aa64_rvae3is_write },
7203    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7204       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7205       .access = PL3_W, .type = ARM_CP_NO_RAW,
7206       .writefn = tlbi_aa64_rvae3_write },
7207    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7209       .access = PL3_W, .type = ARM_CP_NO_RAW,
7210       .writefn = tlbi_aa64_rvae3_write },
7211     REGINFO_SENTINEL
7212 };
7213 
7214 static const ARMCPRegInfo tlbios_reginfo[] = {
7215     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7216       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7217       .access = PL1_W, .type = ARM_CP_NO_RAW,
7218       .writefn = tlbi_aa64_vmalle1is_write },
7219     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7220       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7221       .access = PL1_W, .type = ARM_CP_NO_RAW,
7222       .writefn = tlbi_aa64_vmalle1is_write },
7223     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7224       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7225       .access = PL2_W, .type = ARM_CP_NO_RAW,
7226       .writefn = tlbi_aa64_alle2is_write },
7227    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7229       .access = PL2_W, .type = ARM_CP_NO_RAW,
7230       .writefn = tlbi_aa64_alle1is_write },
7231     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7233       .access = PL2_W, .type = ARM_CP_NO_RAW,
7234       .writefn = tlbi_aa64_alle1is_write },
7235     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7237       .access = PL2_W, .type = ARM_CP_NOP },
7238     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7239       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7240       .access = PL2_W, .type = ARM_CP_NOP },
7241     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7242       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7243       .access = PL2_W, .type = ARM_CP_NOP },
7244     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7245       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7246       .access = PL2_W, .type = ARM_CP_NOP },
7247     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7249       .access = PL3_W, .type = ARM_CP_NO_RAW,
7250       .writefn = tlbi_aa64_alle3is_write },
7251     REGINFO_SENTINEL
7252 };
7253 
7254 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7255 {
7256     Error *err = NULL;
7257     uint64_t ret;
7258 
7259     /* Success sets NZCV = 0000.  */
7260     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7261 
7262     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7263         /*
7264          * ??? Failed, for unknown reasons in the crypto subsystem.
7265          * The best we can do is log the reason and return the
7266          * timed-out indication to the guest.  There is no reason
7267          * we know to expect this failure to be transitory, so the
7268          * guest may well hang retrying the operation.
7269          */
7270         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7271                       ri->name, error_get_pretty(err));
7272         error_free(err);
7273 
7274         env->ZF = 0; /* NZCF = 0100 */
7275         return 0;
7276     }
7277     return ret;
7278 }
7279 
7280 /* We do not support re-seeding, so the two registers operate the same.  */
7281 static const ARMCPRegInfo rndr_reginfo[] = {
7282     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7283       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7284       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7285       .access = PL0_R, .readfn = rndr_readfn },
7286     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7287       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7288       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7289       .access = PL0_R, .readfn = rndr_readfn },
7290     REGINFO_SENTINEL
7291 };
7292 
7293 #ifndef CONFIG_USER_ONLY
7294 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7295                           uint64_t value)
7296 {
7297     ARMCPU *cpu = env_archcpu(env);
7298     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7299     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7300     uint64_t vaddr_in = (uint64_t) value;
7301     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7302     void *haddr;
7303     int mem_idx = cpu_mmu_index(env, false);
7304 
7305     /* This won't be crossing page boundaries */
7306     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7307     if (haddr) {
7308 
7309         ram_addr_t offset;
7310         MemoryRegion *mr;
7311 
7312         /* RCU lock is already being held */
7313         mr = memory_region_from_host(haddr, &offset);
7314 
7315         if (mr) {
7316             memory_region_writeback(mr, offset, dline_size);
7317         }
7318     }
7319 }
7320 
7321 static const ARMCPRegInfo dcpop_reg[] = {
7322     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7323       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7324       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7325       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7326     REGINFO_SENTINEL
7327 };
7328 
7329 static const ARMCPRegInfo dcpodp_reg[] = {
7330     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7331       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7332       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7333       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7334     REGINFO_SENTINEL
7335 };
7336 #endif /*CONFIG_USER_ONLY*/
7337 
7338 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7339                                        bool isread)
7340 {
7341     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7342         return CP_ACCESS_TRAP_EL2;
7343     }
7344 
7345     return CP_ACCESS_OK;
7346 }
7347 
7348 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7349                                  bool isread)
7350 {
7351     int el = arm_current_el(env);
7352 
7353     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7354         uint64_t hcr = arm_hcr_el2_eff(env);
7355         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7356             return CP_ACCESS_TRAP_EL2;
7357         }
7358     }
7359     if (el < 3 &&
7360         arm_feature(env, ARM_FEATURE_EL3) &&
7361         !(env->cp15.scr_el3 & SCR_ATA)) {
7362         return CP_ACCESS_TRAP_EL3;
7363     }
7364     return CP_ACCESS_OK;
7365 }
7366 
7367 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7368 {
7369     return env->pstate & PSTATE_TCO;
7370 }
7371 
7372 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7373 {
7374     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7375 }
7376 
7377 static const ARMCPRegInfo mte_reginfo[] = {
7378     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7379       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7380       .access = PL1_RW, .accessfn = access_mte,
7381       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7382     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7383       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7384       .access = PL1_RW, .accessfn = access_mte,
7385       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7386     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7387       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7388       .access = PL2_RW, .accessfn = access_mte,
7389       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7390     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7391       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7392       .access = PL3_RW,
7393       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7394     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7395       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7396       .access = PL1_RW, .accessfn = access_mte,
7397       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7398     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7399       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7400       .access = PL1_RW, .accessfn = access_mte,
7401       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7402     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7403       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7404       .access = PL1_R, .accessfn = access_aa64_tid5,
7405       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7406     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7407       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7408       .type = ARM_CP_NO_RAW,
7409       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7410     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7412       .type = ARM_CP_NOP, .access = PL1_W,
7413       .accessfn = aa64_cacheop_poc_access },
7414     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7415       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7416       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7417     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7418       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7419       .type = ARM_CP_NOP, .access = PL1_W,
7420       .accessfn = aa64_cacheop_poc_access },
7421     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7422       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7423       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7424     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7425       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7426       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7427     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7429       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7430     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7431       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7432       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7433     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7435       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7436     REGINFO_SENTINEL
7437 };
7438 
7439 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7440     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7441       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7442       .type = ARM_CP_CONST, .access = PL0_RW, },
7443     REGINFO_SENTINEL
7444 };
7445 
7446 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7447     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7448       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7449       .type = ARM_CP_NOP, .access = PL0_W,
7450       .accessfn = aa64_cacheop_poc_access },
7451     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7452       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7453       .type = ARM_CP_NOP, .access = PL0_W,
7454       .accessfn = aa64_cacheop_poc_access },
7455     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7456       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7457       .type = ARM_CP_NOP, .access = PL0_W,
7458       .accessfn = aa64_cacheop_poc_access },
7459     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7460       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7461       .type = ARM_CP_NOP, .access = PL0_W,
7462       .accessfn = aa64_cacheop_poc_access },
7463     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7464       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7465       .type = ARM_CP_NOP, .access = PL0_W,
7466       .accessfn = aa64_cacheop_poc_access },
7467     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7469       .type = ARM_CP_NOP, .access = PL0_W,
7470       .accessfn = aa64_cacheop_poc_access },
7471     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7472       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7473       .type = ARM_CP_NOP, .access = PL0_W,
7474       .accessfn = aa64_cacheop_poc_access },
7475     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7476       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7477       .type = ARM_CP_NOP, .access = PL0_W,
7478       .accessfn = aa64_cacheop_poc_access },
7479     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7480       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7481       .access = PL0_W, .type = ARM_CP_DC_GVA,
7482 #ifndef CONFIG_USER_ONLY
7483       /* Avoid overhead of an access check that always passes in user-mode */
7484       .accessfn = aa64_zva_access,
7485 #endif
7486     },
7487     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7488       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7489       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7490 #ifndef CONFIG_USER_ONLY
7491       /* Avoid overhead of an access check that always passes in user-mode */
7492       .accessfn = aa64_zva_access,
7493 #endif
7494     },
7495     REGINFO_SENTINEL
7496 };
7497 
7498 #endif
7499 
7500 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7501                                      bool isread)
7502 {
7503     int el = arm_current_el(env);
7504 
7505     if (el == 0) {
7506         uint64_t sctlr = arm_sctlr(env, el);
7507         if (!(sctlr & SCTLR_EnRCTX)) {
7508             return CP_ACCESS_TRAP;
7509         }
7510     } else if (el == 1) {
7511         uint64_t hcr = arm_hcr_el2_eff(env);
7512         if (hcr & HCR_NV) {
7513             return CP_ACCESS_TRAP_EL2;
7514         }
7515     }
7516     return CP_ACCESS_OK;
7517 }
7518 
7519 static const ARMCPRegInfo predinv_reginfo[] = {
7520     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7521       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7522       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7523     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7524       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7525       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7526     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7527       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7528       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7529     /*
7530      * Note the AArch32 opcodes have a different OPC1.
7531      */
7532     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7533       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7534       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7535     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7536       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7537       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7538     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7539       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7540       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7541     REGINFO_SENTINEL
7542 };
7543 
7544 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7545 {
7546     /* Read the high 32 bits of the current CCSIDR */
7547     return extract64(ccsidr_read(env, ri), 32, 32);
7548 }
7549 
7550 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7551     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7552       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7553       .access = PL1_R,
7554       .accessfn = access_aa64_tid2,
7555       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7556     REGINFO_SENTINEL
7557 };
7558 
7559 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7560                                        bool isread)
7561 {
7562     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7563         return CP_ACCESS_TRAP_EL2;
7564     }
7565 
7566     return CP_ACCESS_OK;
7567 }
7568 
7569 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7570                                        bool isread)
7571 {
7572     if (arm_feature(env, ARM_FEATURE_V8)) {
7573         return access_aa64_tid3(env, ri, isread);
7574     }
7575 
7576     return CP_ACCESS_OK;
7577 }
7578 
7579 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7580                                      bool isread)
7581 {
7582     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7583         return CP_ACCESS_TRAP_EL2;
7584     }
7585 
7586     return CP_ACCESS_OK;
7587 }
7588 
7589 static const ARMCPRegInfo jazelle_regs[] = {
7590     { .name = "JIDR",
7591       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7592       .access = PL1_R, .accessfn = access_jazelle,
7593       .type = ARM_CP_CONST, .resetvalue = 0 },
7594     { .name = "JOSCR",
7595       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7596       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7597     { .name = "JMCR",
7598       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7599       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7600     REGINFO_SENTINEL
7601 };
7602 
7603 static const ARMCPRegInfo vhe_reginfo[] = {
7604     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7605       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7606       .access = PL2_RW,
7607       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7608     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7609       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7610       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7611       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7612 #ifndef CONFIG_USER_ONLY
7613     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7614       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7615       .fieldoffset =
7616         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7617       .type = ARM_CP_IO, .access = PL2_RW,
7618       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7619     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7620       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7621       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7622       .resetfn = gt_hv_timer_reset,
7623       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7624     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7625       .type = ARM_CP_IO,
7626       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7627       .access = PL2_RW,
7628       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7629       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7630     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7631       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7632       .type = ARM_CP_IO | ARM_CP_ALIAS,
7633       .access = PL2_RW, .accessfn = e2h_access,
7634       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7635       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7636     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7637       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7638       .type = ARM_CP_IO | ARM_CP_ALIAS,
7639       .access = PL2_RW, .accessfn = e2h_access,
7640       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7641       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7642     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7643       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7644       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7645       .access = PL2_RW, .accessfn = e2h_access,
7646       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7647     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7648       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7649       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7650       .access = PL2_RW, .accessfn = e2h_access,
7651       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7652     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7653       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7654       .type = ARM_CP_IO | ARM_CP_ALIAS,
7655       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7656       .access = PL2_RW, .accessfn = e2h_access,
7657       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7658     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7659       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7660       .type = ARM_CP_IO | ARM_CP_ALIAS,
7661       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7662       .access = PL2_RW, .accessfn = e2h_access,
7663       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7664 #endif
7665     REGINFO_SENTINEL
7666 };
7667 
7668 #ifndef CONFIG_USER_ONLY
7669 static const ARMCPRegInfo ats1e1_reginfo[] = {
7670     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7671       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7672       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7673       .writefn = ats_write64 },
7674     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7675       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7676       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7677       .writefn = ats_write64 },
7678     REGINFO_SENTINEL
7679 };
7680 
7681 static const ARMCPRegInfo ats1cp_reginfo[] = {
7682     { .name = "ATS1CPRP",
7683       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7684       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7685       .writefn = ats_write },
7686     { .name = "ATS1CPWP",
7687       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7688       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7689       .writefn = ats_write },
7690     REGINFO_SENTINEL
7691 };
7692 #endif
7693 
7694 /*
7695  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7696  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7697  * is non-zero, which is never for ARMv7, optionally in ARMv8
7698  * and mandatorily for ARMv8.2 and up.
7699  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7700  * implementation is RAZ/WI we can ignore this detail, as we
7701  * do for ACTLR.
7702  */
7703 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7704     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7705       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7706       .access = PL1_RW, .accessfn = access_tacr,
7707       .type = ARM_CP_CONST, .resetvalue = 0 },
7708     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7709       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7710       .access = PL2_RW, .type = ARM_CP_CONST,
7711       .resetvalue = 0 },
7712     REGINFO_SENTINEL
7713 };
7714 
7715 void register_cp_regs_for_features(ARMCPU *cpu)
7716 {
7717     /* Register all the coprocessor registers based on feature bits */
7718     CPUARMState *env = &cpu->env;
7719     if (arm_feature(env, ARM_FEATURE_M)) {
7720         /* M profile has no coprocessor registers */
7721         return;
7722     }
7723 
7724     define_arm_cp_regs(cpu, cp_reginfo);
7725     if (!arm_feature(env, ARM_FEATURE_V8)) {
7726         /* Must go early as it is full of wildcards that may be
7727          * overridden by later definitions.
7728          */
7729         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7730     }
7731 
7732     if (arm_feature(env, ARM_FEATURE_V6)) {
7733         /* The ID registers all have impdef reset values */
7734         ARMCPRegInfo v6_idregs[] = {
7735             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7736               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7737               .access = PL1_R, .type = ARM_CP_CONST,
7738               .accessfn = access_aa32_tid3,
7739               .resetvalue = cpu->isar.id_pfr0 },
7740             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7741              * the value of the GIC field until after we define these regs.
7742              */
7743             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7745               .access = PL1_R, .type = ARM_CP_NO_RAW,
7746               .accessfn = access_aa32_tid3,
7747               .readfn = id_pfr1_read,
7748               .writefn = arm_cp_write_ignore },
7749             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7750               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7751               .access = PL1_R, .type = ARM_CP_CONST,
7752               .accessfn = access_aa32_tid3,
7753               .resetvalue = cpu->isar.id_dfr0 },
7754             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7756               .access = PL1_R, .type = ARM_CP_CONST,
7757               .accessfn = access_aa32_tid3,
7758               .resetvalue = cpu->id_afr0 },
7759             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7761               .access = PL1_R, .type = ARM_CP_CONST,
7762               .accessfn = access_aa32_tid3,
7763               .resetvalue = cpu->isar.id_mmfr0 },
7764             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7765               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7766               .access = PL1_R, .type = ARM_CP_CONST,
7767               .accessfn = access_aa32_tid3,
7768               .resetvalue = cpu->isar.id_mmfr1 },
7769             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7770               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7771               .access = PL1_R, .type = ARM_CP_CONST,
7772               .accessfn = access_aa32_tid3,
7773               .resetvalue = cpu->isar.id_mmfr2 },
7774             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7776               .access = PL1_R, .type = ARM_CP_CONST,
7777               .accessfn = access_aa32_tid3,
7778               .resetvalue = cpu->isar.id_mmfr3 },
7779             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7781               .access = PL1_R, .type = ARM_CP_CONST,
7782               .accessfn = access_aa32_tid3,
7783               .resetvalue = cpu->isar.id_isar0 },
7784             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7785               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7786               .access = PL1_R, .type = ARM_CP_CONST,
7787               .accessfn = access_aa32_tid3,
7788               .resetvalue = cpu->isar.id_isar1 },
7789             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7791               .access = PL1_R, .type = ARM_CP_CONST,
7792               .accessfn = access_aa32_tid3,
7793               .resetvalue = cpu->isar.id_isar2 },
7794             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7796               .access = PL1_R, .type = ARM_CP_CONST,
7797               .accessfn = access_aa32_tid3,
7798               .resetvalue = cpu->isar.id_isar3 },
7799             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7801               .access = PL1_R, .type = ARM_CP_CONST,
7802               .accessfn = access_aa32_tid3,
7803               .resetvalue = cpu->isar.id_isar4 },
7804             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7805               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7806               .access = PL1_R, .type = ARM_CP_CONST,
7807               .accessfn = access_aa32_tid3,
7808               .resetvalue = cpu->isar.id_isar5 },
7809             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7811               .access = PL1_R, .type = ARM_CP_CONST,
7812               .accessfn = access_aa32_tid3,
7813               .resetvalue = cpu->isar.id_mmfr4 },
7814             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7815               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7816               .access = PL1_R, .type = ARM_CP_CONST,
7817               .accessfn = access_aa32_tid3,
7818               .resetvalue = cpu->isar.id_isar6 },
7819             REGINFO_SENTINEL
7820         };
7821         define_arm_cp_regs(cpu, v6_idregs);
7822         define_arm_cp_regs(cpu, v6_cp_reginfo);
7823     } else {
7824         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7825     }
7826     if (arm_feature(env, ARM_FEATURE_V6K)) {
7827         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7828     }
7829     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7830         !arm_feature(env, ARM_FEATURE_PMSA)) {
7831         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7832     }
7833     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7834         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7835     }
7836     if (arm_feature(env, ARM_FEATURE_V7)) {
7837         ARMCPRegInfo clidr = {
7838             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7839             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7840             .access = PL1_R, .type = ARM_CP_CONST,
7841             .accessfn = access_aa64_tid2,
7842             .resetvalue = cpu->clidr
7843         };
7844         define_one_arm_cp_reg(cpu, &clidr);
7845         define_arm_cp_regs(cpu, v7_cp_reginfo);
7846         define_debug_regs(cpu);
7847         define_pmu_regs(cpu);
7848     } else {
7849         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7850     }
7851     if (arm_feature(env, ARM_FEATURE_V8)) {
7852         /* AArch64 ID registers, which all have impdef reset values.
7853          * Note that within the ID register ranges the unused slots
7854          * must all RAZ, not UNDEF; future architecture versions may
7855          * define new registers here.
7856          */
7857         ARMCPRegInfo v8_idregs[] = {
7858             /*
7859              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7860              * emulation because we don't know the right value for the
7861              * GIC field until after we define these regs.
7862              */
7863             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7865               .access = PL1_R,
7866 #ifdef CONFIG_USER_ONLY
7867               .type = ARM_CP_CONST,
7868               .resetvalue = cpu->isar.id_aa64pfr0
7869 #else
7870               .type = ARM_CP_NO_RAW,
7871               .accessfn = access_aa64_tid3,
7872               .readfn = id_aa64pfr0_read,
7873               .writefn = arm_cp_write_ignore
7874 #endif
7875             },
7876             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7877               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7878               .access = PL1_R, .type = ARM_CP_CONST,
7879               .accessfn = access_aa64_tid3,
7880               .resetvalue = cpu->isar.id_aa64pfr1},
7881             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7882               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7883               .access = PL1_R, .type = ARM_CP_CONST,
7884               .accessfn = access_aa64_tid3,
7885               .resetvalue = 0 },
7886             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7887               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7888               .access = PL1_R, .type = ARM_CP_CONST,
7889               .accessfn = access_aa64_tid3,
7890               .resetvalue = 0 },
7891             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7892               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7893               .access = PL1_R, .type = ARM_CP_CONST,
7894               .accessfn = access_aa64_tid3,
7895               .resetvalue = cpu->isar.id_aa64zfr0 },
7896             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7897               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7898               .access = PL1_R, .type = ARM_CP_CONST,
7899               .accessfn = access_aa64_tid3,
7900               .resetvalue = 0 },
7901             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7902               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7903               .access = PL1_R, .type = ARM_CP_CONST,
7904               .accessfn = access_aa64_tid3,
7905               .resetvalue = 0 },
7906             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7907               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7908               .access = PL1_R, .type = ARM_CP_CONST,
7909               .accessfn = access_aa64_tid3,
7910               .resetvalue = 0 },
7911             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7912               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7913               .access = PL1_R, .type = ARM_CP_CONST,
7914               .accessfn = access_aa64_tid3,
7915               .resetvalue = cpu->isar.id_aa64dfr0 },
7916             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7917               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7918               .access = PL1_R, .type = ARM_CP_CONST,
7919               .accessfn = access_aa64_tid3,
7920               .resetvalue = cpu->isar.id_aa64dfr1 },
7921             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7922               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7923               .access = PL1_R, .type = ARM_CP_CONST,
7924               .accessfn = access_aa64_tid3,
7925               .resetvalue = 0 },
7926             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7927               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7928               .access = PL1_R, .type = ARM_CP_CONST,
7929               .accessfn = access_aa64_tid3,
7930               .resetvalue = 0 },
7931             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7932               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7933               .access = PL1_R, .type = ARM_CP_CONST,
7934               .accessfn = access_aa64_tid3,
7935               .resetvalue = cpu->id_aa64afr0 },
7936             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7937               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7938               .access = PL1_R, .type = ARM_CP_CONST,
7939               .accessfn = access_aa64_tid3,
7940               .resetvalue = cpu->id_aa64afr1 },
7941             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7942               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7943               .access = PL1_R, .type = ARM_CP_CONST,
7944               .accessfn = access_aa64_tid3,
7945               .resetvalue = 0 },
7946             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7947               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7948               .access = PL1_R, .type = ARM_CP_CONST,
7949               .accessfn = access_aa64_tid3,
7950               .resetvalue = 0 },
7951             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7952               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7953               .access = PL1_R, .type = ARM_CP_CONST,
7954               .accessfn = access_aa64_tid3,
7955               .resetvalue = cpu->isar.id_aa64isar0 },
7956             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7957               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7958               .access = PL1_R, .type = ARM_CP_CONST,
7959               .accessfn = access_aa64_tid3,
7960               .resetvalue = cpu->isar.id_aa64isar1 },
7961             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7962               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7963               .access = PL1_R, .type = ARM_CP_CONST,
7964               .accessfn = access_aa64_tid3,
7965               .resetvalue = 0 },
7966             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7967               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7968               .access = PL1_R, .type = ARM_CP_CONST,
7969               .accessfn = access_aa64_tid3,
7970               .resetvalue = 0 },
7971             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7972               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7973               .access = PL1_R, .type = ARM_CP_CONST,
7974               .accessfn = access_aa64_tid3,
7975               .resetvalue = 0 },
7976             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7978               .access = PL1_R, .type = ARM_CP_CONST,
7979               .accessfn = access_aa64_tid3,
7980               .resetvalue = 0 },
7981             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7983               .access = PL1_R, .type = ARM_CP_CONST,
7984               .accessfn = access_aa64_tid3,
7985               .resetvalue = 0 },
7986             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7987               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7988               .access = PL1_R, .type = ARM_CP_CONST,
7989               .accessfn = access_aa64_tid3,
7990               .resetvalue = 0 },
7991             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7992               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7993               .access = PL1_R, .type = ARM_CP_CONST,
7994               .accessfn = access_aa64_tid3,
7995               .resetvalue = cpu->isar.id_aa64mmfr0 },
7996             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7997               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7998               .access = PL1_R, .type = ARM_CP_CONST,
7999               .accessfn = access_aa64_tid3,
8000               .resetvalue = cpu->isar.id_aa64mmfr1 },
8001             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8003               .access = PL1_R, .type = ARM_CP_CONST,
8004               .accessfn = access_aa64_tid3,
8005               .resetvalue = cpu->isar.id_aa64mmfr2 },
8006             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8007               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8008               .access = PL1_R, .type = ARM_CP_CONST,
8009               .accessfn = access_aa64_tid3,
8010               .resetvalue = 0 },
8011             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8012               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8013               .access = PL1_R, .type = ARM_CP_CONST,
8014               .accessfn = access_aa64_tid3,
8015               .resetvalue = 0 },
8016             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8018               .access = PL1_R, .type = ARM_CP_CONST,
8019               .accessfn = access_aa64_tid3,
8020               .resetvalue = 0 },
8021             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8023               .access = PL1_R, .type = ARM_CP_CONST,
8024               .accessfn = access_aa64_tid3,
8025               .resetvalue = 0 },
8026             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8027               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8028               .access = PL1_R, .type = ARM_CP_CONST,
8029               .accessfn = access_aa64_tid3,
8030               .resetvalue = 0 },
8031             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8032               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8033               .access = PL1_R, .type = ARM_CP_CONST,
8034               .accessfn = access_aa64_tid3,
8035               .resetvalue = cpu->isar.mvfr0 },
8036             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8038               .access = PL1_R, .type = ARM_CP_CONST,
8039               .accessfn = access_aa64_tid3,
8040               .resetvalue = cpu->isar.mvfr1 },
8041             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8043               .access = PL1_R, .type = ARM_CP_CONST,
8044               .accessfn = access_aa64_tid3,
8045               .resetvalue = cpu->isar.mvfr2 },
8046             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8047               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8048               .access = PL1_R, .type = ARM_CP_CONST,
8049               .accessfn = access_aa64_tid3,
8050               .resetvalue = 0 },
8051             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8052               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8053               .access = PL1_R, .type = ARM_CP_CONST,
8054               .accessfn = access_aa64_tid3,
8055               .resetvalue = cpu->isar.id_pfr2 },
8056             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8057               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8058               .access = PL1_R, .type = ARM_CP_CONST,
8059               .accessfn = access_aa64_tid3,
8060               .resetvalue = 0 },
8061             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8063               .access = PL1_R, .type = ARM_CP_CONST,
8064               .accessfn = access_aa64_tid3,
8065               .resetvalue = 0 },
8066             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8067               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8068               .access = PL1_R, .type = ARM_CP_CONST,
8069               .accessfn = access_aa64_tid3,
8070               .resetvalue = 0 },
8071             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8072               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8073               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8074               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8075             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8076               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8077               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8078               .resetvalue = cpu->pmceid0 },
8079             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8080               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8081               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8082               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8083             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8084               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8085               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8086               .resetvalue = cpu->pmceid1 },
8087             REGINFO_SENTINEL
8088         };
8089 #ifdef CONFIG_USER_ONLY
8090         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8091             { .name = "ID_AA64PFR0_EL1",
8092               .exported_bits = 0x000f000f00ff0000,
8093               .fixed_bits    = 0x0000000000000011 },
8094             { .name = "ID_AA64PFR1_EL1",
8095               .exported_bits = 0x00000000000000f0 },
8096             { .name = "ID_AA64PFR*_EL1_RESERVED",
8097               .is_glob = true                     },
8098             { .name = "ID_AA64ZFR0_EL1"           },
8099             { .name = "ID_AA64MMFR0_EL1",
8100               .fixed_bits    = 0x00000000ff000000 },
8101             { .name = "ID_AA64MMFR1_EL1"          },
8102             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8103               .is_glob = true                     },
8104             { .name = "ID_AA64DFR0_EL1",
8105               .fixed_bits    = 0x0000000000000006 },
8106             { .name = "ID_AA64DFR1_EL1"           },
8107             { .name = "ID_AA64DFR*_EL1_RESERVED",
8108               .is_glob = true                     },
8109             { .name = "ID_AA64AFR*",
8110               .is_glob = true                     },
8111             { .name = "ID_AA64ISAR0_EL1",
8112               .exported_bits = 0x00fffffff0fffff0 },
8113             { .name = "ID_AA64ISAR1_EL1",
8114               .exported_bits = 0x000000f0ffffffff },
8115             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8116               .is_glob = true                     },
8117             REGUSERINFO_SENTINEL
8118         };
8119         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8120 #endif
8121         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8122         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8123             !arm_feature(env, ARM_FEATURE_EL2)) {
8124             ARMCPRegInfo rvbar = {
8125                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
8126                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8127                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
8128             };
8129             define_one_arm_cp_reg(cpu, &rvbar);
8130         }
8131         define_arm_cp_regs(cpu, v8_idregs);
8132         define_arm_cp_regs(cpu, v8_cp_reginfo);
8133     }
8134     if (arm_feature(env, ARM_FEATURE_EL2)) {
8135         uint64_t vmpidr_def = mpidr_read_val(env);
8136         ARMCPRegInfo vpidr_regs[] = {
8137             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8138               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8139               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8140               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
8141               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8142             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8143               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8144               .access = PL2_RW, .resetvalue = cpu->midr,
8145               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8146             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8147               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8148               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8149               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
8150               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8151             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8152               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8153               .access = PL2_RW,
8154               .resetvalue = vmpidr_def,
8155               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8156             REGINFO_SENTINEL
8157         };
8158         define_arm_cp_regs(cpu, vpidr_regs);
8159         define_arm_cp_regs(cpu, el2_cp_reginfo);
8160         if (arm_feature(env, ARM_FEATURE_V8)) {
8161             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8162         }
8163         if (cpu_isar_feature(aa64_sel2, cpu)) {
8164             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8165         }
8166         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8167         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8168             ARMCPRegInfo rvbar = {
8169                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8170                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8171                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
8172             };
8173             define_one_arm_cp_reg(cpu, &rvbar);
8174         }
8175     } else {
8176         /* If EL2 is missing but higher ELs are enabled, we need to
8177          * register the no_el2 reginfos.
