xref: /qemu/target/arm/helper.c (revision 988717b4)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "qemu/range.h"
29 #include "qapi/qapi-commands-machine-target.h"
30 #include "qapi/error.h"
31 #include "qemu/guest-random.h"
32 #ifdef CONFIG_TCG
33 #include "arm_ldst.h"
34 #include "exec/cpu_ldst.h"
35 #endif
36 
37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
38 
39 #ifndef CONFIG_USER_ONLY
40 
41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
42                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
43                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
44                                target_ulong *page_size_ptr,
45                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
46 #endif
47 
48 static void switch_mode(CPUARMState *env, int mode);
49 
50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
51 {
52     int nregs;
53 
54     /* VFP data registers are always little-endian.  */
55     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
56     if (reg < nregs) {
57         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
58         return 8;
59     }
60     if (arm_feature(env, ARM_FEATURE_NEON)) {
61         /* Aliases for Q regs.  */
62         nregs += 16;
63         if (reg < nregs) {
64             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
65             stq_le_p(buf, q[0]);
66             stq_le_p(buf + 8, q[1]);
67             return 16;
68         }
69     }
70     switch (reg - nregs) {
71     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
72     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
73     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
74     }
75     return 0;
76 }
77 
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80     int nregs;
81 
82     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
83     if (reg < nregs) {
84         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85         return 8;
86     }
87     if (arm_feature(env, ARM_FEATURE_NEON)) {
88         nregs += 16;
89         if (reg < nregs) {
90             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91             q[0] = ldq_le_p(buf);
92             q[1] = ldq_le_p(buf + 8);
93             return 16;
94         }
95     }
96     switch (reg - nregs) {
97     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100     }
101     return 0;
102 }
103 
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
105 {
106     switch (reg) {
107     case 0 ... 31:
108         /* 128 bit FP register */
109         {
110             uint64_t *q = aa64_vfp_qreg(env, reg);
111             stq_le_p(buf, q[0]);
112             stq_le_p(buf + 8, q[1]);
113             return 16;
114         }
115     case 32:
116         /* FPSR */
117         stl_p(buf, vfp_get_fpsr(env));
118         return 4;
119     case 33:
120         /* FPCR */
121         stl_p(buf, vfp_get_fpcr(env));
122         return 4;
123     default:
124         return 0;
125     }
126 }
127 
128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
129 {
130     switch (reg) {
131     case 0 ... 31:
132         /* 128 bit FP register */
133         {
134             uint64_t *q = aa64_vfp_qreg(env, reg);
135             q[0] = ldq_le_p(buf);
136             q[1] = ldq_le_p(buf + 8);
137             return 16;
138         }
139     case 32:
140         /* FPSR */
141         vfp_set_fpsr(env, ldl_p(buf));
142         return 4;
143     case 33:
144         /* FPCR */
145         vfp_set_fpcr(env, ldl_p(buf));
146         return 4;
147     default:
148         return 0;
149     }
150 }
151 
152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
153 {
154     assert(ri->fieldoffset);
155     if (cpreg_field_is_64bit(ri)) {
156         return CPREG_FIELD64(env, ri);
157     } else {
158         return CPREG_FIELD32(env, ri);
159     }
160 }
161 
162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
163                       uint64_t value)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         CPREG_FIELD64(env, ri) = value;
168     } else {
169         CPREG_FIELD32(env, ri) = value;
170     }
171 }
172 
173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
174 {
175     return (char *)env + ri->fieldoffset;
176 }
177 
178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
179 {
180     /* Raw read of a coprocessor register (as needed for migration, etc). */
181     if (ri->type & ARM_CP_CONST) {
182         return ri->resetvalue;
183     } else if (ri->raw_readfn) {
184         return ri->raw_readfn(env, ri);
185     } else if (ri->readfn) {
186         return ri->readfn(env, ri);
187     } else {
188         return raw_read(env, ri);
189     }
190 }
191 
192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
193                              uint64_t v)
194 {
195     /* Raw write of a coprocessor register (as needed for migration, etc).
196      * Note that constant registers are treated as write-ignored; the
197      * caller should check for success by whether a readback gives the
198      * value written.
199      */
200     if (ri->type & ARM_CP_CONST) {
201         return;
202     } else if (ri->raw_writefn) {
203         ri->raw_writefn(env, ri, v);
204     } else if (ri->writefn) {
205         ri->writefn(env, ri, v);
206     } else {
207         raw_write(env, ri, v);
208     }
209 }
210 
211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
212 {
213     ARMCPU *cpu = env_archcpu(env);
214     const ARMCPRegInfo *ri;
215     uint32_t key;
216 
217     key = cpu->dyn_xml.cpregs_keys[reg];
218     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
219     if (ri) {
220         if (cpreg_field_is_64bit(ri)) {
221             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
222         } else {
223             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
224         }
225     }
226     return 0;
227 }
228 
229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
230 {
231     return 0;
232 }
233 
234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
235 {
236    /* Return true if the regdef would cause an assertion if you called
237     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
238     * program bug for it not to have the NO_RAW flag).
239     * NB that returning false here doesn't necessarily mean that calling
240     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
241     * read/write access functions which are safe for raw use" from "has
242     * read/write access functions which have side effects but has forgotten
243     * to provide raw access functions".
244     * The tests here line up with the conditions in read/write_raw_cp_reg()
245     * and assertions in raw_read()/raw_write().
246     */
247     if ((ri->type & ARM_CP_CONST) ||
248         ri->fieldoffset ||
249         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
250         return false;
251     }
252     return true;
253 }
254 
255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
256 {
257     /* Write the coprocessor state from cpu->env to the (index,value) list. */
258     int i;
259     bool ok = true;
260 
261     for (i = 0; i < cpu->cpreg_array_len; i++) {
262         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
263         const ARMCPRegInfo *ri;
264         uint64_t newval;
265 
266         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
267         if (!ri) {
268             ok = false;
269             continue;
270         }
271         if (ri->type & ARM_CP_NO_RAW) {
272             continue;
273         }
274 
275         newval = read_raw_cp_reg(&cpu->env, ri);
276         if (kvm_sync) {
277             /*
278              * Only sync if the previous list->cpustate sync succeeded.
279              * Rather than tracking the success/failure state for every
280              * item in the list, we just recheck "does the raw write we must
281              * have made in write_list_to_cpustate() read back OK" here.
282              */
283             uint64_t oldval = cpu->cpreg_values[i];
284 
285             if (oldval == newval) {
286                 continue;
287             }
288 
289             write_raw_cp_reg(&cpu->env, ri, oldval);
290             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
291                 continue;
292             }
293 
294             write_raw_cp_reg(&cpu->env, ri, newval);
295         }
296         cpu->cpreg_values[i] = newval;
297     }
298     return ok;
299 }
300 
301 bool write_list_to_cpustate(ARMCPU *cpu)
302 {
303     int i;
304     bool ok = true;
305 
306     for (i = 0; i < cpu->cpreg_array_len; i++) {
307         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
308         uint64_t v = cpu->cpreg_values[i];
309         const ARMCPRegInfo *ri;
310 
311         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
312         if (!ri) {
313             ok = false;
314             continue;
315         }
316         if (ri->type & ARM_CP_NO_RAW) {
317             continue;
318         }
319         /* Write value and confirm it reads back as written
320          * (to catch read-only registers and partially read-only
321          * registers where the incoming migration value doesn't match)
322          */
323         write_raw_cp_reg(&cpu->env, ri, v);
324         if (read_raw_cp_reg(&cpu->env, ri) != v) {
325             ok = false;
326         }
327     }
328     return ok;
329 }
330 
331 static void add_cpreg_to_list(gpointer key, gpointer opaque)
332 {
333     ARMCPU *cpu = opaque;
334     uint64_t regidx;
335     const ARMCPRegInfo *ri;
336 
337     regidx = *(uint32_t *)key;
338     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339 
340     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
342         /* The value array need not be initialized at this point */
343         cpu->cpreg_array_len++;
344     }
345 }
346 
347 static void count_cpreg(gpointer key, gpointer opaque)
348 {
349     ARMCPU *cpu = opaque;
350     uint64_t regidx;
351     const ARMCPRegInfo *ri;
352 
353     regidx = *(uint32_t *)key;
354     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
355 
356     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
357         cpu->cpreg_array_len++;
358     }
359 }
360 
361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
362 {
363     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
364     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
365 
366     if (aidx > bidx) {
367         return 1;
368     }
369     if (aidx < bidx) {
370         return -1;
371     }
372     return 0;
373 }
374 
375 void init_cpreg_list(ARMCPU *cpu)
376 {
377     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
378      * Note that we require cpreg_tuples[] to be sorted by key ID.
379      */
380     GList *keys;
381     int arraylen;
382 
383     keys = g_hash_table_get_keys(cpu->cp_regs);
384     keys = g_list_sort(keys, cpreg_key_compare);
385 
386     cpu->cpreg_array_len = 0;
387 
388     g_list_foreach(keys, count_cpreg, cpu);
389 
390     arraylen = cpu->cpreg_array_len;
391     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
392     cpu->cpreg_values = g_new(uint64_t, arraylen);
393     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
394     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
395     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
396     cpu->cpreg_array_len = 0;
397 
398     g_list_foreach(keys, add_cpreg_to_list, cpu);
399 
400     assert(cpu->cpreg_array_len == arraylen);
401 
402     g_list_free(keys);
403 }
404 
405 /*
406  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
407  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
408  *
409  * access_el3_aa32ns: Used to check AArch32 register views.
410  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
411  */
412 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
413                                         const ARMCPRegInfo *ri,
414                                         bool isread)
415 {
416     bool secure = arm_is_secure_below_el3(env);
417 
418     assert(!arm_el_is_aa64(env, 3));
419     if (secure) {
420         return CP_ACCESS_TRAP_UNCATEGORIZED;
421     }
422     return CP_ACCESS_OK;
423 }
424 
425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
426                                                 const ARMCPRegInfo *ri,
427                                                 bool isread)
428 {
429     if (!arm_el_is_aa64(env, 3)) {
430         return access_el3_aa32ns(env, ri, isread);
431     }
432     return CP_ACCESS_OK;
433 }
434 
435 /* Some secure-only AArch32 registers trap to EL3 if used from
436  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
437  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
438  * We assume that the .access field is set to PL1_RW.
439  */
440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
441                                             const ARMCPRegInfo *ri,
442                                             bool isread)
443 {
444     if (arm_current_el(env) == 3) {
445         return CP_ACCESS_OK;
446     }
447     if (arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL3;
449     }
450     /* This will be EL1 NS and EL2 NS, which just UNDEF */
451     return CP_ACCESS_TRAP_UNCATEGORIZED;
452 }
453 
454 /* Check for traps to "powerdown debug" registers, which are controlled
455  * by MDCR.TDOSA
456  */
457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
458                                    bool isread)
459 {
460     int el = arm_current_el(env);
461     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
462         (env->cp15.mdcr_el2 & MDCR_TDE) ||
463         (arm_hcr_el2_eff(env) & HCR_TGE);
464 
465     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to "debug ROM" registers, which are controlled
475  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
476  */
477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
478                                   bool isread)
479 {
480     int el = arm_current_el(env);
481     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
482         (env->cp15.mdcr_el2 & MDCR_TDE) ||
483         (arm_hcr_el2_eff(env) & HCR_TGE);
484 
485     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
486         return CP_ACCESS_TRAP_EL2;
487     }
488     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
489         return CP_ACCESS_TRAP_EL3;
490     }
491     return CP_ACCESS_OK;
492 }
493 
494 /* Check for traps to general debug registers, which are controlled
495  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
496  */
497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
498                                   bool isread)
499 {
500     int el = arm_current_el(env);
501     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
502         (env->cp15.mdcr_el2 & MDCR_TDE) ||
503         (arm_hcr_el2_eff(env) & HCR_TGE);
504 
505     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
506         return CP_ACCESS_TRAP_EL2;
507     }
508     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
509         return CP_ACCESS_TRAP_EL3;
510     }
511     return CP_ACCESS_OK;
512 }
513 
514 /* Check for traps to performance monitor registers, which are controlled
515  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
516  */
517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
518                                  bool isread)
519 {
520     int el = arm_current_el(env);
521 
522     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
523         && !arm_is_secure_below_el3(env)) {
524         return CP_ACCESS_TRAP_EL2;
525     }
526     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
527         return CP_ACCESS_TRAP_EL3;
528     }
529     return CP_ACCESS_OK;
530 }
531 
532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
533 {
534     ARMCPU *cpu = env_archcpu(env);
535 
536     raw_write(env, ri, value);
537     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
538 }
539 
540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
541 {
542     ARMCPU *cpu = env_archcpu(env);
543 
544     if (raw_read(env, ri) != value) {
545         /* Unlike real hardware the qemu TLB uses virtual addresses,
546          * not modified virtual addresses, so this causes a TLB flush.
547          */
548         tlb_flush(CPU(cpu));
549         raw_write(env, ri, value);
550     }
551 }
552 
553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                              uint64_t value)
555 {
556     ARMCPU *cpu = env_archcpu(env);
557 
558     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
559         && !extended_addresses_enabled(env)) {
560         /* For VMSA (when not using the LPAE long descriptor page table
561          * format) this register includes the ASID, so do a TLB flush.
562          * For PMSA it is purely a process ID and no action is needed.
