xref: /qemu/target/arm/helper.c (revision 8be0461d)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860             value |= SCR_NS;
1861         }
1862         if (cpu_isar_feature(aa64_mte, cpu)) {
1863             valid_mask |= SCR_ATA;
1864         }
1865         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866             valid_mask |= SCR_ENSCXT;
1867         }
1868         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869             valid_mask |= SCR_EASE | SCR_NMEA;
1870         }
1871         if (cpu_isar_feature(aa64_sme, cpu)) {
1872             valid_mask |= SCR_ENTP2;
1873         }
1874         if (cpu_isar_feature(aa64_hcx, cpu)) {
1875             valid_mask |= SCR_HXEN;
1876         }
1877         if (cpu_isar_feature(aa64_fgt, cpu)) {
1878             valid_mask |= SCR_FGTEN;
1879         }
1880         if (cpu_isar_feature(aa64_rme, cpu)) {
1881             valid_mask |= SCR_NSE | SCR_GPF;
1882         }
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885         if (cpu_isar_feature(aa32_ras, cpu)) {
1886             valid_mask |= SCR_TERR;
1887         }
1888     }
1889 
1890     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891         valid_mask &= ~SCR_HCE;
1892 
1893         /*
1894          * On ARMv7, SMD (or SCD as it is called in v7) is only
1895          * supported if EL2 exists. The bit is UNK/SBZP when
1896          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897          * when EL2 is unavailable.
1898          * On ARMv8, this bit is always available.
1899          */
1900         if (arm_feature(env, ARM_FEATURE_V7) &&
1901             !arm_feature(env, ARM_FEATURE_V8)) {
1902             valid_mask &= ~SCR_SMD;
1903         }
1904     }
1905 
1906     /* Clear all-context RES0 bits.  */
1907     value &= valid_mask;
1908     changed = env->cp15.scr_el3 ^ value;
1909     env->cp15.scr_el3 = value;
1910 
1911     /*
1912      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913      * we must invalidate all TLBs below EL3.
1914      */
1915     if (changed & (SCR_NS | SCR_NSE)) {
1916         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917                                            ARMMMUIdxBit_E20_0 |
1918                                            ARMMMUIdxBit_E10_1 |
1919                                            ARMMMUIdxBit_E20_2 |
1920                                            ARMMMUIdxBit_E10_1_PAN |
1921                                            ARMMMUIdxBit_E20_2_PAN |
1922                                            ARMMMUIdxBit_E2));
1923     }
1924 }
1925 
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928     /*
1929      * scr_write will set the RES1 bits on an AArch64-only CPU.
1930      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931      */
1932     scr_write(env, ri, 0);
1933 }
1934 
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936                                   const ARMCPRegInfo *ri,
1937                                   bool isread)
1938 {
1939     if (arm_current_el(env) == 1 &&
1940         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941         return CP_ACCESS_TRAP_EL2;
1942     }
1943 
1944     return CP_ACCESS_OK;
1945 }
1946 
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949     ARMCPU *cpu = env_archcpu(env);
1950 
1951     /*
1952      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953      * bank
1954      */
1955     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956                                         ri->secure & ARM_CP_SECSTATE_S);
1957 
1958     return cpu->ccsidr[index];
1959 }
1960 
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962                          uint64_t value)
1963 {
1964     raw_write(env, ri, value & 0xf);
1965 }
1966 
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     CPUState *cs = env_cpu(env);
1970     bool el1 = arm_current_el(env) == 1;
1971     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972     uint64_t ret = 0;
1973 
1974     if (hcr_el2 & HCR_IMO) {
1975         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976             ret |= CPSR_I;
1977         }
1978     } else {
1979         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980             ret |= CPSR_I;
1981         }
1982     }
1983 
1984     if (hcr_el2 & HCR_FMO) {
1985         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986             ret |= CPSR_F;
1987         }
1988     } else {
1989         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990             ret |= CPSR_F;
1991         }
1992     }
1993 
1994     if (hcr_el2 & HCR_AMO) {
1995         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996             ret |= CPSR_A;
1997         }
1998     }
1999 
2000     return ret;
2001 }
2002 
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004                                        bool isread)
2005 {
2006     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007         return CP_ACCESS_TRAP_EL2;
2008     }
2009 
2010     return CP_ACCESS_OK;
2011 }
2012 
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014                                        bool isread)
2015 {
2016     if (arm_feature(env, ARM_FEATURE_V8)) {
2017         return access_aa64_tid1(env, ri, isread);
2018     }
2019 
2020     return CP_ACCESS_OK;
2021 }
2022 
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026       .access = PL1_W, .type = ARM_CP_NOP },
2027     /*
2028      * Performance monitors are implementation defined in v7,
2029      * but with an ARM recommended set of registers, which we
2030      * follow.
2031      *
2032      * Performance registers fall into three categories:
2033      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038      */
2039     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042       .writefn = pmcntenset_write,
2043       .accessfn = pmreg_access,
2044       .fgt = FGT_PMCNTEN,
2045       .raw_writefn = raw_write },
2046     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048       .access = PL0_RW, .accessfn = pmreg_access,
2049       .fgt = FGT_PMCNTEN,
2050       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053       .access = PL0_RW,
2054       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055       .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .writefn = pmcntenclr_write,
2058       .type = ARM_CP_ALIAS | ARM_CP_IO },
2059     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061       .access = PL0_RW, .accessfn = pmreg_access,
2062       .fgt = FGT_PMCNTEN,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065       .writefn = pmcntenclr_write },
2066     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067       .access = PL0_RW, .type = ARM_CP_IO,
2068       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069       .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .writefn = pmovsr_write,
2072       .raw_writefn = raw_write },
2073     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075       .access = PL0_RW, .accessfn = pmreg_access,
2076       .fgt = FGT_PMOVS,
2077       .type = ARM_CP_ALIAS | ARM_CP_IO,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079       .writefn = pmovsr_write,
2080       .raw_writefn = raw_write },
2081     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088       .access = PL0_W, .accessfn = pmreg_access_swinc,
2089       .fgt = FGT_PMSWINC_EL0,
2090       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091       .writefn = pmswinc_write },
2092     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093       .access = PL0_RW, .type = ARM_CP_ALIAS,
2094       .fgt = FGT_PMSELR_EL0,
2095       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097       .raw_writefn = raw_write},
2098     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100       .access = PL0_RW, .accessfn = pmreg_access_selr,
2101       .fgt = FGT_PMSELR_EL0,
2102       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103       .writefn = pmselr_write, .raw_writefn = raw_write, },
2104     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108       .accessfn = pmreg_access_ccntr },
2109     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112       .fgt = FGT_PMCCNTR_EL0,
2113       .type = ARM_CP_IO,
2114       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115       .readfn = pmccntr_read, .writefn = pmccntr_write,
2116       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119       .access = PL0_RW, .accessfn = pmreg_access,
2120       .fgt = FGT_PMCCFILTR_EL0,
2121       .type = ARM_CP_ALIAS | ARM_CP_IO,
2122       .resetvalue = 0, },
2123     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126       .access = PL0_RW, .accessfn = pmreg_access,
2127       .fgt = FGT_PMCCFILTR_EL0,
2128       .type = ARM_CP_IO,
2129       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130       .resetvalue = 0, },
2131     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = pmreg_access,
2140       .fgt = FGT_PMEVTYPERN_EL0,
2141       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .accessfn = pmreg_access_xevcntr,
2151       .fgt = FGT_PMEVCNTRN_EL0,
2152       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162       .resetvalue = 0,
2163       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165       .access = PL1_RW, .accessfn = access_tpm,
2166       .fgt = FGT_PMINTEN,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169       .resetvalue = 0,
2170       .writefn = pmintenset_write, .raw_writefn = raw_write },
2171     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173       .access = PL1_RW, .accessfn = access_tpm,
2174       .fgt = FGT_PMINTEN,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177       .writefn = pmintenset_write, .raw_writefn = raw_write,
2178       .resetvalue = 0x0 },
2179     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180       .access = PL1_RW, .accessfn = access_tpm,
2181       .fgt = FGT_PMINTEN,
2182       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184       .writefn = pmintenclr_write, },
2185     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187       .access = PL1_RW, .accessfn = access_tpm,
2188       .fgt = FGT_PMINTEN,
2189       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191       .writefn = pmintenclr_write },
2192     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194       .access = PL1_R,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CCSIDR_EL1,
2197       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200       .access = PL1_RW,
2201       .accessfn = access_tid4,
2202       .fgt = FGT_CSSELR_EL1,
2203       .writefn = csselr_write, .resetvalue = 0,
2204       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205                              offsetof(CPUARMState, cp15.csselr_ns) } },
2206     /*
2207      * Auxiliary ID register: this actually has an IMPDEF value but for now
2208      * just RAZ for all cores:
2209      */
2210     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212       .access = PL1_R, .type = ARM_CP_CONST,
2213       .accessfn = access_aa64_tid1,
2214       .fgt = FGT_AIDR_EL1,
2215       .resetvalue = 0 },
2216     /*
2217      * Auxiliary fault status registers: these also are IMPDEF, and we
2218      * choose to RAZ/WI for all cores.
2219      */
2220     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222       .access = PL1_RW, .accessfn = access_tvm_trvm,
2223       .fgt = FGT_AFSR0_EL1,
2224       .type = ARM_CP_CONST, .resetvalue = 0 },
2225     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tvm_trvm,
2228       .fgt = FGT_AFSR1_EL1,
2229       .type = ARM_CP_CONST, .resetvalue = 0 },
2230     /*
2231      * MAIR can just read-as-written because we don't implement caches
2232      * and so don't need to care about memory attributes.
2233      */
2234     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL1_RW, .accessfn = access_tvm_trvm,
2237       .fgt = FGT_MAIR_EL1,
2238       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239       .resetvalue = 0 },
2240     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243       .resetvalue = 0 },
2244     /*
2245      * For non-long-descriptor page tables these are PRRR and NMRR;
2246      * regardless they still act as reads-as-written for QEMU.
2247      */
2248      /*
2249       * MAIR0/1 are defined separately from their 64-bit counterpart which
2250       * allows them to assign the correct fieldoffset based on the endianness
2251       * handled in the field definitions.
2252       */
2253     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257                              offsetof(CPUARMState, cp15.mair0_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261       .access = PL1_RW, .accessfn = access_tvm_trvm,
2262       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263                              offsetof(CPUARMState, cp15.mair1_ns) },
2264       .resetfn = arm_cp_reset_ignore },
2265     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267       .fgt = FGT_ISR_EL1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269     /* 32 bit ITLB invalidates */
2270     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiall_write },
2273     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275       .writefn = tlbimva_write },
2276     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278       .writefn = tlbiasid_write },
2279     /* 32 bit DTLB invalidates */
2280     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiall_write },
2283     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285       .writefn = tlbimva_write },
2286     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288       .writefn = tlbiasid_write },
2289     /* 32 bit TLB invalidates */
2290     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiall_write },
2293     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimva_write },
2296     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298       .writefn = tlbiasid_write },
2299     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301       .writefn = tlbimvaa_write },
2302 };
2303 
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305     /* 32 bit TLB invalidates, Inner Shareable */
2306     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiall_is_write },
2309     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimva_is_write },
2312     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314       .writefn = tlbiasid_is_write },
2315     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317       .writefn = tlbimvaa_is_write },
2318 };
2319 
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321     /* PMOVSSET is not implemented in v7 before v7ve */
2322     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323       .access = PL0_RW, .accessfn = pmreg_access,
2324       .fgt = FGT_PMOVS,
2325       .type = ARM_CP_ALIAS | ARM_CP_IO,
2326       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327       .writefn = pmovsset_write,
2328       .raw_writefn = raw_write },
2329     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331       .access = PL0_RW, .accessfn = pmreg_access,
2332       .fgt = FGT_PMOVS,
2333       .type = ARM_CP_ALIAS | ARM_CP_IO,
2334       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335       .writefn = pmovsset_write,
2336       .raw_writefn = raw_write },
2337 };
2338 
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340                         uint64_t value)
2341 {
2342     value &= 1;
2343     env->teecr = value;
2344 }
2345 
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347                                    bool isread)
2348 {
2349     /*
2350      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351      * at all, so we don't need to check whether we're v8A.
2352      */
2353     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355         return CP_ACCESS_TRAP_EL2;
2356     }
2357     return CP_ACCESS_OK;
2358 }
2359 
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361                                     bool isread)
2362 {
2363     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364         return CP_ACCESS_TRAP;
2365     }
2366     return teecr_access(env, ri, isread);
2367 }
2368 
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372       .resetvalue = 0,
2373       .writefn = teecr_write, .accessfn = teecr_access },
2374     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376       .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378 
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382       .access = PL0_RW,
2383       .fgt = FGT_TPIDR_EL0,
2384       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386       .access = PL0_RW,
2387       .fgt = FGT_TPIDR_EL0,
2388       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390       .resetfn = arm_cp_reset_ignore },
2391     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393       .access = PL0_R | PL1_W,
2394       .fgt = FGT_TPIDRRO_EL0,
2395       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396       .resetvalue = 0},
2397     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398       .access = PL0_R | PL1_W,
2399       .fgt = FGT_TPIDRRO_EL0,
2400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402       .resetfn = arm_cp_reset_ignore },
2403     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405       .access = PL1_RW,
2406       .fgt = FGT_TPIDR_EL1,
2407       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409       .access = PL1_RW,
2410       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412       .resetvalue = 0 },
2413 };
2414 
2415 #ifndef CONFIG_USER_ONLY
2416 
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418                                        bool isread)
2419 {
2420     /*
2421      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422      * Writable only at the highest implemented exception level.
2423      */
2424     int el = arm_current_el(env);
2425     uint64_t hcr;
2426     uint32_t cntkctl;
2427 
2428     switch (el) {
2429     case 0:
2430         hcr = arm_hcr_el2_eff(env);
2431         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432             cntkctl = env->cp15.cnthctl_el2;
2433         } else {
2434             cntkctl = env->cp15.c14_cntkctl;
2435         }
2436         if (!extract32(cntkctl, 0, 2)) {
2437             return CP_ACCESS_TRAP;
2438         }
2439         break;
2440     case 1:
2441         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442             arm_is_secure_below_el3(env)) {
2443             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444             return CP_ACCESS_TRAP_UNCATEGORIZED;
2445         }
2446         break;
2447     case 2:
2448     case 3:
2449         break;
2450     }
2451 
2452     if (!isread && el < arm_highest_el(env)) {
2453         return CP_ACCESS_TRAP_UNCATEGORIZED;
2454     }
2455 
2456     return CP_ACCESS_OK;
2457 }
2458 
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460                                         bool isread)
2461 {
2462     unsigned int cur_el = arm_current_el(env);
2463     bool has_el2 = arm_is_el2_enabled(env);
2464     uint64_t hcr = arm_hcr_el2_eff(env);
2465 
2466     switch (cur_el) {
2467     case 0:
2468         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472         }
2473 
2474         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476             return CP_ACCESS_TRAP;
2477         }
2478 
2479         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480         if (hcr & HCR_E2H) {
2481             if (timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         } else {
2486             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487             if (has_el2 && timeridx == GTIMER_PHYS &&
2488                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489                 return CP_ACCESS_TRAP_EL2;
2490             }
2491         }
2492         break;
2493 
2494     case 1:
2495         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496         if (has_el2 && timeridx == GTIMER_PHYS &&
2497             (hcr & HCR_E2H
2498              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500             return CP_ACCESS_TRAP_EL2;
2501         }
2502         break;
2503     }
2504     return CP_ACCESS_OK;
2505 }
2506 
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508                                       bool isread)
2509 {
2510     unsigned int cur_el = arm_current_el(env);
2511     bool has_el2 = arm_is_el2_enabled(env);
2512     uint64_t hcr = arm_hcr_el2_eff(env);
2513 
2514     switch (cur_el) {
2515     case 0:
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520         }
2521 
2522         /*
2523          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524          * EL0 if EL0[PV]TEN is zero.
2525          */
2526         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527             return CP_ACCESS_TRAP;
2528         }
2529         /* fall through */
2530 
2531     case 1:
2532         if (has_el2 && timeridx == GTIMER_PHYS) {
2533             if (hcr & HCR_E2H) {
2534                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536                     return CP_ACCESS_TRAP_EL2;
2537                 }
2538             } else {
2539                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541                     return CP_ACCESS_TRAP_EL2;
2542                 }
2543             }
2544         }
2545         break;
2546     }
2547     return CP_ACCESS_OK;
2548 }
2549 
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551                                     const ARMCPRegInfo *ri,
2552                                     bool isread)
2553 {
2554     return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556 
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558                                     const ARMCPRegInfo *ri,
2559                                     bool isread)
2560 {
2561     return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563 
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569 
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571                                        bool isread)
2572 {
2573     return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575 
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577                                        const ARMCPRegInfo *ri,
2578                                        bool isread)
2579 {
2580     /*
2581      * The AArch64 register view of the secure physical timer is
2582      * always accessible from EL3, and configurably accessible from
2583      * Secure EL1.
2584      */
2585     switch (arm_current_el(env)) {
2586     case 1:
2587         if (!arm_is_secure(env)) {
2588             return CP_ACCESS_TRAP;
2589         }
2590         if (!(env->cp15.scr_el3 & SCR_ST)) {
2591             return CP_ACCESS_TRAP_EL3;
2592         }
2593         return CP_ACCESS_OK;
2594     case 0:
2595     case 2:
2596         return CP_ACCESS_TRAP;
2597     case 3:
2598         return CP_ACCESS_OK;
2599     default:
2600         g_assert_not_reached();
2601     }
2602 }
2603 
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606     ARMCPU *cpu = env_archcpu(env);
2607 
2608     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610 
2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2612 {
2613     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2614 
2615     if (gt->ctl & 1) {
2616         /*
2617          * Timer enabled: calculate and set current ISTATUS, irq, and
2618          * reset timer to when ISTATUS next has to change
2619          */
2620         uint64_t offset = timeridx == GTIMER_VIRT ?
2621                                       cpu->env.cp15.cntvoff_el2 : 0;
2622         uint64_t count = gt_get_countervalue(&cpu->env);
2623         /* Note that this must be unsigned 64 bit arithmetic: */
2624         int istatus = count - offset >= gt->cval;
2625         uint64_t nexttick;
2626         int irqstate;
2627 
2628         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2629 
2630         irqstate = (istatus && !(gt->ctl & 2));
2631         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632 
2633         if (istatus) {
2634             /* Next transition is when count rolls back over to zero */
2635             nexttick = UINT64_MAX;
2636         } else {
2637             /* Next transition is when we hit cval */
2638             nexttick = gt->cval + offset;
2639         }
2640         /*
2641          * Note that the desired next expiry time might be beyond the
2642          * signed-64-bit range of a QEMUTimer -- in this case we just
2643          * set the timer for as far in the future as possible. When the
2644          * timer expires we will reset the timer for any remaining period.
2645          */
2646         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2647             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2648         } else {
2649             timer_mod(cpu->gt_timer[timeridx], nexttick);
2650         }
2651         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2652     } else {
2653         /* Timer disabled: ISTATUS and timer output always clear */
2654         gt->ctl &= ~4;
2655         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2656         timer_del(cpu->gt_timer[timeridx]);
2657         trace_arm_gt_recalc_disabled(timeridx);
2658     }
2659 }
2660 
2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2662                            int timeridx)
2663 {
2664     ARMCPU *cpu = env_archcpu(env);
2665 
2666     timer_del(cpu->gt_timer[timeridx]);
2667 }
2668 
2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2670 {
2671     return gt_get_countervalue(env);
2672 }
2673 
2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2675 {
2676     uint64_t hcr;
2677 
2678     switch (arm_current_el(env)) {
2679     case 2:
2680         hcr = arm_hcr_el2_eff(env);
2681         if (hcr & HCR_E2H) {
2682             return 0;
2683         }
2684         break;
2685     case 0:
2686         hcr = arm_hcr_el2_eff(env);
2687         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2688             return 0;
2689         }
2690         break;
2691     }
2692 
2693     return env->cp15.cntvoff_el2;
2694 }
2695 
2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2699 }
2700 
2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                           int timeridx,
2703                           uint64_t value)
2704 {
2705     trace_arm_gt_cval_write(timeridx, value);
2706     env->cp15.c14_timer[timeridx].cval = value;
2707     gt_recalc_timer(env_archcpu(env), timeridx);
2708 }
2709 
2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2711                              int timeridx)
2712 {
2713     uint64_t offset = 0;
2714 
2715     switch (timeridx) {
2716     case GTIMER_VIRT:
2717     case GTIMER_HYPVIRT:
2718         offset = gt_virt_cnt_offset(env);
2719         break;
2720     }
2721 
2722     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2723                       (gt_get_countervalue(env) - offset));
2724 }
2725 
2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                           int timeridx,
2728                           uint64_t value)
2729 {
2730     uint64_t offset = 0;
2731 
2732     switch (timeridx) {
2733     case GTIMER_VIRT:
2734     case GTIMER_HYPVIRT:
2735         offset = gt_virt_cnt_offset(env);
2736         break;
2737     }
2738 
2739     trace_arm_gt_tval_write(timeridx, value);
2740     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2741                                          sextract64(value, 0, 32);
2742     gt_recalc_timer(env_archcpu(env), timeridx);
2743 }
2744 
2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746                          int timeridx,
2747                          uint64_t value)
2748 {
2749     ARMCPU *cpu = env_archcpu(env);
2750     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2751 
2752     trace_arm_gt_ctl_write(timeridx, value);
2753     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2754     if ((oldval ^ value) & 1) {
2755         /* Enable toggled */
2756         gt_recalc_timer(cpu, timeridx);
2757     } else if ((oldval ^ value) & 2) {
2758         /*
2759          * IMASK toggled: don't need to recalculate,
2760          * just set the interrupt line based on ISTATUS
2761          */
2762         int irqstate = (oldval & 4) && !(value & 2);
2763 
2764         trace_arm_gt_imask_toggle(timeridx, irqstate);
2765         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2766     }
2767 }
2768 
2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771     gt_timer_reset(env, ri, GTIMER_PHYS);
2772 }
2773 
2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775                                uint64_t value)
2776 {
2777     gt_cval_write(env, ri, GTIMER_PHYS, value);
2778 }
2779 
2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2781 {
2782     return gt_tval_read(env, ri, GTIMER_PHYS);
2783 }
2784 
2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                                uint64_t value)
2787 {
2788     gt_tval_write(env, ri, GTIMER_PHYS, value);
2789 }
2790 
2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792                               uint64_t value)
2793 {
2794     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2795 }
2796 
2797 static int gt_phys_redir_timeridx(CPUARMState *env)
2798 {
2799     switch (arm_mmu_idx(env)) {
2800     case ARMMMUIdx_E20_0:
2801     case ARMMMUIdx_E20_2:
2802     case ARMMMUIdx_E20_2_PAN:
2803         return GTIMER_HYP;
2804     default:
2805         return GTIMER_PHYS;
2806     }
2807 }
2808 
2809 static int gt_virt_redir_timeridx(CPUARMState *env)
2810 {
2811     switch (arm_mmu_idx(env)) {
2812     case ARMMMUIdx_E20_0:
2813     case ARMMMUIdx_E20_2:
2814     case ARMMMUIdx_E20_2_PAN:
2815         return GTIMER_HYPVIRT;
2816     default:
2817         return GTIMER_VIRT;
2818     }
2819 }
2820 
2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2822                                         const ARMCPRegInfo *ri)
2823 {
2824     int timeridx = gt_phys_redir_timeridx(env);
2825     return env->cp15.c14_timer[timeridx].cval;
2826 }
2827 
2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                                      uint64_t value)
2830 {
2831     int timeridx = gt_phys_redir_timeridx(env);
2832     gt_cval_write(env, ri, timeridx, value);
2833 }
2834 
2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2836                                         const ARMCPRegInfo *ri)
2837 {
2838     int timeridx = gt_phys_redir_timeridx(env);
2839     return gt_tval_read(env, ri, timeridx);
2840 }
2841 
2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843                                      uint64_t value)
2844 {
2845     int timeridx = gt_phys_redir_timeridx(env);
2846     gt_tval_write(env, ri, timeridx, value);
2847 }
2848 
2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2850                                        const ARMCPRegInfo *ri)
2851 {
2852     int timeridx = gt_phys_redir_timeridx(env);
2853     return env->cp15.c14_timer[timeridx].ctl;
2854 }
2855 
2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                                     uint64_t value)
2858 {
2859     int timeridx = gt_phys_redir_timeridx(env);
2860     gt_ctl_write(env, ri, timeridx, value);
2861 }
2862 
2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2864 {
2865     gt_timer_reset(env, ri, GTIMER_VIRT);
2866 }
2867 
2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869                                uint64_t value)
2870 {
2871     gt_cval_write(env, ri, GTIMER_VIRT, value);
2872 }
2873 
2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876     return gt_tval_read(env, ri, GTIMER_VIRT);
2877 }
2878 
2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                                uint64_t value)
2881 {
2882     gt_tval_write(env, ri, GTIMER_VIRT, value);
2883 }
2884 
2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                               uint64_t value)
2887 {
2888     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2889 }
2890 
2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892                               uint64_t value)
2893 {
2894     ARMCPU *cpu = env_archcpu(env);
2895 
2896     trace_arm_gt_cntvoff_write(value);
2897     raw_write(env, ri, value);
2898     gt_recalc_timer(cpu, GTIMER_VIRT);
2899 }
2900 
2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2902                                         const ARMCPRegInfo *ri)
2903 {
2904     int timeridx = gt_virt_redir_timeridx(env);
2905     return env->cp15.c14_timer[timeridx].cval;
2906 }
2907 
2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909                                      uint64_t value)
2910 {
2911     int timeridx = gt_virt_redir_timeridx(env);
2912     gt_cval_write(env, ri, timeridx, value);
2913 }
2914 
2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2916                                         const ARMCPRegInfo *ri)
2917 {
2918     int timeridx = gt_virt_redir_timeridx(env);
2919     return gt_tval_read(env, ri, timeridx);
2920 }
2921 
2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                                      uint64_t value)
2924 {
2925     int timeridx = gt_virt_redir_timeridx(env);
2926     gt_tval_write(env, ri, timeridx, value);
2927 }
2928 
2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2930                                        const ARMCPRegInfo *ri)
2931 {
2932     int timeridx = gt_virt_redir_timeridx(env);
2933     return env->cp15.c14_timer[timeridx].ctl;
2934 }
2935 
2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937                                     uint64_t value)
2938 {
2939     int timeridx = gt_virt_redir_timeridx(env);
2940     gt_ctl_write(env, ri, timeridx, value);
2941 }
2942 
2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2944 {
2945     gt_timer_reset(env, ri, GTIMER_HYP);
2946 }
2947 
2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                               uint64_t value)
2950 {
2951     gt_cval_write(env, ri, GTIMER_HYP, value);
2952 }
2953 
2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956     return gt_tval_read(env, ri, GTIMER_HYP);
2957 }
2958 
2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                               uint64_t value)
2961 {
2962     gt_tval_write(env, ri, GTIMER_HYP, value);
2963 }
2964 
2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                               uint64_t value)
2967 {
2968     gt_ctl_write(env, ri, GTIMER_HYP, value);
2969 }
2970 
2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973     gt_timer_reset(env, ri, GTIMER_SEC);
2974 }
2975 
2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977                               uint64_t value)
2978 {
2979     gt_cval_write(env, ri, GTIMER_SEC, value);
2980 }
2981 
2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984     return gt_tval_read(env, ri, GTIMER_SEC);
2985 }
2986 
2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_tval_write(env, ri, GTIMER_SEC, value);
2991 }
2992 
2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994                               uint64_t value)
2995 {
2996     gt_ctl_write(env, ri, GTIMER_SEC, value);
2997 }
2998 
2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3002 }
3003 
3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                              uint64_t value)
3006 {
3007     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3008 }
3009 
3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3013 }
3014 
3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                              uint64_t value)
3017 {
3018     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020 
3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022                             uint64_t value)
3023 {
3024     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3025 }
3026 
3027 void arm_gt_ptimer_cb(void *opaque)
3028 {
3029     ARMCPU *cpu = opaque;
3030 
3031     gt_recalc_timer(cpu, GTIMER_PHYS);
3032 }
3033 
3034 void arm_gt_vtimer_cb(void *opaque)
3035 {
3036     ARMCPU *cpu = opaque;
3037 
3038     gt_recalc_timer(cpu, GTIMER_VIRT);
3039 }
3040 
3041 void arm_gt_htimer_cb(void *opaque)
3042 {
3043     ARMCPU *cpu = opaque;
3044 
3045     gt_recalc_timer(cpu, GTIMER_HYP);
3046 }
3047 
3048 void arm_gt_stimer_cb(void *opaque)
3049 {
3050     ARMCPU *cpu = opaque;
3051 
3052     gt_recalc_timer(cpu, GTIMER_SEC);
3053 }
3054 
3055 void arm_gt_hvtimer_cb(void *opaque)
3056 {
3057     ARMCPU *cpu = opaque;
3058 
3059     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3060 }
3061 
3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3063 {
3064     ARMCPU *cpu = env_archcpu(env);
3065 
3066     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3067 }
3068 
3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3070     /*
3071      * Note that CNTFRQ is purely reads-as-written for the benefit
3072      * of software; writing it doesn't actually change the timer frequency.
3073      * Our reset value matches the fixed frequency we implement the timer at.
3074      */
3075     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3076       .type = ARM_CP_ALIAS,
3077       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3079     },
3080     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3082       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3084       .resetfn = arm_gt_cntfrq_reset,
3085     },
3086     /* overall control: mostly access permissions */
3087     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3088       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3089       .access = PL1_RW,
3090       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3091       .resetvalue = 0,
3092     },
3093     /* per-timer control */
3094     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3095       .secure = ARM_CP_SECSTATE_NS,
3096       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3097       .accessfn = gt_ptimer_access,
3098       .fieldoffset = offsetoflow32(CPUARMState,
3099                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3100       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3101       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3102     },
3103     { .name = "CNTP_CTL_S",
3104       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3105       .secure = ARM_CP_SECSTATE_S,
3106       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3107       .accessfn = gt_ptimer_access,
3108       .fieldoffset = offsetoflow32(CPUARMState,
3109                                    cp15.c14_timer[GTIMER_SEC].ctl),
3110       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3111     },
3112     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3113       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3114       .type = ARM_CP_IO, .access = PL0_RW,
3115       .accessfn = gt_ptimer_access,
3116       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3117       .resetvalue = 0,
3118       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3119       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3120     },
3121     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3122       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3123       .accessfn = gt_vtimer_access,
3124       .fieldoffset = offsetoflow32(CPUARMState,
3125                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3126       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3127       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3128     },
3129     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3130       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3131       .type = ARM_CP_IO, .access = PL0_RW,
3132       .accessfn = gt_vtimer_access,
3133       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3134       .resetvalue = 0,
3135       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3136       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3137     },
3138     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3139     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3140       .secure = ARM_CP_SECSTATE_NS,
3141       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3142       .accessfn = gt_ptimer_access,
3143       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3144     },
3145     { .name = "CNTP_TVAL_S",
3146       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3147       .secure = ARM_CP_SECSTATE_S,
3148       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access,
3150       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3151     },
3152     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3153       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3154       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3156       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3157     },
3158     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3159       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access,
3161       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162     },
3163     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3164       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3165       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3166       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3167       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3168     },
3169     /* The counter itself */
3170     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3171       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3172       .accessfn = gt_pct_access,
3173       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3174     },
3175     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3176       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3177       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3178       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3179     },
3180     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3181       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3182       .accessfn = gt_vct_access,
3183       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3184     },
3185     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3186       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3187       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3188       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3189     },
3190     /* Comparison value, indicating when the timer goes off */
3191     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3192       .secure = ARM_CP_SECSTATE_NS,
3193       .access = PL0_RW,
3194       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3195       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3196       .accessfn = gt_ptimer_access,
3197       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3198       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3199     },
3200     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3201       .secure = ARM_CP_SECSTATE_S,
3202       .access = PL0_RW,
3203       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3204       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3205       .accessfn = gt_ptimer_access,
3206       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3207     },
3208     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3209       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3210       .access = PL0_RW,
3211       .type = ARM_CP_IO,
3212       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3213       .resetvalue = 0, .accessfn = gt_ptimer_access,
3214       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3215       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3216     },
3217     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3218       .access = PL0_RW,
3219       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3221       .accessfn = gt_vtimer_access,
3222       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3223       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3224     },
3225     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3226       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3227       .access = PL0_RW,
3228       .type = ARM_CP_IO,
3229       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3230       .resetvalue = 0, .accessfn = gt_vtimer_access,
3231       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3232       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3233     },
3234     /*
3235      * Secure timer -- this is actually restricted to only EL3
3236      * and configurably Secure-EL1 via the accessfn.
3237      */
3238     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3241       .accessfn = gt_stimer_access,
3242       .readfn = gt_sec_tval_read,
3243       .writefn = gt_sec_tval_write,
3244       .resetfn = gt_sec_timer_reset,
3245     },
3246     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3247       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3248       .type = ARM_CP_IO, .access = PL1_RW,
3249       .accessfn = gt_stimer_access,
3250       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3251       .resetvalue = 0,
3252       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3253     },
3254     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3255       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3256       .type = ARM_CP_IO, .access = PL1_RW,
3257       .accessfn = gt_stimer_access,
3258       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3259       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260     },
3261 };
3262 
3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3264                                  bool isread)
3265 {
3266     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3267         return CP_ACCESS_TRAP;
3268     }
3269     return CP_ACCESS_OK;
3270 }
3271 
3272 #else
3273 
3274 /*
3275  * In user-mode most of the generic timer registers are inaccessible
3276  * however modern kernels (4.12+) allow access to cntvct_el0
3277  */
3278 
3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3280 {
3281     ARMCPU *cpu = env_archcpu(env);
3282 
3283     /*
3284      * Currently we have no support for QEMUTimer in linux-user so we
3285      * can't call gt_get_countervalue(env), instead we directly
3286      * call the lower level functions.
3287      */
3288     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3289 }
3290 
3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3292     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3293       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3294       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3295       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3296       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3297     },
3298     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3299       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3300       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3301       .readfn = gt_virt_cnt_read,
3302     },
3303 };
3304 
3305 #endif
3306 
3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3308 {
3309     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3310         raw_write(env, ri, value);
3311     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3312         raw_write(env, ri, value & 0xfffff6ff);
3313     } else {
3314         raw_write(env, ri, value & 0xfffff1ff);
3315     }
3316 }
3317 
3318 #ifndef CONFIG_USER_ONLY
3319 /* get_phys_addr() isn't present for user-mode-only targets */
3320 
3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322                                  bool isread)
3323 {
3324     if (ri->opc2 & 4) {
3325         /*
3326          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3327          * Secure EL1 (which can only happen if EL3 is AArch64).
3328          * They are simply UNDEF if executed from NS EL1.
3329          * They function normally from EL2 or EL3.
3330          */
3331         if (arm_current_el(env) == 1) {
3332             if (arm_is_secure_below_el3(env)) {
3333                 if (env->cp15.scr_el3 & SCR_EEL2) {
3334                     return CP_ACCESS_TRAP_EL2;
3335                 }
3336                 return CP_ACCESS_TRAP_EL3;
3337             }
3338             return CP_ACCESS_TRAP_UNCATEGORIZED;
3339         }
3340     }
3341     return CP_ACCESS_OK;
3342 }
3343 
3344 #ifdef CONFIG_TCG
3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3346                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3347                              bool is_secure)
3348 {
3349     bool ret;
3350     uint64_t par64;
3351     bool format64 = false;
3352     ARMMMUFaultInfo fi = {};
3353     GetPhysAddrResult res = {};
3354 
3355     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3356                                     is_secure, &res, &fi);
3357 
3358     /*
3359      * ATS operations only do S1 or S1+S2 translations, so we never
3360      * have to deal with the ARMCacheAttrs format for S2 only.
