xref: /qemu/target/arm/helper.c (revision 83ecdb18)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         }
1859         if (cpu_isar_feature(aa64_mte, cpu)) {
1860             valid_mask |= SCR_ATA;
1861         }
1862         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1863             valid_mask |= SCR_ENSCXT;
1864         }
1865         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1866             valid_mask |= SCR_EASE | SCR_NMEA;
1867         }
1868         if (cpu_isar_feature(aa64_sme, cpu)) {
1869             valid_mask |= SCR_ENTP2;
1870         }
1871         if (cpu_isar_feature(aa64_hcx, cpu)) {
1872             valid_mask |= SCR_HXEN;
1873         }
1874         if (cpu_isar_feature(aa64_fgt, cpu)) {
1875             valid_mask |= SCR_FGTEN;
1876         }
1877     } else {
1878         valid_mask &= ~(SCR_RW | SCR_ST);
1879         if (cpu_isar_feature(aa32_ras, cpu)) {
1880             valid_mask |= SCR_TERR;
1881         }
1882     }
1883 
1884     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1885         valid_mask &= ~SCR_HCE;
1886 
1887         /*
1888          * On ARMv7, SMD (or SCD as it is called in v7) is only
1889          * supported if EL2 exists. The bit is UNK/SBZP when
1890          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891          * when EL2 is unavailable.
1892          * On ARMv8, this bit is always available.
1893          */
1894         if (arm_feature(env, ARM_FEATURE_V7) &&
1895             !arm_feature(env, ARM_FEATURE_V8)) {
1896             valid_mask &= ~SCR_SMD;
1897         }
1898     }
1899 
1900     /* Clear all-context RES0 bits.  */
1901     value &= valid_mask;
1902     changed = env->cp15.scr_el3 ^ value;
1903     env->cp15.scr_el3 = value;
1904 
1905     /*
1906      * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1907      * we must invalidate all TLBs below EL3.
1908      */
1909     if (changed & SCR_NS) {
1910         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1911                                            ARMMMUIdxBit_E20_0 |
1912                                            ARMMMUIdxBit_E10_1 |
1913                                            ARMMMUIdxBit_E20_2 |
1914                                            ARMMMUIdxBit_E10_1_PAN |
1915                                            ARMMMUIdxBit_E20_2_PAN |
1916                                            ARMMMUIdxBit_E2));
1917     }
1918 }
1919 
1920 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1921 {
1922     /*
1923      * scr_write will set the RES1 bits on an AArch64-only CPU.
1924      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1925      */
1926     scr_write(env, ri, 0);
1927 }
1928 
1929 static CPAccessResult access_tid4(CPUARMState *env,
1930                                   const ARMCPRegInfo *ri,
1931                                   bool isread)
1932 {
1933     if (arm_current_el(env) == 1 &&
1934         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1935         return CP_ACCESS_TRAP_EL2;
1936     }
1937 
1938     return CP_ACCESS_OK;
1939 }
1940 
1941 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942 {
1943     ARMCPU *cpu = env_archcpu(env);
1944 
1945     /*
1946      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1947      * bank
1948      */
1949     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1950                                         ri->secure & ARM_CP_SECSTATE_S);
1951 
1952     return cpu->ccsidr[index];
1953 }
1954 
1955 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1956                          uint64_t value)
1957 {
1958     raw_write(env, ri, value & 0xf);
1959 }
1960 
1961 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1962 {
1963     CPUState *cs = env_cpu(env);
1964     bool el1 = arm_current_el(env) == 1;
1965     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1966     uint64_t ret = 0;
1967 
1968     if (hcr_el2 & HCR_IMO) {
1969         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1970             ret |= CPSR_I;
1971         }
1972     } else {
1973         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1974             ret |= CPSR_I;
1975         }
1976     }
1977 
1978     if (hcr_el2 & HCR_FMO) {
1979         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1980             ret |= CPSR_F;
1981         }
1982     } else {
1983         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1984             ret |= CPSR_F;
1985         }
1986     }
1987 
1988     if (hcr_el2 & HCR_AMO) {
1989         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1990             ret |= CPSR_A;
1991         }
1992     }
1993 
1994     return ret;
1995 }
1996 
1997 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1998                                        bool isread)
1999 {
2000     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2001         return CP_ACCESS_TRAP_EL2;
2002     }
2003 
2004     return CP_ACCESS_OK;
2005 }
2006 
2007 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2008                                        bool isread)
2009 {
2010     if (arm_feature(env, ARM_FEATURE_V8)) {
2011         return access_aa64_tid1(env, ri, isread);
2012     }
2013 
2014     return CP_ACCESS_OK;
2015 }
2016 
2017 static const ARMCPRegInfo v7_cp_reginfo[] = {
2018     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2019     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2020       .access = PL1_W, .type = ARM_CP_NOP },
2021     /*
2022      * Performance monitors are implementation defined in v7,
2023      * but with an ARM recommended set of registers, which we
2024      * follow.
2025      *
2026      * Performance registers fall into three categories:
2027      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2028      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2029      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2030      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2031      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2032      */
2033     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2034       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2035       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2036       .writefn = pmcntenset_write,
2037       .accessfn = pmreg_access,
2038       .fgt = FGT_PMCNTEN,
2039       .raw_writefn = raw_write },
2040     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2041       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2042       .access = PL0_RW, .accessfn = pmreg_access,
2043       .fgt = FGT_PMCNTEN,
2044       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2045       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2046     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2047       .access = PL0_RW,
2048       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2049       .accessfn = pmreg_access,
2050       .fgt = FGT_PMCNTEN,
2051       .writefn = pmcntenclr_write,
2052       .type = ARM_CP_ALIAS | ARM_CP_IO },
2053     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2054       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2055       .access = PL0_RW, .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .type = ARM_CP_ALIAS | ARM_CP_IO,
2058       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2059       .writefn = pmcntenclr_write },
2060     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2061       .access = PL0_RW, .type = ARM_CP_IO,
2062       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2063       .accessfn = pmreg_access,
2064       .fgt = FGT_PMOVS,
2065       .writefn = pmovsr_write,
2066       .raw_writefn = raw_write },
2067     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2069       .access = PL0_RW, .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .type = ARM_CP_ALIAS | ARM_CP_IO,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2073       .writefn = pmovsr_write,
2074       .raw_writefn = raw_write },
2075     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2076       .access = PL0_W, .accessfn = pmreg_access_swinc,
2077       .fgt = FGT_PMSWINC_EL0,
2078       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2079       .writefn = pmswinc_write },
2080     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2081       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2087       .access = PL0_RW, .type = ARM_CP_ALIAS,
2088       .fgt = FGT_PMSELR_EL0,
2089       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2090       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2091       .raw_writefn = raw_write},
2092     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2094       .access = PL0_RW, .accessfn = pmreg_access_selr,
2095       .fgt = FGT_PMSELR_EL0,
2096       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2097       .writefn = pmselr_write, .raw_writefn = raw_write, },
2098     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2099       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2100       .fgt = FGT_PMCCNTR_EL0,
2101       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2102       .accessfn = pmreg_access_ccntr },
2103     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2105       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .type = ARM_CP_IO,
2108       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2109       .readfn = pmccntr_read, .writefn = pmccntr_write,
2110       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2111     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2112       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2113       .access = PL0_RW, .accessfn = pmreg_access,
2114       .fgt = FGT_PMCCFILTR_EL0,
2115       .type = ARM_CP_ALIAS | ARM_CP_IO,
2116       .resetvalue = 0, },
2117     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2118       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2119       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2120       .access = PL0_RW, .accessfn = pmreg_access,
2121       .fgt = FGT_PMCCFILTR_EL0,
2122       .type = ARM_CP_IO,
2123       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2124       .resetvalue = 0, },
2125     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2126       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2127       .accessfn = pmreg_access,
2128       .fgt = FGT_PMEVTYPERN_EL0,
2129       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2130     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2131       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2137       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2138       .accessfn = pmreg_access_xevcntr,
2139       .fgt = FGT_PMEVCNTRN_EL0,
2140       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2141     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2142       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2148       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2149       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2150       .resetvalue = 0,
2151       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2152     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2153       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2155       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2159       .access = PL1_RW, .accessfn = access_tpm,
2160       .fgt = FGT_PMINTEN,
2161       .type = ARM_CP_ALIAS | ARM_CP_IO,
2162       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2163       .resetvalue = 0,
2164       .writefn = pmintenset_write, .raw_writefn = raw_write },
2165     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2166       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2167       .access = PL1_RW, .accessfn = access_tpm,
2168       .fgt = FGT_PMINTEN,
2169       .type = ARM_CP_IO,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2171       .writefn = pmintenset_write, .raw_writefn = raw_write,
2172       .resetvalue = 0x0 },
2173     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2174       .access = PL1_RW, .accessfn = access_tpm,
2175       .fgt = FGT_PMINTEN,
2176       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2177       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178       .writefn = pmintenclr_write, },
2179     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2180       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2181       .access = PL1_RW, .accessfn = access_tpm,
2182       .fgt = FGT_PMINTEN,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185       .writefn = pmintenclr_write },
2186     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2188       .access = PL1_R,
2189       .accessfn = access_tid4,
2190       .fgt = FGT_CCSIDR_EL1,
2191       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2192     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2194       .access = PL1_RW,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CSSELR_EL1,
2197       .writefn = csselr_write, .resetvalue = 0,
2198       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2199                              offsetof(CPUARMState, cp15.csselr_ns) } },
2200     /*
2201      * Auxiliary ID register: this actually has an IMPDEF value but for now
2202      * just RAZ for all cores:
2203      */
2204     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2205       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2206       .access = PL1_R, .type = ARM_CP_CONST,
2207       .accessfn = access_aa64_tid1,
2208       .fgt = FGT_AIDR_EL1,
2209       .resetvalue = 0 },
2210     /*
2211      * Auxiliary fault status registers: these also are IMPDEF, and we
2212      * choose to RAZ/WI for all cores.
2213      */
2214     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2215       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2216       .access = PL1_RW, .accessfn = access_tvm_trvm,
2217       .fgt = FGT_AFSR0_EL1,
2218       .type = ARM_CP_CONST, .resetvalue = 0 },
2219     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2220       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2221       .access = PL1_RW, .accessfn = access_tvm_trvm,
2222       .fgt = FGT_AFSR1_EL1,
2223       .type = ARM_CP_CONST, .resetvalue = 0 },
2224     /*
2225      * MAIR can just read-as-written because we don't implement caches
2226      * and so don't need to care about memory attributes.
2227      */
2228     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2229       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2230       .access = PL1_RW, .accessfn = access_tvm_trvm,
2231       .fgt = FGT_MAIR_EL1,
2232       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2233       .resetvalue = 0 },
2234     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2237       .resetvalue = 0 },
2238     /*
2239      * For non-long-descriptor page tables these are PRRR and NMRR;
2240      * regardless they still act as reads-as-written for QEMU.
2241      */
2242      /*
2243       * MAIR0/1 are defined separately from their 64-bit counterpart which
2244       * allows them to assign the correct fieldoffset based on the endianness
2245       * handled in the field definitions.
2246       */
2247     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2248       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2249       .access = PL1_RW, .accessfn = access_tvm_trvm,
2250       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2251                              offsetof(CPUARMState, cp15.mair0_ns) },
2252       .resetfn = arm_cp_reset_ignore },
2253     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2257                              offsetof(CPUARMState, cp15.mair1_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2260       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2261       .fgt = FGT_ISR_EL1,
2262       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2263     /* 32 bit ITLB invalidates */
2264     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2265       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2266       .writefn = tlbiall_write },
2267     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2269       .writefn = tlbimva_write },
2270     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiasid_write },
2273     /* 32 bit DTLB invalidates */
2274     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2275       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276       .writefn = tlbiall_write },
2277     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2278       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279       .writefn = tlbimva_write },
2280     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiasid_write },
2283     /* 32 bit TLB invalidates */
2284     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2285       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286       .writefn = tlbiall_write },
2287     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2288       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289       .writefn = tlbimva_write },
2290     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiasid_write },
2293     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimvaa_write },
2296 };
2297 
2298 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2299     /* 32 bit TLB invalidates, Inner Shareable */
2300     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2301       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2302       .writefn = tlbiall_is_write },
2303     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2304       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2305       .writefn = tlbimva_is_write },
2306     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiasid_is_write },
2309     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimvaa_is_write },
2312 };
2313 
2314 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2315     /* PMOVSSET is not implemented in v7 before v7ve */
2316     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2317       .access = PL0_RW, .accessfn = pmreg_access,
2318       .fgt = FGT_PMOVS,
2319       .type = ARM_CP_ALIAS | ARM_CP_IO,
2320       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2321       .writefn = pmovsset_write,
2322       .raw_writefn = raw_write },
2323     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2325       .access = PL0_RW, .accessfn = pmreg_access,
2326       .fgt = FGT_PMOVS,
2327       .type = ARM_CP_ALIAS | ARM_CP_IO,
2328       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2329       .writefn = pmovsset_write,
2330       .raw_writefn = raw_write },
2331 };
2332 
2333 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334                         uint64_t value)
2335 {
2336     value &= 1;
2337     env->teecr = value;
2338 }
2339 
2340 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2341                                    bool isread)
2342 {
2343     /*
2344      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2345      * at all, so we don't need to check whether we're v8A.
2346      */
2347     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2348         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2349         return CP_ACCESS_TRAP_EL2;
2350     }
2351     return CP_ACCESS_OK;
2352 }
2353 
2354 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2355                                     bool isread)
2356 {
2357     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2358         return CP_ACCESS_TRAP;
2359     }
2360     return teecr_access(env, ri, isread);
2361 }
2362 
2363 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2364     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2365       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2366       .resetvalue = 0,
2367       .writefn = teecr_write, .accessfn = teecr_access },
2368     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2369       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2370       .accessfn = teehbr_access, .resetvalue = 0 },
2371 };
2372 
2373 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2374     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2375       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2376       .access = PL0_RW,
2377       .fgt = FGT_TPIDR_EL0,
2378       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2379     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2380       .access = PL0_RW,
2381       .fgt = FGT_TPIDR_EL0,
2382       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2383                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2384       .resetfn = arm_cp_reset_ignore },
2385     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2386       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2387       .access = PL0_R | PL1_W,
2388       .fgt = FGT_TPIDRRO_EL0,
2389       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2390       .resetvalue = 0},
2391     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2392       .access = PL0_R | PL1_W,
2393       .fgt = FGT_TPIDRRO_EL0,
2394       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2395                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2396       .resetfn = arm_cp_reset_ignore },
2397     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2398       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2399       .access = PL1_RW,
2400       .fgt = FGT_TPIDR_EL1,
2401       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2402     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2403       .access = PL1_RW,
2404       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2405                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2406       .resetvalue = 0 },
2407 };
2408 
2409 #ifndef CONFIG_USER_ONLY
2410 
2411 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2412                                        bool isread)
2413 {
2414     /*
2415      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2416      * Writable only at the highest implemented exception level.
2417      */
2418     int el = arm_current_el(env);
2419     uint64_t hcr;
2420     uint32_t cntkctl;
2421 
2422     switch (el) {
2423     case 0:
2424         hcr = arm_hcr_el2_eff(env);
2425         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2426             cntkctl = env->cp15.cnthctl_el2;
2427         } else {
2428             cntkctl = env->cp15.c14_cntkctl;
2429         }
2430         if (!extract32(cntkctl, 0, 2)) {
2431             return CP_ACCESS_TRAP;
2432         }
2433         break;
2434     case 1:
2435         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2436             arm_is_secure_below_el3(env)) {
2437             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2438             return CP_ACCESS_TRAP_UNCATEGORIZED;
2439         }
2440         break;
2441     case 2:
2442     case 3:
2443         break;
2444     }
2445 
2446     if (!isread && el < arm_highest_el(env)) {
2447         return CP_ACCESS_TRAP_UNCATEGORIZED;
2448     }
2449 
2450     return CP_ACCESS_OK;
2451 }
2452 
2453 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2454                                         bool isread)
2455 {
2456     unsigned int cur_el = arm_current_el(env);
2457     bool has_el2 = arm_is_el2_enabled(env);
2458     uint64_t hcr = arm_hcr_el2_eff(env);
2459 
2460     switch (cur_el) {
2461     case 0:
2462         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2463         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2464             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2465                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2466         }
2467 
2468         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2469         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2470             return CP_ACCESS_TRAP;
2471         }
2472 
2473         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2474         if (hcr & HCR_E2H) {
2475             if (timeridx == GTIMER_PHYS &&
2476                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2477                 return CP_ACCESS_TRAP_EL2;
2478             }
2479         } else {
2480             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2481             if (has_el2 && timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         }
2486         break;
2487 
2488     case 1:
2489         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2490         if (has_el2 && timeridx == GTIMER_PHYS &&
2491             (hcr & HCR_E2H
2492              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2493              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2494             return CP_ACCESS_TRAP_EL2;
2495         }
2496         break;
2497     }
2498     return CP_ACCESS_OK;
2499 }
2500 
2501 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2502                                       bool isread)
2503 {
2504     unsigned int cur_el = arm_current_el(env);
2505     bool has_el2 = arm_is_el2_enabled(env);
2506     uint64_t hcr = arm_hcr_el2_eff(env);
2507 
2508     switch (cur_el) {
2509     case 0:
2510         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2511             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2512             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2513                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2514         }
2515 
2516         /*
2517          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2518          * EL0 if EL0[PV]TEN is zero.
2519          */
2520         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2521             return CP_ACCESS_TRAP;
2522         }
2523         /* fall through */
2524 
2525     case 1:
2526         if (has_el2 && timeridx == GTIMER_PHYS) {
2527             if (hcr & HCR_E2H) {
2528                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2529                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2530                     return CP_ACCESS_TRAP_EL2;
2531                 }
2532             } else {
2533                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2534                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2535                     return CP_ACCESS_TRAP_EL2;
2536                 }
2537             }
2538         }
2539         break;
2540     }
2541     return CP_ACCESS_OK;
2542 }
2543 
2544 static CPAccessResult gt_pct_access(CPUARMState *env,
2545                                     const ARMCPRegInfo *ri,
2546                                     bool isread)
2547 {
2548     return gt_counter_access(env, GTIMER_PHYS, isread);
2549 }
2550 
2551 static CPAccessResult gt_vct_access(CPUARMState *env,
2552                                     const ARMCPRegInfo *ri,
2553                                     bool isread)
2554 {
2555     return gt_counter_access(env, GTIMER_VIRT, isread);
2556 }
2557 
2558 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2559                                        bool isread)
2560 {
2561     return gt_timer_access(env, GTIMER_PHYS, isread);
2562 }
2563 
2564 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_VIRT, isread);
2568 }
2569 
2570 static CPAccessResult gt_stimer_access(CPUARMState *env,
2571                                        const ARMCPRegInfo *ri,
2572                                        bool isread)
2573 {
2574     /*
2575      * The AArch64 register view of the secure physical timer is
2576      * always accessible from EL3, and configurably accessible from
2577      * Secure EL1.
2578      */
2579     switch (arm_current_el(env)) {
2580     case 1:
2581         if (!arm_is_secure(env)) {
2582             return CP_ACCESS_TRAP;
2583         }
2584         if (!(env->cp15.scr_el3 & SCR_ST)) {
2585             return CP_ACCESS_TRAP_EL3;
2586         }
2587         return CP_ACCESS_OK;
2588     case 0:
2589     case 2:
2590         return CP_ACCESS_TRAP;
2591     case 3:
2592         return CP_ACCESS_OK;
2593     default:
2594         g_assert_not_reached();
2595     }
2596 }
2597 
2598 static uint64_t gt_get_countervalue(CPUARMState *env)
2599 {
2600     ARMCPU *cpu = env_archcpu(env);
2601 
2602     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2603 }
2604 
2605 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2606 {
2607     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2608 
2609     if (gt->ctl & 1) {
2610         /*
2611          * Timer enabled: calculate and set current ISTATUS, irq, and
2612          * reset timer to when ISTATUS next has to change
2613          */
2614         uint64_t offset = timeridx == GTIMER_VIRT ?
2615                                       cpu->env.cp15.cntvoff_el2 : 0;
2616         uint64_t count = gt_get_countervalue(&cpu->env);
2617         /* Note that this must be unsigned 64 bit arithmetic: */
2618         int istatus = count - offset >= gt->cval;
2619         uint64_t nexttick;
2620         int irqstate;
2621 
2622         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2623 
2624         irqstate = (istatus && !(gt->ctl & 2));
2625         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2626 
2627         if (istatus) {
2628             /* Next transition is when count rolls back over to zero */
2629             nexttick = UINT64_MAX;
2630         } else {
2631             /* Next transition is when we hit cval */
2632             nexttick = gt->cval + offset;
2633         }
2634         /*
2635          * Note that the desired next expiry time might be beyond the
2636          * signed-64-bit range of a QEMUTimer -- in this case we just
2637          * set the timer for as far in the future as possible. When the
2638          * timer expires we will reset the timer for any remaining period.
2639          */
2640         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2641             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2642         } else {
2643             timer_mod(cpu->gt_timer[timeridx], nexttick);
2644         }
2645         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2646     } else {
2647         /* Timer disabled: ISTATUS and timer output always clear */
2648         gt->ctl &= ~4;
2649         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2650         timer_del(cpu->gt_timer[timeridx]);
2651         trace_arm_gt_recalc_disabled(timeridx);
2652     }
2653 }
2654 
2655 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2656                            int timeridx)
2657 {
2658     ARMCPU *cpu = env_archcpu(env);
2659 
2660     timer_del(cpu->gt_timer[timeridx]);
2661 }
2662 
2663 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2664 {
2665     return gt_get_countervalue(env);
2666 }
2667 
2668 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2669 {
2670     uint64_t hcr;
2671 
2672     switch (arm_current_el(env)) {
2673     case 2:
2674         hcr = arm_hcr_el2_eff(env);
2675         if (hcr & HCR_E2H) {
2676             return 0;
2677         }
2678         break;
2679     case 0:
2680         hcr = arm_hcr_el2_eff(env);
2681         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2682             return 0;
2683         }
2684         break;
2685     }
2686 
2687     return env->cp15.cntvoff_el2;
2688 }
2689 
2690 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2691 {
2692     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2693 }
2694 
2695 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                           int timeridx,
2697                           uint64_t value)
2698 {
2699     trace_arm_gt_cval_write(timeridx, value);
2700     env->cp15.c14_timer[timeridx].cval = value;
2701     gt_recalc_timer(env_archcpu(env), timeridx);
2702 }
2703 
2704 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2705                              int timeridx)
2706 {
2707     uint64_t offset = 0;
2708 
2709     switch (timeridx) {
2710     case GTIMER_VIRT:
2711     case GTIMER_HYPVIRT:
2712         offset = gt_virt_cnt_offset(env);
2713         break;
2714     }
2715 
2716     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2717                       (gt_get_countervalue(env) - offset));
2718 }
2719 
2720 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                           int timeridx,
2722                           uint64_t value)
2723 {
2724     uint64_t offset = 0;
2725 
2726     switch (timeridx) {
2727     case GTIMER_VIRT:
2728     case GTIMER_HYPVIRT:
2729         offset = gt_virt_cnt_offset(env);
2730         break;
2731     }
2732 
2733     trace_arm_gt_tval_write(timeridx, value);
2734     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2735                                          sextract64(value, 0, 32);
2736     gt_recalc_timer(env_archcpu(env), timeridx);
2737 }
2738 
2739 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2740                          int timeridx,
2741                          uint64_t value)
2742 {
2743     ARMCPU *cpu = env_archcpu(env);
2744     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2745 
2746     trace_arm_gt_ctl_write(timeridx, value);
2747     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2748     if ((oldval ^ value) & 1) {
2749         /* Enable toggled */
2750         gt_recalc_timer(cpu, timeridx);
2751     } else if ((oldval ^ value) & 2) {
2752         /*
2753          * IMASK toggled: don't need to recalculate,
2754          * just set the interrupt line based on ISTATUS
2755          */
2756         int irqstate = (oldval & 4) && !(value & 2);
2757 
2758         trace_arm_gt_imask_toggle(timeridx, irqstate);
2759         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2760     }
2761 }
2762 
2763 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2764 {
2765     gt_timer_reset(env, ri, GTIMER_PHYS);
2766 }
2767 
2768 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2769                                uint64_t value)
2770 {
2771     gt_cval_write(env, ri, GTIMER_PHYS, value);
2772 }
2773 
2774 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2775 {
2776     return gt_tval_read(env, ri, GTIMER_PHYS);
2777 }
2778 
2779 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2780                                uint64_t value)
2781 {
2782     gt_tval_write(env, ri, GTIMER_PHYS, value);
2783 }
2784 
2785 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                               uint64_t value)
2787 {
2788     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2789 }
2790 
2791 static int gt_phys_redir_timeridx(CPUARMState *env)
2792 {
2793     switch (arm_mmu_idx(env)) {
2794     case ARMMMUIdx_E20_0:
2795     case ARMMMUIdx_E20_2:
2796     case ARMMMUIdx_E20_2_PAN:
2797         return GTIMER_HYP;
2798     default:
2799         return GTIMER_PHYS;
2800     }
2801 }
2802 
2803 static int gt_virt_redir_timeridx(CPUARMState *env)
2804 {
2805     switch (arm_mmu_idx(env)) {
2806     case ARMMMUIdx_E20_0:
2807     case ARMMMUIdx_E20_2:
2808     case ARMMMUIdx_E20_2_PAN:
2809         return GTIMER_HYPVIRT;
2810     default:
2811         return GTIMER_VIRT;
2812     }
2813 }
2814 
2815 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2816                                         const ARMCPRegInfo *ri)
2817 {
2818     int timeridx = gt_phys_redir_timeridx(env);
2819     return env->cp15.c14_timer[timeridx].cval;
2820 }
2821 
2822 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                                      uint64_t value)
2824 {
2825     int timeridx = gt_phys_redir_timeridx(env);
2826     gt_cval_write(env, ri, timeridx, value);
2827 }
2828 
2829 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2830                                         const ARMCPRegInfo *ri)
2831 {
2832     int timeridx = gt_phys_redir_timeridx(env);
2833     return gt_tval_read(env, ri, timeridx);
2834 }
2835 
2836 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2837                                      uint64_t value)
2838 {
2839     int timeridx = gt_phys_redir_timeridx(env);
2840     gt_tval_write(env, ri, timeridx, value);
2841 }
2842 
2843 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2844                                        const ARMCPRegInfo *ri)
2845 {
2846     int timeridx = gt_phys_redir_timeridx(env);
2847     return env->cp15.c14_timer[timeridx].ctl;
2848 }
2849 
2850 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                                     uint64_t value)
2852 {
2853     int timeridx = gt_phys_redir_timeridx(env);
2854     gt_ctl_write(env, ri, timeridx, value);
2855 }
2856 
2857 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2858 {
2859     gt_timer_reset(env, ri, GTIMER_VIRT);
2860 }
2861 
2862 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863                                uint64_t value)
2864 {
2865     gt_cval_write(env, ri, GTIMER_VIRT, value);
2866 }
2867 
2868 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2869 {
2870     return gt_tval_read(env, ri, GTIMER_VIRT);
2871 }
2872 
2873 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2874                                uint64_t value)
2875 {
2876     gt_tval_write(env, ri, GTIMER_VIRT, value);
2877 }
2878 
2879 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                               uint64_t value)
2881 {
2882     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2883 }
2884 
2885 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                               uint64_t value)
2887 {
2888     ARMCPU *cpu = env_archcpu(env);
2889 
2890     trace_arm_gt_cntvoff_write(value);
2891     raw_write(env, ri, value);
2892     gt_recalc_timer(cpu, GTIMER_VIRT);
2893 }
2894 
2895 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2896                                         const ARMCPRegInfo *ri)
2897 {
2898     int timeridx = gt_virt_redir_timeridx(env);
2899     return env->cp15.c14_timer[timeridx].cval;
2900 }
2901 
2902 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903                                      uint64_t value)
2904 {
2905     int timeridx = gt_virt_redir_timeridx(env);
2906     gt_cval_write(env, ri, timeridx, value);
2907 }
2908 
2909 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2910                                         const ARMCPRegInfo *ri)
2911 {
2912     int timeridx = gt_virt_redir_timeridx(env);
2913     return gt_tval_read(env, ri, timeridx);
2914 }
2915 
2916 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917                                      uint64_t value)
2918 {
2919     int timeridx = gt_virt_redir_timeridx(env);
2920     gt_tval_write(env, ri, timeridx, value);
2921 }
2922 
2923 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2924                                        const ARMCPRegInfo *ri)
2925 {
2926     int timeridx = gt_virt_redir_timeridx(env);
2927     return env->cp15.c14_timer[timeridx].ctl;
2928 }
2929 
2930 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2931                                     uint64_t value)
2932 {
2933     int timeridx = gt_virt_redir_timeridx(env);
2934     gt_ctl_write(env, ri, timeridx, value);
2935 }
2936 
2937 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2938 {
2939     gt_timer_reset(env, ri, GTIMER_HYP);
2940 }
2941 
2942 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943                               uint64_t value)
2944 {
2945     gt_cval_write(env, ri, GTIMER_HYP, value);
2946 }
2947 
2948 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2949 {
2950     return gt_tval_read(env, ri, GTIMER_HYP);
2951 }
2952 
2953 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2954                               uint64_t value)
2955 {
2956     gt_tval_write(env, ri, GTIMER_HYP, value);
2957 }
2958 
2959 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                               uint64_t value)
2961 {
2962     gt_ctl_write(env, ri, GTIMER_HYP, value);
2963 }
2964 
2965 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2966 {
2967     gt_timer_reset(env, ri, GTIMER_SEC);
2968 }
2969 
2970 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2971                               uint64_t value)
2972 {
2973     gt_cval_write(env, ri, GTIMER_SEC, value);
2974 }
2975 
2976 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2977 {
2978     return gt_tval_read(env, ri, GTIMER_SEC);
2979 }
2980 
2981 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982                               uint64_t value)
2983 {
2984     gt_tval_write(env, ri, GTIMER_SEC, value);
2985 }
2986 
2987 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_ctl_write(env, ri, GTIMER_SEC, value);
2991 }
2992 
2993 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2994 {
2995     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2996 }
2997 
2998 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2999                              uint64_t value)
3000 {
3001     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3002 }
3003 
3004 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3007 }
3008 
3009 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3010                              uint64_t value)
3011 {
3012     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3013 }
3014 
3015 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                             uint64_t value)
3017 {
3018     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020 
3021 void arm_gt_ptimer_cb(void *opaque)
3022 {
3023     ARMCPU *cpu = opaque;
3024 
3025     gt_recalc_timer(cpu, GTIMER_PHYS);
3026 }
3027 
3028 void arm_gt_vtimer_cb(void *opaque)
3029 {
3030     ARMCPU *cpu = opaque;
3031 
3032     gt_recalc_timer(cpu, GTIMER_VIRT);
3033 }
3034 
3035 void arm_gt_htimer_cb(void *opaque)
3036 {
3037     ARMCPU *cpu = opaque;
3038 
3039     gt_recalc_timer(cpu, GTIMER_HYP);
3040 }
3041 
3042 void arm_gt_stimer_cb(void *opaque)
3043 {
3044     ARMCPU *cpu = opaque;
3045 
3046     gt_recalc_timer(cpu, GTIMER_SEC);
3047 }
3048 
3049 void arm_gt_hvtimer_cb(void *opaque)
3050 {
3051     ARMCPU *cpu = opaque;
3052 
3053     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3054 }
3055 
3056 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3057 {
3058     ARMCPU *cpu = env_archcpu(env);
3059 
3060     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3061 }
3062 
3063 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3064     /*
3065      * Note that CNTFRQ is purely reads-as-written for the benefit
3066      * of software; writing it doesn't actually change the timer frequency.
3067      * Our reset value matches the fixed frequency we implement the timer at.
3068      */
3069     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3070       .type = ARM_CP_ALIAS,
3071       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3072       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3073     },
3074     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3075       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3076       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3077       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3078       .resetfn = arm_gt_cntfrq_reset,
3079     },
3080     /* overall control: mostly access permissions */
3081     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3082       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3083       .access = PL1_RW,
3084       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3085       .resetvalue = 0,
3086     },
3087     /* per-timer control */
3088     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3089       .secure = ARM_CP_SECSTATE_NS,
3090       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3091       .accessfn = gt_ptimer_access,
3092       .fieldoffset = offsetoflow32(CPUARMState,
3093                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3094       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3095       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3096     },
3097     { .name = "CNTP_CTL_S",
3098       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3099       .secure = ARM_CP_SECSTATE_S,
3100       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3101       .accessfn = gt_ptimer_access,
3102       .fieldoffset = offsetoflow32(CPUARMState,
3103                                    cp15.c14_timer[GTIMER_SEC].ctl),
3104       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3105     },
3106     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3107       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3108       .type = ARM_CP_IO, .access = PL0_RW,
3109       .accessfn = gt_ptimer_access,
3110       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3111       .resetvalue = 0,
3112       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3113       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3114     },
3115     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3116       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3117       .accessfn = gt_vtimer_access,
3118       .fieldoffset = offsetoflow32(CPUARMState,
3119                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3120       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3121       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3122     },
3123     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3125       .type = ARM_CP_IO, .access = PL0_RW,
3126       .accessfn = gt_vtimer_access,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3128       .resetvalue = 0,
3129       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3130       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3131     },
3132     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3133     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3134       .secure = ARM_CP_SECSTATE_NS,
3135       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3136       .accessfn = gt_ptimer_access,
3137       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3138     },
3139     { .name = "CNTP_TVAL_S",
3140       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3141       .secure = ARM_CP_SECSTATE_S,
3142       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3143       .accessfn = gt_ptimer_access,
3144       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3145     },
3146     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3147       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3148       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3150       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3151     },
3152     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3153       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3154       .accessfn = gt_vtimer_access,
3155       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3156     },
3157     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3158       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3159       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3161       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162     },
3163     /* The counter itself */
3164     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3165       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3166       .accessfn = gt_pct_access,
3167       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3168     },
3169     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3170       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3171       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3172       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3173     },
3174     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3175       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3176       .accessfn = gt_vct_access,
3177       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3178     },
3179     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3180       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3181       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3182       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3183     },
3184     /* Comparison value, indicating when the timer goes off */
3185     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3186       .secure = ARM_CP_SECSTATE_NS,
3187       .access = PL0_RW,
3188       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3189       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3190       .accessfn = gt_ptimer_access,
3191       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3192       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3193     },
3194     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3195       .secure = ARM_CP_SECSTATE_S,
3196       .access = PL0_RW,
3197       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3198       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3199       .accessfn = gt_ptimer_access,
3200       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3201     },
3202     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3203       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3204       .access = PL0_RW,
3205       .type = ARM_CP_IO,
3206       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3207       .resetvalue = 0, .accessfn = gt_ptimer_access,
3208       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3209       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3210     },
3211     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3212       .access = PL0_RW,
3213       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3214       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3215       .accessfn = gt_vtimer_access,
3216       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3217       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3218     },
3219     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3220       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3221       .access = PL0_RW,
3222       .type = ARM_CP_IO,
3223       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3224       .resetvalue = 0, .accessfn = gt_vtimer_access,
3225       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3226       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3227     },
3228     /*
3229      * Secure timer -- this is actually restricted to only EL3
3230      * and configurably Secure-EL1 via the accessfn.