8178          */
8179         if (arm_feature(env, ARM_FEATURE_EL3)) {
8180             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8181              * of MIDR_EL1 and MPIDR_EL1.
8182              */
8183             ARMCPRegInfo vpidr_regs[] = {
8184                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8185                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8186                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8187                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8188                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8189                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8190                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8191                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8192                   .type = ARM_CP_NO_RAW,
8193                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8194                 REGINFO_SENTINEL
8195             };
8196             define_arm_cp_regs(cpu, vpidr_regs);
8197             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8198             if (arm_feature(env, ARM_FEATURE_V8)) {
8199                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8200             }
8201         }
8202     }
8203     if (arm_feature(env, ARM_FEATURE_EL3)) {
8204         define_arm_cp_regs(cpu, el3_cp_reginfo);
8205         ARMCPRegInfo el3_regs[] = {
8206             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8207               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8208               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8209             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8210               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8211               .access = PL3_RW,
8212               .raw_writefn = raw_write, .writefn = sctlr_write,
8213               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8214               .resetvalue = cpu->reset_sctlr },
8215             REGINFO_SENTINEL
8216         };
8217 
8218         define_arm_cp_regs(cpu, el3_regs);
8219     }
8220     /* The behaviour of NSACR is sufficiently various that we don't
8221      * try to describe it in a single reginfo:
8222      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8223      *     reads as constant 0xc00 from NS EL1 and NS EL2
8224      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8225      *  if v7 without EL3, register doesn't exist
8226      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8227      */
8228     if (arm_feature(env, ARM_FEATURE_EL3)) {
8229         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8230             ARMCPRegInfo nsacr = {
8231                 .name = "NSACR", .type = ARM_CP_CONST,
8232                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8233                 .access = PL1_RW, .accessfn = nsacr_access,
8234                 .resetvalue = 0xc00
8235             };
8236             define_one_arm_cp_reg(cpu, &nsacr);
8237         } else {
8238             ARMCPRegInfo nsacr = {
8239                 .name = "NSACR",
8240                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8241                 .access = PL3_RW | PL1_R,
8242                 .resetvalue = 0,
8243                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8244             };
8245             define_one_arm_cp_reg(cpu, &nsacr);
8246         }
8247     } else {
8248         if (arm_feature(env, ARM_FEATURE_V8)) {
8249             ARMCPRegInfo nsacr = {
8250                 .name = "NSACR", .type = ARM_CP_CONST,
8251                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8252                 .access = PL1_R,
8253                 .resetvalue = 0xc00
8254             };
8255             define_one_arm_cp_reg(cpu, &nsacr);
8256         }
8257     }
8258 
8259     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8260         if (arm_feature(env, ARM_FEATURE_V6)) {
8261             /* PMSAv6 not implemented */
8262             assert(arm_feature(env, ARM_FEATURE_V7));
8263             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8264             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8265         } else {
8266             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8267         }
8268     } else {
8269         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8270         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8271         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8272         if (cpu_isar_feature(aa32_hpd, cpu)) {
8273             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8274         }
8275     }
8276     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8277         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8278     }
8279     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8280         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8281     }
8282     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8283         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8284     }
8285     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8286         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8287     }
8288     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8289         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8290     }
8291     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8292         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8293     }
8294     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8295         define_arm_cp_regs(cpu, omap_cp_reginfo);
8296     }
8297     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8298         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8299     }
8300     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8301         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8302     }
8303     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8304         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8305     }
8306     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8307         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8308     }
8309     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8310         define_arm_cp_regs(cpu, jazelle_regs);
8311     }
8312     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8313      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8314      * be read-only (ie write causes UNDEF exception).
8315      */
8316     {
8317         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8318             /* Pre-v8 MIDR space.
8319              * Note that the MIDR isn't a simple constant register because
8320              * of the TI925 behaviour where writes to another register can
8321              * cause the MIDR value to change.
8322              *
8323              * Unimplemented registers in the c15 0 0 0 space default to
8324              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8325              * and friends override accordingly.
8326              */
8327             { .name = "MIDR",
8328               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8329               .access = PL1_R, .resetvalue = cpu->midr,
8330               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8331               .readfn = midr_read,
8332               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8333               .type = ARM_CP_OVERRIDE },
8334             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8335             { .name = "DUMMY",
8336               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8337               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8338             { .name = "DUMMY",
8339               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8340               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8341             { .name = "DUMMY",
8342               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8343               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8344             { .name = "DUMMY",
8345               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8346               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8347             { .name = "DUMMY",
8348               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8349               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8350             REGINFO_SENTINEL
8351         };
8352         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8353             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8354               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8355               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8356               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8357               .readfn = midr_read },
8358             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8359             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8360               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8361               .access = PL1_R, .resetvalue = cpu->midr },
8362             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8363               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8364               .access = PL1_R, .resetvalue = cpu->midr },
8365             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8366               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8367               .access = PL1_R,
8368               .accessfn = access_aa64_tid1,
8369               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8370             REGINFO_SENTINEL
8371         };
8372         ARMCPRegInfo id_cp_reginfo[] = {
8373             /* These are common to v8 and pre-v8 */
8374             { .name = "CTR",
8375               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8376               .access = PL1_R, .accessfn = ctr_el0_access,
8377               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8378             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8379               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8380               .access = PL0_R, .accessfn = ctr_el0_access,
8381               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8382             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8383             { .name = "TCMTR",
8384               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8385               .access = PL1_R,
8386               .accessfn = access_aa32_tid1,
8387               .type = ARM_CP_CONST, .resetvalue = 0 },
8388             REGINFO_SENTINEL
8389         };
8390         /* TLBTR is specific to VMSA */
8391         ARMCPRegInfo id_tlbtr_reginfo = {
8392               .name = "TLBTR",
8393               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8394               .access = PL1_R,
8395               .accessfn = access_aa32_tid1,
8396               .type = ARM_CP_CONST, .resetvalue = 0,
8397         };
8398         /* MPUIR is specific to PMSA V6+ */
8399         ARMCPRegInfo id_mpuir_reginfo = {
8400               .name = "MPUIR",
8401               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8402               .access = PL1_R, .type = ARM_CP_CONST,
8403               .resetvalue = cpu->pmsav7_dregion << 8
8404         };
8405         ARMCPRegInfo crn0_wi_reginfo = {
8406             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8407             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8408             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8409         };
8410 #ifdef CONFIG_USER_ONLY
8411         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8412             { .name = "MIDR_EL1",
8413               .exported_bits = 0x00000000ffffffff },
8414             { .name = "REVIDR_EL1"                },
8415             REGUSERINFO_SENTINEL
8416         };
8417         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8418 #endif
8419         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8420             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8421             ARMCPRegInfo *r;
8422             /* Register the blanket "writes ignored" value first to cover the
8423              * whole space. Then update the specific ID registers to allow write
8424              * access, so that they ignore writes rather than causing them to
8425              * UNDEF.
8426              */
8427             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8428             for (r = id_pre_v8_midr_cp_reginfo;
8429                  r->type != ARM_CP_SENTINEL; r++) {
8430                 r->access = PL1_RW;
8431             }
8432             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8433                 r->access = PL1_RW;
8434             }
8435             id_mpuir_reginfo.access = PL1_RW;
8436             id_tlbtr_reginfo.access = PL1_RW;
8437         }
8438         if (arm_feature(env, ARM_FEATURE_V8)) {
8439             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8440         } else {
8441             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8442         }
8443         define_arm_cp_regs(cpu, id_cp_reginfo);
8444         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8445             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8446         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8447             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8448         }
8449     }
8450 
8451     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8452         ARMCPRegInfo mpidr_cp_reginfo[] = {
8453             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8454               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8455               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8456             REGINFO_SENTINEL
8457         };
8458 #ifdef CONFIG_USER_ONLY
8459         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8460             { .name = "MPIDR_EL1",
8461               .fixed_bits = 0x0000000080000000 },
8462             REGUSERINFO_SENTINEL
8463         };
8464         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8465 #endif
8466         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8467     }
8468 
8469     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8470         ARMCPRegInfo auxcr_reginfo[] = {
8471             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8472               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8473               .access = PL1_RW, .accessfn = access_tacr,
8474               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8475             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8476               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8477               .access = PL2_RW, .type = ARM_CP_CONST,
8478               .resetvalue = 0 },
8479             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8480               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8481               .access = PL3_RW, .type = ARM_CP_CONST,
8482               .resetvalue = 0 },
8483             REGINFO_SENTINEL
8484         };
8485         define_arm_cp_regs(cpu, auxcr_reginfo);
8486         if (cpu_isar_feature(aa32_ac2, cpu)) {
8487             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8488         }
8489     }
8490 
8491     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8492         /*
8493          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8494          * There are two flavours:
8495          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8496          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8497          *      32-bit register visible to AArch32 at a different encoding
8498          *      to the "flavour 1" register and with the bits rearranged to
8499          *      be able to squash a 64-bit address into the 32-bit view.
8500          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8501          * in future if we support AArch32-only configs of some of the
8502          * AArch64 cores we might need to add a specific feature flag
8503          * to indicate cores with "flavour 2" CBAR.
8504          */
8505         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8506             /* 32 bit view is [31:18] 0...0 [43:32]. */
8507             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8508                 | extract64(cpu->reset_cbar, 32, 12);
8509             ARMCPRegInfo cbar_reginfo[] = {
8510                 { .name = "CBAR",
8511                   .type = ARM_CP_CONST,
8512                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8513                   .access = PL1_R, .resetvalue = cbar32 },
8514                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8515                   .type = ARM_CP_CONST,
8516                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8517                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8518                 REGINFO_SENTINEL
8519             };
8520             /* We don't implement a r/w 64 bit CBAR currently */
8521             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8522             define_arm_cp_regs(cpu, cbar_reginfo);
8523         } else {
8524             ARMCPRegInfo cbar = {
8525                 .name = "CBAR",
8526                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8527                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8528                 .fieldoffset = offsetof(CPUARMState,
8529                                         cp15.c15_config_base_address)
8530             };
8531             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8532                 cbar.access = PL1_R;
8533                 cbar.fieldoffset = 0;
8534                 cbar.type = ARM_CP_CONST;
8535             }
8536             define_one_arm_cp_reg(cpu, &cbar);
8537         }
8538     }
8539 
8540     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8541         ARMCPRegInfo vbar_cp_reginfo[] = {
8542             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8543               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8544               .access = PL1_RW, .writefn = vbar_write,
8545               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8546                                      offsetof(CPUARMState, cp15.vbar_ns) },
8547               .resetvalue = 0 },
8548             REGINFO_SENTINEL
8549         };
8550         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8551     }
8552 
8553     /* Generic registers whose values depend on the implementation */
8554     {
8555         ARMCPRegInfo sctlr = {
8556             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8557             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8558             .access = PL1_RW, .accessfn = access_tvm_trvm,
8559             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8560                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8561             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8562             .raw_writefn = raw_write,
8563         };
8564         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8565             /* Normally we would always end the TB on an SCTLR write, but Linux
8566              * arch/arm/mach-pxa/sleep.S expects two instructions following
8567              * an MMU enable to execute from cache.  Imitate this behaviour.
8568              */
8569             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8570         }
8571         define_one_arm_cp_reg(cpu, &sctlr);
8572     }
8573 
8574     if (cpu_isar_feature(aa64_lor, cpu)) {
8575         define_arm_cp_regs(cpu, lor_reginfo);
8576     }
8577     if (cpu_isar_feature(aa64_pan, cpu)) {
8578         define_one_arm_cp_reg(cpu, &pan_reginfo);
8579     }
8580 #ifndef CONFIG_USER_ONLY
8581     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8582         define_arm_cp_regs(cpu, ats1e1_reginfo);
8583     }
8584     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8585         define_arm_cp_regs(cpu, ats1cp_reginfo);
8586     }
8587 #endif
8588     if (cpu_isar_feature(aa64_uao, cpu)) {
8589         define_one_arm_cp_reg(cpu, &uao_reginfo);
8590     }
8591 
8592     if (cpu_isar_feature(aa64_dit, cpu)) {
8593         define_one_arm_cp_reg(cpu, &dit_reginfo);
8594     }
8595     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8596         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8597     }
8598 
8599     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8600         define_arm_cp_regs(cpu, vhe_reginfo);
8601     }
8602 
8603     if (cpu_isar_feature(aa64_sve, cpu)) {
8604         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8605         if (arm_feature(env, ARM_FEATURE_EL2)) {
8606             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8607         } else {
8608             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8609         }
8610         if (arm_feature(env, ARM_FEATURE_EL3)) {
8611             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8612         }
8613     }
8614 
8615 #ifdef TARGET_AARCH64
8616     if (cpu_isar_feature(aa64_pauth, cpu)) {
8617         define_arm_cp_regs(cpu, pauth_reginfo);
8618     }
8619     if (cpu_isar_feature(aa64_rndr, cpu)) {
8620         define_arm_cp_regs(cpu, rndr_reginfo);
8621     }
8622     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8623         define_arm_cp_regs(cpu, tlbirange_reginfo);
8624     }
8625     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8626         define_arm_cp_regs(cpu, tlbios_reginfo);
8627     }
8628 #ifndef CONFIG_USER_ONLY
8629     /* Data Cache clean instructions up to PoP */
8630     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8631         define_one_arm_cp_reg(cpu, dcpop_reg);
8632 
8633         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8634             define_one_arm_cp_reg(cpu, dcpodp_reg);
8635         }
8636     }
8637 #endif /*CONFIG_USER_ONLY*/
8638 
8639     /*
8640      * If full MTE is enabled, add all of the system registers.
8641      * If only "instructions available at EL0" are enabled,
8642      * then define only a RAZ/WI version of PSTATE.TCO.
8643      */
8644     if (cpu_isar_feature(aa64_mte, cpu)) {
8645         define_arm_cp_regs(cpu, mte_reginfo);
8646         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8647     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8648         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8649         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8650     }
8651 #endif
8652 
8653     if (cpu_isar_feature(any_predinv, cpu)) {
8654         define_arm_cp_regs(cpu, predinv_reginfo);
8655     }
8656 
8657     if (cpu_isar_feature(any_ccidx, cpu)) {
8658         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8659     }
8660 
8661 #ifndef CONFIG_USER_ONLY
8662     /*
8663      * Register redirections and aliases must be done last,
8664      * after the registers from the other extensions have been defined.
8665      */
8666     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8667         define_arm_vh_e2h_redirects_aliases(cpu);
8668     }
8669 #endif
8670 }
8671 
8672 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8673 {
8674     CPUState *cs = CPU(cpu);
8675     CPUARMState *env = &cpu->env;
8676 
8677     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8678         /*
8679          * The lower part of each SVE register aliases to the FPU
8680          * registers so we don't need to include both.
8681          */
8682 #ifdef TARGET_AARCH64
8683         if (isar_feature_aa64_sve(&cpu->isar)) {
8684             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8685                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8686                                      "sve-registers.xml", 0);
8687         } else
8688 #endif
8689         {
8690             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8691                                      aarch64_fpu_gdb_set_reg,
8692                                      34, "aarch64-fpu.xml", 0);
8693         }
8694     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8695         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8696                                  51, "arm-neon.xml", 0);
8697     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8698         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8699                                  35, "arm-vfp3.xml", 0);
8700     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8701         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8702                                  19, "arm-vfp.xml", 0);
8703     }
8704     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8705                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8706                              "system-registers.xml", 0);
8707 
8708 }
8709 
8710 /* Sort alphabetically by type name, except for "any". */
8711 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8712 {
8713     ObjectClass *class_a = (ObjectClass *)a;
8714     ObjectClass *class_b = (ObjectClass *)b;
8715     const char *name_a, *name_b;
8716 
8717     name_a = object_class_get_name(class_a);
8718     name_b = object_class_get_name(class_b);
8719     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8720         return 1;
8721     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8722         return -1;
8723     } else {
8724         return strcmp(name_a, name_b);
8725     }
8726 }
8727 
8728 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8729 {
8730     ObjectClass *oc = data;
8731     const char *typename;
8732     char *name;
8733 
8734     typename = object_class_get_name(oc);
8735     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8736     qemu_printf("  %s\n", name);
8737     g_free(name);
8738 }
8739 
8740 void arm_cpu_list(void)
8741 {
8742     GSList *list;
8743 
8744     list = object_class_get_list(TYPE_ARM_CPU, false);
8745     list = g_slist_sort(list, arm_cpu_list_compare);
8746     qemu_printf("Available CPUs:\n");
8747     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8748     g_slist_free(list);
8749 }
8750 
8751 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8752 {
8753     ObjectClass *oc = data;
8754     CpuDefinitionInfoList **cpu_list = user_data;
8755     CpuDefinitionInfo *info;
8756     const char *typename;
8757 
8758     typename = object_class_get_name(oc);
8759     info = g_malloc0(sizeof(*info));
8760     info->name = g_strndup(typename,
8761                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8762     info->q_typename = g_strdup(typename);
8763 
8764     QAPI_LIST_PREPEND(*cpu_list, info);
8765 }
8766 
8767 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8768 {
8769     CpuDefinitionInfoList *cpu_list = NULL;
8770     GSList *list;
8771 
8772     list = object_class_get_list(TYPE_ARM_CPU, false);
8773     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8774     g_slist_free(list);
8775 
8776     return cpu_list;
8777 }
8778 
8779 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8780                                    void *opaque, int state, int secstate,
8781                                    int crm, int opc1, int opc2,
8782                                    const char *name)
8783 {
8784     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8785      * add a single reginfo struct to the hash table.
8786      */
8787     uint32_t *key = g_new(uint32_t, 1);
8788     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8789     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8790     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8791 
8792     r2->name = g_strdup(name);
8793     /* Reset the secure state to the specific incoming state.  This is
8794      * necessary as the register may have been defined with both states.
8795      */
8796     r2->secure = secstate;
8797 
8798     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8799         /* Register is banked (using both entries in array).
8800          * Overwriting fieldoffset as the array is only used to define
8801          * banked registers but later only fieldoffset is used.
8802          */
8803         r2->fieldoffset = r->bank_fieldoffsets[ns];
8804     }
8805 
8806     if (state == ARM_CP_STATE_AA32) {
8807         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8808             /* If the register is banked then we don't need to migrate or
8809              * reset the 32-bit instance in certain cases:
8810              *
8811              * 1) If the register has both 32-bit and 64-bit instances then we
8812              *    can count on the 64-bit instance taking care of the
8813              *    non-secure bank.
8814              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8815              *    taking care of the secure bank.  This requires that separate
8816              *    32 and 64-bit definitions are provided.
8817              */
8818             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8819                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8820                 r2->type |= ARM_CP_ALIAS;
8821             }
8822         } else if ((secstate != r->secure) && !ns) {
8823             /* The register is not banked so we only want to allow migration of
8824              * the non-secure instance.
8825              */
8826             r2->type |= ARM_CP_ALIAS;
8827         }
8828 
8829         if (r->state == ARM_CP_STATE_BOTH) {
8830             /* We assume it is a cp15 register if the .cp field is left unset.
8831              */
8832             if (r2->cp == 0) {
8833                 r2->cp = 15;
8834             }
8835 
8836 #ifdef HOST_WORDS_BIGENDIAN
8837             if (r2->fieldoffset) {
8838                 r2->fieldoffset += sizeof(uint32_t);
8839             }
8840 #endif
8841         }
8842     }
8843     if (state == ARM_CP_STATE_AA64) {
8844         /* To allow abbreviation of ARMCPRegInfo
8845          * definitions, we treat cp == 0 as equivalent to
8846          * the value for "standard guest-visible sysreg".
8847          * STATE_BOTH definitions are also always "standard
8848          * sysreg" in their AArch64 view (the .cp value may
8849          * be non-zero for the benefit of the AArch32 view).