3361      */
3362     assert(!res.cacheattrs.is_s2_format);
3363 
3364     if (ret) {
3365         /*
3366          * Some kinds of translation fault must cause exceptions rather
3367          * than being reported in the PAR.
3368          */
3369         int current_el = arm_current_el(env);
3370         int target_el;
3371         uint32_t syn, fsr, fsc;
3372         bool take_exc = false;
3373 
3374         if (fi.s1ptw && current_el == 1
3375             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3376             /*
3377              * Synchronous stage 2 fault on an access made as part of the
3378              * translation table walk for AT S1E0* or AT S1E1* insn
3379              * executed from NS EL1. If this is a synchronous external abort
3380              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3381              * to EL3. Otherwise the fault is taken as an exception to EL2,
3382              * and HPFAR_EL2 holds the faulting IPA.
3383              */
3384             if (fi.type == ARMFault_SyncExternalOnWalk &&
3385                 (env->cp15.scr_el3 & SCR_EA)) {
3386                 target_el = 3;
3387             } else {
3388                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3389                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3390                     env->cp15.hpfar_el2 |= HPFAR_NS;
3391                 }
3392                 target_el = 2;
3393             }
3394             take_exc = true;
3395         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3396             /*
3397              * Synchronous external aborts during a translation table walk
3398              * are taken as Data Abort exceptions.
3399              */
3400             if (fi.stage2) {
3401                 if (current_el == 3) {
3402                     target_el = 3;
3403                 } else {
3404                     target_el = 2;
3405                 }
3406             } else {
3407                 target_el = exception_target_el(env);
3408             }
3409             take_exc = true;
3410         }
3411 
3412         if (take_exc) {
3413             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3414             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3415                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3416                 fsr = arm_fi_to_lfsc(&fi);
3417                 fsc = extract32(fsr, 0, 6);
3418             } else {
3419                 fsr = arm_fi_to_sfsc(&fi);
3420                 fsc = 0x3f;
3421             }
3422             /*
3423              * Report exception with ESR indicating a fault due to a
3424              * translation table walk for a cache maintenance instruction.
3425              */
3426             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3427                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3428             env->exception.vaddress = value;
3429             env->exception.fsr = fsr;
3430             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3431         }
3432     }
3433 
3434     if (is_a64(env)) {
3435         format64 = true;
3436     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3437         /*
3438          * ATS1Cxx:
3439          * * TTBCR.EAE determines whether the result is returned using the
3440          *   32-bit or the 64-bit PAR format
3441          * * Instructions executed in Hyp mode always use the 64bit format
3442          *
3443          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3444          * * The Non-secure TTBCR.EAE bit is set to 1
3445          * * The implementation includes EL2, and the value of HCR.VM is 1
3446          *
3447          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3448          *
3449          * ATS1Hx always uses the 64bit format.
3450          */
3451         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3452 
3453         if (arm_feature(env, ARM_FEATURE_EL2)) {
3454             if (mmu_idx == ARMMMUIdx_E10_0 ||
3455                 mmu_idx == ARMMMUIdx_E10_1 ||
3456                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3457                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3458             } else {
3459                 format64 |= arm_current_el(env) == 2;
3460             }
3461         }
3462     }
3463 
3464     if (format64) {
3465         /* Create a 64-bit PAR */
3466         par64 = (1 << 11); /* LPAE bit always set */
3467         if (!ret) {
3468             par64 |= res.f.phys_addr & ~0xfffULL;
3469             if (!res.f.attrs.secure) {
3470                 par64 |= (1 << 9); /* NS */
3471             }
3472             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3473             par64 |= res.cacheattrs.shareability << 7; /* SH */
3474         } else {
3475             uint32_t fsr = arm_fi_to_lfsc(&fi);
3476 
3477             par64 |= 1; /* F */
3478             par64 |= (fsr & 0x3f) << 1; /* FS */
3479             if (fi.stage2) {
3480                 par64 |= (1 << 9); /* S */
3481             }
3482             if (fi.s1ptw) {
3483                 par64 |= (1 << 8); /* PTW */
3484             }
3485         }
3486     } else {
3487         /*
3488          * fsr is a DFSR/IFSR value for the short descriptor
3489          * translation table format (with WnR always clear).
3490          * Convert it to a 32-bit PAR.
3491          */
3492         if (!ret) {
3493             /* We do not set any attribute bits in the PAR */
3494             if (res.f.lg_page_size == 24
3495                 && arm_feature(env, ARM_FEATURE_V7)) {
3496                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3497             } else {
3498                 par64 = res.f.phys_addr & 0xfffff000;
3499             }
3500             if (!res.f.attrs.secure) {
3501                 par64 |= (1 << 9); /* NS */
3502             }
3503         } else {
3504             uint32_t fsr = arm_fi_to_sfsc(&fi);
3505 
3506             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3507                     ((fsr & 0xf) << 1) | 1;
3508         }
3509     }
3510     return par64;
3511 }
3512 #endif /* CONFIG_TCG */
3513 
3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3515 {
3516 #ifdef CONFIG_TCG
3517     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3518     uint64_t par64;
3519     ARMMMUIdx mmu_idx;
3520     int el = arm_current_el(env);
3521     bool secure = arm_is_secure_below_el3(env);
3522 
3523     switch (ri->opc2 & 6) {
3524     case 0:
3525         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3526         switch (el) {
3527         case 3:
3528             mmu_idx = ARMMMUIdx_E3;
3529             secure = true;
3530             break;
3531         case 2:
3532             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3533             /* fall through */
3534         case 1:
3535             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3536                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3537             } else {
3538                 mmu_idx = ARMMMUIdx_Stage1_E1;
3539             }
3540             break;
3541         default:
3542             g_assert_not_reached();
3543         }
3544         break;
3545     case 2:
3546         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3547         switch (el) {
3548         case 3:
3549             mmu_idx = ARMMMUIdx_E10_0;
3550             secure = true;
3551             break;
3552         case 2:
3553             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3554             mmu_idx = ARMMMUIdx_Stage1_E0;
3555             break;
3556         case 1:
3557             mmu_idx = ARMMMUIdx_Stage1_E0;
3558             break;
3559         default:
3560             g_assert_not_reached();
3561         }
3562         break;
3563     case 4:
3564         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3565         mmu_idx = ARMMMUIdx_E10_1;
3566         secure = false;
3567         break;
3568     case 6:
3569         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3570         mmu_idx = ARMMMUIdx_E10_0;
3571         secure = false;
3572         break;
3573     default:
3574         g_assert_not_reached();
3575     }
3576 
3577     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3578 
3579     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3580 #else
3581     /* Handled by hardware accelerator. */
3582     g_assert_not_reached();
3583 #endif /* CONFIG_TCG */
3584 }
3585 
3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3587                         uint64_t value)
3588 {
3589 #ifdef CONFIG_TCG
3590     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3591     uint64_t par64;
3592 
3593     /* There is no SecureEL2 for AArch32. */
3594     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3595 
3596     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3597 #else
3598     /* Handled by hardware accelerator. */
3599     g_assert_not_reached();
3600 #endif /* CONFIG_TCG */
3601 }
3602 
3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3604                                      bool isread)
3605 {
3606     if (arm_current_el(env) == 3 &&
3607         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3608         return CP_ACCESS_TRAP;
3609     }
3610     return CP_ACCESS_OK;
3611 }
3612 
3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3614                         uint64_t value)
3615 {
3616 #ifdef CONFIG_TCG
3617     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3618     ARMMMUIdx mmu_idx;
3619     int secure = arm_is_secure_below_el3(env);
3620     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3621     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3622 
3623     switch (ri->opc2 & 6) {
3624     case 0:
3625         switch (ri->opc1) {
3626         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3627             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3628                 mmu_idx = regime_e20 ?
3629                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3630             } else {
3631                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3632             }
3633             break;
3634         case 4: /* AT S1E2R, AT S1E2W */
3635             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3636             break;
3637         case 6: /* AT S1E3R, AT S1E3W */
3638             mmu_idx = ARMMMUIdx_E3;
3639             secure = true;
3640             break;
3641         default:
3642             g_assert_not_reached();
3643         }
3644         break;
3645     case 2: /* AT S1E0R, AT S1E0W */
3646         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3647         break;
3648     case 4: /* AT S12E1R, AT S12E1W */
3649         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3650         break;
3651     case 6: /* AT S12E0R, AT S12E0W */
3652         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3653         break;
3654     default:
3655         g_assert_not_reached();
3656     }
3657 
3658     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3659                                        mmu_idx, secure);
3660 #else
3661     /* Handled by hardware accelerator. */
3662     g_assert_not_reached();
3663 #endif /* CONFIG_TCG */
3664 }
3665 #endif
3666 
3667 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3668     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3669       .access = PL1_RW, .resetvalue = 0,
3670       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3671                              offsetoflow32(CPUARMState, cp15.par_ns) },
3672       .writefn = par_write },
3673 #ifndef CONFIG_USER_ONLY
3674     /* This underdecoding is safe because the reginfo is NO_RAW. */
3675     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3676       .access = PL1_W, .accessfn = ats_access,
3677       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3678 #endif
3679 };
3680 
3681 /* Return basic MPU access permission bits.  */
3682 static uint32_t simple_mpu_ap_bits(uint32_t val)
3683 {
3684     uint32_t ret;
3685     uint32_t mask;
3686     int i;
3687     ret = 0;
3688     mask = 3;
3689     for (i = 0; i < 16; i += 2) {
3690         ret |= (val >> i) & mask;
3691         mask <<= 2;
3692     }
3693     return ret;
3694 }
3695 
3696 /* Pad basic MPU access permission bits to extended format.  */
3697 static uint32_t extended_mpu_ap_bits(uint32_t val)
3698 {
3699     uint32_t ret;
3700     uint32_t mask;
3701     int i;
3702     ret = 0;
3703     mask = 3;
3704     for (i = 0; i < 16; i += 2) {
3705         ret |= (val & mask) << i;
3706         mask <<= 2;
3707     }
3708     return ret;
3709 }
3710 
3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3712                                  uint64_t value)
3713 {
3714     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3715 }
3716 
3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3718 {
3719     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3720 }
3721 
3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3723                                  uint64_t value)
3724 {
3725     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3726 }
3727 
3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3731 }
3732 
3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3734 {
3735     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3736 
3737     if (!u32p) {
3738         return 0;
3739     }
3740 
3741     u32p += env->pmsav7.rnr[M_REG_NS];
3742     return *u32p;
3743 }
3744 
3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3746                          uint64_t value)
3747 {
3748     ARMCPU *cpu = env_archcpu(env);
3749     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3750 
3751     if (!u32p) {
3752         return;
3753     }
3754 
3755     u32p += env->pmsav7.rnr[M_REG_NS];
3756     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3757     *u32p = value;
3758 }
3759 
3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761                               uint64_t value)
3762 {
3763     ARMCPU *cpu = env_archcpu(env);
3764     uint32_t nrgs = cpu->pmsav7_dregion;
3765 
3766     if (value >= nrgs) {
3767         qemu_log_mask(LOG_GUEST_ERROR,
3768                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3769                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3770         return;
3771     }
3772 
3773     raw_write(env, ri, value);
3774 }
3775 
3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3777                           uint64_t value)
3778 {
3779     ARMCPU *cpu = env_archcpu(env);
3780 
3781     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3782     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3783 }
3784 
3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3786 {
3787     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3788 }
3789 
3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791                           uint64_t value)
3792 {
3793     ARMCPU *cpu = env_archcpu(env);
3794 
3795     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3797 }
3798 
3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3802 }
3803 
3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                            uint64_t value)
3806 {
3807     ARMCPU *cpu = env_archcpu(env);
3808 
3809     /*
3810      * Ignore writes that would select not implemented region.
3811      * This is architecturally UNPREDICTABLE.
3812      */
3813     if (value >= cpu->pmsav7_dregion) {
3814         return;
3815     }
3816 
3817     env->pmsav7.rnr[M_REG_NS] = value;
3818 }
3819 
3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821                           uint64_t value)
3822 {
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3827 }
3828 
3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3832 }
3833 
3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                           uint64_t value)
3836 {
3837     ARMCPU *cpu = env_archcpu(env);
3838 
3839     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3841 }
3842 
3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3846 }
3847 
3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                           uint64_t value)
3850 {
3851     uint32_t n;
3852     uint32_t bit;
3853     ARMCPU *cpu = env_archcpu(env);
3854 
3855     /* Ignore writes to unimplemented regions */
3856     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3857     value &= MAKE_64BIT_MASK(0, rmax);
3858 
3859     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3860 
3861     /* Register alias is only valid for first 32 indexes */
3862     for (n = 0; n < rmax; ++n) {
3863         bit = extract32(value, n, 1);
3864         env->pmsav8.hprlar[n] = deposit32(
3865                     env->pmsav8.hprlar[n], 0, 1, bit);
3866     }
3867 }
3868 
3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3870 {
3871     uint32_t n;
3872     uint32_t result = 0x0;
3873     ARMCPU *cpu = env_archcpu(env);
3874 
3875     /* Register alias is only valid for first 32 indexes */
3876     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3877         if (env->pmsav8.hprlar[n] & 0x1) {
3878             result |= (0x1 << n);
3879         }
3880     }
3881     return result;
3882 }
3883 
3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885                            uint64_t value)
3886 {
3887     ARMCPU *cpu = env_archcpu(env);
3888 
3889     /*
3890      * Ignore writes that would select not implemented region.
3891      * This is architecturally UNPREDICTABLE.
3892      */
3893     if (value >= cpu->pmsav8r_hdregion) {
3894         return;
3895     }
3896 
3897     env->pmsav8.hprselr = value;
3898 }
3899 
3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901                           uint64_t value)
3902 {
3903     ARMCPU *cpu = env_archcpu(env);
3904     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3905                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3906 
3907     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908 
3909     if (ri->opc1 & 4) {
3910         if (index >= cpu->pmsav8r_hdregion) {
3911             return;
3912         }
3913         if (ri->opc2 & 0x1) {
3914             env->pmsav8.hprlar[index] = value;
3915         } else {
3916             env->pmsav8.hprbar[index] = value;
3917         }
3918     } else {
3919         if (index >= cpu->pmsav7_dregion) {
3920             return;
3921         }
3922         if (ri->opc2 & 0x1) {
3923             env->pmsav8.rlar[M_REG_NS][index] = value;
3924         } else {
3925             env->pmsav8.rbar[M_REG_NS][index] = value;
3926         }
3927     }
3928 }
3929 
3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 {
3932     ARMCPU *cpu = env_archcpu(env);
3933     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3934                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3935 
3936     if (ri->opc1 & 4) {
3937         if (index >= cpu->pmsav8r_hdregion) {
3938             return 0x0;
3939         }
3940         if (ri->opc2 & 0x1) {
3941             return env->pmsav8.hprlar[index];
3942         } else {
3943             return env->pmsav8.hprbar[index];
3944         }
3945     } else {
3946         if (index >= cpu->pmsav7_dregion) {
3947             return 0x0;
3948         }
3949         if (ri->opc2 & 0x1) {
3950             return env->pmsav8.rlar[M_REG_NS][index];
3951         } else {
3952             return env->pmsav8.rbar[M_REG_NS][index];
3953         }
3954     }
3955 }
3956 
3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3958     { .name = "PRBAR",
3959       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3960       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3961       .accessfn = access_tvm_trvm,
3962       .readfn = prbar_read, .writefn = prbar_write },
3963     { .name = "PRLAR",
3964       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3965       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3966       .accessfn = access_tvm_trvm,
3967       .readfn = prlar_read, .writefn = prlar_write },
3968     { .name = "PRSELR", .resetvalue = 0,
3969       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3970       .access = PL1_RW, .accessfn = access_tvm_trvm,
3971       .writefn = prselr_write,
3972       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3973     { .name = "HPRBAR", .resetvalue = 0,
3974       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3975       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3976       .readfn = hprbar_read, .writefn = hprbar_write },
3977     { .name = "HPRLAR",
3978       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3979       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3980       .readfn = hprlar_read, .writefn = hprlar_write },
3981     { .name = "HPRSELR", .resetvalue = 0,
3982       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3983       .access = PL2_RW,
3984       .writefn = hprselr_write,
3985       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3986     { .name = "HPRENR",
3987       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3988       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3989       .readfn = hprenr_read, .writefn = hprenr_write },
3990 };
3991 
3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3993     /*
3994      * Reset for all these registers is handled in arm_cpu_reset(),
3995      * because the PMSAv7 is also used by M-profile CPUs, which do
3996      * not register cpregs but still need the state to be reset.
3997      */
3998     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3999       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4000       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4001       .readfn = pmsav7_read, .writefn = pmsav7_write,
4002       .resetfn = arm_cp_reset_ignore },
4003     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4004       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4006       .readfn = pmsav7_read, .writefn = pmsav7_write,
4007       .resetfn = arm_cp_reset_ignore },
4008     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4009       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4011       .readfn = pmsav7_read, .writefn = pmsav7_write,
4012       .resetfn = arm_cp_reset_ignore },
4013     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4014       .access = PL1_RW,
4015       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4016       .writefn = pmsav7_rgnr_write,
4017       .resetfn = arm_cp_reset_ignore },
4018 };
4019 
4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4021     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4022       .access = PL1_RW, .type = ARM_CP_ALIAS,
4023       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4024       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4025     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4026       .access = PL1_RW, .type = ARM_CP_ALIAS,
4027       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4028       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4029     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4030       .access = PL1_RW,
4031       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4032       .resetvalue = 0, },
4033     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4034       .access = PL1_RW,
4035       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4036       .resetvalue = 0, },
4037     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4038       .access = PL1_RW,
4039       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4040     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4041       .access = PL1_RW,
4042       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4043     /* Protection region base and size registers */
4044     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4045       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4047     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4048       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4050     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4051       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4053     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4054       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4056     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4057       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4059     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4060       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4062     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4063       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4064       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4065     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4066       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4067       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4068 };
4069 
4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4071                              uint64_t value)
4072 {
4073     ARMCPU *cpu = env_archcpu(env);
4074 
4075     if (!arm_feature(env, ARM_FEATURE_V8)) {
4076         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4077             /*
4078              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4079              * using Long-descriptor translation table format
4080              */
4081             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4082         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4083             /*
4084              * In an implementation that includes the Security Extensions
4085              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4086              * Short-descriptor translation table format.
4087              */
4088             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4089         } else {
4090             value &= TTBCR_N;
4091         }
4092     }
4093 
4094     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4095         /*
4096          * With LPAE the TTBCR could result in a change of ASID
4097          * via the TTBCR.A1 bit, so do a TLB flush.
4098          */
4099         tlb_flush(CPU(cpu));
4100     }
4101     raw_write(env, ri, value);
4102 }
4103 
4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105                                uint64_t value)
4106 {
4107     ARMCPU *cpu = env_archcpu(env);
4108 
4109     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4110     tlb_flush(CPU(cpu));
4111     raw_write(env, ri, value);
4112 }
4113 
4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                             uint64_t value)
4116 {
4117     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4118     if (cpreg_field_is_64bit(ri) &&
4119         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4120         ARMCPU *cpu = env_archcpu(env);
4121         tlb_flush(CPU(cpu));
4122     }
4123     raw_write(env, ri, value);
4124 }
4125 
4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127                                     uint64_t value)
4128 {
4129     /*
4130      * If we are running with E2&0 regime, then an ASID is active.
4131      * Flush if that might be changing.  Note we're not checking
4132      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4133      * holds the active ASID, only checking the field that might.
4134      */
4135     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4136         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4137         uint16_t mask = ARMMMUIdxBit_E20_2 |
4138                         ARMMMUIdxBit_E20_2_PAN |
4139                         ARMMMUIdxBit_E20_0;
4140         tlb_flush_by_mmuidx(env_cpu(env), mask);
4141     }
4142     raw_write(env, ri, value);
4143 }
4144 
4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4146                         uint64_t value)
4147 {
4148     ARMCPU *cpu = env_archcpu(env);
4149     CPUState *cs = CPU(cpu);
4150 
4151     /*
4152      * A change in VMID to the stage2 page table (Stage2) invalidates
4153      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4154      */
4155     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4156         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4157     }
4158     raw_write(env, ri, value);
4159 }
4160 
4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4162     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4163       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4164       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4165                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4166     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4167       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4168       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4169                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4170     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4171       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4172       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4173                              offsetof(CPUARMState, cp15.dfar_ns) } },
4174     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4175       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4176       .access = PL1_RW, .accessfn = access_tvm_trvm,
4177       .fgt = FGT_FAR_EL1,
4178       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4179       .resetvalue = 0, },
4180 };
4181 
4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4183     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4184       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4185       .access = PL1_RW, .accessfn = access_tvm_trvm,
4186       .fgt = FGT_ESR_EL1,
4187       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4188     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4189       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4190       .access = PL1_RW, .accessfn = access_tvm_trvm,
4191       .fgt = FGT_TTBR0_EL1,
4192       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4193       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4194                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4195     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4196       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4197       .access = PL1_RW, .accessfn = access_tvm_trvm,
4198       .fgt = FGT_TTBR1_EL1,
4199       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4200       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4201                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4202     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4204       .access = PL1_RW, .accessfn = access_tvm_trvm,
4205       .fgt = FGT_TCR_EL1,
4206       .writefn = vmsa_tcr_el12_write,
4207       .raw_writefn = raw_write,
4208       .resetvalue = 0,
4209       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4210     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4211       .access = PL1_RW, .accessfn = access_tvm_trvm,
4212       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4213       .raw_writefn = raw_write,
4214       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4215                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4216 };
4217 
4218 /*
4219  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4220  * qemu tlbs nor adjusting cached masks.
4221  */
4222 static const ARMCPRegInfo ttbcr2_reginfo = {
4223     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4224     .access = PL1_RW, .accessfn = access_tvm_trvm,
4225     .type = ARM_CP_ALIAS,
4226     .bank_fieldoffsets = {
4227         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4228         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4229     },
4230 };
4231 
4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4233                                 uint64_t value)
4234 {
4235     env->cp15.c15_ticonfig = value & 0xe7;
4236     /* The OS_TYPE bit in this register changes the reported CPUID! */
4237     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4238         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4239 }
4240 
4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                                 uint64_t value)
4243 {
4244     env->cp15.c15_threadid = value & 0xffff;
4245 }
4246 
4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248                            uint64_t value)
4249 {
4250     /* Wait-for-interrupt (deprecated) */
4251     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4252 }
4253 
4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255                                   uint64_t value)
4256 {
4257     /*
4258      * On OMAP there are registers indicating the max/min index of dcache lines
4259      * containing a dirty line; cache flush operations have to reset these.
4260      */
4261     env->cp15.c15_i_max = 0x000;
4262     env->cp15.c15_i_min = 0xff0;
4263 }
4264 
4265 static const ARMCPRegInfo omap_cp_reginfo[] = {
4266     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4267       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4268       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4269       .resetvalue = 0, },
4270     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4271       .access = PL1_RW, .type = ARM_CP_NOP },
4272     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4273       .access = PL1_RW,
4274       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4275       .writefn = omap_ticonfig_write },
4276     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4277       .access = PL1_RW,
4278       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4279     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4280       .access = PL1_RW, .resetvalue = 0xff0,
4281       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4282     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4283       .access = PL1_RW,
4284       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4285       .writefn = omap_threadid_write },
4286     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4287       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4288       .type = ARM_CP_NO_RAW,
4289       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4290     /*
4291      * TODO: Peripheral port remap register:
4292      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4293      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4294      * when MMU is off.
4295      */
4296     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4297       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4298       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4299       .writefn = omap_cachemaint_write },
4300     { .name = "C9", .cp = 15, .crn = 9,
4301       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4302       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4303 };
4304 
4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4306                               uint64_t value)
4307 {
4308     env->cp15.c15_cpar = value & 0x3fff;
4309 }
4310 
4311 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4312     { .name = "XSCALE_CPAR",
4313       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4314       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4315       .writefn = xscale_cpar_write, },
4316     { .name = "XSCALE_AUXCR",
4317       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4318       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4319       .resetvalue = 0, },
4320     /*
4321      * XScale specific cache-lockdown: since we have no cache we NOP these
4322      * and hope the guest does not really rely on cache behaviour.
4323      */
4324     { .name = "XSCALE_LOCK_ICACHE_LINE",
4325       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4326       .access = PL1_W, .type = ARM_CP_NOP },
4327     { .name = "XSCALE_UNLOCK_ICACHE",
4328       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4329       .access = PL1_W, .type = ARM_CP_NOP },
4330     { .name = "XSCALE_DCACHE_LOCK",
4331       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4332       .access = PL1_RW, .type = ARM_CP_NOP },
4333     { .name = "XSCALE_UNLOCK_DCACHE",
4334       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4335       .access = PL1_W, .type = ARM_CP_NOP },
4336 };
4337 
4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4339     /*
4340      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4341      * implementation of this implementation-defined space.
4342      * Ideally this should eventually disappear in favour of actually
4343      * implementing the correct behaviour for all cores.
4344      */
4345     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4346       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4347       .access = PL1_RW,
4348       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4349       .resetvalue = 0 },
4350 };
4351 
4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4353     /* Cache status: RAZ because we have no cache so it's always clean */
4354     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4355       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4356       .resetvalue = 0 },
4357 };
4358 
4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4360     /* We never have a block transfer operation in progress */
4361     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4362       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4363       .resetvalue = 0 },
4364     /* The cache ops themselves: these all NOP for QEMU */
4365     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4366       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4368       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4370       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4372       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4373     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4374       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4375     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4376       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4377 };
4378 
4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4380     /*
4381      * The cache test-and-clean instructions always return (1 << 30)
4382      * to indicate that there are no dirty cache lines.
4383      */
4384     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4385       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4386       .resetvalue = (1 << 30) },
4387     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4388       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4389       .resetvalue = (1 << 30) },
4390 };
4391 
4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4393     /* Ignore ReadBuffer accesses */
4394     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4395       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4396       .access = PL1_RW, .resetvalue = 0,
4397       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4398 };
4399 
4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 {
4402     unsigned int cur_el = arm_current_el(env);
4403 
4404     if (arm_is_el2_enabled(env) && cur_el == 1) {
4405         return env->cp15.vpidr_el2;
4406     }
4407     return raw_read(env, ri);
4408 }
4409 
4410 static uint64_t mpidr_read_val(CPUARMState *env)
4411 {
4412     ARMCPU *cpu = env_archcpu(env);
4413     uint64_t mpidr = cpu->mp_affinity;
4414 
4415     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4416         mpidr |= (1U << 31);
4417         /*
4418          * Cores which are uniprocessor (non-coherent)
4419          * but still implement the MP extensions set
4420          * bit 30. (For instance, Cortex-R5).
4421          */
4422         if (cpu->mp_is_up) {
4423             mpidr |= (1u << 30);
4424         }
4425     }
4426     return mpidr;
4427 }
4428 
4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4430 {
4431     unsigned int cur_el = arm_current_el(env);
4432 
4433     if (arm_is_el2_enabled(env) && cur_el == 1) {
4434         return env->cp15.vmpidr_el2;
4435     }
4436     return mpidr_read_val(env);
4437 }
4438 
4439 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4440     /* NOP AMAIR0/1 */
4441     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4442       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4443       .access = PL1_RW, .accessfn = access_tvm_trvm,
4444       .fgt = FGT_AMAIR_EL1,
4445       .type = ARM_CP_CONST, .resetvalue = 0 },
4446     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4447     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4448       .access = PL1_RW, .accessfn = access_tvm_trvm,
4449       .type = ARM_CP_CONST, .resetvalue = 0 },
4450     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4451       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4452       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4453                              offsetof(CPUARMState, cp15.par_ns)} },
4454     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4455       .access = PL1_RW, .accessfn = access_tvm_trvm,
4456       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4458                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4459       .writefn = vmsa_ttbr_write, },
4460     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4461       .access = PL1_RW, .accessfn = access_tvm_trvm,
4462       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4463       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4464                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4465       .writefn = vmsa_ttbr_write, },
4466 };
4467 
4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4469 {
4470     return vfp_get_fpcr(env);
4471 }
4472 
4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474                             uint64_t value)
4475 {
4476     vfp_set_fpcr(env, value);
4477 }
4478 
4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4480 {
4481     return vfp_get_fpsr(env);
4482 }
4483 
4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4485                             uint64_t value)
4486 {
4487     vfp_set_fpsr(env, value);
4488 }
4489 
4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4491                                        bool isread)
4492 {
4493     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4494         return CP_ACCESS_TRAP;
4495     }
4496     return CP_ACCESS_OK;
4497 }
4498 
4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4500                             uint64_t value)
4501 {
4502     env->daif = value & PSTATE_DAIF;
4503 }
4504 
4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4506 {
4507     return env->pstate & PSTATE_PAN;
4508 }
4509 
4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4511                            uint64_t value)
4512 {
4513     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4514 }
4515 
4516 static const ARMCPRegInfo pan_reginfo = {
4517     .name = "PAN", .state = ARM_CP_STATE_AA64,
4518     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4519     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4520     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4521 };
4522 
4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 {
4525     return env->pstate & PSTATE_UAO;
4526 }
4527 
4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529                            uint64_t value)
4530 {
4531     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4532 }
4533 
4534 static const ARMCPRegInfo uao_reginfo = {
4535     .name = "UAO", .state = ARM_CP_STATE_AA64,
4536     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4537     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4538     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4539 };
4540 
4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4542 {
4543     return env->pstate & PSTATE_DIT;
4544 }
4545 
4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547                            uint64_t value)
4548 {
4549     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4550 }
4551 
4552 static const ARMCPRegInfo dit_reginfo = {
4553     .name = "DIT", .state = ARM_CP_STATE_AA64,
4554     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4555     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4556     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4557 };
4558 
4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4560 {
4561     return env->pstate & PSTATE_SSBS;
4562 }
4563 
4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565                            uint64_t value)
4566 {
4567     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4568 }
4569 
4570 static const ARMCPRegInfo ssbs_reginfo = {
4571     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4572     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4573     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4574     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4575 };
4576 
4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4578                                               const ARMCPRegInfo *ri,
4579                                               bool isread)
4580 {
4581     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4582     switch (arm_current_el(env)) {
4583     case 0:
4584         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4585         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4586             return CP_ACCESS_TRAP;
4587         }
4588         /* fall through */
4589     case 1:
4590         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4591         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4592             return CP_ACCESS_TRAP_EL2;
4593         }
4594         break;
4595     }
4596     return CP_ACCESS_OK;
4597 }
4598 
4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4600 {
4601     /* Cache invalidate/clean to Point of Unification... */
4602     switch (arm_current_el(env)) {
4603     case 0:
4604         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4605         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4606             return CP_ACCESS_TRAP;
4607         }
4608         /* fall through */
4609     case 1:
4610         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4611         if (arm_hcr_el2_eff(env) & hcrflags) {
4612             return CP_ACCESS_TRAP_EL2;
4613         }
4614         break;
4615     }
4616     return CP_ACCESS_OK;
4617 }
4618 
4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                    bool isread)
4621 {
4622     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4623 }
4624 
4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4626                                   bool isread)
4627 {
4628     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4629 }
4630 
4631 /*
4632  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4633  * Page D4-1736 (DDI0487A.b)
4634  */
4635 
4636 static int vae1_tlbmask(CPUARMState *env)
4637 {
4638     uint64_t hcr = arm_hcr_el2_eff(env);
4639     uint16_t mask;
4640 
4641     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4642         mask = ARMMMUIdxBit_E20_2 |
4643                ARMMMUIdxBit_E20_2_PAN |
4644                ARMMMUIdxBit_E20_0;
4645     } else {
4646         mask = ARMMMUIdxBit_E10_1 |
4647                ARMMMUIdxBit_E10_1_PAN |
4648                ARMMMUIdxBit_E10_0;
4649     }
4650     return mask;
4651 }
4652 
4653 /* Return 56 if TBI is enabled, 64 otherwise. */
4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4655                               uint64_t addr)
4656 {
4657     uint64_t tcr = regime_tcr(env, mmu_idx);
4658     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4659     int select = extract64(addr, 55, 1);
4660 
4661     return (tbi >> select) & 1 ? 56 : 64;
4662 }
4663 
4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4665 {
4666     uint64_t hcr = arm_hcr_el2_eff(env);
4667     ARMMMUIdx mmu_idx;
4668 
4669     /* Only the regime of the mmu_idx below is significant. */
4670     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4671         mmu_idx = ARMMMUIdx_E20_0;
4672     } else {
4673         mmu_idx = ARMMMUIdx_E10_0;
4674     }
4675 
4676     return tlbbits_for_regime(env, mmu_idx, addr);
4677 }
4678 
4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                       uint64_t value)
4681 {
4682     CPUState *cs = env_cpu(env);
4683     int mask = vae1_tlbmask(env);
4684 
4685     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4686 }
4687 
4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                     uint64_t value)
4690 {
4691     CPUState *cs = env_cpu(env);
4692     int mask = vae1_tlbmask(env);
4693 
4694     if (tlb_force_broadcast(env)) {
4695         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4696     } else {
4697         tlb_flush_by_mmuidx(cs, mask);
4698     }
4699 }
4700 
4701 static int e2_tlbmask(CPUARMState *env)
4702 {
4703     return (ARMMMUIdxBit_E20_0 |
4704             ARMMMUIdxBit_E20_2 |
4705             ARMMMUIdxBit_E20_2_PAN |
4706             ARMMMUIdxBit_E2);
4707 }
4708 
4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4710                                   uint64_t value)
4711 {
4712     CPUState *cs = env_cpu(env);
4713     int mask = alle1_tlbmask(env);
4714 
4715     tlb_flush_by_mmuidx(cs, mask);
4716 }
4717 
4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                   uint64_t value)
4720 {
4721     CPUState *cs = env_cpu(env);
4722     int mask = e2_tlbmask(env);
4723 
4724     tlb_flush_by_mmuidx(cs, mask);
4725 }
4726 
4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4728                                   uint64_t value)
4729 {
4730     ARMCPU *cpu = env_archcpu(env);
4731     CPUState *cs = CPU(cpu);
4732 
4733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4734 }
4735 
4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737                                     uint64_t value)
4738 {
4739     CPUState *cs = env_cpu(env);
4740     int mask = alle1_tlbmask(env);
4741 
4742     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4743 }
4744 
4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4746                                     uint64_t value)
4747 {
4748     CPUState *cs = env_cpu(env);
4749     int mask = e2_tlbmask(env);
4750 
4751     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4752 }
4753 
4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                     uint64_t value)
4756 {
4757     CPUState *cs = env_cpu(env);
4758 
4759     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4760 }
4761 
4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                  uint64_t value)
4764 {
4765     /*
4766      * Invalidate by VA, EL2
4767      * Currently handles both VAE2 and VALE2, since we don't support
4768      * flush-last-level-only.
4769      */
4770     CPUState *cs = env_cpu(env);
4771     int mask = e2_tlbmask(env);
4772     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773 
4774     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4775 }
4776 
4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4778                                  uint64_t value)
4779 {
4780     /*
4781      * Invalidate by VA, EL3
4782      * Currently handles both VAE3 and VALE3, since we don't support
4783      * flush-last-level-only.