3231      */
3232     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3233       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3234       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3235       .accessfn = gt_stimer_access,
3236       .readfn = gt_sec_tval_read,
3237       .writefn = gt_sec_tval_write,
3238       .resetfn = gt_sec_timer_reset,
3239     },
3240     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3241       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3242       .type = ARM_CP_IO, .access = PL1_RW,
3243       .accessfn = gt_stimer_access,
3244       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3245       .resetvalue = 0,
3246       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3247     },
3248     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3249       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3250       .type = ARM_CP_IO, .access = PL1_RW,
3251       .accessfn = gt_stimer_access,
3252       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3253       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3254     },
3255 };
3256 
3257 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3258                                  bool isread)
3259 {
3260     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3261         return CP_ACCESS_TRAP;
3262     }
3263     return CP_ACCESS_OK;
3264 }
3265 
3266 #else
3267 
3268 /*
3269  * In user-mode most of the generic timer registers are inaccessible
3270  * however modern kernels (4.12+) allow access to cntvct_el0
3271  */
3272 
3273 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3274 {
3275     ARMCPU *cpu = env_archcpu(env);
3276 
3277     /*
3278      * Currently we have no support for QEMUTimer in linux-user so we
3279      * can't call gt_get_countervalue(env), instead we directly
3280      * call the lower level functions.
3281      */
3282     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3283 }
3284 
3285 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3286     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3287       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3288       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3290       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3291     },
3292     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3293       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3294       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3295       .readfn = gt_virt_cnt_read,
3296     },
3297 };
3298 
3299 #endif
3300 
3301 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3302 {
3303     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3304         raw_write(env, ri, value);
3305     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3306         raw_write(env, ri, value & 0xfffff6ff);
3307     } else {
3308         raw_write(env, ri, value & 0xfffff1ff);
3309     }
3310 }
3311 
3312 #ifndef CONFIG_USER_ONLY
3313 /* get_phys_addr() isn't present for user-mode-only targets */
3314 
3315 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3316                                  bool isread)
3317 {
3318     if (ri->opc2 & 4) {
3319         /*
3320          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3321          * Secure EL1 (which can only happen if EL3 is AArch64).
3322          * They are simply UNDEF if executed from NS EL1.
3323          * They function normally from EL2 or EL3.
3324          */
3325         if (arm_current_el(env) == 1) {
3326             if (arm_is_secure_below_el3(env)) {
3327                 if (env->cp15.scr_el3 & SCR_EEL2) {
3328                     return CP_ACCESS_TRAP_EL2;
3329                 }
3330                 return CP_ACCESS_TRAP_EL3;
3331             }
3332             return CP_ACCESS_TRAP_UNCATEGORIZED;
3333         }
3334     }
3335     return CP_ACCESS_OK;
3336 }
3337 
3338 #ifdef CONFIG_TCG
3339 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3340                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3341                              bool is_secure)
3342 {
3343     bool ret;
3344     uint64_t par64;
3345     bool format64 = false;
3346     ARMMMUFaultInfo fi = {};
3347     GetPhysAddrResult res = {};
3348 
3349     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3350                                     is_secure, &res, &fi);
3351 
3352     /*
3353      * ATS operations only do S1 or S1+S2 translations, so we never
3354      * have to deal with the ARMCacheAttrs format for S2 only.
3355      */
3356     assert(!res.cacheattrs.is_s2_format);
3357 
3358     if (ret) {
3359         /*
3360          * Some kinds of translation fault must cause exceptions rather
3361          * than being reported in the PAR.
3362          */
3363         int current_el = arm_current_el(env);
3364         int target_el;
3365         uint32_t syn, fsr, fsc;
3366         bool take_exc = false;
3367 
3368         if (fi.s1ptw && current_el == 1
3369             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3370             /*
3371              * Synchronous stage 2 fault on an access made as part of the
3372              * translation table walk for AT S1E0* or AT S1E1* insn
3373              * executed from NS EL1. If this is a synchronous external abort
3374              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3375              * to EL3. Otherwise the fault is taken as an exception to EL2,
3376              * and HPFAR_EL2 holds the faulting IPA.
3377              */
3378             if (fi.type == ARMFault_SyncExternalOnWalk &&
3379                 (env->cp15.scr_el3 & SCR_EA)) {
3380                 target_el = 3;
3381             } else {
3382                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3383                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3384                     env->cp15.hpfar_el2 |= HPFAR_NS;
3385                 }
3386                 target_el = 2;
3387             }
3388             take_exc = true;
3389         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3390             /*
3391              * Synchronous external aborts during a translation table walk
3392              * are taken as Data Abort exceptions.
3393              */
3394             if (fi.stage2) {
3395                 if (current_el == 3) {
3396                     target_el = 3;
3397                 } else {
3398                     target_el = 2;
3399                 }
3400             } else {
3401                 target_el = exception_target_el(env);
3402             }
3403             take_exc = true;
3404         }
3405 
3406         if (take_exc) {
3407             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3408             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3409                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3410                 fsr = arm_fi_to_lfsc(&fi);
3411                 fsc = extract32(fsr, 0, 6);
3412             } else {
3413                 fsr = arm_fi_to_sfsc(&fi);
3414                 fsc = 0x3f;
3415             }
3416             /*
3417              * Report exception with ESR indicating a fault due to a
3418              * translation table walk for a cache maintenance instruction.
3419              */
3420             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3421                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3422             env->exception.vaddress = value;
3423             env->exception.fsr = fsr;
3424             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3425         }
3426     }
3427 
3428     if (is_a64(env)) {
3429         format64 = true;
3430     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3431         /*
3432          * ATS1Cxx:
3433          * * TTBCR.EAE determines whether the result is returned using the
3434          *   32-bit or the 64-bit PAR format
3435          * * Instructions executed in Hyp mode always use the 64bit format
3436          *
3437          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3438          * * The Non-secure TTBCR.EAE bit is set to 1
3439          * * The implementation includes EL2, and the value of HCR.VM is 1
3440          *
3441          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3442          *
3443          * ATS1Hx always uses the 64bit format.
3444          */
3445         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3446 
3447         if (arm_feature(env, ARM_FEATURE_EL2)) {
3448             if (mmu_idx == ARMMMUIdx_E10_0 ||
3449                 mmu_idx == ARMMMUIdx_E10_1 ||
3450                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3451                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3452             } else {
3453                 format64 |= arm_current_el(env) == 2;
3454             }
3455         }
3456     }
3457 
3458     if (format64) {
3459         /* Create a 64-bit PAR */
3460         par64 = (1 << 11); /* LPAE bit always set */
3461         if (!ret) {
3462             par64 |= res.f.phys_addr & ~0xfffULL;
3463             if (!res.f.attrs.secure) {
3464                 par64 |= (1 << 9); /* NS */
3465             }
3466             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3467             par64 |= res.cacheattrs.shareability << 7; /* SH */
3468         } else {
3469             uint32_t fsr = arm_fi_to_lfsc(&fi);
3470 
3471             par64 |= 1; /* F */
3472             par64 |= (fsr & 0x3f) << 1; /* FS */
3473             if (fi.stage2) {
3474                 par64 |= (1 << 9); /* S */
3475             }
3476             if (fi.s1ptw) {
3477                 par64 |= (1 << 8); /* PTW */
3478             }
3479         }
3480     } else {
3481         /*
3482          * fsr is a DFSR/IFSR value for the short descriptor
3483          * translation table format (with WnR always clear).
3484          * Convert it to a 32-bit PAR.
3485          */
3486         if (!ret) {
3487             /* We do not set any attribute bits in the PAR */
3488             if (res.f.lg_page_size == 24
3489                 && arm_feature(env, ARM_FEATURE_V7)) {
3490                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3491             } else {
3492                 par64 = res.f.phys_addr & 0xfffff000;
3493             }
3494             if (!res.f.attrs.secure) {
3495                 par64 |= (1 << 9); /* NS */
3496             }
3497         } else {
3498             uint32_t fsr = arm_fi_to_sfsc(&fi);
3499 
3500             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3501                     ((fsr & 0xf) << 1) | 1;
3502         }
3503     }
3504     return par64;
3505 }
3506 #endif /* CONFIG_TCG */
3507 
3508 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3509 {
3510 #ifdef CONFIG_TCG
3511     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3512     uint64_t par64;
3513     ARMMMUIdx mmu_idx;
3514     int el = arm_current_el(env);
3515     bool secure = arm_is_secure_below_el3(env);
3516 
3517     switch (ri->opc2 & 6) {
3518     case 0:
3519         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3520         switch (el) {
3521         case 3:
3522             mmu_idx = ARMMMUIdx_E3;
3523             secure = true;
3524             break;
3525         case 2:
3526             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3527             /* fall through */
3528         case 1:
3529             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3530                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3531             } else {
3532                 mmu_idx = ARMMMUIdx_Stage1_E1;
3533             }
3534             break;
3535         default:
3536             g_assert_not_reached();
3537         }
3538         break;
3539     case 2:
3540         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3541         switch (el) {
3542         case 3:
3543             mmu_idx = ARMMMUIdx_E10_0;
3544             secure = true;
3545             break;
3546         case 2:
3547             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3548             mmu_idx = ARMMMUIdx_Stage1_E0;
3549             break;
3550         case 1:
3551             mmu_idx = ARMMMUIdx_Stage1_E0;
3552             break;
3553         default:
3554             g_assert_not_reached();
3555         }
3556         break;
3557     case 4:
3558         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3559         mmu_idx = ARMMMUIdx_E10_1;
3560         secure = false;
3561         break;
3562     case 6:
3563         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3564         mmu_idx = ARMMMUIdx_E10_0;
3565         secure = false;
3566         break;
3567     default:
3568         g_assert_not_reached();
3569     }
3570 
3571     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3572 
3573     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3574 #else
3575     /* Handled by hardware accelerator. */
3576     g_assert_not_reached();
3577 #endif /* CONFIG_TCG */
3578 }
3579 
3580 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3581                         uint64_t value)
3582 {
3583 #ifdef CONFIG_TCG
3584     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3585     uint64_t par64;
3586 
3587     /* There is no SecureEL2 for AArch32. */
3588     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3589 
3590     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3591 #else
3592     /* Handled by hardware accelerator. */
3593     g_assert_not_reached();
3594 #endif /* CONFIG_TCG */
3595 }
3596 
3597 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3598                                      bool isread)
3599 {
3600     if (arm_current_el(env) == 3 &&
3601         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3602         return CP_ACCESS_TRAP;
3603     }
3604     return CP_ACCESS_OK;
3605 }
3606 
3607 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3608                         uint64_t value)
3609 {
3610 #ifdef CONFIG_TCG
3611     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3612     ARMMMUIdx mmu_idx;
3613     int secure = arm_is_secure_below_el3(env);
3614     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3615     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3616 
3617     switch (ri->opc2 & 6) {
3618     case 0:
3619         switch (ri->opc1) {
3620         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3621             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3622                 mmu_idx = regime_e20 ?
3623                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3624             } else {
3625                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3626             }
3627             break;
3628         case 4: /* AT S1E2R, AT S1E2W */
3629             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3630             break;
3631         case 6: /* AT S1E3R, AT S1E3W */
3632             mmu_idx = ARMMMUIdx_E3;
3633             secure = true;
3634             break;
3635         default:
3636             g_assert_not_reached();
3637         }
3638         break;
3639     case 2: /* AT S1E0R, AT S1E0W */
3640         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3641         break;
3642     case 4: /* AT S12E1R, AT S12E1W */
3643         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3644         break;
3645     case 6: /* AT S12E0R, AT S12E0W */
3646         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3647         break;
3648     default:
3649         g_assert_not_reached();
3650     }
3651 
3652     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3653                                        mmu_idx, secure);
3654 #else
3655     /* Handled by hardware accelerator. */
3656     g_assert_not_reached();
3657 #endif /* CONFIG_TCG */
3658 }
3659 #endif
3660 
3661 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3662     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3663       .access = PL1_RW, .resetvalue = 0,
3664       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3665                              offsetoflow32(CPUARMState, cp15.par_ns) },
3666       .writefn = par_write },
3667 #ifndef CONFIG_USER_ONLY
3668     /* This underdecoding is safe because the reginfo is NO_RAW. */
3669     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3670       .access = PL1_W, .accessfn = ats_access,
3671       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3672 #endif
3673 };
3674 
3675 /* Return basic MPU access permission bits.  */
3676 static uint32_t simple_mpu_ap_bits(uint32_t val)
3677 {
3678     uint32_t ret;
3679     uint32_t mask;
3680     int i;
3681     ret = 0;
3682     mask = 3;
3683     for (i = 0; i < 16; i += 2) {
3684         ret |= (val >> i) & mask;
3685         mask <<= 2;
3686     }
3687     return ret;
3688 }
3689 
3690 /* Pad basic MPU access permission bits to extended format.  */
3691 static uint32_t extended_mpu_ap_bits(uint32_t val)
3692 {
3693     uint32_t ret;
3694     uint32_t mask;
3695     int i;
3696     ret = 0;
3697     mask = 3;
3698     for (i = 0; i < 16; i += 2) {
3699         ret |= (val & mask) << i;
3700         mask <<= 2;
3701     }
3702     return ret;
3703 }
3704 
3705 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3706                                  uint64_t value)
3707 {
3708     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3709 }
3710 
3711 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712 {
3713     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3714 }
3715 
3716 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717                                  uint64_t value)
3718 {
3719     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3720 }
3721 
3722 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723 {
3724     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3725 }
3726 
3727 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3728 {
3729     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3730 
3731     if (!u32p) {
3732         return 0;
3733     }
3734 
3735     u32p += env->pmsav7.rnr[M_REG_NS];
3736     return *u32p;
3737 }
3738 
3739 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3740                          uint64_t value)
3741 {
3742     ARMCPU *cpu = env_archcpu(env);
3743     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3744 
3745     if (!u32p) {
3746         return;
3747     }
3748 
3749     u32p += env->pmsav7.rnr[M_REG_NS];
3750     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3751     *u32p = value;
3752 }
3753 
3754 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3755                               uint64_t value)
3756 {
3757     ARMCPU *cpu = env_archcpu(env);
3758     uint32_t nrgs = cpu->pmsav7_dregion;
3759 
3760     if (value >= nrgs) {
3761         qemu_log_mask(LOG_GUEST_ERROR,
3762                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3763                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3764         return;
3765     }
3766 
3767     raw_write(env, ri, value);
3768 }
3769 
3770 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3771                           uint64_t value)
3772 {
3773     ARMCPU *cpu = env_archcpu(env);
3774 
3775     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3776     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3777 }
3778 
3779 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3780 {
3781     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3782 }
3783 
3784 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3785                           uint64_t value)
3786 {
3787     ARMCPU *cpu = env_archcpu(env);
3788 
3789     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3790     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3791 }
3792 
3793 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3794 {
3795     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3796 }
3797 
3798 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                            uint64_t value)
3800 {
3801     ARMCPU *cpu = env_archcpu(env);
3802 
3803     /*
3804      * Ignore writes that would select not implemented region.
3805      * This is architecturally UNPREDICTABLE.
3806      */
3807     if (value >= cpu->pmsav7_dregion) {
3808         return;
3809     }
3810 
3811     env->pmsav7.rnr[M_REG_NS] = value;
3812 }
3813 
3814 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3815                           uint64_t value)
3816 {
3817     ARMCPU *cpu = env_archcpu(env);
3818 
3819     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3820     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3821 }
3822 
3823 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3824 {
3825     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3826 }
3827 
3828 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3829                           uint64_t value)
3830 {
3831     ARMCPU *cpu = env_archcpu(env);
3832 
3833     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3834     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3835 }
3836 
3837 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3838 {
3839     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3840 }
3841 
3842 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3843                           uint64_t value)
3844 {
3845     uint32_t n;
3846     uint32_t bit;
3847     ARMCPU *cpu = env_archcpu(env);
3848 
3849     /* Ignore writes to unimplemented regions */
3850     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3851     value &= MAKE_64BIT_MASK(0, rmax);
3852 
3853     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3854 
3855     /* Register alias is only valid for first 32 indexes */
3856     for (n = 0; n < rmax; ++n) {
3857         bit = extract32(value, n, 1);
3858         env->pmsav8.hprlar[n] = deposit32(
3859                     env->pmsav8.hprlar[n], 0, 1, bit);
3860     }
3861 }
3862 
3863 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3864 {
3865     uint32_t n;
3866     uint32_t result = 0x0;
3867     ARMCPU *cpu = env_archcpu(env);
3868 
3869     /* Register alias is only valid for first 32 indexes */
3870     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3871         if (env->pmsav8.hprlar[n] & 0x1) {
3872             result |= (0x1 << n);
3873         }
3874     }
3875     return result;
3876 }
3877 
3878 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879                            uint64_t value)
3880 {
3881     ARMCPU *cpu = env_archcpu(env);
3882 
3883     /*
3884      * Ignore writes that would select not implemented region.
3885      * This is architecturally UNPREDICTABLE.
3886      */
3887     if (value >= cpu->pmsav8r_hdregion) {
3888         return;
3889     }
3890 
3891     env->pmsav8.hprselr = value;
3892 }
3893 
3894 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3895                           uint64_t value)
3896 {
3897     ARMCPU *cpu = env_archcpu(env);
3898     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3899                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3900 
3901     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3902 
3903     if (ri->opc1 & 4) {
3904         if (index >= cpu->pmsav8r_hdregion) {
3905             return;
3906         }
3907         if (ri->opc2 & 0x1) {
3908             env->pmsav8.hprlar[index] = value;
3909         } else {
3910             env->pmsav8.hprbar[index] = value;
3911         }
3912     } else {
3913         if (index >= cpu->pmsav7_dregion) {
3914             return;
3915         }
3916         if (ri->opc2 & 0x1) {
3917             env->pmsav8.rlar[M_REG_NS][index] = value;
3918         } else {
3919             env->pmsav8.rbar[M_REG_NS][index] = value;
3920         }
3921     }
3922 }
3923 
3924 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3925 {
3926     ARMCPU *cpu = env_archcpu(env);
3927     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3928                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3929 
3930     if (ri->opc1 & 4) {
3931         if (index >= cpu->pmsav8r_hdregion) {
3932             return 0x0;
3933         }
3934         if (ri->opc2 & 0x1) {
3935             return env->pmsav8.hprlar[index];
3936         } else {
3937             return env->pmsav8.hprbar[index];
3938         }
3939     } else {
3940         if (index >= cpu->pmsav7_dregion) {
3941             return 0x0;
3942         }
3943         if (ri->opc2 & 0x1) {
3944             return env->pmsav8.rlar[M_REG_NS][index];
3945         } else {
3946             return env->pmsav8.rbar[M_REG_NS][index];
3947         }
3948     }
3949 }
3950 
3951 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3952     { .name = "PRBAR",
3953       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3954       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3955       .accessfn = access_tvm_trvm,
3956       .readfn = prbar_read, .writefn = prbar_write },
3957     { .name = "PRLAR",
3958       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3959       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3960       .accessfn = access_tvm_trvm,
3961       .readfn = prlar_read, .writefn = prlar_write },
3962     { .name = "PRSELR", .resetvalue = 0,
3963       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3964       .access = PL1_RW, .accessfn = access_tvm_trvm,
3965       .writefn = prselr_write,
3966       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3967     { .name = "HPRBAR", .resetvalue = 0,
3968       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3969       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3970       .readfn = hprbar_read, .writefn = hprbar_write },
3971     { .name = "HPRLAR",
3972       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3973       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3974       .readfn = hprlar_read, .writefn = hprlar_write },
3975     { .name = "HPRSELR", .resetvalue = 0,
3976       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3977       .access = PL2_RW,
3978       .writefn = hprselr_write,
3979       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3980     { .name = "HPRENR",
3981       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3982       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3983       .readfn = hprenr_read, .writefn = hprenr_write },
3984 };
3985 
3986 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3987     /*
3988      * Reset for all these registers is handled in arm_cpu_reset(),
3989      * because the PMSAv7 is also used by M-profile CPUs, which do
3990      * not register cpregs but still need the state to be reset.
3991      */
3992     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3993       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3994       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3995       .readfn = pmsav7_read, .writefn = pmsav7_write,
3996       .resetfn = arm_cp_reset_ignore },
3997     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3998       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3999       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4000       .readfn = pmsav7_read, .writefn = pmsav7_write,
4001       .resetfn = arm_cp_reset_ignore },
4002     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4003       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4004       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4005       .readfn = pmsav7_read, .writefn = pmsav7_write,
4006       .resetfn = arm_cp_reset_ignore },
4007     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4008       .access = PL1_RW,
4009       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4010       .writefn = pmsav7_rgnr_write,
4011       .resetfn = arm_cp_reset_ignore },
4012 };
4013 
4014 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4015     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4016       .access = PL1_RW, .type = ARM_CP_ALIAS,
4017       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4018       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4019     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4020       .access = PL1_RW, .type = ARM_CP_ALIAS,
4021       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4022       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4023     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4024       .access = PL1_RW,
4025       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4026       .resetvalue = 0, },
4027     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4028       .access = PL1_RW,
4029       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4030       .resetvalue = 0, },
4031     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4032       .access = PL1_RW,
4033       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4034     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4035       .access = PL1_RW,
4036       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4037     /* Protection region base and size registers */
4038     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4039       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4040       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4041     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4042       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4043       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4044     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4045       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4047     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4048       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4050     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4051       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4053     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4054       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4056     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4057       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4059     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4060       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4062 };
4063 
4064 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4065                              uint64_t value)
4066 {
4067     ARMCPU *cpu = env_archcpu(env);
4068 
4069     if (!arm_feature(env, ARM_FEATURE_V8)) {
4070         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4071             /*
4072              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4073              * using Long-descriptor translation table format
4074              */
4075             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4076         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4077             /*
4078              * In an implementation that includes the Security Extensions
4079              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4080              * Short-descriptor translation table format.
4081              */
4082             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4083         } else {
4084             value &= TTBCR_N;
4085         }
4086     }
4087 
4088     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4089         /*
4090          * With LPAE the TTBCR could result in a change of ASID
4091          * via the TTBCR.A1 bit, so do a TLB flush.
4092          */
4093         tlb_flush(CPU(cpu));
4094     }
4095     raw_write(env, ri, value);
4096 }
4097 
4098 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4099                                uint64_t value)
4100 {
4101     ARMCPU *cpu = env_archcpu(env);
4102 
4103     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4104     tlb_flush(CPU(cpu));
4105     raw_write(env, ri, value);
4106 }
4107 
4108 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4109                             uint64_t value)
4110 {
4111     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4112     if (cpreg_field_is_64bit(ri) &&
4113         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4114         ARMCPU *cpu = env_archcpu(env);
4115         tlb_flush(CPU(cpu));
4116     }
4117     raw_write(env, ri, value);
4118 }
4119 
4120 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4121                                     uint64_t value)
4122 {
4123     /*
4124      * If we are running with E2&0 regime, then an ASID is active.
4125      * Flush if that might be changing.  Note we're not checking
4126      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4127      * holds the active ASID, only checking the field that might.
4128      */
4129     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4130         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4131         uint16_t mask = ARMMMUIdxBit_E20_2 |
4132                         ARMMMUIdxBit_E20_2_PAN |
4133                         ARMMMUIdxBit_E20_0;
4134         tlb_flush_by_mmuidx(env_cpu(env), mask);
4135     }
4136     raw_write(env, ri, value);
4137 }
4138 
4139 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4140                         uint64_t value)
4141 {
4142     ARMCPU *cpu = env_archcpu(env);
4143     CPUState *cs = CPU(cpu);
4144 
4145     /*
4146      * A change in VMID to the stage2 page table (Stage2) invalidates
4147      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4148      */
4149     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4150         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4151     }
4152     raw_write(env, ri, value);
4153 }
4154 
4155 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4156     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4157       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4158       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4159                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4160     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4161       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4162       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4163                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4164     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4165       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4166       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4167                              offsetof(CPUARMState, cp15.dfar_ns) } },
4168     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4169       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4170       .access = PL1_RW, .accessfn = access_tvm_trvm,
4171       .fgt = FGT_FAR_EL1,
4172       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4173       .resetvalue = 0, },
4174 };
4175 
4176 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4177     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4178       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4179       .access = PL1_RW, .accessfn = access_tvm_trvm,
4180       .fgt = FGT_ESR_EL1,
4181       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4182     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4183       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4184       .access = PL1_RW, .accessfn = access_tvm_trvm,
4185       .fgt = FGT_TTBR0_EL1,
4186       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4187       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4188                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4189     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4190       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4191       .access = PL1_RW, .accessfn = access_tvm_trvm,
4192       .fgt = FGT_TTBR1_EL1,
4193       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4194       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4195                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4196     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4197       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4198       .access = PL1_RW, .accessfn = access_tvm_trvm,
4199       .fgt = FGT_TCR_EL1,
4200       .writefn = vmsa_tcr_el12_write,
4201       .raw_writefn = raw_write,
4202       .resetvalue = 0,
4203       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4204     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4205       .access = PL1_RW, .accessfn = access_tvm_trvm,
4206       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4207       .raw_writefn = raw_write,
4208       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4209                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4210 };
4211 
4212 /*
4213  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4214  * qemu tlbs nor adjusting cached masks.
4215  */
4216 static const ARMCPRegInfo ttbcr2_reginfo = {
4217     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4218     .access = PL1_RW, .accessfn = access_tvm_trvm,
4219     .type = ARM_CP_ALIAS,
4220     .bank_fieldoffsets = {
4221         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4222         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4223     },
4224 };
4225 
4226 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4227                                 uint64_t value)
4228 {
4229     env->cp15.c15_ticonfig = value & 0xe7;
4230     /* The OS_TYPE bit in this register changes the reported CPUID! */
4231     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4232         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4233 }
4234 
4235 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4236                                 uint64_t value)
4237 {
4238     env->cp15.c15_threadid = value & 0xffff;
4239 }
4240 
4241 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                            uint64_t value)
4243 {
4244     /* Wait-for-interrupt (deprecated) */
4245     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4246 }
4247 
4248 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4249                                   uint64_t value)
4250 {
4251     /*
4252      * On OMAP there are registers indicating the max/min index of dcache lines
4253      * containing a dirty line; cache flush operations have to reset these.
4254      */
4255     env->cp15.c15_i_max = 0x000;
4256     env->cp15.c15_i_min = 0xff0;
4257 }
4258 
4259 static const ARMCPRegInfo omap_cp_reginfo[] = {
4260     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4261       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4262       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4263       .resetvalue = 0, },
4264     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4265       .access = PL1_RW, .type = ARM_CP_NOP },
4266     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4267       .access = PL1_RW,
4268       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4269       .writefn = omap_ticonfig_write },
4270     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4271       .access = PL1_RW,
4272       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4273     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4274       .access = PL1_RW, .resetvalue = 0xff0,
4275       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4276     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4277       .access = PL1_RW,
4278       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4279       .writefn = omap_threadid_write },
4280     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4281       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4282       .type = ARM_CP_NO_RAW,
4283       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4284     /*
4285      * TODO: Peripheral port remap register:
4286      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4287      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4288      * when MMU is off.
4289      */
4290     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4291       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4292       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4293       .writefn = omap_cachemaint_write },
4294     { .name = "C9", .cp = 15, .crn = 9,
4295       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4296       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4297 };
4298 
4299 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300                               uint64_t value)
4301 {
4302     env->cp15.c15_cpar = value & 0x3fff;
4303 }
4304 
4305 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4306     { .name = "XSCALE_CPAR",
4307       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4308       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4309       .writefn = xscale_cpar_write, },
4310     { .name = "XSCALE_AUXCR",
4311       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4312       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4313       .resetvalue = 0, },
4314     /*
4315      * XScale specific cache-lockdown: since we have no cache we NOP these
4316      * and hope the guest does not really rely on cache behaviour.
4317      */
4318     { .name = "XSCALE_LOCK_ICACHE_LINE",
4319       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4320       .access = PL1_W, .type = ARM_CP_NOP },
4321     { .name = "XSCALE_UNLOCK_ICACHE",
4322       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4323       .access = PL1_W, .type = ARM_CP_NOP },
4324     { .name = "XSCALE_DCACHE_LOCK",
4325       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4326       .access = PL1_RW, .type = ARM_CP_NOP },
4327     { .name = "XSCALE_UNLOCK_DCACHE",
4328       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4329       .access = PL1_W, .type = ARM_CP_NOP },
4330 };
4331 
4332 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4333     /*
4334      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4335      * implementation of this implementation-defined space.
4336      * Ideally this should eventually disappear in favour of actually
4337      * implementing the correct behaviour for all cores.
4338      */
4339     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4340       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4341       .access = PL1_RW,
4342       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4343       .resetvalue = 0 },
4344 };
4345 
4346 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4347     /* Cache status: RAZ because we have no cache so it's always clean */
4348     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4349       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4350       .resetvalue = 0 },
4351 };
4352 
4353 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4354     /* We never have a block transfer operation in progress */
4355     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4356       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4357       .resetvalue = 0 },
4358     /* The cache ops themselves: these all NOP for QEMU */
4359     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4360       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4361     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4362       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4363     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4364       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4365     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4366       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4368       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4370       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371 };
4372 
4373 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4374     /*
4375      * The cache test-and-clean instructions always return (1 << 30)
4376      * to indicate that there are no dirty cache lines.
4377      */
4378     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4379       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4380       .resetvalue = (1 << 30) },
4381     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4382       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4383       .resetvalue = (1 << 30) },
4384 };
4385 
4386 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4387     /* Ignore ReadBuffer accesses */
4388     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4389       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4390       .access = PL1_RW, .resetvalue = 0,
4391       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4392 };
4393 
4394 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4395 {
4396     unsigned int cur_el = arm_current_el(env);
4397 
4398     if (arm_is_el2_enabled(env) && cur_el == 1) {
4399         return env->cp15.vpidr_el2;
4400     }
4401     return raw_read(env, ri);
4402 }
4403 
4404 static uint64_t mpidr_read_val(CPUARMState *env)
4405 {
4406     ARMCPU *cpu = env_archcpu(env);
4407     uint64_t mpidr = cpu->mp_affinity;
4408 
4409     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4410         mpidr |= (1U << 31);
4411         /*
4412          * Cores which are uniprocessor (non-coherent)
4413          * but still implement the MP extensions set
4414          * bit 30. (For instance, Cortex-R5).
4415          */
4416         if (cpu->mp_is_up) {
4417             mpidr |= (1u << 30);
4418         }
4419     }
4420     return mpidr;
4421 }
4422 
4423 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4424 {
4425     unsigned int cur_el = arm_current_el(env);
4426 
4427     if (arm_is_el2_enabled(env) && cur_el == 1) {
4428         return env->cp15.vmpidr_el2;
4429     }
4430     return mpidr_read_val(env);
4431 }
4432 
4433 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4434     /* NOP AMAIR0/1 */
4435     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4436       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4437       .access = PL1_RW, .accessfn = access_tvm_trvm,
4438       .fgt = FGT_AMAIR_EL1,
4439       .type = ARM_CP_CONST, .resetvalue = 0 },
4440     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4441     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4442       .access = PL1_RW, .accessfn = access_tvm_trvm,
4443       .type = ARM_CP_CONST, .resetvalue = 0 },
4444     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4445       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4446       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4447                              offsetof(CPUARMState, cp15.par_ns)} },
4448     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4449       .access = PL1_RW, .accessfn = access_tvm_trvm,
4450       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4451       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4452                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4453       .writefn = vmsa_ttbr_write, },
4454     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4455       .access = PL1_RW, .accessfn = access_tvm_trvm,
4456       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4458                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4459       .writefn = vmsa_ttbr_write, },
4460 };
4461 
4462 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4463 {
4464     return vfp_get_fpcr(env);
4465 }
4466 
4467 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                             uint64_t value)
4469 {
4470     vfp_set_fpcr(env, value);
4471 }
4472 
4473 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4474 {
4475     return vfp_get_fpsr(env);
4476 }
4477 
4478 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4479                             uint64_t value)
4480 {
4481     vfp_set_fpsr(env, value);
4482 }
4483 
4484 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4485                                        bool isread)
4486 {
4487     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4488         return CP_ACCESS_TRAP;
4489     }
4490     return CP_ACCESS_OK;
4491 }
4492 
4493 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4494                             uint64_t value)
4495 {
4496     env->daif = value & PSTATE_DAIF;
4497 }
4498 
4499 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4500 {
4501     return env->pstate & PSTATE_PAN;
4502 }
4503 
4504 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4505                            uint64_t value)
4506 {
4507     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4508 }
4509 
4510 static const ARMCPRegInfo pan_reginfo = {
4511     .name = "PAN", .state = ARM_CP_STATE_AA64,
4512     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4513     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4514     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4515 };
4516 
4517 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4518 {
4519     return env->pstate & PSTATE_UAO;
4520 }
4521 
4522 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523                            uint64_t value)
4524 {
4525     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4526 }
4527 
4528 static const ARMCPRegInfo uao_reginfo = {
4529     .name = "UAO", .state = ARM_CP_STATE_AA64,
4530     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4531     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4532     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4533 };
4534 
4535 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4536 {
4537     return env->pstate & PSTATE_DIT;
4538 }
4539 
4540 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4541                            uint64_t value)
4542 {
4543     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4544 }
4545 
4546 static const ARMCPRegInfo dit_reginfo = {
4547     .name = "DIT", .state = ARM_CP_STATE_AA64,
4548     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4549     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4550     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4551 };
4552 
4553 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4554 {
4555     return env->pstate & PSTATE_SSBS;
4556 }
4557 
4558 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4559                            uint64_t value)
4560 {
4561     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4562 }
4563 
4564 static const ARMCPRegInfo ssbs_reginfo = {
4565     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4566     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4567     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4568     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4569 };
4570 
4571 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4572                                               const ARMCPRegInfo *ri,
4573                                               bool isread)
4574 {
4575     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4576     switch (arm_current_el(env)) {
4577     case 0:
4578         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4579         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4580             return CP_ACCESS_TRAP;
4581         }
4582         /* fall through */
4583     case 1:
4584         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4585         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4586             return CP_ACCESS_TRAP_EL2;
4587         }
4588         break;
4589     }
4590     return CP_ACCESS_OK;
4591 }
4592 
4593 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4594 {
4595     /* Cache invalidate/clean to Point of Unification... */
4596     switch (arm_current_el(env)) {
4597     case 0:
4598         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4599         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4600             return CP_ACCESS_TRAP;
4601         }
4602         /* fall through */
4603     case 1:
4604         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4605         if (arm_hcr_el2_eff(env) & hcrflags) {
4606             return CP_ACCESS_TRAP_EL2;
4607         }
4608         break;
4609     }
4610     return CP_ACCESS_OK;
4611 }
4612 
4613 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4614                                    bool isread)
4615 {
4616     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4617 }
4618 
4619 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                   bool isread)
4621 {
4622     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4623 }
4624 
4625 /*
4626  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4627  * Page D4-1736 (DDI0487A.b)
4628  */
4629 
4630 static int vae1_tlbmask(CPUARMState *env)
4631 {
4632     uint64_t hcr = arm_hcr_el2_eff(env);
4633     uint16_t mask;
4634 
4635     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4636         mask = ARMMMUIdxBit_E20_2 |
4637                ARMMMUIdxBit_E20_2_PAN |
4638                ARMMMUIdxBit_E20_0;
4639     } else {
4640         mask = ARMMMUIdxBit_E10_1 |
4641                ARMMMUIdxBit_E10_1_PAN |
4642                ARMMMUIdxBit_E10_0;
4643     }
4644     return mask;
4645 }
4646 
4647 /* Return 56 if TBI is enabled, 64 otherwise. */
4648 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4649                               uint64_t addr)
4650 {
4651     uint64_t tcr = regime_tcr(env, mmu_idx);
4652     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4653     int select = extract64(addr, 55, 1);
4654 
4655     return (tbi >> select) & 1 ? 56 : 64;
4656 }
4657 
4658 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4659 {
4660     uint64_t hcr = arm_hcr_el2_eff(env);
4661     ARMMMUIdx mmu_idx;
4662 
4663     /* Only the regime of the mmu_idx below is significant. */
4664     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4665         mmu_idx = ARMMMUIdx_E20_0;
4666     } else {
4667         mmu_idx = ARMMMUIdx_E10_0;
4668     }
4669 
4670     return tlbbits_for_regime(env, mmu_idx, addr);
4671 }
4672 
4673 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4674                                       uint64_t value)
4675 {
4676     CPUState *cs = env_cpu(env);
4677     int mask = vae1_tlbmask(env);
4678 
4679     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4680 }
4681 
4682 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4683                                     uint64_t value)
4684 {
4685     CPUState *cs = env_cpu(env);
4686     int mask = vae1_tlbmask(env);
4687 
4688     if (tlb_force_broadcast(env)) {
4689         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4690     } else {
4691         tlb_flush_by_mmuidx(cs, mask);
4692     }
4693 }
4694 
4695 static int e2_tlbmask(CPUARMState *env)
4696 {
4697     return (ARMMMUIdxBit_E20_0 |
4698             ARMMMUIdxBit_E20_2 |
4699             ARMMMUIdxBit_E20_2_PAN |
4700             ARMMMUIdxBit_E2);
4701 }
4702 
4703 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4704                                   uint64_t value)
4705 {
4706     CPUState *cs = env_cpu(env);
4707     int mask = alle1_tlbmask(env);
4708 
4709     tlb_flush_by_mmuidx(cs, mask);
4710 }
4711 
4712 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4713                                   uint64_t value)
4714 {
4715     CPUState *cs = env_cpu(env);
4716     int mask = e2_tlbmask(env);
4717 
4718     tlb_flush_by_mmuidx(cs, mask);
4719 }
4720 
4721 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4722                                   uint64_t value)
4723 {
4724     ARMCPU *cpu = env_archcpu(env);
4725     CPUState *cs = CPU(cpu);
4726 
4727     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4728 }
4729 
4730 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4731                                     uint64_t value)
4732 {
4733     CPUState *cs = env_cpu(env);
4734     int mask = alle1_tlbmask(env);
4735 
4736     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4737 }
4738 
4739 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                                     uint64_t value)
4741 {
4742     CPUState *cs = env_cpu(env);
4743     int mask = e2_tlbmask(env);
4744 
4745     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4746 }
4747 
4748 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4749                                     uint64_t value)
4750 {
4751     CPUState *cs = env_cpu(env);
4752 
4753     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4754 }
4755 
4756 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757                                  uint64_t value)
4758 {
4759     /*
4760      * Invalidate by VA, EL2
4761      * Currently handles both VAE2 and VALE2, since we don't support
4762      * flush-last-level-only.