8850          */
8851         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8852             r2->cp = CP_REG_ARM64_SYSREG_CP;
8853         }
8854         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8855                                   r2->opc0, opc1, opc2);
8856     } else {
8857         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8858     }
8859     if (opaque) {
8860         r2->opaque = opaque;
8861     }
8862     /* reginfo passed to helpers is correct for the actual access,
8863      * and is never ARM_CP_STATE_BOTH:
8864      */
8865     r2->state = state;
8866     /* Make sure reginfo passed to helpers for wildcarded regs
8867      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8868      */
8869     r2->crm = crm;
8870     r2->opc1 = opc1;
8871     r2->opc2 = opc2;
8872     /* By convention, for wildcarded registers only the first
8873      * entry is used for migration; the others are marked as
8874      * ALIAS so we don't try to transfer the register
8875      * multiple times. Special registers (ie NOP/WFI) are
8876      * never migratable and not even raw-accessible.
8877      */
8878     if ((r->type & ARM_CP_SPECIAL)) {
8879         r2->type |= ARM_CP_NO_RAW;
8880     }
8881     if (((r->crm == CP_ANY) && crm != 0) ||
8882         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8883         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8884         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8885     }
8886 
8887     /* Check that raw accesses are either forbidden or handled. Note that
8888      * we can't assert this earlier because the setup of fieldoffset for
8889      * banked registers has to be done first.
8890      */
8891     if (!(r2->type & ARM_CP_NO_RAW)) {
8892         assert(!raw_accessors_invalid(r2));
8893     }
8894 
8895     /* Overriding of an existing definition must be explicitly
8896      * requested.
8897      */
8898     if (!(r->type & ARM_CP_OVERRIDE)) {
8899         ARMCPRegInfo *oldreg;
8900         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8901         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8902             fprintf(stderr, "Register redefined: cp=%d %d bit "
8903                     "crn=%d crm=%d opc1=%d opc2=%d, "
8904                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8905                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8906                     oldreg->name, r2->name);
8907             g_assert_not_reached();
8908         }
8909     }
8910     g_hash_table_insert(cpu->cp_regs, key, r2);
8911 }
8912 
8913 
8914 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8915                                        const ARMCPRegInfo *r, void *opaque)
8916 {
8917     /* Define implementations of coprocessor registers.
8918      * We store these in a hashtable because typically
8919      * there are less than 150 registers in a space which
8920      * is 16*16*16*8*8 = 262144 in size.
8921      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8922      * If a register is defined twice then the second definition is
8923      * used, so this can be used to define some generic registers and
8924      * then override them with implementation specific variations.
8925      * At least one of the original and the second definition should
8926      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8927      * against accidental use.
8928      *
8929      * The state field defines whether the register is to be
8930      * visible in the AArch32 or AArch64 execution state. If the
8931      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8932      * reginfo structure for the AArch32 view, which sees the lower
8933      * 32 bits of the 64 bit register.
8934      *
8935      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8936      * be wildcarded. AArch64 registers are always considered to be 64
8937      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8938      * the register, if any.
8939      */
8940     int crm, opc1, opc2, state;
8941     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8942     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8943     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8944     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8945     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8946     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8947     /* 64 bit registers have only CRm and Opc1 fields */
8948     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8949     /* op0 only exists in the AArch64 encodings */
8950     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8951     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8952     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8953     /*
8954      * This API is only for Arm's system coprocessors (14 and 15) or
8955      * (M-profile or v7A-and-earlier only) for implementation defined
8956      * coprocessors in the range 0..7.  Our decode assumes this, since
8957      * 8..13 can be used for other insns including VFP and Neon. See
8958      * valid_cp() in translate.c.  Assert here that we haven't tried
8959      * to use an invalid coprocessor number.
8960      */
8961     switch (r->state) {
8962     case ARM_CP_STATE_BOTH:
8963         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8964         if (r->cp == 0) {
8965             break;
8966         }
8967         /* fall through */
8968     case ARM_CP_STATE_AA32:
8969         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8970             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8971             assert(r->cp >= 14 && r->cp <= 15);
8972         } else {
8973             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8974         }
8975         break;
8976     case ARM_CP_STATE_AA64:
8977         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8978         break;
8979     default:
8980         g_assert_not_reached();
8981     }
8982     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8983      * encodes a minimum access level for the register. We roll this
8984      * runtime check into our general permission check code, so check
8985      * here that the reginfo's specified permissions are strict enough
8986      * to encompass the generic architectural permission check.
8987      */
8988     if (r->state != ARM_CP_STATE_AA32) {
8989         int mask = 0;
8990         switch (r->opc1) {
8991         case 0:
8992             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8993             mask = PL0U_R | PL1_RW;
8994             break;
8995         case 1: case 2:
8996             /* min_EL EL1 */
8997             mask = PL1_RW;
8998             break;
8999         case 3:
9000             /* min_EL EL0 */
9001             mask = PL0_RW;
9002             break;
9003         case 4:
9004         case 5:
9005             /* min_EL EL2 */
9006             mask = PL2_RW;
9007             break;
9008         case 6:
9009             /* min_EL EL3 */
9010             mask = PL3_RW;
9011             break;
9012         case 7:
9013             /* min_EL EL1, secure mode only (we don't check the latter) */
9014             mask = PL1_RW;
9015             break;
9016         default:
9017             /* broken reginfo with out-of-range opc1 */
9018             assert(false);
9019             break;
9020         }
9021         /* assert our permissions are not too lax (stricter is fine) */
9022         assert((r->access & ~mask) == 0);
9023     }
9024 
9025     /* Check that the register definition has enough info to handle
9026      * reads and writes if they are permitted.
9027      */
9028     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
9029         if (r->access & PL3_R) {
9030             assert((r->fieldoffset ||
9031                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9032                    r->readfn);
9033         }
9034         if (r->access & PL3_W) {
9035             assert((r->fieldoffset ||
9036                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9037                    r->writefn);
9038         }
9039     }
9040     /* Bad type field probably means missing sentinel at end of reg list */
9041     assert(cptype_valid(r->type));
9042     for (crm = crmmin; crm <= crmmax; crm++) {
9043         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9044             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9045                 for (state = ARM_CP_STATE_AA32;
9046                      state <= ARM_CP_STATE_AA64; state++) {
9047                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9048                         continue;
9049                     }
9050                     if (state == ARM_CP_STATE_AA32) {
9051                         /* Under AArch32 CP registers can be common
9052                          * (same for secure and non-secure world) or banked.
9053                          */
9054                         char *name;
9055 
9056                         switch (r->secure) {
9057                         case ARM_CP_SECSTATE_S:
9058                         case ARM_CP_SECSTATE_NS:
9059                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9060                                                    r->secure, crm, opc1, opc2,
9061                                                    r->name);
9062                             break;
9063                         default:
9064                             name = g_strdup_printf("%s_S", r->name);
9065                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9066                                                    ARM_CP_SECSTATE_S,
9067                                                    crm, opc1, opc2, name);
9068                             g_free(name);
9069                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9070                                                    ARM_CP_SECSTATE_NS,
9071                                                    crm, opc1, opc2, r->name);
9072                             break;
9073                         }
9074                     } else {
9075                         /* AArch64 registers get mapped to non-secure instance
9076                          * of AArch32 */
9077                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9078                                                ARM_CP_SECSTATE_NS,
9079                                                crm, opc1, opc2, r->name);
9080                     }
9081                 }
9082             }
9083         }
9084     }
9085 }
9086 
9087 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
9088                                     const ARMCPRegInfo *regs, void *opaque)
9089 {
9090     /* Define a whole list of registers */
9091     const ARMCPRegInfo *r;
9092     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9093         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
9094     }
9095 }
9096 
9097 /*
9098  * Modify ARMCPRegInfo for access from userspace.
9099  *
9100  * This is a data driven modification directed by
9101  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9102  * user-space cannot alter any values and dynamic values pertaining to
9103  * execution state are hidden from user space view anyway.
9104  */
9105 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
9106 {
9107     const ARMCPRegUserSpaceInfo *m;
9108     ARMCPRegInfo *r;
9109 
9110     for (m = mods; m->name; m++) {
9111         GPatternSpec *pat = NULL;
9112         if (m->is_glob) {
9113             pat = g_pattern_spec_new(m->name);
9114         }
9115         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
9116             if (pat && g_pattern_match_string(pat, r->name)) {
9117                 r->type = ARM_CP_CONST;
9118                 r->access = PL0U_R;
9119                 r->resetvalue = 0;
9120                 /* continue */
9121             } else if (strcmp(r->name, m->name) == 0) {
9122                 r->type = ARM_CP_CONST;
9123                 r->access = PL0U_R;
9124                 r->resetvalue &= m->exported_bits;
9125                 r->resetvalue |= m->fixed_bits;
9126                 break;
9127             }
9128         }
9129         if (pat) {
9130             g_pattern_spec_free(pat);
9131         }
9132     }
9133 }
9134 
9135 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9136 {
9137     return g_hash_table_lookup(cpregs, &encoded_cp);
9138 }
9139 
9140 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9141                          uint64_t value)
9142 {
9143     /* Helper coprocessor write function for write-ignore registers */
9144 }
9145 
9146 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9147 {
9148     /* Helper coprocessor write function for read-as-zero registers */
9149     return 0;
9150 }
9151 
9152 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9153 {
9154     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9155 }
9156 
9157 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9158 {
9159     /* Return true if it is not valid for us to switch to
9160      * this CPU mode (ie all the UNPREDICTABLE cases in
9161      * the ARM ARM CPSRWriteByInstr pseudocode).
9162      */
9163 
9164     /* Changes to or from Hyp via MSR and CPS are illegal. */
9165     if (write_type == CPSRWriteByInstr &&
9166         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9167          mode == ARM_CPU_MODE_HYP)) {
9168         return 1;
9169     }
9170 
9171     switch (mode) {
9172     case ARM_CPU_MODE_USR:
9173         return 0;
9174     case ARM_CPU_MODE_SYS:
9175     case ARM_CPU_MODE_SVC:
9176     case ARM_CPU_MODE_ABT:
9177     case ARM_CPU_MODE_UND:
9178     case ARM_CPU_MODE_IRQ:
9179     case ARM_CPU_MODE_FIQ:
9180         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
9181          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9182          */
9183         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9184          * and CPS are treated as illegal mode changes.
9185          */
9186         if (write_type == CPSRWriteByInstr &&
9187             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9188             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9189             return 1;
9190         }
9191         return 0;
9192     case ARM_CPU_MODE_HYP:
9193         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9194     case ARM_CPU_MODE_MON:
9195         return arm_current_el(env) < 3;
9196     default:
9197         return 1;
9198     }
9199 }
9200 
9201 uint32_t cpsr_read(CPUARMState *env)
9202 {
9203     int ZF;
9204     ZF = (env->ZF == 0);
9205     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9206         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9207         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9208         | ((env->condexec_bits & 0xfc) << 8)
9209         | (env->GE << 16) | (env->daif & CPSR_AIF);
9210 }
9211 
9212 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9213                 CPSRWriteType write_type)
9214 {
9215     uint32_t changed_daif;
9216 
9217     if (mask & CPSR_NZCV) {
9218         env->ZF = (~val) & CPSR_Z;
9219         env->NF = val;
9220         env->CF = (val >> 29) & 1;
9221         env->VF = (val << 3) & 0x80000000;
9222     }
9223     if (mask & CPSR_Q)
9224         env->QF = ((val & CPSR_Q) != 0);
9225     if (mask & CPSR_T)
9226         env->thumb = ((val & CPSR_T) != 0);
9227     if (mask & CPSR_IT_0_1) {
9228         env->condexec_bits &= ~3;
9229         env->condexec_bits |= (val >> 25) & 3;
9230     }
9231     if (mask & CPSR_IT_2_7) {
9232         env->condexec_bits &= 3;
9233         env->condexec_bits |= (val >> 8) & 0xfc;
9234     }
9235     if (mask & CPSR_GE) {
9236         env->GE = (val >> 16) & 0xf;
9237     }
9238 
9239     /* In a V7 implementation that includes the security extensions but does
9240      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9241      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9242      * bits respectively.
9243      *
9244      * In a V8 implementation, it is permitted for privileged software to
9245      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9246      */
9247     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9248         arm_feature(env, ARM_FEATURE_EL3) &&
9249         !arm_feature(env, ARM_FEATURE_EL2) &&
9250         !arm_is_secure(env)) {
9251 
9252         changed_daif = (env->daif ^ val) & mask;
9253 
9254         if (changed_daif & CPSR_A) {
9255             /* Check to see if we are allowed to change the masking of async
9256              * abort exceptions from a non-secure state.
9257              */
9258             if (!(env->cp15.scr_el3 & SCR_AW)) {
9259                 qemu_log_mask(LOG_GUEST_ERROR,
9260                               "Ignoring attempt to switch CPSR_A flag from "
9261                               "non-secure world with SCR.AW bit clear\n");
9262                 mask &= ~CPSR_A;
9263             }
9264         }
9265 
9266         if (changed_daif & CPSR_F) {
9267             /* Check to see if we are allowed to change the masking of FIQ
9268              * exceptions from a non-secure state.
9269              */
9270             if (!(env->cp15.scr_el3 & SCR_FW)) {
9271                 qemu_log_mask(LOG_GUEST_ERROR,
9272                               "Ignoring attempt to switch CPSR_F flag from "
9273                               "non-secure world with SCR.FW bit clear\n");
9274                 mask &= ~CPSR_F;
9275             }
9276 
9277             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9278              * If this bit is set software is not allowed to mask
9279              * FIQs, but is allowed to set CPSR_F to 0.
9280              */
9281             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9282                 (val & CPSR_F)) {
9283                 qemu_log_mask(LOG_GUEST_ERROR,
9284                               "Ignoring attempt to enable CPSR_F flag "
9285                               "(non-maskable FIQ [NMFI] support enabled)\n");
9286                 mask &= ~CPSR_F;
9287             }
9288         }
9289     }
9290 
9291     env->daif &= ~(CPSR_AIF & mask);
9292     env->daif |= val & CPSR_AIF & mask;
9293 
9294     if (write_type != CPSRWriteRaw &&
9295         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9296         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9297             /* Note that we can only get here in USR mode if this is a
9298              * gdb stub write; for this case we follow the architectural
9299              * behaviour for guest writes in USR mode of ignoring an attempt
9300              * to switch mode. (Those are caught by translate.c for writes
9301              * triggered by guest instructions.)
9302              */
9303             mask &= ~CPSR_M;
9304         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9305             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9306              * v7, and has defined behaviour in v8:
9307              *  + leave CPSR.M untouched
9308              *  + allow changes to the other CPSR fields
9309              *  + set PSTATE.IL
9310              * For user changes via the GDB stub, we don't set PSTATE.IL,
9311              * as this would be unnecessarily harsh for a user error.
9312              */
9313             mask &= ~CPSR_M;
9314             if (write_type != CPSRWriteByGDBStub &&
9315                 arm_feature(env, ARM_FEATURE_V8)) {
9316                 mask |= CPSR_IL;
9317                 val |= CPSR_IL;
9318             }
9319             qemu_log_mask(LOG_GUEST_ERROR,
9320                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9321                           aarch32_mode_name(env->uncached_cpsr),
9322                           aarch32_mode_name(val));
9323         } else {
9324             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9325                           write_type == CPSRWriteExceptionReturn ?
9326                           "Exception return from AArch32" :
9327                           "AArch32 mode switch from",
9328                           aarch32_mode_name(env->uncached_cpsr),
9329                           aarch32_mode_name(val), env->regs[15]);
9330             switch_mode(env, val & CPSR_M);
9331         }
9332     }
9333     mask &= ~CACHED_CPSR_BITS;
9334     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9335 }
9336 
9337 /* Sign/zero extend */
9338 uint32_t HELPER(sxtb16)(uint32_t x)
9339 {
9340     uint32_t res;
9341     res = (uint16_t)(int8_t)x;
9342     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9343     return res;
9344 }
9345 
9346 uint32_t HELPER(uxtb16)(uint32_t x)
9347 {
9348     uint32_t res;
9349     res = (uint16_t)(uint8_t)x;
9350     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9351     return res;
9352 }
9353 
9354 int32_t HELPER(sdiv)(int32_t num, int32_t den)
9355 {
9356     if (den == 0)
9357       return 0;
9358     if (num == INT_MIN && den == -1)
9359       return INT_MIN;
9360     return num / den;
9361 }
9362 
9363 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
9364 {
9365     if (den == 0)
9366       return 0;
9367     return num / den;
9368 }
9369 
9370 uint32_t HELPER(rbit)(uint32_t x)
9371 {
9372     return revbit32(x);
9373 }
9374 
9375 #ifdef CONFIG_USER_ONLY
9376 
9377 static void switch_mode(CPUARMState *env, int mode)
9378 {
9379     ARMCPU *cpu = env_archcpu(env);
9380 
9381     if (mode != ARM_CPU_MODE_USR) {
9382         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9383     }
9384 }
9385 
9386 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9387                                  uint32_t cur_el, bool secure)
9388 {
9389     return 1;
9390 }
9391 
9392 void aarch64_sync_64_to_32(CPUARMState *env)
9393 {
9394     g_assert_not_reached();
9395 }
9396 
9397 #else
9398 
9399 static void switch_mode(CPUARMState *env, int mode)
9400 {
9401     int old_mode;
9402     int i;
9403 
9404     old_mode = env->uncached_cpsr & CPSR_M;
9405     if (mode == old_mode)
9406         return;
9407 
9408     if (old_mode == ARM_CPU_MODE_FIQ) {
9409         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9410         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9411     } else if (mode == ARM_CPU_MODE_FIQ) {
9412         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9413         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9414     }
9415 
9416     i = bank_number(old_mode);
9417     env->banked_r13[i] = env->regs[13];
9418     env->banked_spsr[i] = env->spsr;
9419 
9420     i = bank_number(mode);
9421     env->regs[13] = env->banked_r13[i];
9422     env->spsr = env->banked_spsr[i];
9423 
9424     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9425     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9426 }
9427 
9428 /* Physical Interrupt Target EL Lookup Table
9429  *
9430  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9431  *
9432  * The below multi-dimensional table is used for looking up the target
9433  * exception level given numerous condition criteria.  Specifically, the
9434  * target EL is based on SCR and HCR routing controls as well as the
9435  * currently executing EL and secure state.
9436  *
9437  *    Dimensions:
9438  *    target_el_table[2][2][2][2][2][4]
9439  *                    |  |  |  |  |  +--- Current EL
9440  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9441  *                    |  |  |  +--------- HCR mask override
9442  *                    |  |  +------------ SCR exec state control
9443  *                    |  +--------------- SCR mask override
9444  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9445  *
9446  *    The table values are as such:
9447  *    0-3 = EL0-EL3
9448  *     -1 = Cannot occur
9449  *
9450  * The ARM ARM target EL table includes entries indicating that an "exception
9451  * is not taken".  The two cases where this is applicable are:
9452  *    1) An exception is taken from EL3 but the SCR does not have the exception
9453  *    routed to EL3.
9454  *    2) An exception is taken from EL2 but the HCR does not have the exception
9455  *    routed to EL2.
9456  * In these two cases, the below table contain a target of EL1.  This value is
9457  * returned as it is expected that the consumer of the table data will check
9458  * for "target EL >= current EL" to ensure the exception is not taken.
9459  *
9460  *            SCR     HCR
9461  *         64  EA     AMO                 From
9462  *        BIT IRQ     IMO      Non-secure         Secure
9463  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9464  */
9465 static const int8_t target_el_table[2][2][2][2][2][4] = {
9466     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9467        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9468       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9469        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9470      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9471        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9472       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9473        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9474     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9475        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9476       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9477        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9478      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9479        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9480       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9481        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9482 };
9483 
9484 /*
9485  * Determine the target EL for physical exceptions
9486  */
9487 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9488                                  uint32_t cur_el, bool secure)
9489 {
9490     CPUARMState *env = cs->env_ptr;
9491     bool rw;
9492     bool scr;
9493     bool hcr;
9494     int target_el;
9495     /* Is the highest EL AArch64? */
9496     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9497     uint64_t hcr_el2;
9498 
9499     if (arm_feature(env, ARM_FEATURE_EL3)) {
9500         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9501     } else {
9502         /* Either EL2 is the highest EL (and so the EL2 register width
9503          * is given by is64); or there is no EL2 or EL3, in which case
9504          * the value of 'rw' does not affect the table lookup anyway.
9505          */
9506         rw = is64;
9507     }
9508 
9509     hcr_el2 = arm_hcr_el2_eff(env);
9510     switch (excp_idx) {
9511     case EXCP_IRQ:
9512         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9513         hcr = hcr_el2 & HCR_IMO;
9514         break;
9515     case EXCP_FIQ:
9516         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9517         hcr = hcr_el2 & HCR_FMO;
9518         break;
9519     default:
9520         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9521         hcr = hcr_el2 & HCR_AMO;
9522         break;
9523     };
9524 
9525     /*
9526      * For these purposes, TGE and AMO/IMO/FMO both force the
9527      * interrupt to EL2.  Fold TGE into the bit extracted above.
9528      */
9529     hcr |= (hcr_el2 & HCR_TGE) != 0;
9530 
9531     /* Perform a table-lookup for the target EL given the current state */
9532     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9533 
9534     assert(target_el > 0);
9535 
9536     return target_el;
9537 }
9538 
9539 void arm_log_exception(int idx)
9540 {
9541     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9542         const char *exc = NULL;
9543         static const char * const excnames[] = {
9544             [EXCP_UDEF] = "Undefined Instruction",
9545             [EXCP_SWI] = "SVC",
9546             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9547             [EXCP_DATA_ABORT] = "Data Abort",
9548             [EXCP_IRQ] = "IRQ",
9549             [EXCP_FIQ] = "FIQ",
9550             [EXCP_BKPT] = "Breakpoint",
9551             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9552             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9553             [EXCP_HVC] = "Hypervisor Call",
9554             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9555             [EXCP_SMC] = "Secure Monitor Call",
9556             [EXCP_VIRQ] = "Virtual IRQ",
9557             [EXCP_VFIQ] = "Virtual FIQ",
9558             [EXCP_SEMIHOST] = "Semihosting call",
9559             [EXCP_NOCP] = "v7M NOCP UsageFault",
9560             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9561             [EXCP_STKOF] = "v8M STKOF UsageFault",
9562             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9563             [EXCP_LSERR] = "v8M LSERR UsageFault",
9564             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9565         };
9566 
9567         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9568             exc = excnames[idx];
9569         }
9570         if (!exc) {
9571             exc = "unknown";
9572         }
9573         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9574     }
9575 }
9576 
9577 /*
9578  * Function used to synchronize QEMU's AArch64 register set with AArch32
9579  * register set.  This is necessary when switching between AArch32 and AArch64
9580  * execution state.
9581  */
9582 void aarch64_sync_32_to_64(CPUARMState *env)
9583 {
9584     int i;
9585     uint32_t mode = env->uncached_cpsr & CPSR_M;
9586 
9587     /* We can blanket copy R[0:7] to X[0:7] */
9588     for (i = 0; i < 8; i++) {
9589         env->xregs[i] = env->regs[i];
9590     }
9591 
9592     /*
9593      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9594      * Otherwise, they come from the banked user regs.
9595      */
9596     if (mode == ARM_CPU_MODE_FIQ) {
9597         for (i = 8; i < 13; i++) {
9598             env->xregs[i] = env->usr_regs[i - 8];
9599         }
9600     } else {
9601         for (i = 8; i < 13; i++) {
9602             env->xregs[i] = env->regs[i];
9603         }
9604     }
9605 
9606     /*
9607      * Registers x13-x23 are the various mode SP and FP registers. Registers
9608      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9609      * from the mode banked register.
9610      */
9611     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9612         env->xregs[13] = env->regs[13];
9613         env->xregs[14] = env->regs[14];
9614     } else {
9615         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9616         /* HYP is an exception in that it is copied from r14 */
9617         if (mode == ARM_CPU_MODE_HYP) {
9618             env->xregs[14] = env->regs[14];
9619         } else {
9620             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9621         }
9622     }
9623 
9624     if (mode == ARM_CPU_MODE_HYP) {
9625         env->xregs[15] = env->regs[13];
9626     } else {
9627         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9628     }
9629 
9630     if (mode == ARM_CPU_MODE_IRQ) {
9631         env->xregs[16] = env->regs[14];
9632         env->xregs[17] = env->regs[13];
9633     } else {
9634         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9635         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9636     }
9637 
9638     if (mode == ARM_CPU_MODE_SVC) {
9639         env->xregs[18] = env->regs[14];
9640         env->xregs[19] = env->regs[13];
9641     } else {
9642         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9643         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9644     }
9645 
9646     if (mode == ARM_CPU_MODE_ABT) {
9647         env->xregs[20] = env->regs[14];
9648         env->xregs[21] = env->regs[13];
9649     } else {
9650         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9651         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9652     }
9653 
9654     if (mode == ARM_CPU_MODE_UND) {
9655         env->xregs[22] = env->regs[14];
9656         env->xregs[23] = env->regs[13];
9657     } else {
9658         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9659         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9660     }
9661 
9662     /*
9663      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9664      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9665      * FIQ bank for r8-r14.