563          */
564         tlb_flush(CPU(cpu));
565     }
566     raw_write(env, ri, value);
567 }
568 
569 /* IS variants of TLB operations must affect all cores */
570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                              uint64_t value)
572 {
573     CPUState *cs = env_cpu(env);
574 
575     tlb_flush_all_cpus_synced(cs);
576 }
577 
578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                              uint64_t value)
580 {
581     CPUState *cs = env_cpu(env);
582 
583     tlb_flush_all_cpus_synced(cs);
584 }
585 
586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
587                              uint64_t value)
588 {
589     CPUState *cs = env_cpu(env);
590 
591     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
592 }
593 
594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595                              uint64_t value)
596 {
597     CPUState *cs = env_cpu(env);
598 
599     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
600 }
601 
602 /*
603  * Non-IS variants of TLB operations are upgraded to
604  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
605  * force broadcast of these operations.
606  */
607 static bool tlb_force_broadcast(CPUARMState *env)
608 {
609     return (env->cp15.hcr_el2 & HCR_FB) &&
610         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
611 }
612 
613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                           uint64_t value)
615 {
616     /* Invalidate all (TLBIALL) */
617     CPUState *cs = env_cpu(env);
618 
619     if (tlb_force_broadcast(env)) {
620         tlb_flush_all_cpus_synced(cs);
621     } else {
622         tlb_flush(cs);
623     }
624 }
625 
626 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
627                           uint64_t value)
628 {
629     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
630     CPUState *cs = env_cpu(env);
631 
632     value &= TARGET_PAGE_MASK;
633     if (tlb_force_broadcast(env)) {
634         tlb_flush_page_all_cpus_synced(cs, value);
635     } else {
636         tlb_flush_page(cs, value);
637     }
638 }
639 
640 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
641                            uint64_t value)
642 {
643     /* Invalidate by ASID (TLBIASID) */
644     CPUState *cs = env_cpu(env);
645 
646     if (tlb_force_broadcast(env)) {
647         tlb_flush_all_cpus_synced(cs);
648     } else {
649         tlb_flush(cs);
650     }
651 }
652 
653 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
654                            uint64_t value)
655 {
656     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
657     CPUState *cs = env_cpu(env);
658 
659     value &= TARGET_PAGE_MASK;
660     if (tlb_force_broadcast(env)) {
661         tlb_flush_page_all_cpus_synced(cs, value);
662     } else {
663         tlb_flush_page(cs, value);
664     }
665 }
666 
667 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
668                                uint64_t value)
669 {
670     CPUState *cs = env_cpu(env);
671 
672     tlb_flush_by_mmuidx(cs,
673                         ARMMMUIdxBit_E10_1 |
674                         ARMMMUIdxBit_E10_0 |
675                         ARMMMUIdxBit_Stage2);
676 }
677 
678 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
679                                   uint64_t value)
680 {
681     CPUState *cs = env_cpu(env);
682 
683     tlb_flush_by_mmuidx_all_cpus_synced(cs,
684                                         ARMMMUIdxBit_E10_1 |
685                                         ARMMMUIdxBit_E10_0 |
686                                         ARMMMUIdxBit_Stage2);
687 }
688 
689 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
690                             uint64_t value)
691 {
692     /* Invalidate by IPA. This has to invalidate any structures that
693      * contain only stage 2 translation information, but does not need
694      * to apply to structures that contain combined stage 1 and stage 2
695      * translation information.
696      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
697      */
698     CPUState *cs = env_cpu(env);
699     uint64_t pageaddr;
700 
701     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
702         return;
703     }
704 
705     pageaddr = sextract64(value << 12, 0, 40);
706 
707     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
708 }
709 
710 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711                                uint64_t value)
712 {
713     CPUState *cs = env_cpu(env);
714     uint64_t pageaddr;
715 
716     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
717         return;
718     }
719 
720     pageaddr = sextract64(value << 12, 0, 40);
721 
722     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
723                                              ARMMMUIdxBit_Stage2);
724 }
725 
726 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
727                               uint64_t value)
728 {
729     CPUState *cs = env_cpu(env);
730 
731     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
732 }
733 
734 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
735                                  uint64_t value)
736 {
737     CPUState *cs = env_cpu(env);
738 
739     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
740 }
741 
742 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
743                               uint64_t value)
744 {
745     CPUState *cs = env_cpu(env);
746     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
747 
748     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
749 }
750 
751 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
752                                  uint64_t value)
753 {
754     CPUState *cs = env_cpu(env);
755     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
756 
757     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
758                                              ARMMMUIdxBit_E2);
759 }
760 
761 static const ARMCPRegInfo cp_reginfo[] = {
762     /* Define the secure and non-secure FCSE identifier CP registers
763      * separately because there is no secure bank in V8 (no _EL3).  This allows
764      * the secure register to be properly reset and migrated. There is also no
765      * v8 EL1 version of the register so the non-secure instance stands alone.
766      */
767     { .name = "FCSEIDR",
768       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
769       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
770       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
771       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
772     { .name = "FCSEIDR_S",
773       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
774       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
775       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
776       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
777     /* Define the secure and non-secure context identifier CP registers
778      * separately because there is no secure bank in V8 (no _EL3).  This allows
779      * the secure register to be properly reset and migrated.  In the
780      * non-secure case, the 32-bit register will have reset and migration
781      * disabled during registration as it is handled by the 64-bit instance.
782      */
783     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
784       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
785       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
786       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
787       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
788     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
789       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
790       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
791       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
792       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
793     REGINFO_SENTINEL
794 };
795 
796 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
797     /* NB: Some of these registers exist in v8 but with more precise
798      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
799      */
800     /* MMU Domain access control / MPU write buffer control */
801     { .name = "DACR",
802       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
803       .access = PL1_RW, .resetvalue = 0,
804       .writefn = dacr_write, .raw_writefn = raw_write,
805       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
806                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
807     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
808      * For v6 and v5, these mappings are overly broad.
809      */
810     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
811       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
812     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
813       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
814     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
815       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
816     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
817       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
818     /* Cache maintenance ops; some of this space may be overridden later. */
819     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
820       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
821       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
822     REGINFO_SENTINEL
823 };
824 
825 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
826     /* Not all pre-v6 cores implemented this WFI, so this is slightly
827      * over-broad.
828      */
829     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
830       .access = PL1_W, .type = ARM_CP_WFI },
831     REGINFO_SENTINEL
832 };
833 
834 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
835     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
836      * is UNPREDICTABLE; we choose to NOP as most implementations do).
837      */
838     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
839       .access = PL1_W, .type = ARM_CP_WFI },
840     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
841      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
842      * OMAPCP will override this space.
843      */
844     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
845       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
846       .resetvalue = 0 },
847     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
848       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
849       .resetvalue = 0 },
850     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
851     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
852       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
853       .resetvalue = 0 },
854     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
855      * implementing it as RAZ means the "debug architecture version" bits
856      * will read as a reserved value, which should cause Linux to not try
857      * to use the debug hardware.
858      */
859     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
860       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
861     /* MMU TLB control. Note that the wildcarding means we cover not just
862      * the unified TLB ops but also the dside/iside/inner-shareable variants.
863      */
864     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
865       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
866       .type = ARM_CP_NO_RAW },
867     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
868       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
869       .type = ARM_CP_NO_RAW },
870     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
871       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
872       .type = ARM_CP_NO_RAW },
873     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
874       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
875       .type = ARM_CP_NO_RAW },
876     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
877       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
878     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
879       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
880     REGINFO_SENTINEL
881 };
882 
883 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
884                         uint64_t value)
885 {
886     uint32_t mask = 0;
887 
888     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
889     if (!arm_feature(env, ARM_FEATURE_V8)) {
890         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
891          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
892          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
893          */
894         if (arm_feature(env, ARM_FEATURE_VFP)) {
895             /* VFP coprocessor: cp10 & cp11 [23:20] */
896             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
897 
898             if (!arm_feature(env, ARM_FEATURE_NEON)) {
899                 /* ASEDIS [31] bit is RAO/WI */
900                 value |= (1 << 31);
901             }
902 
903             /* VFPv3 and upwards with NEON implement 32 double precision
904              * registers (D0-D31).
905              */
906             if (!arm_feature(env, ARM_FEATURE_NEON) ||
907                     !arm_feature(env, ARM_FEATURE_VFP3)) {
908                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
909                 value |= (1 << 30);
910             }
911         }
912         value &= mask;
913     }
914 
915     /*
916      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
917      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
918      */
919     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
920         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
921         value &= ~(0xf << 20);
922         value |= env->cp15.cpacr_el1 & (0xf << 20);
923     }
924 
925     env->cp15.cpacr_el1 = value;
926 }
927 
928 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
929 {
930     /*
931      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
932      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
933      */
934     uint64_t value = env->cp15.cpacr_el1;
935 
936     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
937         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
938         value &= ~(0xf << 20);
939     }
940     return value;
941 }
942 
943 
944 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
945 {
946     /* Call cpacr_write() so that we reset with the correct RAO bits set
947      * for our CPU features.
948      */
949     cpacr_write(env, ri, 0);
950 }
951 
952 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
953                                    bool isread)
954 {
955     if (arm_feature(env, ARM_FEATURE_V8)) {
956         /* Check if CPACR accesses are to be trapped to EL2 */
957         if (arm_current_el(env) == 1 &&
958             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
959             return CP_ACCESS_TRAP_EL2;
960         /* Check if CPACR accesses are to be trapped to EL3 */
961         } else if (arm_current_el(env) < 3 &&
962                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
963             return CP_ACCESS_TRAP_EL3;
964         }
965     }
966 
967     return CP_ACCESS_OK;
968 }
969 
970 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
971                                   bool isread)
972 {
973     /* Check if CPTR accesses are set to trap to EL3 */
974     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
975         return CP_ACCESS_TRAP_EL3;
976     }
977 
978     return CP_ACCESS_OK;
979 }
980 
981 static const ARMCPRegInfo v6_cp_reginfo[] = {
982     /* prefetch by MVA in v6, NOP in v7 */
983     { .name = "MVA_prefetch",
984       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
985       .access = PL1_W, .type = ARM_CP_NOP },
986     /* We need to break the TB after ISB to execute self-modifying code
987      * correctly and also to take any pending interrupts immediately.
988      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
989      */
990     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
991       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
992     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
993       .access = PL0_W, .type = ARM_CP_NOP },
994     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
995       .access = PL0_W, .type = ARM_CP_NOP },
996     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
997       .access = PL1_RW,
998       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
999                              offsetof(CPUARMState, cp15.ifar_ns) },
1000       .resetvalue = 0, },
1001     /* Watchpoint Fault Address Register : should actually only be present
1002      * for 1136, 1176, 11MPCore.
1003      */
1004     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1005       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1006     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1007       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1008       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1009       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1010     REGINFO_SENTINEL
1011 };
1012 
1013 /* Definitions for the PMU registers */
1014 #define PMCRN_MASK  0xf800
1015 #define PMCRN_SHIFT 11
1016 #define PMCRLC  0x40
1017 #define PMCRDP  0x10
1018 #define PMCRD   0x8
1019 #define PMCRC   0x4
1020 #define PMCRP   0x2
1021 #define PMCRE   0x1
1022 
1023 #define PMXEVTYPER_P          0x80000000
1024 #define PMXEVTYPER_U          0x40000000
1025 #define PMXEVTYPER_NSK        0x20000000
1026 #define PMXEVTYPER_NSU        0x10000000
1027 #define PMXEVTYPER_NSH        0x08000000
1028 #define PMXEVTYPER_M          0x04000000
1029 #define PMXEVTYPER_MT         0x02000000
1030 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1031 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1032                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1033                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1034                                PMXEVTYPER_EVTCOUNT)
1035 
1036 #define PMCCFILTR             0xf8000000
1037 #define PMCCFILTR_M           PMXEVTYPER_M
1038 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1039 
1040 static inline uint32_t pmu_num_counters(CPUARMState *env)
1041 {
1042   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1043 }
1044 
1045 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1046 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1047 {
1048   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1049 }
1050 
1051 typedef struct pm_event {
1052     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1053     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1054     bool (*supported)(CPUARMState *);
1055     /*
1056      * Retrieve the current count of the underlying event. The programmed
1057      * counters hold a difference from the return value from this function
1058      */
1059     uint64_t (*get_count)(CPUARMState *);
1060     /*
1061      * Return how many nanoseconds it will take (at a minimum) for count events
1062      * to occur. A negative value indicates the counter will never overflow, or
1063      * that the counter has otherwise arranged for the overflow bit to be set
1064      * and the PMU interrupt to be raised on overflow.
1065      */
1066     int64_t (*ns_per_count)(uint64_t);
1067 } pm_event;
1068 
1069 static bool event_always_supported(CPUARMState *env)
1070 {
1071     return true;
1072 }
1073 
1074 static uint64_t swinc_get_count(CPUARMState *env)
1075 {
1076     /*
1077      * SW_INCR events are written directly to the pmevcntr's by writes to
1078      * PMSWINC, so there is no underlying count maintained by the PMU itself
1079      */
1080     return 0;
1081 }
1082 
1083 static int64_t swinc_ns_per(uint64_t ignored)
1084 {
1085     return -1;
1086 }
1087 
1088 /*
1089  * Return the underlying cycle count for the PMU cycle counters. If we're in
1090  * usermode, simply return 0.