4763      */
4764     CPUState *cs = env_cpu(env);
4765     int mask = e2_tlbmask(env);
4766     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4767 
4768     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4769 }
4770 
4771 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4772                                  uint64_t value)
4773 {
4774     /*
4775      * Invalidate by VA, EL3
4776      * Currently handles both VAE3 and VALE3, since we don't support
4777      * flush-last-level-only.
4778      */
4779     ARMCPU *cpu = env_archcpu(env);
4780     CPUState *cs = CPU(cpu);
4781     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4782 
4783     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4784 }
4785 
4786 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4787                                    uint64_t value)
4788 {
4789     CPUState *cs = env_cpu(env);
4790     int mask = vae1_tlbmask(env);
4791     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4792     int bits = vae1_tlbbits(env, pageaddr);
4793 
4794     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4795 }
4796 
4797 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798                                  uint64_t value)
4799 {
4800     /*
4801      * Invalidate by VA, EL1&0 (AArch64 version).
4802      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4803      * since we don't support flush-for-specific-ASID-only or
4804      * flush-last-level-only.
4805      */
4806     CPUState *cs = env_cpu(env);
4807     int mask = vae1_tlbmask(env);
4808     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4809     int bits = vae1_tlbbits(env, pageaddr);
4810 
4811     if (tlb_force_broadcast(env)) {
4812         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4813     } else {
4814         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4815     }
4816 }
4817 
4818 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4819                                    uint64_t value)
4820 {
4821     CPUState *cs = env_cpu(env);
4822     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4823     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4824 
4825     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4826                                                   ARMMMUIdxBit_E2, bits);
4827 }
4828 
4829 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4830                                    uint64_t value)
4831 {
4832     CPUState *cs = env_cpu(env);
4833     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4834     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4835 
4836     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4837                                                   ARMMMUIdxBit_E3, bits);
4838 }
4839 
4840 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4841 {
4842     /*
4843      * The MSB of value is the NS field, which only applies if SEL2
4844      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4845      */
4846     return (value >= 0
4847             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4848             && arm_is_secure_below_el3(env)
4849             ? ARMMMUIdxBit_Stage2_S
4850             : ARMMMUIdxBit_Stage2);
4851 }
4852 
4853 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4854                                     uint64_t value)
4855 {
4856     CPUState *cs = env_cpu(env);
4857     int mask = ipas2e1_tlbmask(env, value);
4858     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4859 
4860     if (tlb_force_broadcast(env)) {
4861         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4862     } else {
4863         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4864     }
4865 }
4866 
4867 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4868                                       uint64_t value)
4869 {
4870     CPUState *cs = env_cpu(env);
4871     int mask = ipas2e1_tlbmask(env, value);
4872     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4873 
4874     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4875 }
4876 
4877 #ifdef TARGET_AARCH64
4878 typedef struct {
4879     uint64_t base;
4880     uint64_t length;
4881 } TLBIRange;
4882 
4883 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4884 {
4885     /*
4886      * Note that the TLBI range TG field encoding differs from both
4887      * TG0 and TG1 encodings.
4888      */
4889     switch (tg) {
4890     case 1:
4891         return Gran4K;
4892     case 2:
4893         return Gran16K;
4894     case 3:
4895         return Gran64K;
4896     default:
4897         return GranInvalid;
4898     }
4899 }
4900 
4901 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4902                                      uint64_t value)
4903 {
4904     unsigned int page_size_granule, page_shift, num, scale, exponent;
4905     /* Extract one bit to represent the va selector in use. */
4906     uint64_t select = sextract64(value, 36, 1);
4907     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4908     TLBIRange ret = { };
4909     ARMGranuleSize gran;
4910 
4911     page_size_granule = extract64(value, 46, 2);
4912     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4913 
4914     /* The granule encoded in value must match the granule in use. */
4915     if (gran != param.gran) {
4916         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4917                       page_size_granule);
4918         return ret;
4919     }
4920 
4921     page_shift = arm_granule_bits(gran);
4922     num = extract64(value, 39, 5);
4923     scale = extract64(value, 44, 2);
4924     exponent = (5 * scale) + 1;
4925 
4926     ret.length = (num + 1) << (exponent + page_shift);
4927 
4928     if (param.select) {
4929         ret.base = sextract64(value, 0, 37);
4930     } else {
4931         ret.base = extract64(value, 0, 37);
4932     }
4933     if (param.ds) {
4934         /*
4935          * With DS=1, BaseADDR is always shifted 16 so that it is able
4936          * to address all 52 va bits.  The input address is perforce
4937          * aligned on a 64k boundary regardless of translation granule.
4938          */
4939         page_shift = 16;
4940     }
4941     ret.base <<= page_shift;
4942 
4943     return ret;
4944 }
4945 
4946 static void do_rvae_write(CPUARMState *env, uint64_t value,
4947                           int idxmap, bool synced)
4948 {
4949     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4950     TLBIRange range;
4951     int bits;
4952 
4953     range = tlbi_aa64_get_range(env, one_idx, value);
4954     bits = tlbbits_for_regime(env, one_idx, range.base);
4955 
4956     if (synced) {
4957         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4958                                                   range.base,
4959                                                   range.length,
4960                                                   idxmap,
4961                                                   bits);
4962     } else {
4963         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4964                                   range.length, idxmap, bits);
4965     }
4966 }
4967 
4968 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4969                                   const ARMCPRegInfo *ri,
4970                                   uint64_t value)
4971 {
4972     /*
4973      * Invalidate by VA range, EL1&0.
4974      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4975      * since we don't support flush-for-specific-ASID-only or
4976      * flush-last-level-only.
4977      */
4978 
4979     do_rvae_write(env, value, vae1_tlbmask(env),
4980                   tlb_force_broadcast(env));
4981 }
4982 
4983 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4984                                     const ARMCPRegInfo *ri,
4985                                     uint64_t value)
4986 {
4987     /*
4988      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4989      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4990      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4991      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4992      * shareable specific flushes.
4993      */
4994 
4995     do_rvae_write(env, value, vae1_tlbmask(env), true);
4996 }
4997 
4998 static int vae2_tlbmask(CPUARMState *env)
4999 {
5000     return ARMMMUIdxBit_E2;
5001 }
5002 
5003 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5004                                   const ARMCPRegInfo *ri,
5005                                   uint64_t value)
5006 {
5007     /*
5008      * Invalidate by VA range, EL2.
5009      * Currently handles all of RVAE2 and RVALE2,
5010      * since we don't support flush-for-specific-ASID-only or
5011      * flush-last-level-only.
5012      */
5013 
5014     do_rvae_write(env, value, vae2_tlbmask(env),
5015                   tlb_force_broadcast(env));
5016 
5017 
5018 }
5019 
5020 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5021                                     const ARMCPRegInfo *ri,
5022                                     uint64_t value)
5023 {
5024     /*
5025      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5026      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5027      * since we don't support flush-for-specific-ASID-only,
5028      * flush-last-level-only or inner/outer shareable specific flushes.
5029      */
5030 
5031     do_rvae_write(env, value, vae2_tlbmask(env), true);
5032 
5033 }
5034 
5035 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5036                                   const ARMCPRegInfo *ri,
5037                                   uint64_t value)
5038 {
5039     /*
5040      * Invalidate by VA range, EL3.
5041      * Currently handles all of RVAE3 and RVALE3,
5042      * since we don't support flush-for-specific-ASID-only or
5043      * flush-last-level-only.
5044      */
5045 
5046     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5047 }
5048 
5049 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5050                                     const ARMCPRegInfo *ri,
5051                                     uint64_t value)
5052 {
5053     /*
5054      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5055      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5056      * since we don't support flush-for-specific-ASID-only,
5057      * flush-last-level-only or inner/outer specific flushes.
5058      */
5059 
5060     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5061 }
5062 
5063 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5064                                      uint64_t value)
5065 {
5066     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5067                   tlb_force_broadcast(env));
5068 }
5069 
5070 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5071                                        const ARMCPRegInfo *ri,
5072                                        uint64_t value)
5073 {
5074     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5075 }
5076 #endif
5077 
5078 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5079                                       bool isread)
5080 {
5081     int cur_el = arm_current_el(env);
5082 
5083     if (cur_el < 2) {
5084         uint64_t hcr = arm_hcr_el2_eff(env);
5085 
5086         if (cur_el == 0) {
5087             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5088                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5089                     return CP_ACCESS_TRAP_EL2;
5090                 }
5091             } else {
5092                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5093                     return CP_ACCESS_TRAP;
5094                 }
5095                 if (hcr & HCR_TDZ) {
5096                     return CP_ACCESS_TRAP_EL2;
5097                 }
5098             }
5099         } else if (hcr & HCR_TDZ) {
5100             return CP_ACCESS_TRAP_EL2;
5101         }
5102     }
5103     return CP_ACCESS_OK;
5104 }
5105 
5106 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5107 {
5108     ARMCPU *cpu = env_archcpu(env);
5109     int dzp_bit = 1 << 4;
5110 
5111     /* DZP indicates whether DC ZVA access is allowed */
5112     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5113         dzp_bit = 0;
5114     }
5115     return cpu->dcz_blocksize | dzp_bit;
5116 }
5117 
5118 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5119                                     bool isread)
5120 {
5121     if (!(env->pstate & PSTATE_SP)) {
5122         /*
5123          * Access to SP_EL0 is undefined if it's being used as
5124          * the stack pointer.
5125          */
5126         return CP_ACCESS_TRAP_UNCATEGORIZED;
5127     }
5128     return CP_ACCESS_OK;
5129 }
5130 
5131 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5132 {
5133     return env->pstate & PSTATE_SP;
5134 }
5135 
5136 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5137 {
5138     update_spsel(env, val);
5139 }
5140 
5141 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5142                         uint64_t value)
5143 {
5144     ARMCPU *cpu = env_archcpu(env);
5145 
5146     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5147         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5148         value &= ~SCTLR_M;
5149     }
5150 
5151     /* ??? Lots of these bits are not implemented.  */
5152 
5153     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5154         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5155             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5156         } else {
5157             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5158                        SCTLR_ATA0 | SCTLR_ATA);
5159         }
5160     }
5161 
5162     if (raw_read(env, ri) == value) {
5163         /*
5164          * Skip the TLB flush if nothing actually changed; Linux likes
5165          * to do a lot of pointless SCTLR writes.
5166          */
5167         return;
5168     }
5169 
5170     raw_write(env, ri, value);
5171 
5172     /* This may enable/disable the MMU, so do a TLB flush.  */
5173     tlb_flush(CPU(cpu));
5174 
5175     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5176         /*
5177          * Normally we would always end the TB on an SCTLR write; see the
5178          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5179          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5180          * of hflags from the translator, so do it here.
5181          */
5182         arm_rebuild_hflags(env);
5183     }
5184 }
5185 
5186 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5187                            uint64_t value)
5188 {
5189     /*
5190      * Some MDCR_EL3 bits affect whether PMU counters are running:
5191      * if we are trying to change any of those then we must
5192      * bracket this update with PMU start/finish calls.
5193      */
5194     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5195 
5196     if (pmu_op) {
5197         pmu_op_start(env);
5198     }
5199     env->cp15.mdcr_el3 = value;
5200     if (pmu_op) {
5201         pmu_op_finish(env);
5202     }
5203 }
5204 
5205 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5206                        uint64_t value)
5207 {
5208     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5209     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5210 }
5211 
5212 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5213                            uint64_t value)
5214 {
5215     /*
5216      * Some MDCR_EL2 bits affect whether PMU counters are running:
5217      * if we are trying to change any of those then we must
5218      * bracket this update with PMU start/finish calls.
5219      */
5220     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5221 
5222     if (pmu_op) {
5223         pmu_op_start(env);
5224     }
5225     env->cp15.mdcr_el2 = value;
5226     if (pmu_op) {
5227         pmu_op_finish(env);
5228     }
5229 }
5230 
5231 static const ARMCPRegInfo v8_cp_reginfo[] = {
5232     /*
5233      * Minimal set of EL0-visible registers. This will need to be expanded
5234      * significantly for system emulation of AArch64 CPUs.
5235      */
5236     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5237       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5238       .access = PL0_RW, .type = ARM_CP_NZCV },
5239     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5240       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5241       .type = ARM_CP_NO_RAW,
5242       .access = PL0_RW, .accessfn = aa64_daif_access,
5243       .fieldoffset = offsetof(CPUARMState, daif),
5244       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5245     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5247       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5248       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5249     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5250       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5251       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5252       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5253     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5254       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5255       .access = PL0_R, .type = ARM_CP_NO_RAW,
5256       .fgt = FGT_DCZID_EL0,
5257       .readfn = aa64_dczid_read },
5258     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5259       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5260       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5261 #ifndef CONFIG_USER_ONLY
5262       /* Avoid overhead of an access check that always passes in user-mode */
5263       .accessfn = aa64_zva_access,
5264       .fgt = FGT_DCZVA,
5265 #endif
5266     },
5267     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5268       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5269       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5270     /* Cache ops: all NOPs since we don't emulate caches */
5271     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5272       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5273       .access = PL1_W, .type = ARM_CP_NOP,
5274       .fgt = FGT_ICIALLUIS,
5275       .accessfn = access_ticab },
5276     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5277       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5278       .access = PL1_W, .type = ARM_CP_NOP,
5279       .fgt = FGT_ICIALLU,
5280       .accessfn = access_tocu },
5281     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5282       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5283       .access = PL0_W, .type = ARM_CP_NOP,
5284       .fgt = FGT_ICIVAU,
5285       .accessfn = access_tocu },
5286     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5287       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5288       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5289       .fgt = FGT_DCIVAC,
5290       .type = ARM_CP_NOP },
5291     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5292       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5293       .fgt = FGT_DCISW,
5294       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5295     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5296       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5297       .access = PL0_W, .type = ARM_CP_NOP,
5298       .fgt = FGT_DCCVAC,
5299       .accessfn = aa64_cacheop_poc_access },
5300     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5301       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5302       .fgt = FGT_DCCSW,
5303       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5304     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5305       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5306       .access = PL0_W, .type = ARM_CP_NOP,
5307       .fgt = FGT_DCCVAU,
5308       .accessfn = access_tocu },
5309     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5311       .access = PL0_W, .type = ARM_CP_NOP,
5312       .fgt = FGT_DCCIVAC,
5313       .accessfn = aa64_cacheop_poc_access },
5314     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5315       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5316       .fgt = FGT_DCCISW,
5317       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5318     /* TLBI operations */
5319     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5320       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5321       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5322       .fgt = FGT_TLBIVMALLE1IS,
5323       .writefn = tlbi_aa64_vmalle1is_write },
5324     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5325       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5326       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5327       .fgt = FGT_TLBIVAE1IS,
5328       .writefn = tlbi_aa64_vae1is_write },
5329     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5330       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5331       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5332       .fgt = FGT_TLBIASIDE1IS,
5333       .writefn = tlbi_aa64_vmalle1is_write },
5334     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5335       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5336       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5337       .fgt = FGT_TLBIVAAE1IS,
5338       .writefn = tlbi_aa64_vae1is_write },
5339     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5340       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5341       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5342       .fgt = FGT_TLBIVALE1IS,
5343       .writefn = tlbi_aa64_vae1is_write },
5344     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5345       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5346       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5347       .fgt = FGT_TLBIVAALE1IS,
5348       .writefn = tlbi_aa64_vae1is_write },
5349     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5350       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5351       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5352       .fgt = FGT_TLBIVMALLE1,
5353       .writefn = tlbi_aa64_vmalle1_write },
5354     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5355       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5356       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5357       .fgt = FGT_TLBIVAE1,
5358       .writefn = tlbi_aa64_vae1_write },
5359     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5360       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5361       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5362       .fgt = FGT_TLBIASIDE1,
5363       .writefn = tlbi_aa64_vmalle1_write },
5364     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5366       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5367       .fgt = FGT_TLBIVAAE1,
5368       .writefn = tlbi_aa64_vae1_write },
5369     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5370       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5371       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5372       .fgt = FGT_TLBIVALE1,
5373       .writefn = tlbi_aa64_vae1_write },
5374     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5375       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5376       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5377       .fgt = FGT_TLBIVAALE1,
5378       .writefn = tlbi_aa64_vae1_write },
5379     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5380       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5381       .access = PL2_W, .type = ARM_CP_NO_RAW,
5382       .writefn = tlbi_aa64_ipas2e1is_write },
5383     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5384       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5385       .access = PL2_W, .type = ARM_CP_NO_RAW,
5386       .writefn = tlbi_aa64_ipas2e1is_write },
5387     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5388       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5389       .access = PL2_W, .type = ARM_CP_NO_RAW,
5390       .writefn = tlbi_aa64_alle1is_write },
5391     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5392       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5393       .access = PL2_W, .type = ARM_CP_NO_RAW,
5394       .writefn = tlbi_aa64_alle1is_write },
5395     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5396       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5397       .access = PL2_W, .type = ARM_CP_NO_RAW,
5398       .writefn = tlbi_aa64_ipas2e1_write },
5399     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5400       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5401       .access = PL2_W, .type = ARM_CP_NO_RAW,
5402       .writefn = tlbi_aa64_ipas2e1_write },
5403     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5404       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5405       .access = PL2_W, .type = ARM_CP_NO_RAW,
5406       .writefn = tlbi_aa64_alle1_write },
5407     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5408       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5409       .access = PL2_W, .type = ARM_CP_NO_RAW,
5410       .writefn = tlbi_aa64_alle1is_write },
5411 #ifndef CONFIG_USER_ONLY
5412     /* 64 bit address translation operations */
5413     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5414       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5415       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5416       .fgt = FGT_ATS1E1R,
5417       .writefn = ats_write64 },
5418     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5419       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5420       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5421       .fgt = FGT_ATS1E1W,
5422       .writefn = ats_write64 },
5423     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5424       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5425       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5426       .fgt = FGT_ATS1E0R,
5427       .writefn = ats_write64 },
5428     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5429       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5430       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5431       .fgt = FGT_ATS1E0W,
5432       .writefn = ats_write64 },
5433     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5434       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5435       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5436       .writefn = ats_write64 },
5437     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5438       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5439       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5440       .writefn = ats_write64 },
5441     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5442       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5443       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5444       .writefn = ats_write64 },
5445     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5446       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5447       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5448       .writefn = ats_write64 },
5449     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5450     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5452       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5453       .writefn = ats_write64 },
5454     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5455       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5456       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5457       .writefn = ats_write64 },
5458     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5459       .type = ARM_CP_ALIAS,
5460       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5461       .access = PL1_RW, .resetvalue = 0,
5462       .fgt = FGT_PAR_EL1,
5463       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5464       .writefn = par_write },
5465 #endif
5466     /* TLB invalidate last level of translation table walk */
5467     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5468       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5469       .writefn = tlbimva_is_write },
5470     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5471       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5472       .writefn = tlbimvaa_is_write },
5473     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5474       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5475       .writefn = tlbimva_write },
5476     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5477       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5478       .writefn = tlbimvaa_write },
5479     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5480       .type = ARM_CP_NO_RAW, .access = PL2_W,
5481       .writefn = tlbimva_hyp_write },
5482     { .name = "TLBIMVALHIS",
5483       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5484       .type = ARM_CP_NO_RAW, .access = PL2_W,
5485       .writefn = tlbimva_hyp_is_write },
5486     { .name = "TLBIIPAS2",
5487       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5488       .type = ARM_CP_NO_RAW, .access = PL2_W,
5489       .writefn = tlbiipas2_hyp_write },
5490     { .name = "TLBIIPAS2IS",
5491       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5492       .type = ARM_CP_NO_RAW, .access = PL2_W,
5493       .writefn = tlbiipas2is_hyp_write },
5494     { .name = "TLBIIPAS2L",
5495       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5496       .type = ARM_CP_NO_RAW, .access = PL2_W,
5497       .writefn = tlbiipas2_hyp_write },
5498     { .name = "TLBIIPAS2LIS",
5499       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5500       .type = ARM_CP_NO_RAW, .access = PL2_W,
5501       .writefn = tlbiipas2is_hyp_write },
5502     /* 32 bit cache operations */
5503     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5504       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5505     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5506       .type = ARM_CP_NOP, .access = PL1_W },
5507     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5508       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5509     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5510       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5511     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5512       .type = ARM_CP_NOP, .access = PL1_W },
5513     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5514       .type = ARM_CP_NOP, .access = PL1_W },
5515     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5516       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5517     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5518       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5519     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5520       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5521     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5522       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5523     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5524       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5525     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5526       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5528       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529     /* MMU Domain access control / MPU write buffer control */
5530     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5531       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5532       .writefn = dacr_write, .raw_writefn = raw_write,
5533       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5534                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5535     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5536       .type = ARM_CP_ALIAS,
5537       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5538       .access = PL1_RW,
5539       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5540     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5541       .type = ARM_CP_ALIAS,
5542       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5543       .access = PL1_RW,
5544       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5545     /*
5546      * We rely on the access checks not allowing the guest to write to the
5547      * state field when SPSel indicates that it's being used as the stack
5548      * pointer.
5549      */
5550     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5552       .access = PL1_RW, .accessfn = sp_el0_access,
5553       .type = ARM_CP_ALIAS,
5554       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5555     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5556       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5557       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5558       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5559     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5560       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5561       .type = ARM_CP_NO_RAW,
5562       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5563     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5564       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5565       .access = PL2_RW,
5566       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5567       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5568     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5569       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5570       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5571       .writefn = dacr_write, .raw_writefn = raw_write,
5572       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5573     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5574       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5575       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5576       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5577     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5578       .type = ARM_CP_ALIAS,
5579       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5580       .access = PL2_RW,
5581       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5582     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5583       .type = ARM_CP_ALIAS,
5584       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5585       .access = PL2_RW,
5586       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5587     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5588       .type = ARM_CP_ALIAS,
5589       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5590       .access = PL2_RW,
5591       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5592     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5593       .type = ARM_CP_ALIAS,
5594       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5595       .access = PL2_RW,
5596       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5597     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5598       .type = ARM_CP_IO,
5599       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5600       .resetvalue = 0,
5601       .access = PL3_RW,
5602       .writefn = mdcr_el3_write,
5603       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5604     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5605       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5606       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5607       .writefn = sdcr_write,
5608       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5609 };
5610 
5611 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5612 {
5613     ARMCPU *cpu = env_archcpu(env);
5614 
5615     if (arm_feature(env, ARM_FEATURE_V8)) {
5616         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5617     } else {
5618         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5619     }
5620 
5621     if (arm_feature(env, ARM_FEATURE_EL3)) {
5622         valid_mask &= ~HCR_HCD;
5623     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5624         /*
5625          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5626          * However, if we're using the SMC PSCI conduit then QEMU is
5627          * effectively acting like EL3 firmware and so the guest at
5628          * EL2 should retain the ability to prevent EL1 from being
5629          * able to make SMC calls into the ersatz firmware, so in
5630          * that case HCR.TSC should be read/write.
5631          */
5632         valid_mask &= ~HCR_TSC;
5633     }
5634 
5635     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5636         if (cpu_isar_feature(aa64_vh, cpu)) {
5637             valid_mask |= HCR_E2H;
5638         }
5639         if (cpu_isar_feature(aa64_ras, cpu)) {
5640             valid_mask |= HCR_TERR | HCR_TEA;
5641         }
5642         if (cpu_isar_feature(aa64_lor, cpu)) {
5643             valid_mask |= HCR_TLOR;
5644         }
5645         if (cpu_isar_feature(aa64_pauth, cpu)) {
5646             valid_mask |= HCR_API | HCR_APK;
5647         }
5648         if (cpu_isar_feature(aa64_mte, cpu)) {
5649             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5650         }
5651         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5652             valid_mask |= HCR_ENSCXT;
5653         }
5654         if (cpu_isar_feature(aa64_fwb, cpu)) {
5655             valid_mask |= HCR_FWB;
5656         }
5657     }
5658 
5659     if (cpu_isar_feature(any_evt, cpu)) {
5660         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5661     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5662         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5663     }
5664 
5665     /* Clear RES0 bits.  */
5666     value &= valid_mask;
5667 
5668     /*
5669      * These bits change the MMU setup:
5670      * HCR_VM enables stage 2 translation
5671      * HCR_PTW forbids certain page-table setups
5672      * HCR_DC disables stage1 and enables stage2 translation
5673      * HCR_DCT enables tagging on (disabled) stage1 translation
5674      * HCR_FWB changes the interpretation of stage2 descriptor bits
5675      */
5676     if ((env->cp15.hcr_el2 ^ value) &
5677         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5678         tlb_flush(CPU(cpu));
5679     }
5680     env->cp15.hcr_el2 = value;
5681 
5682     /*
5683      * Updates to VI and VF require us to update the status of
5684      * virtual interrupts, which are the logical OR of these bits
5685      * and the state of the input lines from the GIC. (This requires
5686      * that we have the iothread lock, which is done by marking the
5687      * reginfo structs as ARM_CP_IO.)
5688      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5689      * possible for it to be taken immediately, because VIRQ and
5690      * VFIQ are masked unless running at EL0 or EL1, and HCR
5691      * can only be written at EL2.
5692      */
5693     g_assert(qemu_mutex_iothread_locked());
5694     arm_cpu_update_virq(cpu);
5695     arm_cpu_update_vfiq(cpu);
5696     arm_cpu_update_vserr(cpu);
5697 }
5698 
5699 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5700 {
5701     do_hcr_write(env, value, 0);
5702 }
5703 
5704 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5705                           uint64_t value)
5706 {
5707     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5708     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5709     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5710 }
5711 
5712 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5713                          uint64_t value)
5714 {
5715     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5716     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5717     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5718 }
5719 
5720 /*
5721  * Return the effective value of HCR_EL2, at the given security state.
5722  * Bits that are not included here:
5723  * RW       (read from SCR_EL3.RW as needed)
5724  */
5725 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5726 {
5727     uint64_t ret = env->cp15.hcr_el2;
5728 
5729     if (!arm_is_el2_enabled_secstate(env, secure)) {
5730         /*
5731          * "This register has no effect if EL2 is not enabled in the
5732          * current Security state".  This is ARMv8.4-SecEL2 speak for
5733          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5734          *
5735          * Prior to that, the language was "In an implementation that
5736          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5737          * as if this field is 0 for all purposes other than a direct
5738          * read or write access of HCR_EL2".  With lots of enumeration
5739          * on a per-field basis.  In current QEMU, this is condition
5740          * is arm_is_secure_below_el3.
5741          *
5742          * Since the v8.4 language applies to the entire register, and
5743          * appears to be backward compatible, use that.
5744          */
5745         return 0;
5746     }
5747 
5748     /*
5749      * For a cpu that supports both aarch64 and aarch32, we can set bits
5750      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5751      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5752      */
5753     if (!arm_el_is_aa64(env, 2)) {
5754         uint64_t aa32_valid;
5755 
5756         /*
5757          * These bits are up-to-date as of ARMv8.6.
5758          * For HCR, it's easiest to list just the 2 bits that are invalid.
5759          * For HCR2, list those that are valid.
5760          */
5761         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5762         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5763                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5764         ret &= aa32_valid;
5765     }
5766 
5767     if (ret & HCR_TGE) {
5768         /* These bits are up-to-date as of ARMv8.6.  */
5769         if (ret & HCR_E2H) {
5770             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5771                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5772                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5773                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5774                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5775                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5776         } else {
5777             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5778         }
5779         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5780                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5781                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5782                  HCR_TLOR);
5783     }
5784 
5785     return ret;
5786 }
5787 
5788 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5789 {
5790     if (arm_feature(env, ARM_FEATURE_M)) {
5791         return 0;
5792     }
5793     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5794 }
5795 
5796 /*
5797  * Corresponds to ARM pseudocode function ELIsInHost().
5798  */
5799 bool el_is_in_host(CPUARMState *env, int el)
5800 {
5801     uint64_t mask;
5802 
5803     /*
5804      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5805      * Perform the simplest bit tests first, and validate EL2 afterward.
5806      */
5807     if (el & 1) {
5808         return false; /* EL1 or EL3 */
5809     }
5810 
5811     /*
5812      * Note that hcr_write() checks isar_feature_aa64_vh(),
5813      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5814      */
5815     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5816     if ((env->cp15.hcr_el2 & mask) != mask) {
5817         return false;
5818     }
5819 
5820     /* TGE and/or E2H set: double check those bits are currently legal. */
5821     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5822 }
5823 
5824 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5825                        uint64_t value)
5826 {
5827     uint64_t valid_mask = 0;
5828 
5829     /* No features adding bits to HCRX are implemented. */
5830 
5831     /* Clear RES0 bits.  */
5832     env->cp15.hcrx_el2 = value & valid_mask;
5833 }
5834 
5835 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5836                                   bool isread)
5837 {
5838     if (arm_current_el(env) < 3
5839         && arm_feature(env, ARM_FEATURE_EL3)
5840         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5841         return CP_ACCESS_TRAP_EL3;
5842     }
5843     return CP_ACCESS_OK;
5844 }
5845 
5846 static const ARMCPRegInfo hcrx_el2_reginfo = {
5847     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5848     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5849     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5850     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5851 };
5852 
5853 /* Return the effective value of HCRX_EL2.  */
5854 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5855 {
5856     /*
5857      * The bits in this register behave as 0 for all purposes other than
5858      * direct reads of the register if:
5859      *   - EL2 is not enabled in the current security state,
5860      *   - SCR_EL3.HXEn is 0.
5861      */
5862     if (!arm_is_el2_enabled(env)
5863         || (arm_feature(env, ARM_FEATURE_EL3)
5864             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5865         return 0;
5866     }
5867     return env->cp15.hcrx_el2;
5868 }
5869 
5870 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5871                            uint64_t value)
5872 {
5873     /*
5874      * For A-profile AArch32 EL3, if NSACR.CP10
5875      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5876      */
5877     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5878         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5879         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5880         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5881     }
5882     env->cp15.cptr_el[2] = value;
5883 }
5884 
5885 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5886 {
5887     /*
5888      * For A-profile AArch32 EL3, if NSACR.CP10
5889      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5890      */
5891     uint64_t value = env->cp15.cptr_el[2];
5892 
5893     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5894         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5895         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5896     }
5897     return value;
5898 }
5899 
5900 static const ARMCPRegInfo el2_cp_reginfo[] = {
5901     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5902       .type = ARM_CP_IO,
5903       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5904       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5905       .writefn = hcr_write },
5906     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5907       .type = ARM_CP_ALIAS | ARM_CP_IO,
5908       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5909       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5910       .writefn = hcr_writelow },
5911     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5912       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5913       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5914     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5915       .type = ARM_CP_ALIAS,
5916       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5917       .access = PL2_RW,
5918       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5919     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5920       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5921       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5922     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5923       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5924       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5925     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5926       .type = ARM_CP_ALIAS,
5927       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5928       .access = PL2_RW,
5929       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5930     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5931       .type = ARM_CP_ALIAS,
5932       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5933       .access = PL2_RW,
5934       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5935     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5936       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5937       .access = PL2_RW, .writefn = vbar_write,
5938       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5939       .resetvalue = 0 },
5940     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5941       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5942       .access = PL3_RW, .type = ARM_CP_ALIAS,
5943       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5944     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5945       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5946       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5947       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5948       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5949     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5950       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5951       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5952       .resetvalue = 0 },
5953     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5954       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5955       .access = PL2_RW, .type = ARM_CP_ALIAS,
5956       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5957     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5958       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5959       .access = PL2_RW, .type = ARM_CP_CONST,
5960       .resetvalue = 0 },
5961     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5962     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5963       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5964       .access = PL2_RW, .type = ARM_CP_CONST,
5965       .resetvalue = 0 },
5966     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5967       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5968       .access = PL2_RW, .type = ARM_CP_CONST,
5969       .resetvalue = 0 },
5970     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5971       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5972       .access = PL2_RW, .type = ARM_CP_CONST,
5973       .resetvalue = 0 },
5974     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5975       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5976       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5977       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5978     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5979       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5980       .type = ARM_CP_ALIAS,
5981       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5982       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5983     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5984       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5985       .access = PL2_RW,
5986       /* no .writefn needed as this can't cause an ASID change */
5987       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5988     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5989       .cp = 15, .opc1 = 6, .crm = 2,
5990       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5991       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5992       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5993       .writefn = vttbr_write },
5994     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5995       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5996       .access = PL2_RW, .writefn = vttbr_write,
5997       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5998     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5999       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6000       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6001       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6002     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6003       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6004       .access = PL2_RW, .resetvalue = 0,
6005       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6006     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6007       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6008       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6009       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6010     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6011       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6012       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6013     { .name = "TLBIALLNSNH",
6014       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6015       .type = ARM_CP_NO_RAW, .access = PL2_W,
6016       .writefn = tlbiall_nsnh_write },
6017     { .name = "TLBIALLNSNHIS",
6018       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6019       .type = ARM_CP_NO_RAW, .access = PL2_W,
6020       .writefn = tlbiall_nsnh_is_write },
6021     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6022       .type = ARM_CP_NO_RAW, .access = PL2_W,
6023       .writefn = tlbiall_hyp_write },
6024     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6025       .type = ARM_CP_NO_RAW, .access = PL2_W,
6026       .writefn = tlbiall_hyp_is_write },
6027     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6028       .type = ARM_CP_NO_RAW, .access = PL2_W,
6029       .writefn = tlbimva_hyp_write },
6030     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6031       .type = ARM_CP_NO_RAW, .access = PL2_W,
6032       .writefn = tlbimva_hyp_is_write },
6033     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6034       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6035       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6036       .writefn = tlbi_aa64_alle2_write },
6037     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6038       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6039       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6040       .writefn = tlbi_aa64_vae2_write },
6041     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6042       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6043       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6044       .writefn = tlbi_aa64_vae2_write },
6045     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6046       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6047       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6048       .writefn = tlbi_aa64_alle2is_write },
6049     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6050       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6051       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6052       .writefn = tlbi_aa64_vae2is_write },
6053     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6054       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6055       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6056       .writefn = tlbi_aa64_vae2is_write },
6057 #ifndef CONFIG_USER_ONLY
6058     /*
6059      * Unlike the other EL2-related AT operations, these must
6060      * UNDEF from EL3 if EL2 is not implemented, which is why we
6061      * define them here rather than with the rest of the AT ops.