9666      */
9667     if (mode == ARM_CPU_MODE_FIQ) {
9668         for (i = 24; i < 31; i++) {
9669             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9670         }
9671     } else {
9672         for (i = 24; i < 29; i++) {
9673             env->xregs[i] = env->fiq_regs[i - 24];
9674         }
9675         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9676         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9677     }
9678 
9679     env->pc = env->regs[15];
9680 }
9681 
9682 /*
9683  * Function used to synchronize QEMU's AArch32 register set with AArch64
9684  * register set.  This is necessary when switching between AArch32 and AArch64
9685  * execution state.
9686  */
9687 void aarch64_sync_64_to_32(CPUARMState *env)
9688 {
9689     int i;
9690     uint32_t mode = env->uncached_cpsr & CPSR_M;
9691 
9692     /* We can blanket copy X[0:7] to R[0:7] */
9693     for (i = 0; i < 8; i++) {
9694         env->regs[i] = env->xregs[i];
9695     }
9696 
9697     /*
9698      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9699      * Otherwise, we copy x8-x12 into the banked user regs.
9700      */
9701     if (mode == ARM_CPU_MODE_FIQ) {
9702         for (i = 8; i < 13; i++) {
9703             env->usr_regs[i - 8] = env->xregs[i];
9704         }
9705     } else {
9706         for (i = 8; i < 13; i++) {
9707             env->regs[i] = env->xregs[i];
9708         }
9709     }
9710 
9711     /*
9712      * Registers r13 & r14 depend on the current mode.
9713      * If we are in a given mode, we copy the corresponding x registers to r13
9714      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9715      * for the mode.
9716      */
9717     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9718         env->regs[13] = env->xregs[13];
9719         env->regs[14] = env->xregs[14];
9720     } else {
9721         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9722 
9723         /*
9724          * HYP is an exception in that it does not have its own banked r14 but
9725          * shares the USR r14
9726          */
9727         if (mode == ARM_CPU_MODE_HYP) {
9728             env->regs[14] = env->xregs[14];
9729         } else {
9730             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9731         }
9732     }
9733 
9734     if (mode == ARM_CPU_MODE_HYP) {
9735         env->regs[13] = env->xregs[15];
9736     } else {
9737         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9738     }
9739 
9740     if (mode == ARM_CPU_MODE_IRQ) {
9741         env->regs[14] = env->xregs[16];
9742         env->regs[13] = env->xregs[17];
9743     } else {
9744         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9745         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9746     }
9747 
9748     if (mode == ARM_CPU_MODE_SVC) {
9749         env->regs[14] = env->xregs[18];
9750         env->regs[13] = env->xregs[19];
9751     } else {
9752         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9753         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9754     }
9755 
9756     if (mode == ARM_CPU_MODE_ABT) {
9757         env->regs[14] = env->xregs[20];
9758         env->regs[13] = env->xregs[21];
9759     } else {
9760         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9761         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9762     }
9763 
9764     if (mode == ARM_CPU_MODE_UND) {
9765         env->regs[14] = env->xregs[22];
9766         env->regs[13] = env->xregs[23];
9767     } else {
9768         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9769         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9770     }
9771 
9772     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9773      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9774      * FIQ bank for r8-r14.
9775      */
9776     if (mode == ARM_CPU_MODE_FIQ) {
9777         for (i = 24; i < 31; i++) {
9778             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9779         }
9780     } else {
9781         for (i = 24; i < 29; i++) {
9782             env->fiq_regs[i - 24] = env->xregs[i];
9783         }
9784         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9785         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9786     }
9787 
9788     env->regs[15] = env->pc;
9789 }
9790 
9791 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9792                                    uint32_t mask, uint32_t offset,
9793                                    uint32_t newpc)
9794 {
9795     int new_el;
9796 
9797     /* Change the CPU state so as to actually take the exception. */
9798     switch_mode(env, new_mode);
9799 
9800     /*
9801      * For exceptions taken to AArch32 we must clear the SS bit in both
9802      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9803      */
9804     env->pstate &= ~PSTATE_SS;
9805     env->spsr = cpsr_read(env);
9806     /* Clear IT bits.  */
9807     env->condexec_bits = 0;
9808     /* Switch to the new mode, and to the correct instruction set.  */
9809     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9810 
9811     /* This must be after mode switching. */
9812     new_el = arm_current_el(env);
9813 
9814     /* Set new mode endianness */
9815     env->uncached_cpsr &= ~CPSR_E;
9816     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9817         env->uncached_cpsr |= CPSR_E;
9818     }
9819     /* J and IL must always be cleared for exception entry */
9820     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9821     env->daif |= mask;
9822 
9823     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9824         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9825             env->uncached_cpsr |= CPSR_SSBS;
9826         } else {
9827             env->uncached_cpsr &= ~CPSR_SSBS;
9828         }
9829     }
9830 
9831     if (new_mode == ARM_CPU_MODE_HYP) {
9832         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9833         env->elr_el[2] = env->regs[15];
9834     } else {
9835         /* CPSR.PAN is normally preserved preserved unless...  */
9836         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9837             switch (new_el) {
9838             case 3:
9839                 if (!arm_is_secure_below_el3(env)) {
9840                     /* ... the target is EL3, from non-secure state.  */
9841                     env->uncached_cpsr &= ~CPSR_PAN;
9842                     break;
9843                 }
9844                 /* ... the target is EL3, from secure state ... */
9845                 /* fall through */
9846             case 1:
9847                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9848                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9849                     env->uncached_cpsr |= CPSR_PAN;
9850                 }
9851                 break;
9852             }
9853         }
9854         /*
9855          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9856          * and we should just guard the thumb mode on V4
9857          */
9858         if (arm_feature(env, ARM_FEATURE_V4T)) {
9859             env->thumb =
9860                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9861         }
9862         env->regs[14] = env->regs[15] + offset;
9863     }
9864     env->regs[15] = newpc;
9865     arm_rebuild_hflags(env);
9866 }
9867 
9868 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9869 {
9870     /*
9871      * Handle exception entry to Hyp mode; this is sufficiently
9872      * different to entry to other AArch32 modes that we handle it
9873      * separately here.
9874      *
9875      * The vector table entry used is always the 0x14 Hyp mode entry point,
9876      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9877      * The offset applied to the preferred return address is always zero
9878      * (see DDI0487C.a section G1.12.3).
9879      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9880      */
9881     uint32_t addr, mask;
9882     ARMCPU *cpu = ARM_CPU(cs);
9883     CPUARMState *env = &cpu->env;
9884 
9885     switch (cs->exception_index) {
9886     case EXCP_UDEF:
9887         addr = 0x04;
9888         break;
9889     case EXCP_SWI:
9890         addr = 0x14;
9891         break;
9892     case EXCP_BKPT:
9893         /* Fall through to prefetch abort.  */
9894     case EXCP_PREFETCH_ABORT:
9895         env->cp15.ifar_s = env->exception.vaddress;
9896         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9897                       (uint32_t)env->exception.vaddress);
9898         addr = 0x0c;
9899         break;
9900     case EXCP_DATA_ABORT:
9901         env->cp15.dfar_s = env->exception.vaddress;
9902         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9903                       (uint32_t)env->exception.vaddress);
9904         addr = 0x10;
9905         break;
9906     case EXCP_IRQ:
9907         addr = 0x18;
9908         break;
9909     case EXCP_FIQ:
9910         addr = 0x1c;
9911         break;
9912     case EXCP_HVC:
9913         addr = 0x08;
9914         break;
9915     case EXCP_HYP_TRAP:
9916         addr = 0x14;
9917         break;
9918     default:
9919         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9920     }
9921 
9922     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9923         if (!arm_feature(env, ARM_FEATURE_V8)) {
9924             /*
9925              * QEMU syndrome values are v8-style. v7 has the IL bit
9926              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9927              * If this is a v7 CPU, squash the IL bit in those cases.
9928              */
9929             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9930                 (cs->exception_index == EXCP_DATA_ABORT &&
9931                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9932                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9933                 env->exception.syndrome &= ~ARM_EL_IL;
9934             }
9935         }
9936         env->cp15.esr_el[2] = env->exception.syndrome;
9937     }
9938 
9939     if (arm_current_el(env) != 2 && addr < 0x14) {
9940         addr = 0x14;
9941     }
9942 
9943     mask = 0;
9944     if (!(env->cp15.scr_el3 & SCR_EA)) {
9945         mask |= CPSR_A;
9946     }
9947     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9948         mask |= CPSR_I;
9949     }
9950     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9951         mask |= CPSR_F;
9952     }
9953 
9954     addr += env->cp15.hvbar;
9955 
9956     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9957 }
9958 
9959 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9960 {
9961     ARMCPU *cpu = ARM_CPU(cs);
9962     CPUARMState *env = &cpu->env;
9963     uint32_t addr;
9964     uint32_t mask;
9965     int new_mode;
9966     uint32_t offset;
9967     uint32_t moe;
9968 
9969     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9970     switch (syn_get_ec(env->exception.syndrome)) {
9971     case EC_BREAKPOINT:
9972     case EC_BREAKPOINT_SAME_EL:
9973         moe = 1;
9974         break;
9975     case EC_WATCHPOINT:
9976     case EC_WATCHPOINT_SAME_EL:
9977         moe = 10;
9978         break;
9979     case EC_AA32_BKPT:
9980         moe = 3;
9981         break;
9982     case EC_VECTORCATCH:
9983         moe = 5;
9984         break;
9985     default:
9986         moe = 0;
9987         break;
9988     }
9989 
9990     if (moe) {
9991         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9992     }
9993 
9994     if (env->exception.target_el == 2) {
9995         arm_cpu_do_interrupt_aarch32_hyp(cs);
9996         return;
9997     }
9998 
9999     switch (cs->exception_index) {
10000     case EXCP_UDEF:
10001         new_mode = ARM_CPU_MODE_UND;
10002         addr = 0x04;
10003         mask = CPSR_I;
10004         if (env->thumb)
10005             offset = 2;
10006         else
10007             offset = 4;
10008         break;
10009     case EXCP_SWI:
10010         new_mode = ARM_CPU_MODE_SVC;
10011         addr = 0x08;
10012         mask = CPSR_I;
10013         /* The PC already points to the next instruction.  */
10014         offset = 0;
10015         break;
10016     case EXCP_BKPT:
10017         /* Fall through to prefetch abort.  */
10018     case EXCP_PREFETCH_ABORT:
10019         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10020         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10021         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10022                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10023         new_mode = ARM_CPU_MODE_ABT;
10024         addr = 0x0c;
10025         mask = CPSR_A | CPSR_I;
10026         offset = 4;
10027         break;
10028     case EXCP_DATA_ABORT:
10029         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10030         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10031         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10032                       env->exception.fsr,
10033                       (uint32_t)env->exception.vaddress);
10034         new_mode = ARM_CPU_MODE_ABT;
10035         addr = 0x10;
10036         mask = CPSR_A | CPSR_I;
10037         offset = 8;
10038         break;
10039     case EXCP_IRQ:
10040         new_mode = ARM_CPU_MODE_IRQ;
10041         addr = 0x18;
10042         /* Disable IRQ and imprecise data aborts.  */
10043         mask = CPSR_A | CPSR_I;
10044         offset = 4;
10045         if (env->cp15.scr_el3 & SCR_IRQ) {
10046             /* IRQ routed to monitor mode */
10047             new_mode = ARM_CPU_MODE_MON;
10048             mask |= CPSR_F;
10049         }
10050         break;
10051     case EXCP_FIQ:
10052         new_mode = ARM_CPU_MODE_FIQ;
10053         addr = 0x1c;
10054         /* Disable FIQ, IRQ and imprecise data aborts.  */
10055         mask = CPSR_A | CPSR_I | CPSR_F;
10056         if (env->cp15.scr_el3 & SCR_FIQ) {
10057             /* FIQ routed to monitor mode */
10058             new_mode = ARM_CPU_MODE_MON;
10059         }
10060         offset = 4;
10061         break;
10062     case EXCP_VIRQ:
10063         new_mode = ARM_CPU_MODE_IRQ;
10064         addr = 0x18;
10065         /* Disable IRQ and imprecise data aborts.  */
10066         mask = CPSR_A | CPSR_I;
10067         offset = 4;
10068         break;
10069     case EXCP_VFIQ:
10070         new_mode = ARM_CPU_MODE_FIQ;
10071         addr = 0x1c;
10072         /* Disable FIQ, IRQ and imprecise data aborts.  */
10073         mask = CPSR_A | CPSR_I | CPSR_F;
10074         offset = 4;
10075         break;
10076     case EXCP_SMC:
10077         new_mode = ARM_CPU_MODE_MON;
10078         addr = 0x08;
10079         mask = CPSR_A | CPSR_I | CPSR_F;
10080         offset = 0;
10081         break;
10082     default:
10083         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10084         return; /* Never happens.  Keep compiler happy.  */
10085     }
10086 
10087     if (new_mode == ARM_CPU_MODE_MON) {
10088         addr += env->cp15.mvbar;
10089     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10090         /* High vectors. When enabled, base address cannot be remapped. */
10091         addr += 0xffff0000;
10092     } else {
10093         /* ARM v7 architectures provide a vector base address register to remap
10094          * the interrupt vector table.
10095          * This register is only followed in non-monitor mode, and is banked.
10096          * Note: only bits 31:5 are valid.
10097          */
10098         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10099     }
10100 
10101     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10102         env->cp15.scr_el3 &= ~SCR_NS;
10103     }
10104 
10105     take_aarch32_exception(env, new_mode, mask, offset, addr);
10106 }
10107 
10108 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10109 {
10110     /*
10111      * Return the register number of the AArch64 view of the AArch32
10112      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10113      * be that of the AArch32 mode the exception came from.
10114      */
10115     int mode = env->uncached_cpsr & CPSR_M;
10116 
10117     switch (aarch32_reg) {
10118     case 0 ... 7:
10119         return aarch32_reg;
10120     case 8 ... 12:
10121         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10122     case 13:
10123         switch (mode) {
10124         case ARM_CPU_MODE_USR:
10125         case ARM_CPU_MODE_SYS:
10126             return 13;
10127         case ARM_CPU_MODE_HYP:
10128             return 15;
10129         case ARM_CPU_MODE_IRQ:
10130             return 17;
10131         case ARM_CPU_MODE_SVC:
10132             return 19;
10133         case ARM_CPU_MODE_ABT:
10134             return 21;
10135         case ARM_CPU_MODE_UND:
10136             return 23;
10137         case ARM_CPU_MODE_FIQ:
10138             return 29;
10139         default:
10140             g_assert_not_reached();
10141         }
10142     case 14:
10143         switch (mode) {
10144         case ARM_CPU_MODE_USR:
10145         case ARM_CPU_MODE_SYS:
10146         case ARM_CPU_MODE_HYP:
10147             return 14;
10148         case ARM_CPU_MODE_IRQ:
10149             return 16;
10150         case ARM_CPU_MODE_SVC:
10151             return 18;
10152         case ARM_CPU_MODE_ABT:
10153             return 20;
10154         case ARM_CPU_MODE_UND:
10155             return 22;
10156         case ARM_CPU_MODE_FIQ:
10157             return 30;
10158         default:
10159             g_assert_not_reached();
10160         }
10161     case 15:
10162         return 31;
10163     default:
10164         g_assert_not_reached();
10165     }
10166 }
10167 
10168 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10169 {
10170     uint32_t ret = cpsr_read(env);
10171 
10172     /* Move DIT to the correct location for SPSR_ELx */
10173     if (ret & CPSR_DIT) {
10174         ret &= ~CPSR_DIT;
10175         ret |= PSTATE_DIT;
10176     }
10177     /* Merge PSTATE.SS into SPSR_ELx */
10178     ret |= env->pstate & PSTATE_SS;
10179 
10180     return ret;
10181 }
10182 
10183 /* Handle exception entry to a target EL which is using AArch64 */
10184 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10185 {
10186     ARMCPU *cpu = ARM_CPU(cs);
10187     CPUARMState *env = &cpu->env;
10188     unsigned int new_el = env->exception.target_el;
10189     target_ulong addr = env->cp15.vbar_el[new_el];
10190     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10191     unsigned int old_mode;
10192     unsigned int cur_el = arm_current_el(env);
10193     int rt;
10194 
10195     /*
10196      * Note that new_el can never be 0.  If cur_el is 0, then
10197      * el0_a64 is is_a64(), else el0_a64 is ignored.
10198      */
10199     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10200 
10201     if (cur_el < new_el) {
10202         /* Entry vector offset depends on whether the implemented EL
10203          * immediately lower than the target level is using AArch32 or AArch64
10204          */
10205         bool is_aa64;
10206         uint64_t hcr;
10207 
10208         switch (new_el) {
10209         case 3:
10210             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10211             break;
10212         case 2:
10213             hcr = arm_hcr_el2_eff(env);
10214             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10215                 is_aa64 = (hcr & HCR_RW) != 0;
10216                 break;
10217             }
10218             /* fall through */
10219         case 1:
10220             is_aa64 = is_a64(env);
10221             break;
10222         default:
10223             g_assert_not_reached();
10224         }
10225 
10226         if (is_aa64) {
10227             addr += 0x400;
10228         } else {
10229             addr += 0x600;
10230         }
10231     } else if (pstate_read(env) & PSTATE_SP) {
10232         addr += 0x200;
10233     }
10234 
10235     switch (cs->exception_index) {
10236     case EXCP_PREFETCH_ABORT:
10237     case EXCP_DATA_ABORT:
10238         env->cp15.far_el[new_el] = env->exception.vaddress;
10239         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10240                       env->cp15.far_el[new_el]);
10241         /* fall through */
10242     case EXCP_BKPT:
10243     case EXCP_UDEF:
10244     case EXCP_SWI:
10245     case EXCP_HVC:
10246     case EXCP_HYP_TRAP:
10247     case EXCP_SMC:
10248         switch (syn_get_ec(env->exception.syndrome)) {
10249         case EC_ADVSIMDFPACCESSTRAP:
10250             /*
10251              * QEMU internal FP/SIMD syndromes from AArch32 include the
10252              * TA and coproc fields which are only exposed if the exception
10253              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10254              * AArch64 format syndrome.
10255              */
10256             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10257             break;
10258         case EC_CP14RTTRAP:
10259         case EC_CP15RTTRAP:
10260         case EC_CP14DTTRAP:
10261             /*
10262              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10263              * the raw register field from the insn; when taking this to
10264              * AArch64 we must convert it to the AArch64 view of the register
10265              * number. Notice that we read a 4-bit AArch32 register number and
10266              * write back a 5-bit AArch64 one.
10267              */
10268             rt = extract32(env->exception.syndrome, 5, 4);
10269             rt = aarch64_regnum(env, rt);
10270             env->exception.syndrome = deposit32(env->exception.syndrome,
10271                                                 5, 5, rt);
10272             break;
10273         case EC_CP15RRTTRAP:
10274         case EC_CP14RRTTRAP:
10275             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10276             rt = extract32(env->exception.syndrome, 5, 4);
10277             rt = aarch64_regnum(env, rt);
10278             env->exception.syndrome = deposit32(env->exception.syndrome,
10279                                                 5, 5, rt);
10280             rt = extract32(env->exception.syndrome, 10, 4);
10281             rt = aarch64_regnum(env, rt);
10282             env->exception.syndrome = deposit32(env->exception.syndrome,
10283                                                 10, 5, rt);
10284             break;
10285         }
10286         env->cp15.esr_el[new_el] = env->exception.syndrome;
10287         break;
10288     case EXCP_IRQ:
10289     case EXCP_VIRQ:
10290         addr += 0x80;
10291         break;
10292     case EXCP_FIQ:
10293     case EXCP_VFIQ:
10294         addr += 0x100;
10295         break;
10296     default:
10297         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10298     }
10299 
10300     if (is_a64(env)) {
10301         old_mode = pstate_read(env);
10302         aarch64_save_sp(env, arm_current_el(env));
10303         env->elr_el[new_el] = env->pc;
10304     } else {
10305         old_mode = cpsr_read_for_spsr_elx(env);
10306         env->elr_el[new_el] = env->regs[15];
10307 
10308         aarch64_sync_32_to_64(env);
10309 
10310         env->condexec_bits = 0;
10311     }
10312     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10313 
10314     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10315                   env->elr_el[new_el]);
10316 
10317     if (cpu_isar_feature(aa64_pan, cpu)) {
10318         /* The value of PSTATE.PAN is normally preserved, except when ... */
10319         new_mode |= old_mode & PSTATE_PAN;
10320         switch (new_el) {
10321         case 2:
10322             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10323             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10324                 != (HCR_E2H | HCR_TGE)) {
10325                 break;
10326             }
10327             /* fall through */
10328         case 1:
10329             /* ... the target is EL1 ... */
10330             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10331             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10332                 new_mode |= PSTATE_PAN;
10333             }
10334             break;
10335         }
10336     }
10337     if (cpu_isar_feature(aa64_mte, cpu)) {
10338         new_mode |= PSTATE_TCO;
10339     }
10340 
10341     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10342         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10343             new_mode |= PSTATE_SSBS;
10344         } else {
10345             new_mode &= ~PSTATE_SSBS;
10346         }
10347     }
10348 
10349     pstate_write(env, PSTATE_DAIF | new_mode);
10350     env->aarch64 = 1;
10351     aarch64_restore_sp(env, new_el);
10352     helper_rebuild_hflags_a64(env, new_el);
10353 
10354     env->pc = addr;
10355 
10356     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10357                   new_el, env->pc, pstate_read(env));
10358 }
10359 
10360 /*
10361  * Do semihosting call and set the appropriate return value. All the
10362  * permission and validity checks have been done at translate time.
10363  *
10364  * We only see semihosting exceptions in TCG only as they are not
10365  * trapped to the hypervisor in KVM.
10366  */
10367 #ifdef CONFIG_TCG
10368 static void handle_semihosting(CPUState *cs)
10369 {
10370     ARMCPU *cpu = ARM_CPU(cs);
10371     CPUARMState *env = &cpu->env;
10372 
10373     if (is_a64(env)) {
10374         qemu_log_mask(CPU_LOG_INT,
10375                       "...handling as semihosting call 0x%" PRIx64 "\n",
10376                       env->xregs[0]);
10377         env->xregs[0] = do_common_semihosting(cs);
10378         env->pc += 4;
10379     } else {
10380         qemu_log_mask(CPU_LOG_INT,
10381                       "...handling as semihosting call 0x%x\n",
10382                       env->regs[0]);
10383         env->regs[0] = do_common_semihosting(cs);
10384         env->regs[15] += env->thumb ? 2 : 4;
10385     }
10386 }
10387 #endif
10388 
10389 /* Handle a CPU exception for A and R profile CPUs.
10390  * Do any appropriate logging, handle PSCI calls, and then hand off
10391  * to the AArch64-entry or AArch32-entry function depending on the
10392  * target exception level's register width.
10393  *
10394  * Note: this is used for both TCG (as the do_interrupt tcg op),
10395  *       and KVM to re-inject guest debug exceptions, and to
10396  *       inject a Synchronous-External-Abort.
10397  */
10398 void arm_cpu_do_interrupt(CPUState *cs)
10399 {
10400     ARMCPU *cpu = ARM_CPU(cs);
10401     CPUARMState *env = &cpu->env;
10402     unsigned int new_el = env->exception.target_el;
10403 
10404     assert(!arm_feature(env, ARM_FEATURE_M));
10405 
10406     arm_log_exception(cs->exception_index);
10407     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10408                   new_el);
10409     if (qemu_loglevel_mask(CPU_LOG_INT)
10410         && !excp_is_internal(cs->exception_index)) {
10411         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10412                       syn_get_ec(env->exception.syndrome),
10413                       env->exception.syndrome);
10414     }
10415 
10416     if (arm_is_psci_call(cpu, cs->exception_index)) {
10417         arm_handle_psci_call(cpu);
10418         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10419         return;
10420     }
10421 
10422     /*
10423      * Semihosting semantics depend on the register width of the code
10424      * that caused the exception, not the target exception level, so
10425      * must be handled here.