4784      */
4785     ARMCPU *cpu = env_archcpu(env);
4786     CPUState *cs = CPU(cpu);
4787     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4788 
4789     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4790 }
4791 
4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4793                                    uint64_t value)
4794 {
4795     CPUState *cs = env_cpu(env);
4796     int mask = vae1_tlbmask(env);
4797     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4798     int bits = vae1_tlbbits(env, pageaddr);
4799 
4800     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4801 }
4802 
4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804                                  uint64_t value)
4805 {
4806     /*
4807      * Invalidate by VA, EL1&0 (AArch64 version).
4808      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4809      * since we don't support flush-for-specific-ASID-only or
4810      * flush-last-level-only.
4811      */
4812     CPUState *cs = env_cpu(env);
4813     int mask = vae1_tlbmask(env);
4814     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4815     int bits = vae1_tlbbits(env, pageaddr);
4816 
4817     if (tlb_force_broadcast(env)) {
4818         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4819     } else {
4820         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4821     }
4822 }
4823 
4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                                    uint64_t value)
4826 {
4827     CPUState *cs = env_cpu(env);
4828     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4829     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4830 
4831     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4832                                                   ARMMMUIdxBit_E2, bits);
4833 }
4834 
4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4836                                    uint64_t value)
4837 {
4838     CPUState *cs = env_cpu(env);
4839     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4840     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4841 
4842     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4843                                                   ARMMMUIdxBit_E3, bits);
4844 }
4845 
4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4847 {
4848     /*
4849      * The MSB of value is the NS field, which only applies if SEL2
4850      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4851      */
4852     return (value >= 0
4853             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4854             && arm_is_secure_below_el3(env)
4855             ? ARMMMUIdxBit_Stage2_S
4856             : ARMMMUIdxBit_Stage2);
4857 }
4858 
4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4860                                     uint64_t value)
4861 {
4862     CPUState *cs = env_cpu(env);
4863     int mask = ipas2e1_tlbmask(env, value);
4864     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4865 
4866     if (tlb_force_broadcast(env)) {
4867         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4868     } else {
4869         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4870     }
4871 }
4872 
4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874                                       uint64_t value)
4875 {
4876     CPUState *cs = env_cpu(env);
4877     int mask = ipas2e1_tlbmask(env, value);
4878     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4879 
4880     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4881 }
4882 
4883 #ifdef TARGET_AARCH64
4884 typedef struct {
4885     uint64_t base;
4886     uint64_t length;
4887 } TLBIRange;
4888 
4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4890 {
4891     /*
4892      * Note that the TLBI range TG field encoding differs from both
4893      * TG0 and TG1 encodings.
4894      */
4895     switch (tg) {
4896     case 1:
4897         return Gran4K;
4898     case 2:
4899         return Gran16K;
4900     case 3:
4901         return Gran64K;
4902     default:
4903         return GranInvalid;
4904     }
4905 }
4906 
4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4908                                      uint64_t value)
4909 {
4910     unsigned int page_size_granule, page_shift, num, scale, exponent;
4911     /* Extract one bit to represent the va selector in use. */
4912     uint64_t select = sextract64(value, 36, 1);
4913     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4914     TLBIRange ret = { };
4915     ARMGranuleSize gran;
4916 
4917     page_size_granule = extract64(value, 46, 2);
4918     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4919 
4920     /* The granule encoded in value must match the granule in use. */
4921     if (gran != param.gran) {
4922         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4923                       page_size_granule);
4924         return ret;
4925     }
4926 
4927     page_shift = arm_granule_bits(gran);
4928     num = extract64(value, 39, 5);
4929     scale = extract64(value, 44, 2);
4930     exponent = (5 * scale) + 1;
4931 
4932     ret.length = (num + 1) << (exponent + page_shift);
4933 
4934     if (param.select) {
4935         ret.base = sextract64(value, 0, 37);
4936     } else {
4937         ret.base = extract64(value, 0, 37);
4938     }
4939     if (param.ds) {
4940         /*
4941          * With DS=1, BaseADDR is always shifted 16 so that it is able
4942          * to address all 52 va bits.  The input address is perforce
4943          * aligned on a 64k boundary regardless of translation granule.
4944          */
4945         page_shift = 16;
4946     }
4947     ret.base <<= page_shift;
4948 
4949     return ret;
4950 }
4951 
4952 static void do_rvae_write(CPUARMState *env, uint64_t value,
4953                           int idxmap, bool synced)
4954 {
4955     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4956     TLBIRange range;
4957     int bits;
4958 
4959     range = tlbi_aa64_get_range(env, one_idx, value);
4960     bits = tlbbits_for_regime(env, one_idx, range.base);
4961 
4962     if (synced) {
4963         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4964                                                   range.base,
4965                                                   range.length,
4966                                                   idxmap,
4967                                                   bits);
4968     } else {
4969         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4970                                   range.length, idxmap, bits);
4971     }
4972 }
4973 
4974 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4975                                   const ARMCPRegInfo *ri,
4976                                   uint64_t value)
4977 {
4978     /*
4979      * Invalidate by VA range, EL1&0.
4980      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4981      * since we don't support flush-for-specific-ASID-only or
4982      * flush-last-level-only.
4983      */
4984 
4985     do_rvae_write(env, value, vae1_tlbmask(env),
4986                   tlb_force_broadcast(env));
4987 }
4988 
4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4990                                     const ARMCPRegInfo *ri,
4991                                     uint64_t value)
4992 {
4993     /*
4994      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4995      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4996      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4997      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4998      * shareable specific flushes.
4999      */
5000 
5001     do_rvae_write(env, value, vae1_tlbmask(env), true);
5002 }
5003 
5004 static int vae2_tlbmask(CPUARMState *env)
5005 {
5006     return ARMMMUIdxBit_E2;
5007 }
5008 
5009 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5010                                   const ARMCPRegInfo *ri,
5011                                   uint64_t value)
5012 {
5013     /*
5014      * Invalidate by VA range, EL2.
5015      * Currently handles all of RVAE2 and RVALE2,
5016      * since we don't support flush-for-specific-ASID-only or
5017      * flush-last-level-only.
5018      */
5019 
5020     do_rvae_write(env, value, vae2_tlbmask(env),
5021                   tlb_force_broadcast(env));
5022 
5023 
5024 }
5025 
5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5027                                     const ARMCPRegInfo *ri,
5028                                     uint64_t value)
5029 {
5030     /*
5031      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5032      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5033      * since we don't support flush-for-specific-ASID-only,
5034      * flush-last-level-only or inner/outer shareable specific flushes.
5035      */
5036 
5037     do_rvae_write(env, value, vae2_tlbmask(env), true);
5038 
5039 }
5040 
5041 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5042                                   const ARMCPRegInfo *ri,
5043                                   uint64_t value)
5044 {
5045     /*
5046      * Invalidate by VA range, EL3.
5047      * Currently handles all of RVAE3 and RVALE3,
5048      * since we don't support flush-for-specific-ASID-only or
5049      * flush-last-level-only.
5050      */
5051 
5052     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5053 }
5054 
5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5056                                     const ARMCPRegInfo *ri,
5057                                     uint64_t value)
5058 {
5059     /*
5060      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5061      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5062      * since we don't support flush-for-specific-ASID-only,
5063      * flush-last-level-only or inner/outer specific flushes.
5064      */
5065 
5066     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5067 }
5068 
5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5070                                      uint64_t value)
5071 {
5072     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5073                   tlb_force_broadcast(env));
5074 }
5075 
5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5077                                        const ARMCPRegInfo *ri,
5078                                        uint64_t value)
5079 {
5080     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5081 }
5082 #endif
5083 
5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5085                                       bool isread)
5086 {
5087     int cur_el = arm_current_el(env);
5088 
5089     if (cur_el < 2) {
5090         uint64_t hcr = arm_hcr_el2_eff(env);
5091 
5092         if (cur_el == 0) {
5093             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5094                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5095                     return CP_ACCESS_TRAP_EL2;
5096                 }
5097             } else {
5098                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5099                     return CP_ACCESS_TRAP;
5100                 }
5101                 if (hcr & HCR_TDZ) {
5102                     return CP_ACCESS_TRAP_EL2;
5103                 }
5104             }
5105         } else if (hcr & HCR_TDZ) {
5106             return CP_ACCESS_TRAP_EL2;
5107         }
5108     }
5109     return CP_ACCESS_OK;
5110 }
5111 
5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5113 {
5114     ARMCPU *cpu = env_archcpu(env);
5115     int dzp_bit = 1 << 4;
5116 
5117     /* DZP indicates whether DC ZVA access is allowed */
5118     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5119         dzp_bit = 0;
5120     }
5121     return cpu->dcz_blocksize | dzp_bit;
5122 }
5123 
5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5125                                     bool isread)
5126 {
5127     if (!(env->pstate & PSTATE_SP)) {
5128         /*
5129          * Access to SP_EL0 is undefined if it's being used as
5130          * the stack pointer.
5131          */
5132         return CP_ACCESS_TRAP_UNCATEGORIZED;
5133     }
5134     return CP_ACCESS_OK;
5135 }
5136 
5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5138 {
5139     return env->pstate & PSTATE_SP;
5140 }
5141 
5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5143 {
5144     update_spsel(env, val);
5145 }
5146 
5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5148                         uint64_t value)
5149 {
5150     ARMCPU *cpu = env_archcpu(env);
5151 
5152     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5153         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5154         value &= ~SCTLR_M;
5155     }
5156 
5157     /* ??? Lots of these bits are not implemented.  */
5158 
5159     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5160         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5161             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5162         } else {
5163             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5164                        SCTLR_ATA0 | SCTLR_ATA);
5165         }
5166     }
5167 
5168     if (raw_read(env, ri) == value) {
5169         /*
5170          * Skip the TLB flush if nothing actually changed; Linux likes
5171          * to do a lot of pointless SCTLR writes.
5172          */
5173         return;
5174     }
5175 
5176     raw_write(env, ri, value);
5177 
5178     /* This may enable/disable the MMU, so do a TLB flush.  */
5179     tlb_flush(CPU(cpu));
5180 
5181     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5182         /*
5183          * Normally we would always end the TB on an SCTLR write; see the
5184          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5185          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5186          * of hflags from the translator, so do it here.
5187          */
5188         arm_rebuild_hflags(env);
5189     }
5190 }
5191 
5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5193                            uint64_t value)
5194 {
5195     /*
5196      * Some MDCR_EL3 bits affect whether PMU counters are running:
5197      * if we are trying to change any of those then we must
5198      * bracket this update with PMU start/finish calls.
5199      */
5200     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5201 
5202     if (pmu_op) {
5203         pmu_op_start(env);
5204     }
5205     env->cp15.mdcr_el3 = value;
5206     if (pmu_op) {
5207         pmu_op_finish(env);
5208     }
5209 }
5210 
5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212                        uint64_t value)
5213 {
5214     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5215     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5216 }
5217 
5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5219                            uint64_t value)
5220 {
5221     /*
5222      * Some MDCR_EL2 bits affect whether PMU counters are running:
5223      * if we are trying to change any of those then we must
5224      * bracket this update with PMU start/finish calls.
5225      */
5226     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5227 
5228     if (pmu_op) {
5229         pmu_op_start(env);
5230     }
5231     env->cp15.mdcr_el2 = value;
5232     if (pmu_op) {
5233         pmu_op_finish(env);
5234     }
5235 }
5236 
5237 static const ARMCPRegInfo v8_cp_reginfo[] = {
5238     /*
5239      * Minimal set of EL0-visible registers. This will need to be expanded
5240      * significantly for system emulation of AArch64 CPUs.
5241      */
5242     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5243       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5244       .access = PL0_RW, .type = ARM_CP_NZCV },
5245     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5246       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5247       .type = ARM_CP_NO_RAW,
5248       .access = PL0_RW, .accessfn = aa64_daif_access,
5249       .fieldoffset = offsetof(CPUARMState, daif),
5250       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5251     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5252       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5253       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5254       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5255     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5256       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5257       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5258       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5259     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5260       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5261       .access = PL0_R, .type = ARM_CP_NO_RAW,
5262       .fgt = FGT_DCZID_EL0,
5263       .readfn = aa64_dczid_read },
5264     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5265       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5266       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5267 #ifndef CONFIG_USER_ONLY
5268       /* Avoid overhead of an access check that always passes in user-mode */
5269       .accessfn = aa64_zva_access,
5270       .fgt = FGT_DCZVA,
5271 #endif
5272     },
5273     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5274       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5275       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5276     /* Cache ops: all NOPs since we don't emulate caches */
5277     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5278       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5279       .access = PL1_W, .type = ARM_CP_NOP,
5280       .fgt = FGT_ICIALLUIS,
5281       .accessfn = access_ticab },
5282     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5283       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5284       .access = PL1_W, .type = ARM_CP_NOP,
5285       .fgt = FGT_ICIALLU,
5286       .accessfn = access_tocu },
5287     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5288       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5289       .access = PL0_W, .type = ARM_CP_NOP,
5290       .fgt = FGT_ICIVAU,
5291       .accessfn = access_tocu },
5292     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5293       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5294       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5295       .fgt = FGT_DCIVAC,
5296       .type = ARM_CP_NOP },
5297     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5298       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5299       .fgt = FGT_DCISW,
5300       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5301     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5302       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5303       .access = PL0_W, .type = ARM_CP_NOP,
5304       .fgt = FGT_DCCVAC,
5305       .accessfn = aa64_cacheop_poc_access },
5306     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5307       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5308       .fgt = FGT_DCCSW,
5309       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5310     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5311       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5312       .access = PL0_W, .type = ARM_CP_NOP,
5313       .fgt = FGT_DCCVAU,
5314       .accessfn = access_tocu },
5315     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5316       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5317       .access = PL0_W, .type = ARM_CP_NOP,
5318       .fgt = FGT_DCCIVAC,
5319       .accessfn = aa64_cacheop_poc_access },
5320     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5321       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5322       .fgt = FGT_DCCISW,
5323       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5324     /* TLBI operations */
5325     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5326       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5327       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5328       .fgt = FGT_TLBIVMALLE1IS,
5329       .writefn = tlbi_aa64_vmalle1is_write },
5330     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5331       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5332       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5333       .fgt = FGT_TLBIVAE1IS,
5334       .writefn = tlbi_aa64_vae1is_write },
5335     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5336       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5337       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5338       .fgt = FGT_TLBIASIDE1IS,
5339       .writefn = tlbi_aa64_vmalle1is_write },
5340     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5342       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5343       .fgt = FGT_TLBIVAAE1IS,
5344       .writefn = tlbi_aa64_vae1is_write },
5345     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5346       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5347       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5348       .fgt = FGT_TLBIVALE1IS,
5349       .writefn = tlbi_aa64_vae1is_write },
5350     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5351       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5352       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5353       .fgt = FGT_TLBIVAALE1IS,
5354       .writefn = tlbi_aa64_vae1is_write },
5355     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5357       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5358       .fgt = FGT_TLBIVMALLE1,
5359       .writefn = tlbi_aa64_vmalle1_write },
5360     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5362       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5363       .fgt = FGT_TLBIVAE1,
5364       .writefn = tlbi_aa64_vae1_write },
5365     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5366       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5367       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5368       .fgt = FGT_TLBIASIDE1,
5369       .writefn = tlbi_aa64_vmalle1_write },
5370     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5371       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5372       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5373       .fgt = FGT_TLBIVAAE1,
5374       .writefn = tlbi_aa64_vae1_write },
5375     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5376       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5377       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5378       .fgt = FGT_TLBIVALE1,
5379       .writefn = tlbi_aa64_vae1_write },
5380     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5382       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5383       .fgt = FGT_TLBIVAALE1,
5384       .writefn = tlbi_aa64_vae1_write },
5385     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5386       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5387       .access = PL2_W, .type = ARM_CP_NO_RAW,
5388       .writefn = tlbi_aa64_ipas2e1is_write },
5389     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5390       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5391       .access = PL2_W, .type = ARM_CP_NO_RAW,
5392       .writefn = tlbi_aa64_ipas2e1is_write },
5393     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5394       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5395       .access = PL2_W, .type = ARM_CP_NO_RAW,
5396       .writefn = tlbi_aa64_alle1is_write },
5397     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5398       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5399       .access = PL2_W, .type = ARM_CP_NO_RAW,
5400       .writefn = tlbi_aa64_alle1is_write },
5401     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5402       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5403       .access = PL2_W, .type = ARM_CP_NO_RAW,
5404       .writefn = tlbi_aa64_ipas2e1_write },
5405     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5406       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5407       .access = PL2_W, .type = ARM_CP_NO_RAW,
5408       .writefn = tlbi_aa64_ipas2e1_write },
5409     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5410       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5411       .access = PL2_W, .type = ARM_CP_NO_RAW,
5412       .writefn = tlbi_aa64_alle1_write },
5413     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5414       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5415       .access = PL2_W, .type = ARM_CP_NO_RAW,
5416       .writefn = tlbi_aa64_alle1is_write },
5417 #ifndef CONFIG_USER_ONLY
5418     /* 64 bit address translation operations */
5419     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5420       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5421       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5422       .fgt = FGT_ATS1E1R,
5423       .writefn = ats_write64 },
5424     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5425       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5426       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5427       .fgt = FGT_ATS1E1W,
5428       .writefn = ats_write64 },
5429     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5430       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5431       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5432       .fgt = FGT_ATS1E0R,
5433       .writefn = ats_write64 },
5434     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5435       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5436       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5437       .fgt = FGT_ATS1E0W,
5438       .writefn = ats_write64 },
5439     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5440       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5441       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5442       .writefn = ats_write64 },
5443     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5444       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5445       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5446       .writefn = ats_write64 },
5447     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5448       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5449       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5450       .writefn = ats_write64 },
5451     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5452       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5453       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5454       .writefn = ats_write64 },
5455     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5456     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5457       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5458       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5459       .writefn = ats_write64 },
5460     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5462       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5463       .writefn = ats_write64 },
5464     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5465       .type = ARM_CP_ALIAS,
5466       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5467       .access = PL1_RW, .resetvalue = 0,
5468       .fgt = FGT_PAR_EL1,
5469       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5470       .writefn = par_write },
5471 #endif
5472     /* TLB invalidate last level of translation table walk */
5473     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5474       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5475       .writefn = tlbimva_is_write },
5476     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5477       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5478       .writefn = tlbimvaa_is_write },
5479     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5480       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5481       .writefn = tlbimva_write },
5482     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5483       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5484       .writefn = tlbimvaa_write },
5485     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5486       .type = ARM_CP_NO_RAW, .access = PL2_W,
5487       .writefn = tlbimva_hyp_write },
5488     { .name = "TLBIMVALHIS",
5489       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5490       .type = ARM_CP_NO_RAW, .access = PL2_W,
5491       .writefn = tlbimva_hyp_is_write },
5492     { .name = "TLBIIPAS2",
5493       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5494       .type = ARM_CP_NO_RAW, .access = PL2_W,
5495       .writefn = tlbiipas2_hyp_write },
5496     { .name = "TLBIIPAS2IS",
5497       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5498       .type = ARM_CP_NO_RAW, .access = PL2_W,
5499       .writefn = tlbiipas2is_hyp_write },
5500     { .name = "TLBIIPAS2L",
5501       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5502       .type = ARM_CP_NO_RAW, .access = PL2_W,
5503       .writefn = tlbiipas2_hyp_write },
5504     { .name = "TLBIIPAS2LIS",
5505       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5506       .type = ARM_CP_NO_RAW, .access = PL2_W,
5507       .writefn = tlbiipas2is_hyp_write },
5508     /* 32 bit cache operations */
5509     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5510       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5511     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5512       .type = ARM_CP_NOP, .access = PL1_W },
5513     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5514       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5515     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5516       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5517     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5518       .type = ARM_CP_NOP, .access = PL1_W },
5519     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5520       .type = ARM_CP_NOP, .access = PL1_W },
5521     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5522       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5523     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5524       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5525     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5526       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5527     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5528       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5529     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5530       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5531     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5532       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5533     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5534       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5535     /* MMU Domain access control / MPU write buffer control */
5536     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5537       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5538       .writefn = dacr_write, .raw_writefn = raw_write,
5539       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5540                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5541     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5542       .type = ARM_CP_ALIAS,
5543       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5544       .access = PL1_RW,
5545       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5546     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5547       .type = ARM_CP_ALIAS,
5548       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5549       .access = PL1_RW,
5550       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5551     /*
5552      * We rely on the access checks not allowing the guest to write to the
5553      * state field when SPSel indicates that it's being used as the stack
5554      * pointer.
5555      */
5556     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5557       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5558       .access = PL1_RW, .accessfn = sp_el0_access,
5559       .type = ARM_CP_ALIAS,
5560       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5561     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5562       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5563       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5564       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5565     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5567       .type = ARM_CP_NO_RAW,
5568       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5569     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5570       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5571       .access = PL2_RW,
5572       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5573       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5574     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5576       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5577       .writefn = dacr_write, .raw_writefn = raw_write,
5578       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5579     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5580       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5581       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5582       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5583     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5584       .type = ARM_CP_ALIAS,
5585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5586       .access = PL2_RW,
5587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5588     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5589       .type = ARM_CP_ALIAS,
5590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5591       .access = PL2_RW,
5592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5593     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5594       .type = ARM_CP_ALIAS,
5595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5596       .access = PL2_RW,
5597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5598     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5599       .type = ARM_CP_ALIAS,
5600       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5601       .access = PL2_RW,
5602       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5603     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5604       .type = ARM_CP_IO,
5605       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5606       .resetvalue = 0,
5607       .access = PL3_RW,
5608       .writefn = mdcr_el3_write,
5609       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5610     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5611       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5612       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5613       .writefn = sdcr_write,
5614       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5615 };
5616 
5617 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5618 {
5619     ARMCPU *cpu = env_archcpu(env);
5620 
5621     if (arm_feature(env, ARM_FEATURE_V8)) {
5622         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5623     } else {
5624         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5625     }
5626 
5627     if (arm_feature(env, ARM_FEATURE_EL3)) {
5628         valid_mask &= ~HCR_HCD;
5629     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5630         /*
5631          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5632          * However, if we're using the SMC PSCI conduit then QEMU is
5633          * effectively acting like EL3 firmware and so the guest at
5634          * EL2 should retain the ability to prevent EL1 from being
5635          * able to make SMC calls into the ersatz firmware, so in
5636          * that case HCR.TSC should be read/write.
5637          */
5638         valid_mask &= ~HCR_TSC;
5639     }
5640 
5641     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5642         if (cpu_isar_feature(aa64_vh, cpu)) {
5643             valid_mask |= HCR_E2H;
5644         }
5645         if (cpu_isar_feature(aa64_ras, cpu)) {
5646             valid_mask |= HCR_TERR | HCR_TEA;
5647         }
5648         if (cpu_isar_feature(aa64_lor, cpu)) {
5649             valid_mask |= HCR_TLOR;
5650         }
5651         if (cpu_isar_feature(aa64_pauth, cpu)) {
5652             valid_mask |= HCR_API | HCR_APK;
5653         }
5654         if (cpu_isar_feature(aa64_mte, cpu)) {
5655             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5656         }
5657         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5658             valid_mask |= HCR_ENSCXT;
5659         }
5660         if (cpu_isar_feature(aa64_fwb, cpu)) {
5661             valid_mask |= HCR_FWB;
5662         }
5663         if (cpu_isar_feature(aa64_rme, cpu)) {
5664             valid_mask |= HCR_GPF;
5665         }
5666     }
5667 
5668     if (cpu_isar_feature(any_evt, cpu)) {
5669         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5670     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5671         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5672     }
5673 
5674     /* Clear RES0 bits.  */
5675     value &= valid_mask;
5676 
5677     /*
5678      * These bits change the MMU setup:
5679      * HCR_VM enables stage 2 translation
5680      * HCR_PTW forbids certain page-table setups
5681      * HCR_DC disables stage1 and enables stage2 translation
5682      * HCR_DCT enables tagging on (disabled) stage1 translation
5683      * HCR_FWB changes the interpretation of stage2 descriptor bits
5684      */
5685     if ((env->cp15.hcr_el2 ^ value) &
5686         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5687         tlb_flush(CPU(cpu));
5688     }
5689     env->cp15.hcr_el2 = value;
5690 
5691     /*
5692      * Updates to VI and VF require us to update the status of
5693      * virtual interrupts, which are the logical OR of these bits
5694      * and the state of the input lines from the GIC. (This requires
5695      * that we have the iothread lock, which is done by marking the
5696      * reginfo structs as ARM_CP_IO.)
5697      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5698      * possible for it to be taken immediately, because VIRQ and
5699      * VFIQ are masked unless running at EL0 or EL1, and HCR
5700      * can only be written at EL2.
5701      */
5702     g_assert(qemu_mutex_iothread_locked());
5703     arm_cpu_update_virq(cpu);
5704     arm_cpu_update_vfiq(cpu);
5705     arm_cpu_update_vserr(cpu);
5706 }
5707 
5708 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5709 {
5710     do_hcr_write(env, value, 0);
5711 }
5712 
5713 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5714                           uint64_t value)
5715 {
5716     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5717     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5718     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5719 }
5720 
5721 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5722                          uint64_t value)
5723 {
5724     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5725     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5726     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5727 }
5728 
5729 /*
5730  * Return the effective value of HCR_EL2, at the given security state.
5731  * Bits that are not included here:
5732  * RW       (read from SCR_EL3.RW as needed)
5733  */
5734 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5735 {
5736     uint64_t ret = env->cp15.hcr_el2;
5737 
5738     if (!arm_is_el2_enabled_secstate(env, secure)) {
5739         /*
5740          * "This register has no effect if EL2 is not enabled in the
5741          * current Security state".  This is ARMv8.4-SecEL2 speak for
5742          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5743          *
5744          * Prior to that, the language was "In an implementation that
5745          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5746          * as if this field is 0 for all purposes other than a direct
5747          * read or write access of HCR_EL2".  With lots of enumeration
5748          * on a per-field basis.  In current QEMU, this is condition
5749          * is arm_is_secure_below_el3.
5750          *
5751          * Since the v8.4 language applies to the entire register, and
5752          * appears to be backward compatible, use that.
5753          */
5754         return 0;
5755     }
5756 
5757     /*
5758      * For a cpu that supports both aarch64 and aarch32, we can set bits
5759      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5760      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5761      */
5762     if (!arm_el_is_aa64(env, 2)) {
5763         uint64_t aa32_valid;
5764 
5765         /*
5766          * These bits are up-to-date as of ARMv8.6.
5767          * For HCR, it's easiest to list just the 2 bits that are invalid.
5768          * For HCR2, list those that are valid.
5769          */
5770         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5771         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5772                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5773         ret &= aa32_valid;
5774     }
5775 
5776     if (ret & HCR_TGE) {
5777         /* These bits are up-to-date as of ARMv8.6.  */
5778         if (ret & HCR_E2H) {
5779             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5780                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5781                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5782                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5783                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5784                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5785         } else {
5786             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5787         }
5788         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5789                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5790                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5791                  HCR_TLOR);
5792     }
5793 
5794     return ret;
5795 }
5796 
5797 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5798 {
5799     if (arm_feature(env, ARM_FEATURE_M)) {
5800         return 0;
5801     }
5802     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5803 }
5804 
5805 /*
5806  * Corresponds to ARM pseudocode function ELIsInHost().
5807  */
5808 bool el_is_in_host(CPUARMState *env, int el)
5809 {
5810     uint64_t mask;
5811 
5812     /*
5813      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5814      * Perform the simplest bit tests first, and validate EL2 afterward.
5815      */
5816     if (el & 1) {
5817         return false; /* EL1 or EL3 */
5818     }
5819 
5820     /*
5821      * Note that hcr_write() checks isar_feature_aa64_vh(),
5822      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5823      */
5824     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5825     if ((env->cp15.hcr_el2 & mask) != mask) {
5826         return false;
5827     }
5828 
5829     /* TGE and/or E2H set: double check those bits are currently legal. */
5830     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5831 }
5832 
5833 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5834                        uint64_t value)
5835 {
5836     uint64_t valid_mask = 0;
5837 
5838     /* No features adding bits to HCRX are implemented. */
5839 
5840     /* Clear RES0 bits.  */
5841     env->cp15.hcrx_el2 = value & valid_mask;
5842 }
5843 
5844 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5845                                   bool isread)
5846 {
5847     if (arm_current_el(env) < 3
5848         && arm_feature(env, ARM_FEATURE_EL3)
5849         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5850         return CP_ACCESS_TRAP_EL3;
5851     }
5852     return CP_ACCESS_OK;
5853 }
5854 
5855 static const ARMCPRegInfo hcrx_el2_reginfo = {
5856     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5857     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5858     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5859     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5860 };
5861 
5862 /* Return the effective value of HCRX_EL2.  */
5863 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5864 {
5865     /*
5866      * The bits in this register behave as 0 for all purposes other than
5867      * direct reads of the register if:
5868      *   - EL2 is not enabled in the current security state,
5869      *   - SCR_EL3.HXEn is 0.
5870      */
5871     if (!arm_is_el2_enabled(env)
5872         || (arm_feature(env, ARM_FEATURE_EL3)
5873             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5874         return 0;
5875     }
5876     return env->cp15.hcrx_el2;
5877 }
5878 
5879 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5880                            uint64_t value)
5881 {
5882     /*
5883      * For A-profile AArch32 EL3, if NSACR.CP10
5884      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5885      */
5886     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5887         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5888         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5889         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5890     }
5891     env->cp15.cptr_el[2] = value;
5892 }
5893 
5894 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5895 {
5896     /*
5897      * For A-profile AArch32 EL3, if NSACR.CP10
5898      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5899      */
5900     uint64_t value = env->cp15.cptr_el[2];
5901 
5902     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5903         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5904         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5905     }
5906     return value;
5907 }
5908 
5909 static const ARMCPRegInfo el2_cp_reginfo[] = {
5910     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5911       .type = ARM_CP_IO,
5912       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5913       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5914       .writefn = hcr_write },
5915     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5916       .type = ARM_CP_ALIAS | ARM_CP_IO,
5917       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5918       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5919       .writefn = hcr_writelow },
5920     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5921       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5922       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5923     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5924       .type = ARM_CP_ALIAS,
5925       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5926       .access = PL2_RW,
5927       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5928     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5929       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5930       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5931     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5932       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5933       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5934     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5935       .type = ARM_CP_ALIAS,
5936       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5937       .access = PL2_RW,
5938       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5939     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5940       .type = ARM_CP_ALIAS,
5941       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5942       .access = PL2_RW,
5943       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5944     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5945       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5946       .access = PL2_RW, .writefn = vbar_write,
5947       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5948       .resetvalue = 0 },
5949     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5950       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5951       .access = PL3_RW, .type = ARM_CP_ALIAS,
5952       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5953     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5954       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5955       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5956       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5957       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5958     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5959       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5960       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5961       .resetvalue = 0 },
5962     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5963       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5964       .access = PL2_RW, .type = ARM_CP_ALIAS,
5965       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5966     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5967       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5968       .access = PL2_RW, .type = ARM_CP_CONST,
5969       .resetvalue = 0 },
5970     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5971     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5972       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5973       .access = PL2_RW, .type = ARM_CP_CONST,
5974       .resetvalue = 0 },
5975     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5976       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5977       .access = PL2_RW, .type = ARM_CP_CONST,
5978       .resetvalue = 0 },
5979     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5980       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5981       .access = PL2_RW, .type = ARM_CP_CONST,
5982       .resetvalue = 0 },
5983     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5984       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5985       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5986       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5987     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5988       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5989       .type = ARM_CP_ALIAS,
5990       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5991       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5992     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5993       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5994       .access = PL2_RW,
5995       /* no .writefn needed as this can't cause an ASID change */
5996       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5997     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5998       .cp = 15, .opc1 = 6, .crm = 2,
5999       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6000       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6001       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6002       .writefn = vttbr_write },
6003     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6004       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6005       .access = PL2_RW, .writefn = vttbr_write,
6006       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6007     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6008       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6009       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6010       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6011     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6012       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6013       .access = PL2_RW, .resetvalue = 0,
6014       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6015     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6016       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6017       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6018       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6019     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6020       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6021       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6022     { .name = "TLBIALLNSNH",
6023       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6024       .type = ARM_CP_NO_RAW, .access = PL2_W,
6025       .writefn = tlbiall_nsnh_write },
6026     { .name = "TLBIALLNSNHIS",
6027       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6028       .type = ARM_CP_NO_RAW, .access = PL2_W,
6029       .writefn = tlbiall_nsnh_is_write },
6030     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6031       .type = ARM_CP_NO_RAW, .access = PL2_W,
6032       .writefn = tlbiall_hyp_write },
6033     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6034       .type = ARM_CP_NO_RAW, .access = PL2_W,
6035       .writefn = tlbiall_hyp_is_write },
6036     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6037       .type = ARM_CP_NO_RAW, .access = PL2_W,
6038       .writefn = tlbimva_hyp_write },
6039     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6040       .type = ARM_CP_NO_RAW, .access = PL2_W,
6041       .writefn = tlbimva_hyp_is_write },
6042     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6043       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6044       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6045       .writefn = tlbi_aa64_alle2_write },
6046     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6047       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6048       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6049       .writefn = tlbi_aa64_vae2_write },
6050     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6051       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6052       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6053       .writefn = tlbi_aa64_vae2_write },
6054     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6055       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6056       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6057       .writefn = tlbi_aa64_alle2is_write },
6058     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6059       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6060       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6061       .writefn = tlbi_aa64_vae2is_write },
6062     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6063       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6064       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6065       .writefn = tlbi_aa64_vae2is_write },
6066 #ifndef CONFIG_USER_ONLY
6067     /*
6068      * Unlike the other EL2-related AT operations, these must
6069      * UNDEF from EL3 if EL2 is not implemented, which is why we
6070      * define them here rather than with the rest of the AT ops.
6071      */
6072     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6073       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6074       .access = PL2_W, .accessfn = at_s1e2_access,
6075       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6076       .writefn = ats_write64 },
6077     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6078       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6079       .access = PL2_W, .accessfn = at_s1e2_access,
6080       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6081       .writefn = ats_write64 },
6082     /*
6083      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6084      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6085      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6086      * to behave as if SCR.NS was 1.
6087      */
6088     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6089       .access = PL2_W,
6090       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6091     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6092       .access = PL2_W,
6093       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6094     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6095       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6096       /*
6097        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6098        * reset values as IMPDEF. We choose to reset to 3 to comply with
6099        * both ARMv7 and ARMv8.
6100        */
6101       .access = PL2_RW, .resetvalue = 3,
6102       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6103     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6104       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6105       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6106       .writefn = gt_cntvoff_write,
6107       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6108     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6109       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6110       .writefn = gt_cntvoff_write,
6111       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6112     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6113       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6114       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6115       .type = ARM_CP_IO, .access = PL2_RW,
6116       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6117     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6118       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6119       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6120       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6121     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6122       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6123       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6124       .resetfn = gt_hyp_timer_reset,
6125       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6126     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6127       .type = ARM_CP_IO,
6128       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6129       .access = PL2_RW,
6130       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6131       .resetvalue = 0,
6132       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6133 #endif
6134     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6135       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6136       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6137       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6138     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6139       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6140       .access = PL2_RW,
6141       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6142     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6143       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6144       .access = PL2_RW,
6145       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6146 };
6147 
6148 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6149     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6150       .type = ARM_CP_ALIAS | ARM_CP_IO,
6151       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6152       .access = PL2_RW,
6153       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6154       .writefn = hcr_writehigh },
6155 };
6156 
6157 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6158                                   bool isread)
6159 {
6160     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6161         return CP_ACCESS_OK;
6162     }
6163     return CP_ACCESS_TRAP_UNCATEGORIZED;
6164 }
6165 
6166 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6167     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6168       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6169       .access = PL2_RW, .accessfn = sel2_access,
6170       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6171     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6172       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6173       .access = PL2_RW, .accessfn = sel2_access,
6174       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6175 };
6176 
6177 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6178                                    bool isread)
6179 {
6180     /*
6181      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6182      * At Secure EL1 it traps to EL3 or EL2.