1091  */
1092 static uint64_t cycles_get_count(CPUARMState *env)
1093 {
1094 #ifndef CONFIG_USER_ONLY
1095     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1096                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1097 #else
1098     return cpu_get_host_ticks();
1099 #endif
1100 }
1101 
1102 #ifndef CONFIG_USER_ONLY
1103 static int64_t cycles_ns_per(uint64_t cycles)
1104 {
1105     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1106 }
1107 
1108 static bool instructions_supported(CPUARMState *env)
1109 {
1110     return use_icount == 1 /* Precise instruction counting */;
1111 }
1112 
1113 static uint64_t instructions_get_count(CPUARMState *env)
1114 {
1115     return (uint64_t)cpu_get_icount_raw();
1116 }
1117 
1118 static int64_t instructions_ns_per(uint64_t icount)
1119 {
1120     return cpu_icount_to_ns((int64_t)icount);
1121 }
1122 #endif
1123 
1124 static const pm_event pm_events[] = {
1125     { .number = 0x000, /* SW_INCR */
1126       .supported = event_always_supported,
1127       .get_count = swinc_get_count,
1128       .ns_per_count = swinc_ns_per,
1129     },
1130 #ifndef CONFIG_USER_ONLY
1131     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1132       .supported = instructions_supported,
1133       .get_count = instructions_get_count,
1134       .ns_per_count = instructions_ns_per,
1135     },
1136     { .number = 0x011, /* CPU_CYCLES, Cycle */
1137       .supported = event_always_supported,
1138       .get_count = cycles_get_count,
1139       .ns_per_count = cycles_ns_per,
1140     }
1141 #endif
1142 };
1143 
1144 /*
1145  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1146  * events (i.e. the statistical profiling extension), this implementation
1147  * should first be updated to something sparse instead of the current
1148  * supported_event_map[] array.
1149  */
1150 #define MAX_EVENT_ID 0x11
1151 #define UNSUPPORTED_EVENT UINT16_MAX
1152 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1153 
1154 /*
1155  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1156  * of ARM event numbers to indices in our pm_events array.
1157  *
1158  * Note: Events in the 0x40XX range are not currently supported.
1159  */
1160 void pmu_init(ARMCPU *cpu)
1161 {
1162     unsigned int i;
1163 
1164     /*
1165      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1166      * events to them
1167      */
1168     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1169         supported_event_map[i] = UNSUPPORTED_EVENT;
1170     }
1171     cpu->pmceid0 = 0;
1172     cpu->pmceid1 = 0;
1173 
1174     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1175         const pm_event *cnt = &pm_events[i];
1176         assert(cnt->number <= MAX_EVENT_ID);
1177         /* We do not currently support events in the 0x40xx range */
1178         assert(cnt->number <= 0x3f);
1179 
1180         if (cnt->supported(&cpu->env)) {
1181             supported_event_map[cnt->number] = i;
1182             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1183             if (cnt->number & 0x20) {
1184                 cpu->pmceid1 |= event_mask;
1185             } else {
1186                 cpu->pmceid0 |= event_mask;
1187             }
1188         }
1189     }
1190 }
1191 
1192 /*
1193  * Check at runtime whether a PMU event is supported for the current machine
1194  */
1195 static bool event_supported(uint16_t number)
1196 {
1197     if (number > MAX_EVENT_ID) {
1198         return false;
1199     }
1200     return supported_event_map[number] != UNSUPPORTED_EVENT;
1201 }
1202 
1203 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1204                                    bool isread)
1205 {
1206     /* Performance monitor registers user accessibility is controlled
1207      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1208      * trapping to EL2 or EL3 for other accesses.
1209      */
1210     int el = arm_current_el(env);
1211 
1212     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1213         return CP_ACCESS_TRAP;
1214     }
1215     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1216         && !arm_is_secure_below_el3(env)) {
1217         return CP_ACCESS_TRAP_EL2;
1218     }
1219     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1220         return CP_ACCESS_TRAP_EL3;
1221     }
1222 
1223     return CP_ACCESS_OK;
1224 }
1225 
1226 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1227                                            const ARMCPRegInfo *ri,
1228                                            bool isread)
1229 {
1230     /* ER: event counter read trap control */
1231     if (arm_feature(env, ARM_FEATURE_V8)
1232         && arm_current_el(env) == 0
1233         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1234         && isread) {
1235         return CP_ACCESS_OK;
1236     }
1237 
1238     return pmreg_access(env, ri, isread);
1239 }
1240 
1241 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1242                                          const ARMCPRegInfo *ri,
1243                                          bool isread)
1244 {
1245     /* SW: software increment write trap control */
1246     if (arm_feature(env, ARM_FEATURE_V8)
1247         && arm_current_el(env) == 0
1248         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1249         && !isread) {
1250         return CP_ACCESS_OK;
1251     }
1252 
1253     return pmreg_access(env, ri, isread);
1254 }
1255 
1256 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1257                                         const ARMCPRegInfo *ri,
1258                                         bool isread)
1259 {
1260     /* ER: event counter read trap control */
1261     if (arm_feature(env, ARM_FEATURE_V8)
1262         && arm_current_el(env) == 0
1263         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1264         return CP_ACCESS_OK;
1265     }
1266 
1267     return pmreg_access(env, ri, isread);
1268 }
1269 
1270 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1271                                          const ARMCPRegInfo *ri,
1272                                          bool isread)
1273 {
1274     /* CR: cycle counter read trap control */
1275     if (arm_feature(env, ARM_FEATURE_V8)
1276         && arm_current_el(env) == 0
1277         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1278         && isread) {
1279         return CP_ACCESS_OK;
1280     }
1281 
1282     return pmreg_access(env, ri, isread);
1283 }
1284 
1285 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1286  * the current EL, security state, and register configuration.
1287  */
1288 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1289 {
1290     uint64_t filter;
1291     bool e, p, u, nsk, nsu, nsh, m;
1292     bool enabled, prohibited, filtered;
1293     bool secure = arm_is_secure(env);
1294     int el = arm_current_el(env);
1295     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1296 
1297     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1298         return false;
1299     }
1300 
1301     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1302             (counter < hpmn || counter == 31)) {
1303         e = env->cp15.c9_pmcr & PMCRE;
1304     } else {
1305         e = env->cp15.mdcr_el2 & MDCR_HPME;
1306     }
1307     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1308 
1309     if (!secure) {
1310         if (el == 2 && (counter < hpmn || counter == 31)) {
1311             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1312         } else {
1313             prohibited = false;
1314         }
1315     } else {
1316         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1317            (env->cp15.mdcr_el3 & MDCR_SPME);
1318     }
1319 
1320     if (prohibited && counter == 31) {
1321         prohibited = env->cp15.c9_pmcr & PMCRDP;
1322     }
1323 
1324     if (counter == 31) {
1325         filter = env->cp15.pmccfiltr_el0;
1326     } else {
1327         filter = env->cp15.c14_pmevtyper[counter];
1328     }
1329 
1330     p   = filter & PMXEVTYPER_P;
1331     u   = filter & PMXEVTYPER_U;
1332     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1333     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1334     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1335     m   = arm_el_is_aa64(env, 1) &&
1336               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1337 
1338     if (el == 0) {
1339         filtered = secure ? u : u != nsu;
1340     } else if (el == 1) {
1341         filtered = secure ? p : p != nsk;
1342     } else if (el == 2) {
1343         filtered = !nsh;
1344     } else { /* EL3 */
1345         filtered = m != p;
1346     }
1347 
1348     if (counter != 31) {
1349         /*
1350          * If not checking PMCCNTR, ensure the counter is setup to an event we
1351          * support
1352          */
1353         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1354         if (!event_supported(event)) {
1355             return false;
1356         }
1357     }
1358 
1359     return enabled && !prohibited && !filtered;
1360 }
1361 
1362 static void pmu_update_irq(CPUARMState *env)
1363 {
1364     ARMCPU *cpu = env_archcpu(env);
1365     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1366             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1367 }
1368 
1369 /*
1370  * Ensure c15_ccnt is the guest-visible count so that operations such as
1371  * enabling/disabling the counter or filtering, modifying the count itself,
1372  * etc. can be done logically. This is essentially a no-op if the counter is
1373  * not enabled at the time of the call.
1374  */
1375 static void pmccntr_op_start(CPUARMState *env)
1376 {
1377     uint64_t cycles = cycles_get_count(env);
1378 
1379     if (pmu_counter_enabled(env, 31)) {
1380         uint64_t eff_cycles = cycles;
1381         if (env->cp15.c9_pmcr & PMCRD) {
1382             /* Increment once every 64 processor clock cycles */
1383             eff_cycles /= 64;
1384         }
1385 
1386         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1387 
1388         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1389                                  1ull << 63 : 1ull << 31;
1390         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1391             env->cp15.c9_pmovsr |= (1 << 31);
1392             pmu_update_irq(env);
1393         }
1394 
1395         env->cp15.c15_ccnt = new_pmccntr;
1396     }
1397     env->cp15.c15_ccnt_delta = cycles;
1398 }
1399 
1400 /*
1401  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1402  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1403  * pmccntr_op_start.
1404  */
1405 static void pmccntr_op_finish(CPUARMState *env)
1406 {
1407     if (pmu_counter_enabled(env, 31)) {
1408 #ifndef CONFIG_USER_ONLY
1409         /* Calculate when the counter will next overflow */
1410         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1411         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1412             remaining_cycles = (uint32_t)remaining_cycles;
1413         }
1414         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1415 
1416         if (overflow_in > 0) {
1417             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1418                 overflow_in;
1419             ARMCPU *cpu = env_archcpu(env);
1420             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1421         }
1422 #endif
1423 
1424         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1425         if (env->cp15.c9_pmcr & PMCRD) {
1426             /* Increment once every 64 processor clock cycles */
1427             prev_cycles /= 64;
1428         }
1429         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1430     }
1431 }
1432 
1433 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1434 {
1435 
1436     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1437     uint64_t count = 0;
1438     if (event_supported(event)) {
1439         uint16_t event_idx = supported_event_map[event];
1440         count = pm_events[event_idx].get_count(env);
1441     }
1442 
1443     if (pmu_counter_enabled(env, counter)) {
1444         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1445 
1446         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1447             env->cp15.c9_pmovsr |= (1 << counter);
1448             pmu_update_irq(env);
1449         }
1450         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1451     }
1452     env->cp15.c14_pmevcntr_delta[counter] = count;
1453 }
1454 
1455 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1456 {
1457     if (pmu_counter_enabled(env, counter)) {
1458 #ifndef CONFIG_USER_ONLY
1459         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1460         uint16_t event_idx = supported_event_map[event];
1461         uint64_t delta = UINT32_MAX -
1462             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1463         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1464 
1465         if (overflow_in > 0) {
1466             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1467                 overflow_in;
1468             ARMCPU *cpu = env_archcpu(env);
1469             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1470         }
1471 #endif
1472 
1473         env->cp15.c14_pmevcntr_delta[counter] -=
1474             env->cp15.c14_pmevcntr[counter];
1475     }
1476 }
1477 
1478 void pmu_op_start(CPUARMState *env)
1479 {
1480     unsigned int i;
1481     pmccntr_op_start(env);
1482     for (i = 0; i < pmu_num_counters(env); i++) {
1483         pmevcntr_op_start(env, i);
1484     }
1485 }
1486 
1487 void pmu_op_finish(CPUARMState *env)
1488 {
1489     unsigned int i;
1490     pmccntr_op_finish(env);
1491     for (i = 0; i < pmu_num_counters(env); i++) {
1492         pmevcntr_op_finish(env, i);
1493     }
1494 }
1495 
1496 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1497 {
1498     pmu_op_start(&cpu->env);
1499 }
1500 
1501 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1502 {
1503     pmu_op_finish(&cpu->env);
1504 }
1505 
1506 void arm_pmu_timer_cb(void *opaque)
1507 {
1508     ARMCPU *cpu = opaque;
1509 
1510     /*
1511      * Update all the counter values based on the current underlying counts,
1512      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1513      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1514      * counter may expire.
1515      */
1516     pmu_op_start(&cpu->env);
1517     pmu_op_finish(&cpu->env);
1518 }
1519 
1520 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                        uint64_t value)
1522 {
1523     pmu_op_start(env);
1524 
1525     if (value & PMCRC) {
1526         /* The counter has been reset */
1527         env->cp15.c15_ccnt = 0;
1528     }
1529 
1530     if (value & PMCRP) {
1531         unsigned int i;
1532         for (i = 0; i < pmu_num_counters(env); i++) {
1533             env->cp15.c14_pmevcntr[i] = 0;
1534         }
1535     }
1536 
1537     /* only the DP, X, D and E bits are writable */
1538     env->cp15.c9_pmcr &= ~0x39;
1539     env->cp15.c9_pmcr |= (value & 0x39);
1540 
1541     pmu_op_finish(env);
1542 }
1543 
1544 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1545                           uint64_t value)
1546 {
1547     unsigned int i;
1548     for (i = 0; i < pmu_num_counters(env); i++) {
1549         /* Increment a counter's count iff: */
1550         if ((value & (1 << i)) && /* counter's bit is set */
1551                 /* counter is enabled and not filtered */
1552                 pmu_counter_enabled(env, i) &&
1553                 /* counter is SW_INCR */
1554                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1555             pmevcntr_op_start(env, i);
1556 
1557             /*
1558              * Detect if this write causes an overflow since we can't predict
1559              * PMSWINC overflows like we can for other events
1560              */
1561             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1562 
1563             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1564                 env->cp15.c9_pmovsr |= (1 << i);
1565                 pmu_update_irq(env);
1566             }
1567 
1568             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1569 
1570             pmevcntr_op_finish(env, i);
1571         }
1572     }
1573 }
1574 
1575 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1576 {
1577     uint64_t ret;
1578     pmccntr_op_start(env);
1579     ret = env->cp15.c15_ccnt;
1580     pmccntr_op_finish(env);
1581     return ret;
1582 }
1583 
1584 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585                          uint64_t value)
1586 {
1587     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1588      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1589      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1590      * accessed.