10426      */
10427 #ifdef CONFIG_TCG
10428     if (cs->exception_index == EXCP_SEMIHOST) {
10429         handle_semihosting(cs);
10430         return;
10431     }
10432 #endif
10433 
10434     /* Hooks may change global state so BQL should be held, also the
10435      * BQL needs to be held for any modification of
10436      * cs->interrupt_request.
10437      */
10438     g_assert(qemu_mutex_iothread_locked());
10439 
10440     arm_call_pre_el_change_hook(cpu);
10441 
10442     assert(!excp_is_internal(cs->exception_index));
10443     if (arm_el_is_aa64(env, new_el)) {
10444         arm_cpu_do_interrupt_aarch64(cs);
10445     } else {
10446         arm_cpu_do_interrupt_aarch32(cs);
10447     }
10448 
10449     arm_call_el_change_hook(cpu);
10450 
10451     if (!kvm_enabled()) {
10452         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10453     }
10454 }
10455 #endif /* !CONFIG_USER_ONLY */
10456 
10457 uint64_t arm_sctlr(CPUARMState *env, int el)
10458 {
10459     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10460     if (el == 0) {
10461         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10462         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10463              ? 2 : 1;
10464     }
10465     return env->cp15.sctlr_el[el];
10466 }
10467 
10468 /* Return the SCTLR value which controls this address translation regime */
10469 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10470 {
10471     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10472 }
10473 
10474 #ifndef CONFIG_USER_ONLY
10475 
10476 /* Return true if the specified stage of address translation is disabled */
10477 static inline bool regime_translation_disabled(CPUARMState *env,
10478                                                ARMMMUIdx mmu_idx)
10479 {
10480     uint64_t hcr_el2;
10481 
10482     if (arm_feature(env, ARM_FEATURE_M)) {
10483         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10484                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10485         case R_V7M_MPU_CTRL_ENABLE_MASK:
10486             /* Enabled, but not for HardFault and NMI */
10487             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10488         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10489             /* Enabled for all cases */
10490             return false;
10491         case 0:
10492         default:
10493             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10494              * we warned about that in armv7m_nvic.c when the guest set it.
10495              */
10496             return true;
10497         }
10498     }
10499 
10500     hcr_el2 = arm_hcr_el2_eff(env);
10501 
10502     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10503         /* HCR.DC means HCR.VM behaves as 1 */
10504         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10505     }
10506 
10507     if (hcr_el2 & HCR_TGE) {
10508         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10509         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10510             return true;
10511         }
10512     }
10513 
10514     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10515         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10516         return true;
10517     }
10518 
10519     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10520 }
10521 
10522 static inline bool regime_translation_big_endian(CPUARMState *env,
10523                                                  ARMMMUIdx mmu_idx)
10524 {
10525     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10526 }
10527 
10528 /* Return the TTBR associated with this translation regime */
10529 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10530                                    int ttbrn)
10531 {
10532     if (mmu_idx == ARMMMUIdx_Stage2) {
10533         return env->cp15.vttbr_el2;
10534     }
10535     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10536         return env->cp15.vsttbr_el2;
10537     }
10538     if (ttbrn == 0) {
10539         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10540     } else {
10541         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10542     }
10543 }
10544 
10545 #endif /* !CONFIG_USER_ONLY */
10546 
10547 /* Convert a possible stage1+2 MMU index into the appropriate
10548  * stage 1 MMU index
10549  */
10550 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10551 {
10552     switch (mmu_idx) {
10553     case ARMMMUIdx_SE10_0:
10554         return ARMMMUIdx_Stage1_SE0;
10555     case ARMMMUIdx_SE10_1:
10556         return ARMMMUIdx_Stage1_SE1;
10557     case ARMMMUIdx_SE10_1_PAN:
10558         return ARMMMUIdx_Stage1_SE1_PAN;
10559     case ARMMMUIdx_E10_0:
10560         return ARMMMUIdx_Stage1_E0;
10561     case ARMMMUIdx_E10_1:
10562         return ARMMMUIdx_Stage1_E1;
10563     case ARMMMUIdx_E10_1_PAN:
10564         return ARMMMUIdx_Stage1_E1_PAN;
10565     default:
10566         return mmu_idx;
10567     }
10568 }
10569 
10570 /* Return true if the translation regime is using LPAE format page tables */
10571 static inline bool regime_using_lpae_format(CPUARMState *env,
10572                                             ARMMMUIdx mmu_idx)
10573 {
10574     int el = regime_el(env, mmu_idx);
10575     if (el == 2 || arm_el_is_aa64(env, el)) {
10576         return true;
10577     }
10578     if (arm_feature(env, ARM_FEATURE_LPAE)
10579         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10580         return true;
10581     }
10582     return false;
10583 }
10584 
10585 /* Returns true if the stage 1 translation regime is using LPAE format page
10586  * tables. Used when raising alignment exceptions, whose FSR changes depending
10587  * on whether the long or short descriptor format is in use. */
10588 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10589 {
10590     mmu_idx = stage_1_mmu_idx(mmu_idx);
10591 
10592     return regime_using_lpae_format(env, mmu_idx);
10593 }
10594 
10595 #ifndef CONFIG_USER_ONLY
10596 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10597 {
10598     switch (mmu_idx) {
10599     case ARMMMUIdx_SE10_0:
10600     case ARMMMUIdx_E20_0:
10601     case ARMMMUIdx_SE20_0:
10602     case ARMMMUIdx_Stage1_E0:
10603     case ARMMMUIdx_Stage1_SE0:
10604     case ARMMMUIdx_MUser:
10605     case ARMMMUIdx_MSUser:
10606     case ARMMMUIdx_MUserNegPri:
10607     case ARMMMUIdx_MSUserNegPri:
10608         return true;
10609     default:
10610         return false;
10611     case ARMMMUIdx_E10_0:
10612     case ARMMMUIdx_E10_1:
10613     case ARMMMUIdx_E10_1_PAN:
10614         g_assert_not_reached();
10615     }
10616 }
10617 
10618 /* Translate section/page access permissions to page
10619  * R/W protection flags
10620  *
10621  * @env:         CPUARMState
10622  * @mmu_idx:     MMU index indicating required translation regime
10623  * @ap:          The 3-bit access permissions (AP[2:0])
10624  * @domain_prot: The 2-bit domain access permissions
10625  */
10626 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10627                                 int ap, int domain_prot)
10628 {
10629     bool is_user = regime_is_user(env, mmu_idx);
10630 
10631     if (domain_prot == 3) {
10632         return PAGE_READ | PAGE_WRITE;
10633     }
10634 
10635     switch (ap) {
10636     case 0:
10637         if (arm_feature(env, ARM_FEATURE_V7)) {
10638             return 0;
10639         }
10640         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10641         case SCTLR_S:
10642             return is_user ? 0 : PAGE_READ;
10643         case SCTLR_R:
10644             return PAGE_READ;
10645         default:
10646             return 0;
10647         }
10648     case 1:
10649         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10650     case 2:
10651         if (is_user) {
10652             return PAGE_READ;
10653         } else {
10654             return PAGE_READ | PAGE_WRITE;
10655         }
10656     case 3:
10657         return PAGE_READ | PAGE_WRITE;
10658     case 4: /* Reserved.  */
10659         return 0;
10660     case 5:
10661         return is_user ? 0 : PAGE_READ;
10662     case 6:
10663         return PAGE_READ;
10664     case 7:
10665         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10666             return 0;
10667         }
10668         return PAGE_READ;
10669     default:
10670         g_assert_not_reached();
10671     }
10672 }
10673 
10674 /* Translate section/page access permissions to page
10675  * R/W protection flags.
10676  *
10677  * @ap:      The 2-bit simple AP (AP[2:1])
10678  * @is_user: TRUE if accessing from PL0
10679  */
10680 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10681 {
10682     switch (ap) {
10683     case 0:
10684         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10685     case 1:
10686         return PAGE_READ | PAGE_WRITE;
10687     case 2:
10688         return is_user ? 0 : PAGE_READ;
10689     case 3:
10690         return PAGE_READ;
10691     default:
10692         g_assert_not_reached();
10693     }
10694 }
10695 
10696 static inline int
10697 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10698 {
10699     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10700 }
10701 
10702 /* Translate S2 section/page access permissions to protection flags
10703  *
10704  * @env:     CPUARMState
10705  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10706  * @xn:      XN (execute-never) bits
10707  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10708  */
10709 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10710 {
10711     int prot = 0;
10712 
10713     if (s2ap & 1) {
10714         prot |= PAGE_READ;
10715     }
10716     if (s2ap & 2) {
10717         prot |= PAGE_WRITE;
10718     }
10719 
10720     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10721         switch (xn) {
10722         case 0:
10723             prot |= PAGE_EXEC;
10724             break;
10725         case 1:
10726             if (s1_is_el0) {
10727                 prot |= PAGE_EXEC;
10728             }
10729             break;
10730         case 2:
10731             break;
10732         case 3:
10733             if (!s1_is_el0) {
10734                 prot |= PAGE_EXEC;
10735             }
10736             break;
10737         default:
10738             g_assert_not_reached();
10739         }
10740     } else {
10741         if (!extract32(xn, 1, 1)) {
10742             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10743                 prot |= PAGE_EXEC;
10744             }
10745         }
10746     }
10747     return prot;
10748 }
10749 
10750 /* Translate section/page access permissions to protection flags
10751  *
10752  * @env:     CPUARMState
10753  * @mmu_idx: MMU index indicating required translation regime
10754  * @is_aa64: TRUE if AArch64
10755  * @ap:      The 2-bit simple AP (AP[2:1])
10756  * @ns:      NS (non-secure) bit
10757  * @xn:      XN (execute-never) bit
10758  * @pxn:     PXN (privileged execute-never) bit
10759  */
10760 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10761                       int ap, int ns, int xn, int pxn)
10762 {
10763     bool is_user = regime_is_user(env, mmu_idx);
10764     int prot_rw, user_rw;
10765     bool have_wxn;
10766     int wxn = 0;
10767 
10768     assert(mmu_idx != ARMMMUIdx_Stage2);
10769     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10770 
10771     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10772     if (is_user) {
10773         prot_rw = user_rw;
10774     } else {
10775         if (user_rw && regime_is_pan(env, mmu_idx)) {
10776             /* PAN forbids data accesses but doesn't affect insn fetch */
10777             prot_rw = 0;
10778         } else {
10779             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10780         }
10781     }
10782 
10783     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10784         return prot_rw;
10785     }
10786 
10787     /* TODO have_wxn should be replaced with
10788      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10789      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10790      * compatible processors have EL2, which is required for [U]WXN.
10791      */
10792     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10793 
10794     if (have_wxn) {
10795         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10796     }
10797 
10798     if (is_aa64) {
10799         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10800             xn = pxn || (user_rw & PAGE_WRITE);
10801         }
10802     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10803         switch (regime_el(env, mmu_idx)) {
10804         case 1:
10805         case 3:
10806             if (is_user) {
10807                 xn = xn || !(user_rw & PAGE_READ);
10808             } else {
10809                 int uwxn = 0;
10810                 if (have_wxn) {
10811                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10812                 }
10813                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10814                      (uwxn && (user_rw & PAGE_WRITE));
10815             }
10816             break;
10817         case 2:
10818             break;
10819         }
10820     } else {
10821         xn = wxn = 0;
10822     }
10823 
10824     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10825         return prot_rw;
10826     }
10827     return prot_rw | PAGE_EXEC;
10828 }
10829 
10830 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10831                                      uint32_t *table, uint32_t address)
10832 {
10833     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10834     TCR *tcr = regime_tcr(env, mmu_idx);
10835 
10836     if (address & tcr->mask) {
10837         if (tcr->raw_tcr & TTBCR_PD1) {
10838             /* Translation table walk disabled for TTBR1 */
10839             return false;
10840         }
10841         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10842     } else {
10843         if (tcr->raw_tcr & TTBCR_PD0) {
10844             /* Translation table walk disabled for TTBR0 */
10845             return false;
10846         }
10847         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10848     }
10849     *table |= (address >> 18) & 0x3ffc;
10850     return true;
10851 }
10852 
10853 /* Translate a S1 pagetable walk through S2 if needed.  */
10854 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10855                                hwaddr addr, bool *is_secure,
10856                                ARMMMUFaultInfo *fi)
10857 {
10858     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10859         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10860         target_ulong s2size;
10861         hwaddr s2pa;
10862         int s2prot;
10863         int ret;
10864         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10865                                           : ARMMMUIdx_Stage2;
10866         ARMCacheAttrs cacheattrs = {};
10867         MemTxAttrs txattrs = {};
10868 
10869         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10870                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10871                                  &cacheattrs);
10872         if (ret) {
10873             assert(fi->type != ARMFault_None);
10874             fi->s2addr = addr;
10875             fi->stage2 = true;
10876             fi->s1ptw = true;
10877             fi->s1ns = !*is_secure;
10878             return ~0;
10879         }
10880         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10881             (cacheattrs.attrs & 0xf0) == 0) {
10882             /*
10883              * PTW set and S1 walk touched S2 Device memory:
10884              * generate Permission fault.
10885              */
10886             fi->type = ARMFault_Permission;
10887             fi->s2addr = addr;
10888             fi->stage2 = true;
10889             fi->s1ptw = true;
10890             fi->s1ns = !*is_secure;
10891             return ~0;
10892         }
10893 
10894         if (arm_is_secure_below_el3(env)) {
10895             /* Check if page table walk is to secure or non-secure PA space. */
10896             if (*is_secure) {
10897                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10898             } else {
10899                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10900             }
10901         } else {
10902             assert(!*is_secure);
10903         }
10904 
10905         addr = s2pa;
10906     }
10907     return addr;
10908 }
10909 
10910 /* All loads done in the course of a page table walk go through here. */
10911 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10912                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10913 {
10914     ARMCPU *cpu = ARM_CPU(cs);
10915     CPUARMState *env = &cpu->env;
10916     MemTxAttrs attrs = {};
10917     MemTxResult result = MEMTX_OK;
10918     AddressSpace *as;
10919     uint32_t data;
10920 
10921     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10922     attrs.secure = is_secure;
10923     as = arm_addressspace(cs, attrs);
10924     if (fi->s1ptw) {
10925         return 0;
10926     }
10927     if (regime_translation_big_endian(env, mmu_idx)) {
10928         data = address_space_ldl_be(as, addr, attrs, &result);
10929     } else {
10930         data = address_space_ldl_le(as, addr, attrs, &result);
10931     }
10932     if (result == MEMTX_OK) {
10933         return data;
10934     }
10935     fi->type = ARMFault_SyncExternalOnWalk;
10936     fi->ea = arm_extabort_type(result);
10937     return 0;
10938 }
10939 
10940 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10941                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10942 {
10943     ARMCPU *cpu = ARM_CPU(cs);
10944     CPUARMState *env = &cpu->env;
10945     MemTxAttrs attrs = {};
10946     MemTxResult result = MEMTX_OK;
10947     AddressSpace *as;
10948     uint64_t data;
10949 
10950     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10951     attrs.secure = is_secure;
10952     as = arm_addressspace(cs, attrs);
10953     if (fi->s1ptw) {
10954         return 0;
10955     }
10956     if (regime_translation_big_endian(env, mmu_idx)) {
10957         data = address_space_ldq_be(as, addr, attrs, &result);
10958     } else {
10959         data = address_space_ldq_le(as, addr, attrs, &result);
10960     }
10961     if (result == MEMTX_OK) {
10962         return data;
10963     }
10964     fi->type = ARMFault_SyncExternalOnWalk;
10965     fi->ea = arm_extabort_type(result);
10966     return 0;
10967 }
10968 
10969 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10970                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10971                              hwaddr *phys_ptr, int *prot,
10972                              target_ulong *page_size,
10973                              ARMMMUFaultInfo *fi)
10974 {
10975     CPUState *cs = env_cpu(env);
10976     int level = 1;
10977     uint32_t table;
10978     uint32_t desc;
10979     int type;
10980     int ap;
10981     int domain = 0;
10982     int domain_prot;
10983     hwaddr phys_addr;
10984     uint32_t dacr;
10985 
10986     /* Pagetable walk.  */
10987     /* Lookup l1 descriptor.  */
10988     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10989         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10990         fi->type = ARMFault_Translation;
10991         goto do_fault;
10992     }
10993     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10994                        mmu_idx, fi);
10995     if (fi->type != ARMFault_None) {
10996         goto do_fault;
10997     }
10998     type = (desc & 3);
10999     domain = (desc >> 5) & 0x0f;
11000     if (regime_el(env, mmu_idx) == 1) {
11001         dacr = env->cp15.dacr_ns;
11002     } else {
11003         dacr = env->cp15.dacr_s;
11004     }
11005     domain_prot = (dacr >> (domain * 2)) & 3;
11006     if (type == 0) {
11007         /* Section translation fault.  */
11008         fi->type = ARMFault_Translation;
11009         goto do_fault;
11010     }
11011     if (type != 2) {
11012         level = 2;
11013     }
11014     if (domain_prot == 0 || domain_prot == 2) {
11015         fi->type = ARMFault_Domain;
11016         goto do_fault;
11017     }
11018     if (type == 2) {
11019         /* 1Mb section.  */
11020         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11021         ap = (desc >> 10) & 3;
11022         *page_size = 1024 * 1024;
11023     } else {
11024         /* Lookup l2 entry.  */
11025         if (type == 1) {
11026             /* Coarse pagetable.  */
11027             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11028         } else {
11029             /* Fine pagetable.  */
11030             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
11031         }
11032         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11033                            mmu_idx, fi);
11034         if (fi->type != ARMFault_None) {
11035             goto do_fault;
11036         }
11037         switch (desc & 3) {
11038         case 0: /* Page translation fault.  */
11039             fi->type = ARMFault_Translation;
11040             goto do_fault;
11041         case 1: /* 64k page.  */
11042             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11043             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
11044             *page_size = 0x10000;
11045             break;
11046         case 2: /* 4k page.  */
11047             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11048             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
11049             *page_size = 0x1000;
11050             break;
11051         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
11052             if (type == 1) {
11053                 /* ARMv6/XScale extended small page format */
11054                 if (arm_feature(env, ARM_FEATURE_XSCALE)
11055                     || arm_feature(env, ARM_FEATURE_V6)) {
11056                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11057                     *page_size = 0x1000;
11058                 } else {
11059                     /* UNPREDICTABLE in ARMv5; we choose to take a
11060                      * page translation fault.
11061                      */
11062                     fi->type = ARMFault_Translation;
11063                     goto do_fault;
11064                 }
11065             } else {
11066                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
11067                 *page_size = 0x400;
11068             }
11069             ap = (desc >> 4) & 3;
11070             break;
11071         default:
11072             /* Never happens, but compiler isn't smart enough to tell.  */
11073             abort();
11074         }
11075     }
11076     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11077     *prot |= *prot ? PAGE_EXEC : 0;
11078     if (!(*prot & (1 << access_type))) {
11079         /* Access permission fault.  */
11080         fi->type = ARMFault_Permission;
11081         goto do_fault;
11082     }
11083     *phys_ptr = phys_addr;
11084     return false;
11085 do_fault:
11086     fi->domain = domain;
11087     fi->level = level;
11088     return true;
11089 }
11090 
11091 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
11092                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
11093                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11094                              target_ulong *page_size, ARMMMUFaultInfo *fi)
11095 {
11096     CPUState *cs = env_cpu(env);
11097     ARMCPU *cpu = env_archcpu(env);
11098     int level = 1;
11099     uint32_t table;
11100     uint32_t desc;
11101     uint32_t xn;
11102     uint32_t pxn = 0;
11103     int type;
11104     int ap;
11105     int domain = 0;
11106     int domain_prot;
11107     hwaddr phys_addr;
11108     uint32_t dacr;
11109     bool ns;
11110 
11111     /* Pagetable walk.  */
11112     /* Lookup l1 descriptor.  */
11113     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
11114         /* Section translation fault if page walk is disabled by PD0 or PD1 */
11115         fi->type = ARMFault_Translation;
11116         goto do_fault;
11117     }
11118     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11119                        mmu_idx, fi);
11120     if (fi->type != ARMFault_None) {
11121         goto do_fault;
11122     }
11123     type = (desc & 3);
11124     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
11125         /* Section translation fault, or attempt to use the encoding
11126          * which is Reserved on implementations without PXN.
11127          */
11128         fi->type = ARMFault_Translation;
11129         goto do_fault;
11130     }
11131     if ((type == 1) || !(desc & (1 << 18))) {
11132         /* Page or Section.  */
11133         domain = (desc >> 5) & 0x0f;
11134     }
11135     if (regime_el(env, mmu_idx) == 1) {
11136         dacr = env->cp15.dacr_ns;
11137     } else {
11138         dacr = env->cp15.dacr_s;
11139     }
11140     if (type == 1) {
11141         level = 2;
11142     }
11143     domain_prot = (dacr >> (domain * 2)) & 3;
11144     if (domain_prot == 0 || domain_prot == 2) {
11145         /* Section or Page domain fault */
11146         fi->type = ARMFault_Domain;
11147         goto do_fault;
11148     }
11149     if (type != 1) {
11150         if (desc & (1 << 18)) {
11151             /* Supersection.  */
11152             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
11153             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
11154             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
11155             *page_size = 0x1000000;
11156         } else {
11157             /* Section.  */
11158             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
11159             *page_size = 0x100000;
11160         }
11161         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
11162         xn = desc & (1 << 4);
11163         pxn = desc & 1;
11164         ns = extract32(desc, 19, 1);
11165     } else {
11166         if (cpu_isar_feature(aa32_pxn, cpu)) {
11167             pxn = (desc >> 2) & 1;
11168         }
11169         ns = extract32(desc, 3, 1);
11170         /* Lookup l2 entry.  */
11171         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
11172         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
11173                            mmu_idx, fi);
11174         if (fi->type != ARMFault_None) {
11175             goto do_fault;
11176         }
11177         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
11178         switch (desc & 3) {
11179         case 0: /* Page translation fault.  */
11180             fi->type = ARMFault_Translation;
11181             goto do_fault;
11182         case 1: /* 64k page.  */
11183             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
11184             xn = desc & (1 << 15);
11185             *page_size = 0x10000;
11186             break;
11187         case 2: case 3: /* 4k page.  */
11188             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11189             xn = desc & 1;
11190             *page_size = 0x1000;
11191             break;
11192         default:
11193             /* Never happens, but compiler isn't smart enough to tell.  */
11194             abort();
11195         }
11196     }
11197     if (domain_prot == 3) {
11198         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11199     } else {
11200         if (pxn && !regime_is_user(env, mmu_idx)) {
11201             xn = 1;
11202         }
11203         if (xn && access_type == MMU_INST_FETCH) {
11204             fi->type = ARMFault_Permission;
11205             goto do_fault;
11206         }
11207 
11208         if (arm_feature(env, ARM_FEATURE_V6K) &&
11209                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11210             /* The simplified model uses AP[0] as an access control bit.  */
11211             if ((ap & 1) == 0) {
11212                 /* Access flag fault.  */
11213                 fi->type = ARMFault_AccessFlag;
11214                 goto do_fault;
11215             }
11216             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11217         } else {
11218             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11219         }
11220         if (*prot && !xn) {
11221             *prot |= PAGE_EXEC;
11222         }
11223         if (!(*prot & (1 << access_type))) {
11224             /* Access permission fault.  */
11225             fi->type = ARMFault_Permission;
11226             goto do_fault;
11227         }
11228     }
11229     if (ns) {
11230         /* The NS bit will (as required by the architecture) have no effect if
11231          * the CPU doesn't support TZ or this is a non-secure translation
11232          * regime, because the attribute will already be non-secure.
11233          */
11234         attrs->secure = false;
11235     }
11236     *phys_ptr = phys_addr;
11237     return false;
11238 do_fault:
11239     fi->domain = domain;
11240     fi->level = level;
11241     return true;
11242 }
11243 
11244 /*
11245  * check_s2_mmu_setup
11246  * @cpu:        ARMCPU
11247  * @is_aa64:    True if the translation regime is in AArch64 state
11248  * @startlevel: Suggested starting level
11249  * @inputsize:  Bitsize of IPAs
11250  * @stride:     Page-table stride (See the ARM ARM)
11251  *
11252  * Returns true if the suggested S2 translation parameters are OK and
11253  * false otherwise.