6062      */
6063     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6064       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6065       .access = PL2_W, .accessfn = at_s1e2_access,
6066       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6067       .writefn = ats_write64 },
6068     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6069       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6070       .access = PL2_W, .accessfn = at_s1e2_access,
6071       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6072       .writefn = ats_write64 },
6073     /*
6074      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6075      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6076      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6077      * to behave as if SCR.NS was 1.
6078      */
6079     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6080       .access = PL2_W,
6081       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6082     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6083       .access = PL2_W,
6084       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6085     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6086       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6087       /*
6088        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6089        * reset values as IMPDEF. We choose to reset to 3 to comply with
6090        * both ARMv7 and ARMv8.
6091        */
6092       .access = PL2_RW, .resetvalue = 3,
6093       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6094     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6095       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6096       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6097       .writefn = gt_cntvoff_write,
6098       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6099     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6100       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6101       .writefn = gt_cntvoff_write,
6102       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6103     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6104       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6105       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6106       .type = ARM_CP_IO, .access = PL2_RW,
6107       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6108     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6109       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6110       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6111       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6112     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6113       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6114       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6115       .resetfn = gt_hyp_timer_reset,
6116       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6117     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6118       .type = ARM_CP_IO,
6119       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6120       .access = PL2_RW,
6121       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6122       .resetvalue = 0,
6123       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6124 #endif
6125     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6126       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6127       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6128       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6129     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6130       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6131       .access = PL2_RW,
6132       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6133     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6134       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6135       .access = PL2_RW,
6136       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6137 };
6138 
6139 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6140     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6141       .type = ARM_CP_ALIAS | ARM_CP_IO,
6142       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6143       .access = PL2_RW,
6144       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6145       .writefn = hcr_writehigh },
6146 };
6147 
6148 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6149                                   bool isread)
6150 {
6151     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6152         return CP_ACCESS_OK;
6153     }
6154     return CP_ACCESS_TRAP_UNCATEGORIZED;
6155 }
6156 
6157 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6158     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6159       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6160       .access = PL2_RW, .accessfn = sel2_access,
6161       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6162     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6163       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6164       .access = PL2_RW, .accessfn = sel2_access,
6165       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6166 };
6167 
6168 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6169                                    bool isread)
6170 {
6171     /*
6172      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6173      * At Secure EL1 it traps to EL3 or EL2.
6174      */
6175     if (arm_current_el(env) == 3) {
6176         return CP_ACCESS_OK;
6177     }
6178     if (arm_is_secure_below_el3(env)) {
6179         if (env->cp15.scr_el3 & SCR_EEL2) {
6180             return CP_ACCESS_TRAP_EL2;
6181         }
6182         return CP_ACCESS_TRAP_EL3;
6183     }
6184     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6185     if (isread) {
6186         return CP_ACCESS_OK;
6187     }
6188     return CP_ACCESS_TRAP_UNCATEGORIZED;
6189 }
6190 
6191 static const ARMCPRegInfo el3_cp_reginfo[] = {
6192     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6193       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6194       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6195       .resetfn = scr_reset, .writefn = scr_write },
6196     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6197       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6198       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6199       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6200       .writefn = scr_write },
6201     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6202       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6203       .access = PL3_RW, .resetvalue = 0,
6204       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6205     { .name = "SDER",
6206       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6207       .access = PL3_RW, .resetvalue = 0,
6208       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6209     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6210       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6211       .writefn = vbar_write, .resetvalue = 0,
6212       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6213     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6214       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6215       .access = PL3_RW, .resetvalue = 0,
6216       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6217     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6218       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6219       .access = PL3_RW,
6220       /* no .writefn needed as this can't cause an ASID change */
6221       .resetvalue = 0,
6222       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6223     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6224       .type = ARM_CP_ALIAS,
6225       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6226       .access = PL3_RW,
6227       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6228     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6229       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6230       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6231     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6232       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6233       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6234     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6235       .type = ARM_CP_ALIAS,
6236       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6237       .access = PL3_RW,
6238       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6239     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6240       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6241       .access = PL3_RW, .writefn = vbar_write,
6242       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6243       .resetvalue = 0 },
6244     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6245       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6246       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6247       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6248     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6249       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6250       .access = PL3_RW, .resetvalue = 0,
6251       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6252     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6253       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6254       .access = PL3_RW, .type = ARM_CP_CONST,
6255       .resetvalue = 0 },
6256     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6257       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6258       .access = PL3_RW, .type = ARM_CP_CONST,
6259       .resetvalue = 0 },
6260     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6261       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6262       .access = PL3_RW, .type = ARM_CP_CONST,
6263       .resetvalue = 0 },
6264     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6265       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6266       .access = PL3_W, .type = ARM_CP_NO_RAW,
6267       .writefn = tlbi_aa64_alle3is_write },
6268     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6269       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6270       .access = PL3_W, .type = ARM_CP_NO_RAW,
6271       .writefn = tlbi_aa64_vae3is_write },
6272     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6273       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6274       .access = PL3_W, .type = ARM_CP_NO_RAW,
6275       .writefn = tlbi_aa64_vae3is_write },
6276     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6277       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6278       .access = PL3_W, .type = ARM_CP_NO_RAW,
6279       .writefn = tlbi_aa64_alle3_write },
6280     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6281       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6282       .access = PL3_W, .type = ARM_CP_NO_RAW,
6283       .writefn = tlbi_aa64_vae3_write },
6284     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6285       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6286       .access = PL3_W, .type = ARM_CP_NO_RAW,
6287       .writefn = tlbi_aa64_vae3_write },
6288 };
6289 
6290 #ifndef CONFIG_USER_ONLY
6291 /* Test if system register redirection is to occur in the current state.  */
6292 static bool redirect_for_e2h(CPUARMState *env)
6293 {
6294     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6295 }
6296 
6297 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6298 {
6299     CPReadFn *readfn;
6300 
6301     if (redirect_for_e2h(env)) {
6302         /* Switch to the saved EL2 version of the register.  */
6303         ri = ri->opaque;
6304         readfn = ri->readfn;
6305     } else {
6306         readfn = ri->orig_readfn;
6307     }
6308     if (readfn == NULL) {
6309         readfn = raw_read;
6310     }
6311     return readfn(env, ri);
6312 }
6313 
6314 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6315                           uint64_t value)
6316 {
6317     CPWriteFn *writefn;
6318 
6319     if (redirect_for_e2h(env)) {
6320         /* Switch to the saved EL2 version of the register.  */
6321         ri = ri->opaque;
6322         writefn = ri->writefn;
6323     } else {
6324         writefn = ri->orig_writefn;
6325     }
6326     if (writefn == NULL) {
6327         writefn = raw_write;
6328     }
6329     writefn(env, ri, value);
6330 }
6331 
6332 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6333 {
6334     struct E2HAlias {
6335         uint32_t src_key, dst_key, new_key;
6336         const char *src_name, *dst_name, *new_name;
6337         bool (*feature)(const ARMISARegisters *id);
6338     };
6339 
6340 #define K(op0, op1, crn, crm, op2) \
6341     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6342 
6343     static const struct E2HAlias aliases[] = {
6344         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6345           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6346         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6347           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6348         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6349           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6350         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6351           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6352         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6353           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6354         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6355           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6356         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6357           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6358         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6359           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6360         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6361           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6362         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6363           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6364         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6365           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6366         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6367           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6368         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6369           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6370         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6371           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6372         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6373           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6374         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6375           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6376 
6377         /*
6378          * Note that redirection of ZCR is mentioned in the description
6379          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6380          * not in the summary table.
6381          */
6382         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6383           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6384         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6385           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6386 
6387         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6388           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6389 
6390         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6391           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6392           isar_feature_aa64_scxtnum },
6393 
6394         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6395         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6396     };
6397 #undef K
6398 
6399     size_t i;
6400 
6401     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6402         const struct E2HAlias *a = &aliases[i];
6403         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6404         bool ok;
6405 
6406         if (a->feature && !a->feature(&cpu->isar)) {
6407             continue;
6408         }
6409 
6410         src_reg = g_hash_table_lookup(cpu->cp_regs,
6411                                       (gpointer)(uintptr_t)a->src_key);
6412         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6413                                       (gpointer)(uintptr_t)a->dst_key);
6414         g_assert(src_reg != NULL);
6415         g_assert(dst_reg != NULL);
6416 
6417         /* Cross-compare names to detect typos in the keys.  */
6418         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6419         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6420 
6421         /* None of the core system registers use opaque; we will.  */
6422         g_assert(src_reg->opaque == NULL);
6423 
6424         /* Create alias before redirection so we dup the right data. */
6425         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6426 
6427         new_reg->name = a->new_name;
6428         new_reg->type |= ARM_CP_ALIAS;
6429         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6430         new_reg->access &= PL2_RW | PL3_RW;
6431 
6432         ok = g_hash_table_insert(cpu->cp_regs,
6433                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6434         g_assert(ok);
6435 
6436         src_reg->opaque = dst_reg;
6437         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6438         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6439         if (!src_reg->raw_readfn) {
6440             src_reg->raw_readfn = raw_read;
6441         }
6442         if (!src_reg->raw_writefn) {
6443             src_reg->raw_writefn = raw_write;
6444         }
6445         src_reg->readfn = el2_e2h_read;
6446         src_reg->writefn = el2_e2h_write;
6447     }
6448 }
6449 #endif
6450 
6451 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6452                                      bool isread)
6453 {
6454     int cur_el = arm_current_el(env);
6455 
6456     if (cur_el < 2) {
6457         uint64_t hcr = arm_hcr_el2_eff(env);
6458 
6459         if (cur_el == 0) {
6460             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6461                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6462                     return CP_ACCESS_TRAP_EL2;
6463                 }
6464             } else {
6465                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6466                     return CP_ACCESS_TRAP;
6467                 }
6468                 if (hcr & HCR_TID2) {
6469                     return CP_ACCESS_TRAP_EL2;
6470                 }
6471             }
6472         } else if (hcr & HCR_TID2) {
6473             return CP_ACCESS_TRAP_EL2;
6474         }
6475     }
6476 
6477     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6478         return CP_ACCESS_TRAP_EL2;
6479     }
6480 
6481     return CP_ACCESS_OK;
6482 }
6483 
6484 /*
6485  * Check for traps to RAS registers, which are controlled
6486  * by HCR_EL2.TERR and SCR_EL3.TERR.
6487  */
6488 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6489                                   bool isread)
6490 {
6491     int el = arm_current_el(env);
6492 
6493     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6494         return CP_ACCESS_TRAP_EL2;
6495     }
6496     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6497         return CP_ACCESS_TRAP_EL3;
6498     }
6499     return CP_ACCESS_OK;
6500 }
6501 
6502 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6503 {
6504     int el = arm_current_el(env);
6505 
6506     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6507         return env->cp15.vdisr_el2;
6508     }
6509     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6510         return 0; /* RAZ/WI */
6511     }
6512     return env->cp15.disr_el1;
6513 }
6514 
6515 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6516 {
6517     int el = arm_current_el(env);
6518 
6519     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6520         env->cp15.vdisr_el2 = val;
6521         return;
6522     }
6523     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6524         return; /* RAZ/WI */
6525     }
6526     env->cp15.disr_el1 = val;
6527 }
6528 
6529 /*
6530  * Minimal RAS implementation with no Error Records.
6531  * Which means that all of the Error Record registers:
6532  *   ERXADDR_EL1
6533  *   ERXCTLR_EL1
6534  *   ERXFR_EL1
6535  *   ERXMISC0_EL1
6536  *   ERXMISC1_EL1
6537  *   ERXMISC2_EL1
6538  *   ERXMISC3_EL1
6539  *   ERXPFGCDN_EL1  (RASv1p1)
6540  *   ERXPFGCTL_EL1  (RASv1p1)
6541  *   ERXPFGF_EL1    (RASv1p1)
6542  *   ERXSTATUS_EL1
6543  * and
6544  *   ERRSELR_EL1
6545  * may generate UNDEFINED, which is the effect we get by not
6546  * listing them at all.
6547  *
6548  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6549  * is higher priority than FGT-to-EL2 so we do not need to list them
6550  * in order to check for an FGT.
6551  */
6552 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6553     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6554       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6555       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6556       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6557     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6558       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6559       .access = PL1_R, .accessfn = access_terr,
6560       .fgt = FGT_ERRIDR_EL1,
6561       .type = ARM_CP_CONST, .resetvalue = 0 },
6562     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6563       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6564       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6565     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6566       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6567       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6568 };
6569 
6570 /*
6571  * Return the exception level to which exceptions should be taken
6572  * via SVEAccessTrap.  This excludes the check for whether the exception
6573  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6574  * be found by testing 0 < fp_exception_el < sve_exception_el.
6575  *
6576  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6577  * pseudocode does *not* separate out the FP trap checks, but has them
6578  * all in one function.
6579  */
6580 int sve_exception_el(CPUARMState *env, int el)
6581 {
6582 #ifndef CONFIG_USER_ONLY
6583     if (el <= 1 && !el_is_in_host(env, el)) {
6584         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6585         case 1:
6586             if (el != 0) {
6587                 break;
6588             }
6589             /* fall through */
6590         case 0:
6591         case 2:
6592             return 1;
6593         }
6594     }
6595 
6596     if (el <= 2 && arm_is_el2_enabled(env)) {
6597         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6598         if (env->cp15.hcr_el2 & HCR_E2H) {
6599             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6600             case 1:
6601                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6602                     break;
6603                 }
6604                 /* fall through */
6605             case 0:
6606             case 2:
6607                 return 2;
6608             }
6609         } else {
6610             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6611                 return 2;
6612             }
6613         }
6614     }
6615 
6616     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6617     if (arm_feature(env, ARM_FEATURE_EL3)
6618         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6619         return 3;
6620     }
6621 #endif
6622     return 0;
6623 }
6624 
6625 /*
6626  * Return the exception level to which exceptions should be taken for SME.
6627  * C.f. the ARM pseudocode function CheckSMEAccess.
6628  */
6629 int sme_exception_el(CPUARMState *env, int el)
6630 {
6631 #ifndef CONFIG_USER_ONLY
6632     if (el <= 1 && !el_is_in_host(env, el)) {
6633         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6634         case 1:
6635             if (el != 0) {
6636                 break;
6637             }
6638             /* fall through */
6639         case 0:
6640         case 2:
6641             return 1;
6642         }
6643     }
6644 
6645     if (el <= 2 && arm_is_el2_enabled(env)) {
6646         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6647         if (env->cp15.hcr_el2 & HCR_E2H) {
6648             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6649             case 1:
6650                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6651                     break;
6652                 }
6653                 /* fall through */
6654             case 0:
6655             case 2:
6656                 return 2;
6657             }
6658         } else {
6659             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6660                 return 2;
6661             }
6662         }
6663     }
6664 
6665     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6666     if (arm_feature(env, ARM_FEATURE_EL3)
6667         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6668         return 3;
6669     }
6670 #endif
6671     return 0;
6672 }
6673 
6674 /*
6675  * Given that SVE is enabled, return the vector length for EL.
6676  */
6677 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6678 {
6679     ARMCPU *cpu = env_archcpu(env);
6680     uint64_t *cr = env->vfp.zcr_el;
6681     uint32_t map = cpu->sve_vq.map;
6682     uint32_t len = ARM_MAX_VQ - 1;
6683 
6684     if (sm) {
6685         cr = env->vfp.smcr_el;
6686         map = cpu->sme_vq.map;
6687     }
6688 
6689     if (el <= 1 && !el_is_in_host(env, el)) {
6690         len = MIN(len, 0xf & (uint32_t)cr[1]);
6691     }
6692     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6693         len = MIN(len, 0xf & (uint32_t)cr[2]);
6694     }
6695     if (arm_feature(env, ARM_FEATURE_EL3)) {
6696         len = MIN(len, 0xf & (uint32_t)cr[3]);
6697     }
6698 
6699     map &= MAKE_64BIT_MASK(0, len + 1);
6700     if (map != 0) {
6701         return 31 - clz32(map);
6702     }
6703 
6704     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6705     assert(sm);
6706     return ctz32(cpu->sme_vq.map);
6707 }
6708 
6709 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6710 {
6711     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6712 }
6713 
6714 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6715                       uint64_t value)
6716 {
6717     int cur_el = arm_current_el(env);
6718     int old_len = sve_vqm1_for_el(env, cur_el);
6719     int new_len;
6720 
6721     /* Bits other than [3:0] are RAZ/WI.  */
6722     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6723     raw_write(env, ri, value & 0xf);
6724 
6725     /*
6726      * Because we arrived here, we know both FP and SVE are enabled;
6727      * otherwise we would have trapped access to the ZCR_ELn register.
6728      */
6729     new_len = sve_vqm1_for_el(env, cur_el);
6730     if (new_len < old_len) {
6731         aarch64_sve_narrow_vq(env, new_len + 1);
6732     }
6733 }
6734 
6735 static const ARMCPRegInfo zcr_reginfo[] = {
6736     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6737       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6738       .access = PL1_RW, .type = ARM_CP_SVE,
6739       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6740       .writefn = zcr_write, .raw_writefn = raw_write },
6741     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6742       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6743       .access = PL2_RW, .type = ARM_CP_SVE,
6744       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6745       .writefn = zcr_write, .raw_writefn = raw_write },
6746     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6747       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6748       .access = PL3_RW, .type = ARM_CP_SVE,
6749       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6750       .writefn = zcr_write, .raw_writefn = raw_write },
6751 };
6752 
6753 #ifdef TARGET_AARCH64
6754 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6755                                     bool isread)
6756 {
6757     int el = arm_current_el(env);
6758 
6759     if (el == 0) {
6760         uint64_t sctlr = arm_sctlr(env, el);
6761         if (!(sctlr & SCTLR_EnTP2)) {
6762             return CP_ACCESS_TRAP;
6763         }
6764     }
6765     /* TODO: FEAT_FGT */
6766     if (el < 3
6767         && arm_feature(env, ARM_FEATURE_EL3)
6768         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6769         return CP_ACCESS_TRAP_EL3;
6770     }
6771     return CP_ACCESS_OK;
6772 }
6773 
6774 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6775                                  bool isread)
6776 {
6777     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6778     if (arm_current_el(env) < 3
6779         && arm_feature(env, ARM_FEATURE_EL3)
6780         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6781         return CP_ACCESS_TRAP_EL3;
6782     }
6783     return CP_ACCESS_OK;
6784 }
6785 
6786 /* ResetSVEState */
6787 static void arm_reset_sve_state(CPUARMState *env)
6788 {
6789     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6790     /* Recall that FFR is stored as pregs[16]. */
6791     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6792     vfp_set_fpcr(env, 0x0800009f);
6793 }
6794 
6795 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6796 {
6797     uint64_t change = (env->svcr ^ new) & mask;
6798 
6799     if (change == 0) {
6800         return;
6801     }
6802     env->svcr ^= change;
6803 
6804     if (change & R_SVCR_SM_MASK) {
6805         arm_reset_sve_state(env);
6806     }
6807 
6808     /*
6809      * ResetSMEState.
6810      *
6811      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6812      * on enable: while disabled, the storage is inaccessible and the
6813      * value does not matter.  We're not saving the storage in vmstate
6814      * when disabled either.
6815      */
6816     if (change & new & R_SVCR_ZA_MASK) {
6817         memset(env->zarray, 0, sizeof(env->zarray));
6818     }
6819 
6820     if (tcg_enabled()) {
6821         arm_rebuild_hflags(env);
6822     }
6823 }
6824 
6825 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6826                        uint64_t value)
6827 {
6828     aarch64_set_svcr(env, value, -1);
6829 }
6830 
6831 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6832                        uint64_t value)
6833 {
6834     int cur_el = arm_current_el(env);
6835     int old_len = sve_vqm1_for_el(env, cur_el);
6836     int new_len;
6837 
6838     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6839     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6840     raw_write(env, ri, value);
6841 
6842     /*
6843      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6844      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6845      * current values for simplicity.  But for QEMU internals, we must still
6846      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6847      * above aarch64_sve_narrow_vq.
6848      */
6849     new_len = sve_vqm1_for_el(env, cur_el);
6850     if (new_len < old_len) {
6851         aarch64_sve_narrow_vq(env, new_len + 1);
6852     }
6853 }
6854 
6855 static const ARMCPRegInfo sme_reginfo[] = {
6856     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6857       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6858       .access = PL0_RW, .accessfn = access_tpidr2,
6859       .fgt = FGT_NTPIDR2_EL0,
6860       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6861     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6862       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6863       .access = PL0_RW, .type = ARM_CP_SME,
6864       .fieldoffset = offsetof(CPUARMState, svcr),
6865       .writefn = svcr_write, .raw_writefn = raw_write },
6866     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6867       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6868       .access = PL1_RW, .type = ARM_CP_SME,
6869       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6870       .writefn = smcr_write, .raw_writefn = raw_write },
6871     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6872       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6873       .access = PL2_RW, .type = ARM_CP_SME,
6874       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6875       .writefn = smcr_write, .raw_writefn = raw_write },
6876     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6877       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6878       .access = PL3_RW, .type = ARM_CP_SME,
6879       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6880       .writefn = smcr_write, .raw_writefn = raw_write },
6881     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6882       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6883       .access = PL1_R, .accessfn = access_aa64_tid1,
6884       /*
6885        * IMPLEMENTOR = 0 (software)
6886        * REVISION    = 0 (implementation defined)
6887        * SMPS        = 0 (no streaming execution priority in QEMU)
6888        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6889        */
6890       .type = ARM_CP_CONST, .resetvalue = 0, },
6891     /*
6892      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6893      */
6894     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6895       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6896       .access = PL1_RW, .accessfn = access_esm,
6897       .fgt = FGT_NSMPRI_EL1,
6898       .type = ARM_CP_CONST, .resetvalue = 0 },
6899     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6900       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6901       .access = PL2_RW, .accessfn = access_esm,
6902       .type = ARM_CP_CONST, .resetvalue = 0 },
6903 };
6904 #endif /* TARGET_AARCH64 */
6905 
6906 static void define_pmu_regs(ARMCPU *cpu)
6907 {
6908     /*
6909      * v7 performance monitor control register: same implementor
6910      * field as main ID register, and we implement four counters in
6911      * addition to the cycle count register.
6912      */
6913     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6914     ARMCPRegInfo pmcr = {
6915         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6916         .access = PL0_RW,
6917         .fgt = FGT_PMCR_EL0,
6918         .type = ARM_CP_IO | ARM_CP_ALIAS,
6919         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6920         .accessfn = pmreg_access, .writefn = pmcr_write,
6921         .raw_writefn = raw_write,
6922     };
6923     ARMCPRegInfo pmcr64 = {
6924         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6925         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6926         .access = PL0_RW, .accessfn = pmreg_access,
6927         .fgt = FGT_PMCR_EL0,
6928         .type = ARM_CP_IO,
6929         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6930         .resetvalue = cpu->isar.reset_pmcr_el0,
6931         .writefn = pmcr_write, .raw_writefn = raw_write,
6932     };
6933 
6934     define_one_arm_cp_reg(cpu, &pmcr);
6935     define_one_arm_cp_reg(cpu, &pmcr64);
6936     for (i = 0; i < pmcrn; i++) {
6937         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6938         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6939         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6940         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6941         ARMCPRegInfo pmev_regs[] = {
6942             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6943               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6944               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6945               .fgt = FGT_PMEVCNTRN_EL0,
6946               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6947               .accessfn = pmreg_access_xevcntr },
6948             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6949               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6950               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6951               .type = ARM_CP_IO,
6952               .fgt = FGT_PMEVCNTRN_EL0,
6953               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6954               .raw_readfn = pmevcntr_rawread,
6955               .raw_writefn = pmevcntr_rawwrite },
6956             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6957               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6958               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6959               .fgt = FGT_PMEVTYPERN_EL0,
6960               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6961               .accessfn = pmreg_access },
6962             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6963               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6964               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6965               .fgt = FGT_PMEVTYPERN_EL0,
6966               .type = ARM_CP_IO,
6967               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6968               .raw_writefn = pmevtyper_rawwrite },
6969         };
6970         define_arm_cp_regs(cpu, pmev_regs);
6971         g_free(pmevcntr_name);
6972         g_free(pmevcntr_el0_name);
6973         g_free(pmevtyper_name);
6974         g_free(pmevtyper_el0_name);
6975     }
6976     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6977         ARMCPRegInfo v81_pmu_regs[] = {
6978             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6979               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6980               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6981               .fgt = FGT_PMCEIDN_EL0,
6982               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6983             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6984               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6985               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6986               .fgt = FGT_PMCEIDN_EL0,
6987               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6988         };
6989         define_arm_cp_regs(cpu, v81_pmu_regs);
6990     }
6991     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
6992         static const ARMCPRegInfo v84_pmmir = {
6993             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6994             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6995             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6996             .fgt = FGT_PMMIR_EL1,
6997             .resetvalue = 0
6998         };
6999         define_one_arm_cp_reg(cpu, &v84_pmmir);
7000     }
7001 }
7002 
7003 #ifndef CONFIG_USER_ONLY
7004 /*
7005  * We don't know until after realize whether there's a GICv3
7006  * attached, and that is what registers the gicv3 sysregs.
7007  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7008  * at runtime.
7009  */
7010 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7011 {
7012     ARMCPU *cpu = env_archcpu(env);
7013     uint64_t pfr1 = cpu->isar.id_pfr1;
7014 
7015     if (env->gicv3state) {
7016         pfr1 |= 1 << 28;
7017     }
7018     return pfr1;
7019 }
7020 
7021 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7022 {
7023     ARMCPU *cpu = env_archcpu(env);
7024     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7025 
7026     if (env->gicv3state) {
7027         pfr0 |= 1 << 24;
7028     }
7029     return pfr0;
7030 }
7031 #endif
7032 
7033 /*
7034  * Shared logic between LORID and the rest of the LOR* registers.
7035  * Secure state exclusion has already been dealt with.
7036  */
7037 static CPAccessResult access_lor_ns(CPUARMState *env,
7038                                     const ARMCPRegInfo *ri, bool isread)
7039 {
7040     int el = arm_current_el(env);
7041 
7042     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7043         return CP_ACCESS_TRAP_EL2;
7044     }
7045     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7046         return CP_ACCESS_TRAP_EL3;
7047     }
7048     return CP_ACCESS_OK;
7049 }
7050 
7051 static CPAccessResult access_lor_other(CPUARMState *env,
7052                                        const ARMCPRegInfo *ri, bool isread)
7053 {
7054     if (arm_is_secure_below_el3(env)) {
7055         /* Access denied in secure mode.  */
7056         return CP_ACCESS_TRAP;
7057     }
7058     return access_lor_ns(env, ri, isread);
7059 }
7060 
7061 /*
7062  * A trivial implementation of ARMv8.1-LOR leaves all of these
7063  * registers fixed at 0, which indicates that there are zero
7064  * supported Limited Ordering regions.
7065  */
7066 static const ARMCPRegInfo lor_reginfo[] = {
7067     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7068       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7069       .access = PL1_RW, .accessfn = access_lor_other,
7070       .fgt = FGT_LORSA_EL1,
7071       .type = ARM_CP_CONST, .resetvalue = 0 },
7072     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7073       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7074       .access = PL1_RW, .accessfn = access_lor_other,
7075       .fgt = FGT_LOREA_EL1,
7076       .type = ARM_CP_CONST, .resetvalue = 0 },
7077     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7078       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7079       .access = PL1_RW, .accessfn = access_lor_other,
7080       .fgt = FGT_LORN_EL1,
7081       .type = ARM_CP_CONST, .resetvalue = 0 },
7082     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7083       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7084       .access = PL1_RW, .accessfn = access_lor_other,
7085       .fgt = FGT_LORC_EL1,
7086       .type = ARM_CP_CONST, .resetvalue = 0 },
7087     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7088       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7089       .access = PL1_R, .accessfn = access_lor_ns,
7090       .fgt = FGT_LORID_EL1,
7091       .type = ARM_CP_CONST, .resetvalue = 0 },
7092 };
7093 
7094 #ifdef TARGET_AARCH64
7095 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7096                                    bool isread)
7097 {
7098     int el = arm_current_el(env);
7099 
7100     if (el < 2 &&
7101         arm_is_el2_enabled(env) &&
7102         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7103         return CP_ACCESS_TRAP_EL2;
7104     }
7105     if (el < 3 &&
7106         arm_feature(env, ARM_FEATURE_EL3) &&
7107         !(env->cp15.scr_el3 & SCR_APK)) {
7108         return CP_ACCESS_TRAP_EL3;
7109     }
7110     return CP_ACCESS_OK;
7111 }
7112 
7113 static const ARMCPRegInfo pauth_reginfo[] = {
7114     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7115       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7116       .access = PL1_RW, .accessfn = access_pauth,
7117       .fgt = FGT_APDAKEY,
7118       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7119     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7120       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7121       .access = PL1_RW, .accessfn = access_pauth,
7122       .fgt = FGT_APDAKEY,
7123       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7124     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7125       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7126       .access = PL1_RW, .accessfn = access_pauth,
7127       .fgt = FGT_APDBKEY,
7128       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7129     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7130       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7131       .access = PL1_RW, .accessfn = access_pauth,
7132       .fgt = FGT_APDBKEY,
7133       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7134     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7135       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7136       .access = PL1_RW, .accessfn = access_pauth,
7137       .fgt = FGT_APGAKEY,
7138       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7139     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7140       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7141       .access = PL1_RW, .accessfn = access_pauth,
7142       .fgt = FGT_APGAKEY,
7143       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7144     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7145       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7146       .access = PL1_RW, .accessfn = access_pauth,
7147       .fgt = FGT_APIAKEY,
7148       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7149     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7150       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7151       .access = PL1_RW, .accessfn = access_pauth,
7152       .fgt = FGT_APIAKEY,
7153       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7154     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7155       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7156       .access = PL1_RW, .accessfn = access_pauth,
7157       .fgt = FGT_APIBKEY,
7158       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7159     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7160       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7161       .access = PL1_RW, .accessfn = access_pauth,
7162       .fgt = FGT_APIBKEY,
7163       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7164 };
7165 
7166 static const ARMCPRegInfo tlbirange_reginfo[] = {
7167     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7168       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7169       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7170       .fgt = FGT_TLBIRVAE1IS,
7171       .writefn = tlbi_aa64_rvae1is_write },
7172     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7173       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7174       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7175       .fgt = FGT_TLBIRVAAE1IS,
7176       .writefn = tlbi_aa64_rvae1is_write },
7177    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7178       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7179       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7180       .fgt = FGT_TLBIRVALE1IS,
7181       .writefn = tlbi_aa64_rvae1is_write },
7182     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7183       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7184       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7185       .fgt = FGT_TLBIRVAALE1IS,
7186       .writefn = tlbi_aa64_rvae1is_write },
7187     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7188       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7189       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7190       .fgt = FGT_TLBIRVAE1OS,
7191       .writefn = tlbi_aa64_rvae1is_write },
7192     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7193       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7194       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7195       .fgt = FGT_TLBIRVAAE1OS,
7196       .writefn = tlbi_aa64_rvae1is_write },
7197    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7198       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7199       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7200       .fgt = FGT_TLBIRVALE1OS,
7201       .writefn = tlbi_aa64_rvae1is_write },
7202     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7203       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7204       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7205       .fgt = FGT_TLBIRVAALE1OS,
7206       .writefn = tlbi_aa64_rvae1is_write },
7207     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7209       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7210       .fgt = FGT_TLBIRVAE1,
7211       .writefn = tlbi_aa64_rvae1_write },
7212     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7213       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7214       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7215       .fgt = FGT_TLBIRVAAE1,
7216       .writefn = tlbi_aa64_rvae1_write },
7217    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7219       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7220       .fgt = FGT_TLBIRVALE1,
7221       .writefn = tlbi_aa64_rvae1_write },
7222     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7223       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7224       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7225       .fgt = FGT_TLBIRVAALE1,
7226       .writefn = tlbi_aa64_rvae1_write },
7227     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7229       .access = PL2_W, .type = ARM_CP_NO_RAW,
7230       .writefn = tlbi_aa64_ripas2e1is_write },
7231     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7233       .access = PL2_W, .type = ARM_CP_NO_RAW,
7234       .writefn = tlbi_aa64_ripas2e1is_write },
7235     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7237       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7238       .writefn = tlbi_aa64_rvae2is_write },
7239    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7240       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7241       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7242       .writefn = tlbi_aa64_rvae2is_write },
7243     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7245       .access = PL2_W, .type = ARM_CP_NO_RAW,
7246       .writefn = tlbi_aa64_ripas2e1_write },
7247     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7249       .access = PL2_W, .type = ARM_CP_NO_RAW,
7250       .writefn = tlbi_aa64_ripas2e1_write },
7251    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7252       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7253       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7254       .writefn = tlbi_aa64_rvae2is_write },
7255    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7256       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7257       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7258       .writefn = tlbi_aa64_rvae2is_write },
7259     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7260       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7261       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7262       .writefn = tlbi_aa64_rvae2_write },
7263    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7265       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7266       .writefn = tlbi_aa64_rvae2_write },
7267    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7268       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7269       .access = PL3_W, .type = ARM_CP_NO_RAW,
7270       .writefn = tlbi_aa64_rvae3is_write },
7271    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7272       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7273       .access = PL3_W, .type = ARM_CP_NO_RAW,
7274       .writefn = tlbi_aa64_rvae3is_write },
7275    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7276       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7277       .access = PL3_W, .type = ARM_CP_NO_RAW,
7278       .writefn = tlbi_aa64_rvae3is_write },
7279    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7280       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7281       .access = PL3_W, .type = ARM_CP_NO_RAW,
7282       .writefn = tlbi_aa64_rvae3is_write },
7283    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7284       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7285       .access = PL3_W, .type = ARM_CP_NO_RAW,
7286       .writefn = tlbi_aa64_rvae3_write },
7287    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7288       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7289       .access = PL3_W, .type = ARM_CP_NO_RAW,
7290       .writefn = tlbi_aa64_rvae3_write },
7291 };
7292 
7293 static const ARMCPRegInfo tlbios_reginfo[] = {
7294     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7295       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7296       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7297       .fgt = FGT_TLBIVMALLE1OS,
7298       .writefn = tlbi_aa64_vmalle1is_write },
7299     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7300       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7301       .fgt = FGT_TLBIVAE1OS,
7302       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7303       .writefn = tlbi_aa64_vae1is_write },
7304     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7305       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7306       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7307       .fgt = FGT_TLBIASIDE1OS,
7308       .writefn = tlbi_aa64_vmalle1is_write },
7309     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7310       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7311       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7312       .fgt = FGT_TLBIVAAE1OS,
7313       .writefn = tlbi_aa64_vae1is_write },
7314     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7315       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7316       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7317       .fgt = FGT_TLBIVALE1OS,
7318       .writefn = tlbi_aa64_vae1is_write },
7319     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7320       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7321       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7322       .fgt = FGT_TLBIVAALE1OS,
7323       .writefn = tlbi_aa64_vae1is_write },
7324     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7325       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7326       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7327       .writefn = tlbi_aa64_alle2is_write },
7328     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7329       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7330       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7331       .writefn = tlbi_aa64_vae2is_write },
7332    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7333       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7334       .access = PL2_W, .type = ARM_CP_NO_RAW,
7335       .writefn = tlbi_aa64_alle1is_write },
7336     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7337       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7338       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7339       .writefn = tlbi_aa64_vae2is_write },
7340     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7341       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7342       .access = PL2_W, .type = ARM_CP_NO_RAW,
7343       .writefn = tlbi_aa64_alle1is_write },
7344     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7345       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7346       .access = PL2_W, .type = ARM_CP_NOP },
7347     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7348       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7349       .access = PL2_W, .type = ARM_CP_NOP },
7350     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7351       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7352       .access = PL2_W, .type = ARM_CP_NOP },
7353     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7354       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7355       .access = PL2_W, .type = ARM_CP_NOP },
7356     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7357       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7358       .access = PL3_W, .type = ARM_CP_NO_RAW,
7359       .writefn = tlbi_aa64_alle3is_write },
7360     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7361       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7362       .access = PL3_W, .type = ARM_CP_NO_RAW,
7363       .writefn = tlbi_aa64_vae3is_write },
7364     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7365       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7366       .access = PL3_W, .type = ARM_CP_NO_RAW,
7367       .writefn = tlbi_aa64_vae3is_write },
7368 };
7369 
7370 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7371 {
7372     Error *err = NULL;
7373     uint64_t ret;
7374 
7375     /* Success sets NZCV = 0000.  */
7376     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7377 
7378     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7379         /*
7380          * ??? Failed, for unknown reasons in the crypto subsystem.