1591      */
1592     env->cp15.c9_pmselr = value & 0x1f;
1593 }
1594 
1595 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596                         uint64_t value)
1597 {
1598     pmccntr_op_start(env);
1599     env->cp15.c15_ccnt = value;
1600     pmccntr_op_finish(env);
1601 }
1602 
1603 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1604                             uint64_t value)
1605 {
1606     uint64_t cur_val = pmccntr_read(env, NULL);
1607 
1608     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1609 }
1610 
1611 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1612                             uint64_t value)
1613 {
1614     pmccntr_op_start(env);
1615     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1616     pmccntr_op_finish(env);
1617 }
1618 
1619 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1620                             uint64_t value)
1621 {
1622     pmccntr_op_start(env);
1623     /* M is not accessible from AArch32 */
1624     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1625         (value & PMCCFILTR);
1626     pmccntr_op_finish(env);
1627 }
1628 
1629 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1630 {
1631     /* M is not visible in AArch32 */
1632     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1633 }
1634 
1635 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                             uint64_t value)
1637 {
1638     value &= pmu_counter_mask(env);
1639     env->cp15.c9_pmcnten |= value;
1640 }
1641 
1642 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1643                              uint64_t value)
1644 {
1645     value &= pmu_counter_mask(env);
1646     env->cp15.c9_pmcnten &= ~value;
1647 }
1648 
1649 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650                          uint64_t value)
1651 {
1652     value &= pmu_counter_mask(env);
1653     env->cp15.c9_pmovsr &= ~value;
1654     pmu_update_irq(env);
1655 }
1656 
1657 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658                          uint64_t value)
1659 {
1660     value &= pmu_counter_mask(env);
1661     env->cp15.c9_pmovsr |= value;
1662     pmu_update_irq(env);
1663 }
1664 
1665 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1666                              uint64_t value, const uint8_t counter)
1667 {
1668     if (counter == 31) {
1669         pmccfiltr_write(env, ri, value);
1670     } else if (counter < pmu_num_counters(env)) {
1671         pmevcntr_op_start(env, counter);
1672 
1673         /*
1674          * If this counter's event type is changing, store the current
1675          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1676          * pmevcntr_op_finish has the correct baseline when it converts back to
1677          * a delta.
1678          */
1679         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1680             PMXEVTYPER_EVTCOUNT;
1681         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1682         if (old_event != new_event) {
1683             uint64_t count = 0;
1684             if (event_supported(new_event)) {
1685                 uint16_t event_idx = supported_event_map[new_event];
1686                 count = pm_events[event_idx].get_count(env);
1687             }
1688             env->cp15.c14_pmevcntr_delta[counter] = count;
1689         }
1690 
1691         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1692         pmevcntr_op_finish(env, counter);
1693     }
1694     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1695      * PMSELR value is equal to or greater than the number of implemented
1696      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1697      */
1698 }
1699 
1700 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1701                                const uint8_t counter)
1702 {
1703     if (counter == 31) {
1704         return env->cp15.pmccfiltr_el0;
1705     } else if (counter < pmu_num_counters(env)) {
1706         return env->cp15.c14_pmevtyper[counter];
1707     } else {
1708       /*
1709        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1710        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1711        */
1712         return 0;
1713     }
1714 }
1715 
1716 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1717                               uint64_t value)
1718 {
1719     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1720     pmevtyper_write(env, ri, value, counter);
1721 }
1722 
1723 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1724                                uint64_t value)
1725 {
1726     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1727     env->cp15.c14_pmevtyper[counter] = value;
1728 
1729     /*
1730      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1731      * pmu_op_finish calls when loading saved state for a migration. Because
1732      * we're potentially updating the type of event here, the value written to
1733      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1734      * different counter type. Therefore, we need to set this value to the
1735      * current count for the counter type we're writing so that pmu_op_finish
1736      * has the correct count for its calculation.
1737      */
1738     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1739     if (event_supported(event)) {
1740         uint16_t event_idx = supported_event_map[event];
1741         env->cp15.c14_pmevcntr_delta[counter] =
1742             pm_events[event_idx].get_count(env);
1743     }
1744 }
1745 
1746 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1747 {
1748     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1749     return pmevtyper_read(env, ri, counter);
1750 }
1751 
1752 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1753                              uint64_t value)
1754 {
1755     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1756 }
1757 
1758 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1761 }
1762 
1763 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                              uint64_t value, uint8_t counter)
1765 {
1766     if (counter < pmu_num_counters(env)) {
1767         pmevcntr_op_start(env, counter);
1768         env->cp15.c14_pmevcntr[counter] = value;
1769         pmevcntr_op_finish(env, counter);
1770     }
1771     /*
1772      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1773      * are CONSTRAINED UNPREDICTABLE.
1774      */
1775 }
1776 
1777 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1778                               uint8_t counter)
1779 {
1780     if (counter < pmu_num_counters(env)) {
1781         uint64_t ret;
1782         pmevcntr_op_start(env, counter);
1783         ret = env->cp15.c14_pmevcntr[counter];
1784         pmevcntr_op_finish(env, counter);
1785         return ret;
1786     } else {
1787       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1788        * are CONSTRAINED UNPREDICTABLE. */
1789         return 0;
1790     }
1791 }
1792 
1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1794                              uint64_t value)
1795 {
1796     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1797     pmevcntr_write(env, ri, value, counter);
1798 }
1799 
1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1801 {
1802     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1803     return pmevcntr_read(env, ri, counter);
1804 }
1805 
1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1810     assert(counter < pmu_num_counters(env));
1811     env->cp15.c14_pmevcntr[counter] = value;
1812     pmevcntr_write(env, ri, value, counter);
1813 }
1814 
1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1816 {
1817     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1818     assert(counter < pmu_num_counters(env));
1819     return env->cp15.c14_pmevcntr[counter];
1820 }
1821 
1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                              uint64_t value)
1824 {
1825     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1826 }
1827 
1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1831 }
1832 
1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1834                             uint64_t value)
1835 {
1836     if (arm_feature(env, ARM_FEATURE_V8)) {
1837         env->cp15.c9_pmuserenr = value & 0xf;
1838     } else {
1839         env->cp15.c9_pmuserenr = value & 1;
1840     }
1841 }
1842 
1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1844                              uint64_t value)
1845 {
1846     /* We have no event counters so only the C bit can be changed */
1847     value &= pmu_counter_mask(env);
1848     env->cp15.c9_pminten |= value;
1849     pmu_update_irq(env);
1850 }
1851 
1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1853                              uint64_t value)
1854 {
1855     value &= pmu_counter_mask(env);
1856     env->cp15.c9_pminten &= ~value;
1857     pmu_update_irq(env);
1858 }
1859 
1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                        uint64_t value)
1862 {
1863     /* Note that even though the AArch64 view of this register has bits
1864      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1865      * architectural requirements for bits which are RES0 only in some
1866      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1867      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1868      */
1869     raw_write(env, ri, value & ~0x1FULL);
1870 }
1871 
1872 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1873 {
1874     /* Begin with base v8.0 state.  */
1875     uint32_t valid_mask = 0x3fff;
1876     ARMCPU *cpu = env_archcpu(env);
1877 
1878     if (arm_el_is_aa64(env, 3)) {
1879         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1880         valid_mask &= ~SCR_NET;
1881     } else {
1882         valid_mask &= ~(SCR_RW | SCR_ST);
1883     }
1884 
1885     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1886         valid_mask &= ~SCR_HCE;
1887 
1888         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1889          * supported if EL2 exists. The bit is UNK/SBZP when
1890          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1891          * when EL2 is unavailable.
1892          * On ARMv8, this bit is always available.
1893          */
1894         if (arm_feature(env, ARM_FEATURE_V7) &&
1895             !arm_feature(env, ARM_FEATURE_V8)) {
1896             valid_mask &= ~SCR_SMD;
1897         }
1898     }
1899     if (cpu_isar_feature(aa64_lor, cpu)) {
1900         valid_mask |= SCR_TLOR;
1901     }
1902     if (cpu_isar_feature(aa64_pauth, cpu)) {
1903         valid_mask |= SCR_API | SCR_APK;
1904     }
1905 
1906     /* Clear all-context RES0 bits.  */
1907     value &= valid_mask;
1908     raw_write(env, ri, value);
1909 }
1910 
1911 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1912                                        const ARMCPRegInfo *ri,
1913                                        bool isread)
1914 {
1915     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1916         return CP_ACCESS_TRAP_EL2;
1917     }
1918 
1919     return CP_ACCESS_OK;
1920 }
1921 
1922 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1923 {
1924     ARMCPU *cpu = env_archcpu(env);
1925 
1926     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1927      * bank
1928      */
1929     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1930                                         ri->secure & ARM_CP_SECSTATE_S);
1931 
1932     return cpu->ccsidr[index];
1933 }
1934 
1935 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1936                          uint64_t value)
1937 {
1938     raw_write(env, ri, value & 0xf);
1939 }
1940 
1941 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1942 {
1943     CPUState *cs = env_cpu(env);
1944     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1945     uint64_t ret = 0;
1946     bool allow_virt = (arm_current_el(env) == 1 &&
1947                        (!arm_is_secure_below_el3(env) ||
1948                         (env->cp15.scr_el3 & SCR_EEL2)));
1949 
1950     if (allow_virt && (hcr_el2 & HCR_IMO)) {
1951         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1952             ret |= CPSR_I;
1953         }
1954     } else {
1955         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1956             ret |= CPSR_I;
1957         }
1958     }
1959 
1960     if (allow_virt && (hcr_el2 & HCR_FMO)) {
1961         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1962             ret |= CPSR_F;
1963         }
1964     } else {
1965         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1966             ret |= CPSR_F;
1967         }
1968     }
1969 
1970     /* External aborts are not possible in QEMU so A bit is always clear */
1971     return ret;
1972 }
1973 
1974 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1975                                        bool isread)
1976 {
1977     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1978         return CP_ACCESS_TRAP_EL2;
1979     }
1980 
1981     return CP_ACCESS_OK;
1982 }
1983 
1984 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1985                                        bool isread)
1986 {
1987     if (arm_feature(env, ARM_FEATURE_V8)) {
1988         return access_aa64_tid1(env, ri, isread);
1989     }
1990 
1991     return CP_ACCESS_OK;
1992 }
1993 
1994 static const ARMCPRegInfo v7_cp_reginfo[] = {
1995     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1996     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1997       .access = PL1_W, .type = ARM_CP_NOP },
1998     /* Performance monitors are implementation defined in v7,
1999      * but with an ARM recommended set of registers, which we
2000      * follow.
2001      *
2002      * Performance registers fall into three categories:
2003      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2004      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2005      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2006      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2007      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2008      */
2009     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2010       .access = PL0_RW, .type = ARM_CP_ALIAS,
2011       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2012       .writefn = pmcntenset_write,
2013       .accessfn = pmreg_access,
2014       .raw_writefn = raw_write },
2015     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2016       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2017       .access = PL0_RW, .accessfn = pmreg_access,
2018       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2019       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2020     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2021       .access = PL0_RW,
2022       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2023       .accessfn = pmreg_access,
2024       .writefn = pmcntenclr_write,
2025       .type = ARM_CP_ALIAS },
2026     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2027       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2028       .access = PL0_RW, .accessfn = pmreg_access,
2029       .type = ARM_CP_ALIAS,
2030       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2031       .writefn = pmcntenclr_write },
2032     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2033       .access = PL0_RW, .type = ARM_CP_IO,
2034       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2035       .accessfn = pmreg_access,
2036       .writefn = pmovsr_write,
2037       .raw_writefn = raw_write },
2038     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2039       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2040       .access = PL0_RW, .accessfn = pmreg_access,
2041       .type = ARM_CP_ALIAS | ARM_CP_IO,
2042       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2043       .writefn = pmovsr_write,
2044       .raw_writefn = raw_write },
2045     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2046       .access = PL0_W, .accessfn = pmreg_access_swinc,
2047       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2048       .writefn = pmswinc_write },
2049     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2050       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2051       .access = PL0_W, .accessfn = pmreg_access_swinc,
2052       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2053       .writefn = pmswinc_write },
2054     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2055       .access = PL0_RW, .type = ARM_CP_ALIAS,
2056       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2057       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2058       .raw_writefn = raw_write},
2059     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2061       .access = PL0_RW, .accessfn = pmreg_access_selr,
2062       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2063       .writefn = pmselr_write, .raw_writefn = raw_write, },
2064     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2065       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2066       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2067       .accessfn = pmreg_access_ccntr },
2068     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2069       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2070       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2071       .type = ARM_CP_IO,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2073       .readfn = pmccntr_read, .writefn = pmccntr_write,
2074       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2075     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2076       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2077       .access = PL0_RW, .accessfn = pmreg_access,
2078       .type = ARM_CP_ALIAS | ARM_CP_IO,
2079       .resetvalue = 0, },
2080     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2082       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2083       .access = PL0_RW, .accessfn = pmreg_access,
2084       .type = ARM_CP_IO,
2085       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2086       .resetvalue = 0, },
2087     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2088       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2089       .accessfn = pmreg_access,
2090       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2091     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2092       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2093       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2094       .accessfn = pmreg_access,
2095       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2096     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2097       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2098       .accessfn = pmreg_access_xevcntr,
2099       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2100     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2101       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2102       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2103       .accessfn = pmreg_access_xevcntr,
2104       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2105     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2106       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2107       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2108       .resetvalue = 0,
2109       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2110     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2111       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2112       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2113       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2114       .resetvalue = 0,
2115       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2116     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2117       .access = PL1_RW, .accessfn = access_tpm,
2118       .type = ARM_CP_ALIAS | ARM_CP_IO,
2119       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2120       .resetvalue = 0,
2121       .writefn = pmintenset_write, .raw_writefn = raw_write },
2122     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2123       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2124       .access = PL1_RW, .accessfn = access_tpm,
2125       .type = ARM_CP_IO,
2126       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2127       .writefn = pmintenset_write, .raw_writefn = raw_write,
2128       .resetvalue = 0x0 },
2129     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2130       .access = PL1_RW, .accessfn = access_tpm,
2131       .type = ARM_CP_ALIAS | ARM_CP_IO,
2132       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2133       .writefn = pmintenclr_write, },
2134     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2135       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2136       .access = PL1_RW, .accessfn = access_tpm,
2137       .type = ARM_CP_ALIAS | ARM_CP_IO,
2138       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2139       .writefn = pmintenclr_write },
2140     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2141       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2142       .access = PL1_R,
2143       .accessfn = access_aa64_tid2,
2144       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2145     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2146       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2147       .access = PL1_RW,
2148       .accessfn = access_aa64_tid2,
2149       .writefn = csselr_write, .resetvalue = 0,
2150       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2151                              offsetof(CPUARMState, cp15.csselr_ns) } },
2152     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2153      * just RAZ for all cores:
2154      */
2155     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2156       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2157       .access = PL1_R, .type = ARM_CP_CONST,
2158       .accessfn = access_aa64_tid1,
2159       .resetvalue = 0 },
2160     /* Auxiliary fault status registers: these also are IMPDEF, and we
2161      * choose to RAZ/WI for all cores.