11254  */
11255 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11256                                int inputsize, int stride)
11257 {
11258     const int grainsize = stride + 3;
11259     int startsizecheck;
11260 
11261     /* Negative levels are never allowed.  */
11262     if (level < 0) {
11263         return false;
11264     }
11265 
11266     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11267     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11268         return false;
11269     }
11270 
11271     if (is_aa64) {
11272         CPUARMState *env = &cpu->env;
11273         unsigned int pamax = arm_pamax(cpu);
11274 
11275         switch (stride) {
11276         case 13: /* 64KB Pages.  */
11277             if (level == 0 || (level == 1 && pamax <= 42)) {
11278                 return false;
11279             }
11280             break;
11281         case 11: /* 16KB Pages.  */
11282             if (level == 0 || (level == 1 && pamax <= 40)) {
11283                 return false;
11284             }
11285             break;
11286         case 9: /* 4KB Pages.  */
11287             if (level == 0 && pamax <= 42) {
11288                 return false;
11289             }
11290             break;
11291         default:
11292             g_assert_not_reached();
11293         }
11294 
11295         /* Inputsize checks.  */
11296         if (inputsize > pamax &&
11297             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11298             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11299             return false;
11300         }
11301     } else {
11302         /* AArch32 only supports 4KB pages. Assert on that.  */
11303         assert(stride == 9);
11304 
11305         if (level == 0) {
11306             return false;
11307         }
11308     }
11309     return true;
11310 }
11311 
11312 /* Translate from the 4-bit stage 2 representation of
11313  * memory attributes (without cache-allocation hints) to
11314  * the 8-bit representation of the stage 1 MAIR registers
11315  * (which includes allocation hints).
11316  *
11317  * ref: shared/translation/attrs/S2AttrDecode()
11318  *      .../S2ConvertAttrsHints()
11319  */
11320 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11321 {
11322     uint8_t hiattr = extract32(s2attrs, 2, 2);
11323     uint8_t loattr = extract32(s2attrs, 0, 2);
11324     uint8_t hihint = 0, lohint = 0;
11325 
11326     if (hiattr != 0) { /* normal memory */
11327         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11328             hiattr = loattr = 1; /* non-cacheable */
11329         } else {
11330             if (hiattr != 1) { /* Write-through or write-back */
11331                 hihint = 3; /* RW allocate */
11332             }
11333             if (loattr != 1) { /* Write-through or write-back */
11334                 lohint = 3; /* RW allocate */
11335             }
11336         }
11337     }
11338 
11339     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11340 }
11341 #endif /* !CONFIG_USER_ONLY */
11342 
11343 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11344 {
11345     if (regime_has_2_ranges(mmu_idx)) {
11346         return extract64(tcr, 37, 2);
11347     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11348         return 0; /* VTCR_EL2 */
11349     } else {
11350         /* Replicate the single TBI bit so we always have 2 bits.  */
11351         return extract32(tcr, 20, 1) * 3;
11352     }
11353 }
11354 
11355 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11356 {
11357     if (regime_has_2_ranges(mmu_idx)) {
11358         return extract64(tcr, 51, 2);
11359     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11360         return 0; /* VTCR_EL2 */
11361     } else {
11362         /* Replicate the single TBID bit so we always have 2 bits.  */
11363         return extract32(tcr, 29, 1) * 3;
11364     }
11365 }
11366 
11367 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11368 {
11369     if (regime_has_2_ranges(mmu_idx)) {
11370         return extract64(tcr, 57, 2);
11371     } else {
11372         /* Replicate the single TCMA bit so we always have 2 bits.  */
11373         return extract32(tcr, 30, 1) * 3;
11374     }
11375 }
11376 
11377 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11378                                    ARMMMUIdx mmu_idx, bool data)
11379 {
11380     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11381     bool epd, hpd, using16k, using64k;
11382     int select, tsz, tbi, max_tsz;
11383 
11384     if (!regime_has_2_ranges(mmu_idx)) {
11385         select = 0;
11386         tsz = extract32(tcr, 0, 6);
11387         using64k = extract32(tcr, 14, 1);
11388         using16k = extract32(tcr, 15, 1);
11389         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11390             /* VTCR_EL2 */
11391             hpd = false;
11392         } else {
11393             hpd = extract32(tcr, 24, 1);
11394         }
11395         epd = false;
11396     } else {
11397         /*
11398          * Bit 55 is always between the two regions, and is canonical for
11399          * determining if address tagging is enabled.
11400          */
11401         select = extract64(va, 55, 1);
11402         if (!select) {
11403             tsz = extract32(tcr, 0, 6);
11404             epd = extract32(tcr, 7, 1);
11405             using64k = extract32(tcr, 14, 1);
11406             using16k = extract32(tcr, 15, 1);
11407             hpd = extract64(tcr, 41, 1);
11408         } else {
11409             int tg = extract32(tcr, 30, 2);
11410             using16k = tg == 1;
11411             using64k = tg == 3;
11412             tsz = extract32(tcr, 16, 6);
11413             epd = extract32(tcr, 23, 1);
11414             hpd = extract64(tcr, 42, 1);
11415         }
11416     }
11417 
11418     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11419         max_tsz = 48 - using64k;
11420     } else {
11421         max_tsz = 39;
11422     }
11423 
11424     tsz = MIN(tsz, max_tsz);
11425     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11426 
11427     /* Present TBI as a composite with TBID.  */
11428     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11429     if (!data) {
11430         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11431     }
11432     tbi = (tbi >> select) & 1;
11433 
11434     return (ARMVAParameters) {
11435         .tsz = tsz,
11436         .select = select,
11437         .tbi = tbi,
11438         .epd = epd,
11439         .hpd = hpd,
11440         .using16k = using16k,
11441         .using64k = using64k,
11442     };
11443 }
11444 
11445 #ifndef CONFIG_USER_ONLY
11446 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11447                                           ARMMMUIdx mmu_idx)
11448 {
11449     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11450     uint32_t el = regime_el(env, mmu_idx);
11451     int select, tsz;
11452     bool epd, hpd;
11453 
11454     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11455 
11456     if (mmu_idx == ARMMMUIdx_Stage2) {
11457         /* VTCR */
11458         bool sext = extract32(tcr, 4, 1);
11459         bool sign = extract32(tcr, 3, 1);
11460 
11461         /*
11462          * If the sign-extend bit is not the same as t0sz[3], the result
11463          * is unpredictable. Flag this as a guest error.
11464          */
11465         if (sign != sext) {
11466             qemu_log_mask(LOG_GUEST_ERROR,
11467                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11468         }
11469         tsz = sextract32(tcr, 0, 4) + 8;
11470         select = 0;
11471         hpd = false;
11472         epd = false;
11473     } else if (el == 2) {
11474         /* HTCR */
11475         tsz = extract32(tcr, 0, 3);
11476         select = 0;
11477         hpd = extract64(tcr, 24, 1);
11478         epd = false;
11479     } else {
11480         int t0sz = extract32(tcr, 0, 3);
11481         int t1sz = extract32(tcr, 16, 3);
11482 
11483         if (t1sz == 0) {
11484             select = va > (0xffffffffu >> t0sz);
11485         } else {
11486             /* Note that we will detect errors later.  */
11487             select = va >= ~(0xffffffffu >> t1sz);
11488         }
11489         if (!select) {
11490             tsz = t0sz;
11491             epd = extract32(tcr, 7, 1);
11492             hpd = extract64(tcr, 41, 1);
11493         } else {
11494             tsz = t1sz;
11495             epd = extract32(tcr, 23, 1);
11496             hpd = extract64(tcr, 42, 1);
11497         }
11498         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11499         hpd &= extract32(tcr, 6, 1);
11500     }
11501 
11502     return (ARMVAParameters) {
11503         .tsz = tsz,
11504         .select = select,
11505         .epd = epd,
11506         .hpd = hpd,
11507     };
11508 }
11509 
11510 /**
11511  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11512  *
11513  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11514  * prot and page_size may not be filled in, and the populated fsr value provides
11515  * information on why the translation aborted, in the format of a long-format
11516  * DFSR/IFSR fault register, with the following caveats:
11517  *  * the WnR bit is never set (the caller must do this).
11518  *
11519  * @env: CPUARMState
11520  * @address: virtual address to get physical address for
11521  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11522  * @mmu_idx: MMU index indicating required translation regime
11523  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11524  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11525  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11526  * @phys_ptr: set to the physical address corresponding to the virtual address
11527  * @attrs: set to the memory transaction attributes to use
11528  * @prot: set to the permissions for the page containing phys_ptr
11529  * @page_size_ptr: set to the size of the page containing phys_ptr
11530  * @fi: set to fault info if the translation fails
11531  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11532  */
11533 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11534                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11535                                bool s1_is_el0,
11536                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11537                                target_ulong *page_size_ptr,
11538                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11539 {
11540     ARMCPU *cpu = env_archcpu(env);
11541     CPUState *cs = CPU(cpu);
11542     /* Read an LPAE long-descriptor translation table. */
11543     ARMFaultType fault_type = ARMFault_Translation;
11544     uint32_t level;
11545     ARMVAParameters param;
11546     uint64_t ttbr;
11547     hwaddr descaddr, indexmask, indexmask_grainsize;
11548     uint32_t tableattrs;
11549     target_ulong page_size;
11550     uint32_t attrs;
11551     int32_t stride;
11552     int addrsize, inputsize;
11553     TCR *tcr = regime_tcr(env, mmu_idx);
11554     int ap, ns, xn, pxn;
11555     uint32_t el = regime_el(env, mmu_idx);
11556     uint64_t descaddrmask;
11557     bool aarch64 = arm_el_is_aa64(env, el);
11558     bool guarded = false;
11559 
11560     /* TODO: This code does not support shareability levels. */
11561     if (aarch64) {
11562         param = aa64_va_parameters(env, address, mmu_idx,
11563                                    access_type != MMU_INST_FETCH);
11564         level = 0;
11565         addrsize = 64 - 8 * param.tbi;
11566         inputsize = 64 - param.tsz;
11567     } else {
11568         param = aa32_va_parameters(env, address, mmu_idx);
11569         level = 1;
11570         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11571         inputsize = addrsize - param.tsz;
11572     }
11573 
11574     /*
11575      * We determined the region when collecting the parameters, but we
11576      * have not yet validated that the address is valid for the region.
11577      * Extract the top bits and verify that they all match select.
11578      *
11579      * For aa32, if inputsize == addrsize, then we have selected the
11580      * region by exclusion in aa32_va_parameters and there is no more
11581      * validation to do here.
11582      */
11583     if (inputsize < addrsize) {
11584         target_ulong top_bits = sextract64(address, inputsize,
11585                                            addrsize - inputsize);
11586         if (-top_bits != param.select) {
11587             /* The gap between the two regions is a Translation fault */
11588             fault_type = ARMFault_Translation;
11589             goto do_fault;
11590         }
11591     }
11592 
11593     if (param.using64k) {
11594         stride = 13;
11595     } else if (param.using16k) {
11596         stride = 11;
11597     } else {
11598         stride = 9;
11599     }
11600 
11601     /* Note that QEMU ignores shareability and cacheability attributes,
11602      * so we don't need to do anything with the SH, ORGN, IRGN fields
11603      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11604      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11605      * implement any ASID-like capability so we can ignore it (instead
11606      * we will always flush the TLB any time the ASID is changed).
11607      */
11608     ttbr = regime_ttbr(env, mmu_idx, param.select);
11609 
11610     /* Here we should have set up all the parameters for the translation:
11611      * inputsize, ttbr, epd, stride, tbi
11612      */
11613 
11614     if (param.epd) {
11615         /* Translation table walk disabled => Translation fault on TLB miss
11616          * Note: This is always 0 on 64-bit EL2 and EL3.
11617          */
11618         goto do_fault;
11619     }
11620 
11621     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11622         /* The starting level depends on the virtual address size (which can
11623          * be up to 48 bits) and the translation granule size. It indicates
11624          * the number of strides (stride bits at a time) needed to
11625          * consume the bits of the input address. In the pseudocode this is:
11626          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11627          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11628          * our 'stride + 3' and 'stride' is our 'stride'.
11629          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11630          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11631          * = 4 - (inputsize - 4) / stride;
11632          */
11633         level = 4 - (inputsize - 4) / stride;
11634     } else {
11635         /* For stage 2 translations the starting level is specified by the
11636          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11637          */
11638         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11639         uint32_t startlevel;
11640         bool ok;
11641 
11642         if (!aarch64 || stride == 9) {
11643             /* AArch32 or 4KB pages */
11644             startlevel = 2 - sl0;
11645 
11646             if (cpu_isar_feature(aa64_st, cpu)) {
11647                 startlevel &= 3;
11648             }
11649         } else {
11650             /* 16KB or 64KB pages */
11651             startlevel = 3 - sl0;
11652         }
11653 
11654         /* Check that the starting level is valid. */
11655         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11656                                 inputsize, stride);
11657         if (!ok) {
11658             fault_type = ARMFault_Translation;
11659             goto do_fault;
11660         }
11661         level = startlevel;
11662     }
11663 
11664     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11665     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11666 
11667     /* Now we can extract the actual base address from the TTBR */
11668     descaddr = extract64(ttbr, 0, 48);
11669     /*
11670      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11671      * and also to mask out CnP (bit 0) which could validly be non-zero.
11672      */
11673     descaddr &= ~indexmask;
11674 
11675     /* The address field in the descriptor goes up to bit 39 for ARMv7
11676      * but up to bit 47 for ARMv8, but we use the descaddrmask
11677      * up to bit 39 for AArch32, because we don't need other bits in that case
11678      * to construct next descriptor address (anyway they should be all zeroes).
11679      */
11680     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11681                    ~indexmask_grainsize;
11682 
11683     /* Secure accesses start with the page table in secure memory and
11684      * can be downgraded to non-secure at any step. Non-secure accesses
11685      * remain non-secure. We implement this by just ORing in the NSTable/NS
11686      * bits at each step.
11687      */
11688     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11689     for (;;) {
11690         uint64_t descriptor;
11691         bool nstable;
11692 
11693         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11694         descaddr &= ~7ULL;
11695         nstable = extract32(tableattrs, 4, 1);
11696         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11697         if (fi->type != ARMFault_None) {
11698             goto do_fault;
11699         }
11700 
11701         if (!(descriptor & 1) ||
11702             (!(descriptor & 2) && (level == 3))) {
11703             /* Invalid, or the Reserved level 3 encoding */
11704             goto do_fault;
11705         }
11706         descaddr = descriptor & descaddrmask;
11707 
11708         if ((descriptor & 2) && (level < 3)) {
11709             /* Table entry. The top five bits are attributes which may
11710              * propagate down through lower levels of the table (and
11711              * which are all arranged so that 0 means "no effect", so
11712              * we can gather them up by ORing in the bits at each level).
11713              */
11714             tableattrs |= extract64(descriptor, 59, 5);
11715             level++;
11716             indexmask = indexmask_grainsize;
11717             continue;
11718         }
11719         /* Block entry at level 1 or 2, or page entry at level 3.
11720          * These are basically the same thing, although the number
11721          * of bits we pull in from the vaddr varies.
11722          */
11723         page_size = (1ULL << ((stride * (4 - level)) + 3));
11724         descaddr |= (address & (page_size - 1));
11725         /* Extract attributes from the descriptor */
11726         attrs = extract64(descriptor, 2, 10)
11727             | (extract64(descriptor, 52, 12) << 10);
11728 
11729         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11730             /* Stage 2 table descriptors do not include any attribute fields */
11731             break;
11732         }
11733         /* Merge in attributes from table descriptors */
11734         attrs |= nstable << 3; /* NS */
11735         guarded = extract64(descriptor, 50, 1);  /* GP */
11736         if (param.hpd) {
11737             /* HPD disables all the table attributes except NSTable.  */
11738             break;
11739         }
11740         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11741         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11742          * means "force PL1 access only", which means forcing AP[1] to 0.
11743          */
11744         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11745         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11746         break;
11747     }
11748     /* Here descaddr is the final physical address, and attributes
11749      * are all in attrs.
11750      */
11751     fault_type = ARMFault_AccessFlag;
11752     if ((attrs & (1 << 8)) == 0) {
11753         /* Access flag */
11754         goto do_fault;
11755     }
11756 
11757     ap = extract32(attrs, 4, 2);
11758 
11759     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11760         ns = mmu_idx == ARMMMUIdx_Stage2;
11761         xn = extract32(attrs, 11, 2);
11762         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11763     } else {
11764         ns = extract32(attrs, 3, 1);
11765         xn = extract32(attrs, 12, 1);
11766         pxn = extract32(attrs, 11, 1);
11767         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11768     }
11769 
11770     fault_type = ARMFault_Permission;
11771     if (!(*prot & (1 << access_type))) {
11772         goto do_fault;
11773     }
11774 
11775     if (ns) {
11776         /* The NS bit will (as required by the architecture) have no effect if
11777          * the CPU doesn't support TZ or this is a non-secure translation
11778          * regime, because the attribute will already be non-secure.
11779          */
11780         txattrs->secure = false;
11781     }
11782     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11783     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11784         arm_tlb_bti_gp(txattrs) = true;
11785     }
11786 
11787     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11788         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11789     } else {
11790         /* Index into MAIR registers for cache attributes */
11791         uint8_t attrindx = extract32(attrs, 0, 3);
11792         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11793         assert(attrindx <= 7);
11794         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11795     }
11796     cacheattrs->shareability = extract32(attrs, 6, 2);
11797 
11798     *phys_ptr = descaddr;
11799     *page_size_ptr = page_size;
11800     return false;
11801 
11802 do_fault:
11803     fi->type = fault_type;
11804     fi->level = level;
11805     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11806     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11807                                mmu_idx == ARMMMUIdx_Stage2_S);
11808     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11809     return true;
11810 }
11811 
11812 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11813                                                 ARMMMUIdx mmu_idx,
11814                                                 int32_t address, int *prot)
11815 {
11816     if (!arm_feature(env, ARM_FEATURE_M)) {
11817         *prot = PAGE_READ | PAGE_WRITE;
11818         switch (address) {
11819         case 0xF0000000 ... 0xFFFFFFFF:
11820             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11821                 /* hivecs execing is ok */
11822                 *prot |= PAGE_EXEC;
11823             }
11824             break;
11825         case 0x00000000 ... 0x7FFFFFFF:
11826             *prot |= PAGE_EXEC;
11827             break;
11828         }
11829     } else {
11830         /* Default system address map for M profile cores.
11831          * The architecture specifies which regions are execute-never;
11832          * at the MPU level no other checks are defined.
11833          */
11834         switch (address) {
11835         case 0x00000000 ... 0x1fffffff: /* ROM */
11836         case 0x20000000 ... 0x3fffffff: /* SRAM */
11837         case 0x60000000 ... 0x7fffffff: /* RAM */
11838         case 0x80000000 ... 0x9fffffff: /* RAM */
11839             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11840             break;
11841         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11842         case 0xa0000000 ... 0xbfffffff: /* Device */
11843         case 0xc0000000 ... 0xdfffffff: /* Device */
11844         case 0xe0000000 ... 0xffffffff: /* System */
11845             *prot = PAGE_READ | PAGE_WRITE;
11846             break;
11847         default:
11848             g_assert_not_reached();
11849         }
11850     }
11851 }
11852 
11853 static bool pmsav7_use_background_region(ARMCPU *cpu,
11854                                          ARMMMUIdx mmu_idx, bool is_user)
11855 {
11856     /* Return true if we should use the default memory map as a
11857      * "background" region if there are no hits against any MPU regions.
11858      */
11859     CPUARMState *env = &cpu->env;
11860 
11861     if (is_user) {
11862         return false;
11863     }
11864 
11865     if (arm_feature(env, ARM_FEATURE_M)) {
11866         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11867             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11868     } else {
11869         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11870     }
11871 }
11872 
11873 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11874 {
11875     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11876     return arm_feature(env, ARM_FEATURE_M) &&
11877         extract32(address, 20, 12) == 0xe00;
11878 }
11879 
11880 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11881 {
11882     /* True if address is in the M profile system region
11883      * 0xe0000000 - 0xffffffff
11884      */
11885     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11886 }
11887 
11888 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11889                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11890                                  hwaddr *phys_ptr, int *prot,
11891                                  target_ulong *page_size,
11892                                  ARMMMUFaultInfo *fi)
11893 {
11894     ARMCPU *cpu = env_archcpu(env);
11895     int n;
11896     bool is_user = regime_is_user(env, mmu_idx);
11897 
11898     *phys_ptr = address;
11899     *page_size = TARGET_PAGE_SIZE;
11900     *prot = 0;
11901 
11902     if (regime_translation_disabled(env, mmu_idx) ||
11903         m_is_ppb_region(env, address)) {
11904         /* MPU disabled or M profile PPB access: use default memory map.
11905          * The other case which uses the default memory map in the
11906          * v7M ARM ARM pseudocode is exception vector reads from the vector
11907          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11908          * which always does a direct read using address_space_ldl(), rather
11909          * than going via this function, so we don't need to check that here.
11910          */
11911         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11912     } else { /* MPU enabled */
11913         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11914             /* region search */
11915             uint32_t base = env->pmsav7.drbar[n];
11916             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11917             uint32_t rmask;
11918             bool srdis = false;
11919 
11920             if (!(env->pmsav7.drsr[n] & 0x1)) {
11921                 continue;
11922             }
11923 
11924             if (!rsize) {
11925                 qemu_log_mask(LOG_GUEST_ERROR,
11926                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11927                 continue;
11928             }
11929             rsize++;
11930             rmask = (1ull << rsize) - 1;
11931 
11932             if (base & rmask) {
11933                 qemu_log_mask(LOG_GUEST_ERROR,
11934                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11935                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11936                               n, base, rmask);
11937                 continue;
11938             }
11939 
11940             if (address < base || address > base + rmask) {
11941                 /*
11942                  * Address not in this region. We must check whether the
11943                  * region covers addresses in the same page as our address.
11944                  * In that case we must not report a size that covers the
11945                  * whole page for a subsequent hit against a different MPU
11946                  * region or the background region, because it would result in
11947                  * incorrect TLB hits for subsequent accesses to addresses that
11948                  * are in this MPU region.
11949                  */
11950                 if (ranges_overlap(base, rmask,
11951                                    address & TARGET_PAGE_MASK,
11952                                    TARGET_PAGE_SIZE)) {
11953                     *page_size = 1;
11954                 }
11955                 continue;
11956             }
11957 
11958             /* Region matched */
11959 
11960             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11961                 int i, snd;
11962                 uint32_t srdis_mask;
11963 
11964                 rsize -= 3; /* sub region size (power of 2) */
11965                 snd = ((address - base) >> rsize) & 0x7;
11966                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11967 
11968                 srdis_mask = srdis ? 0x3 : 0x0;
11969                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11970                     /* This will check in groups of 2, 4 and then 8, whether
11971                      * the subregion bits are consistent. rsize is incremented
11972                      * back up to give the region size, considering consistent
11973                      * adjacent subregions as one region. Stop testing if rsize
11974                      * is already big enough for an entire QEMU page.
11975                      */
11976                     int snd_rounded = snd & ~(i - 1);
11977                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11978                                                      snd_rounded + 8, i);
11979                     if (srdis_mask ^ srdis_multi) {
11980                         break;
11981                     }
11982                     srdis_mask = (srdis_mask << i) | srdis_mask;
11983                     rsize++;
11984                 }
11985             }
11986             if (srdis) {
11987                 continue;
11988             }
11989             if (rsize < TARGET_PAGE_BITS) {
11990                 *page_size = 1 << rsize;
11991             }
11992             break;
11993         }
11994 
11995         if (n == -1) { /* no hits */
11996             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11997                 /* background fault */
11998                 fi->type = ARMFault_Background;
11999                 return true;
12000             }
12001             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12002         } else { /* a MPU hit! */
12003             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
12004             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
12005 
12006             if (m_is_system_region(env, address)) {
12007                 /* System space is always execute never */
12008                 xn = 1;
12009             }
12010 
12011             if (is_user) { /* User mode AP bit decoding */
12012                 switch (ap) {
12013                 case 0:
12014                 case 1:
12015                 case 5:
12016                     break; /* no access */
12017                 case 3:
12018                     *prot |= PAGE_WRITE;
12019                     /* fall through */
12020                 case 2:
12021                 case 6:
12022                     *prot |= PAGE_READ | PAGE_EXEC;
12023                     break;
12024                 case 7:
12025                     /* for v7M, same as 6; for R profile a reserved value */
12026                     if (arm_feature(env, ARM_FEATURE_M)) {
12027                         *prot |= PAGE_READ | PAGE_EXEC;
12028                         break;
12029                     }
12030                     /* fall through */
12031                 default:
12032                     qemu_log_mask(LOG_GUEST_ERROR,
12033                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12034                                   PRIx32 "\n", n, ap);
12035                 }
12036             } else { /* Priv. mode AP bits decoding */
12037                 switch (ap) {
12038                 case 0:
12039                     break; /* no access */
12040                 case 1:
12041                 case 2:
12042                 case 3:
12043                     *prot |= PAGE_WRITE;
12044                     /* fall through */
12045                 case 5:
12046                 case 6:
12047                     *prot |= PAGE_READ | PAGE_EXEC;
12048                     break;
12049                 case 7:
12050                     /* for v7M, same as 6; for R profile a reserved value */
12051                     if (arm_feature(env, ARM_FEATURE_M)) {
12052                         *prot |= PAGE_READ | PAGE_EXEC;
12053                         break;
12054                     }
12055                     /* fall through */
12056                 default:
12057                     qemu_log_mask(LOG_GUEST_ERROR,
12058                                   "DRACR[%d]: Bad value for AP bits: 0x%"
12059                                   PRIx32 "\n", n, ap);
12060                 }
12061             }
12062 
12063             /* execute never */
12064             if (xn) {
12065                 *prot &= ~PAGE_EXEC;
12066             }
12067         }
12068     }
12069 
12070     fi->type = ARMFault_Permission;
12071     fi->level = 1;
12072     return !(*prot & (1 << access_type));
12073 }
12074 
12075 static bool v8m_is_sau_exempt(CPUARMState *env,
12076                               uint32_t address, MMUAccessType access_type)
12077 {
12078     /* The architecture specifies that certain address ranges are
12079      * exempt from v8M SAU/IDAU checks.