7381          * The best we can do is log the reason and return the
7382          * timed-out indication to the guest.  There is no reason
7383          * we know to expect this failure to be transitory, so the
7384          * guest may well hang retrying the operation.
7385          */
7386         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7387                       ri->name, error_get_pretty(err));
7388         error_free(err);
7389 
7390         env->ZF = 0; /* NZCF = 0100 */
7391         return 0;
7392     }
7393     return ret;
7394 }
7395 
7396 /* We do not support re-seeding, so the two registers operate the same.  */
7397 static const ARMCPRegInfo rndr_reginfo[] = {
7398     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7399       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7400       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7401       .access = PL0_R, .readfn = rndr_readfn },
7402     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7403       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7404       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7405       .access = PL0_R, .readfn = rndr_readfn },
7406 };
7407 
7408 #ifndef CONFIG_USER_ONLY
7409 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7410                           uint64_t value)
7411 {
7412     ARMCPU *cpu = env_archcpu(env);
7413     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7414     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7415     uint64_t vaddr_in = (uint64_t) value;
7416     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7417     void *haddr;
7418     int mem_idx = cpu_mmu_index(env, false);
7419 
7420     /* This won't be crossing page boundaries */
7421     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7422     if (haddr) {
7423 
7424         ram_addr_t offset;
7425         MemoryRegion *mr;
7426 
7427         /* RCU lock is already being held */
7428         mr = memory_region_from_host(haddr, &offset);
7429 
7430         if (mr) {
7431             memory_region_writeback(mr, offset, dline_size);
7432         }
7433     }
7434 }
7435 
7436 static const ARMCPRegInfo dcpop_reg[] = {
7437     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7439       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7440       .fgt = FGT_DCCVAP,
7441       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7442 };
7443 
7444 static const ARMCPRegInfo dcpodp_reg[] = {
7445     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7446       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7447       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7448       .fgt = FGT_DCCVADP,
7449       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7450 };
7451 #endif /*CONFIG_USER_ONLY*/
7452 
7453 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7454                                        bool isread)
7455 {
7456     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7457         return CP_ACCESS_TRAP_EL2;
7458     }
7459 
7460     return CP_ACCESS_OK;
7461 }
7462 
7463 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7464                                  bool isread)
7465 {
7466     int el = arm_current_el(env);
7467 
7468     if (el < 2 && arm_is_el2_enabled(env)) {
7469         uint64_t hcr = arm_hcr_el2_eff(env);
7470         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7471             return CP_ACCESS_TRAP_EL2;
7472         }
7473     }
7474     if (el < 3 &&
7475         arm_feature(env, ARM_FEATURE_EL3) &&
7476         !(env->cp15.scr_el3 & SCR_ATA)) {
7477         return CP_ACCESS_TRAP_EL3;
7478     }
7479     return CP_ACCESS_OK;
7480 }
7481 
7482 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7483 {
7484     return env->pstate & PSTATE_TCO;
7485 }
7486 
7487 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7488 {
7489     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7490 }
7491 
7492 static const ARMCPRegInfo mte_reginfo[] = {
7493     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7494       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7495       .access = PL1_RW, .accessfn = access_mte,
7496       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7497     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7498       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7499       .access = PL1_RW, .accessfn = access_mte,
7500       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7501     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7502       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7503       .access = PL2_RW, .accessfn = access_mte,
7504       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7505     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7506       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7507       .access = PL3_RW,
7508       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7509     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7510       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7511       .access = PL1_RW, .accessfn = access_mte,
7512       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7513     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7514       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7515       .access = PL1_RW, .accessfn = access_mte,
7516       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7517     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7518       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7519       .access = PL1_R, .accessfn = access_aa64_tid5,
7520       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7521     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7522       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7523       .type = ARM_CP_NO_RAW,
7524       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7525     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7526       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7527       .type = ARM_CP_NOP, .access = PL1_W,
7528       .fgt = FGT_DCIVAC,
7529       .accessfn = aa64_cacheop_poc_access },
7530     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7531       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7532       .fgt = FGT_DCISW,
7533       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7534     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7535       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7536       .type = ARM_CP_NOP, .access = PL1_W,
7537       .fgt = FGT_DCIVAC,
7538       .accessfn = aa64_cacheop_poc_access },
7539     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7541       .fgt = FGT_DCISW,
7542       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7543     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7544       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7545       .fgt = FGT_DCCSW,
7546       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7547     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7548       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7549       .fgt = FGT_DCCSW,
7550       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7551     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7552       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7553       .fgt = FGT_DCCISW,
7554       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7555     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7556       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7557       .fgt = FGT_DCCISW,
7558       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7559 };
7560 
7561 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7562     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7563       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7564       .type = ARM_CP_CONST, .access = PL0_RW, },
7565 };
7566 
7567 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7568     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7569       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7570       .type = ARM_CP_NOP, .access = PL0_W,
7571       .fgt = FGT_DCCVAC,
7572       .accessfn = aa64_cacheop_poc_access },
7573     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7574       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7575       .type = ARM_CP_NOP, .access = PL0_W,
7576       .fgt = FGT_DCCVAC,
7577       .accessfn = aa64_cacheop_poc_access },
7578     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7579       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7580       .type = ARM_CP_NOP, .access = PL0_W,
7581       .fgt = FGT_DCCVAP,
7582       .accessfn = aa64_cacheop_poc_access },
7583     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7584       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7585       .type = ARM_CP_NOP, .access = PL0_W,
7586       .fgt = FGT_DCCVAP,
7587       .accessfn = aa64_cacheop_poc_access },
7588     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7589       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7590       .type = ARM_CP_NOP, .access = PL0_W,
7591       .fgt = FGT_DCCVADP,
7592       .accessfn = aa64_cacheop_poc_access },
7593     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7594       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7595       .type = ARM_CP_NOP, .access = PL0_W,
7596       .fgt = FGT_DCCVADP,
7597       .accessfn = aa64_cacheop_poc_access },
7598     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7599       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7600       .type = ARM_CP_NOP, .access = PL0_W,
7601       .fgt = FGT_DCCIVAC,
7602       .accessfn = aa64_cacheop_poc_access },
7603     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7604       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7605       .type = ARM_CP_NOP, .access = PL0_W,
7606       .fgt = FGT_DCCIVAC,
7607       .accessfn = aa64_cacheop_poc_access },
7608     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7609       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7610       .access = PL0_W, .type = ARM_CP_DC_GVA,
7611 #ifndef CONFIG_USER_ONLY
7612       /* Avoid overhead of an access check that always passes in user-mode */
7613       .accessfn = aa64_zva_access,
7614       .fgt = FGT_DCZVA,
7615 #endif
7616     },
7617     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7618       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7619       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7620 #ifndef CONFIG_USER_ONLY
7621       /* Avoid overhead of an access check that always passes in user-mode */
7622       .accessfn = aa64_zva_access,
7623       .fgt = FGT_DCZVA,
7624 #endif
7625     },
7626 };
7627 
7628 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7629                                      bool isread)
7630 {
7631     uint64_t hcr = arm_hcr_el2_eff(env);
7632     int el = arm_current_el(env);
7633 
7634     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7635         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7636             if (hcr & HCR_TGE) {
7637                 return CP_ACCESS_TRAP_EL2;
7638             }
7639             return CP_ACCESS_TRAP;
7640         }
7641     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7642         return CP_ACCESS_TRAP_EL2;
7643     }
7644     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7645         return CP_ACCESS_TRAP_EL2;
7646     }
7647     if (el < 3
7648         && arm_feature(env, ARM_FEATURE_EL3)
7649         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7650         return CP_ACCESS_TRAP_EL3;
7651     }
7652     return CP_ACCESS_OK;
7653 }
7654 
7655 static const ARMCPRegInfo scxtnum_reginfo[] = {
7656     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7657       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7658       .access = PL0_RW, .accessfn = access_scxtnum,
7659       .fgt = FGT_SCXTNUM_EL0,
7660       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7661     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7662       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7663       .access = PL1_RW, .accessfn = access_scxtnum,
7664       .fgt = FGT_SCXTNUM_EL1,
7665       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7666     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7667       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7668       .access = PL2_RW, .accessfn = access_scxtnum,
7669       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7670     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7671       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7672       .access = PL3_RW,
7673       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7674 };
7675 
7676 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7677                                  bool isread)
7678 {
7679     if (arm_current_el(env) == 2 &&
7680         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7681         return CP_ACCESS_TRAP_EL3;
7682     }
7683     return CP_ACCESS_OK;
7684 }
7685 
7686 static const ARMCPRegInfo fgt_reginfo[] = {
7687     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7688       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7689       .access = PL2_RW, .accessfn = access_fgt,
7690       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7691     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7693       .access = PL2_RW, .accessfn = access_fgt,
7694       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7695     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7696       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7697       .access = PL2_RW, .accessfn = access_fgt,
7698       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7699     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7700       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7701       .access = PL2_RW, .accessfn = access_fgt,
7702       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7703     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7704       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7705       .access = PL2_RW, .accessfn = access_fgt,
7706       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7707 };
7708 #endif /* TARGET_AARCH64 */
7709 
7710 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7711                                      bool isread)
7712 {
7713     int el = arm_current_el(env);
7714 
7715     if (el == 0) {
7716         uint64_t sctlr = arm_sctlr(env, el);
7717         if (!(sctlr & SCTLR_EnRCTX)) {
7718             return CP_ACCESS_TRAP;
7719         }
7720     } else if (el == 1) {
7721         uint64_t hcr = arm_hcr_el2_eff(env);
7722         if (hcr & HCR_NV) {
7723             return CP_ACCESS_TRAP_EL2;
7724         }
7725     }
7726     return CP_ACCESS_OK;
7727 }
7728 
7729 static const ARMCPRegInfo predinv_reginfo[] = {
7730     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7731       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7732       .fgt = FGT_CFPRCTX,
7733       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7734     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7735       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7736       .fgt = FGT_DVPRCTX,
7737       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7738     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7739       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7740       .fgt = FGT_CPPRCTX,
7741       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7742     /*
7743      * Note the AArch32 opcodes have a different OPC1.
7744      */
7745     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7746       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7747       .fgt = FGT_CFPRCTX,
7748       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7749     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7750       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7751       .fgt = FGT_DVPRCTX,
7752       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7753     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7754       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7755       .fgt = FGT_CPPRCTX,
7756       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7757 };
7758 
7759 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7760 {
7761     /* Read the high 32 bits of the current CCSIDR */
7762     return extract64(ccsidr_read(env, ri), 32, 32);
7763 }
7764 
7765 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7766     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7767       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7768       .access = PL1_R,
7769       .accessfn = access_tid4,
7770       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7771 };
7772 
7773 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7774                                        bool isread)
7775 {
7776     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7777         return CP_ACCESS_TRAP_EL2;
7778     }
7779 
7780     return CP_ACCESS_OK;
7781 }
7782 
7783 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7784                                        bool isread)
7785 {
7786     if (arm_feature(env, ARM_FEATURE_V8)) {
7787         return access_aa64_tid3(env, ri, isread);
7788     }
7789 
7790     return CP_ACCESS_OK;
7791 }
7792 
7793 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7794                                      bool isread)
7795 {
7796     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7797         return CP_ACCESS_TRAP_EL2;
7798     }
7799 
7800     return CP_ACCESS_OK;
7801 }
7802 
7803 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7804                                         const ARMCPRegInfo *ri, bool isread)
7805 {
7806     /*
7807      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7808      * in v7A, not in v8A.
7809      */
7810     if (!arm_feature(env, ARM_FEATURE_V8) &&
7811         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7812         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7813         return CP_ACCESS_TRAP_EL2;
7814     }
7815     return CP_ACCESS_OK;
7816 }
7817 
7818 static const ARMCPRegInfo jazelle_regs[] = {
7819     { .name = "JIDR",
7820       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7821       .access = PL1_R, .accessfn = access_jazelle,
7822       .type = ARM_CP_CONST, .resetvalue = 0 },
7823     { .name = "JOSCR",
7824       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7825       .accessfn = access_joscr_jmcr,
7826       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7827     { .name = "JMCR",
7828       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7829       .accessfn = access_joscr_jmcr,
7830       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7831 };
7832 
7833 static const ARMCPRegInfo contextidr_el2 = {
7834     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7835     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7836     .access = PL2_RW,
7837     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7838 };
7839 
7840 static const ARMCPRegInfo vhe_reginfo[] = {
7841     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7842       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7843       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7844       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7845 #ifndef CONFIG_USER_ONLY
7846     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7847       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7848       .fieldoffset =
7849         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7850       .type = ARM_CP_IO, .access = PL2_RW,
7851       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7852     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7853       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7854       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7855       .resetfn = gt_hv_timer_reset,
7856       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7857     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7858       .type = ARM_CP_IO,
7859       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7860       .access = PL2_RW,
7861       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7862       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7863     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7864       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7865       .type = ARM_CP_IO | ARM_CP_ALIAS,
7866       .access = PL2_RW, .accessfn = e2h_access,
7867       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7868       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7869     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7870       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7871       .type = ARM_CP_IO | ARM_CP_ALIAS,
7872       .access = PL2_RW, .accessfn = e2h_access,
7873       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7874       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7875     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7876       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7877       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7878       .access = PL2_RW, .accessfn = e2h_access,
7879       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7880     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7881       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7882       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7883       .access = PL2_RW, .accessfn = e2h_access,
7884       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7885     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7886       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7887       .type = ARM_CP_IO | ARM_CP_ALIAS,
7888       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7889       .access = PL2_RW, .accessfn = e2h_access,
7890       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7891     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7892       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7893       .type = ARM_CP_IO | ARM_CP_ALIAS,
7894       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7895       .access = PL2_RW, .accessfn = e2h_access,
7896       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7897 #endif
7898 };
7899 
7900 #ifndef CONFIG_USER_ONLY
7901 static const ARMCPRegInfo ats1e1_reginfo[] = {
7902     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7903       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7904       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7905       .fgt = FGT_ATS1E1RP,
7906       .writefn = ats_write64 },
7907     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7908       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7909       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7910       .fgt = FGT_ATS1E1WP,
7911       .writefn = ats_write64 },
7912 };
7913 
7914 static const ARMCPRegInfo ats1cp_reginfo[] = {
7915     { .name = "ATS1CPRP",
7916       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7917       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7918       .writefn = ats_write },
7919     { .name = "ATS1CPWP",
7920       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7921       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7922       .writefn = ats_write },
7923 };
7924 #endif
7925 
7926 /*
7927  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7928  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7929  * is non-zero, which is never for ARMv7, optionally in ARMv8
7930  * and mandatorily for ARMv8.2 and up.
7931  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7932  * implementation is RAZ/WI we can ignore this detail, as we
7933  * do for ACTLR.
7934  */
7935 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7936     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7937       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7938       .access = PL1_RW, .accessfn = access_tacr,
7939       .type = ARM_CP_CONST, .resetvalue = 0 },
7940     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7941       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7942       .access = PL2_RW, .type = ARM_CP_CONST,
7943       .resetvalue = 0 },
7944 };
7945 
7946 void register_cp_regs_for_features(ARMCPU *cpu)
7947 {
7948     /* Register all the coprocessor registers based on feature bits */
7949     CPUARMState *env = &cpu->env;
7950     if (arm_feature(env, ARM_FEATURE_M)) {
7951         /* M profile has no coprocessor registers */
7952         return;
7953     }
7954 
7955     define_arm_cp_regs(cpu, cp_reginfo);
7956     if (!arm_feature(env, ARM_FEATURE_V8)) {
7957         /*
7958          * Must go early as it is full of wildcards that may be
7959          * overridden by later definitions.
7960          */
7961         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7962     }
7963 
7964     if (arm_feature(env, ARM_FEATURE_V6)) {
7965         /* The ID registers all have impdef reset values */
7966         ARMCPRegInfo v6_idregs[] = {
7967             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7968               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7969               .access = PL1_R, .type = ARM_CP_CONST,
7970               .accessfn = access_aa32_tid3,
7971               .resetvalue = cpu->isar.id_pfr0 },
7972             /*
7973              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7974              * the value of the GIC field until after we define these regs.
7975              */
7976             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7977               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7978               .access = PL1_R, .type = ARM_CP_NO_RAW,
7979               .accessfn = access_aa32_tid3,
7980 #ifdef CONFIG_USER_ONLY
7981               .type = ARM_CP_CONST,
7982               .resetvalue = cpu->isar.id_pfr1,
7983 #else
7984               .type = ARM_CP_NO_RAW,
7985               .accessfn = access_aa32_tid3,
7986               .readfn = id_pfr1_read,
7987               .writefn = arm_cp_write_ignore
7988 #endif
7989             },
7990             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7991               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7992               .access = PL1_R, .type = ARM_CP_CONST,
7993               .accessfn = access_aa32_tid3,
7994               .resetvalue = cpu->isar.id_dfr0 },
7995             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7996               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7997               .access = PL1_R, .type = ARM_CP_CONST,
7998               .accessfn = access_aa32_tid3,
7999               .resetvalue = cpu->id_afr0 },
8000             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8001               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8002               .access = PL1_R, .type = ARM_CP_CONST,
8003               .accessfn = access_aa32_tid3,
8004               .resetvalue = cpu->isar.id_mmfr0 },
8005             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8007               .access = PL1_R, .type = ARM_CP_CONST,
8008               .accessfn = access_aa32_tid3,
8009               .resetvalue = cpu->isar.id_mmfr1 },
8010             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8011               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8012               .access = PL1_R, .type = ARM_CP_CONST,
8013               .accessfn = access_aa32_tid3,
8014               .resetvalue = cpu->isar.id_mmfr2 },
8015             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8016               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8017               .access = PL1_R, .type = ARM_CP_CONST,
8018               .accessfn = access_aa32_tid3,
8019               .resetvalue = cpu->isar.id_mmfr3 },
8020             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8021               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8022               .access = PL1_R, .type = ARM_CP_CONST,
8023               .accessfn = access_aa32_tid3,
8024               .resetvalue = cpu->isar.id_isar0 },
8025             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8027               .access = PL1_R, .type = ARM_CP_CONST,
8028               .accessfn = access_aa32_tid3,
8029               .resetvalue = cpu->isar.id_isar1 },
8030             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8031               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8032               .access = PL1_R, .type = ARM_CP_CONST,
8033               .accessfn = access_aa32_tid3,
8034               .resetvalue = cpu->isar.id_isar2 },
8035             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8036               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8037               .access = PL1_R, .type = ARM_CP_CONST,
8038               .accessfn = access_aa32_tid3,
8039               .resetvalue = cpu->isar.id_isar3 },
8040             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8041               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8042               .access = PL1_R, .type = ARM_CP_CONST,
8043               .accessfn = access_aa32_tid3,
8044               .resetvalue = cpu->isar.id_isar4 },
8045             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8047               .access = PL1_R, .type = ARM_CP_CONST,
8048               .accessfn = access_aa32_tid3,
8049               .resetvalue = cpu->isar.id_isar5 },
8050             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8051               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8052               .access = PL1_R, .type = ARM_CP_CONST,
8053               .accessfn = access_aa32_tid3,
8054               .resetvalue = cpu->isar.id_mmfr4 },
8055             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8056               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8057               .access = PL1_R, .type = ARM_CP_CONST,
8058               .accessfn = access_aa32_tid3,
8059               .resetvalue = cpu->isar.id_isar6 },
8060         };
8061         define_arm_cp_regs(cpu, v6_idregs);
8062         define_arm_cp_regs(cpu, v6_cp_reginfo);
8063     } else {
8064         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8065     }
8066     if (arm_feature(env, ARM_FEATURE_V6K)) {
8067         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8068     }
8069     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8070         !arm_feature(env, ARM_FEATURE_PMSA)) {
8071         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8072     }
8073     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8074         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8075     }
8076     if (arm_feature(env, ARM_FEATURE_V7)) {
8077         ARMCPRegInfo clidr = {
8078             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8079             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8080             .access = PL1_R, .type = ARM_CP_CONST,
8081             .accessfn = access_tid4,
8082             .fgt = FGT_CLIDR_EL1,
8083             .resetvalue = cpu->clidr
8084         };
8085         define_one_arm_cp_reg(cpu, &clidr);
8086         define_arm_cp_regs(cpu, v7_cp_reginfo);
8087         define_debug_regs(cpu);
8088         define_pmu_regs(cpu);
8089     } else {
8090         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8091     }
8092     if (arm_feature(env, ARM_FEATURE_V8)) {
8093         /*
8094          * v8 ID registers, which all have impdef reset values.
8095          * Note that within the ID register ranges the unused slots
8096          * must all RAZ, not UNDEF; future architecture versions may
8097          * define new registers here.
8098          * ID registers which are AArch64 views of the AArch32 ID registers
8099          * which already existed in v6 and v7 are handled elsewhere,
8100          * in v6_idregs[].
8101          */
8102         int i;
8103         ARMCPRegInfo v8_idregs[] = {
8104             /*
8105              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8106              * emulation because we don't know the right value for the
8107              * GIC field until after we define these regs.
8108              */
8109             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8111               .access = PL1_R,
8112 #ifdef CONFIG_USER_ONLY
8113               .type = ARM_CP_CONST,
8114               .resetvalue = cpu->isar.id_aa64pfr0
8115 #else
8116               .type = ARM_CP_NO_RAW,
8117               .accessfn = access_aa64_tid3,
8118               .readfn = id_aa64pfr0_read,
8119               .writefn = arm_cp_write_ignore
8120 #endif
8121             },
8122             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8123               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8124               .access = PL1_R, .type = ARM_CP_CONST,
8125               .accessfn = access_aa64_tid3,
8126               .resetvalue = cpu->isar.id_aa64pfr1},
8127             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8128               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8129               .access = PL1_R, .type = ARM_CP_CONST,
8130               .accessfn = access_aa64_tid3,
8131               .resetvalue = 0 },
8132             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8133               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8134               .access = PL1_R, .type = ARM_CP_CONST,
8135               .accessfn = access_aa64_tid3,
8136               .resetvalue = 0 },
8137             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8138               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8139               .access = PL1_R, .type = ARM_CP_CONST,
8140               .accessfn = access_aa64_tid3,
8141               .resetvalue = cpu->isar.id_aa64zfr0 },
8142             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8143               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8144               .access = PL1_R, .type = ARM_CP_CONST,
8145               .accessfn = access_aa64_tid3,
8146               .resetvalue = cpu->isar.id_aa64smfr0 },
8147             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8148               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8149               .access = PL1_R, .type = ARM_CP_CONST,
8150               .accessfn = access_aa64_tid3,
8151               .resetvalue = 0 },
8152             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8153               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8154               .access = PL1_R, .type = ARM_CP_CONST,
8155               .accessfn = access_aa64_tid3,
8156               .resetvalue = 0 },
8157             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8158               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8159               .access = PL1_R, .type = ARM_CP_CONST,
8160               .accessfn = access_aa64_tid3,
8161               .resetvalue = cpu->isar.id_aa64dfr0 },
8162             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8163               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8164               .access = PL1_R, .type = ARM_CP_CONST,
8165               .accessfn = access_aa64_tid3,
8166               .resetvalue = cpu->isar.id_aa64dfr1 },
8167             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8168               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8169               .access = PL1_R, .type = ARM_CP_CONST,
8170               .accessfn = access_aa64_tid3,
8171               .resetvalue = 0 },
8172             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8173               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8174               .access = PL1_R, .type = ARM_CP_CONST,
8175               .accessfn = access_aa64_tid3,
8176               .resetvalue = 0 },
8177             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8178               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8179               .access = PL1_R, .type = ARM_CP_CONST,
8180               .accessfn = access_aa64_tid3,
8181               .resetvalue = cpu->id_aa64afr0 },
8182             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8183               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8184               .access = PL1_R, .type = ARM_CP_CONST,
8185               .accessfn = access_aa64_tid3,
8186               .resetvalue = cpu->id_aa64afr1 },
8187             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8188               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8189               .access = PL1_R, .type = ARM_CP_CONST,
8190               .accessfn = access_aa64_tid3,
8191               .resetvalue = 0 },
8192             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8193               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8194               .access = PL1_R, .type = ARM_CP_CONST,
8195               .accessfn = access_aa64_tid3,
8196               .resetvalue = 0 },
8197             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8198               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8199               .access = PL1_R, .type = ARM_CP_CONST,
8200               .accessfn = access_aa64_tid3,
8201               .resetvalue = cpu->isar.id_aa64isar0 },
8202             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8203               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8204               .access = PL1_R, .type = ARM_CP_CONST,
8205               .accessfn = access_aa64_tid3,
8206               .resetvalue = cpu->isar.id_aa64isar1 },
8207             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8208               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8209               .access = PL1_R, .type = ARM_CP_CONST,
8210               .accessfn = access_aa64_tid3,
8211               .resetvalue = 0 },
8212             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8213               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8214               .access = PL1_R, .type = ARM_CP_CONST,
8215               .accessfn = access_aa64_tid3,
8216               .resetvalue = 0 },
8217             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8218               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8219               .access = PL1_R, .type = ARM_CP_CONST,
8220               .accessfn = access_aa64_tid3,
8221               .resetvalue = 0 },
8222             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8223               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8224               .access = PL1_R, .type = ARM_CP_CONST,
8225               .accessfn = access_aa64_tid3,
8226               .resetvalue = 0 },
8227             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8228               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8229               .access = PL1_R, .type = ARM_CP_CONST,
8230               .accessfn = access_aa64_tid3,
8231               .resetvalue = 0 },
8232             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8234               .access = PL1_R, .type = ARM_CP_CONST,
8235               .accessfn = access_aa64_tid3,
8236               .resetvalue = 0 },
8237             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8239               .access = PL1_R, .type = ARM_CP_CONST,
8240               .accessfn = access_aa64_tid3,
8241               .resetvalue = cpu->isar.id_aa64mmfr0 },
8242             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8243               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8244               .access = PL1_R, .type = ARM_CP_CONST,
8245               .accessfn = access_aa64_tid3,
8246               .resetvalue = cpu->isar.id_aa64mmfr1 },
8247             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8248               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8249               .access = PL1_R, .type = ARM_CP_CONST,
8250               .accessfn = access_aa64_tid3,
8251               .resetvalue = cpu->isar.id_aa64mmfr2 },
8252             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8253               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8254               .access = PL1_R, .type = ARM_CP_CONST,
8255               .accessfn = access_aa64_tid3,
8256               .resetvalue = 0 },
8257             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8258               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8259               .access = PL1_R, .type = ARM_CP_CONST,
8260               .accessfn = access_aa64_tid3,
8261               .resetvalue = 0 },
8262             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8263               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8264               .access = PL1_R, .type = ARM_CP_CONST,
8265               .accessfn = access_aa64_tid3,
8266               .resetvalue = 0 },
8267             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8268               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8269               .access = PL1_R, .type = ARM_CP_CONST,
8270               .accessfn = access_aa64_tid3,
8271               .resetvalue = 0 },
8272             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8274               .access = PL1_R, .type = ARM_CP_CONST,
8275               .accessfn = access_aa64_tid3,
8276               .resetvalue = 0 },
8277             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8278               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8279               .access = PL1_R, .type = ARM_CP_CONST,
8280               .accessfn = access_aa64_tid3,
8281               .resetvalue = cpu->isar.mvfr0 },
8282             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8284               .access = PL1_R, .type = ARM_CP_CONST,
8285               .accessfn = access_aa64_tid3,
8286               .resetvalue = cpu->isar.mvfr1 },
8287             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8288               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8289               .access = PL1_R, .type = ARM_CP_CONST,
8290               .accessfn = access_aa64_tid3,
8291               .resetvalue = cpu->isar.mvfr2 },
8292             /*
8293              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8294              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8295              * as RAZ, since it is in the "reserved for future ID
8296              * registers, RAZ" part of the AArch32 encoding space.
8297              */
8298             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8299               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8300               .access = PL1_R, .type = ARM_CP_CONST,
8301               .accessfn = access_aa64_tid3,
8302               .resetvalue = 0 },
8303             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8304               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8305               .access = PL1_R, .type = ARM_CP_CONST,
8306               .accessfn = access_aa64_tid3,
8307               .resetvalue = 0 },
8308             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8309               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8310               .access = PL1_R, .type = ARM_CP_CONST,
8311               .accessfn = access_aa64_tid3,
8312               .resetvalue = 0 },
8313             /*
8314              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8315              * they're also RAZ for AArch64, and in v8 are gradually
8316              * being filled with AArch64-view-of-AArch32-ID-register
8317              * for new ID registers.
8318              */
8319             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8320               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8321               .access = PL1_R, .type = ARM_CP_CONST,
8322               .accessfn = access_aa64_tid3,
8323               .resetvalue = 0 },
8324             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8325               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8326               .access = PL1_R, .type = ARM_CP_CONST,
8327               .accessfn = access_aa64_tid3,
8328               .resetvalue = cpu->isar.id_pfr2 },
8329             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8330               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8331               .access = PL1_R, .type = ARM_CP_CONST,
8332               .accessfn = access_aa64_tid3,
8333               .resetvalue = cpu->isar.id_dfr1 },
8334             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8335               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8336               .access = PL1_R, .type = ARM_CP_CONST,
8337               .accessfn = access_aa64_tid3,
8338               .resetvalue = cpu->isar.id_mmfr5 },
8339             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8340               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8341               .access = PL1_R, .type = ARM_CP_CONST,
8342               .accessfn = access_aa64_tid3,
8343               .resetvalue = 0 },
8344             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8345               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8346               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8347               .fgt = FGT_PMCEIDN_EL0,
8348               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8349             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8350               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8351               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8352               .fgt = FGT_PMCEIDN_EL0,
8353               .resetvalue = cpu->pmceid0 },
8354             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8355               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8356               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8357               .fgt = FGT_PMCEIDN_EL0,
8358               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8359             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8360               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8361               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8362               .fgt = FGT_PMCEIDN_EL0,
8363               .resetvalue = cpu->pmceid1 },
8364         };
8365 #ifdef CONFIG_USER_ONLY
8366         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8367             { .name = "ID_AA64PFR0_EL1",
8368               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8369                                R_ID_AA64PFR0_ADVSIMD_MASK |
8370                                R_ID_AA64PFR0_SVE_MASK |
8371                                R_ID_AA64PFR0_DIT_MASK,
8372               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8373                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8374             { .name = "ID_AA64PFR1_EL1",
8375               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8376                                R_ID_AA64PFR1_SSBS_MASK |
8377                                R_ID_AA64PFR1_MTE_MASK |
8378                                R_ID_AA64PFR1_SME_MASK },
8379             { .name = "ID_AA64PFR*_EL1_RESERVED",
8380               .is_glob = true },
8381             { .name = "ID_AA64ZFR0_EL1",
8382               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8383                                R_ID_AA64ZFR0_AES_MASK |
8384                                R_ID_AA64ZFR0_BITPERM_MASK |
8385                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8386                                R_ID_AA64ZFR0_SHA3_MASK |
8387                                R_ID_AA64ZFR0_SM4_MASK |
8388                                R_ID_AA64ZFR0_I8MM_MASK |
8389                                R_ID_AA64ZFR0_F32MM_MASK |
8390                                R_ID_AA64ZFR0_F64MM_MASK },
8391             { .name = "ID_AA64SMFR0_EL1",
8392               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8393                                R_ID_AA64SMFR0_B16F32_MASK |
8394                                R_ID_AA64SMFR0_F16F32_MASK |
8395                                R_ID_AA64SMFR0_I8I32_MASK |
8396                                R_ID_AA64SMFR0_F64F64_MASK |
8397                                R_ID_AA64SMFR0_I16I64_MASK |
8398                                R_ID_AA64SMFR0_FA64_MASK },
8399             { .name = "ID_AA64MMFR0_EL1",
8400               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8401               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8402                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8403             { .name = "ID_AA64MMFR1_EL1",
8404               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8405             { .name = "ID_AA64MMFR2_EL1",
8406               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8407             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8408               .is_glob = true },
8409             { .name = "ID_AA64DFR0_EL1",
8410               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8411             { .name = "ID_AA64DFR1_EL1" },
8412             { .name = "ID_AA64DFR*_EL1_RESERVED",
8413               .is_glob = true },
8414             { .name = "ID_AA64AFR*",
8415               .is_glob = true },
8416             { .name = "ID_AA64ISAR0_EL1",
8417               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8418                                R_ID_AA64ISAR0_SHA1_MASK |
8419                                R_ID_AA64ISAR0_SHA2_MASK |
8420                                R_ID_AA64ISAR0_CRC32_MASK |
8421                                R_ID_AA64ISAR0_ATOMIC_MASK |
8422                                R_ID_AA64ISAR0_RDM_MASK |
8423                                R_ID_AA64ISAR0_SHA3_MASK |
8424                                R_ID_AA64ISAR0_SM3_MASK |
8425                                R_ID_AA64ISAR0_SM4_MASK |
8426                                R_ID_AA64ISAR0_DP_MASK |
8427                                R_ID_AA64ISAR0_FHM_MASK |
8428                                R_ID_AA64ISAR0_TS_MASK |
8429                                R_ID_AA64ISAR0_RNDR_MASK },
8430             { .name = "ID_AA64ISAR1_EL1",
8431               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8432                                R_ID_AA64ISAR1_APA_MASK |
8433                                R_ID_AA64ISAR1_API_MASK |
8434                                R_ID_AA64ISAR1_JSCVT_MASK |
8435                                R_ID_AA64ISAR1_FCMA_MASK |
8436                                R_ID_AA64ISAR1_LRCPC_MASK |
8437                                R_ID_AA64ISAR1_GPA_MASK |
8438                                R_ID_AA64ISAR1_GPI_MASK |
8439                                R_ID_AA64ISAR1_FRINTTS_MASK |
8440                                R_ID_AA64ISAR1_SB_MASK |
8441                                R_ID_AA64ISAR1_BF16_MASK |
8442                                R_ID_AA64ISAR1_DGH_MASK |
8443                                R_ID_AA64ISAR1_I8MM_MASK },
8444             { .name = "ID_AA64ISAR2_EL1",
8445               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8446                                R_ID_AA64ISAR2_RPRES_MASK |
8447                                R_ID_AA64ISAR2_GPA3_MASK |
8448                                R_ID_AA64ISAR2_APA3_MASK },
8449             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8450               .is_glob = true },
8451         };
8452         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8453 #endif
8454         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8455         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8456             !arm_feature(env, ARM_FEATURE_EL2)) {
8457             ARMCPRegInfo rvbar = {
8458                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8459                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8460                 .access = PL1_R,
8461                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8462             };
8463             define_one_arm_cp_reg(cpu, &rvbar);
8464         }
8465         define_arm_cp_regs(cpu, v8_idregs);
8466         define_arm_cp_regs(cpu, v8_cp_reginfo);
8467 
8468         for (i = 4; i < 16; i++) {
8469             /*
8470              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8471              * For pre-v8 cores there are RAZ patterns for these in
8472              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8473              * v8 extends the "must RAZ" part of the ID register space
8474              * to also cover c0, 0, c{8-15}, {0-7}.