2162      */
2163     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2164       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2165       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2166     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2167       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2168       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2169     /* MAIR can just read-as-written because we don't implement caches
2170      * and so don't need to care about memory attributes.
2171      */
2172     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2173       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2174       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2175       .resetvalue = 0 },
2176     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2177       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2178       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2179       .resetvalue = 0 },
2180     /* For non-long-descriptor page tables these are PRRR and NMRR;
2181      * regardless they still act as reads-as-written for QEMU.
2182      */
2183      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2184       * allows them to assign the correct fieldoffset based on the endianness
2185       * handled in the field definitions.
2186       */
2187     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2188       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2189       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2190                              offsetof(CPUARMState, cp15.mair0_ns) },
2191       .resetfn = arm_cp_reset_ignore },
2192     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2193       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2194       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2195                              offsetof(CPUARMState, cp15.mair1_ns) },
2196       .resetfn = arm_cp_reset_ignore },
2197     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2198       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2199       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2200     /* 32 bit ITLB invalidates */
2201     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2202       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2203     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2204       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2205     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2206       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2207     /* 32 bit DTLB invalidates */
2208     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2209       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2210     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2211       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2212     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2213       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2214     /* 32 bit TLB invalidates */
2215     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2216       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2217     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2218       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2219     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2220       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2221     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2222       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2223     REGINFO_SENTINEL
2224 };
2225 
2226 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2227     /* 32 bit TLB invalidates, Inner Shareable */
2228     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2229       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2230     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2231       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2232     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2233       .type = ARM_CP_NO_RAW, .access = PL1_W,
2234       .writefn = tlbiasid_is_write },
2235     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2236       .type = ARM_CP_NO_RAW, .access = PL1_W,
2237       .writefn = tlbimvaa_is_write },
2238     REGINFO_SENTINEL
2239 };
2240 
2241 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2242     /* PMOVSSET is not implemented in v7 before v7ve */
2243     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2244       .access = PL0_RW, .accessfn = pmreg_access,
2245       .type = ARM_CP_ALIAS | ARM_CP_IO,
2246       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2247       .writefn = pmovsset_write,
2248       .raw_writefn = raw_write },
2249     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2250       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2251       .access = PL0_RW, .accessfn = pmreg_access,
2252       .type = ARM_CP_ALIAS | ARM_CP_IO,
2253       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2254       .writefn = pmovsset_write,
2255       .raw_writefn = raw_write },
2256     REGINFO_SENTINEL
2257 };
2258 
2259 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2260                         uint64_t value)
2261 {
2262     value &= 1;
2263     env->teecr = value;
2264 }
2265 
2266 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2267                                     bool isread)
2268 {
2269     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2270         return CP_ACCESS_TRAP;
2271     }
2272     return CP_ACCESS_OK;
2273 }
2274 
2275 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2276     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2277       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2278       .resetvalue = 0,
2279       .writefn = teecr_write },
2280     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2281       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2282       .accessfn = teehbr_access, .resetvalue = 0 },
2283     REGINFO_SENTINEL
2284 };
2285 
2286 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2287     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2288       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2289       .access = PL0_RW,
2290       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2291     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2292       .access = PL0_RW,
2293       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2294                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2295       .resetfn = arm_cp_reset_ignore },
2296     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2297       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2298       .access = PL0_R|PL1_W,
2299       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2300       .resetvalue = 0},
2301     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2302       .access = PL0_R|PL1_W,
2303       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2304                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2305       .resetfn = arm_cp_reset_ignore },
2306     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2307       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2308       .access = PL1_RW,
2309       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2310     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2311       .access = PL1_RW,
2312       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2313                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2314       .resetvalue = 0 },
2315     REGINFO_SENTINEL
2316 };
2317 
2318 #ifndef CONFIG_USER_ONLY
2319 
2320 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2321                                        bool isread)
2322 {
2323     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2324      * Writable only at the highest implemented exception level.
2325      */
2326     int el = arm_current_el(env);
2327     uint64_t hcr;
2328     uint32_t cntkctl;
2329 
2330     switch (el) {
2331     case 0:
2332         hcr = arm_hcr_el2_eff(env);
2333         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2334             cntkctl = env->cp15.cnthctl_el2;
2335         } else {
2336             cntkctl = env->cp15.c14_cntkctl;
2337         }
2338         if (!extract32(cntkctl, 0, 2)) {
2339             return CP_ACCESS_TRAP;
2340         }
2341         break;
2342     case 1:
2343         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2344             arm_is_secure_below_el3(env)) {
2345             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2346             return CP_ACCESS_TRAP_UNCATEGORIZED;
2347         }
2348         break;
2349     case 2:
2350     case 3:
2351         break;
2352     }
2353 
2354     if (!isread && el < arm_highest_el(env)) {
2355         return CP_ACCESS_TRAP_UNCATEGORIZED;
2356     }
2357 
2358     return CP_ACCESS_OK;
2359 }
2360 
2361 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2362                                         bool isread)
2363 {
2364     unsigned int cur_el = arm_current_el(env);
2365     bool secure = arm_is_secure(env);
2366     uint64_t hcr = arm_hcr_el2_eff(env);
2367 
2368     switch (cur_el) {
2369     case 0:
2370         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2371         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2372             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2373                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2374         }
2375 
2376         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2377         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2378             return CP_ACCESS_TRAP;
2379         }
2380 
2381         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2382         if (hcr & HCR_E2H) {
2383             if (timeridx == GTIMER_PHYS &&
2384                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2385                 return CP_ACCESS_TRAP_EL2;
2386             }
2387         } else {
2388             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2389             if (arm_feature(env, ARM_FEATURE_EL2) &&
2390                 timeridx == GTIMER_PHYS && !secure &&
2391                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2392                 return CP_ACCESS_TRAP_EL2;
2393             }
2394         }
2395         break;
2396 
2397     case 1:
2398         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2399         if (arm_feature(env, ARM_FEATURE_EL2) &&
2400             timeridx == GTIMER_PHYS && !secure &&
2401             (hcr & HCR_E2H
2402              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2403              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2404             return CP_ACCESS_TRAP_EL2;
2405         }
2406         break;
2407     }
2408     return CP_ACCESS_OK;
2409 }
2410 
2411 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2412                                       bool isread)
2413 {
2414     unsigned int cur_el = arm_current_el(env);
2415     bool secure = arm_is_secure(env);
2416     uint64_t hcr = arm_hcr_el2_eff(env);
2417 
2418     switch (cur_el) {
2419     case 0:
2420         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2421             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2422             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2423                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2424         }
2425 
2426         /*
2427          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2428          * EL0 if EL0[PV]TEN is zero.
2429          */
2430         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2431             return CP_ACCESS_TRAP;
2432         }
2433         /* fall through */
2434 
2435     case 1:
2436         if (arm_feature(env, ARM_FEATURE_EL2) &&
2437             timeridx == GTIMER_PHYS && !secure) {
2438             if (hcr & HCR_E2H) {
2439                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2440                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2441                     return CP_ACCESS_TRAP_EL2;
2442                 }
2443             } else {
2444                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2445                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2446                     return CP_ACCESS_TRAP_EL2;
2447                 }
2448             }
2449         }
2450         break;
2451     }
2452     return CP_ACCESS_OK;
2453 }
2454 
2455 static CPAccessResult gt_pct_access(CPUARMState *env,
2456                                     const ARMCPRegInfo *ri,
2457                                     bool isread)
2458 {
2459     return gt_counter_access(env, GTIMER_PHYS, isread);
2460 }
2461 
2462 static CPAccessResult gt_vct_access(CPUARMState *env,
2463                                     const ARMCPRegInfo *ri,
2464                                     bool isread)
2465 {
2466     return gt_counter_access(env, GTIMER_VIRT, isread);
2467 }
2468 
2469 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2470                                        bool isread)
2471 {
2472     return gt_timer_access(env, GTIMER_PHYS, isread);
2473 }
2474 
2475 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2476                                        bool isread)
2477 {
2478     return gt_timer_access(env, GTIMER_VIRT, isread);
2479 }
2480 
2481 static CPAccessResult gt_stimer_access(CPUARMState *env,
2482                                        const ARMCPRegInfo *ri,
2483                                        bool isread)
2484 {
2485     /* The AArch64 register view of the secure physical timer is
2486      * always accessible from EL3, and configurably accessible from
2487      * Secure EL1.
2488      */
2489     switch (arm_current_el(env)) {
2490     case 1:
2491         if (!arm_is_secure(env)) {
2492             return CP_ACCESS_TRAP;
2493         }
2494         if (!(env->cp15.scr_el3 & SCR_ST)) {
2495             return CP_ACCESS_TRAP_EL3;
2496         }
2497         return CP_ACCESS_OK;
2498     case 0:
2499     case 2:
2500         return CP_ACCESS_TRAP;
2501     case 3:
2502         return CP_ACCESS_OK;
2503     default:
2504         g_assert_not_reached();
2505     }
2506 }
2507 
2508 static uint64_t gt_get_countervalue(CPUARMState *env)
2509 {
2510     ARMCPU *cpu = env_archcpu(env);
2511 
2512     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2513 }
2514 
2515 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2516 {
2517     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2518 
2519     if (gt->ctl & 1) {
2520         /* Timer enabled: calculate and set current ISTATUS, irq, and
2521          * reset timer to when ISTATUS next has to change
2522          */
2523         uint64_t offset = timeridx == GTIMER_VIRT ?
2524                                       cpu->env.cp15.cntvoff_el2 : 0;
2525         uint64_t count = gt_get_countervalue(&cpu->env);
2526         /* Note that this must be unsigned 64 bit arithmetic: */
2527         int istatus = count - offset >= gt->cval;
2528         uint64_t nexttick;
2529         int irqstate;
2530 
2531         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2532 
2533         irqstate = (istatus && !(gt->ctl & 2));
2534         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2535 
2536         if (istatus) {
2537             /* Next transition is when count rolls back over to zero */
2538             nexttick = UINT64_MAX;
2539         } else {
2540             /* Next transition is when we hit cval */
2541             nexttick = gt->cval + offset;
2542         }
2543         /* Note that the desired next expiry time might be beyond the
2544          * signed-64-bit range of a QEMUTimer -- in this case we just
2545          * set the timer for as far in the future as possible. When the
2546          * timer expires we will reset the timer for any remaining period.