12080      */
12081     return
12082         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
12083         (address >= 0xe0000000 && address <= 0xe0002fff) ||
12084         (address >= 0xe000e000 && address <= 0xe000efff) ||
12085         (address >= 0xe002e000 && address <= 0xe002efff) ||
12086         (address >= 0xe0040000 && address <= 0xe0041fff) ||
12087         (address >= 0xe00ff000 && address <= 0xe00fffff);
12088 }
12089 
12090 void v8m_security_lookup(CPUARMState *env, uint32_t address,
12091                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12092                                 V8M_SAttributes *sattrs)
12093 {
12094     /* Look up the security attributes for this address. Compare the
12095      * pseudocode SecurityCheck() function.
12096      * We assume the caller has zero-initialized *sattrs.
12097      */
12098     ARMCPU *cpu = env_archcpu(env);
12099     int r;
12100     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
12101     int idau_region = IREGION_NOTVALID;
12102     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12103     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12104 
12105     if (cpu->idau) {
12106         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
12107         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
12108 
12109         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
12110                    &idau_nsc);
12111     }
12112 
12113     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
12114         /* 0xf0000000..0xffffffff is always S for insn fetches */
12115         return;
12116     }
12117 
12118     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
12119         sattrs->ns = !regime_is_secure(env, mmu_idx);
12120         return;
12121     }
12122 
12123     if (idau_region != IREGION_NOTVALID) {
12124         sattrs->irvalid = true;
12125         sattrs->iregion = idau_region;
12126     }
12127 
12128     switch (env->sau.ctrl & 3) {
12129     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
12130         break;
12131     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
12132         sattrs->ns = true;
12133         break;
12134     default: /* SAU.ENABLE == 1 */
12135         for (r = 0; r < cpu->sau_sregion; r++) {
12136             if (env->sau.rlar[r] & 1) {
12137                 uint32_t base = env->sau.rbar[r] & ~0x1f;
12138                 uint32_t limit = env->sau.rlar[r] | 0x1f;
12139 
12140                 if (base <= address && limit >= address) {
12141                     if (base > addr_page_base || limit < addr_page_limit) {
12142                         sattrs->subpage = true;
12143                     }
12144                     if (sattrs->srvalid) {
12145                         /* If we hit in more than one region then we must report
12146                          * as Secure, not NS-Callable, with no valid region
12147                          * number info.
12148                          */
12149                         sattrs->ns = false;
12150                         sattrs->nsc = false;
12151                         sattrs->sregion = 0;
12152                         sattrs->srvalid = false;
12153                         break;
12154                     } else {
12155                         if (env->sau.rlar[r] & 2) {
12156                             sattrs->nsc = true;
12157                         } else {
12158                             sattrs->ns = true;
12159                         }
12160                         sattrs->srvalid = true;
12161                         sattrs->sregion = r;
12162                     }
12163                 } else {
12164                     /*
12165                      * Address not in this region. We must check whether the
12166                      * region covers addresses in the same page as our address.
12167                      * In that case we must not report a size that covers the
12168                      * whole page for a subsequent hit against a different MPU
12169                      * region or the background region, because it would result
12170                      * in incorrect TLB hits for subsequent accesses to
12171                      * addresses that are in this MPU region.
12172                      */
12173                     if (limit >= base &&
12174                         ranges_overlap(base, limit - base + 1,
12175                                        addr_page_base,
12176                                        TARGET_PAGE_SIZE)) {
12177                         sattrs->subpage = true;
12178                     }
12179                 }
12180             }
12181         }
12182         break;
12183     }
12184 
12185     /*
12186      * The IDAU will override the SAU lookup results if it specifies
12187      * higher security than the SAU does.
12188      */
12189     if (!idau_ns) {
12190         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12191             sattrs->ns = false;
12192             sattrs->nsc = idau_nsc;
12193         }
12194     }
12195 }
12196 
12197 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12198                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12199                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12200                               int *prot, bool *is_subpage,
12201                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12202 {
12203     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12204      * that a full phys-to-virt translation does).
12205      * mregion is (if not NULL) set to the region number which matched,
12206      * or -1 if no region number is returned (MPU off, address did not
12207      * hit a region, address hit in multiple regions).
12208      * We set is_subpage to true if the region hit doesn't cover the
12209      * entire TARGET_PAGE the address is within.
12210      */
12211     ARMCPU *cpu = env_archcpu(env);
12212     bool is_user = regime_is_user(env, mmu_idx);
12213     uint32_t secure = regime_is_secure(env, mmu_idx);
12214     int n;
12215     int matchregion = -1;
12216     bool hit = false;
12217     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12218     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12219 
12220     *is_subpage = false;
12221     *phys_ptr = address;
12222     *prot = 0;
12223     if (mregion) {
12224         *mregion = -1;
12225     }
12226 
12227     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12228      * was an exception vector read from the vector table (which is always
12229      * done using the default system address map), because those accesses
12230      * are done in arm_v7m_load_vector(), which always does a direct
12231      * read using address_space_ldl(), rather than going via this function.
12232      */
12233     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12234         hit = true;
12235     } else if (m_is_ppb_region(env, address)) {
12236         hit = true;
12237     } else {
12238         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12239             hit = true;
12240         }
12241 
12242         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12243             /* region search */
12244             /* Note that the base address is bits [31:5] from the register
12245              * with bits [4:0] all zeroes, but the limit address is bits
12246              * [31:5] from the register with bits [4:0] all ones.
12247              */
12248             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12249             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12250 
12251             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12252                 /* Region disabled */
12253                 continue;
12254             }
12255 
12256             if (address < base || address > limit) {
12257                 /*
12258                  * Address not in this region. We must check whether the
12259                  * region covers addresses in the same page as our address.
12260                  * In that case we must not report a size that covers the
12261                  * whole page for a subsequent hit against a different MPU
12262                  * region or the background region, because it would result in
12263                  * incorrect TLB hits for subsequent accesses to addresses that
12264                  * are in this MPU region.
12265                  */
12266                 if (limit >= base &&
12267                     ranges_overlap(base, limit - base + 1,
12268                                    addr_page_base,
12269                                    TARGET_PAGE_SIZE)) {
12270                     *is_subpage = true;
12271                 }
12272                 continue;
12273             }
12274 
12275             if (base > addr_page_base || limit < addr_page_limit) {
12276                 *is_subpage = true;
12277             }
12278 
12279             if (matchregion != -1) {
12280                 /* Multiple regions match -- always a failure (unlike
12281                  * PMSAv7 where highest-numbered-region wins)
12282                  */
12283                 fi->type = ARMFault_Permission;
12284                 fi->level = 1;
12285                 return true;
12286             }
12287 
12288             matchregion = n;
12289             hit = true;
12290         }
12291     }
12292 
12293     if (!hit) {
12294         /* background fault */
12295         fi->type = ARMFault_Background;
12296         return true;
12297     }
12298 
12299     if (matchregion == -1) {
12300         /* hit using the background region */
12301         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12302     } else {
12303         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12304         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12305         bool pxn = false;
12306 
12307         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12308             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12309         }
12310 
12311         if (m_is_system_region(env, address)) {
12312             /* System space is always execute never */
12313             xn = 1;
12314         }
12315 
12316         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12317         if (*prot && !xn && !(pxn && !is_user)) {
12318             *prot |= PAGE_EXEC;
12319         }
12320         /* We don't need to look the attribute up in the MAIR0/MAIR1
12321          * registers because that only tells us about cacheability.
12322          */
12323         if (mregion) {
12324             *mregion = matchregion;
12325         }
12326     }
12327 
12328     fi->type = ARMFault_Permission;
12329     fi->level = 1;
12330     return !(*prot & (1 << access_type));
12331 }
12332 
12333 
12334 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12335                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12336                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12337                                  int *prot, target_ulong *page_size,
12338                                  ARMMMUFaultInfo *fi)
12339 {
12340     uint32_t secure = regime_is_secure(env, mmu_idx);
12341     V8M_SAttributes sattrs = {};
12342     bool ret;
12343     bool mpu_is_subpage;
12344 
12345     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12346         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12347         if (access_type == MMU_INST_FETCH) {
12348             /* Instruction fetches always use the MMU bank and the
12349              * transaction attribute determined by the fetch address,
12350              * regardless of CPU state. This is painful for QEMU
12351              * to handle, because it would mean we need to encode
12352              * into the mmu_idx not just the (user, negpri) information
12353              * for the current security state but also that for the
12354              * other security state, which would balloon the number
12355              * of mmu_idx values needed alarmingly.
12356              * Fortunately we can avoid this because it's not actually
12357              * possible to arbitrarily execute code from memory with
12358              * the wrong security attribute: it will always generate
12359              * an exception of some kind or another, apart from the
12360              * special case of an NS CPU executing an SG instruction
12361              * in S&NSC memory. So we always just fail the translation
12362              * here and sort things out in the exception handler
12363              * (including possibly emulating an SG instruction).
12364              */
12365             if (sattrs.ns != !secure) {
12366                 if (sattrs.nsc) {
12367                     fi->type = ARMFault_QEMU_NSCExec;
12368                 } else {
12369                     fi->type = ARMFault_QEMU_SFault;
12370                 }
12371                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12372                 *phys_ptr = address;
12373                 *prot = 0;
12374                 return true;
12375             }
12376         } else {
12377             /* For data accesses we always use the MMU bank indicated
12378              * by the current CPU state, but the security attributes
12379              * might downgrade a secure access to nonsecure.
12380              */
12381             if (sattrs.ns) {
12382                 txattrs->secure = false;
12383             } else if (!secure) {
12384                 /* NS access to S memory must fault.
12385                  * Architecturally we should first check whether the
12386                  * MPU information for this address indicates that we
12387                  * are doing an unaligned access to Device memory, which
12388                  * should generate a UsageFault instead. QEMU does not
12389                  * currently check for that kind of unaligned access though.
12390                  * If we added it we would need to do so as a special case
12391                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12392                  */
12393                 fi->type = ARMFault_QEMU_SFault;
12394                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12395                 *phys_ptr = address;
12396                 *prot = 0;
12397                 return true;
12398             }
12399         }
12400     }
12401 
12402     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12403                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12404     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12405     return ret;
12406 }
12407 
12408 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12409                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12410                                  hwaddr *phys_ptr, int *prot,
12411                                  ARMMMUFaultInfo *fi)
12412 {
12413     int n;
12414     uint32_t mask;
12415     uint32_t base;
12416     bool is_user = regime_is_user(env, mmu_idx);
12417 
12418     if (regime_translation_disabled(env, mmu_idx)) {
12419         /* MPU disabled.  */
12420         *phys_ptr = address;
12421         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12422         return false;
12423     }
12424 
12425     *phys_ptr = address;
12426     for (n = 7; n >= 0; n--) {
12427         base = env->cp15.c6_region[n];
12428         if ((base & 1) == 0) {
12429             continue;
12430         }
12431         mask = 1 << ((base >> 1) & 0x1f);
12432         /* Keep this shift separate from the above to avoid an
12433            (undefined) << 32.  */
12434         mask = (mask << 1) - 1;
12435         if (((base ^ address) & ~mask) == 0) {
12436             break;
12437         }
12438     }
12439     if (n < 0) {
12440         fi->type = ARMFault_Background;
12441         return true;
12442     }
12443 
12444     if (access_type == MMU_INST_FETCH) {
12445         mask = env->cp15.pmsav5_insn_ap;
12446     } else {
12447         mask = env->cp15.pmsav5_data_ap;
12448     }
12449     mask = (mask >> (n * 4)) & 0xf;
12450     switch (mask) {
12451     case 0:
12452         fi->type = ARMFault_Permission;
12453         fi->level = 1;
12454         return true;
12455     case 1:
12456         if (is_user) {
12457             fi->type = ARMFault_Permission;
12458             fi->level = 1;
12459             return true;
12460         }
12461         *prot = PAGE_READ | PAGE_WRITE;
12462         break;
12463     case 2:
12464         *prot = PAGE_READ;
12465         if (!is_user) {
12466             *prot |= PAGE_WRITE;
12467         }
12468         break;
12469     case 3:
12470         *prot = PAGE_READ | PAGE_WRITE;
12471         break;
12472     case 5:
12473         if (is_user) {
12474             fi->type = ARMFault_Permission;
12475             fi->level = 1;
12476             return true;
12477         }
12478         *prot = PAGE_READ;
12479         break;
12480     case 6:
12481         *prot = PAGE_READ;
12482         break;
12483     default:
12484         /* Bad permission.  */
12485         fi->type = ARMFault_Permission;
12486         fi->level = 1;
12487         return true;
12488     }
12489     *prot |= PAGE_EXEC;
12490     return false;
12491 }
12492 
12493 /* Combine either inner or outer cacheability attributes for normal
12494  * memory, according to table D4-42 and pseudocode procedure
12495  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12496  *
12497  * NB: only stage 1 includes allocation hints (RW bits), leading to
12498  * some asymmetry.
12499  */
12500 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12501 {
12502     if (s1 == 4 || s2 == 4) {
12503         /* non-cacheable has precedence */
12504         return 4;
12505     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12506         /* stage 1 write-through takes precedence */
12507         return s1;
12508     } else if (extract32(s2, 2, 2) == 2) {
12509         /* stage 2 write-through takes precedence, but the allocation hint
12510          * is still taken from stage 1
12511          */
12512         return (2 << 2) | extract32(s1, 0, 2);
12513     } else { /* write-back */
12514         return s1;
12515     }
12516 }
12517 
12518 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12519  * and CombineS1S2Desc()
12520  *
12521  * @s1:      Attributes from stage 1 walk
12522  * @s2:      Attributes from stage 2 walk
12523  */
12524 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12525 {
12526     uint8_t s1lo, s2lo, s1hi, s2hi;
12527     ARMCacheAttrs ret;
12528     bool tagged = false;
12529 
12530     if (s1.attrs == 0xf0) {
12531         tagged = true;
12532         s1.attrs = 0xff;
12533     }
12534 
12535     s1lo = extract32(s1.attrs, 0, 4);
12536     s2lo = extract32(s2.attrs, 0, 4);
12537     s1hi = extract32(s1.attrs, 4, 4);
12538     s2hi = extract32(s2.attrs, 4, 4);
12539 
12540     /* Combine shareability attributes (table D4-43) */
12541     if (s1.shareability == 2 || s2.shareability == 2) {
12542         /* if either are outer-shareable, the result is outer-shareable */
12543         ret.shareability = 2;
12544     } else if (s1.shareability == 3 || s2.shareability == 3) {
12545         /* if either are inner-shareable, the result is inner-shareable */
12546         ret.shareability = 3;
12547     } else {
12548         /* both non-shareable */
12549         ret.shareability = 0;
12550     }
12551 
12552     /* Combine memory type and cacheability attributes */
12553     if (s1hi == 0 || s2hi == 0) {
12554         /* Device has precedence over normal */
12555         if (s1lo == 0 || s2lo == 0) {
12556             /* nGnRnE has precedence over anything */
12557             ret.attrs = 0;
12558         } else if (s1lo == 4 || s2lo == 4) {
12559             /* non-Reordering has precedence over Reordering */
12560             ret.attrs = 4;  /* nGnRE */
12561         } else if (s1lo == 8 || s2lo == 8) {
12562             /* non-Gathering has precedence over Gathering */
12563             ret.attrs = 8;  /* nGRE */
12564         } else {
12565             ret.attrs = 0xc; /* GRE */
12566         }
12567 
12568         /* Any location for which the resultant memory type is any
12569          * type of Device memory is always treated as Outer Shareable.
12570          */
12571         ret.shareability = 2;
12572     } else { /* Normal memory */
12573         /* Outer/inner cacheability combine independently */
12574         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12575                   | combine_cacheattr_nibble(s1lo, s2lo);
12576 
12577         if (ret.attrs == 0x44) {
12578             /* Any location for which the resultant memory type is Normal
12579              * Inner Non-cacheable, Outer Non-cacheable is always treated
12580              * as Outer Shareable.
12581              */
12582             ret.shareability = 2;
12583         }
12584     }
12585 
12586     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12587     if (tagged && ret.attrs == 0xff) {
12588         ret.attrs = 0xf0;
12589     }
12590 
12591     return ret;
12592 }
12593 
12594 
12595 /* get_phys_addr - get the physical address for this virtual address
12596  *
12597  * Find the physical address corresponding to the given virtual address,
12598  * by doing a translation table walk on MMU based systems or using the
12599  * MPU state on MPU based systems.
12600  *
12601  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12602  * prot and page_size may not be filled in, and the populated fsr value provides
12603  * information on why the translation aborted, in the format of a
12604  * DFSR/IFSR fault register, with the following caveats:
12605  *  * we honour the short vs long DFSR format differences.
12606  *  * the WnR bit is never set (the caller must do this).
12607  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12608  *    value.
12609  *
12610  * @env: CPUARMState
12611  * @address: virtual address to get physical address for
12612  * @access_type: 0 for read, 1 for write, 2 for execute
12613  * @mmu_idx: MMU index indicating required translation regime
12614  * @phys_ptr: set to the physical address corresponding to the virtual address
12615  * @attrs: set to the memory transaction attributes to use
12616  * @prot: set to the permissions for the page containing phys_ptr
12617  * @page_size: set to the size of the page containing phys_ptr
12618  * @fi: set to fault info if the translation fails
12619  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12620  */
12621 bool get_phys_addr(CPUARMState *env, target_ulong address,
12622                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12623                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12624                    target_ulong *page_size,
12625                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12626 {
12627     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12628 
12629     if (mmu_idx != s1_mmu_idx) {
12630         /* Call ourselves recursively to do the stage 1 and then stage 2
12631          * translations if mmu_idx is a two-stage regime.
12632          */
12633         if (arm_feature(env, ARM_FEATURE_EL2)) {
12634             hwaddr ipa;
12635             int s2_prot;
12636             int ret;
12637             ARMCacheAttrs cacheattrs2 = {};
12638             ARMMMUIdx s2_mmu_idx;
12639             bool is_el0;
12640 
12641             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12642                                 attrs, prot, page_size, fi, cacheattrs);
12643 
12644             /* If S1 fails or S2 is disabled, return early.  */
12645             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12646                 *phys_ptr = ipa;
12647                 return ret;
12648             }
12649 
12650             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12651             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12652 
12653             /* S1 is done. Now do S2 translation.  */
12654             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12655                                      phys_ptr, attrs, &s2_prot,
12656                                      page_size, fi, &cacheattrs2);
12657             fi->s2addr = ipa;
12658             /* Combine the S1 and S2 perms.  */
12659             *prot &= s2_prot;
12660 
12661             /* If S2 fails, return early.  */
12662             if (ret) {
12663                 return ret;
12664             }
12665 
12666             /* Combine the S1 and S2 cache attributes. */
12667             if (arm_hcr_el2_eff(env) & HCR_DC) {
12668                 /*
12669                  * HCR.DC forces the first stage attributes to
12670                  *  Normal Non-Shareable,
12671                  *  Inner Write-Back Read-Allocate Write-Allocate,
12672                  *  Outer Write-Back Read-Allocate Write-Allocate.
12673                  * Do not overwrite Tagged within attrs.
12674                  */
12675                 if (cacheattrs->attrs != 0xf0) {
12676                     cacheattrs->attrs = 0xff;
12677                 }
12678                 cacheattrs->shareability = 0;
12679             }
12680             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12681 
12682             /* Check if IPA translates to secure or non-secure PA space. */
12683             if (arm_is_secure_below_el3(env)) {
12684                 if (attrs->secure) {
12685                     attrs->secure =
12686                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12687                 } else {
12688                     attrs->secure =
12689                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12690                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12691                 }
12692             }
12693             return 0;
12694         } else {
12695             /*
12696              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12697              */
12698             mmu_idx = stage_1_mmu_idx(mmu_idx);
12699         }
12700     }
12701 
12702     /* The page table entries may downgrade secure to non-secure, but
12703      * cannot upgrade an non-secure translation regime's attributes
12704      * to secure.
12705      */
12706     attrs->secure = regime_is_secure(env, mmu_idx);
12707     attrs->user = regime_is_user(env, mmu_idx);
12708 
12709     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12710      * In v7 and earlier it affects all stage 1 translations.
12711      */
12712     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12713         && !arm_feature(env, ARM_FEATURE_V8)) {
12714         if (regime_el(env, mmu_idx) == 3) {
12715             address += env->cp15.fcseidr_s;
12716         } else {
12717             address += env->cp15.fcseidr_ns;
12718         }
12719     }
12720 
12721     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12722         bool ret;
12723         *page_size = TARGET_PAGE_SIZE;
12724 
12725         if (arm_feature(env, ARM_FEATURE_V8)) {
12726             /* PMSAv8 */
12727             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12728                                        phys_ptr, attrs, prot, page_size, fi);
12729         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12730             /* PMSAv7 */
12731             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12732                                        phys_ptr, prot, page_size, fi);
12733         } else {
12734             /* Pre-v7 MPU */
12735             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12736                                        phys_ptr, prot, fi);
12737         }
12738         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12739                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12740                       access_type == MMU_DATA_LOAD ? "reading" :
12741                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12742                       (uint32_t)address, mmu_idx,
12743                       ret ? "Miss" : "Hit",
12744                       *prot & PAGE_READ ? 'r' : '-',
12745                       *prot & PAGE_WRITE ? 'w' : '-',
12746                       *prot & PAGE_EXEC ? 'x' : '-');
12747 
12748         return ret;
12749     }
12750 
12751     /* Definitely a real MMU, not an MPU */
12752 
12753     if (regime_translation_disabled(env, mmu_idx)) {
12754         uint64_t hcr;
12755         uint8_t memattr;
12756 
12757         /*
12758          * MMU disabled.  S1 addresses within aa64 translation regimes are
12759          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12760          */
12761         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12762             int r_el = regime_el(env, mmu_idx);
12763             if (arm_el_is_aa64(env, r_el)) {
12764                 int pamax = arm_pamax(env_archcpu(env));
12765                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12766                 int addrtop, tbi;
12767 
12768                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12769                 if (access_type == MMU_INST_FETCH) {
12770                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12771                 }
12772                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12773                 addrtop = (tbi ? 55 : 63);
12774 
12775                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12776                     fi->type = ARMFault_AddressSize;
12777                     fi->level = 0;
12778                     fi->stage2 = false;
12779                     return 1;
12780                 }
12781 
12782                 /*
12783                  * When TBI is disabled, we've just validated that all of the
12784                  * bits above PAMax are zero, so logically we only need to
12785                  * clear the top byte for TBI.  But it's clearer to follow
12786                  * the pseudocode set of addrdesc.paddress.