8475              * These are STATE_AA32 because in the AArch64 sysreg space
8476              * c4-c7 is where the AArch64 ID registers live (and we've
8477              * already defined those in v8_idregs[]), and c8-c15 are not
8478              * "must RAZ" for AArch64.
8479              */
8480             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8481             ARMCPRegInfo v8_aa32_raz_idregs = {
8482                 .name = name,
8483                 .state = ARM_CP_STATE_AA32,
8484                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8485                 .access = PL1_R, .type = ARM_CP_CONST,
8486                 .accessfn = access_aa64_tid3,
8487                 .resetvalue = 0 };
8488             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8489         }
8490     }
8491 
8492     /*
8493      * Register the base EL2 cpregs.
8494      * Pre v8, these registers are implemented only as part of the
8495      * Virtualization Extensions (EL2 present).  Beginning with v8,
8496      * if EL2 is missing but EL3 is enabled, mostly these become
8497      * RES0 from EL3, with some specific exceptions.
8498      */
8499     if (arm_feature(env, ARM_FEATURE_EL2)
8500         || (arm_feature(env, ARM_FEATURE_EL3)
8501             && arm_feature(env, ARM_FEATURE_V8))) {
8502         uint64_t vmpidr_def = mpidr_read_val(env);
8503         ARMCPRegInfo vpidr_regs[] = {
8504             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8505               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8506               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8507               .resetvalue = cpu->midr,
8508               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8509               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8510             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8511               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8512               .access = PL2_RW, .resetvalue = cpu->midr,
8513               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8514               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8515             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8516               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8517               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8518               .resetvalue = vmpidr_def,
8519               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8520               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8521             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8522               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8523               .access = PL2_RW, .resetvalue = vmpidr_def,
8524               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8525               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8526         };
8527         /*
8528          * The only field of MDCR_EL2 that has a defined architectural reset
8529          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8530          */
8531         ARMCPRegInfo mdcr_el2 = {
8532             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8533             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8534             .writefn = mdcr_el2_write,
8535             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8536             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8537         };
8538         define_one_arm_cp_reg(cpu, &mdcr_el2);
8539         define_arm_cp_regs(cpu, vpidr_regs);
8540         define_arm_cp_regs(cpu, el2_cp_reginfo);
8541         if (arm_feature(env, ARM_FEATURE_V8)) {
8542             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8543         }
8544         if (cpu_isar_feature(aa64_sel2, cpu)) {
8545             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8546         }
8547         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8548         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8549             ARMCPRegInfo rvbar[] = {
8550                 {
8551                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8552                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8553                     .access = PL2_R,
8554                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8555                 },
8556                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8557                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8558                     .access = PL2_R,
8559                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8560                 },
8561             };
8562             define_arm_cp_regs(cpu, rvbar);
8563         }
8564     }
8565 
8566     /* Register the base EL3 cpregs. */
8567     if (arm_feature(env, ARM_FEATURE_EL3)) {
8568         define_arm_cp_regs(cpu, el3_cp_reginfo);
8569         ARMCPRegInfo el3_regs[] = {
8570             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8571               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8572               .access = PL3_R,
8573               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8574             },
8575             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8576               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8577               .access = PL3_RW,
8578               .raw_writefn = raw_write, .writefn = sctlr_write,
8579               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8580               .resetvalue = cpu->reset_sctlr },
8581         };
8582 
8583         define_arm_cp_regs(cpu, el3_regs);
8584     }
8585     /*
8586      * The behaviour of NSACR is sufficiently various that we don't
8587      * try to describe it in a single reginfo:
8588      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8589      *     reads as constant 0xc00 from NS EL1 and NS EL2
8590      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8591      *  if v7 without EL3, register doesn't exist
8592      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8593      */
8594     if (arm_feature(env, ARM_FEATURE_EL3)) {
8595         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8596             static const ARMCPRegInfo nsacr = {
8597                 .name = "NSACR", .type = ARM_CP_CONST,
8598                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8599                 .access = PL1_RW, .accessfn = nsacr_access,
8600                 .resetvalue = 0xc00
8601             };
8602             define_one_arm_cp_reg(cpu, &nsacr);
8603         } else {
8604             static const ARMCPRegInfo nsacr = {
8605                 .name = "NSACR",
8606                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8607                 .access = PL3_RW | PL1_R,
8608                 .resetvalue = 0,
8609                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8610             };
8611             define_one_arm_cp_reg(cpu, &nsacr);
8612         }
8613     } else {
8614         if (arm_feature(env, ARM_FEATURE_V8)) {
8615             static const ARMCPRegInfo nsacr = {
8616                 .name = "NSACR", .type = ARM_CP_CONST,
8617                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8618                 .access = PL1_R,
8619                 .resetvalue = 0xc00
8620             };
8621             define_one_arm_cp_reg(cpu, &nsacr);
8622         }
8623     }
8624 
8625     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8626         if (arm_feature(env, ARM_FEATURE_V6)) {
8627             /* PMSAv6 not implemented */
8628             assert(arm_feature(env, ARM_FEATURE_V7));
8629             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8630             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8631         } else {
8632             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8633         }
8634     } else {
8635         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8636         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8637         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8638         if (cpu_isar_feature(aa32_hpd, cpu)) {
8639             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8640         }
8641     }
8642     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8643         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8644     }
8645     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8646         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8647     }
8648     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8649         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8650     }
8651     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8652         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8653     }
8654     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8655         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8656     }
8657     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8658         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8659     }
8660     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8661         define_arm_cp_regs(cpu, omap_cp_reginfo);
8662     }
8663     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8664         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8665     }
8666     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8667         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8668     }
8669     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8670         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8671     }
8672     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8673         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8674     }
8675     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8676         define_arm_cp_regs(cpu, jazelle_regs);
8677     }
8678     /*
8679      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8680      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8681      * be read-only (ie write causes UNDEF exception).
8682      */
8683     {
8684         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8685             /*
8686              * Pre-v8 MIDR space.
8687              * Note that the MIDR isn't a simple constant register because
8688              * of the TI925 behaviour where writes to another register can
8689              * cause the MIDR value to change.
8690              *
8691              * Unimplemented registers in the c15 0 0 0 space default to
8692              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8693              * and friends override accordingly.
8694              */
8695             { .name = "MIDR",
8696               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8697               .access = PL1_R, .resetvalue = cpu->midr,
8698               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8699               .readfn = midr_read,
8700               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8701               .type = ARM_CP_OVERRIDE },
8702             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8703             { .name = "DUMMY",
8704               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8705               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8706             { .name = "DUMMY",
8707               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8708               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8709             { .name = "DUMMY",
8710               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8711               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8712             { .name = "DUMMY",
8713               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8714               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8715             { .name = "DUMMY",
8716               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8717               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8718         };
8719         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8720             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8721               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8722               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8723               .fgt = FGT_MIDR_EL1,
8724               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8725               .readfn = midr_read },
8726             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8727             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8728               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8729               .access = PL1_R, .resetvalue = cpu->midr },
8730             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8732               .access = PL1_R,
8733               .accessfn = access_aa64_tid1,
8734               .fgt = FGT_REVIDR_EL1,
8735               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8736         };
8737         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8738             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8739             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8740             .access = PL1_R, .resetvalue = cpu->midr
8741         };
8742         ARMCPRegInfo id_cp_reginfo[] = {
8743             /* These are common to v8 and pre-v8 */
8744             { .name = "CTR",
8745               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8746               .access = PL1_R, .accessfn = ctr_el0_access,
8747               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8748             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8749               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8750               .access = PL0_R, .accessfn = ctr_el0_access,
8751               .fgt = FGT_CTR_EL0,
8752               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8753             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8754             { .name = "TCMTR",
8755               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8756               .access = PL1_R,
8757               .accessfn = access_aa32_tid1,
8758               .type = ARM_CP_CONST, .resetvalue = 0 },
8759         };
8760         /* TLBTR is specific to VMSA */
8761         ARMCPRegInfo id_tlbtr_reginfo = {
8762               .name = "TLBTR",
8763               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8764               .access = PL1_R,
8765               .accessfn = access_aa32_tid1,
8766               .type = ARM_CP_CONST, .resetvalue = 0,
8767         };
8768         /* MPUIR is specific to PMSA V6+ */
8769         ARMCPRegInfo id_mpuir_reginfo = {
8770               .name = "MPUIR",
8771               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8772               .access = PL1_R, .type = ARM_CP_CONST,
8773               .resetvalue = cpu->pmsav7_dregion << 8
8774         };
8775         /* HMPUIR is specific to PMSA V8 */
8776         ARMCPRegInfo id_hmpuir_reginfo = {
8777             .name = "HMPUIR",
8778             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8779             .access = PL2_R, .type = ARM_CP_CONST,
8780             .resetvalue = cpu->pmsav8r_hdregion
8781         };
8782         static const ARMCPRegInfo crn0_wi_reginfo = {
8783             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8784             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8785             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8786         };
8787 #ifdef CONFIG_USER_ONLY
8788         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8789             { .name = "MIDR_EL1",
8790               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8791                                R_MIDR_EL1_PARTNUM_MASK |
8792                                R_MIDR_EL1_ARCHITECTURE_MASK |
8793                                R_MIDR_EL1_VARIANT_MASK |
8794                                R_MIDR_EL1_IMPLEMENTER_MASK },
8795             { .name = "REVIDR_EL1" },
8796         };
8797         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8798 #endif
8799         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8800             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8801             size_t i;
8802             /*
8803              * Register the blanket "writes ignored" value first to cover the
8804              * whole space. Then update the specific ID registers to allow write
8805              * access, so that they ignore writes rather than causing them to
8806              * UNDEF.
8807              */
8808             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8809             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8810                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8811             }
8812             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8813                 id_cp_reginfo[i].access = PL1_RW;
8814             }
8815             id_mpuir_reginfo.access = PL1_RW;
8816             id_tlbtr_reginfo.access = PL1_RW;
8817         }
8818         if (arm_feature(env, ARM_FEATURE_V8)) {
8819             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8820             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8821                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8822             }
8823         } else {
8824             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8825         }
8826         define_arm_cp_regs(cpu, id_cp_reginfo);
8827         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8828             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8829         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8830                    arm_feature(env, ARM_FEATURE_V8)) {
8831             uint32_t i = 0;
8832             char *tmp_string;
8833 
8834             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8835             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8836             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8837 
8838             /* Register alias is only valid for first 32 indexes */
8839             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8840                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8841                 uint8_t opc1 = extract32(i, 4, 1);
8842                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8843 
8844                 tmp_string = g_strdup_printf("PRBAR%u", i);
8845                 ARMCPRegInfo tmp_prbarn_reginfo = {
8846                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8847                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8848                     .access = PL1_RW, .resetvalue = 0,
8849                     .accessfn = access_tvm_trvm,
8850                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8851                 };
8852                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8853                 g_free(tmp_string);
8854 
8855                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8856                 tmp_string = g_strdup_printf("PRLAR%u", i);
8857                 ARMCPRegInfo tmp_prlarn_reginfo = {
8858                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8859                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8860                     .access = PL1_RW, .resetvalue = 0,
8861                     .accessfn = access_tvm_trvm,
8862                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8863                 };
8864                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8865                 g_free(tmp_string);
8866             }
8867 
8868             /* Register alias is only valid for first 32 indexes */
8869             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8870                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8871                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8872                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8873 
8874                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8875                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8876                     .name = tmp_string,
8877                     .type = ARM_CP_NO_RAW,
8878                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8879                     .access = PL2_RW, .resetvalue = 0,
8880                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8881                 };
8882                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8883                 g_free(tmp_string);
8884 
8885                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8886                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8887                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8888                     .name = tmp_string,
8889                     .type = ARM_CP_NO_RAW,
8890                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8891                     .access = PL2_RW, .resetvalue = 0,
8892                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8893                 };
8894                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8895                 g_free(tmp_string);
8896             }
8897         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8898             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8899         }
8900     }
8901 
8902     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8903         ARMCPRegInfo mpidr_cp_reginfo[] = {
8904             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8905               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8906               .fgt = FGT_MPIDR_EL1,
8907               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8908         };
8909 #ifdef CONFIG_USER_ONLY
8910         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8911             { .name = "MPIDR_EL1",
8912               .fixed_bits = 0x0000000080000000 },
8913         };
8914         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8915 #endif
8916         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8917     }
8918 
8919     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8920         ARMCPRegInfo auxcr_reginfo[] = {
8921             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8922               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8923               .access = PL1_RW, .accessfn = access_tacr,
8924               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8925             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8926               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8927               .access = PL2_RW, .type = ARM_CP_CONST,
8928               .resetvalue = 0 },
8929             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8930               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8931               .access = PL3_RW, .type = ARM_CP_CONST,
8932               .resetvalue = 0 },
8933         };
8934         define_arm_cp_regs(cpu, auxcr_reginfo);
8935         if (cpu_isar_feature(aa32_ac2, cpu)) {
8936             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8937         }
8938     }
8939 
8940     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8941         /*
8942          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8943          * There are two flavours:
8944          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8945          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8946          *      32-bit register visible to AArch32 at a different encoding
8947          *      to the "flavour 1" register and with the bits rearranged to
8948          *      be able to squash a 64-bit address into the 32-bit view.
8949          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8950          * in future if we support AArch32-only configs of some of the
8951          * AArch64 cores we might need to add a specific feature flag
8952          * to indicate cores with "flavour 2" CBAR.
8953          */
8954         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8955             /* 32 bit view is [31:18] 0...0 [43:32]. */
8956             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8957                 | extract64(cpu->reset_cbar, 32, 12);
8958             ARMCPRegInfo cbar_reginfo[] = {
8959                 { .name = "CBAR",
8960                   .type = ARM_CP_CONST,
8961                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8962                   .access = PL1_R, .resetvalue = cbar32 },
8963                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8964                   .type = ARM_CP_CONST,
8965                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8966                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8967             };
8968             /* We don't implement a r/w 64 bit CBAR currently */
8969             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8970             define_arm_cp_regs(cpu, cbar_reginfo);
8971         } else {
8972             ARMCPRegInfo cbar = {
8973                 .name = "CBAR",
8974                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8975                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8976                 .fieldoffset = offsetof(CPUARMState,
8977                                         cp15.c15_config_base_address)
8978             };
8979             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8980                 cbar.access = PL1_R;
8981                 cbar.fieldoffset = 0;
8982                 cbar.type = ARM_CP_CONST;
8983             }
8984             define_one_arm_cp_reg(cpu, &cbar);
8985         }
8986     }
8987 
8988     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8989         static const ARMCPRegInfo vbar_cp_reginfo[] = {
8990             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8991               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8992               .access = PL1_RW, .writefn = vbar_write,
8993               .fgt = FGT_VBAR_EL1,
8994               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8995                                      offsetof(CPUARMState, cp15.vbar_ns) },
8996               .resetvalue = 0 },
8997         };
8998         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8999     }
9000 
9001     /* Generic registers whose values depend on the implementation */
9002     {
9003         ARMCPRegInfo sctlr = {
9004             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9005             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9006             .access = PL1_RW, .accessfn = access_tvm_trvm,
9007             .fgt = FGT_SCTLR_EL1,
9008             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9009                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9010             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9011             .raw_writefn = raw_write,
9012         };
9013         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9014             /*
9015              * Normally we would always end the TB on an SCTLR write, but Linux
9016              * arch/arm/mach-pxa/sleep.S expects two instructions following
9017              * an MMU enable to execute from cache.  Imitate this behaviour.
9018              */
9019             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9020         }
9021         define_one_arm_cp_reg(cpu, &sctlr);
9022 
9023         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9024             arm_feature(env, ARM_FEATURE_V8)) {
9025             ARMCPRegInfo vsctlr = {
9026                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9027                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9028                 .access = PL2_RW, .resetvalue = 0x0,
9029                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9030             };
9031             define_one_arm_cp_reg(cpu, &vsctlr);
9032         }
9033     }
9034 
9035     if (cpu_isar_feature(aa64_lor, cpu)) {
9036         define_arm_cp_regs(cpu, lor_reginfo);
9037     }
9038     if (cpu_isar_feature(aa64_pan, cpu)) {
9039         define_one_arm_cp_reg(cpu, &pan_reginfo);
9040     }
9041 #ifndef CONFIG_USER_ONLY
9042     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9043         define_arm_cp_regs(cpu, ats1e1_reginfo);
9044     }
9045     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9046         define_arm_cp_regs(cpu, ats1cp_reginfo);
9047     }
9048 #endif
9049     if (cpu_isar_feature(aa64_uao, cpu)) {
9050         define_one_arm_cp_reg(cpu, &uao_reginfo);
9051     }
9052 
9053     if (cpu_isar_feature(aa64_dit, cpu)) {
9054         define_one_arm_cp_reg(cpu, &dit_reginfo);
9055     }
9056     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9057         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9058     }
9059     if (cpu_isar_feature(any_ras, cpu)) {
9060         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9061     }
9062 
9063     if (cpu_isar_feature(aa64_vh, cpu) ||
9064         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9065         define_one_arm_cp_reg(cpu, &contextidr_el2);
9066     }
9067     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9068         define_arm_cp_regs(cpu, vhe_reginfo);
9069     }
9070 
9071     if (cpu_isar_feature(aa64_sve, cpu)) {
9072         define_arm_cp_regs(cpu, zcr_reginfo);
9073     }
9074 
9075     if (cpu_isar_feature(aa64_hcx, cpu)) {
9076         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9077     }
9078 
9079 #ifdef TARGET_AARCH64
9080     if (cpu_isar_feature(aa64_sme, cpu)) {
9081         define_arm_cp_regs(cpu, sme_reginfo);
9082     }
9083     if (cpu_isar_feature(aa64_pauth, cpu)) {
9084         define_arm_cp_regs(cpu, pauth_reginfo);
9085     }
9086     if (cpu_isar_feature(aa64_rndr, cpu)) {
9087         define_arm_cp_regs(cpu, rndr_reginfo);
9088     }
9089     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9090         define_arm_cp_regs(cpu, tlbirange_reginfo);
9091     }
9092     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9093         define_arm_cp_regs(cpu, tlbios_reginfo);
9094     }
9095 #ifndef CONFIG_USER_ONLY
9096     /* Data Cache clean instructions up to PoP */
9097     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9098         define_one_arm_cp_reg(cpu, dcpop_reg);
9099 
9100         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9101             define_one_arm_cp_reg(cpu, dcpodp_reg);
9102         }
9103     }
9104 #endif /*CONFIG_USER_ONLY*/
9105 
9106     /*
9107      * If full MTE is enabled, add all of the system registers.
9108      * If only "instructions available at EL0" are enabled,
9109      * then define only a RAZ/WI version of PSTATE.TCO.
9110      */
9111     if (cpu_isar_feature(aa64_mte, cpu)) {
9112         define_arm_cp_regs(cpu, mte_reginfo);
9113         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9114     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9115         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9116         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9117     }
9118 
9119     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9120         define_arm_cp_regs(cpu, scxtnum_reginfo);
9121     }
9122 
9123     if (cpu_isar_feature(aa64_fgt, cpu)) {
9124         define_arm_cp_regs(cpu, fgt_reginfo);
9125     }
9126 #endif
9127 
9128     if (cpu_isar_feature(any_predinv, cpu)) {
9129         define_arm_cp_regs(cpu, predinv_reginfo);
9130     }
9131 
9132     if (cpu_isar_feature(any_ccidx, cpu)) {
9133         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9134     }
9135 
9136 #ifndef CONFIG_USER_ONLY
9137     /*
9138      * Register redirections and aliases must be done last,
9139      * after the registers from the other extensions have been defined.
9140      */
9141     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9142         define_arm_vh_e2h_redirects_aliases(cpu);
9143     }
9144 #endif
9145 }
9146 
9147 /* Sort alphabetically by type name, except for "any". */
9148 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9149 {
9150     ObjectClass *class_a = (ObjectClass *)a;
9151     ObjectClass *class_b = (ObjectClass *)b;
9152     const char *name_a, *name_b;
9153 
9154     name_a = object_class_get_name(class_a);
9155     name_b = object_class_get_name(class_b);
9156     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9157         return 1;
9158     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9159         return -1;
9160     } else {
9161         return strcmp(name_a, name_b);
9162     }
9163 }
9164 
9165 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9166 {
9167     ObjectClass *oc = data;
9168     CPUClass *cc = CPU_CLASS(oc);
9169     const char *typename;
9170     char *name;
9171 
9172     typename = object_class_get_name(oc);
9173     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9174     if (cc->deprecation_note) {
9175         qemu_printf("  %s (deprecated)\n", name);
9176     } else {
9177         qemu_printf("  %s\n", name);
9178     }
9179     g_free(name);
9180 }
9181 
9182 void arm_cpu_list(void)
9183 {
9184     GSList *list;
9185 
9186     list = object_class_get_list(TYPE_ARM_CPU, false);
9187     list = g_slist_sort(list, arm_cpu_list_compare);
9188     qemu_printf("Available CPUs:\n");
9189     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9190     g_slist_free(list);
9191 }
9192 
9193 /*
9194  * Private utility function for define_one_arm_cp_reg_with_opaque():
9195  * add a single reginfo struct to the hash table.
9196  */
9197 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9198                                    void *opaque, CPState state,
9199                                    CPSecureState secstate,
9200                                    int crm, int opc1, int opc2,
9201                                    const char *name)
9202 {
9203     CPUARMState *env = &cpu->env;
9204     uint32_t key;
9205     ARMCPRegInfo *r2;
9206     bool is64 = r->type & ARM_CP_64BIT;
9207     bool ns = secstate & ARM_CP_SECSTATE_NS;
9208     int cp = r->cp;
9209     size_t name_len;
9210     bool make_const;
9211 
9212     switch (state) {
9213     case ARM_CP_STATE_AA32:
9214         /* We assume it is a cp15 register if the .cp field is left unset. */
9215         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9216             cp = 15;
9217         }
9218         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9219         break;
9220     case ARM_CP_STATE_AA64:
9221         /*
9222          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9223          * cp == 0 as equivalent to the value for "standard guest-visible
9224          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9225          * in their AArch64 view (the .cp value may be non-zero for the
9226          * benefit of the AArch32 view).
9227          */
9228         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9229             cp = CP_REG_ARM64_SYSREG_CP;
9230         }
9231         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9232         break;
9233     default:
9234         g_assert_not_reached();
9235     }
9236 
9237     /* Overriding of an existing definition must be explicitly requested. */
9238     if (!(r->type & ARM_CP_OVERRIDE)) {
9239         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9240         if (oldreg) {
9241             assert(oldreg->type & ARM_CP_OVERRIDE);
9242         }
9243     }
9244 
9245     /*
9246      * Eliminate registers that are not present because the EL is missing.
9247      * Doing this here makes it easier to put all registers for a given
9248      * feature into the same ARMCPRegInfo array and define them all at once.
9249      */
9250     make_const = false;
9251     if (arm_feature(env, ARM_FEATURE_EL3)) {
9252         /*
9253          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9254          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9255          */
9256         int min_el = ctz32(r->access) / 2;
9257         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9258             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9259                 return;
9260             }
9261             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9262         }
9263     } else {
9264         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9265                                  ? PL2_RW : PL1_RW);
9266         if ((r->access & max_el) == 0) {
9267             return;
9268         }
9269     }
9270 
9271     /* Combine cpreg and name into one allocation. */
9272     name_len = strlen(name) + 1;
9273     r2 = g_malloc(sizeof(*r2) + name_len);
9274     *r2 = *r;
9275     r2->name = memcpy(r2 + 1, name, name_len);
9276 
9277     /*
9278      * Update fields to match the instantiation, overwiting wildcards
9279      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9280      */
9281     r2->cp = cp;
9282     r2->crm = crm;
9283     r2->opc1 = opc1;
9284     r2->opc2 = opc2;
9285     r2->state = state;
9286     r2->secure = secstate;
9287     if (opaque) {
9288         r2->opaque = opaque;
9289     }
9290 
9291     if (make_const) {
9292         /* This should not have been a very special register to begin. */
9293         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9294         assert(old_special == 0 || old_special == ARM_CP_NOP);
9295         /*
9296          * Set the special function to CONST, retaining the other flags.
9297          * This is important for e.g. ARM_CP_SVE so that we still
9298          * take the SVE trap if CPTR_EL3.EZ == 0.
9299          */
9300         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9301         /*
9302          * Usually, these registers become RES0, but there are a few
9303          * special cases like VPIDR_EL2 which have a constant non-zero
9304          * value with writes ignored.
9305          */
9306         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9307             r2->resetvalue = 0;
9308         }
9309         /*
9310          * ARM_CP_CONST has precedence, so removing the callbacks and
9311          * offsets are not strictly necessary, but it is potentially
9312          * less confusing to debug later.
9313          */
9314         r2->readfn = NULL;
9315         r2->writefn = NULL;
9316         r2->raw_readfn = NULL;
9317         r2->raw_writefn = NULL;
9318         r2->resetfn = NULL;
9319         r2->fieldoffset = 0;
9320         r2->bank_fieldoffsets[0] = 0;
9321         r2->bank_fieldoffsets[1] = 0;
9322     } else {
9323         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9324 
9325         if (isbanked) {
9326             /*
9327              * Register is banked (using both entries in array).
9328              * Overwriting fieldoffset as the array is only used to define
9329              * banked registers but later only fieldoffset is used.
9330              */
9331             r2->fieldoffset = r->bank_fieldoffsets[ns];
9332         }
9333         if (state == ARM_CP_STATE_AA32) {
9334             if (isbanked) {
9335                 /*
9336                  * If the register is banked then we don't need to migrate or
9337                  * reset the 32-bit instance in certain cases:
9338                  *
9339                  * 1) If the register has both 32-bit and 64-bit instances
9340                  *    then we can count on the 64-bit instance taking care
9341                  *    of the non-secure bank.
9342                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9343                  *    version taking care of the secure bank.  This requires
9344                  *    that separate 32 and 64-bit definitions are provided.
9345                  */
9346                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9347                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9348                     r2->type |= ARM_CP_ALIAS;
9349                 }
9350             } else if ((secstate != r->secure) && !ns) {
9351                 /*
9352                  * The register is not banked so we only want to allow
9353                  * migration of the non-secure instance.
9354                  */
9355                 r2->type |= ARM_CP_ALIAS;
9356             }
9357 
9358             if (HOST_BIG_ENDIAN &&
9359                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9360                 r2->fieldoffset += sizeof(uint32_t);
9361             }
9362         }
9363     }
9364 
9365     /*
9366      * By convention, for wildcarded registers only the first
9367      * entry is used for migration; the others are marked as
9368      * ALIAS so we don't try to transfer the register
9369      * multiple times. Special registers (ie NOP/WFI) are
9370      * never migratable and not even raw-accessible.
9371      */
9372     if (r2->type & ARM_CP_SPECIAL_MASK) {
9373         r2->type |= ARM_CP_NO_RAW;
9374     }
9375     if (((r->crm == CP_ANY) && crm != 0) ||
9376         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9377         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9378         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9379     }
9380 
9381     /*
9382      * Check that raw accesses are either forbidden or handled. Note that
9383      * we can't assert this earlier because the setup of fieldoffset for
9384      * banked registers has to be done first.
9385      */
9386     if (!(r2->type & ARM_CP_NO_RAW)) {
9387         assert(!raw_accessors_invalid(r2));
9388     }
9389 
9390     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9391 }
9392 
9393 
9394 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9395                                        const ARMCPRegInfo *r, void *opaque)
9396 {
9397     /*
9398      * Define implementations of coprocessor registers.
9399      * We store these in a hashtable because typically
9400      * there are less than 150 registers in a space which
9401      * is 16*16*16*8*8 = 262144 in size.
9402      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9403      * If a register is defined twice then the second definition is
9404      * used, so this can be used to define some generic registers and
9405      * then override them with implementation specific variations.
9406      * At least one of the original and the second definition should
9407      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9408      * against accidental use.
9409      *
9410      * The state field defines whether the register is to be
9411      * visible in the AArch32 or AArch64 execution state. If the
9412      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9413      * reginfo structure for the AArch32 view, which sees the lower
9414      * 32 bits of the 64 bit register.
9415      *
9416      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9417      * be wildcarded. AArch64 registers are always considered to be 64
9418      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9419      * the register, if any.
9420      */
9421     int crm, opc1, opc2;
9422     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9423     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9424     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9425     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9426     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9427     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9428     CPState state;
9429 
9430     /* 64 bit registers have only CRm and Opc1 fields */
9431     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9432     /* op0 only exists in the AArch64 encodings */
9433     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9434     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9435     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9436     /*
9437      * This API is only for Arm's system coprocessors (14 and 15) or
9438      * (M-profile or v7A-and-earlier only) for implementation defined
9439      * coprocessors in the range 0..7.  Our decode assumes this, since
9440      * 8..13 can be used for other insns including VFP and Neon. See
9441      * valid_cp() in translate.c.  Assert here that we haven't tried
9442      * to use an invalid coprocessor number.
9443      */
9444     switch (r->state) {
9445     case ARM_CP_STATE_BOTH:
9446         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9447         if (r->cp == 0) {
9448             break;
9449         }
9450         /* fall through */
9451     case ARM_CP_STATE_AA32:
9452         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9453             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9454             assert(r->cp >= 14 && r->cp <= 15);
9455         } else {
9456             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9457         }
9458         break;
9459     case ARM_CP_STATE_AA64:
9460         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9461         break;
9462     default:
9463         g_assert_not_reached();
9464     }
9465     /*
9466      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9467      * encodes a minimum access level for the register. We roll this
9468      * runtime check into our general permission check code, so check
9469      * here that the reginfo's specified permissions are strict enough
9470      * to encompass the generic architectural permission check.
9471      */
9472     if (r->state != ARM_CP_STATE_AA32) {
9473         CPAccessRights mask;
9474         switch (r->opc1) {
9475         case 0:
9476             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9477             mask = PL0U_R | PL1_RW;
9478             break;
9479         case 1: case 2:
9480             /* min_EL EL1 */
9481             mask = PL1_RW;
9482             break;
9483         case 3:
9484             /* min_EL EL0 */
9485             mask = PL0_RW;
9486             break;
9487         case 4:
9488         case 5:
9489             /* min_EL EL2 */
9490             mask = PL2_RW;
9491             break;
9492         case 6:
9493             /* min_EL EL3 */
9494             mask = PL3_RW;
9495             break;
9496         case 7:
9497             /* min_EL EL1, secure mode only (we don't check the latter) */
9498             mask = PL1_RW;
9499             break;
9500         default:
9501             /* broken reginfo with out-of-range opc1 */
9502             g_assert_not_reached();
9503         }
9504         /* assert our permissions are not too lax (stricter is fine) */
9505         assert((r->access & ~mask) == 0);
9506     }
9507 
9508     /*
9509      * Check that the register definition has enough info to handle
9510      * reads and writes if they are permitted.
9511      */
9512     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9513         if (r->access & PL3_R) {
9514             assert((r->fieldoffset ||
9515                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9516                    r->readfn);
9517         }
9518         if (r->access & PL3_W) {
9519             assert((r->fieldoffset ||
9520                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9521                    r->writefn);
9522         }
9523     }
9524 
9525     for (crm = crmmin; crm <= crmmax; crm++) {
9526         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9527             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9528                 for (state = ARM_CP_STATE_AA32;
9529                      state <= ARM_CP_STATE_AA64; state++) {
9530                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9531                         continue;
9532                     }
9533                     if (state == ARM_CP_STATE_AA32) {
9534                         /*
9535                          * Under AArch32 CP registers can be common
9536                          * (same for secure and non-secure world) or banked.
9537                          */
9538                         char *name;
9539 
9540                         switch (r->secure) {
9541                         case ARM_CP_SECSTATE_S:
9542                         case ARM_CP_SECSTATE_NS:
9543                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9544                                                    r->secure, crm, opc1, opc2,
9545                                                    r->name);
9546                             break;
9547                         case ARM_CP_SECSTATE_BOTH:
9548                             name = g_strdup_printf("%s_S", r->name);
9549                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9550                                                    ARM_CP_SECSTATE_S,
9551                                                    crm, opc1, opc2, name);
9552                             g_free(name);
9553                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9554                                                    ARM_CP_SECSTATE_NS,
9555                                                    crm, opc1, opc2, r->name);
9556                             break;
9557                         default:
9558                             g_assert_not_reached();
9559                         }
9560                     } else {
9561                         /*
9562                          * AArch64 registers get mapped to non-secure instance
9563                          * of AArch32
9564                          */
9565                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9566                                                ARM_CP_SECSTATE_NS,
9567                                                crm, opc1, opc2, r->name);
9568                     }
9569                 }
9570             }
9571         }
9572     }
9573 }
9574 
9575 /* Define a whole list of registers */
9576 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9577                                         void *opaque, size_t len)
9578 {
9579     size_t i;
9580     for (i = 0; i < len; ++i) {
9581         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9582     }
9583 }
9584 
9585 /*
9586  * Modify ARMCPRegInfo for access from userspace.
9587  *
9588  * This is a data driven modification directed by
9589  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9590  * user-space cannot alter any values and dynamic values pertaining to
9591  * execution state are hidden from user space view anyway.