2547          */
2548         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2549             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2550         } else {
2551             timer_mod(cpu->gt_timer[timeridx], nexttick);
2552         }
2553         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2554     } else {
2555         /* Timer disabled: ISTATUS and timer output always clear */
2556         gt->ctl &= ~4;
2557         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2558         timer_del(cpu->gt_timer[timeridx]);
2559         trace_arm_gt_recalc_disabled(timeridx);
2560     }
2561 }
2562 
2563 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2564                            int timeridx)
2565 {
2566     ARMCPU *cpu = env_archcpu(env);
2567 
2568     timer_del(cpu->gt_timer[timeridx]);
2569 }
2570 
2571 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2572 {
2573     return gt_get_countervalue(env);
2574 }
2575 
2576 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2577 {
2578     uint64_t hcr;
2579 
2580     switch (arm_current_el(env)) {
2581     case 2:
2582         hcr = arm_hcr_el2_eff(env);
2583         if (hcr & HCR_E2H) {
2584             return 0;
2585         }
2586         break;
2587     case 0:
2588         hcr = arm_hcr_el2_eff(env);
2589         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2590             return 0;
2591         }
2592         break;
2593     }
2594 
2595     return env->cp15.cntvoff_el2;
2596 }
2597 
2598 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2599 {
2600     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2601 }
2602 
2603 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604                           int timeridx,
2605                           uint64_t value)
2606 {
2607     trace_arm_gt_cval_write(timeridx, value);
2608     env->cp15.c14_timer[timeridx].cval = value;
2609     gt_recalc_timer(env_archcpu(env), timeridx);
2610 }
2611 
2612 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2613                              int timeridx)
2614 {
2615     uint64_t offset = 0;
2616 
2617     switch (timeridx) {
2618     case GTIMER_VIRT:
2619     case GTIMER_HYPVIRT:
2620         offset = gt_virt_cnt_offset(env);
2621         break;
2622     }
2623 
2624     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2625                       (gt_get_countervalue(env) - offset));
2626 }
2627 
2628 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2629                           int timeridx,
2630                           uint64_t value)
2631 {
2632     uint64_t offset = 0;
2633 
2634     switch (timeridx) {
2635     case GTIMER_VIRT:
2636     case GTIMER_HYPVIRT:
2637         offset = gt_virt_cnt_offset(env);
2638         break;
2639     }
2640 
2641     trace_arm_gt_tval_write(timeridx, value);
2642     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2643                                          sextract64(value, 0, 32);
2644     gt_recalc_timer(env_archcpu(env), timeridx);
2645 }
2646 
2647 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2648                          int timeridx,
2649                          uint64_t value)
2650 {
2651     ARMCPU *cpu = env_archcpu(env);
2652     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2653 
2654     trace_arm_gt_ctl_write(timeridx, value);
2655     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2656     if ((oldval ^ value) & 1) {
2657         /* Enable toggled */
2658         gt_recalc_timer(cpu, timeridx);
2659     } else if ((oldval ^ value) & 2) {
2660         /* IMASK toggled: don't need to recalculate,
2661          * just set the interrupt line based on ISTATUS
2662          */
2663         int irqstate = (oldval & 4) && !(value & 2);
2664 
2665         trace_arm_gt_imask_toggle(timeridx, irqstate);
2666         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2667     }
2668 }
2669 
2670 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2671 {
2672     gt_timer_reset(env, ri, GTIMER_PHYS);
2673 }
2674 
2675 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676                                uint64_t value)
2677 {
2678     gt_cval_write(env, ri, GTIMER_PHYS, value);
2679 }
2680 
2681 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2682 {
2683     return gt_tval_read(env, ri, GTIMER_PHYS);
2684 }
2685 
2686 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2687                                uint64_t value)
2688 {
2689     gt_tval_write(env, ri, GTIMER_PHYS, value);
2690 }
2691 
2692 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2693                               uint64_t value)
2694 {
2695     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2696 }
2697 
2698 static int gt_phys_redir_timeridx(CPUARMState *env)
2699 {
2700     switch (arm_mmu_idx(env)) {
2701     case ARMMMUIdx_E20_0:
2702     case ARMMMUIdx_E20_2:
2703         return GTIMER_HYP;
2704     default:
2705         return GTIMER_PHYS;
2706     }
2707 }
2708 
2709 static int gt_virt_redir_timeridx(CPUARMState *env)
2710 {
2711     switch (arm_mmu_idx(env)) {
2712     case ARMMMUIdx_E20_0:
2713     case ARMMMUIdx_E20_2:
2714         return GTIMER_HYPVIRT;
2715     default:
2716         return GTIMER_VIRT;
2717     }
2718 }
2719 
2720 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2721                                         const ARMCPRegInfo *ri)
2722 {
2723     int timeridx = gt_phys_redir_timeridx(env);
2724     return env->cp15.c14_timer[timeridx].cval;
2725 }
2726 
2727 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2728                                      uint64_t value)
2729 {
2730     int timeridx = gt_phys_redir_timeridx(env);
2731     gt_cval_write(env, ri, timeridx, value);
2732 }
2733 
2734 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2735                                         const ARMCPRegInfo *ri)
2736 {
2737     int timeridx = gt_phys_redir_timeridx(env);
2738     return gt_tval_read(env, ri, timeridx);
2739 }
2740 
2741 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                                      uint64_t value)
2743 {
2744     int timeridx = gt_phys_redir_timeridx(env);
2745     gt_tval_write(env, ri, timeridx, value);
2746 }
2747 
2748 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2749                                        const ARMCPRegInfo *ri)
2750 {
2751     int timeridx = gt_phys_redir_timeridx(env);
2752     return env->cp15.c14_timer[timeridx].ctl;
2753 }
2754 
2755 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                     uint64_t value)
2757 {
2758     int timeridx = gt_phys_redir_timeridx(env);
2759     gt_ctl_write(env, ri, timeridx, value);
2760 }
2761 
2762 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2763 {
2764     gt_timer_reset(env, ri, GTIMER_VIRT);
2765 }
2766 
2767 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2768                                uint64_t value)
2769 {
2770     gt_cval_write(env, ri, GTIMER_VIRT, value);
2771 }
2772 
2773 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2774 {
2775     return gt_tval_read(env, ri, GTIMER_VIRT);
2776 }
2777 
2778 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2779                                uint64_t value)
2780 {
2781     gt_tval_write(env, ri, GTIMER_VIRT, value);
2782 }
2783 
2784 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785                               uint64_t value)
2786 {
2787     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2788 }
2789 
2790 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2791                               uint64_t value)
2792 {
2793     ARMCPU *cpu = env_archcpu(env);
2794 
2795     trace_arm_gt_cntvoff_write(value);
2796     raw_write(env, ri, value);
2797     gt_recalc_timer(cpu, GTIMER_VIRT);
2798 }
2799 
2800 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2801                                         const ARMCPRegInfo *ri)
2802 {
2803     int timeridx = gt_virt_redir_timeridx(env);
2804     return env->cp15.c14_timer[timeridx].cval;
2805 }
2806 
2807 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2808                                      uint64_t value)
2809 {
2810     int timeridx = gt_virt_redir_timeridx(env);
2811     gt_cval_write(env, ri, timeridx, value);
2812 }
2813 
2814 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2815                                         const ARMCPRegInfo *ri)
2816 {
2817     int timeridx = gt_virt_redir_timeridx(env);
2818     return gt_tval_read(env, ri, timeridx);
2819 }
2820 
2821 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2822                                      uint64_t value)
2823 {
2824     int timeridx = gt_virt_redir_timeridx(env);
2825     gt_tval_write(env, ri, timeridx, value);
2826 }
2827 
2828 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2829                                        const ARMCPRegInfo *ri)
2830 {
2831     int timeridx = gt_virt_redir_timeridx(env);
2832     return env->cp15.c14_timer[timeridx].ctl;
2833 }
2834 
2835 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2836                                     uint64_t value)
2837 {
2838     int timeridx = gt_virt_redir_timeridx(env);
2839     gt_ctl_write(env, ri, timeridx, value);
2840 }
2841 
2842 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2843 {
2844     gt_timer_reset(env, ri, GTIMER_HYP);
2845 }
2846 
2847 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2848                               uint64_t value)
2849 {
2850     gt_cval_write(env, ri, GTIMER_HYP, value);
2851 }
2852 
2853 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2854 {
2855     return gt_tval_read(env, ri, GTIMER_HYP);
2856 }
2857 
2858 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859                               uint64_t value)
2860 {
2861     gt_tval_write(env, ri, GTIMER_HYP, value);
2862 }
2863 
2864 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2865                               uint64_t value)
2866 {
2867     gt_ctl_write(env, ri, GTIMER_HYP, value);
2868 }
2869 
2870 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2871 {
2872     gt_timer_reset(env, ri, GTIMER_SEC);
2873 }
2874 
2875 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2876                               uint64_t value)
2877 {
2878     gt_cval_write(env, ri, GTIMER_SEC, value);
2879 }
2880 
2881 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2882 {
2883     return gt_tval_read(env, ri, GTIMER_SEC);
2884 }
2885 
2886 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887                               uint64_t value)
2888 {
2889     gt_tval_write(env, ri, GTIMER_SEC, value);
2890 }
2891 
2892 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893                               uint64_t value)
2894 {
2895     gt_ctl_write(env, ri, GTIMER_SEC, value);
2896 }
2897 
2898 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2899 {
2900     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2901 }
2902 
2903 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904                              uint64_t value)
2905 {
2906     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2907 }
2908 
2909 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2910 {
2911     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2912 }
2913 
2914 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2915                              uint64_t value)
2916 {
2917     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2918 }
2919 
2920 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2921                             uint64_t value)
2922 {
2923     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2924 }
2925 
2926 void arm_gt_ptimer_cb(void *opaque)
2927 {
2928     ARMCPU *cpu = opaque;
2929 
2930     gt_recalc_timer(cpu, GTIMER_PHYS);
2931 }
2932 
2933 void arm_gt_vtimer_cb(void *opaque)
2934 {
2935     ARMCPU *cpu = opaque;
2936 
2937     gt_recalc_timer(cpu, GTIMER_VIRT);
2938 }
2939 
2940 void arm_gt_htimer_cb(void *opaque)
2941 {
2942     ARMCPU *cpu = opaque;
2943 
2944     gt_recalc_timer(cpu, GTIMER_HYP);
2945 }
2946 
2947 void arm_gt_stimer_cb(void *opaque)
2948 {
2949     ARMCPU *cpu = opaque;
2950 
2951     gt_recalc_timer(cpu, GTIMER_SEC);
2952 }
2953 
2954 void arm_gt_hvtimer_cb(void *opaque)
2955 {
2956     ARMCPU *cpu = opaque;
2957 
2958     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2959 }
2960 
2961 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2962 {
2963     ARMCPU *cpu = env_archcpu(env);
2964 
2965     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2966 }
2967 
2968 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2969     /* Note that CNTFRQ is purely reads-as-written for the benefit
2970      * of software; writing it doesn't actually change the timer frequency.
2971      * Our reset value matches the fixed frequency we implement the timer at.
2972      */
2973     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2974       .type = ARM_CP_ALIAS,
2975       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2976       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2977     },
2978     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2979       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2980       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2981       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2982       .resetfn = arm_gt_cntfrq_reset,
2983     },
2984     /* overall control: mostly access permissions */
2985     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2986       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2987       .access = PL1_RW,
2988       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2989       .resetvalue = 0,
2990     },
2991     /* per-timer control */
2992     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2993       .secure = ARM_CP_SECSTATE_NS,
2994       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2995       .accessfn = gt_ptimer_access,
2996       .fieldoffset = offsetoflow32(CPUARMState,
2997                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2998       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2999       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3000     },
3001     { .name = "CNTP_CTL_S",
3002       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3003       .secure = ARM_CP_SECSTATE_S,
3004       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3005       .accessfn = gt_ptimer_access,
3006       .fieldoffset = offsetoflow32(CPUARMState,
3007                                    cp15.c14_timer[GTIMER_SEC].ctl),
3008       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3009     },
3010     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3011       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3012       .type = ARM_CP_IO, .access = PL0_RW,
3013       .accessfn = gt_ptimer_access,
3014       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3015       .resetvalue = 0,
3016       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3017       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3018     },
3019     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3020       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3021       .accessfn = gt_vtimer_access,
3022       .fieldoffset = offsetoflow32(CPUARMState,
3023                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3024       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3025       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3026     },
3027     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3028       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3029       .type = ARM_CP_IO, .access = PL0_RW,
3030       .accessfn = gt_vtimer_access,
3031       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3032       .resetvalue = 0,
3033       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3034       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3035     },
3036     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3037     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3038       .secure = ARM_CP_SECSTATE_NS,
3039       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3040       .accessfn = gt_ptimer_access,
3041       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3042     },
3043     { .name = "CNTP_TVAL_S",
3044       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3045       .secure = ARM_CP_SECSTATE_S,
3046       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3047       .accessfn = gt_ptimer_access,
3048       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3049     },
3050     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3051       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3052       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3053       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3054       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3055     },
3056     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3057       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3058       .accessfn = gt_vtimer_access,
3059       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3060     },
3061     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3062       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3063       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3064       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3065       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3066     },
3067     /* The counter itself */
3068     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3069       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3070       .accessfn = gt_pct_access,
3071       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3072     },
3073     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3074       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3075       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3076       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3077     },
3078     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3079       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3080       .accessfn = gt_vct_access,
3081       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3082     },
3083     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3084       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3085       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3086       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3087     },
3088     /* Comparison value, indicating when the timer goes off */
3089     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3090       .secure = ARM_CP_SECSTATE_NS,
3091       .access = PL0_RW,
3092       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3093       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3094       .accessfn = gt_ptimer_access,
3095       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3096       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3097     },
3098     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3099       .secure = ARM_CP_SECSTATE_S,
3100       .access = PL0_RW,
3101       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3102       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3103       .accessfn = gt_ptimer_access,
3104       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3105     },
3106     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3107       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3108       .access = PL0_RW,
3109       .type = ARM_CP_IO,
3110       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3111       .resetvalue = 0, .accessfn = gt_ptimer_access,
3112       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3113       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3114     },
3115     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3116       .access = PL0_RW,
3117       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3118       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3119       .accessfn = gt_vtimer_access,
3120       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3121       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3122     },
3123     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3125       .access = PL0_RW,
3126       .type = ARM_CP_IO,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3128       .resetvalue = 0, .accessfn = gt_vtimer_access,
3129       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3130       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3131     },
3132     /* Secure timer -- this is actually restricted to only EL3
3133      * and configurably Secure-EL1 via the accessfn.
3134      */
3135     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3136       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3137       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3138       .accessfn = gt_stimer_access,
3139       .readfn = gt_sec_tval_read,
3140       .writefn = gt_sec_tval_write,
3141       .resetfn = gt_sec_timer_reset,
3142     },
3143     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3144       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3145       .type = ARM_CP_IO, .access = PL1_RW,
3146       .accessfn = gt_stimer_access,
3147       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3148       .resetvalue = 0,
3149       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3150     },
3151     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3152       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3153       .type = ARM_CP_IO, .access = PL1_RW,
3154       .accessfn = gt_stimer_access,
3155       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3156       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3157     },
3158     REGINFO_SENTINEL
3159 };
3160 
3161 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3162                                  bool isread)
3163 {
3164     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3165         return CP_ACCESS_TRAP;
3166     }
3167     return CP_ACCESS_OK;
3168 }
3169 
3170 #else
3171 
3172 /* In user-mode most of the generic timer registers are inaccessible
3173  * however modern kernels (4.12+) allow access to cntvct_el0
3174  */
3175 
3176 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3177 {
3178     ARMCPU *cpu = env_archcpu(env);
3179 
3180     /* Currently we have no support for QEMUTimer in linux-user so we
3181      * can't call gt_get_countervalue(env), instead we directly
3182      * call the lower level functions.