6183      */
6184     if (arm_current_el(env) == 3) {
6185         return CP_ACCESS_OK;
6186     }
6187     if (arm_is_secure_below_el3(env)) {
6188         if (env->cp15.scr_el3 & SCR_EEL2) {
6189             return CP_ACCESS_TRAP_EL2;
6190         }
6191         return CP_ACCESS_TRAP_EL3;
6192     }
6193     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6194     if (isread) {
6195         return CP_ACCESS_OK;
6196     }
6197     return CP_ACCESS_TRAP_UNCATEGORIZED;
6198 }
6199 
6200 static const ARMCPRegInfo el3_cp_reginfo[] = {
6201     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6202       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6203       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6204       .resetfn = scr_reset, .writefn = scr_write },
6205     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6206       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6207       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6208       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6209       .writefn = scr_write },
6210     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6211       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6212       .access = PL3_RW, .resetvalue = 0,
6213       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6214     { .name = "SDER",
6215       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6216       .access = PL3_RW, .resetvalue = 0,
6217       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6218     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6219       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6220       .writefn = vbar_write, .resetvalue = 0,
6221       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6222     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6223       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6224       .access = PL3_RW, .resetvalue = 0,
6225       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6226     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6227       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6228       .access = PL3_RW,
6229       /* no .writefn needed as this can't cause an ASID change */
6230       .resetvalue = 0,
6231       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6232     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6233       .type = ARM_CP_ALIAS,
6234       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6235       .access = PL3_RW,
6236       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6237     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6238       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6239       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6240     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6241       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6242       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6243     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6244       .type = ARM_CP_ALIAS,
6245       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6246       .access = PL3_RW,
6247       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6248     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6249       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6250       .access = PL3_RW, .writefn = vbar_write,
6251       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6252       .resetvalue = 0 },
6253     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6254       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6255       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6256       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6257     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6258       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6259       .access = PL3_RW, .resetvalue = 0,
6260       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6261     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6262       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6263       .access = PL3_RW, .type = ARM_CP_CONST,
6264       .resetvalue = 0 },
6265     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6266       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6267       .access = PL3_RW, .type = ARM_CP_CONST,
6268       .resetvalue = 0 },
6269     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6270       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6271       .access = PL3_RW, .type = ARM_CP_CONST,
6272       .resetvalue = 0 },
6273     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6274       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6275       .access = PL3_W, .type = ARM_CP_NO_RAW,
6276       .writefn = tlbi_aa64_alle3is_write },
6277     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6278       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6279       .access = PL3_W, .type = ARM_CP_NO_RAW,
6280       .writefn = tlbi_aa64_vae3is_write },
6281     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6282       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6283       .access = PL3_W, .type = ARM_CP_NO_RAW,
6284       .writefn = tlbi_aa64_vae3is_write },
6285     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6286       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6287       .access = PL3_W, .type = ARM_CP_NO_RAW,
6288       .writefn = tlbi_aa64_alle3_write },
6289     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6290       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6291       .access = PL3_W, .type = ARM_CP_NO_RAW,
6292       .writefn = tlbi_aa64_vae3_write },
6293     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6294       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6295       .access = PL3_W, .type = ARM_CP_NO_RAW,
6296       .writefn = tlbi_aa64_vae3_write },
6297 };
6298 
6299 #ifndef CONFIG_USER_ONLY
6300 /* Test if system register redirection is to occur in the current state.  */
6301 static bool redirect_for_e2h(CPUARMState *env)
6302 {
6303     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6304 }
6305 
6306 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6307 {
6308     CPReadFn *readfn;
6309 
6310     if (redirect_for_e2h(env)) {
6311         /* Switch to the saved EL2 version of the register.  */
6312         ri = ri->opaque;
6313         readfn = ri->readfn;
6314     } else {
6315         readfn = ri->orig_readfn;
6316     }
6317     if (readfn == NULL) {
6318         readfn = raw_read;
6319     }
6320     return readfn(env, ri);
6321 }
6322 
6323 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6324                           uint64_t value)
6325 {
6326     CPWriteFn *writefn;
6327 
6328     if (redirect_for_e2h(env)) {
6329         /* Switch to the saved EL2 version of the register.  */
6330         ri = ri->opaque;
6331         writefn = ri->writefn;
6332     } else {
6333         writefn = ri->orig_writefn;
6334     }
6335     if (writefn == NULL) {
6336         writefn = raw_write;
6337     }
6338     writefn(env, ri, value);
6339 }
6340 
6341 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6342 {
6343     struct E2HAlias {
6344         uint32_t src_key, dst_key, new_key;
6345         const char *src_name, *dst_name, *new_name;
6346         bool (*feature)(const ARMISARegisters *id);
6347     };
6348 
6349 #define K(op0, op1, crn, crm, op2) \
6350     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6351 
6352     static const struct E2HAlias aliases[] = {
6353         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6354           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6355         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6356           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6357         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6358           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6359         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6360           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6361         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6362           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6363         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6364           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6365         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6366           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6367         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6368           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6369         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6370           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6371         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6372           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6373         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6374           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6375         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6376           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6377         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6378           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6379         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6380           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6381         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6382           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6383         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6384           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6385 
6386         /*
6387          * Note that redirection of ZCR is mentioned in the description
6388          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6389          * not in the summary table.
6390          */
6391         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6392           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6393         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6394           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6395 
6396         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6397           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6398 
6399         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6400           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6401           isar_feature_aa64_scxtnum },
6402 
6403         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6404         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6405     };
6406 #undef K
6407 
6408     size_t i;
6409 
6410     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6411         const struct E2HAlias *a = &aliases[i];
6412         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6413         bool ok;
6414 
6415         if (a->feature && !a->feature(&cpu->isar)) {
6416             continue;
6417         }
6418 
6419         src_reg = g_hash_table_lookup(cpu->cp_regs,
6420                                       (gpointer)(uintptr_t)a->src_key);
6421         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6422                                       (gpointer)(uintptr_t)a->dst_key);
6423         g_assert(src_reg != NULL);
6424         g_assert(dst_reg != NULL);
6425 
6426         /* Cross-compare names to detect typos in the keys.  */
6427         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6428         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6429 
6430         /* None of the core system registers use opaque; we will.  */
6431         g_assert(src_reg->opaque == NULL);
6432 
6433         /* Create alias before redirection so we dup the right data. */
6434         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6435 
6436         new_reg->name = a->new_name;
6437         new_reg->type |= ARM_CP_ALIAS;
6438         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6439         new_reg->access &= PL2_RW | PL3_RW;
6440 
6441         ok = g_hash_table_insert(cpu->cp_regs,
6442                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6443         g_assert(ok);
6444 
6445         src_reg->opaque = dst_reg;
6446         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6447         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6448         if (!src_reg->raw_readfn) {
6449             src_reg->raw_readfn = raw_read;
6450         }
6451         if (!src_reg->raw_writefn) {
6452             src_reg->raw_writefn = raw_write;
6453         }
6454         src_reg->readfn = el2_e2h_read;
6455         src_reg->writefn = el2_e2h_write;
6456     }
6457 }
6458 #endif
6459 
6460 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6461                                      bool isread)
6462 {
6463     int cur_el = arm_current_el(env);
6464 
6465     if (cur_el < 2) {
6466         uint64_t hcr = arm_hcr_el2_eff(env);
6467 
6468         if (cur_el == 0) {
6469             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6470                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6471                     return CP_ACCESS_TRAP_EL2;
6472                 }
6473             } else {
6474                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6475                     return CP_ACCESS_TRAP;
6476                 }
6477                 if (hcr & HCR_TID2) {
6478                     return CP_ACCESS_TRAP_EL2;
6479                 }
6480             }
6481         } else if (hcr & HCR_TID2) {
6482             return CP_ACCESS_TRAP_EL2;
6483         }
6484     }
6485 
6486     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6487         return CP_ACCESS_TRAP_EL2;
6488     }
6489 
6490     return CP_ACCESS_OK;
6491 }
6492 
6493 /*
6494  * Check for traps to RAS registers, which are controlled
6495  * by HCR_EL2.TERR and SCR_EL3.TERR.
6496  */
6497 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6498                                   bool isread)
6499 {
6500     int el = arm_current_el(env);
6501 
6502     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6503         return CP_ACCESS_TRAP_EL2;
6504     }
6505     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6506         return CP_ACCESS_TRAP_EL3;
6507     }
6508     return CP_ACCESS_OK;
6509 }
6510 
6511 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6512 {
6513     int el = arm_current_el(env);
6514 
6515     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6516         return env->cp15.vdisr_el2;
6517     }
6518     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6519         return 0; /* RAZ/WI */
6520     }
6521     return env->cp15.disr_el1;
6522 }
6523 
6524 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6525 {
6526     int el = arm_current_el(env);
6527 
6528     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6529         env->cp15.vdisr_el2 = val;
6530         return;
6531     }
6532     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6533         return; /* RAZ/WI */
6534     }
6535     env->cp15.disr_el1 = val;
6536 }
6537 
6538 /*
6539  * Minimal RAS implementation with no Error Records.
6540  * Which means that all of the Error Record registers:
6541  *   ERXADDR_EL1
6542  *   ERXCTLR_EL1
6543  *   ERXFR_EL1
6544  *   ERXMISC0_EL1
6545  *   ERXMISC1_EL1
6546  *   ERXMISC2_EL1
6547  *   ERXMISC3_EL1
6548  *   ERXPFGCDN_EL1  (RASv1p1)
6549  *   ERXPFGCTL_EL1  (RASv1p1)
6550  *   ERXPFGF_EL1    (RASv1p1)
6551  *   ERXSTATUS_EL1
6552  * and
6553  *   ERRSELR_EL1
6554  * may generate UNDEFINED, which is the effect we get by not
6555  * listing them at all.
6556  *
6557  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6558  * is higher priority than FGT-to-EL2 so we do not need to list them
6559  * in order to check for an FGT.
6560  */
6561 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6562     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6563       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6564       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6565       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6566     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6567       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6568       .access = PL1_R, .accessfn = access_terr,
6569       .fgt = FGT_ERRIDR_EL1,
6570       .type = ARM_CP_CONST, .resetvalue = 0 },
6571     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6572       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6573       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6574     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6575       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6576       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6577 };
6578 
6579 /*
6580  * Return the exception level to which exceptions should be taken
6581  * via SVEAccessTrap.  This excludes the check for whether the exception
6582  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6583  * be found by testing 0 < fp_exception_el < sve_exception_el.
6584  *
6585  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6586  * pseudocode does *not* separate out the FP trap checks, but has them
6587  * all in one function.
6588  */
6589 int sve_exception_el(CPUARMState *env, int el)
6590 {
6591 #ifndef CONFIG_USER_ONLY
6592     if (el <= 1 && !el_is_in_host(env, el)) {
6593         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6594         case 1:
6595             if (el != 0) {
6596                 break;
6597             }
6598             /* fall through */
6599         case 0:
6600         case 2:
6601             return 1;
6602         }
6603     }
6604 
6605     if (el <= 2 && arm_is_el2_enabled(env)) {
6606         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6607         if (env->cp15.hcr_el2 & HCR_E2H) {
6608             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6609             case 1:
6610                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6611                     break;
6612                 }
6613                 /* fall through */
6614             case 0:
6615             case 2:
6616                 return 2;
6617             }
6618         } else {
6619             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6620                 return 2;
6621             }
6622         }
6623     }
6624 
6625     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6626     if (arm_feature(env, ARM_FEATURE_EL3)
6627         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6628         return 3;
6629     }
6630 #endif
6631     return 0;
6632 }
6633 
6634 /*
6635  * Return the exception level to which exceptions should be taken for SME.
6636  * C.f. the ARM pseudocode function CheckSMEAccess.
6637  */
6638 int sme_exception_el(CPUARMState *env, int el)
6639 {
6640 #ifndef CONFIG_USER_ONLY
6641     if (el <= 1 && !el_is_in_host(env, el)) {
6642         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6643         case 1:
6644             if (el != 0) {
6645                 break;
6646             }
6647             /* fall through */
6648         case 0:
6649         case 2:
6650             return 1;
6651         }
6652     }
6653 
6654     if (el <= 2 && arm_is_el2_enabled(env)) {
6655         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6656         if (env->cp15.hcr_el2 & HCR_E2H) {
6657             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6658             case 1:
6659                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6660                     break;
6661                 }
6662                 /* fall through */
6663             case 0:
6664             case 2:
6665                 return 2;
6666             }
6667         } else {
6668             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6669                 return 2;
6670             }
6671         }
6672     }
6673 
6674     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6675     if (arm_feature(env, ARM_FEATURE_EL3)
6676         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6677         return 3;
6678     }
6679 #endif
6680     return 0;
6681 }
6682 
6683 /*
6684  * Given that SVE is enabled, return the vector length for EL.
6685  */
6686 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6687 {
6688     ARMCPU *cpu = env_archcpu(env);
6689     uint64_t *cr = env->vfp.zcr_el;
6690     uint32_t map = cpu->sve_vq.map;
6691     uint32_t len = ARM_MAX_VQ - 1;
6692 
6693     if (sm) {
6694         cr = env->vfp.smcr_el;
6695         map = cpu->sme_vq.map;
6696     }
6697 
6698     if (el <= 1 && !el_is_in_host(env, el)) {
6699         len = MIN(len, 0xf & (uint32_t)cr[1]);
6700     }
6701     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6702         len = MIN(len, 0xf & (uint32_t)cr[2]);
6703     }
6704     if (arm_feature(env, ARM_FEATURE_EL3)) {
6705         len = MIN(len, 0xf & (uint32_t)cr[3]);
6706     }
6707 
6708     map &= MAKE_64BIT_MASK(0, len + 1);
6709     if (map != 0) {
6710         return 31 - clz32(map);
6711     }
6712 
6713     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6714     assert(sm);
6715     return ctz32(cpu->sme_vq.map);
6716 }
6717 
6718 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6719 {
6720     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6721 }
6722 
6723 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6724                       uint64_t value)
6725 {
6726     int cur_el = arm_current_el(env);
6727     int old_len = sve_vqm1_for_el(env, cur_el);
6728     int new_len;
6729 
6730     /* Bits other than [3:0] are RAZ/WI.  */
6731     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6732     raw_write(env, ri, value & 0xf);
6733 
6734     /*
6735      * Because we arrived here, we know both FP and SVE are enabled;
6736      * otherwise we would have trapped access to the ZCR_ELn register.
6737      */
6738     new_len = sve_vqm1_for_el(env, cur_el);
6739     if (new_len < old_len) {
6740         aarch64_sve_narrow_vq(env, new_len + 1);
6741     }
6742 }
6743 
6744 static const ARMCPRegInfo zcr_reginfo[] = {
6745     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6746       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6747       .access = PL1_RW, .type = ARM_CP_SVE,
6748       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6749       .writefn = zcr_write, .raw_writefn = raw_write },
6750     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6751       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6752       .access = PL2_RW, .type = ARM_CP_SVE,
6753       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6754       .writefn = zcr_write, .raw_writefn = raw_write },
6755     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6756       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6757       .access = PL3_RW, .type = ARM_CP_SVE,
6758       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6759       .writefn = zcr_write, .raw_writefn = raw_write },
6760 };
6761 
6762 #ifdef TARGET_AARCH64
6763 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6764                                     bool isread)
6765 {
6766     int el = arm_current_el(env);
6767 
6768     if (el == 0) {
6769         uint64_t sctlr = arm_sctlr(env, el);
6770         if (!(sctlr & SCTLR_EnTP2)) {
6771             return CP_ACCESS_TRAP;
6772         }
6773     }
6774     /* TODO: FEAT_FGT */
6775     if (el < 3
6776         && arm_feature(env, ARM_FEATURE_EL3)
6777         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6778         return CP_ACCESS_TRAP_EL3;
6779     }
6780     return CP_ACCESS_OK;
6781 }
6782 
6783 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6784                                  bool isread)
6785 {
6786     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6787     if (arm_current_el(env) < 3
6788         && arm_feature(env, ARM_FEATURE_EL3)
6789         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6790         return CP_ACCESS_TRAP_EL3;
6791     }
6792     return CP_ACCESS_OK;
6793 }
6794 
6795 /* ResetSVEState */
6796 static void arm_reset_sve_state(CPUARMState *env)
6797 {
6798     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6799     /* Recall that FFR is stored as pregs[16]. */
6800     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6801     vfp_set_fpcr(env, 0x0800009f);
6802 }
6803 
6804 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6805 {
6806     uint64_t change = (env->svcr ^ new) & mask;
6807 
6808     if (change == 0) {
6809         return;
6810     }
6811     env->svcr ^= change;
6812 
6813     if (change & R_SVCR_SM_MASK) {
6814         arm_reset_sve_state(env);
6815     }
6816 
6817     /*
6818      * ResetSMEState.
6819      *
6820      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6821      * on enable: while disabled, the storage is inaccessible and the
6822      * value does not matter.  We're not saving the storage in vmstate
6823      * when disabled either.
6824      */
6825     if (change & new & R_SVCR_ZA_MASK) {
6826         memset(env->zarray, 0, sizeof(env->zarray));
6827     }
6828 
6829     if (tcg_enabled()) {
6830         arm_rebuild_hflags(env);
6831     }
6832 }
6833 
6834 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6835                        uint64_t value)
6836 {
6837     aarch64_set_svcr(env, value, -1);
6838 }
6839 
6840 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6841                        uint64_t value)
6842 {
6843     int cur_el = arm_current_el(env);
6844     int old_len = sve_vqm1_for_el(env, cur_el);
6845     int new_len;
6846 
6847     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6848     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6849     raw_write(env, ri, value);
6850 
6851     /*
6852      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6853      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6854      * current values for simplicity.  But for QEMU internals, we must still
6855      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6856      * above aarch64_sve_narrow_vq.
6857      */
6858     new_len = sve_vqm1_for_el(env, cur_el);
6859     if (new_len < old_len) {
6860         aarch64_sve_narrow_vq(env, new_len + 1);
6861     }
6862 }
6863 
6864 static const ARMCPRegInfo sme_reginfo[] = {
6865     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6866       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6867       .access = PL0_RW, .accessfn = access_tpidr2,
6868       .fgt = FGT_NTPIDR2_EL0,
6869       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6870     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6871       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6872       .access = PL0_RW, .type = ARM_CP_SME,
6873       .fieldoffset = offsetof(CPUARMState, svcr),
6874       .writefn = svcr_write, .raw_writefn = raw_write },
6875     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6876       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6877       .access = PL1_RW, .type = ARM_CP_SME,
6878       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6879       .writefn = smcr_write, .raw_writefn = raw_write },
6880     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6881       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6882       .access = PL2_RW, .type = ARM_CP_SME,
6883       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6884       .writefn = smcr_write, .raw_writefn = raw_write },
6885     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6886       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6887       .access = PL3_RW, .type = ARM_CP_SME,
6888       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6889       .writefn = smcr_write, .raw_writefn = raw_write },
6890     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6891       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6892       .access = PL1_R, .accessfn = access_aa64_tid1,
6893       /*
6894        * IMPLEMENTOR = 0 (software)
6895        * REVISION    = 0 (implementation defined)
6896        * SMPS        = 0 (no streaming execution priority in QEMU)
6897        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6898        */
6899       .type = ARM_CP_CONST, .resetvalue = 0, },
6900     /*
6901      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6902      */
6903     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6904       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6905       .access = PL1_RW, .accessfn = access_esm,
6906       .fgt = FGT_NSMPRI_EL1,
6907       .type = ARM_CP_CONST, .resetvalue = 0 },
6908     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6909       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6910       .access = PL2_RW, .accessfn = access_esm,
6911       .type = ARM_CP_CONST, .resetvalue = 0 },
6912 };
6913 
6914 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
6915                                   uint64_t value)
6916 {
6917     CPUState *cs = env_cpu(env);
6918 
6919     tlb_flush(cs);
6920 }
6921 
6922 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6923                         uint64_t value)
6924 {
6925     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
6926     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
6927         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
6928         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
6929 
6930     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
6931 }
6932 
6933 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
6934 {
6935     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
6936                                      env_archcpu(env)->reset_l0gptsz);
6937 }
6938 
6939 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
6940                                     uint64_t value)
6941 {
6942     CPUState *cs = env_cpu(env);
6943 
6944     tlb_flush_all_cpus_synced(cs);
6945 }
6946 
6947 static const ARMCPRegInfo rme_reginfo[] = {
6948     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
6949       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
6950       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
6951       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
6952     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
6953       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
6954       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
6955     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
6956       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
6957       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
6958     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
6959       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
6960       .access = PL3_W, .type = ARM_CP_NO_RAW,
6961       .writefn = tlbi_aa64_paall_write },
6962     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
6963       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
6964       .access = PL3_W, .type = ARM_CP_NO_RAW,
6965       .writefn = tlbi_aa64_paallos_write },
6966     /*
6967      * QEMU does not have a way to invalidate by physical address, thus
6968      * invalidating a range of physical addresses is accomplished by
6969      * flushing all tlb entries in the outer sharable domain,
6970      * just like PAALLOS.
6971      */
6972     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
6973       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
6974       .access = PL3_W, .type = ARM_CP_NO_RAW,
6975       .writefn = tlbi_aa64_paallos_write },
6976     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
6977       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
6978       .access = PL3_W, .type = ARM_CP_NO_RAW,
6979       .writefn = tlbi_aa64_paallos_write },
6980     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
6981       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
6982       .access = PL3_W, .type = ARM_CP_NOP },
6983 };
6984 
6985 static const ARMCPRegInfo rme_mte_reginfo[] = {
6986     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
6987       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
6988       .access = PL3_W, .type = ARM_CP_NOP },
6989 };
6990 #endif /* TARGET_AARCH64 */
6991 
6992 static void define_pmu_regs(ARMCPU *cpu)
6993 {
6994     /*
6995      * v7 performance monitor control register: same implementor
6996      * field as main ID register, and we implement four counters in
6997      * addition to the cycle count register.
6998      */
6999     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7000     ARMCPRegInfo pmcr = {
7001         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7002         .access = PL0_RW,
7003         .fgt = FGT_PMCR_EL0,
7004         .type = ARM_CP_IO | ARM_CP_ALIAS,
7005         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7006         .accessfn = pmreg_access, .writefn = pmcr_write,
7007         .raw_writefn = raw_write,
7008     };
7009     ARMCPRegInfo pmcr64 = {
7010         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7011         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7012         .access = PL0_RW, .accessfn = pmreg_access,
7013         .fgt = FGT_PMCR_EL0,
7014         .type = ARM_CP_IO,
7015         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7016         .resetvalue = cpu->isar.reset_pmcr_el0,
7017         .writefn = pmcr_write, .raw_writefn = raw_write,
7018     };
7019 
7020     define_one_arm_cp_reg(cpu, &pmcr);
7021     define_one_arm_cp_reg(cpu, &pmcr64);
7022     for (i = 0; i < pmcrn; i++) {
7023         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7024         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7025         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7026         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7027         ARMCPRegInfo pmev_regs[] = {
7028             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7029               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7030               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7031               .fgt = FGT_PMEVCNTRN_EL0,
7032               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7033               .accessfn = pmreg_access_xevcntr },
7034             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7035               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7036               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7037               .type = ARM_CP_IO,
7038               .fgt = FGT_PMEVCNTRN_EL0,
7039               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7040               .raw_readfn = pmevcntr_rawread,
7041               .raw_writefn = pmevcntr_rawwrite },
7042             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7043               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7044               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7045               .fgt = FGT_PMEVTYPERN_EL0,
7046               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7047               .accessfn = pmreg_access },
7048             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7049               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7050               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7051               .fgt = FGT_PMEVTYPERN_EL0,
7052               .type = ARM_CP_IO,
7053               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7054               .raw_writefn = pmevtyper_rawwrite },
7055         };
7056         define_arm_cp_regs(cpu, pmev_regs);
7057         g_free(pmevcntr_name);
7058         g_free(pmevcntr_el0_name);
7059         g_free(pmevtyper_name);
7060         g_free(pmevtyper_el0_name);
7061     }
7062     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7063         ARMCPRegInfo v81_pmu_regs[] = {
7064             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7065               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7066               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7067               .fgt = FGT_PMCEIDN_EL0,
7068               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7069             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7070               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7071               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7072               .fgt = FGT_PMCEIDN_EL0,
7073               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7074         };
7075         define_arm_cp_regs(cpu, v81_pmu_regs);
7076     }
7077     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7078         static const ARMCPRegInfo v84_pmmir = {
7079             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7080             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7081             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7082             .fgt = FGT_PMMIR_EL1,
7083             .resetvalue = 0
7084         };
7085         define_one_arm_cp_reg(cpu, &v84_pmmir);
7086     }
7087 }
7088 
7089 #ifndef CONFIG_USER_ONLY
7090 /*
7091  * We don't know until after realize whether there's a GICv3
7092  * attached, and that is what registers the gicv3 sysregs.
7093  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7094  * at runtime.
7095  */
7096 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7097 {
7098     ARMCPU *cpu = env_archcpu(env);
7099     uint64_t pfr1 = cpu->isar.id_pfr1;
7100 
7101     if (env->gicv3state) {
7102         pfr1 |= 1 << 28;
7103     }
7104     return pfr1;
7105 }
7106 
7107 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7108 {
7109     ARMCPU *cpu = env_archcpu(env);
7110     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7111 
7112     if (env->gicv3state) {
7113         pfr0 |= 1 << 24;
7114     }
7115     return pfr0;
7116 }
7117 #endif
7118 
7119 /*
7120  * Shared logic between LORID and the rest of the LOR* registers.
7121  * Secure state exclusion has already been dealt with.
7122  */
7123 static CPAccessResult access_lor_ns(CPUARMState *env,
7124                                     const ARMCPRegInfo *ri, bool isread)
7125 {
7126     int el = arm_current_el(env);
7127 
7128     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7129         return CP_ACCESS_TRAP_EL2;
7130     }
7131     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7132         return CP_ACCESS_TRAP_EL3;
7133     }
7134     return CP_ACCESS_OK;
7135 }
7136 
7137 static CPAccessResult access_lor_other(CPUARMState *env,
7138                                        const ARMCPRegInfo *ri, bool isread)
7139 {
7140     if (arm_is_secure_below_el3(env)) {
7141         /* Access denied in secure mode.  */
7142         return CP_ACCESS_TRAP;
7143     }
7144     return access_lor_ns(env, ri, isread);
7145 }
7146 
7147 /*
7148  * A trivial implementation of ARMv8.1-LOR leaves all of these
7149  * registers fixed at 0, which indicates that there are zero
7150  * supported Limited Ordering regions.
7151  */
7152 static const ARMCPRegInfo lor_reginfo[] = {
7153     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7154       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7155       .access = PL1_RW, .accessfn = access_lor_other,
7156       .fgt = FGT_LORSA_EL1,
7157       .type = ARM_CP_CONST, .resetvalue = 0 },
7158     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7160       .access = PL1_RW, .accessfn = access_lor_other,
7161       .fgt = FGT_LOREA_EL1,
7162       .type = ARM_CP_CONST, .resetvalue = 0 },
7163     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7164       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7165       .access = PL1_RW, .accessfn = access_lor_other,
7166       .fgt = FGT_LORN_EL1,
7167       .type = ARM_CP_CONST, .resetvalue = 0 },
7168     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7169       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7170       .access = PL1_RW, .accessfn = access_lor_other,
7171       .fgt = FGT_LORC_EL1,
7172       .type = ARM_CP_CONST, .resetvalue = 0 },
7173     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7174       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7175       .access = PL1_R, .accessfn = access_lor_ns,
7176       .fgt = FGT_LORID_EL1,
7177       .type = ARM_CP_CONST, .resetvalue = 0 },
7178 };
7179 
7180 #ifdef TARGET_AARCH64
7181 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7182                                    bool isread)
7183 {
7184     int el = arm_current_el(env);
7185 
7186     if (el < 2 &&
7187         arm_is_el2_enabled(env) &&
7188         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7189         return CP_ACCESS_TRAP_EL2;
7190     }
7191     if (el < 3 &&
7192         arm_feature(env, ARM_FEATURE_EL3) &&
7193         !(env->cp15.scr_el3 & SCR_APK)) {
7194         return CP_ACCESS_TRAP_EL3;
7195     }
7196     return CP_ACCESS_OK;
7197 }
7198 
7199 static const ARMCPRegInfo pauth_reginfo[] = {
7200     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7201       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7202       .access = PL1_RW, .accessfn = access_pauth,
7203       .fgt = FGT_APDAKEY,
7204       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7205     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7206       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7207       .access = PL1_RW, .accessfn = access_pauth,
7208       .fgt = FGT_APDAKEY,
7209       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7210     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7211       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7212       .access = PL1_RW, .accessfn = access_pauth,
7213       .fgt = FGT_APDBKEY,
7214       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7215     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7216       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7217       .access = PL1_RW, .accessfn = access_pauth,
7218       .fgt = FGT_APDBKEY,
7219       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7220     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7221       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7222       .access = PL1_RW, .accessfn = access_pauth,
7223       .fgt = FGT_APGAKEY,
7224       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7225     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7226       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7227       .access = PL1_RW, .accessfn = access_pauth,
7228       .fgt = FGT_APGAKEY,
7229       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7230     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7231       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7232       .access = PL1_RW, .accessfn = access_pauth,
7233       .fgt = FGT_APIAKEY,
7234       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7235     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7237       .access = PL1_RW, .accessfn = access_pauth,
7238       .fgt = FGT_APIAKEY,
7239       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7240     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7242       .access = PL1_RW, .accessfn = access_pauth,
7243       .fgt = FGT_APIBKEY,
7244       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7245     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7246       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7247       .access = PL1_RW, .accessfn = access_pauth,
7248       .fgt = FGT_APIBKEY,
7249       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7250 };
7251 
7252 static const ARMCPRegInfo tlbirange_reginfo[] = {
7253     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7254       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7255       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7256       .fgt = FGT_TLBIRVAE1IS,
7257       .writefn = tlbi_aa64_rvae1is_write },
7258     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7259       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7260       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7261       .fgt = FGT_TLBIRVAAE1IS,
7262       .writefn = tlbi_aa64_rvae1is_write },
7263    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7265       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7266       .fgt = FGT_TLBIRVALE1IS,
7267       .writefn = tlbi_aa64_rvae1is_write },
7268     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7270       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7271       .fgt = FGT_TLBIRVAALE1IS,
7272       .writefn = tlbi_aa64_rvae1is_write },
7273     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7274       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7275       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7276       .fgt = FGT_TLBIRVAE1OS,
7277       .writefn = tlbi_aa64_rvae1is_write },
7278     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7279       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7280       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7281       .fgt = FGT_TLBIRVAAE1OS,
7282       .writefn = tlbi_aa64_rvae1is_write },
7283    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7284       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7285       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7286       .fgt = FGT_TLBIRVALE1OS,
7287       .writefn = tlbi_aa64_rvae1is_write },
7288     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7289       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7290       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7291       .fgt = FGT_TLBIRVAALE1OS,
7292       .writefn = tlbi_aa64_rvae1is_write },
7293     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7294       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7295       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7296       .fgt = FGT_TLBIRVAE1,
7297       .writefn = tlbi_aa64_rvae1_write },
7298     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7299       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7300       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7301       .fgt = FGT_TLBIRVAAE1,
7302       .writefn = tlbi_aa64_rvae1_write },
7303    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7304       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7305       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7306       .fgt = FGT_TLBIRVALE1,
7307       .writefn = tlbi_aa64_rvae1_write },
7308     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7309       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7310       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7311       .fgt = FGT_TLBIRVAALE1,
7312       .writefn = tlbi_aa64_rvae1_write },
7313     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7314       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7315       .access = PL2_W, .type = ARM_CP_NO_RAW,
7316       .writefn = tlbi_aa64_ripas2e1is_write },
7317     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7318       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7319       .access = PL2_W, .type = ARM_CP_NO_RAW,
7320       .writefn = tlbi_aa64_ripas2e1is_write },
7321     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7322       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7323       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7324       .writefn = tlbi_aa64_rvae2is_write },
7325    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7326       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7327       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7328       .writefn = tlbi_aa64_rvae2is_write },
7329     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7330       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7331       .access = PL2_W, .type = ARM_CP_NO_RAW,
7332       .writefn = tlbi_aa64_ripas2e1_write },
7333     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7334       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7335       .access = PL2_W, .type = ARM_CP_NO_RAW,
7336       .writefn = tlbi_aa64_ripas2e1_write },
7337    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7338       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7339       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7340       .writefn = tlbi_aa64_rvae2is_write },
7341    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7342       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7343       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7344       .writefn = tlbi_aa64_rvae2is_write },
7345     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7346       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7347       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7348       .writefn = tlbi_aa64_rvae2_write },
7349    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7350       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7351       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7352       .writefn = tlbi_aa64_rvae2_write },
7353    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7354       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7355       .access = PL3_W, .type = ARM_CP_NO_RAW,
7356       .writefn = tlbi_aa64_rvae3is_write },
7357    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7358       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7359       .access = PL3_W, .type = ARM_CP_NO_RAW,
7360       .writefn = tlbi_aa64_rvae3is_write },
7361    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7362       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7363       .access = PL3_W, .type = ARM_CP_NO_RAW,
7364       .writefn = tlbi_aa64_rvae3is_write },
7365    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7366       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7367       .access = PL3_W, .type = ARM_CP_NO_RAW,
7368       .writefn = tlbi_aa64_rvae3is_write },
7369    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7371       .access = PL3_W, .type = ARM_CP_NO_RAW,
7372       .writefn = tlbi_aa64_rvae3_write },
7373    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7374       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7375       .access = PL3_W, .type = ARM_CP_NO_RAW,
7376       .writefn = tlbi_aa64_rvae3_write },
7377 };
7378 
7379 static const ARMCPRegInfo tlbios_reginfo[] = {
7380     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7382       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7383       .fgt = FGT_TLBIVMALLE1OS,
7384       .writefn = tlbi_aa64_vmalle1is_write },
7385     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7386       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7387       .fgt = FGT_TLBIVAE1OS,
7388       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7389       .writefn = tlbi_aa64_vae1is_write },
7390     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7391       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7392       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7393       .fgt = FGT_TLBIASIDE1OS,
7394       .writefn = tlbi_aa64_vmalle1is_write },
7395     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7396       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7397       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7398       .fgt = FGT_TLBIVAAE1OS,
7399       .writefn = tlbi_aa64_vae1is_write },
7400     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7401       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7402       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7403       .fgt = FGT_TLBIVALE1OS,
7404       .writefn = tlbi_aa64_vae1is_write },
7405     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7406       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7407       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7408       .fgt = FGT_TLBIVAALE1OS,
7409       .writefn = tlbi_aa64_vae1is_write },
7410     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7412       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7413       .writefn = tlbi_aa64_alle2is_write },
7414     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7415       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7416       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7417       .writefn = tlbi_aa64_vae2is_write },
7418    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7419       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7420       .access = PL2_W, .type = ARM_CP_NO_RAW,
7421       .writefn = tlbi_aa64_alle1is_write },
7422     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7423       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7424       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7425       .writefn = tlbi_aa64_vae2is_write },
7426     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7427       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7428       .access = PL2_W, .type = ARM_CP_NO_RAW,
7429       .writefn = tlbi_aa64_alle1is_write },
7430     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7431       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7432       .access = PL2_W, .type = ARM_CP_NOP },
7433     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7435       .access = PL2_W, .type = ARM_CP_NOP },
7436     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7437       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7438       .access = PL2_W, .type = ARM_CP_NOP },
7439     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7440       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7441       .access = PL2_W, .type = ARM_CP_NOP },
7442     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7444       .access = PL3_W, .type = ARM_CP_NO_RAW,
7445       .writefn = tlbi_aa64_alle3is_write },
7446     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7447       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7448       .access = PL3_W, .type = ARM_CP_NO_RAW,
7449       .writefn = tlbi_aa64_vae3is_write },
7450     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7451       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7452       .access = PL3_W, .type = ARM_CP_NO_RAW,
7453       .writefn = tlbi_aa64_vae3is_write },
7454 };
7455 
7456 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7457 {
7458     Error *err = NULL;
7459     uint64_t ret;
7460 
7461     /* Success sets NZCV = 0000.  */
7462     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7463 
7464     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7465         /*
7466          * ??? Failed, for unknown reasons in the crypto subsystem.