9592  */
9593 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9594                                  const ARMCPRegUserSpaceInfo *mods,
9595                                  size_t mods_len)
9596 {
9597     for (size_t mi = 0; mi < mods_len; ++mi) {
9598         const ARMCPRegUserSpaceInfo *m = mods + mi;
9599         GPatternSpec *pat = NULL;
9600 
9601         if (m->is_glob) {
9602             pat = g_pattern_spec_new(m->name);
9603         }
9604         for (size_t ri = 0; ri < regs_len; ++ri) {
9605             ARMCPRegInfo *r = regs + ri;
9606 
9607             if (pat && g_pattern_match_string(pat, r->name)) {
9608                 r->type = ARM_CP_CONST;
9609                 r->access = PL0U_R;
9610                 r->resetvalue = 0;
9611                 /* continue */
9612             } else if (strcmp(r->name, m->name) == 0) {
9613                 r->type = ARM_CP_CONST;
9614                 r->access = PL0U_R;
9615                 r->resetvalue &= m->exported_bits;
9616                 r->resetvalue |= m->fixed_bits;
9617                 break;
9618             }
9619         }
9620         if (pat) {
9621             g_pattern_spec_free(pat);
9622         }
9623     }
9624 }
9625 
9626 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9627 {
9628     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9629 }
9630 
9631 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9632                          uint64_t value)
9633 {
9634     /* Helper coprocessor write function for write-ignore registers */
9635 }
9636 
9637 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9638 {
9639     /* Helper coprocessor write function for read-as-zero registers */
9640     return 0;
9641 }
9642 
9643 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9644 {
9645     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9646 }
9647 
9648 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9649 {
9650     /*
9651      * Return true if it is not valid for us to switch to
9652      * this CPU mode (ie all the UNPREDICTABLE cases in
9653      * the ARM ARM CPSRWriteByInstr pseudocode).
9654      */
9655 
9656     /* Changes to or from Hyp via MSR and CPS are illegal. */
9657     if (write_type == CPSRWriteByInstr &&
9658         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9659          mode == ARM_CPU_MODE_HYP)) {
9660         return 1;
9661     }
9662 
9663     switch (mode) {
9664     case ARM_CPU_MODE_USR:
9665         return 0;
9666     case ARM_CPU_MODE_SYS:
9667     case ARM_CPU_MODE_SVC:
9668     case ARM_CPU_MODE_ABT:
9669     case ARM_CPU_MODE_UND:
9670     case ARM_CPU_MODE_IRQ:
9671     case ARM_CPU_MODE_FIQ:
9672         /*
9673          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9674          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9675          */
9676         /*
9677          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9678          * and CPS are treated as illegal mode changes.
9679          */
9680         if (write_type == CPSRWriteByInstr &&
9681             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9682             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9683             return 1;
9684         }
9685         return 0;
9686     case ARM_CPU_MODE_HYP:
9687         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9688     case ARM_CPU_MODE_MON:
9689         return arm_current_el(env) < 3;
9690     default:
9691         return 1;
9692     }
9693 }
9694 
9695 uint32_t cpsr_read(CPUARMState *env)
9696 {
9697     int ZF;
9698     ZF = (env->ZF == 0);
9699     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9700         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9701         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9702         | ((env->condexec_bits & 0xfc) << 8)
9703         | (env->GE << 16) | (env->daif & CPSR_AIF);
9704 }
9705 
9706 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9707                 CPSRWriteType write_type)
9708 {
9709     uint32_t changed_daif;
9710     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9711         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9712 
9713     if (mask & CPSR_NZCV) {
9714         env->ZF = (~val) & CPSR_Z;
9715         env->NF = val;
9716         env->CF = (val >> 29) & 1;
9717         env->VF = (val << 3) & 0x80000000;
9718     }
9719     if (mask & CPSR_Q) {
9720         env->QF = ((val & CPSR_Q) != 0);
9721     }
9722     if (mask & CPSR_T) {
9723         env->thumb = ((val & CPSR_T) != 0);
9724     }
9725     if (mask & CPSR_IT_0_1) {
9726         env->condexec_bits &= ~3;
9727         env->condexec_bits |= (val >> 25) & 3;
9728     }
9729     if (mask & CPSR_IT_2_7) {
9730         env->condexec_bits &= 3;
9731         env->condexec_bits |= (val >> 8) & 0xfc;
9732     }
9733     if (mask & CPSR_GE) {
9734         env->GE = (val >> 16) & 0xf;
9735     }
9736 
9737     /*
9738      * In a V7 implementation that includes the security extensions but does
9739      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9740      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9741      * bits respectively.
9742      *
9743      * In a V8 implementation, it is permitted for privileged software to
9744      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9745      */
9746     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9747         arm_feature(env, ARM_FEATURE_EL3) &&
9748         !arm_feature(env, ARM_FEATURE_EL2) &&
9749         !arm_is_secure(env)) {
9750 
9751         changed_daif = (env->daif ^ val) & mask;
9752 
9753         if (changed_daif & CPSR_A) {
9754             /*
9755              * Check to see if we are allowed to change the masking of async
9756              * abort exceptions from a non-secure state.
9757              */
9758             if (!(env->cp15.scr_el3 & SCR_AW)) {
9759                 qemu_log_mask(LOG_GUEST_ERROR,
9760                               "Ignoring attempt to switch CPSR_A flag from "
9761                               "non-secure world with SCR.AW bit clear\n");
9762                 mask &= ~CPSR_A;
9763             }
9764         }
9765 
9766         if (changed_daif & CPSR_F) {
9767             /*
9768              * Check to see if we are allowed to change the masking of FIQ
9769              * exceptions from a non-secure state.
9770              */
9771             if (!(env->cp15.scr_el3 & SCR_FW)) {
9772                 qemu_log_mask(LOG_GUEST_ERROR,
9773                               "Ignoring attempt to switch CPSR_F flag from "
9774                               "non-secure world with SCR.FW bit clear\n");
9775                 mask &= ~CPSR_F;
9776             }
9777 
9778             /*
9779              * Check whether non-maskable FIQ (NMFI) support is enabled.
9780              * If this bit is set software is not allowed to mask
9781              * FIQs, but is allowed to set CPSR_F to 0.
9782              */
9783             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9784                 (val & CPSR_F)) {
9785                 qemu_log_mask(LOG_GUEST_ERROR,
9786                               "Ignoring attempt to enable CPSR_F flag "
9787                               "(non-maskable FIQ [NMFI] support enabled)\n");
9788                 mask &= ~CPSR_F;
9789             }
9790         }
9791     }
9792 
9793     env->daif &= ~(CPSR_AIF & mask);
9794     env->daif |= val & CPSR_AIF & mask;
9795 
9796     if (write_type != CPSRWriteRaw &&
9797         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9798         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9799             /*
9800              * Note that we can only get here in USR mode if this is a
9801              * gdb stub write; for this case we follow the architectural
9802              * behaviour for guest writes in USR mode of ignoring an attempt
9803              * to switch mode. (Those are caught by translate.c for writes
9804              * triggered by guest instructions.)
9805              */
9806             mask &= ~CPSR_M;
9807         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9808             /*
9809              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9810              * v7, and has defined behaviour in v8:
9811              *  + leave CPSR.M untouched
9812              *  + allow changes to the other CPSR fields
9813              *  + set PSTATE.IL
9814              * For user changes via the GDB stub, we don't set PSTATE.IL,
9815              * as this would be unnecessarily harsh for a user error.
9816              */
9817             mask &= ~CPSR_M;
9818             if (write_type != CPSRWriteByGDBStub &&
9819                 arm_feature(env, ARM_FEATURE_V8)) {
9820                 mask |= CPSR_IL;
9821                 val |= CPSR_IL;
9822             }
9823             qemu_log_mask(LOG_GUEST_ERROR,
9824                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9825                           aarch32_mode_name(env->uncached_cpsr),
9826                           aarch32_mode_name(val));
9827         } else {
9828             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9829                           write_type == CPSRWriteExceptionReturn ?
9830                           "Exception return from AArch32" :
9831                           "AArch32 mode switch from",
9832                           aarch32_mode_name(env->uncached_cpsr),
9833                           aarch32_mode_name(val), env->regs[15]);
9834             switch_mode(env, val & CPSR_M);
9835         }
9836     }
9837     mask &= ~CACHED_CPSR_BITS;
9838     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9839     if (tcg_enabled() && rebuild_hflags) {
9840         arm_rebuild_hflags(env);
9841     }
9842 }
9843 
9844 /* Sign/zero extend */
9845 uint32_t HELPER(sxtb16)(uint32_t x)
9846 {
9847     uint32_t res;
9848     res = (uint16_t)(int8_t)x;
9849     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9850     return res;
9851 }
9852 
9853 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9854 {
9855     /*
9856      * Take a division-by-zero exception if necessary; otherwise return
9857      * to get the usual non-trapping division behaviour (result of 0)
9858      */
9859     if (arm_feature(env, ARM_FEATURE_M)
9860         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9861         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9862     }
9863 }
9864 
9865 uint32_t HELPER(uxtb16)(uint32_t x)
9866 {
9867     uint32_t res;
9868     res = (uint16_t)(uint8_t)x;
9869     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9870     return res;
9871 }
9872 
9873 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9874 {
9875     if (den == 0) {
9876         handle_possible_div0_trap(env, GETPC());
9877         return 0;
9878     }
9879     if (num == INT_MIN && den == -1) {
9880         return INT_MIN;
9881     }
9882     return num / den;
9883 }
9884 
9885 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9886 {
9887     if (den == 0) {
9888         handle_possible_div0_trap(env, GETPC());
9889         return 0;
9890     }
9891     return num / den;
9892 }
9893 
9894 uint32_t HELPER(rbit)(uint32_t x)
9895 {
9896     return revbit32(x);
9897 }
9898 
9899 #ifdef CONFIG_USER_ONLY
9900 
9901 static void switch_mode(CPUARMState *env, int mode)
9902 {
9903     ARMCPU *cpu = env_archcpu(env);
9904 
9905     if (mode != ARM_CPU_MODE_USR) {
9906         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9907     }
9908 }
9909 
9910 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9911                                  uint32_t cur_el, bool secure)
9912 {
9913     return 1;
9914 }
9915 
9916 void aarch64_sync_64_to_32(CPUARMState *env)
9917 {
9918     g_assert_not_reached();
9919 }
9920 
9921 #else
9922 
9923 static void switch_mode(CPUARMState *env, int mode)
9924 {
9925     int old_mode;
9926     int i;
9927 
9928     old_mode = env->uncached_cpsr & CPSR_M;
9929     if (mode == old_mode) {
9930         return;
9931     }
9932 
9933     if (old_mode == ARM_CPU_MODE_FIQ) {
9934         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9935         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9936     } else if (mode == ARM_CPU_MODE_FIQ) {
9937         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9938         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9939     }
9940 
9941     i = bank_number(old_mode);
9942     env->banked_r13[i] = env->regs[13];
9943     env->banked_spsr[i] = env->spsr;
9944 
9945     i = bank_number(mode);
9946     env->regs[13] = env->banked_r13[i];
9947     env->spsr = env->banked_spsr[i];
9948 
9949     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9950     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9951 }
9952 
9953 /*
9954  * Physical Interrupt Target EL Lookup Table
9955  *
9956  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9957  *
9958  * The below multi-dimensional table is used for looking up the target
9959  * exception level given numerous condition criteria.  Specifically, the
9960  * target EL is based on SCR and HCR routing controls as well as the
9961  * currently executing EL and secure state.
9962  *
9963  *    Dimensions:
9964  *    target_el_table[2][2][2][2][2][4]
9965  *                    |  |  |  |  |  +--- Current EL
9966  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9967  *                    |  |  |  +--------- HCR mask override
9968  *                    |  |  +------------ SCR exec state control
9969  *                    |  +--------------- SCR mask override
9970  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9971  *
9972  *    The table values are as such:
9973  *    0-3 = EL0-EL3
9974  *     -1 = Cannot occur
9975  *
9976  * The ARM ARM target EL table includes entries indicating that an "exception
9977  * is not taken".  The two cases where this is applicable are:
9978  *    1) An exception is taken from EL3 but the SCR does not have the exception
9979  *    routed to EL3.
9980  *    2) An exception is taken from EL2 but the HCR does not have the exception
9981  *    routed to EL2.
9982  * In these two cases, the below table contain a target of EL1.  This value is
9983  * returned as it is expected that the consumer of the table data will check
9984  * for "target EL >= current EL" to ensure the exception is not taken.
9985  *
9986  *            SCR     HCR
9987  *         64  EA     AMO                 From
9988  *        BIT IRQ     IMO      Non-secure         Secure
9989  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9990  */
9991 static const int8_t target_el_table[2][2][2][2][2][4] = {
9992     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9993        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9994       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9995        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9996      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9997        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9998       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9999        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10000     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10001        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10002       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10003        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10004      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10005        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10006       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10007        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10008 };
10009 
10010 /*
10011  * Determine the target EL for physical exceptions
10012  */
10013 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10014                                  uint32_t cur_el, bool secure)
10015 {
10016     CPUARMState *env = cs->env_ptr;
10017     bool rw;
10018     bool scr;
10019     bool hcr;
10020     int target_el;
10021     /* Is the highest EL AArch64? */
10022     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10023     uint64_t hcr_el2;
10024 
10025     if (arm_feature(env, ARM_FEATURE_EL3)) {
10026         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10027     } else {
10028         /*
10029          * Either EL2 is the highest EL (and so the EL2 register width
10030          * is given by is64); or there is no EL2 or EL3, in which case
10031          * the value of 'rw' does not affect the table lookup anyway.
10032          */
10033         rw = is64;
10034     }
10035 
10036     hcr_el2 = arm_hcr_el2_eff(env);
10037     switch (excp_idx) {
10038     case EXCP_IRQ:
10039         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10040         hcr = hcr_el2 & HCR_IMO;
10041         break;
10042     case EXCP_FIQ:
10043         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10044         hcr = hcr_el2 & HCR_FMO;
10045         break;
10046     default:
10047         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10048         hcr = hcr_el2 & HCR_AMO;
10049         break;
10050     };
10051 
10052     /*
10053      * For these purposes, TGE and AMO/IMO/FMO both force the
10054      * interrupt to EL2.  Fold TGE into the bit extracted above.
10055      */
10056     hcr |= (hcr_el2 & HCR_TGE) != 0;
10057 
10058     /* Perform a table-lookup for the target EL given the current state */
10059     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10060 
10061     assert(target_el > 0);
10062 
10063     return target_el;
10064 }
10065 
10066 void arm_log_exception(CPUState *cs)
10067 {
10068     int idx = cs->exception_index;
10069 
10070     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10071         const char *exc = NULL;
10072         static const char * const excnames[] = {
10073             [EXCP_UDEF] = "Undefined Instruction",
10074             [EXCP_SWI] = "SVC",
10075             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10076             [EXCP_DATA_ABORT] = "Data Abort",
10077             [EXCP_IRQ] = "IRQ",
10078             [EXCP_FIQ] = "FIQ",
10079             [EXCP_BKPT] = "Breakpoint",
10080             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10081             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10082             [EXCP_HVC] = "Hypervisor Call",
10083             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10084             [EXCP_SMC] = "Secure Monitor Call",
10085             [EXCP_VIRQ] = "Virtual IRQ",
10086             [EXCP_VFIQ] = "Virtual FIQ",
10087             [EXCP_SEMIHOST] = "Semihosting call",
10088             [EXCP_NOCP] = "v7M NOCP UsageFault",
10089             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10090             [EXCP_STKOF] = "v8M STKOF UsageFault",
10091             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10092             [EXCP_LSERR] = "v8M LSERR UsageFault",
10093             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10094             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10095             [EXCP_VSERR] = "Virtual SERR",
10096         };
10097 
10098         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10099             exc = excnames[idx];
10100         }
10101         if (!exc) {
10102             exc = "unknown";
10103         }
10104         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10105                       idx, exc, cs->cpu_index);
10106     }
10107 }
10108 
10109 /*
10110  * Function used to synchronize QEMU's AArch64 register set with AArch32
10111  * register set.  This is necessary when switching between AArch32 and AArch64
10112  * execution state.
10113  */
10114 void aarch64_sync_32_to_64(CPUARMState *env)
10115 {
10116     int i;
10117     uint32_t mode = env->uncached_cpsr & CPSR_M;
10118 
10119     /* We can blanket copy R[0:7] to X[0:7] */
10120     for (i = 0; i < 8; i++) {
10121         env->xregs[i] = env->regs[i];
10122     }
10123 
10124     /*
10125      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10126      * Otherwise, they come from the banked user regs.
10127      */
10128     if (mode == ARM_CPU_MODE_FIQ) {
10129         for (i = 8; i < 13; i++) {
10130             env->xregs[i] = env->usr_regs[i - 8];
10131         }
10132     } else {
10133         for (i = 8; i < 13; i++) {
10134             env->xregs[i] = env->regs[i];
10135         }
10136     }
10137 
10138     /*
10139      * Registers x13-x23 are the various mode SP and FP registers. Registers
10140      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10141      * from the mode banked register.
10142      */
10143     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10144         env->xregs[13] = env->regs[13];
10145         env->xregs[14] = env->regs[14];
10146     } else {
10147         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10148         /* HYP is an exception in that it is copied from r14 */
10149         if (mode == ARM_CPU_MODE_HYP) {
10150             env->xregs[14] = env->regs[14];
10151         } else {
10152             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10153         }
10154     }
10155 
10156     if (mode == ARM_CPU_MODE_HYP) {
10157         env->xregs[15] = env->regs[13];
10158     } else {
10159         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10160     }
10161 
10162     if (mode == ARM_CPU_MODE_IRQ) {
10163         env->xregs[16] = env->regs[14];
10164         env->xregs[17] = env->regs[13];
10165     } else {
10166         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10167         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10168     }
10169 
10170     if (mode == ARM_CPU_MODE_SVC) {
10171         env->xregs[18] = env->regs[14];
10172         env->xregs[19] = env->regs[13];
10173     } else {
10174         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10175         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10176     }
10177 
10178     if (mode == ARM_CPU_MODE_ABT) {
10179         env->xregs[20] = env->regs[14];
10180         env->xregs[21] = env->regs[13];
10181     } else {
10182         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10183         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10184     }
10185 
10186     if (mode == ARM_CPU_MODE_UND) {
10187         env->xregs[22] = env->regs[14];
10188         env->xregs[23] = env->regs[13];
10189     } else {
10190         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10191         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10192     }
10193 
10194     /*
10195      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10196      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10197      * FIQ bank for r8-r14.
10198      */
10199     if (mode == ARM_CPU_MODE_FIQ) {
10200         for (i = 24; i < 31; i++) {
10201             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10202         }
10203     } else {
10204         for (i = 24; i < 29; i++) {
10205             env->xregs[i] = env->fiq_regs[i - 24];
10206         }
10207         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10208         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10209     }
10210 
10211     env->pc = env->regs[15];
10212 }
10213 
10214 /*
10215  * Function used to synchronize QEMU's AArch32 register set with AArch64
10216  * register set.  This is necessary when switching between AArch32 and AArch64
10217  * execution state.
10218  */
10219 void aarch64_sync_64_to_32(CPUARMState *env)
10220 {
10221     int i;
10222     uint32_t mode = env->uncached_cpsr & CPSR_M;
10223 
10224     /* We can blanket copy X[0:7] to R[0:7] */
10225     for (i = 0; i < 8; i++) {
10226         env->regs[i] = env->xregs[i];
10227     }
10228 
10229     /*
10230      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10231      * Otherwise, we copy x8-x12 into the banked user regs.
10232      */
10233     if (mode == ARM_CPU_MODE_FIQ) {
10234         for (i = 8; i < 13; i++) {
10235             env->usr_regs[i - 8] = env->xregs[i];
10236         }
10237     } else {
10238         for (i = 8; i < 13; i++) {
10239             env->regs[i] = env->xregs[i];
10240         }
10241     }
10242 
10243     /*
10244      * Registers r13 & r14 depend on the current mode.
10245      * If we are in a given mode, we copy the corresponding x registers to r13
10246      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10247      * for the mode.
10248      */
10249     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10250         env->regs[13] = env->xregs[13];
10251         env->regs[14] = env->xregs[14];
10252     } else {
10253         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10254 
10255         /*
10256          * HYP is an exception in that it does not have its own banked r14 but
10257          * shares the USR r14
10258          */
10259         if (mode == ARM_CPU_MODE_HYP) {
10260             env->regs[14] = env->xregs[14];
10261         } else {
10262             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10263         }
10264     }
10265 
10266     if (mode == ARM_CPU_MODE_HYP) {
10267         env->regs[13] = env->xregs[15];
10268     } else {
10269         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10270     }
10271 
10272     if (mode == ARM_CPU_MODE_IRQ) {
10273         env->regs[14] = env->xregs[16];
10274         env->regs[13] = env->xregs[17];
10275     } else {
10276         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10277         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10278     }
10279 
10280     if (mode == ARM_CPU_MODE_SVC) {
10281         env->regs[14] = env->xregs[18];
10282         env->regs[13] = env->xregs[19];
10283     } else {
10284         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10285         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10286     }
10287 
10288     if (mode == ARM_CPU_MODE_ABT) {
10289         env->regs[14] = env->xregs[20];
10290         env->regs[13] = env->xregs[21];
10291     } else {
10292         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10293         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10294     }
10295 
10296     if (mode == ARM_CPU_MODE_UND) {
10297         env->regs[14] = env->xregs[22];
10298         env->regs[13] = env->xregs[23];
10299     } else {
10300         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10301         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10302     }
10303 
10304     /*
10305      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10306      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10307      * FIQ bank for r8-r14.
10308      */
10309     if (mode == ARM_CPU_MODE_FIQ) {
10310         for (i = 24; i < 31; i++) {
10311             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10312         }
10313     } else {
10314         for (i = 24; i < 29; i++) {
10315             env->fiq_regs[i - 24] = env->xregs[i];
10316         }
10317         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10318         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10319     }
10320 
10321     env->regs[15] = env->pc;
10322 }
10323 
10324 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10325                                    uint32_t mask, uint32_t offset,
10326                                    uint32_t newpc)
10327 {
10328     int new_el;
10329 
10330     /* Change the CPU state so as to actually take the exception. */
10331     switch_mode(env, new_mode);
10332 
10333     /*
10334      * For exceptions taken to AArch32 we must clear the SS bit in both
10335      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10336      */
10337     env->pstate &= ~PSTATE_SS;
10338     env->spsr = cpsr_read(env);
10339     /* Clear IT bits.  */
10340     env->condexec_bits = 0;
10341     /* Switch to the new mode, and to the correct instruction set.  */
10342     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10343 
10344     /* This must be after mode switching. */
10345     new_el = arm_current_el(env);
10346 
10347     /* Set new mode endianness */
10348     env->uncached_cpsr &= ~CPSR_E;
10349     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10350         env->uncached_cpsr |= CPSR_E;
10351     }
10352     /* J and IL must always be cleared for exception entry */
10353     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10354     env->daif |= mask;
10355 
10356     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10357         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10358             env->uncached_cpsr |= CPSR_SSBS;
10359         } else {
10360             env->uncached_cpsr &= ~CPSR_SSBS;
10361         }
10362     }
10363 
10364     if (new_mode == ARM_CPU_MODE_HYP) {
10365         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10366         env->elr_el[2] = env->regs[15];
10367     } else {
10368         /* CPSR.PAN is normally preserved preserved unless...  */
10369         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10370             switch (new_el) {
10371             case 3:
10372                 if (!arm_is_secure_below_el3(env)) {
10373                     /* ... the target is EL3, from non-secure state.  */
10374                     env->uncached_cpsr &= ~CPSR_PAN;
10375                     break;
10376                 }
10377                 /* ... the target is EL3, from secure state ... */
10378                 /* fall through */
10379             case 1:
10380                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10381                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10382                     env->uncached_cpsr |= CPSR_PAN;
10383                 }
10384                 break;
10385             }
10386         }
10387         /*
10388          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10389          * and we should just guard the thumb mode on V4
10390          */
10391         if (arm_feature(env, ARM_FEATURE_V4T)) {
10392             env->thumb =
10393                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10394         }
10395         env->regs[14] = env->regs[15] + offset;
10396     }
10397     env->regs[15] = newpc;
10398 
10399     if (tcg_enabled()) {
10400         arm_rebuild_hflags(env);
10401     }
10402 }
10403 
10404 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10405 {
10406     /*
10407      * Handle exception entry to Hyp mode; this is sufficiently
10408      * different to entry to other AArch32 modes that we handle it
10409      * separately here.
10410      *
10411      * The vector table entry used is always the 0x14 Hyp mode entry point,
10412      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10413      * The offset applied to the preferred return address is always zero
10414      * (see DDI0487C.a section G1.12.3).
10415      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10416      */
10417     uint32_t addr, mask;
10418     ARMCPU *cpu = ARM_CPU(cs);
10419     CPUARMState *env = &cpu->env;
10420 
10421     switch (cs->exception_index) {
10422     case EXCP_UDEF:
10423         addr = 0x04;
10424         break;
10425     case EXCP_SWI:
10426         addr = 0x08;
10427         break;
10428     case EXCP_BKPT:
10429         /* Fall through to prefetch abort.  */
10430     case EXCP_PREFETCH_ABORT:
10431         env->cp15.ifar_s = env->exception.vaddress;
10432         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10433                       (uint32_t)env->exception.vaddress);
10434         addr = 0x0c;
10435         break;
10436     case EXCP_DATA_ABORT:
10437         env->cp15.dfar_s = env->exception.vaddress;
10438         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10439                       (uint32_t)env->exception.vaddress);
10440         addr = 0x10;
10441         break;
10442     case EXCP_IRQ:
10443         addr = 0x18;
10444         break;
10445     case EXCP_FIQ:
10446         addr = 0x1c;
10447         break;
10448     case EXCP_HVC:
10449         addr = 0x08;
10450         break;
10451     case EXCP_HYP_TRAP:
10452         addr = 0x14;
10453         break;
10454     default:
10455         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10456     }
10457 
10458     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10459         if (!arm_feature(env, ARM_FEATURE_V8)) {
10460             /*
10461              * QEMU syndrome values are v8-style. v7 has the IL bit
10462              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10463              * If this is a v7 CPU, squash the IL bit in those cases.
10464              */
10465             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10466                 (cs->exception_index == EXCP_DATA_ABORT &&
10467                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10468                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10469                 env->exception.syndrome &= ~ARM_EL_IL;
10470             }
10471         }
10472         env->cp15.esr_el[2] = env->exception.syndrome;
10473     }
10474 
10475     if (arm_current_el(env) != 2 && addr < 0x14) {
10476         addr = 0x14;
10477     }
10478 
10479     mask = 0;
10480     if (!(env->cp15.scr_el3 & SCR_EA)) {
10481         mask |= CPSR_A;
10482     }
10483     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10484         mask |= CPSR_I;
10485     }
10486     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10487         mask |= CPSR_F;
10488     }
10489 
10490     addr += env->cp15.hvbar;
10491 
10492     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10493 }
10494 
10495 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10496 {
10497     ARMCPU *cpu = ARM_CPU(cs);
10498     CPUARMState *env = &cpu->env;
10499     uint32_t addr;
10500     uint32_t mask;
10501     int new_mode;
10502     uint32_t offset;
10503     uint32_t moe;
10504 
10505     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10506     switch (syn_get_ec(env->exception.syndrome)) {
10507     case EC_BREAKPOINT:
10508     case EC_BREAKPOINT_SAME_EL:
10509         moe = 1;
10510         break;
10511     case EC_WATCHPOINT:
10512     case EC_WATCHPOINT_SAME_EL:
10513         moe = 10;
10514         break;
10515     case EC_AA32_BKPT:
10516         moe = 3;
10517         break;
10518     case EC_VECTORCATCH:
10519         moe = 5;
10520         break;
10521     default:
10522         moe = 0;
10523         break;
10524     }
10525 
10526     if (moe) {
10527         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10528     }
10529 
10530     if (env->exception.target_el == 2) {
10531         arm_cpu_do_interrupt_aarch32_hyp(cs);
10532         return;
10533     }
10534 
10535     switch (cs->exception_index) {
10536     case EXCP_UDEF:
10537         new_mode = ARM_CPU_MODE_UND;
10538         addr = 0x04;
10539         mask = CPSR_I;
10540         if (env->thumb) {
10541             offset = 2;
10542         } else {
10543             offset = 4;
10544         }
10545         break;
10546     case EXCP_SWI:
10547         new_mode = ARM_CPU_MODE_SVC;
10548         addr = 0x08;
10549         mask = CPSR_I;
10550         /* The PC already points to the next instruction.  */
10551         offset = 0;
10552         break;
10553     case EXCP_BKPT:
10554         /* Fall through to prefetch abort.  */
10555     case EXCP_PREFETCH_ABORT:
10556         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10557         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10558         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10559                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10560         new_mode = ARM_CPU_MODE_ABT;
10561         addr = 0x0c;
10562         mask = CPSR_A | CPSR_I;
10563         offset = 4;
10564         break;
10565     case EXCP_DATA_ABORT:
10566         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10567         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10568         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10569                       env->exception.fsr,
10570                       (uint32_t)env->exception.vaddress);
10571         new_mode = ARM_CPU_MODE_ABT;
10572         addr = 0x10;
10573         mask = CPSR_A | CPSR_I;
10574         offset = 8;
10575         break;
10576     case EXCP_IRQ:
10577         new_mode = ARM_CPU_MODE_IRQ;
10578         addr = 0x18;
10579         /* Disable IRQ and imprecise data aborts.  */
10580         mask = CPSR_A | CPSR_I;
10581         offset = 4;
10582         if (env->cp15.scr_el3 & SCR_IRQ) {
10583             /* IRQ routed to monitor mode */
10584             new_mode = ARM_CPU_MODE_MON;
10585             mask |= CPSR_F;
10586         }
10587         break;
10588     case EXCP_FIQ:
10589         new_mode = ARM_CPU_MODE_FIQ;
10590         addr = 0x1c;
10591         /* Disable FIQ, IRQ and imprecise data aborts.  */
10592         mask = CPSR_A | CPSR_I | CPSR_F;
10593         if (env->cp15.scr_el3 & SCR_FIQ) {
10594             /* FIQ routed to monitor mode */
10595             new_mode = ARM_CPU_MODE_MON;
10596         }
10597         offset = 4;
10598         break;
10599     case EXCP_VIRQ:
10600         new_mode = ARM_CPU_MODE_IRQ;
10601         addr = 0x18;
10602         /* Disable IRQ and imprecise data aborts.  */
10603         mask = CPSR_A | CPSR_I;
10604         offset = 4;
10605         break;
10606     case EXCP_VFIQ:
10607         new_mode = ARM_CPU_MODE_FIQ;
10608         addr = 0x1c;
10609         /* Disable FIQ, IRQ and imprecise data aborts.  */
10610         mask = CPSR_A | CPSR_I | CPSR_F;
10611         offset = 4;
10612         break;
10613     case EXCP_VSERR:
10614         {
10615             /*
10616              * Note that this is reported as a data abort, but the DFAR
10617              * has an UNKNOWN value.  Construct the SError syndrome from
10618              * AET and ExT fields.
10619              */
10620             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10621 
10622             if (extended_addresses_enabled(env)) {
10623                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10624             } else {
10625                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10626             }
10627             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10628             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10629             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10630                           env->exception.fsr);
10631 
10632             new_mode = ARM_CPU_MODE_ABT;
10633             addr = 0x10;
10634             mask = CPSR_A | CPSR_I;
10635             offset = 8;
10636         }
10637         break;
10638     case EXCP_SMC:
10639         new_mode = ARM_CPU_MODE_MON;
10640         addr = 0x08;
10641         mask = CPSR_A | CPSR_I | CPSR_F;
10642         offset = 0;
10643         break;
10644     default:
10645         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10646         return; /* Never happens.  Keep compiler happy.  */
10647     }
10648 
10649     if (new_mode == ARM_CPU_MODE_MON) {
10650         addr += env->cp15.mvbar;
10651     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10652         /* High vectors. When enabled, base address cannot be remapped. */
10653         addr += 0xffff0000;
10654     } else {
10655         /*
10656          * ARM v7 architectures provide a vector base address register to remap
10657          * the interrupt vector table.
10658          * This register is only followed in non-monitor mode, and is banked.
10659          * Note: only bits 31:5 are valid.
10660          */
10661         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10662     }
10663 
10664     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10665         env->cp15.scr_el3 &= ~SCR_NS;
10666     }
10667 
10668     take_aarch32_exception(env, new_mode, mask, offset, addr);
10669 }
10670 
10671 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10672 {
10673     /*
10674      * Return the register number of the AArch64 view of the AArch32
10675      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10676      * be that of the AArch32 mode the exception came from.
10677      */
10678     int mode = env->uncached_cpsr & CPSR_M;
10679 
10680     switch (aarch32_reg) {
10681     case 0 ... 7:
10682         return aarch32_reg;
10683     case 8 ... 12:
10684         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10685     case 13:
10686         switch (mode) {
10687         case ARM_CPU_MODE_USR:
10688         case ARM_CPU_MODE_SYS:
10689             return 13;
10690         case ARM_CPU_MODE_HYP:
10691             return 15;
10692         case ARM_CPU_MODE_IRQ:
10693             return 17;
10694         case ARM_CPU_MODE_SVC:
10695             return 19;
10696         case ARM_CPU_MODE_ABT:
10697             return 21;
10698         case ARM_CPU_MODE_UND:
10699             return 23;
10700         case ARM_CPU_MODE_FIQ:
10701             return 29;
10702         default:
10703             g_assert_not_reached();
10704         }
10705     case 14:
10706         switch (mode) {
10707         case ARM_CPU_MODE_USR:
10708         case ARM_CPU_MODE_SYS:
10709         case ARM_CPU_MODE_HYP:
10710             return 14;
10711         case ARM_CPU_MODE_IRQ:
10712             return 16;
10713         case ARM_CPU_MODE_SVC:
10714             return 18;
10715         case ARM_CPU_MODE_ABT:
10716             return 20;
10717         case ARM_CPU_MODE_UND:
10718             return 22;
10719         case ARM_CPU_MODE_FIQ:
10720             return 30;
10721         default:
10722             g_assert_not_reached();
10723         }
10724     case 15:
10725         return 31;
10726     default:
10727         g_assert_not_reached();
10728     }
10729 }
10730 
10731 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10732 {
10733     uint32_t ret = cpsr_read(env);
10734 
10735     /* Move DIT to the correct location for SPSR_ELx */
10736     if (ret & CPSR_DIT) {
10737         ret &= ~CPSR_DIT;
10738         ret |= PSTATE_DIT;
10739     }
10740     /* Merge PSTATE.SS into SPSR_ELx */
10741     ret |= env->pstate & PSTATE_SS;
10742 
10743     return ret;
10744 }
10745 
10746 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10747 {
10748     /* Return true if this syndrome value is a synchronous external abort */
10749     switch (syn_get_ec(syndrome)) {
10750     case EC_INSNABORT:
10751     case EC_INSNABORT_SAME_EL:
10752     case EC_DATAABORT:
10753     case EC_DATAABORT_SAME_EL:
10754         /* Look at fault status code for all the synchronous ext abort cases */
10755         switch (syndrome & 0x3f) {
10756         case 0x10:
10757         case 0x13:
10758         case 0x14:
10759         case 0x15:
10760         case 0x16:
10761         case 0x17:
10762             return true;
10763         default:
10764             return false;
10765         }
10766     default:
10767         return false;
10768     }
10769 }
10770 
10771 /* Handle exception entry to a target EL which is using AArch64 */
10772 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10773 {
10774     ARMCPU *cpu = ARM_CPU(cs);
10775     CPUARMState *env = &cpu->env;
10776     unsigned int new_el = env->exception.target_el;
10777     target_ulong addr = env->cp15.vbar_el[new_el];
10778     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10779     unsigned int old_mode;
10780     unsigned int cur_el = arm_current_el(env);
10781     int rt;
10782 
10783     if (tcg_enabled()) {
10784         /*
10785          * Note that new_el can never be 0.  If cur_el is 0, then
10786          * el0_a64 is is_a64(), else el0_a64 is ignored.