3183      */
3184     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3185 }
3186 
3187 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3188     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3189       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3190       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3191       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3192       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3193     },
3194     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3195       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3196       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3197       .readfn = gt_virt_cnt_read,
3198     },
3199     REGINFO_SENTINEL
3200 };
3201 
3202 #endif
3203 
3204 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3205 {
3206     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3207         raw_write(env, ri, value);
3208     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3209         raw_write(env, ri, value & 0xfffff6ff);
3210     } else {
3211         raw_write(env, ri, value & 0xfffff1ff);
3212     }
3213 }
3214 
3215 #ifndef CONFIG_USER_ONLY
3216 /* get_phys_addr() isn't present for user-mode-only targets */
3217 
3218 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3219                                  bool isread)
3220 {
3221     if (ri->opc2 & 4) {
3222         /* The ATS12NSO* operations must trap to EL3 if executed in
3223          * Secure EL1 (which can only happen if EL3 is AArch64).
3224          * They are simply UNDEF if executed from NS EL1.
3225          * They function normally from EL2 or EL3.
3226          */
3227         if (arm_current_el(env) == 1) {
3228             if (arm_is_secure_below_el3(env)) {
3229                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3230             }
3231             return CP_ACCESS_TRAP_UNCATEGORIZED;
3232         }
3233     }
3234     return CP_ACCESS_OK;
3235 }
3236 
3237 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3238                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3239 {
3240     hwaddr phys_addr;
3241     target_ulong page_size;
3242     int prot;
3243     bool ret;
3244     uint64_t par64;
3245     bool format64 = false;
3246     MemTxAttrs attrs = {};
3247     ARMMMUFaultInfo fi = {};
3248     ARMCacheAttrs cacheattrs = {};
3249 
3250     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3251                         &prot, &page_size, &fi, &cacheattrs);
3252 
3253     if (ret) {
3254         /*
3255          * Some kinds of translation fault must cause exceptions rather
3256          * than being reported in the PAR.
3257          */
3258         int current_el = arm_current_el(env);
3259         int target_el;
3260         uint32_t syn, fsr, fsc;
3261         bool take_exc = false;
3262 
3263         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3264             && (mmu_idx == ARMMMUIdx_Stage1_E1 ||
3265                 mmu_idx == ARMMMUIdx_Stage1_E0)) {
3266             /*
3267              * Synchronous stage 2 fault on an access made as part of the
3268              * translation table walk for AT S1E0* or AT S1E1* insn
3269              * executed from NS EL1. If this is a synchronous external abort
3270              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3271              * to EL3. Otherwise the fault is taken as an exception to EL2,
3272              * and HPFAR_EL2 holds the faulting IPA.
3273              */
3274             if (fi.type == ARMFault_SyncExternalOnWalk &&
3275                 (env->cp15.scr_el3 & SCR_EA)) {
3276                 target_el = 3;
3277             } else {
3278                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3279                 target_el = 2;
3280             }
3281             take_exc = true;
3282         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3283             /*
3284              * Synchronous external aborts during a translation table walk
3285              * are taken as Data Abort exceptions.
3286              */
3287             if (fi.stage2) {
3288                 if (current_el == 3) {
3289                     target_el = 3;
3290                 } else {
3291                     target_el = 2;
3292                 }
3293             } else {
3294                 target_el = exception_target_el(env);
3295             }
3296             take_exc = true;
3297         }
3298 
3299         if (take_exc) {
3300             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3301             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3302                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3303                 fsr = arm_fi_to_lfsc(&fi);
3304                 fsc = extract32(fsr, 0, 6);
3305             } else {
3306                 fsr = arm_fi_to_sfsc(&fi);
3307                 fsc = 0x3f;
3308             }
3309             /*
3310              * Report exception with ESR indicating a fault due to a
3311              * translation table walk for a cache maintenance instruction.
3312              */
3313             syn = syn_data_abort_no_iss(current_el == target_el,
3314                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3315             env->exception.vaddress = value;
3316             env->exception.fsr = fsr;
3317             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3318         }
3319     }
3320 
3321     if (is_a64(env)) {
3322         format64 = true;
3323     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3324         /*
3325          * ATS1Cxx:
3326          * * TTBCR.EAE determines whether the result is returned using the
3327          *   32-bit or the 64-bit PAR format
3328          * * Instructions executed in Hyp mode always use the 64bit format
3329          *
3330          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3331          * * The Non-secure TTBCR.EAE bit is set to 1
3332          * * The implementation includes EL2, and the value of HCR.VM is 1
3333          *
3334          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3335          *
3336          * ATS1Hx always uses the 64bit format.
3337          */
3338         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3339 
3340         if (arm_feature(env, ARM_FEATURE_EL2)) {
3341             if (mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_E10_1) {
3342                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3343             } else {
3344                 format64 |= arm_current_el(env) == 2;
3345             }
3346         }
3347     }
3348 
3349     if (format64) {
3350         /* Create a 64-bit PAR */
3351         par64 = (1 << 11); /* LPAE bit always set */
3352         if (!ret) {
3353             par64 |= phys_addr & ~0xfffULL;
3354             if (!attrs.secure) {
3355                 par64 |= (1 << 9); /* NS */
3356             }
3357             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3358             par64 |= cacheattrs.shareability << 7; /* SH */
3359         } else {
3360             uint32_t fsr = arm_fi_to_lfsc(&fi);
3361 
3362             par64 |= 1; /* F */
3363             par64 |= (fsr & 0x3f) << 1; /* FS */
3364             if (fi.stage2) {
3365                 par64 |= (1 << 9); /* S */
3366             }
3367             if (fi.s1ptw) {
3368                 par64 |= (1 << 8); /* PTW */
3369             }
3370         }
3371     } else {
3372         /* fsr is a DFSR/IFSR value for the short descriptor
3373          * translation table format (with WnR always clear).
3374          * Convert it to a 32-bit PAR.
3375          */
3376         if (!ret) {
3377             /* We do not set any attribute bits in the PAR */
3378             if (page_size == (1 << 24)
3379                 && arm_feature(env, ARM_FEATURE_V7)) {
3380                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3381             } else {
3382                 par64 = phys_addr & 0xfffff000;
3383             }
3384             if (!attrs.secure) {
3385                 par64 |= (1 << 9); /* NS */
3386             }
3387         } else {
3388             uint32_t fsr = arm_fi_to_sfsc(&fi);
3389 
3390             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3391                     ((fsr & 0xf) << 1) | 1;
3392         }
3393     }
3394     return par64;
3395 }
3396 
3397 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3398 {
3399     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3400     uint64_t par64;
3401     ARMMMUIdx mmu_idx;
3402     int el = arm_current_el(env);
3403     bool secure = arm_is_secure_below_el3(env);
3404 
3405     switch (ri->opc2 & 6) {
3406     case 0:
3407         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3408         switch (el) {
3409         case 3:
3410             mmu_idx = ARMMMUIdx_SE3;
3411             break;
3412         case 2:
3413             mmu_idx = ARMMMUIdx_Stage1_E1;
3414             break;
3415         case 1:
3416             mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3417             break;
3418         default:
3419             g_assert_not_reached();
3420         }
3421         break;
3422     case 2:
3423         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3424         switch (el) {
3425         case 3:
3426             mmu_idx = ARMMMUIdx_SE10_0;
3427             break;
3428         case 2:
3429             mmu_idx = ARMMMUIdx_Stage1_E0;
3430             break;
3431         case 1:
3432             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3433             break;
3434         default:
3435             g_assert_not_reached();
3436         }
3437         break;
3438     case 4:
3439         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3440         mmu_idx = ARMMMUIdx_E10_1;
3441         break;
3442     case 6:
3443         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3444         mmu_idx = ARMMMUIdx_E10_0;
3445         break;
3446     default:
3447         g_assert_not_reached();
3448     }
3449 
3450     par64 = do_ats_write(env, value, access_type, mmu_idx);
3451 
3452     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3453 }
3454 
3455 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3456                         uint64_t value)
3457 {
3458     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3459     uint64_t par64;
3460 
3461     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3462 
3463     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3464 }
3465 
3466 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3467                                      bool isread)
3468 {
3469     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3470         return CP_ACCESS_TRAP;
3471     }
3472     return CP_ACCESS_OK;
3473 }
3474 
3475 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3476                         uint64_t value)
3477 {
3478     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3479     ARMMMUIdx mmu_idx;
3480     int secure = arm_is_secure_below_el3(env);
3481 
3482     switch (ri->opc2 & 6) {
3483     case 0:
3484         switch (ri->opc1) {
3485         case 0: /* AT S1E1R, AT S1E1W */
3486             mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3487             break;
3488         case 4: /* AT S1E2R, AT S1E2W */
3489             mmu_idx = ARMMMUIdx_E2;
3490             break;
3491         case 6: /* AT S1E3R, AT S1E3W */
3492             mmu_idx = ARMMMUIdx_SE3;
3493             break;
3494         default:
3495             g_assert_not_reached();
3496         }
3497         break;
3498     case 2: /* AT S1E0R, AT S1E0W */
3499         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3500         break;
3501     case 4: /* AT S12E1R, AT S12E1W */
3502         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3503         break;
3504     case 6: /* AT S12E0R, AT S12E0W */
3505         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3506         break;
3507     default:
3508         g_assert_not_reached();
3509     }
3510 
3511     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3512 }
3513 #endif
3514 
3515 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3516     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3517       .access = PL1_RW, .resetvalue = 0,
3518       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3519                              offsetoflow32(CPUARMState, cp15.par_ns) },
3520       .writefn = par_write },
3521 #ifndef CONFIG_USER_ONLY
3522     /* This underdecoding is safe because the reginfo is NO_RAW. */
3523     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3524       .access = PL1_W, .accessfn = ats_access,
3525       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3526 #endif
3527     REGINFO_SENTINEL
3528 };
3529 
3530 /* Return basic MPU access permission bits.  */
3531 static uint32_t simple_mpu_ap_bits(uint32_t val)
3532 {
3533     uint32_t ret;
3534     uint32_t mask;
3535     int i;
3536     ret = 0;
3537     mask = 3;
3538     for (i = 0; i < 16; i += 2) {
3539         ret |= (val >> i) & mask;
3540         mask <<= 2;
3541     }
3542     return ret;
3543 }
3544 
3545 /* Pad basic MPU access permission bits to extended format.  */
3546 static uint32_t extended_mpu_ap_bits(uint32_t val)
3547 {
3548     uint32_t ret;
3549     uint32_t mask;
3550     int i;
3551     ret = 0;
3552     mask = 3;
3553     for (i = 0; i < 16; i += 2) {
3554         ret |= (val & mask) << i;
3555         mask <<= 2;
3556     }
3557     return ret;
3558 }
3559 
3560 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3561                                  uint64_t value)
3562 {
3563     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3564 }
3565 
3566 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3567 {
3568     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3569 }
3570 
3571 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3572                                  uint64_t value)
3573 {
3574     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3575 }
3576 
3577 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3578 {
3579     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3580 }
3581 
3582 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3583 {
3584     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3585 
3586     if (!u32p) {
3587         return 0;
3588     }
3589 
3590     u32p += env->pmsav7.rnr[M_REG_NS];
3591     return *u32p;
3592 }
3593 
3594 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3595                          uint64_t value)
3596 {
3597     ARMCPU *cpu = env_archcpu(env);
3598     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3599 
3600     if (!u32p) {
3601         return;
3602     }
3603 
3604     u32p += env->pmsav7.rnr[M_REG_NS];
3605     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3606     *u32p = value;
3607 }
3608 
3609 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3610                               uint64_t value)
3611 {
3612     ARMCPU *cpu = env_archcpu(env);
3613     uint32_t nrgs = cpu->pmsav7_dregion;
3614 
3615     if (value >= nrgs) {
3616         qemu_log_mask(LOG_GUEST_ERROR,
3617                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3618                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3619         return;
3620     }
3621 
3622     raw_write(env, ri, value);
3623 }
3624 
3625 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3626     /* Reset for all these registers is handled in arm_cpu_reset(),
3627      * because the PMSAv7 is also used by M-profile CPUs, which do
3628      * not register cpregs but still need the state to be reset.