7467          * The best we can do is log the reason and return the
7468          * timed-out indication to the guest.  There is no reason
7469          * we know to expect this failure to be transitory, so the
7470          * guest may well hang retrying the operation.
7471          */
7472         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7473                       ri->name, error_get_pretty(err));
7474         error_free(err);
7475 
7476         env->ZF = 0; /* NZCF = 0100 */
7477         return 0;
7478     }
7479     return ret;
7480 }
7481 
7482 /* We do not support re-seeding, so the two registers operate the same.  */
7483 static const ARMCPRegInfo rndr_reginfo[] = {
7484     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7485       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7486       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7487       .access = PL0_R, .readfn = rndr_readfn },
7488     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7489       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7490       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7491       .access = PL0_R, .readfn = rndr_readfn },
7492 };
7493 
7494 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7495                           uint64_t value)
7496 {
7497     ARMCPU *cpu = env_archcpu(env);
7498     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7499     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7500     uint64_t vaddr_in = (uint64_t) value;
7501     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7502     void *haddr;
7503     int mem_idx = cpu_mmu_index(env, false);
7504 
7505     /* This won't be crossing page boundaries */
7506     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7507     if (haddr) {
7508 #ifndef CONFIG_USER_ONLY
7509 
7510         ram_addr_t offset;
7511         MemoryRegion *mr;
7512 
7513         /* RCU lock is already being held */
7514         mr = memory_region_from_host(haddr, &offset);
7515 
7516         if (mr) {
7517             memory_region_writeback(mr, offset, dline_size);
7518         }
7519 #endif /*CONFIG_USER_ONLY*/
7520     }
7521 }
7522 
7523 static const ARMCPRegInfo dcpop_reg[] = {
7524     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7525       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7526       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7527       .fgt = FGT_DCCVAP,
7528       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7529 };
7530 
7531 static const ARMCPRegInfo dcpodp_reg[] = {
7532     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7533       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7534       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7535       .fgt = FGT_DCCVADP,
7536       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7537 };
7538 
7539 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7540                                        bool isread)
7541 {
7542     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7543         return CP_ACCESS_TRAP_EL2;
7544     }
7545 
7546     return CP_ACCESS_OK;
7547 }
7548 
7549 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7550                                  bool isread)
7551 {
7552     int el = arm_current_el(env);
7553 
7554     if (el < 2 && arm_is_el2_enabled(env)) {
7555         uint64_t hcr = arm_hcr_el2_eff(env);
7556         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7557             return CP_ACCESS_TRAP_EL2;
7558         }
7559     }
7560     if (el < 3 &&
7561         arm_feature(env, ARM_FEATURE_EL3) &&
7562         !(env->cp15.scr_el3 & SCR_ATA)) {
7563         return CP_ACCESS_TRAP_EL3;
7564     }
7565     return CP_ACCESS_OK;
7566 }
7567 
7568 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7569 {
7570     return env->pstate & PSTATE_TCO;
7571 }
7572 
7573 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7574 {
7575     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7576 }
7577 
7578 static const ARMCPRegInfo mte_reginfo[] = {
7579     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7580       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7581       .access = PL1_RW, .accessfn = access_mte,
7582       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7583     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7584       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7585       .access = PL1_RW, .accessfn = access_mte,
7586       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7587     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7588       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7589       .access = PL2_RW, .accessfn = access_mte,
7590       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7591     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7592       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7593       .access = PL3_RW,
7594       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7595     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7596       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7597       .access = PL1_RW, .accessfn = access_mte,
7598       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7599     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7600       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7601       .access = PL1_RW, .accessfn = access_mte,
7602       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7603     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7604       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7605       .access = PL1_R, .accessfn = access_aa64_tid5,
7606       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7607     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7608       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7609       .type = ARM_CP_NO_RAW,
7610       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7611     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7612       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7613       .type = ARM_CP_NOP, .access = PL1_W,
7614       .fgt = FGT_DCIVAC,
7615       .accessfn = aa64_cacheop_poc_access },
7616     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7617       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7618       .fgt = FGT_DCISW,
7619       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7620     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7621       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7622       .type = ARM_CP_NOP, .access = PL1_W,
7623       .fgt = FGT_DCIVAC,
7624       .accessfn = aa64_cacheop_poc_access },
7625     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7626       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7627       .fgt = FGT_DCISW,
7628       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7629     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7630       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7631       .fgt = FGT_DCCSW,
7632       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7633     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7634       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7635       .fgt = FGT_DCCSW,
7636       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7637     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7638       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7639       .fgt = FGT_DCCISW,
7640       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7641     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7642       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7643       .fgt = FGT_DCCISW,
7644       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7645 };
7646 
7647 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7648     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7649       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7650       .type = ARM_CP_CONST, .access = PL0_RW, },
7651 };
7652 
7653 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7654     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7655       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7656       .type = ARM_CP_NOP, .access = PL0_W,
7657       .fgt = FGT_DCCVAC,
7658       .accessfn = aa64_cacheop_poc_access },
7659     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7660       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7661       .type = ARM_CP_NOP, .access = PL0_W,
7662       .fgt = FGT_DCCVAC,
7663       .accessfn = aa64_cacheop_poc_access },
7664     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7665       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7666       .type = ARM_CP_NOP, .access = PL0_W,
7667       .fgt = FGT_DCCVAP,
7668       .accessfn = aa64_cacheop_poc_access },
7669     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7670       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7671       .type = ARM_CP_NOP, .access = PL0_W,
7672       .fgt = FGT_DCCVAP,
7673       .accessfn = aa64_cacheop_poc_access },
7674     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7675       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7676       .type = ARM_CP_NOP, .access = PL0_W,
7677       .fgt = FGT_DCCVADP,
7678       .accessfn = aa64_cacheop_poc_access },
7679     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7680       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7681       .type = ARM_CP_NOP, .access = PL0_W,
7682       .fgt = FGT_DCCVADP,
7683       .accessfn = aa64_cacheop_poc_access },
7684     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7685       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7686       .type = ARM_CP_NOP, .access = PL0_W,
7687       .fgt = FGT_DCCIVAC,
7688       .accessfn = aa64_cacheop_poc_access },
7689     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7690       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7691       .type = ARM_CP_NOP, .access = PL0_W,
7692       .fgt = FGT_DCCIVAC,
7693       .accessfn = aa64_cacheop_poc_access },
7694     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7695       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7696       .access = PL0_W, .type = ARM_CP_DC_GVA,
7697 #ifndef CONFIG_USER_ONLY
7698       /* Avoid overhead of an access check that always passes in user-mode */
7699       .accessfn = aa64_zva_access,
7700       .fgt = FGT_DCZVA,
7701 #endif
7702     },
7703     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7704       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7705       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7706 #ifndef CONFIG_USER_ONLY
7707       /* Avoid overhead of an access check that always passes in user-mode */
7708       .accessfn = aa64_zva_access,
7709       .fgt = FGT_DCZVA,
7710 #endif
7711     },
7712 };
7713 
7714 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7715                                      bool isread)
7716 {
7717     uint64_t hcr = arm_hcr_el2_eff(env);
7718     int el = arm_current_el(env);
7719 
7720     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7721         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7722             if (hcr & HCR_TGE) {
7723                 return CP_ACCESS_TRAP_EL2;
7724             }
7725             return CP_ACCESS_TRAP;
7726         }
7727     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7728         return CP_ACCESS_TRAP_EL2;
7729     }
7730     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7731         return CP_ACCESS_TRAP_EL2;
7732     }
7733     if (el < 3
7734         && arm_feature(env, ARM_FEATURE_EL3)
7735         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7736         return CP_ACCESS_TRAP_EL3;
7737     }
7738     return CP_ACCESS_OK;
7739 }
7740 
7741 static const ARMCPRegInfo scxtnum_reginfo[] = {
7742     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7743       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7744       .access = PL0_RW, .accessfn = access_scxtnum,
7745       .fgt = FGT_SCXTNUM_EL0,
7746       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7747     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7748       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7749       .access = PL1_RW, .accessfn = access_scxtnum,
7750       .fgt = FGT_SCXTNUM_EL1,
7751       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7752     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7753       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7754       .access = PL2_RW, .accessfn = access_scxtnum,
7755       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7756     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7757       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7758       .access = PL3_RW,
7759       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7760 };
7761 
7762 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7763                                  bool isread)
7764 {
7765     if (arm_current_el(env) == 2 &&
7766         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7767         return CP_ACCESS_TRAP_EL3;
7768     }
7769     return CP_ACCESS_OK;
7770 }
7771 
7772 static const ARMCPRegInfo fgt_reginfo[] = {
7773     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7774       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7775       .access = PL2_RW, .accessfn = access_fgt,
7776       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7777     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7778       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7779       .access = PL2_RW, .accessfn = access_fgt,
7780       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7781     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7782       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7783       .access = PL2_RW, .accessfn = access_fgt,
7784       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7785     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7786       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7787       .access = PL2_RW, .accessfn = access_fgt,
7788       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7789     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7790       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7791       .access = PL2_RW, .accessfn = access_fgt,
7792       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7793 };
7794 #endif /* TARGET_AARCH64 */
7795 
7796 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7797                                      bool isread)
7798 {
7799     int el = arm_current_el(env);
7800 
7801     if (el == 0) {
7802         uint64_t sctlr = arm_sctlr(env, el);
7803         if (!(sctlr & SCTLR_EnRCTX)) {
7804             return CP_ACCESS_TRAP;
7805         }
7806     } else if (el == 1) {
7807         uint64_t hcr = arm_hcr_el2_eff(env);
7808         if (hcr & HCR_NV) {
7809             return CP_ACCESS_TRAP_EL2;
7810         }
7811     }
7812     return CP_ACCESS_OK;
7813 }
7814 
7815 static const ARMCPRegInfo predinv_reginfo[] = {
7816     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7817       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7818       .fgt = FGT_CFPRCTX,
7819       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7820     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7821       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7822       .fgt = FGT_DVPRCTX,
7823       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7824     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7825       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7826       .fgt = FGT_CPPRCTX,
7827       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7828     /*
7829      * Note the AArch32 opcodes have a different OPC1.
7830      */
7831     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7832       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7833       .fgt = FGT_CFPRCTX,
7834       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7835     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7836       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7837       .fgt = FGT_DVPRCTX,
7838       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7839     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7840       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7841       .fgt = FGT_CPPRCTX,
7842       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7843 };
7844 
7845 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7846 {
7847     /* Read the high 32 bits of the current CCSIDR */
7848     return extract64(ccsidr_read(env, ri), 32, 32);
7849 }
7850 
7851 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7852     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7853       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7854       .access = PL1_R,
7855       .accessfn = access_tid4,
7856       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7857 };
7858 
7859 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7860                                        bool isread)
7861 {
7862     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7863         return CP_ACCESS_TRAP_EL2;
7864     }
7865 
7866     return CP_ACCESS_OK;
7867 }
7868 
7869 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7870                                        bool isread)
7871 {
7872     if (arm_feature(env, ARM_FEATURE_V8)) {
7873         return access_aa64_tid3(env, ri, isread);
7874     }
7875 
7876     return CP_ACCESS_OK;
7877 }
7878 
7879 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7880                                      bool isread)
7881 {
7882     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7883         return CP_ACCESS_TRAP_EL2;
7884     }
7885 
7886     return CP_ACCESS_OK;
7887 }
7888 
7889 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7890                                         const ARMCPRegInfo *ri, bool isread)
7891 {
7892     /*
7893      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7894      * in v7A, not in v8A.
7895      */
7896     if (!arm_feature(env, ARM_FEATURE_V8) &&
7897         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7898         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7899         return CP_ACCESS_TRAP_EL2;
7900     }
7901     return CP_ACCESS_OK;
7902 }
7903 
7904 static const ARMCPRegInfo jazelle_regs[] = {
7905     { .name = "JIDR",
7906       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7907       .access = PL1_R, .accessfn = access_jazelle,
7908       .type = ARM_CP_CONST, .resetvalue = 0 },
7909     { .name = "JOSCR",
7910       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7911       .accessfn = access_joscr_jmcr,
7912       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7913     { .name = "JMCR",
7914       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7915       .accessfn = access_joscr_jmcr,
7916       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7917 };
7918 
7919 static const ARMCPRegInfo contextidr_el2 = {
7920     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7921     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7922     .access = PL2_RW,
7923     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7924 };
7925 
7926 static const ARMCPRegInfo vhe_reginfo[] = {
7927     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7928       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7929       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7930       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7931 #ifndef CONFIG_USER_ONLY
7932     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7933       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7934       .fieldoffset =
7935         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7936       .type = ARM_CP_IO, .access = PL2_RW,
7937       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7938     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7939       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7940       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7941       .resetfn = gt_hv_timer_reset,
7942       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7943     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7944       .type = ARM_CP_IO,
7945       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7946       .access = PL2_RW,
7947       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7948       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7949     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7950       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7951       .type = ARM_CP_IO | ARM_CP_ALIAS,
7952       .access = PL2_RW, .accessfn = e2h_access,
7953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7954       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7955     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7956       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7957       .type = ARM_CP_IO | ARM_CP_ALIAS,
7958       .access = PL2_RW, .accessfn = e2h_access,
7959       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7960       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7961     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7962       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7963       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7964       .access = PL2_RW, .accessfn = e2h_access,
7965       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7966     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7967       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7968       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7969       .access = PL2_RW, .accessfn = e2h_access,
7970       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7971     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7972       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7973       .type = ARM_CP_IO | ARM_CP_ALIAS,
7974       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7975       .access = PL2_RW, .accessfn = e2h_access,
7976       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7977     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7978       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7979       .type = ARM_CP_IO | ARM_CP_ALIAS,
7980       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7981       .access = PL2_RW, .accessfn = e2h_access,
7982       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7983 #endif
7984 };
7985 
7986 #ifndef CONFIG_USER_ONLY
7987 static const ARMCPRegInfo ats1e1_reginfo[] = {
7988     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7989       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7990       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7991       .fgt = FGT_ATS1E1RP,
7992       .writefn = ats_write64 },
7993     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7994       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7995       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7996       .fgt = FGT_ATS1E1WP,
7997       .writefn = ats_write64 },
7998 };
7999 
8000 static const ARMCPRegInfo ats1cp_reginfo[] = {
8001     { .name = "ATS1CPRP",
8002       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8003       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8004       .writefn = ats_write },
8005     { .name = "ATS1CPWP",
8006       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8007       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8008       .writefn = ats_write },
8009 };
8010 #endif
8011 
8012 /*
8013  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8014  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8015  * is non-zero, which is never for ARMv7, optionally in ARMv8
8016  * and mandatorily for ARMv8.2 and up.
8017  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8018  * implementation is RAZ/WI we can ignore this detail, as we
8019  * do for ACTLR.
8020  */
8021 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8022     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8023       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8024       .access = PL1_RW, .accessfn = access_tacr,
8025       .type = ARM_CP_CONST, .resetvalue = 0 },
8026     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8027       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8028       .access = PL2_RW, .type = ARM_CP_CONST,
8029       .resetvalue = 0 },
8030 };
8031 
8032 void register_cp_regs_for_features(ARMCPU *cpu)
8033 {
8034     /* Register all the coprocessor registers based on feature bits */
8035     CPUARMState *env = &cpu->env;
8036     if (arm_feature(env, ARM_FEATURE_M)) {
8037         /* M profile has no coprocessor registers */
8038         return;
8039     }
8040 
8041     define_arm_cp_regs(cpu, cp_reginfo);
8042     if (!arm_feature(env, ARM_FEATURE_V8)) {
8043         /*
8044          * Must go early as it is full of wildcards that may be
8045          * overridden by later definitions.
8046          */
8047         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8048     }
8049 
8050     if (arm_feature(env, ARM_FEATURE_V6)) {
8051         /* The ID registers all have impdef reset values */
8052         ARMCPRegInfo v6_idregs[] = {
8053             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8055               .access = PL1_R, .type = ARM_CP_CONST,
8056               .accessfn = access_aa32_tid3,
8057               .resetvalue = cpu->isar.id_pfr0 },
8058             /*
8059              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8060              * the value of the GIC field until after we define these regs.
8061              */
8062             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8063               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8064               .access = PL1_R, .type = ARM_CP_NO_RAW,
8065               .accessfn = access_aa32_tid3,
8066 #ifdef CONFIG_USER_ONLY
8067               .type = ARM_CP_CONST,
8068               .resetvalue = cpu->isar.id_pfr1,
8069 #else
8070               .type = ARM_CP_NO_RAW,
8071               .accessfn = access_aa32_tid3,
8072               .readfn = id_pfr1_read,
8073               .writefn = arm_cp_write_ignore
8074 #endif
8075             },
8076             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8077               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8078               .access = PL1_R, .type = ARM_CP_CONST,
8079               .accessfn = access_aa32_tid3,
8080               .resetvalue = cpu->isar.id_dfr0 },
8081             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8083               .access = PL1_R, .type = ARM_CP_CONST,
8084               .accessfn = access_aa32_tid3,
8085               .resetvalue = cpu->id_afr0 },
8086             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8087               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8088               .access = PL1_R, .type = ARM_CP_CONST,
8089               .accessfn = access_aa32_tid3,
8090               .resetvalue = cpu->isar.id_mmfr0 },
8091             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8092               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8093               .access = PL1_R, .type = ARM_CP_CONST,
8094               .accessfn = access_aa32_tid3,
8095               .resetvalue = cpu->isar.id_mmfr1 },
8096             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8097               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8098               .access = PL1_R, .type = ARM_CP_CONST,
8099               .accessfn = access_aa32_tid3,
8100               .resetvalue = cpu->isar.id_mmfr2 },
8101             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8103               .access = PL1_R, .type = ARM_CP_CONST,
8104               .accessfn = access_aa32_tid3,
8105               .resetvalue = cpu->isar.id_mmfr3 },
8106             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8107               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8108               .access = PL1_R, .type = ARM_CP_CONST,
8109               .accessfn = access_aa32_tid3,
8110               .resetvalue = cpu->isar.id_isar0 },
8111             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8112               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8113               .access = PL1_R, .type = ARM_CP_CONST,
8114               .accessfn = access_aa32_tid3,
8115               .resetvalue = cpu->isar.id_isar1 },
8116             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8117               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8118               .access = PL1_R, .type = ARM_CP_CONST,
8119               .accessfn = access_aa32_tid3,
8120               .resetvalue = cpu->isar.id_isar2 },
8121             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8122               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8123               .access = PL1_R, .type = ARM_CP_CONST,
8124               .accessfn = access_aa32_tid3,
8125               .resetvalue = cpu->isar.id_isar3 },
8126             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8127               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8128               .access = PL1_R, .type = ARM_CP_CONST,
8129               .accessfn = access_aa32_tid3,
8130               .resetvalue = cpu->isar.id_isar4 },
8131             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8132               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8133               .access = PL1_R, .type = ARM_CP_CONST,
8134               .accessfn = access_aa32_tid3,
8135               .resetvalue = cpu->isar.id_isar5 },
8136             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8137               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8138               .access = PL1_R, .type = ARM_CP_CONST,
8139               .accessfn = access_aa32_tid3,
8140               .resetvalue = cpu->isar.id_mmfr4 },
8141             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8142               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8143               .access = PL1_R, .type = ARM_CP_CONST,
8144               .accessfn = access_aa32_tid3,
8145               .resetvalue = cpu->isar.id_isar6 },
8146         };
8147         define_arm_cp_regs(cpu, v6_idregs);
8148         define_arm_cp_regs(cpu, v6_cp_reginfo);
8149     } else {
8150         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8151     }
8152     if (arm_feature(env, ARM_FEATURE_V6K)) {
8153         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8154     }
8155     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8156         !arm_feature(env, ARM_FEATURE_PMSA)) {
8157         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8158     }
8159     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8160         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8161     }
8162     if (arm_feature(env, ARM_FEATURE_V7)) {
8163         ARMCPRegInfo clidr = {
8164             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8165             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8166             .access = PL1_R, .type = ARM_CP_CONST,
8167             .accessfn = access_tid4,
8168             .fgt = FGT_CLIDR_EL1,
8169             .resetvalue = cpu->clidr
8170         };
8171         define_one_arm_cp_reg(cpu, &clidr);
8172         define_arm_cp_regs(cpu, v7_cp_reginfo);
8173         define_debug_regs(cpu);
8174         define_pmu_regs(cpu);
8175     } else {
8176         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8177     }
8178     if (arm_feature(env, ARM_FEATURE_V8)) {
8179         /*
8180          * v8 ID registers, which all have impdef reset values.
8181          * Note that within the ID register ranges the unused slots
8182          * must all RAZ, not UNDEF; future architecture versions may
8183          * define new registers here.
8184          * ID registers which are AArch64 views of the AArch32 ID registers
8185          * which already existed in v6 and v7 are handled elsewhere,
8186          * in v6_idregs[].
8187          */
8188         int i;
8189         ARMCPRegInfo v8_idregs[] = {
8190             /*
8191              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8192              * emulation because we don't know the right value for the
8193              * GIC field until after we define these regs.
8194              */
8195             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8196               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8197               .access = PL1_R,
8198 #ifdef CONFIG_USER_ONLY
8199               .type = ARM_CP_CONST,
8200               .resetvalue = cpu->isar.id_aa64pfr0
8201 #else
8202               .type = ARM_CP_NO_RAW,
8203               .accessfn = access_aa64_tid3,
8204               .readfn = id_aa64pfr0_read,
8205               .writefn = arm_cp_write_ignore
8206 #endif
8207             },
8208             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8209               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8210               .access = PL1_R, .type = ARM_CP_CONST,
8211               .accessfn = access_aa64_tid3,
8212               .resetvalue = cpu->isar.id_aa64pfr1},
8213             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8214               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8215               .access = PL1_R, .type = ARM_CP_CONST,
8216               .accessfn = access_aa64_tid3,
8217               .resetvalue = 0 },
8218             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8219               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8220               .access = PL1_R, .type = ARM_CP_CONST,
8221               .accessfn = access_aa64_tid3,
8222               .resetvalue = 0 },
8223             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8224               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8225               .access = PL1_R, .type = ARM_CP_CONST,
8226               .accessfn = access_aa64_tid3,
8227               .resetvalue = cpu->isar.id_aa64zfr0 },
8228             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8229               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8230               .access = PL1_R, .type = ARM_CP_CONST,
8231               .accessfn = access_aa64_tid3,
8232               .resetvalue = cpu->isar.id_aa64smfr0 },
8233             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8234               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8235               .access = PL1_R, .type = ARM_CP_CONST,
8236               .accessfn = access_aa64_tid3,
8237               .resetvalue = 0 },
8238             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8239               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8240               .access = PL1_R, .type = ARM_CP_CONST,
8241               .accessfn = access_aa64_tid3,
8242               .resetvalue = 0 },
8243             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8244               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8245               .access = PL1_R, .type = ARM_CP_CONST,
8246               .accessfn = access_aa64_tid3,
8247               .resetvalue = cpu->isar.id_aa64dfr0 },
8248             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8249               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8250               .access = PL1_R, .type = ARM_CP_CONST,
8251               .accessfn = access_aa64_tid3,
8252               .resetvalue = cpu->isar.id_aa64dfr1 },
8253             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8254               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8255               .access = PL1_R, .type = ARM_CP_CONST,
8256               .accessfn = access_aa64_tid3,
8257               .resetvalue = 0 },
8258             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8259               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8260               .access = PL1_R, .type = ARM_CP_CONST,
8261               .accessfn = access_aa64_tid3,
8262               .resetvalue = 0 },
8263             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8264               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8265               .access = PL1_R, .type = ARM_CP_CONST,
8266               .accessfn = access_aa64_tid3,
8267               .resetvalue = cpu->id_aa64afr0 },
8268             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8269               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8270               .access = PL1_R, .type = ARM_CP_CONST,
8271               .accessfn = access_aa64_tid3,
8272               .resetvalue = cpu->id_aa64afr1 },
8273             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8274               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8275               .access = PL1_R, .type = ARM_CP_CONST,
8276               .accessfn = access_aa64_tid3,
8277               .resetvalue = 0 },
8278             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8279               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8280               .access = PL1_R, .type = ARM_CP_CONST,
8281               .accessfn = access_aa64_tid3,
8282               .resetvalue = 0 },
8283             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8284               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8285               .access = PL1_R, .type = ARM_CP_CONST,
8286               .accessfn = access_aa64_tid3,
8287               .resetvalue = cpu->isar.id_aa64isar0 },
8288             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8289               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8290               .access = PL1_R, .type = ARM_CP_CONST,
8291               .accessfn = access_aa64_tid3,
8292               .resetvalue = cpu->isar.id_aa64isar1 },
8293             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8294               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8295               .access = PL1_R, .type = ARM_CP_CONST,
8296               .accessfn = access_aa64_tid3,
8297               .resetvalue = 0 },
8298             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8299               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8300               .access = PL1_R, .type = ARM_CP_CONST,
8301               .accessfn = access_aa64_tid3,
8302               .resetvalue = 0 },
8303             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8304               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8305               .access = PL1_R, .type = ARM_CP_CONST,
8306               .accessfn = access_aa64_tid3,
8307               .resetvalue = 0 },
8308             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8309               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8310               .access = PL1_R, .type = ARM_CP_CONST,
8311               .accessfn = access_aa64_tid3,
8312               .resetvalue = 0 },
8313             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8314               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8315               .access = PL1_R, .type = ARM_CP_CONST,
8316               .accessfn = access_aa64_tid3,
8317               .resetvalue = 0 },
8318             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8319               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8320               .access = PL1_R, .type = ARM_CP_CONST,
8321               .accessfn = access_aa64_tid3,
8322               .resetvalue = 0 },
8323             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8324               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8325               .access = PL1_R, .type = ARM_CP_CONST,
8326               .accessfn = access_aa64_tid3,
8327               .resetvalue = cpu->isar.id_aa64mmfr0 },
8328             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8329               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8330               .access = PL1_R, .type = ARM_CP_CONST,
8331               .accessfn = access_aa64_tid3,
8332               .resetvalue = cpu->isar.id_aa64mmfr1 },
8333             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8334               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8335               .access = PL1_R, .type = ARM_CP_CONST,
8336               .accessfn = access_aa64_tid3,
8337               .resetvalue = cpu->isar.id_aa64mmfr2 },
8338             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8339               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8340               .access = PL1_R, .type = ARM_CP_CONST,
8341               .accessfn = access_aa64_tid3,
8342               .resetvalue = 0 },
8343             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8344               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8345               .access = PL1_R, .type = ARM_CP_CONST,
8346               .accessfn = access_aa64_tid3,
8347               .resetvalue = 0 },
8348             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8349               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8350               .access = PL1_R, .type = ARM_CP_CONST,
8351               .accessfn = access_aa64_tid3,
8352               .resetvalue = 0 },
8353             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8354               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8355               .access = PL1_R, .type = ARM_CP_CONST,
8356               .accessfn = access_aa64_tid3,
8357               .resetvalue = 0 },
8358             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8359               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8360               .access = PL1_R, .type = ARM_CP_CONST,
8361               .accessfn = access_aa64_tid3,
8362               .resetvalue = 0 },
8363             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8364               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8365               .access = PL1_R, .type = ARM_CP_CONST,
8366               .accessfn = access_aa64_tid3,
8367               .resetvalue = cpu->isar.mvfr0 },
8368             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8369               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8370               .access = PL1_R, .type = ARM_CP_CONST,
8371               .accessfn = access_aa64_tid3,
8372               .resetvalue = cpu->isar.mvfr1 },
8373             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8374               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8375               .access = PL1_R, .type = ARM_CP_CONST,
8376               .accessfn = access_aa64_tid3,
8377               .resetvalue = cpu->isar.mvfr2 },
8378             /*
8379              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8380              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8381              * as RAZ, since it is in the "reserved for future ID
8382              * registers, RAZ" part of the AArch32 encoding space.
8383              */
8384             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8385               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8386               .access = PL1_R, .type = ARM_CP_CONST,
8387               .accessfn = access_aa64_tid3,
8388               .resetvalue = 0 },
8389             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8390               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8391               .access = PL1_R, .type = ARM_CP_CONST,
8392               .accessfn = access_aa64_tid3,
8393               .resetvalue = 0 },
8394             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8395               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8396               .access = PL1_R, .type = ARM_CP_CONST,
8397               .accessfn = access_aa64_tid3,
8398               .resetvalue = 0 },
8399             /*
8400              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8401              * they're also RAZ for AArch64, and in v8 are gradually
8402              * being filled with AArch64-view-of-AArch32-ID-register
8403              * for new ID registers.
8404              */
8405             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8406               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8407               .access = PL1_R, .type = ARM_CP_CONST,
8408               .accessfn = access_aa64_tid3,
8409               .resetvalue = 0 },
8410             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8411               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8412               .access = PL1_R, .type = ARM_CP_CONST,
8413               .accessfn = access_aa64_tid3,
8414               .resetvalue = cpu->isar.id_pfr2 },
8415             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8416               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8417               .access = PL1_R, .type = ARM_CP_CONST,
8418               .accessfn = access_aa64_tid3,
8419               .resetvalue = cpu->isar.id_dfr1 },
8420             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8421               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8422               .access = PL1_R, .type = ARM_CP_CONST,
8423               .accessfn = access_aa64_tid3,
8424               .resetvalue = cpu->isar.id_mmfr5 },
8425             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8426               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8427               .access = PL1_R, .type = ARM_CP_CONST,
8428               .accessfn = access_aa64_tid3,
8429               .resetvalue = 0 },
8430             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8431               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8432               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8433               .fgt = FGT_PMCEIDN_EL0,
8434               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8435             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8436               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8437               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8438               .fgt = FGT_PMCEIDN_EL0,
8439               .resetvalue = cpu->pmceid0 },
8440             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8441               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8442               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8443               .fgt = FGT_PMCEIDN_EL0,
8444               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8445             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8446               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8447               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8448               .fgt = FGT_PMCEIDN_EL0,
8449               .resetvalue = cpu->pmceid1 },
8450         };
8451 #ifdef CONFIG_USER_ONLY
8452         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8453             { .name = "ID_AA64PFR0_EL1",
8454               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8455                                R_ID_AA64PFR0_ADVSIMD_MASK |
8456                                R_ID_AA64PFR0_SVE_MASK |
8457                                R_ID_AA64PFR0_DIT_MASK,
8458               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8459                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8460             { .name = "ID_AA64PFR1_EL1",
8461               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8462                                R_ID_AA64PFR1_SSBS_MASK |
8463                                R_ID_AA64PFR1_MTE_MASK |
8464                                R_ID_AA64PFR1_SME_MASK },
8465             { .name = "ID_AA64PFR*_EL1_RESERVED",
8466               .is_glob = true },
8467             { .name = "ID_AA64ZFR0_EL1",
8468               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8469                                R_ID_AA64ZFR0_AES_MASK |
8470                                R_ID_AA64ZFR0_BITPERM_MASK |
8471                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8472                                R_ID_AA64ZFR0_SHA3_MASK |
8473                                R_ID_AA64ZFR0_SM4_MASK |
8474                                R_ID_AA64ZFR0_I8MM_MASK |
8475                                R_ID_AA64ZFR0_F32MM_MASK |
8476                                R_ID_AA64ZFR0_F64MM_MASK },
8477             { .name = "ID_AA64SMFR0_EL1",
8478               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8479                                R_ID_AA64SMFR0_B16F32_MASK |
8480                                R_ID_AA64SMFR0_F16F32_MASK |
8481                                R_ID_AA64SMFR0_I8I32_MASK |
8482                                R_ID_AA64SMFR0_F64F64_MASK |
8483                                R_ID_AA64SMFR0_I16I64_MASK |
8484                                R_ID_AA64SMFR0_FA64_MASK },
8485             { .name = "ID_AA64MMFR0_EL1",
8486               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8487               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8488                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8489             { .name = "ID_AA64MMFR1_EL1",
8490               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8491             { .name = "ID_AA64MMFR2_EL1",
8492               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8493             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8494               .is_glob = true },
8495             { .name = "ID_AA64DFR0_EL1",
8496               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8497             { .name = "ID_AA64DFR1_EL1" },
8498             { .name = "ID_AA64DFR*_EL1_RESERVED",
8499               .is_glob = true },
8500             { .name = "ID_AA64AFR*",
8501               .is_glob = true },
8502             { .name = "ID_AA64ISAR0_EL1",
8503               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8504                                R_ID_AA64ISAR0_SHA1_MASK |
8505                                R_ID_AA64ISAR0_SHA2_MASK |
8506                                R_ID_AA64ISAR0_CRC32_MASK |
8507                                R_ID_AA64ISAR0_ATOMIC_MASK |
8508                                R_ID_AA64ISAR0_RDM_MASK |
8509                                R_ID_AA64ISAR0_SHA3_MASK |
8510                                R_ID_AA64ISAR0_SM3_MASK |
8511                                R_ID_AA64ISAR0_SM4_MASK |
8512                                R_ID_AA64ISAR0_DP_MASK |
8513                                R_ID_AA64ISAR0_FHM_MASK |
8514                                R_ID_AA64ISAR0_TS_MASK |
8515                                R_ID_AA64ISAR0_RNDR_MASK },
8516             { .name = "ID_AA64ISAR1_EL1",
8517               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8518                                R_ID_AA64ISAR1_APA_MASK |
8519                                R_ID_AA64ISAR1_API_MASK |
8520                                R_ID_AA64ISAR1_JSCVT_MASK |
8521                                R_ID_AA64ISAR1_FCMA_MASK |
8522                                R_ID_AA64ISAR1_LRCPC_MASK |
8523                                R_ID_AA64ISAR1_GPA_MASK |
8524                                R_ID_AA64ISAR1_GPI_MASK |
8525                                R_ID_AA64ISAR1_FRINTTS_MASK |
8526                                R_ID_AA64ISAR1_SB_MASK |
8527                                R_ID_AA64ISAR1_BF16_MASK |
8528                                R_ID_AA64ISAR1_DGH_MASK |
8529                                R_ID_AA64ISAR1_I8MM_MASK },
8530             { .name = "ID_AA64ISAR2_EL1",
8531               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8532                                R_ID_AA64ISAR2_RPRES_MASK |
8533                                R_ID_AA64ISAR2_GPA3_MASK |
8534                                R_ID_AA64ISAR2_APA3_MASK },
8535             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8536               .is_glob = true },
8537         };
8538         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8539 #endif
8540         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8541         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8542             !arm_feature(env, ARM_FEATURE_EL2)) {
8543             ARMCPRegInfo rvbar = {
8544                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8545                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8546                 .access = PL1_R,
8547                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8548             };
8549             define_one_arm_cp_reg(cpu, &rvbar);
8550         }
8551         define_arm_cp_regs(cpu, v8_idregs);
8552         define_arm_cp_regs(cpu, v8_cp_reginfo);
8553 
8554         for (i = 4; i < 16; i++) {
8555             /*
8556              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8557              * For pre-v8 cores there are RAZ patterns for these in
8558              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8559              * v8 extends the "must RAZ" part of the ID register space
8560              * to also cover c0, 0, c{8-15}, {0-7}.