12787                  */
12788                 address = extract64(address, 0, 52);
12789             }
12790         }
12791         *phys_ptr = address;
12792         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12793         *page_size = TARGET_PAGE_SIZE;
12794 
12795         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12796         hcr = arm_hcr_el2_eff(env);
12797         cacheattrs->shareability = 0;
12798         if (hcr & HCR_DC) {
12799             if (hcr & HCR_DCT) {
12800                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12801             } else {
12802                 memattr = 0xff;  /* Normal, WB, RWA */
12803             }
12804         } else if (access_type == MMU_INST_FETCH) {
12805             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12806                 memattr = 0xee;  /* Normal, WT, RA, NT */
12807             } else {
12808                 memattr = 0x44;  /* Normal, NC, No */
12809             }
12810             cacheattrs->shareability = 2; /* outer sharable */
12811         } else {
12812             memattr = 0x00;      /* Device, nGnRnE */
12813         }
12814         cacheattrs->attrs = memattr;
12815         return 0;
12816     }
12817 
12818     if (regime_using_lpae_format(env, mmu_idx)) {
12819         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12820                                   phys_ptr, attrs, prot, page_size,
12821                                   fi, cacheattrs);
12822     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12823         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12824                                 phys_ptr, attrs, prot, page_size, fi);
12825     } else {
12826         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12827                                     phys_ptr, prot, page_size, fi);
12828     }
12829 }
12830 
12831 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12832                                          MemTxAttrs *attrs)
12833 {
12834     ARMCPU *cpu = ARM_CPU(cs);
12835     CPUARMState *env = &cpu->env;
12836     hwaddr phys_addr;
12837     target_ulong page_size;
12838     int prot;
12839     bool ret;
12840     ARMMMUFaultInfo fi = {};
12841     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12842     ARMCacheAttrs cacheattrs = {};
12843 
12844     *attrs = (MemTxAttrs) {};
12845 
12846     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12847                         attrs, &prot, &page_size, &fi, &cacheattrs);
12848 
12849     if (ret) {
12850         return -1;
12851     }
12852     return phys_addr;
12853 }
12854 
12855 #endif
12856 
12857 /* Note that signed overflow is undefined in C.  The following routines are
12858    careful to use unsigned types where modulo arithmetic is required.
12859    Failure to do so _will_ break on newer gcc.  */
12860 
12861 /* Signed saturating arithmetic.  */
12862 
12863 /* Perform 16-bit signed saturating addition.  */
12864 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12865 {
12866     uint16_t res;
12867 
12868     res = a + b;
12869     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12870         if (a & 0x8000)
12871             res = 0x8000;
12872         else
12873             res = 0x7fff;
12874     }
12875     return res;
12876 }
12877 
12878 /* Perform 8-bit signed saturating addition.  */
12879 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12880 {
12881     uint8_t res;
12882 
12883     res = a + b;
12884     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12885         if (a & 0x80)
12886             res = 0x80;
12887         else
12888             res = 0x7f;
12889     }
12890     return res;
12891 }
12892 
12893 /* Perform 16-bit signed saturating subtraction.  */
12894 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12895 {
12896     uint16_t res;
12897 
12898     res = a - b;
12899     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12900         if (a & 0x8000)
12901             res = 0x8000;
12902         else
12903             res = 0x7fff;
12904     }
12905     return res;
12906 }
12907 
12908 /* Perform 8-bit signed saturating subtraction.  */
12909 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12910 {
12911     uint8_t res;
12912 
12913     res = a - b;
12914     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12915         if (a & 0x80)
12916             res = 0x80;
12917         else
12918             res = 0x7f;
12919     }
12920     return res;
12921 }
12922 
12923 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12924 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12925 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12926 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12927 #define PFX q
12928 
12929 #include "op_addsub.h"
12930 
12931 /* Unsigned saturating arithmetic.  */
12932 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12933 {
12934     uint16_t res;
12935     res = a + b;
12936     if (res < a)
12937         res = 0xffff;
12938     return res;
12939 }
12940 
12941 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12942 {
12943     if (a > b)
12944         return a - b;
12945     else
12946         return 0;
12947 }
12948 
12949 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12950 {
12951     uint8_t res;
12952     res = a + b;
12953     if (res < a)
12954         res = 0xff;
12955     return res;
12956 }
12957 
12958 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12959 {
12960     if (a > b)
12961         return a - b;
12962     else
12963         return 0;
12964 }
12965 
12966 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12967 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12968 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12969 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12970 #define PFX uq
12971 
12972 #include "op_addsub.h"
12973 
12974 /* Signed modulo arithmetic.  */
12975 #define SARITH16(a, b, n, op) do { \
12976     int32_t sum; \
12977     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12978     RESULT(sum, n, 16); \
12979     if (sum >= 0) \
12980         ge |= 3 << (n * 2); \
12981     } while(0)
12982 
12983 #define SARITH8(a, b, n, op) do { \
12984     int32_t sum; \
12985     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12986     RESULT(sum, n, 8); \
12987     if (sum >= 0) \
12988         ge |= 1 << n; \
12989     } while(0)
12990 
12991 
12992 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12993 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12994 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12995 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12996 #define PFX s
12997 #define ARITH_GE
12998 
12999 #include "op_addsub.h"
13000 
13001 /* Unsigned modulo arithmetic.  */
13002 #define ADD16(a, b, n) do { \
13003     uint32_t sum; \
13004     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
13005     RESULT(sum, n, 16); \
13006     if ((sum >> 16) == 1) \
13007         ge |= 3 << (n * 2); \
13008     } while(0)
13009 
13010 #define ADD8(a, b, n) do { \
13011     uint32_t sum; \
13012     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
13013     RESULT(sum, n, 8); \
13014     if ((sum >> 8) == 1) \
13015         ge |= 1 << n; \
13016     } while(0)
13017 
13018 #define SUB16(a, b, n) do { \
13019     uint32_t sum; \
13020     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
13021     RESULT(sum, n, 16); \
13022     if ((sum >> 16) == 0) \
13023         ge |= 3 << (n * 2); \
13024     } while(0)
13025 
13026 #define SUB8(a, b, n) do { \
13027     uint32_t sum; \
13028     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
13029     RESULT(sum, n, 8); \
13030     if ((sum >> 8) == 0) \
13031         ge |= 1 << n; \
13032     } while(0)
13033 
13034 #define PFX u
13035 #define ARITH_GE
13036 
13037 #include "op_addsub.h"
13038 
13039 /* Halved signed arithmetic.  */
13040 #define ADD16(a, b, n) \
13041   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
13042 #define SUB16(a, b, n) \
13043   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
13044 #define ADD8(a, b, n) \
13045   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
13046 #define SUB8(a, b, n) \
13047   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
13048 #define PFX sh
13049 
13050 #include "op_addsub.h"
13051 
13052 /* Halved unsigned arithmetic.  */
13053 #define ADD16(a, b, n) \
13054   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13055 #define SUB16(a, b, n) \
13056   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
13057 #define ADD8(a, b, n) \
13058   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13059 #define SUB8(a, b, n) \
13060   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
13061 #define PFX uh
13062 
13063 #include "op_addsub.h"
13064 
13065 static inline uint8_t do_usad(uint8_t a, uint8_t b)
13066 {
13067     if (a > b)
13068         return a - b;
13069     else
13070         return b - a;
13071 }
13072 
13073 /* Unsigned sum of absolute byte differences.  */
13074 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
13075 {
13076     uint32_t sum;
13077     sum = do_usad(a, b);
13078     sum += do_usad(a >> 8, b >> 8);
13079     sum += do_usad(a >> 16, b >> 16);
13080     sum += do_usad(a >> 24, b >> 24);
13081     return sum;
13082 }
13083 
13084 /* For ARMv6 SEL instruction.  */
13085 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
13086 {
13087     uint32_t mask;
13088 
13089     mask = 0;
13090     if (flags & 1)
13091         mask |= 0xff;
13092     if (flags & 2)
13093         mask |= 0xff00;
13094     if (flags & 4)
13095         mask |= 0xff0000;
13096     if (flags & 8)
13097         mask |= 0xff000000;
13098     return (a & mask) | (b & ~mask);
13099 }
13100 
13101 /* CRC helpers.
13102  * The upper bytes of val (above the number specified by 'bytes') must have
13103  * been zeroed out by the caller.
13104  */
13105 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13106 {
13107     uint8_t buf[4];
13108 
13109     stl_le_p(buf, val);
13110 
13111     /* zlib crc32 converts the accumulator and output to one's complement.  */
13112     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13113 }
13114 
13115 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13116 {
13117     uint8_t buf[4];
13118 
13119     stl_le_p(buf, val);
13120 
13121     /* Linux crc32c converts the output to one's complement.  */
13122     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13123 }
13124 
13125 /* Return the exception level to which FP-disabled exceptions should
13126  * be taken, or 0 if FP is enabled.
13127  */
13128 int fp_exception_el(CPUARMState *env, int cur_el)
13129 {
13130 #ifndef CONFIG_USER_ONLY
13131     /* CPACR and the CPTR registers don't exist before v6, so FP is
13132      * always accessible
13133      */
13134     if (!arm_feature(env, ARM_FEATURE_V6)) {
13135         return 0;
13136     }
13137 
13138     if (arm_feature(env, ARM_FEATURE_M)) {
13139         /* CPACR can cause a NOCP UsageFault taken to current security state */
13140         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
13141             return 1;
13142         }
13143 
13144         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
13145             if (!extract32(env->v7m.nsacr, 10, 1)) {
13146                 /* FP insns cause a NOCP UsageFault taken to Secure */
13147                 return 3;
13148             }
13149         }
13150 
13151         return 0;
13152     }
13153 
13154     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13155      * 0, 2 : trap EL0 and EL1/PL1 accesses
13156      * 1    : trap only EL0 accesses
13157      * 3    : trap no accesses
13158      * This register is ignored if E2H+TGE are both set.
13159      */
13160     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13161         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13162 
13163         switch (fpen) {
13164         case 0:
13165         case 2:
13166             if (cur_el == 0 || cur_el == 1) {
13167                 /* Trap to PL1, which might be EL1 or EL3 */
13168                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13169                     return 3;
13170                 }
13171                 return 1;
13172             }
13173             if (cur_el == 3 && !is_a64(env)) {
13174                 /* Secure PL1 running at EL3 */
13175                 return 3;
13176             }
13177             break;
13178         case 1:
13179             if (cur_el == 0) {
13180                 return 1;
13181             }
13182             break;
13183         case 3:
13184             break;
13185         }
13186     }
13187 
13188     /*
13189      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13190      * to control non-secure access to the FPU. It doesn't have any
13191      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13192      */
13193     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13194          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13195         if (!extract32(env->cp15.nsacr, 10, 1)) {
13196             /* FP insns act as UNDEF */
13197             return cur_el == 2 ? 2 : 1;
13198         }
13199     }
13200 
13201     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13202      * check because zero bits in the registers mean "don't trap".
13203      */
13204 
13205     /* CPTR_EL2 : present in v7VE or v8 */
13206     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13207         && arm_is_el2_enabled(env)) {
13208         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13209         return 2;
13210     }
13211 
13212     /* CPTR_EL3 : present in v8 */
13213     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13214         /* Trap all FP ops to EL3 */
13215         return 3;
13216     }
13217 #endif
13218     return 0;
13219 }
13220 
13221 /* Return the exception level we're running at if this is our mmu_idx */
13222 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13223 {
13224     if (mmu_idx & ARM_MMU_IDX_M) {
13225         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13226     }
13227 
13228     switch (mmu_idx) {
13229     case ARMMMUIdx_E10_0:
13230     case ARMMMUIdx_E20_0:
13231     case ARMMMUIdx_SE10_0:
13232     case ARMMMUIdx_SE20_0:
13233         return 0;
13234     case ARMMMUIdx_E10_1:
13235     case ARMMMUIdx_E10_1_PAN:
13236     case ARMMMUIdx_SE10_1:
13237     case ARMMMUIdx_SE10_1_PAN:
13238         return 1;
13239     case ARMMMUIdx_E2:
13240     case ARMMMUIdx_E20_2:
13241     case ARMMMUIdx_E20_2_PAN:
13242     case ARMMMUIdx_SE2:
13243     case ARMMMUIdx_SE20_2:
13244     case ARMMMUIdx_SE20_2_PAN:
13245         return 2;
13246     case ARMMMUIdx_SE3:
13247         return 3;
13248     default:
13249         g_assert_not_reached();
13250     }
13251 }
13252 
13253 #ifndef CONFIG_TCG
13254 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13255 {
13256     g_assert_not_reached();
13257 }
13258 #endif
13259 
13260 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13261 {
13262     ARMMMUIdx idx;
13263     uint64_t hcr;
13264 
13265     if (arm_feature(env, ARM_FEATURE_M)) {
13266         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13267     }
13268 
13269     /* See ARM pseudo-function ELIsInHost.  */
13270     switch (el) {
13271     case 0:
13272         hcr = arm_hcr_el2_eff(env);
13273         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13274             idx = ARMMMUIdx_E20_0;
13275         } else {
13276             idx = ARMMMUIdx_E10_0;
13277         }
13278         break;
13279     case 1:
13280         if (env->pstate & PSTATE_PAN) {
13281             idx = ARMMMUIdx_E10_1_PAN;
13282         } else {
13283             idx = ARMMMUIdx_E10_1;
13284         }
13285         break;
13286     case 2:
13287         /* Note that TGE does not apply at EL2.  */
13288         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13289             if (env->pstate & PSTATE_PAN) {
13290                 idx = ARMMMUIdx_E20_2_PAN;
13291             } else {
13292                 idx = ARMMMUIdx_E20_2;
13293             }
13294         } else {
13295             idx = ARMMMUIdx_E2;
13296         }
13297         break;
13298     case 3:
13299         return ARMMMUIdx_SE3;
13300     default:
13301         g_assert_not_reached();
13302     }
13303 
13304     if (arm_is_secure_below_el3(env)) {
13305         idx &= ~ARM_MMU_IDX_A_NS;
13306     }
13307 
13308     return idx;
13309 }
13310 
13311 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13312 {
13313     return arm_mmu_idx_el(env, arm_current_el(env));
13314 }
13315 
13316 #ifndef CONFIG_USER_ONLY
13317 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13318 {
13319     return stage_1_mmu_idx(arm_mmu_idx(env));
13320 }
13321 #endif
13322 
13323 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13324                                            ARMMMUIdx mmu_idx,
13325                                            CPUARMTBFlags flags)
13326 {
13327     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13328     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13329 
13330     if (arm_singlestep_active(env)) {
13331         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13332     }
13333     return flags;
13334 }
13335 
13336 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13337                                               ARMMMUIdx mmu_idx,
13338                                               CPUARMTBFlags flags)
13339 {
13340     bool sctlr_b = arm_sctlr_b(env);
13341 
13342     if (sctlr_b) {
13343         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13344     }
13345     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13346         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13347     }
13348     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13349 
13350     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13351 }
13352 
13353 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13354                                         ARMMMUIdx mmu_idx)
13355 {
13356     CPUARMTBFlags flags = {};
13357     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13358 
13359     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13360     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13361         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13362     }
13363 
13364     if (arm_v7m_is_handler_mode(env)) {
13365         DP_TBFLAG_M32(flags, HANDLER, 1);
13366     }
13367 
13368     /*
13369      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13370      * is suppressing them because the requested execution priority
13371      * is less than 0.
13372      */
13373     if (arm_feature(env, ARM_FEATURE_V8) &&
13374         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13375           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13376         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13377     }
13378 
13379     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13380 }
13381 
13382 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13383 {
13384     CPUARMTBFlags flags = {};
13385 
13386     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13387     return flags;
13388 }
13389 
13390 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13391                                         ARMMMUIdx mmu_idx)
13392 {
13393     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13394     int el = arm_current_el(env);
13395 
13396     if (arm_sctlr(env, el) & SCTLR_A) {
13397         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13398     }
13399 
13400     if (arm_el_is_aa64(env, 1)) {
13401         DP_TBFLAG_A32(flags, VFPEN, 1);
13402     }
13403 
13404     if (el < 2 && env->cp15.hstr_el2 &&
13405         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13406         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13407     }
13408 
13409     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13410 }
13411 
13412 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13413                                         ARMMMUIdx mmu_idx)
13414 {
13415     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13416     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13417     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13418     uint64_t sctlr;
13419     int tbii, tbid;
13420 
13421     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13422 
13423     /* Get control bits for tagged addresses.  */
13424     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13425     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13426 
13427     DP_TBFLAG_A64(flags, TBII, tbii);
13428     DP_TBFLAG_A64(flags, TBID, tbid);
13429 
13430     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13431         int sve_el = sve_exception_el(env, el);
13432         uint32_t zcr_len;
13433 
13434         /*
13435          * If SVE is disabled, but FP is enabled,
13436          * then the effective len is 0.
13437          */
13438         if (sve_el != 0 && fp_el == 0) {
13439             zcr_len = 0;
13440         } else {
13441             zcr_len = sve_zcr_len_for_el(env, el);
13442         }
13443         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13444         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13445     }
13446 
13447     sctlr = regime_sctlr(env, stage1);
13448 
13449     if (sctlr & SCTLR_A) {
13450         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13451     }
13452 
13453     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13454         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13455     }
13456 
13457     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13458         /*
13459          * In order to save space in flags, we record only whether
13460          * pauth is "inactive", meaning all insns are implemented as
13461          * a nop, or "active" when some action must be performed.
13462          * The decision of which action to take is left to a helper.
13463          */
13464         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13465             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13466         }
13467     }
13468 
13469     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13470         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13471         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13472             DP_TBFLAG_A64(flags, BT, 1);
13473         }
13474     }
13475 
13476     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13477     if (!(env->pstate & PSTATE_UAO)) {
13478         switch (mmu_idx) {
13479         case ARMMMUIdx_E10_1:
13480         case ARMMMUIdx_E10_1_PAN:
13481         case ARMMMUIdx_SE10_1:
13482         case ARMMMUIdx_SE10_1_PAN:
13483             /* TODO: ARMv8.3-NV */
13484             DP_TBFLAG_A64(flags, UNPRIV, 1);
13485             break;
13486         case ARMMMUIdx_E20_2:
13487         case ARMMMUIdx_E20_2_PAN:
13488         case ARMMMUIdx_SE20_2:
13489         case ARMMMUIdx_SE20_2_PAN:
13490             /*
13491              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13492              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13493              */
13494             if (env->cp15.hcr_el2 & HCR_TGE) {
13495                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13496             }
13497             break;
13498         default:
13499             break;
13500         }
13501     }
13502 
13503     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13504         /*
13505          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13506          * if all accesses must be Unchecked:
13507          * 1) If no TBI, then there are no tags in the address to check,
13508          * 2) If Tag Check Override, then all accesses are Unchecked,
13509          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13510          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13511          */
13512         if (allocation_tag_access_enabled(env, el, sctlr)) {
13513             DP_TBFLAG_A64(flags, ATA, 1);
13514             if (tbid
13515                 && !(env->pstate & PSTATE_TCO)
13516                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13517                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13518             }
13519         }
13520         /* And again for unprivileged accesses, if required.  */
13521         if (EX_TBFLAG_A64(flags, UNPRIV)
13522             && tbid
13523             && !(env->pstate & PSTATE_TCO)
13524             && (sctlr & SCTLR_TCF0)
13525             && allocation_tag_access_enabled(env, 0, sctlr)) {
13526             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13527         }
13528         /* Cache TCMA as well as TBI. */
13529         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13530     }
13531 
13532     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13533 }
13534 
13535 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13536 {
13537     int el = arm_current_el(env);
13538     int fp_el = fp_exception_el(env, el);
13539     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13540 
13541     if (is_a64(env)) {
13542         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13543     } else if (arm_feature(env, ARM_FEATURE_M)) {
13544         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13545     } else {
13546         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13547     }
13548 }
13549 
13550 void arm_rebuild_hflags(CPUARMState *env)
13551 {
13552     env->hflags = rebuild_hflags_internal(env);
13553 }
13554 
13555 /*
13556  * If we have triggered a EL state change we can't rely on the
13557  * translator having passed it to us, we need to recompute.
13558  */
13559 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13560 {
13561     int el = arm_current_el(env);
13562     int fp_el = fp_exception_el(env, el);
13563     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13564 
13565     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13566 }
13567 
13568 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13569 {
13570     int fp_el = fp_exception_el(env, el);
13571     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13572 
13573     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13574 }
13575 
13576 /*
13577  * If we have triggered a EL state change we can't rely on the
13578  * translator having passed it to us, we need to recompute.
13579  */
13580 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13581 {
13582     int el = arm_current_el(env);
13583     int fp_el = fp_exception_el(env, el);
13584     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13585     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13586 }
13587 
13588 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13589 {
13590     int fp_el = fp_exception_el(env, el);
13591     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13592 
13593     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13594 }
13595 
13596 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13597 {
13598     int fp_el = fp_exception_el(env, el);
13599     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13600 
13601     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13602 }
13603 
13604 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13605 {
13606 #ifdef CONFIG_DEBUG_TCG
13607     CPUARMTBFlags c = env->hflags;
13608     CPUARMTBFlags r = rebuild_hflags_internal(env);
13609 
13610     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13611         fprintf(stderr, "TCG hflags mismatch "
13612                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13613                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13614                 c.flags, c.flags2, r.flags, r.flags2);
13615         abort();
13616     }
13617 #endif
13618 }
13619 
13620 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13621                           target_ulong *cs_base, uint32_t *pflags)
13622 {
13623     CPUARMTBFlags flags;
13624 
13625     assert_hflags_rebuild_correctly(env);
13626     flags = env->hflags;
13627 
13628     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13629         *pc = env->pc;
13630         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13631             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13632         }
13633     } else {
13634         *pc = env->regs[15];
13635 
13636         if (arm_feature(env, ARM_FEATURE_M)) {
13637             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13638                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13639                 != env->v7m.secure) {
13640                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13641             }
13642 
13643             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13644                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13645                  (env->v7m.secure &&
13646                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13647                 /*
13648                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13649                  * active FP context; we must create a new FP context before
13650                  * executing any FP insn.
13651                  */
13652                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13653             }
13654 
13655             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13656             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13657                 DP_TBFLAG_M32(flags, LSPACT, 1);
13658             }
13659         } else {
13660             /*
13661              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13662              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13663              */
13664             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13665                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13666             } else {
13667                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13668                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13669             }
13670             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13671                 DP_TBFLAG_A32(flags, VFPEN, 1);
13672             }
13673         }
13674 
13675         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13676         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13677     }
13678 
13679     /*
13680      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13681      * states defined in the ARM ARM for software singlestep:
13682      *  SS_ACTIVE   PSTATE.SS   State
13683      *     0            x       Inactive (the TB flag for SS is always 0)
13684      *     1            0       Active-pending
13685      *     1            1       Active-not-pending
13686      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13687      */
13688     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13689         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13690     }
13691 
13692     *pflags = flags.flags;
13693     *cs_base = flags.flags2;
13694 }
13695 
13696 #ifdef TARGET_AARCH64
13697 /*
13698  * The manual says that when SVE is enabled and VQ is widened the
13699  * implementation is allowed to zero the previously inaccessible
13700  * portion of the registers.  The corollary to that is that when
13701  * SVE is enabled and VQ is narrowed we are also allowed to zero
13702  * the now inaccessible portion of the registers.
13703  *
13704  * The intent of this is that no predicate bit beyond VQ is ever set.
13705  * Which means that some operations on predicate registers themselves
13706  * may operate on full uint64_t or even unrolled across the maximum
13707  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13708  * may well be cheaper than conditionals to restrict the operation
13709  * to the relevant portion of a uint16_t[16].
13710  */
13711 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13712 {
13713     int i, j;
13714     uint64_t pmask;
13715 
13716     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13717     assert(vq <= env_archcpu(env)->sve_max_vq);
13718 
13719     /* Zap the high bits of the zregs.  */
13720     for (i = 0; i < 32; i++) {
13721         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13722     }
13723 
13724     /* Zap the high bits of the pregs and ffr.  */
13725     pmask = 0;
13726     if (vq & 3) {
13727         pmask = ~(-1ULL << (16 * (vq & 3)));
13728     }
13729     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13730         for (i = 0; i < 17; ++i) {
13731             env->vfp.pregs[i].p[j] &= pmask;
13732         }
13733         pmask = 0;
13734     }
13735 }
13736 
13737 /*
13738  * Notice a change in SVE vector size when changing EL.
13739  */
13740 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13741                            int new_el, bool el0_a64)
13742 {
13743     ARMCPU *cpu = env_archcpu(env);
13744     int old_len, new_len;
13745     bool old_a64, new_a64;
13746 
13747     /* Nothing to do if no SVE.  */
13748     if (!cpu_isar_feature(aa64_sve, cpu)) {
13749         return;
13750     }
13751 
13752     /* Nothing to do if FP is disabled in either EL.  */
13753     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13754         return;
13755     }
13756 
13757     /*
13758      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13759      * at ELx, or not available because the EL is in AArch32 state, then
13760      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13761      * has an effective value of 0".
13762      *
13763      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13764      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13765      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13766      * we already have the correct register contents when encountering the
13767      * vq0->vq0 transition between EL0->EL1.
13768      */
13769     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13770     old_len = (old_a64 && !sve_exception_el(env, old_el)
13771                ? sve_zcr_len_for_el(env, old_el) : 0);
13772     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13773     new_len = (new_a64 && !sve_exception_el(env, new_el)
13774                ? sve_zcr_len_for_el(env, new_el) : 0);
13775 
13776     /* When changing vector length, clear inaccessible state.  */
13777     if (new_len < old_len) {
13778         aarch64_sve_narrow_vq(env, new_len + 1);
13779     }
13780 }
13781 #endif
13782