10787          */
10788         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10789     }
10790 
10791     if (cur_el < new_el) {
10792         /*
10793          * Entry vector offset depends on whether the implemented EL
10794          * immediately lower than the target level is using AArch32 or AArch64
10795          */
10796         bool is_aa64;
10797         uint64_t hcr;
10798 
10799         switch (new_el) {
10800         case 3:
10801             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10802             break;
10803         case 2:
10804             hcr = arm_hcr_el2_eff(env);
10805             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10806                 is_aa64 = (hcr & HCR_RW) != 0;
10807                 break;
10808             }
10809             /* fall through */
10810         case 1:
10811             is_aa64 = is_a64(env);
10812             break;
10813         default:
10814             g_assert_not_reached();
10815         }
10816 
10817         if (is_aa64) {
10818             addr += 0x400;
10819         } else {
10820             addr += 0x600;
10821         }
10822     } else if (pstate_read(env) & PSTATE_SP) {
10823         addr += 0x200;
10824     }
10825 
10826     switch (cs->exception_index) {
10827     case EXCP_PREFETCH_ABORT:
10828     case EXCP_DATA_ABORT:
10829         /*
10830          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10831          * to be taken to the SError vector entrypoint.
10832          */
10833         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10834             syndrome_is_sync_extabt(env->exception.syndrome)) {
10835             addr += 0x180;
10836         }
10837         env->cp15.far_el[new_el] = env->exception.vaddress;
10838         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10839                       env->cp15.far_el[new_el]);
10840         /* fall through */
10841     case EXCP_BKPT:
10842     case EXCP_UDEF:
10843     case EXCP_SWI:
10844     case EXCP_HVC:
10845     case EXCP_HYP_TRAP:
10846     case EXCP_SMC:
10847         switch (syn_get_ec(env->exception.syndrome)) {
10848         case EC_ADVSIMDFPACCESSTRAP:
10849             /*
10850              * QEMU internal FP/SIMD syndromes from AArch32 include the
10851              * TA and coproc fields which are only exposed if the exception
10852              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10853              * AArch64 format syndrome.
10854              */
10855             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10856             break;
10857         case EC_CP14RTTRAP:
10858         case EC_CP15RTTRAP:
10859         case EC_CP14DTTRAP:
10860             /*
10861              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10862              * the raw register field from the insn; when taking this to
10863              * AArch64 we must convert it to the AArch64 view of the register
10864              * number. Notice that we read a 4-bit AArch32 register number and
10865              * write back a 5-bit AArch64 one.
10866              */
10867             rt = extract32(env->exception.syndrome, 5, 4);
10868             rt = aarch64_regnum(env, rt);
10869             env->exception.syndrome = deposit32(env->exception.syndrome,
10870                                                 5, 5, rt);
10871             break;
10872         case EC_CP15RRTTRAP:
10873         case EC_CP14RRTTRAP:
10874             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10875             rt = extract32(env->exception.syndrome, 5, 4);
10876             rt = aarch64_regnum(env, rt);
10877             env->exception.syndrome = deposit32(env->exception.syndrome,
10878                                                 5, 5, rt);
10879             rt = extract32(env->exception.syndrome, 10, 4);
10880             rt = aarch64_regnum(env, rt);
10881             env->exception.syndrome = deposit32(env->exception.syndrome,
10882                                                 10, 5, rt);
10883             break;
10884         }
10885         env->cp15.esr_el[new_el] = env->exception.syndrome;
10886         break;
10887     case EXCP_IRQ:
10888     case EXCP_VIRQ:
10889         addr += 0x80;
10890         break;
10891     case EXCP_FIQ:
10892     case EXCP_VFIQ:
10893         addr += 0x100;
10894         break;
10895     case EXCP_VSERR:
10896         addr += 0x180;
10897         /* Construct the SError syndrome from IDS and ISS fields. */
10898         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10899         env->cp15.esr_el[new_el] = env->exception.syndrome;
10900         break;
10901     default:
10902         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10903     }
10904 
10905     if (is_a64(env)) {
10906         old_mode = pstate_read(env);
10907         aarch64_save_sp(env, arm_current_el(env));
10908         env->elr_el[new_el] = env->pc;
10909     } else {
10910         old_mode = cpsr_read_for_spsr_elx(env);
10911         env->elr_el[new_el] = env->regs[15];
10912 
10913         aarch64_sync_32_to_64(env);
10914 
10915         env->condexec_bits = 0;
10916     }
10917     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10918 
10919     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10920                   env->elr_el[new_el]);
10921 
10922     if (cpu_isar_feature(aa64_pan, cpu)) {
10923         /* The value of PSTATE.PAN is normally preserved, except when ... */
10924         new_mode |= old_mode & PSTATE_PAN;
10925         switch (new_el) {
10926         case 2:
10927             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10928             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10929                 != (HCR_E2H | HCR_TGE)) {
10930                 break;
10931             }
10932             /* fall through */
10933         case 1:
10934             /* ... the target is EL1 ... */
10935             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10936             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10937                 new_mode |= PSTATE_PAN;
10938             }
10939             break;
10940         }
10941     }
10942     if (cpu_isar_feature(aa64_mte, cpu)) {
10943         new_mode |= PSTATE_TCO;
10944     }
10945 
10946     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10947         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10948             new_mode |= PSTATE_SSBS;
10949         } else {
10950             new_mode &= ~PSTATE_SSBS;
10951         }
10952     }
10953 
10954     pstate_write(env, PSTATE_DAIF | new_mode);
10955     env->aarch64 = true;
10956     aarch64_restore_sp(env, new_el);
10957 
10958     if (tcg_enabled()) {
10959         helper_rebuild_hflags_a64(env, new_el);
10960     }
10961 
10962     env->pc = addr;
10963 
10964     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10965                   new_el, env->pc, pstate_read(env));
10966 }
10967 
10968 /*
10969  * Do semihosting call and set the appropriate return value. All the
10970  * permission and validity checks have been done at translate time.
10971  *
10972  * We only see semihosting exceptions in TCG only as they are not
10973  * trapped to the hypervisor in KVM.
10974  */
10975 #ifdef CONFIG_TCG
10976 static void tcg_handle_semihosting(CPUState *cs)
10977 {
10978     ARMCPU *cpu = ARM_CPU(cs);
10979     CPUARMState *env = &cpu->env;
10980 
10981     if (is_a64(env)) {
10982         qemu_log_mask(CPU_LOG_INT,
10983                       "...handling as semihosting call 0x%" PRIx64 "\n",
10984                       env->xregs[0]);
10985         do_common_semihosting(cs);
10986         env->pc += 4;
10987     } else {
10988         qemu_log_mask(CPU_LOG_INT,
10989                       "...handling as semihosting call 0x%x\n",
10990                       env->regs[0]);
10991         do_common_semihosting(cs);
10992         env->regs[15] += env->thumb ? 2 : 4;
10993     }
10994 }
10995 #endif
10996 
10997 /*
10998  * Handle a CPU exception for A and R profile CPUs.
10999  * Do any appropriate logging, handle PSCI calls, and then hand off
11000  * to the AArch64-entry or AArch32-entry function depending on the
11001  * target exception level's register width.
11002  *
11003  * Note: this is used for both TCG (as the do_interrupt tcg op),
11004  *       and KVM to re-inject guest debug exceptions, and to
11005  *       inject a Synchronous-External-Abort.
11006  */
11007 void arm_cpu_do_interrupt(CPUState *cs)
11008 {
11009     ARMCPU *cpu = ARM_CPU(cs);
11010     CPUARMState *env = &cpu->env;
11011     unsigned int new_el = env->exception.target_el;
11012 
11013     assert(!arm_feature(env, ARM_FEATURE_M));
11014 
11015     arm_log_exception(cs);
11016     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11017                   new_el);
11018     if (qemu_loglevel_mask(CPU_LOG_INT)
11019         && !excp_is_internal(cs->exception_index)) {
11020         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11021                       syn_get_ec(env->exception.syndrome),
11022                       env->exception.syndrome);
11023     }
11024 
11025     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11026         arm_handle_psci_call(cpu);
11027         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11028         return;
11029     }
11030 
11031     /*
11032      * Semihosting semantics depend on the register width of the code
11033      * that caused the exception, not the target exception level, so
11034      * must be handled here.
11035      */
11036 #ifdef CONFIG_TCG
11037     if (cs->exception_index == EXCP_SEMIHOST) {
11038         tcg_handle_semihosting(cs);
11039         return;
11040     }
11041 #endif
11042 
11043     /*
11044      * Hooks may change global state so BQL should be held, also the
11045      * BQL needs to be held for any modification of
11046      * cs->interrupt_request.
11047      */
11048     g_assert(qemu_mutex_iothread_locked());
11049 
11050     arm_call_pre_el_change_hook(cpu);
11051 
11052     assert(!excp_is_internal(cs->exception_index));
11053     if (arm_el_is_aa64(env, new_el)) {
11054         arm_cpu_do_interrupt_aarch64(cs);
11055     } else {
11056         arm_cpu_do_interrupt_aarch32(cs);
11057     }
11058 
11059     arm_call_el_change_hook(cpu);
11060 
11061     if (!kvm_enabled()) {
11062         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11063     }
11064 }
11065 #endif /* !CONFIG_USER_ONLY */
11066 
11067 uint64_t arm_sctlr(CPUARMState *env, int el)
11068 {
11069     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11070     if (el == 0) {
11071         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11072         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11073     }
11074     return env->cp15.sctlr_el[el];
11075 }
11076 
11077 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11078 {
11079     if (regime_has_2_ranges(mmu_idx)) {
11080         return extract64(tcr, 37, 2);
11081     } else if (regime_is_stage2(mmu_idx)) {
11082         return 0; /* VTCR_EL2 */
11083     } else {
11084         /* Replicate the single TBI bit so we always have 2 bits.  */
11085         return extract32(tcr, 20, 1) * 3;
11086     }
11087 }
11088 
11089 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11090 {
11091     if (regime_has_2_ranges(mmu_idx)) {
11092         return extract64(tcr, 51, 2);
11093     } else if (regime_is_stage2(mmu_idx)) {
11094         return 0; /* VTCR_EL2 */
11095     } else {
11096         /* Replicate the single TBID bit so we always have 2 bits.  */
11097         return extract32(tcr, 29, 1) * 3;
11098     }
11099 }
11100 
11101 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11102 {
11103     if (regime_has_2_ranges(mmu_idx)) {
11104         return extract64(tcr, 57, 2);
11105     } else {
11106         /* Replicate the single TCMA bit so we always have 2 bits.  */
11107         return extract32(tcr, 30, 1) * 3;
11108     }
11109 }
11110 
11111 static ARMGranuleSize tg0_to_gran_size(int tg)
11112 {
11113     switch (tg) {
11114     case 0:
11115         return Gran4K;
11116     case 1:
11117         return Gran64K;
11118     case 2:
11119         return Gran16K;
11120     default:
11121         return GranInvalid;
11122     }
11123 }
11124 
11125 static ARMGranuleSize tg1_to_gran_size(int tg)
11126 {
11127     switch (tg) {
11128     case 1:
11129         return Gran16K;
11130     case 2:
11131         return Gran4K;
11132     case 3:
11133         return Gran64K;
11134     default:
11135         return GranInvalid;
11136     }
11137 }
11138 
11139 static inline bool have4k(ARMCPU *cpu, bool stage2)
11140 {
11141     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11142         : cpu_isar_feature(aa64_tgran4, cpu);
11143 }
11144 
11145 static inline bool have16k(ARMCPU *cpu, bool stage2)
11146 {
11147     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11148         : cpu_isar_feature(aa64_tgran16, cpu);
11149 }
11150 
11151 static inline bool have64k(ARMCPU *cpu, bool stage2)
11152 {
11153     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11154         : cpu_isar_feature(aa64_tgran64, cpu);
11155 }
11156 
11157 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11158                                          bool stage2)
11159 {
11160     switch (gran) {
11161     case Gran4K:
11162         if (have4k(cpu, stage2)) {
11163             return gran;
11164         }
11165         break;
11166     case Gran16K:
11167         if (have16k(cpu, stage2)) {
11168             return gran;
11169         }
11170         break;
11171     case Gran64K:
11172         if (have64k(cpu, stage2)) {
11173             return gran;
11174         }
11175         break;
11176     case GranInvalid:
11177         break;
11178     }
11179     /*
11180      * If the guest selects a granule size that isn't implemented,
11181      * the architecture requires that we behave as if it selected one
11182      * that is (with an IMPDEF choice of which one to pick). We choose
11183      * to implement the smallest supported granule size.
11184      */
11185     if (have4k(cpu, stage2)) {
11186         return Gran4K;
11187     }
11188     if (have16k(cpu, stage2)) {
11189         return Gran16K;
11190     }
11191     assert(have64k(cpu, stage2));
11192     return Gran64K;
11193 }
11194 
11195 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11196                                    ARMMMUIdx mmu_idx, bool data)
11197 {
11198     uint64_t tcr = regime_tcr(env, mmu_idx);
11199     bool epd, hpd, tsz_oob, ds, ha, hd;
11200     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11201     ARMGranuleSize gran;
11202     ARMCPU *cpu = env_archcpu(env);
11203     bool stage2 = regime_is_stage2(mmu_idx);
11204 
11205     if (!regime_has_2_ranges(mmu_idx)) {
11206         select = 0;
11207         tsz = extract32(tcr, 0, 6);
11208         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11209         if (stage2) {
11210             /* VTCR_EL2 */
11211             hpd = false;
11212         } else {
11213             hpd = extract32(tcr, 24, 1);
11214         }
11215         epd = false;
11216         sh = extract32(tcr, 12, 2);
11217         ps = extract32(tcr, 16, 3);
11218         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11219         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11220         ds = extract64(tcr, 32, 1);
11221     } else {
11222         bool e0pd;
11223 
11224         /*
11225          * Bit 55 is always between the two regions, and is canonical for
11226          * determining if address tagging is enabled.
11227          */
11228         select = extract64(va, 55, 1);
11229         if (!select) {
11230             tsz = extract32(tcr, 0, 6);
11231             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11232             epd = extract32(tcr, 7, 1);
11233             sh = extract32(tcr, 12, 2);
11234             hpd = extract64(tcr, 41, 1);
11235             e0pd = extract64(tcr, 55, 1);
11236         } else {
11237             tsz = extract32(tcr, 16, 6);
11238             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11239             epd = extract32(tcr, 23, 1);
11240             sh = extract32(tcr, 28, 2);
11241             hpd = extract64(tcr, 42, 1);
11242             e0pd = extract64(tcr, 56, 1);
11243         }
11244         ps = extract64(tcr, 32, 3);
11245         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11246         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11247         ds = extract64(tcr, 59, 1);
11248 
11249         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11250             regime_is_user(env, mmu_idx)) {
11251             epd = true;
11252         }
11253     }
11254 
11255     gran = sanitize_gran_size(cpu, gran, stage2);
11256 
11257     if (cpu_isar_feature(aa64_st, cpu)) {
11258         max_tsz = 48 - (gran == Gran64K);
11259     } else {
11260         max_tsz = 39;
11261     }
11262 
11263     /*
11264      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11265      * adjust the effective value of DS, as documented.
11266      */
11267     min_tsz = 16;
11268     if (gran == Gran64K) {
11269         if (cpu_isar_feature(aa64_lva, cpu)) {
11270             min_tsz = 12;
11271         }
11272         ds = false;
11273     } else if (ds) {
11274         if (regime_is_stage2(mmu_idx)) {
11275             if (gran == Gran16K) {
11276                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11277             } else {
11278                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11279             }
11280         } else {
11281             if (gran == Gran16K) {
11282                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11283             } else {
11284                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11285             }
11286         }
11287         if (ds) {
11288             min_tsz = 12;
11289         }
11290     }
11291 
11292     if (tsz > max_tsz) {
11293         tsz = max_tsz;
11294         tsz_oob = true;
11295     } else if (tsz < min_tsz) {
11296         tsz = min_tsz;
11297         tsz_oob = true;
11298     } else {
11299         tsz_oob = false;
11300     }
11301 
11302     /* Present TBI as a composite with TBID.  */
11303     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11304     if (!data) {
11305         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11306     }
11307     tbi = (tbi >> select) & 1;
11308 
11309     return (ARMVAParameters) {
11310         .tsz = tsz,
11311         .ps = ps,
11312         .sh = sh,
11313         .select = select,
11314         .tbi = tbi,
11315         .epd = epd,
11316         .hpd = hpd,
11317         .tsz_oob = tsz_oob,
11318         .ds = ds,
11319         .ha = ha,
11320         .hd = ha && hd,
11321         .gran = gran,
11322     };
11323 }
11324 
11325 /*
11326  * Note that signed overflow is undefined in C.  The following routines are
11327  * careful to use unsigned types where modulo arithmetic is required.
11328  * Failure to do so _will_ break on newer gcc.
11329  */
11330 
11331 /* Signed saturating arithmetic.  */
11332 
11333 /* Perform 16-bit signed saturating addition.  */
11334 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11335 {
11336     uint16_t res;
11337 
11338     res = a + b;
11339     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11340         if (a & 0x8000) {
11341             res = 0x8000;
11342         } else {
11343             res = 0x7fff;
11344         }
11345     }
11346     return res;
11347 }
11348 
11349 /* Perform 8-bit signed saturating addition.  */
11350 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11351 {
11352     uint8_t res;
11353 
11354     res = a + b;
11355     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11356         if (a & 0x80) {
11357             res = 0x80;
11358         } else {
11359             res = 0x7f;
11360         }
11361     }
11362     return res;
11363 }
11364 
11365 /* Perform 16-bit signed saturating subtraction.  */
11366 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11367 {
11368     uint16_t res;
11369 
11370     res = a - b;
11371     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11372         if (a & 0x8000) {
11373             res = 0x8000;
11374         } else {
11375             res = 0x7fff;
11376         }
11377     }
11378     return res;
11379 }
11380 
11381 /* Perform 8-bit signed saturating subtraction.  */
11382 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11383 {
11384     uint8_t res;
11385 
11386     res = a - b;
11387     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11388         if (a & 0x80) {
11389             res = 0x80;
11390         } else {
11391             res = 0x7f;
11392         }
11393     }
11394     return res;
11395 }
11396 
11397 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11398 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11399 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11400 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11401 #define PFX q
11402 
11403 #include "op_addsub.h"
11404 
11405 /* Unsigned saturating arithmetic.  */
11406 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11407 {
11408     uint16_t res;
11409     res = a + b;
11410     if (res < a) {
11411         res = 0xffff;
11412     }
11413     return res;
11414 }
11415 
11416 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11417 {
11418     if (a > b) {
11419         return a - b;
11420     } else {
11421         return 0;
11422     }
11423 }
11424 
11425 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11426 {
11427     uint8_t res;
11428     res = a + b;
11429     if (res < a) {
11430         res = 0xff;
11431     }
11432     return res;
11433 }
11434 
11435 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11436 {
11437     if (a > b) {
11438         return a - b;
11439     } else {
11440         return 0;
11441     }
11442 }
11443 
11444 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11445 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11446 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11447 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11448 #define PFX uq
11449 
11450 #include "op_addsub.h"
11451 
11452 /* Signed modulo arithmetic.  */
11453 #define SARITH16(a, b, n, op) do { \
11454     int32_t sum; \
11455     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11456     RESULT(sum, n, 16); \
11457     if (sum >= 0) \
11458         ge |= 3 << (n * 2); \
11459     } while (0)
11460 
11461 #define SARITH8(a, b, n, op) do { \
11462     int32_t sum; \
11463     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11464     RESULT(sum, n, 8); \
11465     if (sum >= 0) \
11466         ge |= 1 << n; \
11467     } while (0)
11468 
11469 
11470 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11471 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11472 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11473 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11474 #define PFX s
11475 #define ARITH_GE
11476 
11477 #include "op_addsub.h"
11478 
11479 /* Unsigned modulo arithmetic.  */
11480 #define ADD16(a, b, n) do { \
11481     uint32_t sum; \
11482     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11483     RESULT(sum, n, 16); \
11484     if ((sum >> 16) == 1) \
11485         ge |= 3 << (n * 2); \
11486     } while (0)
11487 
11488 #define ADD8(a, b, n) do { \
11489     uint32_t sum; \
11490     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11491     RESULT(sum, n, 8); \
11492     if ((sum >> 8) == 1) \
11493         ge |= 1 << n; \
11494     } while (0)
11495 
11496 #define SUB16(a, b, n) do { \
11497     uint32_t sum; \
11498     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11499     RESULT(sum, n, 16); \
11500     if ((sum >> 16) == 0) \
11501         ge |= 3 << (n * 2); \
11502     } while (0)
11503 
11504 #define SUB8(a, b, n) do { \
11505     uint32_t sum; \
11506     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11507     RESULT(sum, n, 8); \
11508     if ((sum >> 8) == 0) \
11509         ge |= 1 << n; \
11510     } while (0)
11511 
11512 #define PFX u
11513 #define ARITH_GE
11514 
11515 #include "op_addsub.h"
11516 
11517 /* Halved signed arithmetic.  */
11518 #define ADD16(a, b, n) \
11519   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11520 #define SUB16(a, b, n) \
11521   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11522 #define ADD8(a, b, n) \
11523   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11524 #define SUB8(a, b, n) \
11525   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11526 #define PFX sh
11527 
11528 #include "op_addsub.h"
11529 
11530 /* Halved unsigned arithmetic.  */
11531 #define ADD16(a, b, n) \
11532   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11533 #define SUB16(a, b, n) \
11534   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11535 #define ADD8(a, b, n) \
11536   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11537 #define SUB8(a, b, n) \
11538   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11539 #define PFX uh
11540 
11541 #include "op_addsub.h"
11542 
11543 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11544 {
11545     if (a > b) {
11546         return a - b;
11547     } else {
11548         return b - a;
11549     }
11550 }
11551 
11552 /* Unsigned sum of absolute byte differences.  */
11553 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11554 {
11555     uint32_t sum;
11556     sum = do_usad(a, b);
11557     sum += do_usad(a >> 8, b >> 8);
11558     sum += do_usad(a >> 16, b >> 16);
11559     sum += do_usad(a >> 24, b >> 24);
11560     return sum;
11561 }
11562 
11563 /* For ARMv6 SEL instruction.  */
11564 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11565 {
11566     uint32_t mask;
11567 
11568     mask = 0;
11569     if (flags & 1) {
11570         mask |= 0xff;
11571     }
11572     if (flags & 2) {
11573         mask |= 0xff00;
11574     }
11575     if (flags & 4) {
11576         mask |= 0xff0000;
11577     }
11578     if (flags & 8) {
11579         mask |= 0xff000000;
11580     }
11581     return (a & mask) | (b & ~mask);
11582 }
11583 
11584 /*
11585  * CRC helpers.
11586  * The upper bytes of val (above the number specified by 'bytes') must have
11587  * been zeroed out by the caller.
11588  */
11589 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11590 {
11591     uint8_t buf[4];
11592 
11593     stl_le_p(buf, val);
11594 
11595     /* zlib crc32 converts the accumulator and output to one's complement.  */
11596     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11597 }
11598 
11599 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11600 {
11601     uint8_t buf[4];
11602 
11603     stl_le_p(buf, val);
11604 
11605     /* Linux crc32c converts the output to one's complement.  */
11606     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11607 }
11608 
11609 /*
11610  * Return the exception level to which FP-disabled exceptions should
11611  * be taken, or 0 if FP is enabled.
11612  */
11613 int fp_exception_el(CPUARMState *env, int cur_el)
11614 {
11615 #ifndef CONFIG_USER_ONLY
11616     uint64_t hcr_el2;
11617 
11618     /*
11619      * CPACR and the CPTR registers don't exist before v6, so FP is
11620      * always accessible
11621      */
11622     if (!arm_feature(env, ARM_FEATURE_V6)) {
11623         return 0;
11624     }
11625 
11626     if (arm_feature(env, ARM_FEATURE_M)) {
11627         /* CPACR can cause a NOCP UsageFault taken to current security state */
11628         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11629             return 1;
11630         }
11631 
11632         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11633             if (!extract32(env->v7m.nsacr, 10, 1)) {
11634                 /* FP insns cause a NOCP UsageFault taken to Secure */
11635                 return 3;
11636             }
11637         }
11638 
11639         return 0;
11640     }
11641 
11642     hcr_el2 = arm_hcr_el2_eff(env);
11643 
11644     /*
11645      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11646      * 0, 2 : trap EL0 and EL1/PL1 accesses
11647      * 1    : trap only EL0 accesses
11648      * 3    : trap no accesses
11649      * This register is ignored if E2H+TGE are both set.
11650      */
11651     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11652         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11653 
11654         switch (fpen) {
11655         case 1:
11656             if (cur_el != 0) {
11657                 break;
11658             }
11659             /* fall through */
11660         case 0:
11661         case 2:
11662             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11663             if (!arm_el_is_aa64(env, 3)
11664                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11665                 return 3;
11666             }
11667             if (cur_el <= 1) {
11668                 return 1;
11669             }
11670             break;
11671         }
11672     }
11673 
11674     /*
11675      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11676      * to control non-secure access to the FPU. It doesn't have any
11677      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11678      */
11679     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11680          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11681         if (!extract32(env->cp15.nsacr, 10, 1)) {
11682             /* FP insns act as UNDEF */
11683             return cur_el == 2 ? 2 : 1;
11684         }
11685     }
11686 
11687     /*
11688      * CPTR_EL2 is present in v7VE or v8, and changes format
11689      * with HCR_EL2.E2H (regardless of TGE).
11690      */
11691     if (cur_el <= 2) {
11692         if (hcr_el2 & HCR_E2H) {
11693             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11694             case 1:
11695                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11696                     break;
11697                 }
11698                 /* fall through */
11699             case 0:
11700             case 2:
11701                 return 2;
11702             }
11703         } else if (arm_is_el2_enabled(env)) {
11704             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11705                 return 2;
11706             }
11707         }
11708     }
11709 
11710     /* CPTR_EL3 : present in v8 */
11711     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11712         /* Trap all FP ops to EL3 */
11713         return 3;
11714     }
11715 #endif
11716     return 0;
11717 }
11718 
11719 /* Return the exception level we're running at if this is our mmu_idx */
11720 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11721 {
11722     if (mmu_idx & ARM_MMU_IDX_M) {
11723         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11724     }
11725 
11726     switch (mmu_idx) {
11727     case ARMMMUIdx_E10_0:
11728     case ARMMMUIdx_E20_0:
11729         return 0;
11730     case ARMMMUIdx_E10_1:
11731     case ARMMMUIdx_E10_1_PAN:
11732         return 1;
11733     case ARMMMUIdx_E2:
11734     case ARMMMUIdx_E20_2:
11735     case ARMMMUIdx_E20_2_PAN:
11736         return 2;
11737     case ARMMMUIdx_E3:
11738         return 3;
11739     default:
11740         g_assert_not_reached();
11741     }
11742 }
11743 
11744 #ifndef CONFIG_TCG
11745 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11746 {
11747     g_assert_not_reached();
11748 }
11749 #endif
11750 
11751 static bool arm_pan_enabled(CPUARMState *env)
11752 {
11753     if (is_a64(env)) {
11754         return env->pstate & PSTATE_PAN;
11755     } else {
11756         return env->uncached_cpsr & CPSR_PAN;
11757     }
11758 }
11759 
11760 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11761 {
11762     ARMMMUIdx idx;
11763     uint64_t hcr;
11764 
11765     if (arm_feature(env, ARM_FEATURE_M)) {
11766         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11767     }
11768 
11769     /* See ARM pseudo-function ELIsInHost.  */
11770     switch (el) {
11771     case 0:
11772         hcr = arm_hcr_el2_eff(env);
11773         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11774             idx = ARMMMUIdx_E20_0;
11775         } else {
11776             idx = ARMMMUIdx_E10_0;
11777         }
11778         break;
11779     case 1:
11780         if (arm_pan_enabled(env)) {
11781             idx = ARMMMUIdx_E10_1_PAN;
11782         } else {
11783             idx = ARMMMUIdx_E10_1;
11784         }
11785         break;
11786     case 2:
11787         /* Note that TGE does not apply at EL2.  */
11788         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11789             if (arm_pan_enabled(env)) {
11790                 idx = ARMMMUIdx_E20_2_PAN;
11791             } else {
11792                 idx = ARMMMUIdx_E20_2;
11793             }
11794         } else {
11795             idx = ARMMMUIdx_E2;
11796         }
11797         break;
11798     case 3:
11799         return ARMMMUIdx_E3;
11800     default:
11801         g_assert_not_reached();
11802     }
11803 
11804     return idx;
11805 }
11806 
11807 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11808 {
11809     return arm_mmu_idx_el(env, arm_current_el(env));
11810 }
11811 
11812 static bool mve_no_pred(CPUARMState *env)
11813 {
11814     /*
11815      * Return true if there is definitely no predication of MVE
11816      * instructions by VPR or LTPSIZE. (Returning false even if there
11817      * isn't any predication is OK; generated code will just be
11818      * a little worse.)
11819      * If the CPU does not implement MVE then this TB flag is always 0.
11820      *
11821      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11822      * logic in gen_update_fp_context() needs to be updated to match.
11823      *
11824      * We do not include the effect of the ECI bits here -- they are
11825      * tracked in other TB flags. This simplifies the logic for
11826      * "when did we emit code that changes the MVE_NO_PRED TB flag
11827      * and thus need to end the TB?".
11828      */
11829     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11830         return false;
11831     }
11832     if (env->v7m.vpr) {
11833         return false;
11834     }
11835     if (env->v7m.ltpsize < 4) {
11836         return false;
11837     }
11838     return true;
11839 }
11840 
11841 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
11842                           target_ulong *cs_base, uint32_t *pflags)
11843 {
11844     CPUARMTBFlags flags;
11845 
11846     assert_hflags_rebuild_correctly(env);
11847     flags = env->hflags;
11848 
11849     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11850         *pc = env->pc;
11851         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11852             DP_TBFLAG_A64(flags, BTYPE, env->btype);
11853         }
11854     } else {
11855         *pc = env->regs[15];
11856 
11857         if (arm_feature(env, ARM_FEATURE_M)) {
11858             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11859                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11860                 != env->v7m.secure) {
11861                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11862             }
11863 
11864             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11865                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11866                  (env->v7m.secure &&
11867                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11868                 /*
11869                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11870                  * active FP context; we must create a new FP context before
11871                  * executing any FP insn.
11872                  */
11873                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11874             }
11875 
11876             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11877             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11878                 DP_TBFLAG_M32(flags, LSPACT, 1);
11879             }
11880 
11881             if (mve_no_pred(env)) {
11882                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11883             }
11884         } else {
11885             /*
11886              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11887              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11888              */
11889             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11890                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11891             } else {
11892                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
11893                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
11894             }
11895             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
11896                 DP_TBFLAG_A32(flags, VFPEN, 1);
11897             }
11898         }
11899 
11900         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
11901         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
11902     }
11903 
11904     /*
11905      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
11906      * states defined in the ARM ARM for software singlestep:
11907      *  SS_ACTIVE   PSTATE.SS   State
11908      *     0            x       Inactive (the TB flag for SS is always 0)
11909      *     1            0       Active-pending
11910      *     1            1       Active-not-pending
11911      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
11912      */
11913     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
11914         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
11915     }
11916 
11917     *pflags = flags.flags;
11918     *cs_base = flags.flags2;
11919 }
11920 
11921 #ifdef TARGET_AARCH64
11922 /*
11923  * The manual says that when SVE is enabled and VQ is widened the
11924  * implementation is allowed to zero the previously inaccessible
11925  * portion of the registers.  The corollary to that is that when
11926  * SVE is enabled and VQ is narrowed we are also allowed to zero
11927  * the now inaccessible portion of the registers.
11928  *
11929  * The intent of this is that no predicate bit beyond VQ is ever set.
11930  * Which means that some operations on predicate registers themselves
11931  * may operate on full uint64_t or even unrolled across the maximum
11932  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
11933  * may well be cheaper than conditionals to restrict the operation
11934  * to the relevant portion of a uint16_t[16].
11935  */
11936 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
11937 {
11938     int i, j;
11939     uint64_t pmask;
11940 
11941     assert(vq >= 1 && vq <= ARM_MAX_VQ);
11942     assert(vq <= env_archcpu(env)->sve_max_vq);
11943 
11944     /* Zap the high bits of the zregs.  */
11945     for (i = 0; i < 32; i++) {
11946         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
11947     }
11948 
11949     /* Zap the high bits of the pregs and ffr.  */
11950     pmask = 0;
11951     if (vq & 3) {
11952         pmask = ~(-1ULL << (16 * (vq & 3)));
11953     }
11954     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
11955         for (i = 0; i < 17; ++i) {
11956             env->vfp.pregs[i].p[j] &= pmask;
11957         }
11958         pmask = 0;
11959     }
11960 }
11961 
11962 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
11963 {
11964     int exc_el;
11965 
11966     if (sm) {
11967         exc_el = sme_exception_el(env, el);
11968     } else {
11969         exc_el = sve_exception_el(env, el);
11970     }
11971     if (exc_el) {
11972         return 0; /* disabled */
11973     }
11974     return sve_vqm1_for_el_sm(env, el, sm);
11975 }
11976 
11977 /*
11978  * Notice a change in SVE vector size when changing EL.
11979  */
11980 void aarch64_sve_change_el(CPUARMState *env, int old_el,
11981                            int new_el, bool el0_a64)
11982 {
11983     ARMCPU *cpu = env_archcpu(env);
11984     int old_len, new_len;
11985     bool old_a64, new_a64, sm;
11986 
11987     /* Nothing to do if no SVE.  */
11988     if (!cpu_isar_feature(aa64_sve, cpu)) {
11989         return;
11990     }
11991 
11992     /* Nothing to do if FP is disabled in either EL.  */
11993     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
11994         return;
11995     }
11996 
11997     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
11998     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
11999 
12000     /*
12001      * Both AArch64.TakeException and AArch64.ExceptionReturn
12002      * invoke ResetSVEState when taking an exception from, or
12003      * returning to, AArch32 state when PSTATE.SM is enabled.
12004      */
12005     sm = FIELD_EX64(env->svcr, SVCR, SM);
12006     if (old_a64 != new_a64 && sm) {
12007         arm_reset_sve_state(env);
12008         return;
12009     }
12010 
12011     /*
12012      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12013      * at ELx, or not available because the EL is in AArch32 state, then
12014      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12015      * has an effective value of 0".
12016      *
12017      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12018      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12019      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12020      * we already have the correct register contents when encountering the
12021      * vq0->vq0 transition between EL0->EL1.
12022      */
12023     old_len = new_len = 0;
12024     if (old_a64) {
12025         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12026     }
12027     if (new_a64) {
12028         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12029     }
12030 
12031     /* When changing vector length, clear inaccessible state.  */
12032     if (new_len < old_len) {
12033         aarch64_sve_narrow_vq(env, new_len + 1);
12034     }
12035 }
12036 #endif
12037