8561              * These are STATE_AA32 because in the AArch64 sysreg space
8562              * c4-c7 is where the AArch64 ID registers live (and we've
8563              * already defined those in v8_idregs[]), and c8-c15 are not
8564              * "must RAZ" for AArch64.
8565              */
8566             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8567             ARMCPRegInfo v8_aa32_raz_idregs = {
8568                 .name = name,
8569                 .state = ARM_CP_STATE_AA32,
8570                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8571                 .access = PL1_R, .type = ARM_CP_CONST,
8572                 .accessfn = access_aa64_tid3,
8573                 .resetvalue = 0 };
8574             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8575         }
8576     }
8577 
8578     /*
8579      * Register the base EL2 cpregs.
8580      * Pre v8, these registers are implemented only as part of the
8581      * Virtualization Extensions (EL2 present).  Beginning with v8,
8582      * if EL2 is missing but EL3 is enabled, mostly these become
8583      * RES0 from EL3, with some specific exceptions.
8584      */
8585     if (arm_feature(env, ARM_FEATURE_EL2)
8586         || (arm_feature(env, ARM_FEATURE_EL3)
8587             && arm_feature(env, ARM_FEATURE_V8))) {
8588         uint64_t vmpidr_def = mpidr_read_val(env);
8589         ARMCPRegInfo vpidr_regs[] = {
8590             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8591               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8592               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8593               .resetvalue = cpu->midr,
8594               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8595               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8596             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8597               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8598               .access = PL2_RW, .resetvalue = cpu->midr,
8599               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8600               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8601             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8602               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8603               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8604               .resetvalue = vmpidr_def,
8605               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8606               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8607             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8608               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8609               .access = PL2_RW, .resetvalue = vmpidr_def,
8610               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8611               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8612         };
8613         /*
8614          * The only field of MDCR_EL2 that has a defined architectural reset
8615          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8616          */
8617         ARMCPRegInfo mdcr_el2 = {
8618             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8619             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8620             .writefn = mdcr_el2_write,
8621             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8622             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8623         };
8624         define_one_arm_cp_reg(cpu, &mdcr_el2);
8625         define_arm_cp_regs(cpu, vpidr_regs);
8626         define_arm_cp_regs(cpu, el2_cp_reginfo);
8627         if (arm_feature(env, ARM_FEATURE_V8)) {
8628             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8629         }
8630         if (cpu_isar_feature(aa64_sel2, cpu)) {
8631             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8632         }
8633         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8634         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8635             ARMCPRegInfo rvbar[] = {
8636                 {
8637                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8638                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8639                     .access = PL2_R,
8640                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8641                 },
8642                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8643                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8644                     .access = PL2_R,
8645                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8646                 },
8647             };
8648             define_arm_cp_regs(cpu, rvbar);
8649         }
8650     }
8651 
8652     /* Register the base EL3 cpregs. */
8653     if (arm_feature(env, ARM_FEATURE_EL3)) {
8654         define_arm_cp_regs(cpu, el3_cp_reginfo);
8655         ARMCPRegInfo el3_regs[] = {
8656             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8657               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8658               .access = PL3_R,
8659               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8660             },
8661             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8662               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8663               .access = PL3_RW,
8664               .raw_writefn = raw_write, .writefn = sctlr_write,
8665               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8666               .resetvalue = cpu->reset_sctlr },
8667         };
8668 
8669         define_arm_cp_regs(cpu, el3_regs);
8670     }
8671     /*
8672      * The behaviour of NSACR is sufficiently various that we don't
8673      * try to describe it in a single reginfo:
8674      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8675      *     reads as constant 0xc00 from NS EL1 and NS EL2
8676      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8677      *  if v7 without EL3, register doesn't exist
8678      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8679      */
8680     if (arm_feature(env, ARM_FEATURE_EL3)) {
8681         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8682             static const ARMCPRegInfo nsacr = {
8683                 .name = "NSACR", .type = ARM_CP_CONST,
8684                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8685                 .access = PL1_RW, .accessfn = nsacr_access,
8686                 .resetvalue = 0xc00
8687             };
8688             define_one_arm_cp_reg(cpu, &nsacr);
8689         } else {
8690             static const ARMCPRegInfo nsacr = {
8691                 .name = "NSACR",
8692                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8693                 .access = PL3_RW | PL1_R,
8694                 .resetvalue = 0,
8695                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8696             };
8697             define_one_arm_cp_reg(cpu, &nsacr);
8698         }
8699     } else {
8700         if (arm_feature(env, ARM_FEATURE_V8)) {
8701             static const ARMCPRegInfo nsacr = {
8702                 .name = "NSACR", .type = ARM_CP_CONST,
8703                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8704                 .access = PL1_R,
8705                 .resetvalue = 0xc00
8706             };
8707             define_one_arm_cp_reg(cpu, &nsacr);
8708         }
8709     }
8710 
8711     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8712         if (arm_feature(env, ARM_FEATURE_V6)) {
8713             /* PMSAv6 not implemented */
8714             assert(arm_feature(env, ARM_FEATURE_V7));
8715             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8716             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8717         } else {
8718             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8719         }
8720     } else {
8721         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8722         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8723         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8724         if (cpu_isar_feature(aa32_hpd, cpu)) {
8725             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8726         }
8727     }
8728     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8729         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8730     }
8731     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8732         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8733     }
8734     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8735         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8736     }
8737     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8738         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8739     }
8740     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8741         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8742     }
8743     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8744         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8745     }
8746     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8747         define_arm_cp_regs(cpu, omap_cp_reginfo);
8748     }
8749     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8750         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8751     }
8752     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8753         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8754     }
8755     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8756         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8757     }
8758     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8759         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8760     }
8761     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8762         define_arm_cp_regs(cpu, jazelle_regs);
8763     }
8764     /*
8765      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8766      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8767      * be read-only (ie write causes UNDEF exception).
8768      */
8769     {
8770         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8771             /*
8772              * Pre-v8 MIDR space.
8773              * Note that the MIDR isn't a simple constant register because
8774              * of the TI925 behaviour where writes to another register can
8775              * cause the MIDR value to change.
8776              *
8777              * Unimplemented registers in the c15 0 0 0 space default to
8778              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8779              * and friends override accordingly.
8780              */
8781             { .name = "MIDR",
8782               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8783               .access = PL1_R, .resetvalue = cpu->midr,
8784               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8785               .readfn = midr_read,
8786               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8787               .type = ARM_CP_OVERRIDE },
8788             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8789             { .name = "DUMMY",
8790               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8791               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8792             { .name = "DUMMY",
8793               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8794               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8795             { .name = "DUMMY",
8796               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8797               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8798             { .name = "DUMMY",
8799               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8800               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8801             { .name = "DUMMY",
8802               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8803               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8804         };
8805         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8806             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8808               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8809               .fgt = FGT_MIDR_EL1,
8810               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8811               .readfn = midr_read },
8812             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8813             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8814               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8815               .access = PL1_R, .resetvalue = cpu->midr },
8816             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8817               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8818               .access = PL1_R,
8819               .accessfn = access_aa64_tid1,
8820               .fgt = FGT_REVIDR_EL1,
8821               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8822         };
8823         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8824             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8825             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8826             .access = PL1_R, .resetvalue = cpu->midr
8827         };
8828         ARMCPRegInfo id_cp_reginfo[] = {
8829             /* These are common to v8 and pre-v8 */
8830             { .name = "CTR",
8831               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8832               .access = PL1_R, .accessfn = ctr_el0_access,
8833               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8834             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8835               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8836               .access = PL0_R, .accessfn = ctr_el0_access,
8837               .fgt = FGT_CTR_EL0,
8838               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8839             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8840             { .name = "TCMTR",
8841               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8842               .access = PL1_R,
8843               .accessfn = access_aa32_tid1,
8844               .type = ARM_CP_CONST, .resetvalue = 0 },
8845         };
8846         /* TLBTR is specific to VMSA */
8847         ARMCPRegInfo id_tlbtr_reginfo = {
8848               .name = "TLBTR",
8849               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8850               .access = PL1_R,
8851               .accessfn = access_aa32_tid1,
8852               .type = ARM_CP_CONST, .resetvalue = 0,
8853         };
8854         /* MPUIR is specific to PMSA V6+ */
8855         ARMCPRegInfo id_mpuir_reginfo = {
8856               .name = "MPUIR",
8857               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8858               .access = PL1_R, .type = ARM_CP_CONST,
8859               .resetvalue = cpu->pmsav7_dregion << 8
8860         };
8861         /* HMPUIR is specific to PMSA V8 */
8862         ARMCPRegInfo id_hmpuir_reginfo = {
8863             .name = "HMPUIR",
8864             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8865             .access = PL2_R, .type = ARM_CP_CONST,
8866             .resetvalue = cpu->pmsav8r_hdregion
8867         };
8868         static const ARMCPRegInfo crn0_wi_reginfo = {
8869             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8870             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8871             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8872         };
8873 #ifdef CONFIG_USER_ONLY
8874         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8875             { .name = "MIDR_EL1",
8876               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8877                                R_MIDR_EL1_PARTNUM_MASK |
8878                                R_MIDR_EL1_ARCHITECTURE_MASK |
8879                                R_MIDR_EL1_VARIANT_MASK |
8880                                R_MIDR_EL1_IMPLEMENTER_MASK },
8881             { .name = "REVIDR_EL1" },
8882         };
8883         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8884 #endif
8885         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8886             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8887             size_t i;
8888             /*
8889              * Register the blanket "writes ignored" value first to cover the
8890              * whole space. Then update the specific ID registers to allow write
8891              * access, so that they ignore writes rather than causing them to
8892              * UNDEF.
8893              */
8894             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8895             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8896                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8897             }
8898             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8899                 id_cp_reginfo[i].access = PL1_RW;
8900             }
8901             id_mpuir_reginfo.access = PL1_RW;
8902             id_tlbtr_reginfo.access = PL1_RW;
8903         }
8904         if (arm_feature(env, ARM_FEATURE_V8)) {
8905             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8906             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8907                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8908             }
8909         } else {
8910             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8911         }
8912         define_arm_cp_regs(cpu, id_cp_reginfo);
8913         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8914             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8915         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8916                    arm_feature(env, ARM_FEATURE_V8)) {
8917             uint32_t i = 0;
8918             char *tmp_string;
8919 
8920             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8921             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8922             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8923 
8924             /* Register alias is only valid for first 32 indexes */
8925             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8926                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8927                 uint8_t opc1 = extract32(i, 4, 1);
8928                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8929 
8930                 tmp_string = g_strdup_printf("PRBAR%u", i);
8931                 ARMCPRegInfo tmp_prbarn_reginfo = {
8932                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8933                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8934                     .access = PL1_RW, .resetvalue = 0,
8935                     .accessfn = access_tvm_trvm,
8936                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8937                 };
8938                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8939                 g_free(tmp_string);
8940 
8941                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8942                 tmp_string = g_strdup_printf("PRLAR%u", i);
8943                 ARMCPRegInfo tmp_prlarn_reginfo = {
8944                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8945                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8946                     .access = PL1_RW, .resetvalue = 0,
8947                     .accessfn = access_tvm_trvm,
8948                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8949                 };
8950                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8951                 g_free(tmp_string);
8952             }
8953 
8954             /* Register alias is only valid for first 32 indexes */
8955             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8956                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8957                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8958                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8959 
8960                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8961                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8962                     .name = tmp_string,
8963                     .type = ARM_CP_NO_RAW,
8964                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8965                     .access = PL2_RW, .resetvalue = 0,
8966                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8967                 };
8968                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8969                 g_free(tmp_string);
8970 
8971                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8972                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8973                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8974                     .name = tmp_string,
8975                     .type = ARM_CP_NO_RAW,
8976                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8977                     .access = PL2_RW, .resetvalue = 0,
8978                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8979                 };
8980                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8981                 g_free(tmp_string);
8982             }
8983         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8984             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8985         }
8986     }
8987 
8988     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8989         ARMCPRegInfo mpidr_cp_reginfo[] = {
8990             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8991               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8992               .fgt = FGT_MPIDR_EL1,
8993               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8994         };
8995 #ifdef CONFIG_USER_ONLY
8996         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8997             { .name = "MPIDR_EL1",
8998               .fixed_bits = 0x0000000080000000 },
8999         };
9000         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9001 #endif
9002         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9003     }
9004 
9005     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9006         ARMCPRegInfo auxcr_reginfo[] = {
9007             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9008               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9009               .access = PL1_RW, .accessfn = access_tacr,
9010               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9011             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9012               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9013               .access = PL2_RW, .type = ARM_CP_CONST,
9014               .resetvalue = 0 },
9015             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9016               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9017               .access = PL3_RW, .type = ARM_CP_CONST,
9018               .resetvalue = 0 },
9019         };
9020         define_arm_cp_regs(cpu, auxcr_reginfo);
9021         if (cpu_isar_feature(aa32_ac2, cpu)) {
9022             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9023         }
9024     }
9025 
9026     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9027         /*
9028          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9029          * There are two flavours:
9030          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9031          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9032          *      32-bit register visible to AArch32 at a different encoding
9033          *      to the "flavour 1" register and with the bits rearranged to
9034          *      be able to squash a 64-bit address into the 32-bit view.
9035          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9036          * in future if we support AArch32-only configs of some of the
9037          * AArch64 cores we might need to add a specific feature flag
9038          * to indicate cores with "flavour 2" CBAR.
9039          */
9040         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9041             /* 32 bit view is [31:18] 0...0 [43:32]. */
9042             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9043                 | extract64(cpu->reset_cbar, 32, 12);
9044             ARMCPRegInfo cbar_reginfo[] = {
9045                 { .name = "CBAR",
9046                   .type = ARM_CP_CONST,
9047                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9048                   .access = PL1_R, .resetvalue = cbar32 },
9049                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9050                   .type = ARM_CP_CONST,
9051                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9052                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9053             };
9054             /* We don't implement a r/w 64 bit CBAR currently */
9055             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9056             define_arm_cp_regs(cpu, cbar_reginfo);
9057         } else {
9058             ARMCPRegInfo cbar = {
9059                 .name = "CBAR",
9060                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9061                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9062                 .fieldoffset = offsetof(CPUARMState,
9063                                         cp15.c15_config_base_address)
9064             };
9065             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9066                 cbar.access = PL1_R;
9067                 cbar.fieldoffset = 0;
9068                 cbar.type = ARM_CP_CONST;
9069             }
9070             define_one_arm_cp_reg(cpu, &cbar);
9071         }
9072     }
9073 
9074     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9075         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9076             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9077               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9078               .access = PL1_RW, .writefn = vbar_write,
9079               .fgt = FGT_VBAR_EL1,
9080               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9081                                      offsetof(CPUARMState, cp15.vbar_ns) },
9082               .resetvalue = 0 },
9083         };
9084         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9085     }
9086 
9087     /* Generic registers whose values depend on the implementation */
9088     {
9089         ARMCPRegInfo sctlr = {
9090             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9091             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9092             .access = PL1_RW, .accessfn = access_tvm_trvm,
9093             .fgt = FGT_SCTLR_EL1,
9094             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9095                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9096             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9097             .raw_writefn = raw_write,
9098         };
9099         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9100             /*
9101              * Normally we would always end the TB on an SCTLR write, but Linux
9102              * arch/arm/mach-pxa/sleep.S expects two instructions following
9103              * an MMU enable to execute from cache.  Imitate this behaviour.
9104              */
9105             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9106         }
9107         define_one_arm_cp_reg(cpu, &sctlr);
9108 
9109         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9110             arm_feature(env, ARM_FEATURE_V8)) {
9111             ARMCPRegInfo vsctlr = {
9112                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9113                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9114                 .access = PL2_RW, .resetvalue = 0x0,
9115                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9116             };
9117             define_one_arm_cp_reg(cpu, &vsctlr);
9118         }
9119     }
9120 
9121     if (cpu_isar_feature(aa64_lor, cpu)) {
9122         define_arm_cp_regs(cpu, lor_reginfo);
9123     }
9124     if (cpu_isar_feature(aa64_pan, cpu)) {
9125         define_one_arm_cp_reg(cpu, &pan_reginfo);
9126     }
9127 #ifndef CONFIG_USER_ONLY
9128     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9129         define_arm_cp_regs(cpu, ats1e1_reginfo);
9130     }
9131     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9132         define_arm_cp_regs(cpu, ats1cp_reginfo);
9133     }
9134 #endif
9135     if (cpu_isar_feature(aa64_uao, cpu)) {
9136         define_one_arm_cp_reg(cpu, &uao_reginfo);
9137     }
9138 
9139     if (cpu_isar_feature(aa64_dit, cpu)) {
9140         define_one_arm_cp_reg(cpu, &dit_reginfo);
9141     }
9142     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9143         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9144     }
9145     if (cpu_isar_feature(any_ras, cpu)) {
9146         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9147     }
9148 
9149     if (cpu_isar_feature(aa64_vh, cpu) ||
9150         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9151         define_one_arm_cp_reg(cpu, &contextidr_el2);
9152     }
9153     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9154         define_arm_cp_regs(cpu, vhe_reginfo);
9155     }
9156 
9157     if (cpu_isar_feature(aa64_sve, cpu)) {
9158         define_arm_cp_regs(cpu, zcr_reginfo);
9159     }
9160 
9161     if (cpu_isar_feature(aa64_hcx, cpu)) {
9162         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9163     }
9164 
9165 #ifdef TARGET_AARCH64
9166     if (cpu_isar_feature(aa64_sme, cpu)) {
9167         define_arm_cp_regs(cpu, sme_reginfo);
9168     }
9169     if (cpu_isar_feature(aa64_pauth, cpu)) {
9170         define_arm_cp_regs(cpu, pauth_reginfo);
9171     }
9172     if (cpu_isar_feature(aa64_rndr, cpu)) {
9173         define_arm_cp_regs(cpu, rndr_reginfo);
9174     }
9175     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9176         define_arm_cp_regs(cpu, tlbirange_reginfo);
9177     }
9178     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9179         define_arm_cp_regs(cpu, tlbios_reginfo);
9180     }
9181     /* Data Cache clean instructions up to PoP */
9182     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9183         define_one_arm_cp_reg(cpu, dcpop_reg);
9184 
9185         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9186             define_one_arm_cp_reg(cpu, dcpodp_reg);
9187         }
9188     }
9189 
9190     /*
9191      * If full MTE is enabled, add all of the system registers.
9192      * If only "instructions available at EL0" are enabled,
9193      * then define only a RAZ/WI version of PSTATE.TCO.
9194      */
9195     if (cpu_isar_feature(aa64_mte, cpu)) {
9196         define_arm_cp_regs(cpu, mte_reginfo);
9197         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9198     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9199         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9200         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9201     }
9202 
9203     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9204         define_arm_cp_regs(cpu, scxtnum_reginfo);
9205     }
9206 
9207     if (cpu_isar_feature(aa64_fgt, cpu)) {
9208         define_arm_cp_regs(cpu, fgt_reginfo);
9209     }
9210 
9211     if (cpu_isar_feature(aa64_rme, cpu)) {
9212         define_arm_cp_regs(cpu, rme_reginfo);
9213         if (cpu_isar_feature(aa64_mte, cpu)) {
9214             define_arm_cp_regs(cpu, rme_mte_reginfo);
9215         }
9216     }
9217 #endif
9218 
9219     if (cpu_isar_feature(any_predinv, cpu)) {
9220         define_arm_cp_regs(cpu, predinv_reginfo);
9221     }
9222 
9223     if (cpu_isar_feature(any_ccidx, cpu)) {
9224         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9225     }
9226 
9227 #ifndef CONFIG_USER_ONLY
9228     /*
9229      * Register redirections and aliases must be done last,
9230      * after the registers from the other extensions have been defined.
9231      */
9232     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9233         define_arm_vh_e2h_redirects_aliases(cpu);
9234     }
9235 #endif
9236 }
9237 
9238 /* Sort alphabetically by type name, except for "any". */
9239 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9240 {
9241     ObjectClass *class_a = (ObjectClass *)a;
9242     ObjectClass *class_b = (ObjectClass *)b;
9243     const char *name_a, *name_b;
9244 
9245     name_a = object_class_get_name(class_a);
9246     name_b = object_class_get_name(class_b);
9247     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9248         return 1;
9249     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9250         return -1;
9251     } else {
9252         return strcmp(name_a, name_b);
9253     }
9254 }
9255 
9256 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9257 {
9258     ObjectClass *oc = data;
9259     CPUClass *cc = CPU_CLASS(oc);
9260     const char *typename;
9261     char *name;
9262 
9263     typename = object_class_get_name(oc);
9264     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9265     if (cc->deprecation_note) {
9266         qemu_printf("  %s (deprecated)\n", name);
9267     } else {
9268         qemu_printf("  %s\n", name);
9269     }
9270     g_free(name);
9271 }
9272 
9273 void arm_cpu_list(void)
9274 {
9275     GSList *list;
9276 
9277     list = object_class_get_list(TYPE_ARM_CPU, false);
9278     list = g_slist_sort(list, arm_cpu_list_compare);
9279     qemu_printf("Available CPUs:\n");
9280     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9281     g_slist_free(list);
9282 }
9283 
9284 /*
9285  * Private utility function for define_one_arm_cp_reg_with_opaque():
9286  * add a single reginfo struct to the hash table.
9287  */
9288 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9289                                    void *opaque, CPState state,
9290                                    CPSecureState secstate,
9291                                    int crm, int opc1, int opc2,
9292                                    const char *name)
9293 {
9294     CPUARMState *env = &cpu->env;
9295     uint32_t key;
9296     ARMCPRegInfo *r2;
9297     bool is64 = r->type & ARM_CP_64BIT;
9298     bool ns = secstate & ARM_CP_SECSTATE_NS;
9299     int cp = r->cp;
9300     size_t name_len;
9301     bool make_const;
9302 
9303     switch (state) {
9304     case ARM_CP_STATE_AA32:
9305         /* We assume it is a cp15 register if the .cp field is left unset. */
9306         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9307             cp = 15;
9308         }
9309         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9310         break;
9311     case ARM_CP_STATE_AA64:
9312         /*
9313          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9314          * cp == 0 as equivalent to the value for "standard guest-visible
9315          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9316          * in their AArch64 view (the .cp value may be non-zero for the
9317          * benefit of the AArch32 view).
9318          */
9319         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9320             cp = CP_REG_ARM64_SYSREG_CP;
9321         }
9322         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9323         break;
9324     default:
9325         g_assert_not_reached();
9326     }
9327 
9328     /* Overriding of an existing definition must be explicitly requested. */
9329     if (!(r->type & ARM_CP_OVERRIDE)) {
9330         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9331         if (oldreg) {
9332             assert(oldreg->type & ARM_CP_OVERRIDE);
9333         }
9334     }
9335 
9336     /*
9337      * Eliminate registers that are not present because the EL is missing.
9338      * Doing this here makes it easier to put all registers for a given
9339      * feature into the same ARMCPRegInfo array and define them all at once.
9340      */
9341     make_const = false;
9342     if (arm_feature(env, ARM_FEATURE_EL3)) {
9343         /*
9344          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9345          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9346          */
9347         int min_el = ctz32(r->access) / 2;
9348         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9349             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9350                 return;
9351             }
9352             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9353         }
9354     } else {
9355         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9356                                  ? PL2_RW : PL1_RW);
9357         if ((r->access & max_el) == 0) {
9358             return;
9359         }
9360     }
9361 
9362     /* Combine cpreg and name into one allocation. */
9363     name_len = strlen(name) + 1;
9364     r2 = g_malloc(sizeof(*r2) + name_len);
9365     *r2 = *r;
9366     r2->name = memcpy(r2 + 1, name, name_len);
9367 
9368     /*
9369      * Update fields to match the instantiation, overwiting wildcards
9370      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9371      */
9372     r2->cp = cp;
9373     r2->crm = crm;
9374     r2->opc1 = opc1;
9375     r2->opc2 = opc2;
9376     r2->state = state;
9377     r2->secure = secstate;
9378     if (opaque) {
9379         r2->opaque = opaque;
9380     }
9381 
9382     if (make_const) {
9383         /* This should not have been a very special register to begin. */
9384         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9385         assert(old_special == 0 || old_special == ARM_CP_NOP);
9386         /*
9387          * Set the special function to CONST, retaining the other flags.
9388          * This is important for e.g. ARM_CP_SVE so that we still
9389          * take the SVE trap if CPTR_EL3.EZ == 0.
9390          */
9391         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9392         /*
9393          * Usually, these registers become RES0, but there are a few
9394          * special cases like VPIDR_EL2 which have a constant non-zero
9395          * value with writes ignored.
9396          */
9397         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9398             r2->resetvalue = 0;
9399         }
9400         /*
9401          * ARM_CP_CONST has precedence, so removing the callbacks and
9402          * offsets are not strictly necessary, but it is potentially
9403          * less confusing to debug later.
9404          */
9405         r2->readfn = NULL;
9406         r2->writefn = NULL;
9407         r2->raw_readfn = NULL;
9408         r2->raw_writefn = NULL;
9409         r2->resetfn = NULL;
9410         r2->fieldoffset = 0;
9411         r2->bank_fieldoffsets[0] = 0;
9412         r2->bank_fieldoffsets[1] = 0;
9413     } else {
9414         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9415 
9416         if (isbanked) {
9417             /*
9418              * Register is banked (using both entries in array).
9419              * Overwriting fieldoffset as the array is only used to define
9420              * banked registers but later only fieldoffset is used.
9421              */
9422             r2->fieldoffset = r->bank_fieldoffsets[ns];
9423         }
9424         if (state == ARM_CP_STATE_AA32) {
9425             if (isbanked) {
9426                 /*
9427                  * If the register is banked then we don't need to migrate or
9428                  * reset the 32-bit instance in certain cases:
9429                  *
9430                  * 1) If the register has both 32-bit and 64-bit instances
9431                  *    then we can count on the 64-bit instance taking care
9432                  *    of the non-secure bank.
9433                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9434                  *    version taking care of the secure bank.  This requires
9435                  *    that separate 32 and 64-bit definitions are provided.
9436                  */
9437                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9438                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9439                     r2->type |= ARM_CP_ALIAS;
9440                 }
9441             } else if ((secstate != r->secure) && !ns) {
9442                 /*
9443                  * The register is not banked so we only want to allow
9444                  * migration of the non-secure instance.
9445                  */
9446                 r2->type |= ARM_CP_ALIAS;
9447             }
9448 
9449             if (HOST_BIG_ENDIAN &&
9450                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9451                 r2->fieldoffset += sizeof(uint32_t);
9452             }
9453         }
9454     }
9455 
9456     /*
9457      * By convention, for wildcarded registers only the first
9458      * entry is used for migration; the others are marked as
9459      * ALIAS so we don't try to transfer the register
9460      * multiple times. Special registers (ie NOP/WFI) are
9461      * never migratable and not even raw-accessible.
9462      */
9463     if (r2->type & ARM_CP_SPECIAL_MASK) {
9464         r2->type |= ARM_CP_NO_RAW;
9465     }
9466     if (((r->crm == CP_ANY) && crm != 0) ||
9467         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9468         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9469         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9470     }
9471 
9472     /*
9473      * Check that raw accesses are either forbidden or handled. Note that
9474      * we can't assert this earlier because the setup of fieldoffset for
9475      * banked registers has to be done first.
9476      */
9477     if (!(r2->type & ARM_CP_NO_RAW)) {
9478         assert(!raw_accessors_invalid(r2));
9479     }
9480 
9481     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9482 }
9483 
9484 
9485 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9486                                        const ARMCPRegInfo *r, void *opaque)
9487 {
9488     /*
9489      * Define implementations of coprocessor registers.
9490      * We store these in a hashtable because typically
9491      * there are less than 150 registers in a space which
9492      * is 16*16*16*8*8 = 262144 in size.
9493      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9494      * If a register is defined twice then the second definition is
9495      * used, so this can be used to define some generic registers and
9496      * then override them with implementation specific variations.
9497      * At least one of the original and the second definition should
9498      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9499      * against accidental use.
9500      *
9501      * The state field defines whether the register is to be
9502      * visible in the AArch32 or AArch64 execution state. If the
9503      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9504      * reginfo structure for the AArch32 view, which sees the lower
9505      * 32 bits of the 64 bit register.
9506      *
9507      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9508      * be wildcarded. AArch64 registers are always considered to be 64
9509      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9510      * the register, if any.
9511      */
9512     int crm, opc1, opc2;
9513     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9514     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9515     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9516     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9517     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9518     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9519     CPState state;
9520 
9521     /* 64 bit registers have only CRm and Opc1 fields */
9522     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9523     /* op0 only exists in the AArch64 encodings */
9524     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9525     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9526     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9527     /*
9528      * This API is only for Arm's system coprocessors (14 and 15) or
9529      * (M-profile or v7A-and-earlier only) for implementation defined
9530      * coprocessors in the range 0..7.  Our decode assumes this, since
9531      * 8..13 can be used for other insns including VFP and Neon. See
9532      * valid_cp() in translate.c.  Assert here that we haven't tried
9533      * to use an invalid coprocessor number.
9534      */
9535     switch (r->state) {
9536     case ARM_CP_STATE_BOTH:
9537         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9538         if (r->cp == 0) {
9539             break;
9540         }
9541         /* fall through */
9542     case ARM_CP_STATE_AA32:
9543         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9544             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9545             assert(r->cp >= 14 && r->cp <= 15);
9546         } else {
9547             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9548         }
9549         break;
9550     case ARM_CP_STATE_AA64:
9551         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9552         break;
9553     default:
9554         g_assert_not_reached();
9555     }
9556     /*
9557      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9558      * encodes a minimum access level for the register. We roll this
9559      * runtime check into our general permission check code, so check
9560      * here that the reginfo's specified permissions are strict enough
9561      * to encompass the generic architectural permission check.
9562      */
9563     if (r->state != ARM_CP_STATE_AA32) {
9564         CPAccessRights mask;
9565         switch (r->opc1) {
9566         case 0:
9567             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9568             mask = PL0U_R | PL1_RW;
9569             break;
9570         case 1: case 2:
9571             /* min_EL EL1 */
9572             mask = PL1_RW;
9573             break;
9574         case 3:
9575             /* min_EL EL0 */
9576             mask = PL0_RW;
9577             break;
9578         case 4:
9579         case 5:
9580             /* min_EL EL2 */
9581             mask = PL2_RW;
9582             break;
9583         case 6:
9584             /* min_EL EL3 */
9585             mask = PL3_RW;
9586             break;
9587         case 7:
9588             /* min_EL EL1, secure mode only (we don't check the latter) */
9589             mask = PL1_RW;
9590             break;
9591         default:
9592             /* broken reginfo with out-of-range opc1 */
9593             g_assert_not_reached();
9594         }
9595         /* assert our permissions are not too lax (stricter is fine) */
9596         assert((r->access & ~mask) == 0);
9597     }
9598 
9599     /*
9600      * Check that the register definition has enough info to handle
9601      * reads and writes if they are permitted.
9602      */
9603     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9604         if (r->access & PL3_R) {
9605             assert((r->fieldoffset ||
9606                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9607                    r->readfn);
9608         }
9609         if (r->access & PL3_W) {
9610             assert((r->fieldoffset ||
9611                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9612                    r->writefn);
9613         }
9614     }
9615 
9616     for (crm = crmmin; crm <= crmmax; crm++) {
9617         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9618             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9619                 for (state = ARM_CP_STATE_AA32;
9620                      state <= ARM_CP_STATE_AA64; state++) {
9621                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9622                         continue;
9623                     }
9624                     if (state == ARM_CP_STATE_AA32) {
9625                         /*
9626                          * Under AArch32 CP registers can be common
9627                          * (same for secure and non-secure world) or banked.
9628                          */
9629                         char *name;
9630 
9631                         switch (r->secure) {
9632                         case ARM_CP_SECSTATE_S:
9633                         case ARM_CP_SECSTATE_NS:
9634                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9635                                                    r->secure, crm, opc1, opc2,
9636                                                    r->name);
9637                             break;
9638                         case ARM_CP_SECSTATE_BOTH:
9639                             name = g_strdup_printf("%s_S", r->name);
9640                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9641                                                    ARM_CP_SECSTATE_S,
9642                                                    crm, opc1, opc2, name);
9643                             g_free(name);
9644                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9645                                                    ARM_CP_SECSTATE_NS,
9646                                                    crm, opc1, opc2, r->name);
9647                             break;
9648                         default:
9649                             g_assert_not_reached();
9650                         }
9651                     } else {
9652                         /*
9653                          * AArch64 registers get mapped to non-secure instance
9654                          * of AArch32
9655                          */
9656                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9657                                                ARM_CP_SECSTATE_NS,
9658                                                crm, opc1, opc2, r->name);
9659                     }
9660                 }
9661             }
9662         }
9663     }
9664 }
9665 
9666 /* Define a whole list of registers */
9667 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9668                                         void *opaque, size_t len)
9669 {
9670     size_t i;
9671     for (i = 0; i < len; ++i) {
9672         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9673     }
9674 }
9675 
9676 /*
9677  * Modify ARMCPRegInfo for access from userspace.
9678  *
9679  * This is a data driven modification directed by
9680  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9681  * user-space cannot alter any values and dynamic values pertaining to
9682  * execution state are hidden from user space view anyway.
9683  */
9684 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9685                                  const ARMCPRegUserSpaceInfo *mods,
9686                                  size_t mods_len)
9687 {
9688     for (size_t mi = 0; mi < mods_len; ++mi) {
9689         const ARMCPRegUserSpaceInfo *m = mods + mi;
9690         GPatternSpec *pat = NULL;
9691 
9692         if (m->is_glob) {
9693             pat = g_pattern_spec_new(m->name);
9694         }
9695         for (size_t ri = 0; ri < regs_len; ++ri) {
9696             ARMCPRegInfo *r = regs + ri;
9697 
9698             if (pat && g_pattern_match_string(pat, r->name)) {
9699                 r->type = ARM_CP_CONST;
9700                 r->access = PL0U_R;
9701                 r->resetvalue = 0;
9702                 /* continue */
9703             } else if (strcmp(r->name, m->name) == 0) {
9704                 r->type = ARM_CP_CONST;
9705                 r->access = PL0U_R;
9706                 r->resetvalue &= m->exported_bits;
9707                 r->resetvalue |= m->fixed_bits;
9708                 break;
9709             }
9710         }
9711         if (pat) {
9712             g_pattern_spec_free(pat);
9713         }
9714     }
9715 }
9716 
9717 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9718 {
9719     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9720 }
9721 
9722 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9723                          uint64_t value)
9724 {
9725     /* Helper coprocessor write function for write-ignore registers */
9726 }
9727 
9728 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9729 {
9730     /* Helper coprocessor write function for read-as-zero registers */
9731     return 0;
9732 }
9733 
9734 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9735 {
9736     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9737 }
9738 
9739 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9740 {
9741     /*
9742      * Return true if it is not valid for us to switch to
9743      * this CPU mode (ie all the UNPREDICTABLE cases in
9744      * the ARM ARM CPSRWriteByInstr pseudocode).
9745      */
9746 
9747     /* Changes to or from Hyp via MSR and CPS are illegal. */
9748     if (write_type == CPSRWriteByInstr &&
9749         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9750          mode == ARM_CPU_MODE_HYP)) {
9751         return 1;
9752     }
9753 
9754     switch (mode) {
9755     case ARM_CPU_MODE_USR:
9756         return 0;
9757     case ARM_CPU_MODE_SYS:
9758     case ARM_CPU_MODE_SVC:
9759     case ARM_CPU_MODE_ABT:
9760     case ARM_CPU_MODE_UND:
9761     case ARM_CPU_MODE_IRQ:
9762     case ARM_CPU_MODE_FIQ:
9763         /*
9764          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9765          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9766          */
9767         /*
9768          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9769          * and CPS are treated as illegal mode changes.
9770          */
9771         if (write_type == CPSRWriteByInstr &&
9772             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9773             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9774             return 1;
9775         }
9776         return 0;
9777     case ARM_CPU_MODE_HYP:
9778         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9779     case ARM_CPU_MODE_MON:
9780         return arm_current_el(env) < 3;
9781     default:
9782         return 1;
9783     }
9784 }
9785 
9786 uint32_t cpsr_read(CPUARMState *env)
9787 {
9788     int ZF;
9789     ZF = (env->ZF == 0);
9790     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9791         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9792         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9793         | ((env->condexec_bits & 0xfc) << 8)
9794         | (env->GE << 16) | (env->daif & CPSR_AIF);
9795 }
9796 
9797 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9798                 CPSRWriteType write_type)
9799 {
9800     uint32_t changed_daif;
9801     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9802         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9803 
9804     if (mask & CPSR_NZCV) {
9805         env->ZF = (~val) & CPSR_Z;
9806         env->NF = val;
9807         env->CF = (val >> 29) & 1;
9808         env->VF = (val << 3) & 0x80000000;
9809     }
9810     if (mask & CPSR_Q) {
9811         env->QF = ((val & CPSR_Q) != 0);
9812     }
9813     if (mask & CPSR_T) {
9814         env->thumb = ((val & CPSR_T) != 0);
9815     }
9816     if (mask & CPSR_IT_0_1) {
9817         env->condexec_bits &= ~3;
9818         env->condexec_bits |= (val >> 25) & 3;
9819     }
9820     if (mask & CPSR_IT_2_7) {
9821         env->condexec_bits &= 3;
9822         env->condexec_bits |= (val >> 8) & 0xfc;
9823     }
9824     if (mask & CPSR_GE) {
9825         env->GE = (val >> 16) & 0xf;
9826     }
9827 
9828     /*
9829      * In a V7 implementation that includes the security extensions but does
9830      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9831      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9832      * bits respectively.
9833      *
9834      * In a V8 implementation, it is permitted for privileged software to
9835      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9836      */
9837     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9838         arm_feature(env, ARM_FEATURE_EL3) &&
9839         !arm_feature(env, ARM_FEATURE_EL2) &&
9840         !arm_is_secure(env)) {
9841 
9842         changed_daif = (env->daif ^ val) & mask;
9843 
9844         if (changed_daif & CPSR_A) {
9845             /*
9846              * Check to see if we are allowed to change the masking of async
9847              * abort exceptions from a non-secure state.
9848              */
9849             if (!(env->cp15.scr_el3 & SCR_AW)) {
9850                 qemu_log_mask(LOG_GUEST_ERROR,
9851                               "Ignoring attempt to switch CPSR_A flag from "
9852                               "non-secure world with SCR.AW bit clear\n");
9853                 mask &= ~CPSR_A;
9854             }
9855         }
9856 
9857         if (changed_daif & CPSR_F) {
9858             /*
9859              * Check to see if we are allowed to change the masking of FIQ
9860              * exceptions from a non-secure state.
9861              */
9862             if (!(env->cp15.scr_el3 & SCR_FW)) {
9863                 qemu_log_mask(LOG_GUEST_ERROR,
9864                               "Ignoring attempt to switch CPSR_F flag from "
9865                               "non-secure world with SCR.FW bit clear\n");
9866                 mask &= ~CPSR_F;
9867             }
9868 
9869             /*
9870              * Check whether non-maskable FIQ (NMFI) support is enabled.
9871              * If this bit is set software is not allowed to mask
9872              * FIQs, but is allowed to set CPSR_F to 0.
9873              */
9874             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9875                 (val & CPSR_F)) {
9876                 qemu_log_mask(LOG_GUEST_ERROR,
9877                               "Ignoring attempt to enable CPSR_F flag "
9878                               "(non-maskable FIQ [NMFI] support enabled)\n");
9879                 mask &= ~CPSR_F;
9880             }
9881         }
9882     }
9883 
9884     env->daif &= ~(CPSR_AIF & mask);
9885     env->daif |= val & CPSR_AIF & mask;
9886 
9887     if (write_type != CPSRWriteRaw &&
9888         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9889         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9890             /*
9891              * Note that we can only get here in USR mode if this is a
9892              * gdb stub write; for this case we follow the architectural
9893              * behaviour for guest writes in USR mode of ignoring an attempt
9894              * to switch mode. (Those are caught by translate.c for writes
9895              * triggered by guest instructions.)
9896              */
9897             mask &= ~CPSR_M;
9898         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9899             /*
9900              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9901              * v7, and has defined behaviour in v8:
9902              *  + leave CPSR.M untouched
9903              *  + allow changes to the other CPSR fields
9904              *  + set PSTATE.IL
9905              * For user changes via the GDB stub, we don't set PSTATE.IL,
9906              * as this would be unnecessarily harsh for a user error.
9907              */
9908             mask &= ~CPSR_M;
9909             if (write_type != CPSRWriteByGDBStub &&
9910                 arm_feature(env, ARM_FEATURE_V8)) {
9911                 mask |= CPSR_IL;
9912                 val |= CPSR_IL;
9913             }
9914             qemu_log_mask(LOG_GUEST_ERROR,
9915                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9916                           aarch32_mode_name(env->uncached_cpsr),
9917                           aarch32_mode_name(val));
9918         } else {
9919             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9920                           write_type == CPSRWriteExceptionReturn ?
9921                           "Exception return from AArch32" :
9922                           "AArch32 mode switch from",
9923                           aarch32_mode_name(env->uncached_cpsr),
9924                           aarch32_mode_name(val), env->regs[15]);
9925             switch_mode(env, val & CPSR_M);
9926         }
9927     }
9928     mask &= ~CACHED_CPSR_BITS;
9929     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9930     if (tcg_enabled() && rebuild_hflags) {
9931         arm_rebuild_hflags(env);
9932     }
9933 }
9934 
9935 /* Sign/zero extend */
9936 uint32_t HELPER(sxtb16)(uint32_t x)
9937 {
9938     uint32_t res;
9939     res = (uint16_t)(int8_t)x;
9940     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9941     return res;
9942 }
9943 
9944 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9945 {
9946     /*
9947      * Take a division-by-zero exception if necessary; otherwise return
9948      * to get the usual non-trapping division behaviour (result of 0)
9949      */
9950     if (arm_feature(env, ARM_FEATURE_M)
9951         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9952         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9953     }
9954 }
9955 
9956 uint32_t HELPER(uxtb16)(uint32_t x)
9957 {
9958     uint32_t res;
9959     res = (uint16_t)(uint8_t)x;
9960     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9961     return res;
9962 }
9963 
9964 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9965 {
9966     if (den == 0) {
9967         handle_possible_div0_trap(env, GETPC());
9968         return 0;
9969     }
9970     if (num == INT_MIN && den == -1) {
9971         return INT_MIN;
9972     }
9973     return num / den;
9974 }
9975 
9976 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9977 {
9978     if (den == 0) {
9979         handle_possible_div0_trap(env, GETPC());
9980         return 0;
9981     }
9982     return num / den;
9983 }
9984 
9985 uint32_t HELPER(rbit)(uint32_t x)
9986 {
9987     return revbit32(x);
9988 }
9989 
9990 #ifdef CONFIG_USER_ONLY
9991 
9992 static void switch_mode(CPUARMState *env, int mode)
9993 {
9994     ARMCPU *cpu = env_archcpu(env);
9995 
9996     if (mode != ARM_CPU_MODE_USR) {
9997         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9998     }
9999 }
10000 
10001 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10002                                  uint32_t cur_el, bool secure)
10003 {
10004     return 1;
10005 }
10006 
10007 void aarch64_sync_64_to_32(CPUARMState *env)
10008 {
10009     g_assert_not_reached();
10010 }
10011 
10012 #else
10013 
10014 static void switch_mode(CPUARMState *env, int mode)
10015 {
10016     int old_mode;
10017     int i;
10018 
10019     old_mode = env->uncached_cpsr & CPSR_M;
10020     if (mode == old_mode) {
10021         return;
10022     }
10023 
10024     if (old_mode == ARM_CPU_MODE_FIQ) {
10025         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10026         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10027     } else if (mode == ARM_CPU_MODE_FIQ) {
10028         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10029         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10030     }
10031 
10032     i = bank_number(old_mode);
10033     env->banked_r13[i] = env->regs[13];
10034     env->banked_spsr[i] = env->spsr;
10035 
10036     i = bank_number(mode);
10037     env->regs[13] = env->banked_r13[i];
10038     env->spsr = env->banked_spsr[i];
10039 
10040     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10041     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10042 }
10043 
10044 /*
10045  * Physical Interrupt Target EL Lookup Table
10046  *
10047  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10048  *
10049  * The below multi-dimensional table is used for looking up the target
10050  * exception level given numerous condition criteria.  Specifically, the
10051  * target EL is based on SCR and HCR routing controls as well as the
10052  * currently executing EL and secure state.
10053  *
10054  *    Dimensions:
10055  *    target_el_table[2][2][2][2][2][4]
10056  *                    |  |  |  |  |  +--- Current EL
10057  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10058  *                    |  |  |  +--------- HCR mask override
10059  *                    |  |  +------------ SCR exec state control
10060  *                    |  +--------------- SCR mask override
10061  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10062  *
10063  *    The table values are as such:
10064  *    0-3 = EL0-EL3
10065  *     -1 = Cannot occur
10066  *
10067  * The ARM ARM target EL table includes entries indicating that an "exception
10068  * is not taken".  The two cases where this is applicable are:
10069  *    1) An exception is taken from EL3 but the SCR does not have the exception
10070  *    routed to EL3.
10071  *    2) An exception is taken from EL2 but the HCR does not have the exception
10072  *    routed to EL2.
10073  * In these two cases, the below table contain a target of EL1.  This value is
10074  * returned as it is expected that the consumer of the table data will check
10075  * for "target EL >= current EL" to ensure the exception is not taken.
10076  *
10077  *            SCR     HCR
10078  *         64  EA     AMO                 From
10079  *        BIT IRQ     IMO      Non-secure         Secure
10080  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10081  */
10082 static const int8_t target_el_table[2][2][2][2][2][4] = {
10083     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10084        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10085       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10086        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10087      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10088        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10089       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10090        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10091     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10092        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10093       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10094        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10095      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10096        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10097       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10098        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10099 };
10100 
10101 /*
10102  * Determine the target EL for physical exceptions
10103  */
10104 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10105                                  uint32_t cur_el, bool secure)
10106 {
10107     CPUARMState *env = cs->env_ptr;
10108     bool rw;
10109     bool scr;
10110     bool hcr;
10111     int target_el;
10112     /* Is the highest EL AArch64? */
10113     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10114     uint64_t hcr_el2;
10115 
10116     if (arm_feature(env, ARM_FEATURE_EL3)) {
10117         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10118     } else {
10119         /*
10120          * Either EL2 is the highest EL (and so the EL2 register width
10121          * is given by is64); or there is no EL2 or EL3, in which case
10122          * the value of 'rw' does not affect the table lookup anyway.
10123          */
10124         rw = is64;
10125     }
10126 
10127     hcr_el2 = arm_hcr_el2_eff(env);
10128     switch (excp_idx) {
10129     case EXCP_IRQ:
10130         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10131         hcr = hcr_el2 & HCR_IMO;
10132         break;
10133     case EXCP_FIQ:
10134         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10135         hcr = hcr_el2 & HCR_FMO;
10136         break;
10137     default:
10138         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10139         hcr = hcr_el2 & HCR_AMO;
10140         break;
10141     };
10142 
10143     /*
10144      * For these purposes, TGE and AMO/IMO/FMO both force the
10145      * interrupt to EL2.  Fold TGE into the bit extracted above.
10146      */
10147     hcr |= (hcr_el2 & HCR_TGE) != 0;
10148 
10149     /* Perform a table-lookup for the target EL given the current state */
10150     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10151 
10152     assert(target_el > 0);
10153 
10154     return target_el;
10155 }
10156 
10157 void arm_log_exception(CPUState *cs)
10158 {
10159     int idx = cs->exception_index;
10160 
10161     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10162         const char *exc = NULL;
10163         static const char * const excnames[] = {
10164             [EXCP_UDEF] = "Undefined Instruction",
10165             [EXCP_SWI] = "SVC",
10166             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10167             [EXCP_DATA_ABORT] = "Data Abort",
10168             [EXCP_IRQ] = "IRQ",
10169             [EXCP_FIQ] = "FIQ",
10170             [EXCP_BKPT] = "Breakpoint",
10171             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10172             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10173             [EXCP_HVC] = "Hypervisor Call",
10174             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10175             [EXCP_SMC] = "Secure Monitor Call",
10176             [EXCP_VIRQ] = "Virtual IRQ",
10177             [EXCP_VFIQ] = "Virtual FIQ",
10178             [EXCP_SEMIHOST] = "Semihosting call",
10179             [EXCP_NOCP] = "v7M NOCP UsageFault",
10180             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10181             [EXCP_STKOF] = "v8M STKOF UsageFault",
10182             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10183             [EXCP_LSERR] = "v8M LSERR UsageFault",
10184             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10185             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10186             [EXCP_VSERR] = "Virtual SERR",
10187             [EXCP_GPC] = "Granule Protection Check",
10188         };
10189 
10190         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10191             exc = excnames[idx];
10192         }
10193         if (!exc) {
10194             exc = "unknown";
10195         }
10196         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10197                       idx, exc, cs->cpu_index);
10198     }
10199 }
10200 
10201 /*
10202  * Function used to synchronize QEMU's AArch64 register set with AArch32
10203  * register set.  This is necessary when switching between AArch32 and AArch64
10204  * execution state.
10205  */
10206 void aarch64_sync_32_to_64(CPUARMState *env)
10207 {
10208     int i;
10209     uint32_t mode = env->uncached_cpsr & CPSR_M;
10210 
10211     /* We can blanket copy R[0:7] to X[0:7] */
10212     for (i = 0; i < 8; i++) {
10213         env->xregs[i] = env->regs[i];
10214     }
10215 
10216     /*
10217      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10218      * Otherwise, they come from the banked user regs.
10219      */
10220     if (mode == ARM_CPU_MODE_FIQ) {
10221         for (i = 8; i < 13; i++) {
10222             env->xregs[i] = env->usr_regs[i - 8];
10223         }
10224     } else {
10225         for (i = 8; i < 13; i++) {
10226             env->xregs[i] = env->regs[i];
10227         }
10228     }
10229 
10230     /*
10231      * Registers x13-x23 are the various mode SP and FP registers. Registers
10232      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10233      * from the mode banked register.
10234      */
10235     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10236         env->xregs[13] = env->regs[13];
10237         env->xregs[14] = env->regs[14];
10238     } else {
10239         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10240         /* HYP is an exception in that it is copied from r14 */
10241         if (mode == ARM_CPU_MODE_HYP) {
10242             env->xregs[14] = env->regs[14];
10243         } else {
10244             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10245         }
10246     }
10247 
10248     if (mode == ARM_CPU_MODE_HYP) {
10249         env->xregs[15] = env->regs[13];
10250     } else {
10251         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10252     }
10253 
10254     if (mode == ARM_CPU_MODE_IRQ) {
10255         env->xregs[16] = env->regs[14];
10256         env->xregs[17] = env->regs[13];
10257     } else {
10258         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10259         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10260     }
10261 
10262     if (mode == ARM_CPU_MODE_SVC) {
10263         env->xregs[18] = env->regs[14];
10264         env->xregs[19] = env->regs[13];
10265     } else {
10266         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10267         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10268     }
10269 
10270     if (mode == ARM_CPU_MODE_ABT) {
10271         env->xregs[20] = env->regs[14];
10272         env->xregs[21] = env->regs[13];
10273     } else {
10274         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10275         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10276     }
10277 
10278     if (mode == ARM_CPU_MODE_UND) {
10279         env->xregs[22] = env->regs[14];
10280         env->xregs[23] = env->regs[13];
10281     } else {
10282         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10283         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10284     }
10285 
10286     /*
10287      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10288      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10289      * FIQ bank for r8-r14.
10290      */
10291     if (mode == ARM_CPU_MODE_FIQ) {
10292         for (i = 24; i < 31; i++) {
10293             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10294         }
10295     } else {
10296         for (i = 24; i < 29; i++) {
10297             env->xregs[i] = env->fiq_regs[i - 24];
10298         }
10299         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10300         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10301     }
10302 
10303     env->pc = env->regs[15];
10304 }
10305 
10306 /*
10307  * Function used to synchronize QEMU's AArch32 register set with AArch64
10308  * register set.  This is necessary when switching between AArch32 and AArch64
10309  * execution state.
10310  */
10311 void aarch64_sync_64_to_32(CPUARMState *env)
10312 {
10313     int i;
10314     uint32_t mode = env->uncached_cpsr & CPSR_M;
10315 
10316     /* We can blanket copy X[0:7] to R[0:7] */
10317     for (i = 0; i < 8; i++) {
10318         env->regs[i] = env->xregs[i];
10319     }
10320 
10321     /*
10322      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10323      * Otherwise, we copy x8-x12 into the banked user regs.
10324      */
10325     if (mode == ARM_CPU_MODE_FIQ) {
10326         for (i = 8; i < 13; i++) {
10327             env->usr_regs[i - 8] = env->xregs[i];
10328         }
10329     } else {
10330         for (i = 8; i < 13; i++) {
10331             env->regs[i] = env->xregs[i];
10332         }
10333     }
10334 
10335     /*
10336      * Registers r13 & r14 depend on the current mode.
10337      * If we are in a given mode, we copy the corresponding x registers to r13
10338      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10339      * for the mode.
10340      */
10341     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10342         env->regs[13] = env->xregs[13];
10343         env->regs[14] = env->xregs[14];
10344     } else {
10345         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10346 
10347         /*
10348          * HYP is an exception in that it does not have its own banked r14 but
10349          * shares the USR r14
10350          */
10351         if (mode == ARM_CPU_MODE_HYP) {
10352             env->regs[14] = env->xregs[14];
10353         } else {
10354             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10355         }
10356     }
10357 
10358     if (mode == ARM_CPU_MODE_HYP) {
10359         env->regs[13] = env->xregs[15];
10360     } else {
10361         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10362     }
10363 
10364     if (mode == ARM_CPU_MODE_IRQ) {
10365         env->regs[14] = env->xregs[16];
10366         env->regs[13] = env->xregs[17];
10367     } else {
10368         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10369         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10370     }
10371 
10372     if (mode == ARM_CPU_MODE_SVC) {
10373         env->regs[14] = env->xregs[18];
10374         env->regs[13] = env->xregs[19];
10375     } else {
10376         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10377         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10378     }
10379 
10380     if (mode == ARM_CPU_MODE_ABT) {
10381         env->regs[14] = env->xregs[20];
10382         env->regs[13] = env->xregs[21];
10383     } else {
10384         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10385         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10386     }
10387 
10388     if (mode == ARM_CPU_MODE_UND) {
10389         env->regs[14] = env->xregs[22];
10390         env->regs[13] = env->xregs[23];
10391     } else {
10392         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10393         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10394     }
10395 
10396     /*
10397      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10398      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10399      * FIQ bank for r8-r14.
10400      */
10401     if (mode == ARM_CPU_MODE_FIQ) {
10402         for (i = 24; i < 31; i++) {
10403             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10404         }
10405     } else {
10406         for (i = 24; i < 29; i++) {
10407             env->fiq_regs[i - 24] = env->xregs[i];
10408         }
10409         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10410         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10411     }
10412 
10413     env->regs[15] = env->pc;
10414 }
10415 
10416 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10417                                    uint32_t mask, uint32_t offset,
10418                                    uint32_t newpc)
10419 {
10420     int new_el;
10421 
10422     /* Change the CPU state so as to actually take the exception. */
10423     switch_mode(env, new_mode);
10424 
10425     /*
10426      * For exceptions taken to AArch32 we must clear the SS bit in both
10427      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10428      */
10429     env->pstate &= ~PSTATE_SS;
10430     env->spsr = cpsr_read(env);
10431     /* Clear IT bits.  */
10432     env->condexec_bits = 0;
10433     /* Switch to the new mode, and to the correct instruction set.  */
10434     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10435 
10436     /* This must be after mode switching. */
10437     new_el = arm_current_el(env);
10438 
10439     /* Set new mode endianness */
10440     env->uncached_cpsr &= ~CPSR_E;
10441     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10442         env->uncached_cpsr |= CPSR_E;
10443     }
10444     /* J and IL must always be cleared for exception entry */
10445     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10446     env->daif |= mask;
10447 
10448     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10449         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10450             env->uncached_cpsr |= CPSR_SSBS;
10451         } else {
10452             env->uncached_cpsr &= ~CPSR_SSBS;
10453         }
10454     }
10455 
10456     if (new_mode == ARM_CPU_MODE_HYP) {
10457         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10458         env->elr_el[2] = env->regs[15];
10459     } else {
10460         /* CPSR.PAN is normally preserved preserved unless...  */
10461         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10462             switch (new_el) {
10463             case 3:
10464                 if (!arm_is_secure_below_el3(env)) {
10465                     /* ... the target is EL3, from non-secure state.  */
10466                     env->uncached_cpsr &= ~CPSR_PAN;
10467                     break;
10468                 }
10469                 /* ... the target is EL3, from secure state ... */
10470                 /* fall through */
10471             case 1:
10472                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10473                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10474                     env->uncached_cpsr |= CPSR_PAN;
10475                 }
10476                 break;
10477             }
10478         }
10479         /*
10480          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10481          * and we should just guard the thumb mode on V4
10482          */
10483         if (arm_feature(env, ARM_FEATURE_V4T)) {
10484             env->thumb =
10485                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10486         }
10487         env->regs[14] = env->regs[15] + offset;
10488     }
10489     env->regs[15] = newpc;
10490 
10491     if (tcg_enabled()) {
10492         arm_rebuild_hflags(env);
10493     }
10494 }
10495 
10496 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10497 {
10498     /*
10499      * Handle exception entry to Hyp mode; this is sufficiently
10500      * different to entry to other AArch32 modes that we handle it
10501      * separately here.
10502      *
10503      * The vector table entry used is always the 0x14 Hyp mode entry point,
10504      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10505      * The offset applied to the preferred return address is always zero
10506      * (see DDI0487C.a section G1.12.3).
10507      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10508      */
10509     uint32_t addr, mask;
10510     ARMCPU *cpu = ARM_CPU(cs);
10511     CPUARMState *env = &cpu->env;
10512 
10513     switch (cs->exception_index) {
10514     case EXCP_UDEF:
10515         addr = 0x04;
10516         break;
10517     case EXCP_SWI:
10518         addr = 0x08;
10519         break;
10520     case EXCP_BKPT:
10521         /* Fall through to prefetch abort.  */
10522     case EXCP_PREFETCH_ABORT:
10523         env->cp15.ifar_s = env->exception.vaddress;
10524         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10525                       (uint32_t)env->exception.vaddress);
10526         addr = 0x0c;
10527         break;
10528     case EXCP_DATA_ABORT:
10529         env->cp15.dfar_s = env->exception.vaddress;
10530         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10531                       (uint32_t)env->exception.vaddress);
10532         addr = 0x10;
10533         break;
10534     case EXCP_IRQ:
10535         addr = 0x18;
10536         break;
10537     case EXCP_FIQ:
10538         addr = 0x1c;
10539         break;
10540     case EXCP_HVC:
10541         addr = 0x08;
10542         break;
10543     case EXCP_HYP_TRAP:
10544         addr = 0x14;
10545         break;
10546     default:
10547         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10548     }
10549 
10550     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10551         if (!arm_feature(env, ARM_FEATURE_V8)) {
10552             /*
10553              * QEMU syndrome values are v8-style. v7 has the IL bit
10554              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10555              * If this is a v7 CPU, squash the IL bit in those cases.
10556              */
10557             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10558                 (cs->exception_index == EXCP_DATA_ABORT &&
10559                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10560                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10561                 env->exception.syndrome &= ~ARM_EL_IL;
10562             }
10563         }
10564         env->cp15.esr_el[2] = env->exception.syndrome;
10565     }
10566 
10567     if (arm_current_el(env) != 2 && addr < 0x14) {
10568         addr = 0x14;
10569     }
10570 
10571     mask = 0;
10572     if (!(env->cp15.scr_el3 & SCR_EA)) {
10573         mask |= CPSR_A;
10574     }
10575     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10576         mask |= CPSR_I;
10577     }
10578     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10579         mask |= CPSR_F;
10580     }
10581 
10582     addr += env->cp15.hvbar;
10583 
10584     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10585 }
10586 
10587 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10588 {
10589     ARMCPU *cpu = ARM_CPU(cs);
10590     CPUARMState *env = &cpu->env;
10591     uint32_t addr;
10592     uint32_t mask;
10593     int new_mode;
10594     uint32_t offset;
10595     uint32_t moe;
10596 
10597     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10598     switch (syn_get_ec(env->exception.syndrome)) {
10599     case EC_BREAKPOINT:
10600     case EC_BREAKPOINT_SAME_EL:
10601         moe = 1;
10602         break;
10603     case EC_WATCHPOINT:
10604     case EC_WATCHPOINT_SAME_EL:
10605         moe = 10;
10606         break;
10607     case EC_AA32_BKPT:
10608         moe = 3;
10609         break;
10610     case EC_VECTORCATCH:
10611         moe = 5;
10612         break;
10613     default:
10614         moe = 0;
10615         break;
10616     }
10617 
10618     if (moe) {
10619         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10620     }
10621 
10622     if (env->exception.target_el == 2) {
10623         arm_cpu_do_interrupt_aarch32_hyp(cs);
10624         return;
10625     }
10626 
10627     switch (cs->exception_index) {
10628     case EXCP_UDEF:
10629         new_mode = ARM_CPU_MODE_UND;
10630         addr = 0x04;
10631         mask = CPSR_I;
10632         if (env->thumb) {
10633             offset = 2;
10634         } else {
10635             offset = 4;
10636         }
10637         break;
10638     case EXCP_SWI:
10639         new_mode = ARM_CPU_MODE_SVC;
10640         addr = 0x08;
10641         mask = CPSR_I;
10642         /* The PC already points to the next instruction.  */
10643         offset = 0;
10644         break;
10645     case EXCP_BKPT:
10646         /* Fall through to prefetch abort.  */
10647     case EXCP_PREFETCH_ABORT:
10648         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10649         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10650         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10651                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10652         new_mode = ARM_CPU_MODE_ABT;
10653         addr = 0x0c;
10654         mask = CPSR_A | CPSR_I;
10655         offset = 4;
10656         break;
10657     case EXCP_DATA_ABORT:
10658         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10659         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10660         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10661                       env->exception.fsr,
10662                       (uint32_t)env->exception.vaddress);
10663         new_mode = ARM_CPU_MODE_ABT;
10664         addr = 0x10;
10665         mask = CPSR_A | CPSR_I;
10666         offset = 8;
10667         break;
10668     case EXCP_IRQ:
10669         new_mode = ARM_CPU_MODE_IRQ;
10670         addr = 0x18;
10671         /* Disable IRQ and imprecise data aborts.  */
10672         mask = CPSR_A | CPSR_I;
10673         offset = 4;
10674         if (env->cp15.scr_el3 & SCR_IRQ) {
10675             /* IRQ routed to monitor mode */
10676             new_mode = ARM_CPU_MODE_MON;
10677             mask |= CPSR_F;
10678         }
10679         break;
10680     case EXCP_FIQ:
10681         new_mode = ARM_CPU_MODE_FIQ;
10682         addr = 0x1c;
10683         /* Disable FIQ, IRQ and imprecise data aborts.  */
10684         mask = CPSR_A | CPSR_I | CPSR_F;
10685         if (env->cp15.scr_el3 & SCR_FIQ) {
10686             /* FIQ routed to monitor mode */
10687             new_mode = ARM_CPU_MODE_MON;
10688         }
10689         offset = 4;
10690         break;
10691     case EXCP_VIRQ:
10692         new_mode = ARM_CPU_MODE_IRQ;
10693         addr = 0x18;
10694         /* Disable IRQ and imprecise data aborts.  */
10695         mask = CPSR_A | CPSR_I;
10696         offset = 4;
10697         break;
10698     case EXCP_VFIQ:
10699         new_mode = ARM_CPU_MODE_FIQ;
10700         addr = 0x1c;
10701         /* Disable FIQ, IRQ and imprecise data aborts.  */
10702         mask = CPSR_A | CPSR_I | CPSR_F;
10703         offset = 4;
10704         break;
10705     case EXCP_VSERR:
10706         {
10707             /*
10708              * Note that this is reported as a data abort, but the DFAR
10709              * has an UNKNOWN value.  Construct the SError syndrome from
10710              * AET and ExT fields.
10711              */
10712             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10713 
10714             if (extended_addresses_enabled(env)) {
10715                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10716             } else {
10717                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10718             }
10719             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10720             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10721             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10722                           env->exception.fsr);
10723 
10724             new_mode = ARM_CPU_MODE_ABT;
10725             addr = 0x10;
10726             mask = CPSR_A | CPSR_I;
10727             offset = 8;
10728         }
10729         break;
10730     case EXCP_SMC:
10731         new_mode = ARM_CPU_MODE_MON;
10732         addr = 0x08;
10733         mask = CPSR_A | CPSR_I | CPSR_F;
10734         offset = 0;
10735         break;
10736     default:
10737         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10738         return; /* Never happens.  Keep compiler happy.  */
10739     }
10740 
10741     if (new_mode == ARM_CPU_MODE_MON) {
10742         addr += env->cp15.mvbar;
10743     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10744         /* High vectors. When enabled, base address cannot be remapped. */
10745         addr += 0xffff0000;
10746     } else {
10747         /*
10748          * ARM v7 architectures provide a vector base address register to remap
10749          * the interrupt vector table.
10750          * This register is only followed in non-monitor mode, and is banked.
10751          * Note: only bits 31:5 are valid.
10752          */
10753         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10754     }
10755 
10756     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10757         env->cp15.scr_el3 &= ~SCR_NS;
10758     }
10759 
10760     take_aarch32_exception(env, new_mode, mask, offset, addr);
10761 }
10762 
10763 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10764 {
10765     /*
10766      * Return the register number of the AArch64 view of the AArch32
10767      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10768      * be that of the AArch32 mode the exception came from.
10769      */
10770     int mode = env->uncached_cpsr & CPSR_M;
10771 
10772     switch (aarch32_reg) {
10773     case 0 ... 7:
10774         return aarch32_reg;
10775     case 8 ... 12:
10776         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10777     case 13:
10778         switch (mode) {
10779         case ARM_CPU_MODE_USR:
10780         case ARM_CPU_MODE_SYS:
10781             return 13;
10782         case ARM_CPU_MODE_HYP:
10783             return 15;
10784         case ARM_CPU_MODE_IRQ:
10785             return 17;
10786         case ARM_CPU_MODE_SVC:
10787             return 19;
10788         case ARM_CPU_MODE_ABT:
10789             return 21;
10790         case ARM_CPU_MODE_UND:
10791             return 23;
10792         case ARM_CPU_MODE_FIQ:
10793             return 29;
10794         default:
10795             g_assert_not_reached();
10796         }
10797     case 14:
10798         switch (mode) {
10799         case ARM_CPU_MODE_USR:
10800         case ARM_CPU_MODE_SYS:
10801         case ARM_CPU_MODE_HYP:
10802             return 14;
10803         case ARM_CPU_MODE_IRQ:
10804             return 16;
10805         case ARM_CPU_MODE_SVC:
10806             return 18;
10807         case ARM_CPU_MODE_ABT:
10808             return 20;
10809         case ARM_CPU_MODE_UND:
10810             return 22;
10811         case ARM_CPU_MODE_FIQ:
10812             return 30;
10813         default:
10814             g_assert_not_reached();
10815         }
10816     case 15:
10817         return 31;
10818     default:
10819         g_assert_not_reached();
10820     }
10821 }
10822 
10823 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10824 {
10825     uint32_t ret = cpsr_read(env);
10826 
10827     /* Move DIT to the correct location for SPSR_ELx */
10828     if (ret & CPSR_DIT) {
10829         ret &= ~CPSR_DIT;
10830         ret |= PSTATE_DIT;
10831     }
10832     /* Merge PSTATE.SS into SPSR_ELx */
10833     ret |= env->pstate & PSTATE_SS;
10834 
10835     return ret;
10836 }
10837 
10838 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10839 {
10840     /* Return true if this syndrome value is a synchronous external abort */
10841     switch (syn_get_ec(syndrome)) {
10842     case EC_INSNABORT:
10843     case EC_INSNABORT_SAME_EL:
10844     case EC_DATAABORT:
10845     case EC_DATAABORT_SAME_EL:
10846         /* Look at fault status code for all the synchronous ext abort cases */
10847         switch (syndrome & 0x3f) {
10848         case 0x10:
10849         case 0x13:
10850         case 0x14:
10851         case 0x15:
10852         case 0x16:
10853         case 0x17:
10854             return true;
10855         default:
10856             return false;
10857         }
10858     default:
10859         return false;
10860     }
10861 }
10862 
10863 /* Handle exception entry to a target EL which is using AArch64 */
10864 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10865 {
10866     ARMCPU *cpu = ARM_CPU(cs);
10867     CPUARMState *env = &cpu->env;
10868     unsigned int new_el = env->exception.target_el;
10869     target_ulong addr = env->cp15.vbar_el[new_el];
10870     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10871     unsigned int old_mode;
10872     unsigned int cur_el = arm_current_el(env);
10873     int rt;
10874 
10875     if (tcg_enabled()) {
10876         /*
10877          * Note that new_el can never be 0.  If cur_el is 0, then
10878          * el0_a64 is is_a64(), else el0_a64 is ignored.
10879          */
10880         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10881     }
10882 
10883     if (cur_el < new_el) {
10884         /*
10885          * Entry vector offset depends on whether the implemented EL
10886          * immediately lower than the target level is using AArch32 or AArch64
10887          */
10888         bool is_aa64;
10889         uint64_t hcr;
10890 
10891         switch (new_el) {
10892         case 3:
10893             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10894             break;
10895         case 2:
10896             hcr = arm_hcr_el2_eff(env);
10897             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10898                 is_aa64 = (hcr & HCR_RW) != 0;
10899                 break;
10900             }
10901             /* fall through */
10902         case 1:
10903             is_aa64 = is_a64(env);
10904             break;
10905         default:
10906             g_assert_not_reached();
10907         }
10908 
10909         if (is_aa64) {
10910             addr += 0x400;
10911         } else {
10912             addr += 0x600;
10913         }
10914     } else if (pstate_read(env) & PSTATE_SP) {
10915         addr += 0x200;
10916     }
10917 
10918     switch (cs->exception_index) {
10919     case EXCP_GPC:
10920         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
10921                       env->cp15.mfar_el3);
10922         /* fall through */
10923     case EXCP_PREFETCH_ABORT:
10924     case EXCP_DATA_ABORT:
10925         /*
10926          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10927          * to be taken to the SError vector entrypoint.
10928          */
10929         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10930             syndrome_is_sync_extabt(env->exception.syndrome)) {
10931             addr += 0x180;
10932         }
10933         env->cp15.far_el[new_el] = env->exception.vaddress;
10934         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10935                       env->cp15.far_el[new_el]);
10936         /* fall through */
10937     case EXCP_BKPT:
10938     case EXCP_UDEF:
10939     case EXCP_SWI:
10940     case EXCP_HVC:
10941     case EXCP_HYP_TRAP:
10942     case EXCP_SMC:
10943         switch (syn_get_ec(env->exception.syndrome)) {
10944         case EC_ADVSIMDFPACCESSTRAP:
10945             /*
10946              * QEMU internal FP/SIMD syndromes from AArch32 include the
10947              * TA and coproc fields which are only exposed if the exception
10948              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10949              * AArch64 format syndrome.
10950              */
10951             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10952             break;
10953         case EC_CP14RTTRAP:
10954         case EC_CP15RTTRAP:
10955         case EC_CP14DTTRAP:
10956             /*
10957              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10958              * the raw register field from the insn; when taking this to
10959              * AArch64 we must convert it to the AArch64 view of the register
10960              * number. Notice that we read a 4-bit AArch32 register number and
10961              * write back a 5-bit AArch64 one.
10962              */
10963             rt = extract32(env->exception.syndrome, 5, 4);
10964             rt = aarch64_regnum(env, rt);
10965             env->exception.syndrome = deposit32(env->exception.syndrome,
10966                                                 5, 5, rt);
10967             break;
10968         case EC_CP15RRTTRAP:
10969         case EC_CP14RRTTRAP:
10970             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10971             rt = extract32(env->exception.syndrome, 5, 4);
10972             rt = aarch64_regnum(env, rt);
10973             env->exception.syndrome = deposit32(env->exception.syndrome,
10974                                                 5, 5, rt);
10975             rt = extract32(env->exception.syndrome, 10, 4);
10976             rt = aarch64_regnum(env, rt);
10977             env->exception.syndrome = deposit32(env->exception.syndrome,
10978                                                 10, 5, rt);
10979             break;
10980         }
10981         env->cp15.esr_el[new_el] = env->exception.syndrome;
10982         break;
10983     case EXCP_IRQ:
10984     case EXCP_VIRQ:
10985         addr += 0x80;
10986         break;
10987     case EXCP_FIQ:
10988     case EXCP_VFIQ:
10989         addr += 0x100;
10990         break;
10991     case EXCP_VSERR:
10992         addr += 0x180;
10993         /* Construct the SError syndrome from IDS and ISS fields. */
10994         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10995         env->cp15.esr_el[new_el] = env->exception.syndrome;
10996         break;
10997     default:
10998         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10999     }
11000 
11001     if (is_a64(env)) {
11002         old_mode = pstate_read(env);
11003         aarch64_save_sp(env, arm_current_el(env));
11004         env->elr_el[new_el] = env->pc;
11005     } else {
11006         old_mode = cpsr_read_for_spsr_elx(env);
11007         env->elr_el[new_el] = env->regs[15];
11008 
11009         aarch64_sync_32_to_64(env);
11010 
11011         env->condexec_bits = 0;
11012     }
11013     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11014 
11015     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11016                   env->elr_el[new_el]);
11017 
11018     if (cpu_isar_feature(aa64_pan, cpu)) {
11019         /* The value of PSTATE.PAN is normally preserved, except when ... */
11020         new_mode |= old_mode & PSTATE_PAN;
11021         switch (new_el) {
11022         case 2:
11023             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11024             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11025                 != (HCR_E2H | HCR_TGE)) {
11026                 break;
11027             }
11028             /* fall through */
11029         case 1:
11030             /* ... the target is EL1 ... */
11031             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11032             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11033                 new_mode |= PSTATE_PAN;
11034             }
11035             break;
11036         }
11037     }
11038     if (cpu_isar_feature(aa64_mte, cpu)) {
11039         new_mode |= PSTATE_TCO;
11040     }
11041 
11042     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11043         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11044             new_mode |= PSTATE_SSBS;
11045         } else {
11046             new_mode &= ~PSTATE_SSBS;
11047         }
11048     }
11049 
11050     pstate_write(env, PSTATE_DAIF | new_mode);
11051     env->aarch64 = true;
11052     aarch64_restore_sp(env, new_el);
11053 
11054     if (tcg_enabled()) {
11055         helper_rebuild_hflags_a64(env, new_el);
11056     }
11057 
11058     env->pc = addr;
11059 
11060     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11061                   new_el, env->pc, pstate_read(env));
11062 }
11063 
11064 /*
11065  * Do semihosting call and set the appropriate return value. All the
11066  * permission and validity checks have been done at translate time.
11067  *
11068  * We only see semihosting exceptions in TCG only as they are not
11069  * trapped to the hypervisor in KVM.
11070  */
11071 #ifdef CONFIG_TCG
11072 static void tcg_handle_semihosting(CPUState *cs)
11073 {
11074     ARMCPU *cpu = ARM_CPU(cs);
11075     CPUARMState *env = &cpu->env;
11076 
11077     if (is_a64(env)) {
11078         qemu_log_mask(CPU_LOG_INT,
11079                       "...handling as semihosting call 0x%" PRIx64 "\n",
11080                       env->xregs[0]);
11081         do_common_semihosting(cs);
11082         env->pc += 4;
11083     } else {
11084         qemu_log_mask(CPU_LOG_INT,
11085                       "...handling as semihosting call 0x%x\n",
11086                       env->regs[0]);
11087         do_common_semihosting(cs);
11088         env->regs[15] += env->thumb ? 2 : 4;
11089     }
11090 }
11091 #endif
11092 
11093 /*
11094  * Handle a CPU exception for A and R profile CPUs.
11095  * Do any appropriate logging, handle PSCI calls, and then hand off
11096  * to the AArch64-entry or AArch32-entry function depending on the
11097  * target exception level's register width.
11098  *
11099  * Note: this is used for both TCG (as the do_interrupt tcg op),
11100  *       and KVM to re-inject guest debug exceptions, and to
11101  *       inject a Synchronous-External-Abort.
11102  */
11103 void arm_cpu_do_interrupt(CPUState *cs)
11104 {
11105     ARMCPU *cpu = ARM_CPU(cs);
11106     CPUARMState *env = &cpu->env;
11107     unsigned int new_el = env->exception.target_el;
11108 
11109     assert(!arm_feature(env, ARM_FEATURE_M));
11110 
11111     arm_log_exception(cs);
11112     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11113                   new_el);
11114     if (qemu_loglevel_mask(CPU_LOG_INT)
11115         && !excp_is_internal(cs->exception_index)) {
11116         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11117                       syn_get_ec(env->exception.syndrome),
11118                       env->exception.syndrome);
11119     }
11120 
11121     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11122         arm_handle_psci_call(cpu);
11123         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11124         return;
11125     }
11126 
11127     /*
11128      * Semihosting semantics depend on the register width of the code
11129      * that caused the exception, not the target exception level, so
11130      * must be handled here.
11131      */
11132 #ifdef CONFIG_TCG
11133     if (cs->exception_index == EXCP_SEMIHOST) {
11134         tcg_handle_semihosting(cs);
11135         return;
11136     }
11137 #endif
11138 
11139     /*
11140      * Hooks may change global state so BQL should be held, also the
11141      * BQL needs to be held for any modification of
11142      * cs->interrupt_request.
11143      */
11144     g_assert(qemu_mutex_iothread_locked());
11145 
11146     arm_call_pre_el_change_hook(cpu);
11147 
11148     assert(!excp_is_internal(cs->exception_index));
11149     if (arm_el_is_aa64(env, new_el)) {
11150         arm_cpu_do_interrupt_aarch64(cs);
11151     } else {
11152         arm_cpu_do_interrupt_aarch32(cs);
11153     }
11154 
11155     arm_call_el_change_hook(cpu);
11156 
11157     if (!kvm_enabled()) {
11158         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11159     }
11160 }
11161 #endif /* !CONFIG_USER_ONLY */
11162 
11163 uint64_t arm_sctlr(CPUARMState *env, int el)
11164 {
11165     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11166     if (el == 0) {
11167         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11168         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11169     }
11170     return env->cp15.sctlr_el[el];
11171 }
11172 
11173 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11174 {
11175     if (regime_has_2_ranges(mmu_idx)) {
11176         return extract64(tcr, 37, 2);
11177     } else if (regime_is_stage2(mmu_idx)) {
11178         return 0; /* VTCR_EL2 */
11179     } else {
11180         /* Replicate the single TBI bit so we always have 2 bits.  */
11181         return extract32(tcr, 20, 1) * 3;
11182     }
11183 }
11184 
11185 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11186 {
11187     if (regime_has_2_ranges(mmu_idx)) {
11188         return extract64(tcr, 51, 2);
11189     } else if (regime_is_stage2(mmu_idx)) {
11190         return 0; /* VTCR_EL2 */
11191     } else {
11192         /* Replicate the single TBID bit so we always have 2 bits.  */
11193         return extract32(tcr, 29, 1) * 3;
11194     }
11195 }
11196 
11197 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11198 {
11199     if (regime_has_2_ranges(mmu_idx)) {
11200         return extract64(tcr, 57, 2);
11201     } else {
11202         /* Replicate the single TCMA bit so we always have 2 bits.  */
11203         return extract32(tcr, 30, 1) * 3;
11204     }
11205 }
11206 
11207 static ARMGranuleSize tg0_to_gran_size(int tg)
11208 {
11209     switch (tg) {
11210     case 0:
11211         return Gran4K;
11212     case 1:
11213         return Gran64K;
11214     case 2:
11215         return Gran16K;
11216     default:
11217         return GranInvalid;
11218     }
11219 }
11220 
11221 static ARMGranuleSize tg1_to_gran_size(int tg)
11222 {
11223     switch (tg) {
11224     case 1:
11225         return Gran16K;
11226     case 2:
11227         return Gran4K;
11228     case 3:
11229         return Gran64K;
11230     default:
11231         return GranInvalid;
11232     }
11233 }
11234 
11235 static inline bool have4k(ARMCPU *cpu, bool stage2)
11236 {
11237     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11238         : cpu_isar_feature(aa64_tgran4, cpu);
11239 }
11240 
11241 static inline bool have16k(ARMCPU *cpu, bool stage2)
11242 {
11243     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11244         : cpu_isar_feature(aa64_tgran16, cpu);
11245 }
11246 
11247 static inline bool have64k(ARMCPU *cpu, bool stage2)
11248 {
11249     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11250         : cpu_isar_feature(aa64_tgran64, cpu);
11251 }
11252 
11253 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11254                                          bool stage2)
11255 {
11256     switch (gran) {
11257     case Gran4K:
11258         if (have4k(cpu, stage2)) {
11259             return gran;
11260         }
11261         break;
11262     case Gran16K:
11263         if (have16k(cpu, stage2)) {
11264             return gran;
11265         }
11266         break;
11267     case Gran64K:
11268         if (have64k(cpu, stage2)) {
11269             return gran;
11270         }
11271         break;
11272     case GranInvalid:
11273         break;
11274     }
11275     /*
11276      * If the guest selects a granule size that isn't implemented,
11277      * the architecture requires that we behave as if it selected one
11278      * that is (with an IMPDEF choice of which one to pick). We choose
11279      * to implement the smallest supported granule size.
11280      */
11281     if (have4k(cpu, stage2)) {
11282         return Gran4K;
11283     }
11284     if (have16k(cpu, stage2)) {
11285         return Gran16K;
11286     }
11287     assert(have64k(cpu, stage2));
11288     return Gran64K;
11289 }
11290 
11291 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11292                                    ARMMMUIdx mmu_idx, bool data,
11293                                    bool el1_is_aa32)
11294 {
11295     uint64_t tcr = regime_tcr(env, mmu_idx);
11296     bool epd, hpd, tsz_oob, ds, ha, hd;
11297     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11298     ARMGranuleSize gran;
11299     ARMCPU *cpu = env_archcpu(env);
11300     bool stage2 = regime_is_stage2(mmu_idx);
11301 
11302     if (!regime_has_2_ranges(mmu_idx)) {
11303         select = 0;
11304         tsz = extract32(tcr, 0, 6);
11305         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11306         if (stage2) {
11307             /* VTCR_EL2 */
11308             hpd = false;
11309         } else {
11310             hpd = extract32(tcr, 24, 1);
11311         }
11312         epd = false;
11313         sh = extract32(tcr, 12, 2);
11314         ps = extract32(tcr, 16, 3);
11315         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11316         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11317         ds = extract64(tcr, 32, 1);
11318     } else {
11319         bool e0pd;
11320 
11321         /*
11322          * Bit 55 is always between the two regions, and is canonical for
11323          * determining if address tagging is enabled.
11324          */
11325         select = extract64(va, 55, 1);
11326         if (!select) {
11327             tsz = extract32(tcr, 0, 6);
11328             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11329             epd = extract32(tcr, 7, 1);
11330             sh = extract32(tcr, 12, 2);
11331             hpd = extract64(tcr, 41, 1);
11332             e0pd = extract64(tcr, 55, 1);
11333         } else {
11334             tsz = extract32(tcr, 16, 6);
11335             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11336             epd = extract32(tcr, 23, 1);
11337             sh = extract32(tcr, 28, 2);
11338             hpd = extract64(tcr, 42, 1);
11339             e0pd = extract64(tcr, 56, 1);
11340         }
11341         ps = extract64(tcr, 32, 3);
11342         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11343         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11344         ds = extract64(tcr, 59, 1);
11345 
11346         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11347             regime_is_user(env, mmu_idx)) {
11348             epd = true;
11349         }
11350     }
11351 
11352     gran = sanitize_gran_size(cpu, gran, stage2);
11353 
11354     if (cpu_isar_feature(aa64_st, cpu)) {
11355         max_tsz = 48 - (gran == Gran64K);
11356     } else {
11357         max_tsz = 39;
11358     }
11359 
11360     /*
11361      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11362      * adjust the effective value of DS, as documented.
11363      */
11364     min_tsz = 16;
11365     if (gran == Gran64K) {
11366         if (cpu_isar_feature(aa64_lva, cpu)) {
11367             min_tsz = 12;
11368         }
11369         ds = false;
11370     } else if (ds) {
11371         if (regime_is_stage2(mmu_idx)) {
11372             if (gran == Gran16K) {
11373                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11374             } else {
11375                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11376             }
11377         } else {
11378             if (gran == Gran16K) {
11379                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11380             } else {
11381                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11382             }
11383         }
11384         if (ds) {
11385             min_tsz = 12;
11386         }
11387     }
11388 
11389     if (stage2 && el1_is_aa32) {
11390         /*
11391          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11392          * are loosened: a configured IPA of 40 bits is permitted even if
11393          * the implemented PA is less than that (and so a 40 bit IPA would
11394          * fault for an AArch64 EL1). See R_DTLMN.
11395          */
11396         min_tsz = MIN(min_tsz, 24);
11397     }
11398 
11399     if (tsz > max_tsz) {
11400         tsz = max_tsz;
11401         tsz_oob = true;
11402     } else if (tsz < min_tsz) {
11403         tsz = min_tsz;
11404         tsz_oob = true;
11405     } else {
11406         tsz_oob = false;
11407     }
11408 
11409     /* Present TBI as a composite with TBID.  */
11410     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11411     if (!data) {
11412         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11413     }
11414     tbi = (tbi >> select) & 1;
11415 
11416     return (ARMVAParameters) {
11417         .tsz = tsz,
11418         .ps = ps,
11419         .sh = sh,
11420         .select = select,
11421         .tbi = tbi,
11422         .epd = epd,
11423         .hpd = hpd,
11424         .tsz_oob = tsz_oob,
11425         .ds = ds,
11426         .ha = ha,
11427         .hd = ha && hd,
11428         .gran = gran,
11429     };
11430 }
11431 
11432 /*
11433  * Note that signed overflow is undefined in C.  The following routines are
11434  * careful to use unsigned types where modulo arithmetic is required.
11435  * Failure to do so _will_ break on newer gcc.
11436  */
11437 
11438 /* Signed saturating arithmetic.  */
11439 
11440 /* Perform 16-bit signed saturating addition.  */
11441 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11442 {
11443     uint16_t res;
11444 
11445     res = a + b;
11446     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11447         if (a & 0x8000) {
11448             res = 0x8000;
11449         } else {
11450             res = 0x7fff;
11451         }
11452     }
11453     return res;
11454 }
11455 
11456 /* Perform 8-bit signed saturating addition.  */
11457 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11458 {
11459     uint8_t res;
11460 
11461     res = a + b;
11462     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11463         if (a & 0x80) {
11464             res = 0x80;
11465         } else {
11466             res = 0x7f;
11467         }
11468     }
11469     return res;
11470 }
11471 
11472 /* Perform 16-bit signed saturating subtraction.  */
11473 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11474 {
11475     uint16_t res;
11476 
11477     res = a - b;
11478     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11479         if (a & 0x8000) {
11480             res = 0x8000;
11481         } else {
11482             res = 0x7fff;
11483         }
11484     }
11485     return res;
11486 }
11487 
11488 /* Perform 8-bit signed saturating subtraction.  */
11489 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11490 {
11491     uint8_t res;
11492 
11493     res = a - b;
11494     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11495         if (a & 0x80) {
11496             res = 0x80;
11497         } else {
11498             res = 0x7f;
11499         }
11500     }
11501     return res;
11502 }
11503 
11504 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11505 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11506 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11507 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11508 #define PFX q
11509 
11510 #include "op_addsub.h"
11511 
11512 /* Unsigned saturating arithmetic.  */
11513 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11514 {
11515     uint16_t res;
11516     res = a + b;
11517     if (res < a) {
11518         res = 0xffff;
11519     }
11520     return res;
11521 }
11522 
11523 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11524 {
11525     if (a > b) {
11526         return a - b;
11527     } else {
11528         return 0;
11529     }
11530 }
11531 
11532 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11533 {
11534     uint8_t res;
11535     res = a + b;
11536     if (res < a) {
11537         res = 0xff;
11538     }
11539     return res;
11540 }
11541 
11542 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11543 {
11544     if (a > b) {
11545         return a - b;
11546     } else {
11547         return 0;
11548     }
11549 }
11550 
11551 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11552 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11553 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11554 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11555 #define PFX uq
11556 
11557 #include "op_addsub.h"
11558 
11559 /* Signed modulo arithmetic.  */
11560 #define SARITH16(a, b, n, op) do { \
11561     int32_t sum; \
11562     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11563     RESULT(sum, n, 16); \
11564     if (sum >= 0) \
11565         ge |= 3 << (n * 2); \
11566     } while (0)
11567 
11568 #define SARITH8(a, b, n, op) do { \
11569     int32_t sum; \
11570     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11571     RESULT(sum, n, 8); \
11572     if (sum >= 0) \
11573         ge |= 1 << n; \
11574     } while (0)
11575 
11576 
11577 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11578 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11579 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11580 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11581 #define PFX s
11582 #define ARITH_GE
11583 
11584 #include "op_addsub.h"
11585 
11586 /* Unsigned modulo arithmetic.  */
11587 #define ADD16(a, b, n) do { \
11588     uint32_t sum; \
11589     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11590     RESULT(sum, n, 16); \
11591     if ((sum >> 16) == 1) \
11592         ge |= 3 << (n * 2); \
11593     } while (0)
11594 
11595 #define ADD8(a, b, n) do { \
11596     uint32_t sum; \
11597     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11598     RESULT(sum, n, 8); \
11599     if ((sum >> 8) == 1) \
11600         ge |= 1 << n; \
11601     } while (0)
11602 
11603 #define SUB16(a, b, n) do { \
11604     uint32_t sum; \
11605     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11606     RESULT(sum, n, 16); \
11607     if ((sum >> 16) == 0) \
11608         ge |= 3 << (n * 2); \
11609     } while (0)
11610 
11611 #define SUB8(a, b, n) do { \
11612     uint32_t sum; \
11613     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11614     RESULT(sum, n, 8); \
11615     if ((sum >> 8) == 0) \
11616         ge |= 1 << n; \
11617     } while (0)
11618 
11619 #define PFX u
11620 #define ARITH_GE
11621 
11622 #include "op_addsub.h"
11623 
11624 /* Halved signed arithmetic.  */
11625 #define ADD16(a, b, n) \
11626   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11627 #define SUB16(a, b, n) \
11628   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11629 #define ADD8(a, b, n) \
11630   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11631 #define SUB8(a, b, n) \
11632   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11633 #define PFX sh
11634 
11635 #include "op_addsub.h"
11636 
11637 /* Halved unsigned arithmetic.  */
11638 #define ADD16(a, b, n) \
11639   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11640 #define SUB16(a, b, n) \
11641   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11642 #define ADD8(a, b, n) \
11643   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11644 #define SUB8(a, b, n) \
11645   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11646 #define PFX uh
11647 
11648 #include "op_addsub.h"
11649 
11650 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11651 {
11652     if (a > b) {
11653         return a - b;
11654     } else {
11655         return b - a;
11656     }
11657 }
11658 
11659 /* Unsigned sum of absolute byte differences.  */
11660 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11661 {
11662     uint32_t sum;
11663     sum = do_usad(a, b);
11664     sum += do_usad(a >> 8, b >> 8);
11665     sum += do_usad(a >> 16, b >> 16);
11666     sum += do_usad(a >> 24, b >> 24);
11667     return sum;
11668 }
11669 
11670 /* For ARMv6 SEL instruction.  */
11671 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11672 {
11673     uint32_t mask;
11674 
11675     mask = 0;
11676     if (flags & 1) {
11677         mask |= 0xff;
11678     }
11679     if (flags & 2) {
11680         mask |= 0xff00;
11681     }
11682     if (flags & 4) {
11683         mask |= 0xff0000;
11684     }
11685     if (flags & 8) {
11686         mask |= 0xff000000;
11687     }
11688     return (a & mask) | (b & ~mask);
11689 }
11690 
11691 /*
11692  * CRC helpers.
11693  * The upper bytes of val (above the number specified by 'bytes') must have
11694  * been zeroed out by the caller.
11695  */
11696 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11697 {
11698     uint8_t buf[4];
11699 
11700     stl_le_p(buf, val);
11701 
11702     /* zlib crc32 converts the accumulator and output to one's complement.  */
11703     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11704 }
11705 
11706 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11707 {
11708     uint8_t buf[4];
11709 
11710     stl_le_p(buf, val);
11711 
11712     /* Linux crc32c converts the output to one's complement.  */
11713     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11714 }
11715 
11716 /*
11717  * Return the exception level to which FP-disabled exceptions should
11718  * be taken, or 0 if FP is enabled.
11719  */
11720 int fp_exception_el(CPUARMState *env, int cur_el)
11721 {
11722 #ifndef CONFIG_USER_ONLY
11723     uint64_t hcr_el2;
11724 
11725     /*
11726      * CPACR and the CPTR registers don't exist before v6, so FP is
11727      * always accessible
11728      */
11729     if (!arm_feature(env, ARM_FEATURE_V6)) {
11730         return 0;
11731     }
11732 
11733     if (arm_feature(env, ARM_FEATURE_M)) {
11734         /* CPACR can cause a NOCP UsageFault taken to current security state */
11735         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11736             return 1;
11737         }
11738 
11739         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11740             if (!extract32(env->v7m.nsacr, 10, 1)) {
11741                 /* FP insns cause a NOCP UsageFault taken to Secure */
11742                 return 3;
11743             }
11744         }
11745 
11746         return 0;
11747     }
11748 
11749     hcr_el2 = arm_hcr_el2_eff(env);
11750 
11751     /*
11752      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11753      * 0, 2 : trap EL0 and EL1/PL1 accesses
11754      * 1    : trap only EL0 accesses
11755      * 3    : trap no accesses
11756      * This register is ignored if E2H+TGE are both set.
11757      */
11758     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11759         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11760 
11761         switch (fpen) {
11762         case 1:
11763             if (cur_el != 0) {
11764                 break;
11765             }
11766             /* fall through */
11767         case 0:
11768         case 2:
11769             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11770             if (!arm_el_is_aa64(env, 3)
11771                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11772                 return 3;
11773             }
11774             if (cur_el <= 1) {
11775                 return 1;
11776             }
11777             break;
11778         }
11779     }
11780 
11781     /*
11782      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11783      * to control non-secure access to the FPU. It doesn't have any
11784      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11785      */
11786     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11787          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11788         if (!extract32(env->cp15.nsacr, 10, 1)) {
11789             /* FP insns act as UNDEF */
11790             return cur_el == 2 ? 2 : 1;
11791         }
11792     }
11793 
11794     /*
11795      * CPTR_EL2 is present in v7VE or v8, and changes format
11796      * with HCR_EL2.E2H (regardless of TGE).
11797      */
11798     if (cur_el <= 2) {
11799         if (hcr_el2 & HCR_E2H) {
11800             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11801             case 1:
11802                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11803                     break;
11804                 }
11805                 /* fall through */
11806             case 0:
11807             case 2:
11808                 return 2;
11809             }
11810         } else if (arm_is_el2_enabled(env)) {
11811             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11812                 return 2;
11813             }
11814         }
11815     }
11816 
11817     /* CPTR_EL3 : present in v8 */
11818     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11819         /* Trap all FP ops to EL3 */
11820         return 3;
11821     }
11822 #endif
11823     return 0;
11824 }
11825 
11826 /* Return the exception level we're running at if this is our mmu_idx */
11827 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11828 {
11829     if (mmu_idx & ARM_MMU_IDX_M) {
11830         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11831     }
11832 
11833     switch (mmu_idx) {
11834     case ARMMMUIdx_E10_0:
11835     case ARMMMUIdx_E20_0:
11836         return 0;
11837     case ARMMMUIdx_E10_1:
11838     case ARMMMUIdx_E10_1_PAN:
11839         return 1;
11840     case ARMMMUIdx_E2:
11841     case ARMMMUIdx_E20_2:
11842     case ARMMMUIdx_E20_2_PAN:
11843         return 2;
11844     case ARMMMUIdx_E3:
11845         return 3;
11846     default:
11847         g_assert_not_reached();
11848     }
11849 }
11850 
11851 #ifndef CONFIG_TCG
11852 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11853 {
11854     g_assert_not_reached();
11855 }
11856 #endif
11857 
11858 static bool arm_pan_enabled(CPUARMState *env)
11859 {
11860     if (is_a64(env)) {
11861         return env->pstate & PSTATE_PAN;
11862     } else {
11863         return env->uncached_cpsr & CPSR_PAN;
11864     }
11865 }
11866 
11867 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11868 {
11869     ARMMMUIdx idx;
11870     uint64_t hcr;
11871 
11872     if (arm_feature(env, ARM_FEATURE_M)) {
11873         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11874     }
11875 
11876     /* See ARM pseudo-function ELIsInHost.  */
11877     switch (el) {
11878     case 0:
11879         hcr = arm_hcr_el2_eff(env);
11880         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11881             idx = ARMMMUIdx_E20_0;
11882         } else {
11883             idx = ARMMMUIdx_E10_0;
11884         }
11885         break;
11886     case 1:
11887         if (arm_pan_enabled(env)) {
11888             idx = ARMMMUIdx_E10_1_PAN;
11889         } else {
11890             idx = ARMMMUIdx_E10_1;
11891         }
11892         break;
11893     case 2:
11894         /* Note that TGE does not apply at EL2.  */
11895         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11896             if (arm_pan_enabled(env)) {
11897                 idx = ARMMMUIdx_E20_2_PAN;
11898             } else {
11899                 idx = ARMMMUIdx_E20_2;
11900             }
11901         } else {
11902             idx = ARMMMUIdx_E2;
11903         }
11904         break;
11905     case 3:
11906         return ARMMMUIdx_E3;
11907     default:
11908         g_assert_not_reached();
11909     }
11910 
11911     return idx;
11912 }
11913 
11914 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11915 {
11916     return arm_mmu_idx_el(env, arm_current_el(env));
11917 }
11918 
11919 static bool mve_no_pred(CPUARMState *env)
11920 {
11921     /*
11922      * Return true if there is definitely no predication of MVE
11923      * instructions by VPR or LTPSIZE. (Returning false even if there
11924      * isn't any predication is OK; generated code will just be
11925      * a little worse.)
11926      * If the CPU does not implement MVE then this TB flag is always 0.
11927      *
11928      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11929      * logic in gen_update_fp_context() needs to be updated to match.
11930      *
11931      * We do not include the effect of the ECI bits here -- they are
11932      * tracked in other TB flags. This simplifies the logic for
11933      * "when did we emit code that changes the MVE_NO_PRED TB flag
11934      * and thus need to end the TB?".
11935      */
11936     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11937         return false;
11938     }
11939     if (env->v7m.vpr) {
11940         return false;
11941     }
11942     if (env->v7m.ltpsize < 4) {
11943         return false;
11944     }
11945     return true;
11946 }
11947 
11948 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
11949                           uint64_t *cs_base, uint32_t *pflags)
11950 {
11951     CPUARMTBFlags flags;
11952 
11953     assert_hflags_rebuild_correctly(env);
11954     flags = env->hflags;
11955 
11956     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
11957         *pc = env->pc;
11958         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
11959             DP_TBFLAG_A64(flags, BTYPE, env->btype);
11960         }
11961     } else {
11962         *pc = env->regs[15];
11963 
11964         if (arm_feature(env, ARM_FEATURE_M)) {
11965             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
11966                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
11967                 != env->v7m.secure) {
11968                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
11969             }
11970 
11971             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
11972                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
11973                  (env->v7m.secure &&
11974                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
11975                 /*
11976                  * ASPEN is set, but FPCA/SFPA indicate that there is no
11977                  * active FP context; we must create a new FP context before
11978                  * executing any FP insn.
11979                  */
11980                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
11981             }
11982 
11983             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
11984             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
11985                 DP_TBFLAG_M32(flags, LSPACT, 1);
11986             }
11987 
11988             if (mve_no_pred(env)) {
11989                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
11990             }
11991         } else {
11992             /*
11993              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
11994              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
11995              */
11996             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
11997                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
11998             } else {
11999                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12000                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12001             }
12002             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12003                 DP_TBFLAG_A32(flags, VFPEN, 1);
12004             }
12005         }
12006 
12007         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12008         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12009     }
12010 
12011     /*
12012      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12013      * states defined in the ARM ARM for software singlestep:
12014      *  SS_ACTIVE   PSTATE.SS   State
12015      *     0            x       Inactive (the TB flag for SS is always 0)
12016      *     1            0       Active-pending
12017      *     1            1       Active-not-pending
12018      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12019      */
12020     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12021         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12022     }
12023 
12024     *pflags = flags.flags;
12025     *cs_base = flags.flags2;
12026 }
12027 
12028 #ifdef TARGET_AARCH64
12029 /*
12030  * The manual says that when SVE is enabled and VQ is widened the
12031  * implementation is allowed to zero the previously inaccessible
12032  * portion of the registers.  The corollary to that is that when
12033  * SVE is enabled and VQ is narrowed we are also allowed to zero
12034  * the now inaccessible portion of the registers.
12035  *
12036  * The intent of this is that no predicate bit beyond VQ is ever set.
12037  * Which means that some operations on predicate registers themselves
12038  * may operate on full uint64_t or even unrolled across the maximum
12039  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12040  * may well be cheaper than conditionals to restrict the operation
12041  * to the relevant portion of a uint16_t[16].
12042  */
12043 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12044 {
12045     int i, j;
12046     uint64_t pmask;
12047 
12048     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12049     assert(vq <= env_archcpu(env)->sve_max_vq);
12050 
12051     /* Zap the high bits of the zregs.  */
12052     for (i = 0; i < 32; i++) {
12053         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12054     }
12055 
12056     /* Zap the high bits of the pregs and ffr.  */
12057     pmask = 0;
12058     if (vq & 3) {
12059         pmask = ~(-1ULL << (16 * (vq & 3)));
12060     }
12061     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12062         for (i = 0; i < 17; ++i) {
12063             env->vfp.pregs[i].p[j] &= pmask;
12064         }
12065         pmask = 0;
12066     }
12067 }
12068 
12069 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12070 {
12071     int exc_el;
12072 
12073     if (sm) {
12074         exc_el = sme_exception_el(env, el);
12075     } else {
12076         exc_el = sve_exception_el(env, el);
12077     }
12078     if (exc_el) {
12079         return 0; /* disabled */
12080     }
12081     return sve_vqm1_for_el_sm(env, el, sm);
12082 }
12083 
12084 /*
12085  * Notice a change in SVE vector size when changing EL.
12086  */
12087 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12088                            int new_el, bool el0_a64)
12089 {
12090     ARMCPU *cpu = env_archcpu(env);
12091     int old_len, new_len;
12092     bool old_a64, new_a64, sm;
12093 
12094     /* Nothing to do if no SVE.  */
12095     if (!cpu_isar_feature(aa64_sve, cpu)) {
12096         return;
12097     }
12098 
12099     /* Nothing to do if FP is disabled in either EL.  */
12100     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12101         return;
12102     }
12103 
12104     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12105     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12106 
12107     /*
12108      * Both AArch64.TakeException and AArch64.ExceptionReturn
12109      * invoke ResetSVEState when taking an exception from, or
12110      * returning to, AArch32 state when PSTATE.SM is enabled.
12111      */
12112     sm = FIELD_EX64(env->svcr, SVCR, SM);
12113     if (old_a64 != new_a64 && sm) {
12114         arm_reset_sve_state(env);
12115         return;
12116     }
12117 
12118     /*
12119      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12120      * at ELx, or not available because the EL is in AArch32 state, then
12121      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12122      * has an effective value of 0".
12123      *
12124      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12125      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12126      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12127      * we already have the correct register contents when encountering the
12128      * vq0->vq0 transition between EL0->EL1.
12129      */
12130     old_len = new_len = 0;
12131     if (old_a64) {
12132         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12133     }
12134     if (new_a64) {
12135         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12136     }
12137 
12138     /* When changing vector length, clear inaccessible state.  */
12139     if (new_len < old_len) {
12140         aarch64_sve_narrow_vq(env, new_len + 1);
12141     }
12142 }
12143 #endif
12144 
12145 #ifndef CONFIG_USER_ONLY
12146 ARMSecuritySpace arm_security_space(CPUARMState *env)
12147 {
12148     if (arm_feature(env, ARM_FEATURE_M)) {
12149         return arm_secure_to_space(env->v7m.secure);
12150     }
12151 
12152     /*
12153      * If EL3 is not supported then the secure state is implementation
12154      * defined, in which case QEMU defaults to non-secure.
12155      */
12156     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12157         return ARMSS_NonSecure;
12158     }
12159 
12160     /* Check for AArch64 EL3 or AArch32 Mon. */
12161     if (is_a64(env)) {
12162         if (extract32(env->pstate, 2, 2) == 3) {
12163             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12164                 return ARMSS_Root;
12165             } else {
12166                 return ARMSS_Secure;
12167             }
12168         }
12169     } else {
12170         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12171             return ARMSS_Secure;
12172         }
12173     }
12174 
12175     return arm_security_space_below_el3(env);
12176 }
12177 
12178 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12179 {
12180     assert(!arm_feature(env, ARM_FEATURE_M));
12181 
12182     /*
12183      * If EL3 is not supported then the secure state is implementation
12184      * defined, in which case QEMU defaults to non-secure.
12185      */
12186     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12187         return ARMSS_NonSecure;
12188     }
12189 
12190     /*
12191      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12192      * Ignoring NSE when !NS retains consistency without having to
12193      * modify other predicates.
12194      */
12195     if (!(env->cp15.scr_el3 & SCR_NS)) {
12196         return ARMSS_Secure;
12197     } else if (env->cp15.scr_el3 & SCR_NSE) {
12198         return ARMSS_Realm;
12199     } else {
12200         return ARMSS_NonSecure;
12201     }
12202 }
12203 #endif /* !CONFIG_USER_ONLY */
12204