3629      */
3630     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3631       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3632       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3633       .readfn = pmsav7_read, .writefn = pmsav7_write,
3634       .resetfn = arm_cp_reset_ignore },
3635     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3636       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3637       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3638       .readfn = pmsav7_read, .writefn = pmsav7_write,
3639       .resetfn = arm_cp_reset_ignore },
3640     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3641       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3642       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3643       .readfn = pmsav7_read, .writefn = pmsav7_write,
3644       .resetfn = arm_cp_reset_ignore },
3645     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3646       .access = PL1_RW,
3647       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3648       .writefn = pmsav7_rgnr_write,
3649       .resetfn = arm_cp_reset_ignore },
3650     REGINFO_SENTINEL
3651 };
3652 
3653 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3654     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3655       .access = PL1_RW, .type = ARM_CP_ALIAS,
3656       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3657       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3658     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3659       .access = PL1_RW, .type = ARM_CP_ALIAS,
3660       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3661       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3662     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3663       .access = PL1_RW,
3664       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3665       .resetvalue = 0, },
3666     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3667       .access = PL1_RW,
3668       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3669       .resetvalue = 0, },
3670     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3671       .access = PL1_RW,
3672       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3673     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3674       .access = PL1_RW,
3675       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3676     /* Protection region base and size registers */
3677     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3678       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3679       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3680     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3681       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3682       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3683     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3684       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3685       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3686     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3687       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3688       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3689     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3690       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3691       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3692     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3693       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3694       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3695     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3696       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3697       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3698     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3699       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3700       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3701     REGINFO_SENTINEL
3702 };
3703 
3704 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3705                                  uint64_t value)
3706 {
3707     TCR *tcr = raw_ptr(env, ri);
3708     int maskshift = extract32(value, 0, 3);
3709 
3710     if (!arm_feature(env, ARM_FEATURE_V8)) {
3711         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3712             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3713              * using Long-desciptor translation table format */
3714             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3715         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3716             /* In an implementation that includes the Security Extensions
3717              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3718              * Short-descriptor translation table format.
3719              */
3720             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3721         } else {
3722             value &= TTBCR_N;
3723         }
3724     }
3725 
3726     /* Update the masks corresponding to the TCR bank being written
3727      * Note that we always calculate mask and base_mask, but
3728      * they are only used for short-descriptor tables (ie if EAE is 0);
3729      * for long-descriptor tables the TCR fields are used differently
3730      * and the mask and base_mask values are meaningless.
3731      */
3732     tcr->raw_tcr = value;
3733     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3734     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3735 }
3736 
3737 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3738                              uint64_t value)
3739 {
3740     ARMCPU *cpu = env_archcpu(env);
3741     TCR *tcr = raw_ptr(env, ri);
3742 
3743     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3744         /* With LPAE the TTBCR could result in a change of ASID
3745          * via the TTBCR.A1 bit, so do a TLB flush.
3746          */
3747         tlb_flush(CPU(cpu));
3748     }
3749     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3750     value = deposit64(tcr->raw_tcr, 0, 32, value);
3751     vmsa_ttbcr_raw_write(env, ri, value);
3752 }
3753 
3754 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3755 {
3756     TCR *tcr = raw_ptr(env, ri);
3757 
3758     /* Reset both the TCR as well as the masks corresponding to the bank of
3759      * the TCR being reset.
3760      */
3761     tcr->raw_tcr = 0;
3762     tcr->mask = 0;
3763     tcr->base_mask = 0xffffc000u;
3764 }
3765 
3766 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3767                                uint64_t value)
3768 {
3769     ARMCPU *cpu = env_archcpu(env);
3770     TCR *tcr = raw_ptr(env, ri);
3771 
3772     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3773     tlb_flush(CPU(cpu));
3774     tcr->raw_tcr = value;
3775 }
3776 
3777 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3778                             uint64_t value)
3779 {
3780     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3781     if (cpreg_field_is_64bit(ri) &&
3782         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3783         ARMCPU *cpu = env_archcpu(env);
3784         tlb_flush(CPU(cpu));
3785     }
3786     raw_write(env, ri, value);
3787 }
3788 
3789 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3790                                     uint64_t value)
3791 {
3792     /*
3793      * If we are running with E2&0 regime, then an ASID is active.
3794      * Flush if that might be changing.  Note we're not checking
3795      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3796      * holds the active ASID, only checking the field that might.
3797      */
3798     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3799         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3800         tlb_flush_by_mmuidx(env_cpu(env),
3801                             ARMMMUIdxBit_E20_2 | ARMMMUIdxBit_E20_0);
3802     }
3803     raw_write(env, ri, value);
3804 }
3805 
3806 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3807                         uint64_t value)
3808 {
3809     ARMCPU *cpu = env_archcpu(env);
3810     CPUState *cs = CPU(cpu);
3811 
3812     /*
3813      * A change in VMID to the stage2 page table (Stage2) invalidates
3814      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3815      */
3816     if (raw_read(env, ri) != value) {
3817         tlb_flush_by_mmuidx(cs,
3818                             ARMMMUIdxBit_E10_1 |
3819                             ARMMMUIdxBit_E10_0 |
3820                             ARMMMUIdxBit_Stage2);
3821         raw_write(env, ri, value);
3822     }
3823 }
3824 
3825 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3826     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3827       .access = PL1_RW, .type = ARM_CP_ALIAS,
3828       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3829                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3830     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3831       .access = PL1_RW, .resetvalue = 0,
3832       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3833                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3834     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3835       .access = PL1_RW, .resetvalue = 0,
3836       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3837                              offsetof(CPUARMState, cp15.dfar_ns) } },
3838     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3839       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3840       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3841       .resetvalue = 0, },
3842     REGINFO_SENTINEL
3843 };
3844 
3845 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3846     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3847       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3848       .access = PL1_RW,
3849       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3850     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3851       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3852       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3853       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3854                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3855     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3856       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3857       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3858       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3859                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3860     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3861       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3862       .access = PL1_RW, .writefn = vmsa_tcr_el12_write,
3863       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3864       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3865     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3866       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3867       .raw_writefn = vmsa_ttbcr_raw_write,
3868       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3869                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3870     REGINFO_SENTINEL
3871 };
3872 
3873 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3874  * qemu tlbs nor adjusting cached masks.
3875  */
3876 static const ARMCPRegInfo ttbcr2_reginfo = {
3877     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3878     .access = PL1_RW, .type = ARM_CP_ALIAS,
3879     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3880                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3881 };
3882 
3883 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884                                 uint64_t value)
3885 {
3886     env->cp15.c15_ticonfig = value & 0xe7;
3887     /* The OS_TYPE bit in this register changes the reported CPUID! */
3888     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3889         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3890 }
3891 
3892 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                                 uint64_t value)
3894 {
3895     env->cp15.c15_threadid = value & 0xffff;
3896 }
3897 
3898 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3899                            uint64_t value)
3900 {
3901     /* Wait-for-interrupt (deprecated) */
3902     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3903 }
3904 
3905 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3906                                   uint64_t value)
3907 {
3908     /* On OMAP there are registers indicating the max/min index of dcache lines
3909      * containing a dirty line; cache flush operations have to reset these.
3910      */
3911     env->cp15.c15_i_max = 0x000;
3912     env->cp15.c15_i_min = 0xff0;
3913 }
3914 
3915 static const ARMCPRegInfo omap_cp_reginfo[] = {
3916     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3917       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3918       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3919       .resetvalue = 0, },
3920     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3921       .access = PL1_RW, .type = ARM_CP_NOP },
3922     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3923       .access = PL1_RW,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3925       .writefn = omap_ticonfig_write },
3926     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3927       .access = PL1_RW,
3928       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3929     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3930       .access = PL1_RW, .resetvalue = 0xff0,
3931       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3932     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3933       .access = PL1_RW,
3934       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3935       .writefn = omap_threadid_write },
3936     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3937       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3938       .type = ARM_CP_NO_RAW,
3939       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3940     /* TODO: Peripheral port remap register:
3941      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3942      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3943      * when MMU is off.
3944      */
3945     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3946       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3947       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3948       .writefn = omap_cachemaint_write },
3949     { .name = "C9", .cp = 15, .crn = 9,
3950       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3951       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3952     REGINFO_SENTINEL
3953 };
3954 
3955 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956                               uint64_t value)
3957 {
3958     env->cp15.c15_cpar = value & 0x3fff;
3959 }
3960 
3961 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3962     { .name = "XSCALE_CPAR",
3963       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3964       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3965       .writefn = xscale_cpar_write, },
3966     { .name = "XSCALE_AUXCR",
3967       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3968       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3969       .resetvalue = 0, },
3970     /* XScale specific cache-lockdown: since we have no cache we NOP these
3971      * and hope the guest does not really rely on cache behaviour.
3972      */
3973     { .name = "XSCALE_LOCK_ICACHE_LINE",
3974       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3975       .access = PL1_W, .type = ARM_CP_NOP },
3976     { .name = "XSCALE_UNLOCK_ICACHE",
3977       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3978       .access = PL1_W, .type = ARM_CP_NOP },
3979     { .name = "XSCALE_DCACHE_LOCK",
3980       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3981       .access = PL1_RW, .type = ARM_CP_NOP },
3982     { .name = "XSCALE_UNLOCK_DCACHE",
3983       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3984       .access = PL1_W, .type = ARM_CP_NOP },
3985     REGINFO_SENTINEL
3986 };
3987 
3988 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3989     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3990      * implementation of this implementation-defined space.
3991      * Ideally this should eventually disappear in favour of actually
3992      * implementing the correct behaviour for all cores.
3993      */
3994     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3995       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3996       .access = PL1_RW,
3997       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3998       .resetvalue = 0 },
3999     REGINFO_SENTINEL
4000 };
4001 
4002 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4003     /* Cache status: RAZ because we have no cache so it's always clean */
4004     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4005       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4006       .resetvalue = 0 },
4007     REGINFO_SENTINEL
4008 };
4009 
4010 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4011     /* We never have a a block transfer operation in progress */
4012     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4013       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4014       .resetvalue = 0 },
4015     /* The cache ops themselves: these all NOP for QEMU */
4016     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4017       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4018     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4019       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4020     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4021       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4022     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4023       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4024     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4025       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4026     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4027       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4028     REGINFO_SENTINEL
4029 };
4030 
4031 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4032     /* The cache test-and-clean instructions always return (1 << 30)
4033      * to indicate that there are no dirty cache lines.
4034      */
4035     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4036       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4037       .resetvalue = (1 << 30) },
4038     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4039       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4040       .resetvalue = (1 << 30) },
4041     REGINFO_SENTINEL
4042 };
4043 
4044 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4045     /* Ignore ReadBuffer accesses */
4046     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4047       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4048       .access = PL1_RW, .resetvalue = 0,
4049       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4050     REGINFO_SENTINEL
4051 };
4052 
4053 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4054 {
4055     ARMCPU *cpu = env_archcpu(env);
4056     unsigned int cur_el = arm_current_el(env);
4057     bool secure = arm_is_secure(env);
4058 
4059     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4060         return env->cp15.vpidr_el2;
4061     }
4062     return raw_read(env, ri);
4063 }
4064 
4065 static uint64_t mpidr_read_val(CPUARMState *env)
4066 {
4067     ARMCPU *cpu = env_archcpu(env);
4068     uint64_t mpidr = cpu->mp_affinity;
4069 
4070     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4071         mpidr |= (1U << 31);
4072         /* Cores which are uniprocessor (non-coherent)
4073          * but still implement the MP extensions set
4074          * bit 30. (For instance, Cortex-R5).
4075          */
4076         if (cpu->mp_is_up) {
4077             mpidr |= (1u << 30);
4078         }
4079     }
4080     return mpidr;
4081 }
4082 
4083 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4084 {
4085     unsigned int cur_el = arm_current_el(env);
4086     bool secure = arm_is_secure(env);
4087 
4088     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4089         return env->cp15.vmpidr_el2;
4090     }
4091     return mpidr_read_val(env);
4092 }
4093 
4094 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4095     /* NOP AMAIR0/1 */
4096     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4097       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4098       .access = PL1_RW, .type = ARM_CP_CONST,
4099       .resetvalue = 0 },
4100     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4101     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4102       .access = PL1_RW, .type = ARM_CP_CONST,
4103       .resetvalue = 0 },
4104     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4105       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4106       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4107                              offsetof(CPUARMState, cp15.par_ns)} },
4108     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4109       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4110       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4111                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4112       .writefn = vmsa_ttbr_write, },
4113     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4114       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4115       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4116                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4117       .writefn = vmsa_ttbr_write, },
4118     REGINFO_SENTINEL
4119 };
4120 
4121 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4122 {
4123     return vfp_get_fpcr(env);
4124 }
4125 
4126 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127                             uint64_t value)
4128 {
4129     vfp_set_fpcr(env, value);
4130 }
4131 
4132 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4133 {
4134     return vfp_get_fpsr(env);
4135 }
4136 
4137 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4138                             uint64_t value)
4139 {
4140     vfp_set_fpsr(env, value);
4141 }
4142 
4143 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4144                                        bool isread)
4145 {
4146     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4147         return CP_ACCESS_TRAP;
4148     }
4149     return CP_ACCESS_OK;
4150 }
4151 
4152 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4153                             uint64_t value)
4154 {
4155     env->daif = value & PSTATE_DAIF;
4156 }
4157 
4158 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
4159                                           const ARMCPRegInfo *ri,
4160                                           bool isread)
4161 {
4162     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
4163      * SCTLR_EL1.UCI is set.
4164      */
4165     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UCI)) {
4166         return CP_ACCESS_TRAP;
4167     }
4168     return CP_ACCESS_OK;
4169 }
4170 
4171 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4172  * Page D4-1736 (DDI0487A.b)
4173  */
4174 
4175 static int vae1_tlbmask(CPUARMState *env)
4176 {
4177     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4178     if (arm_is_secure_below_el3(env)) {
4179         return ARMMMUIdxBit_SE10_1 | ARMMMUIdxBit_SE10_0;
4180     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4181                == (HCR_E2H | HCR_TGE)) {
4182         return ARMMMUIdxBit_E20_2 | ARMMMUIdxBit_E20_0;
4183     } else {
4184         return ARMMMUIdxBit_E10_1 | ARMMMUIdxBit_E10_0;
4185     }
4186 }
4187 
4188 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4189                                       uint64_t value)
4190 {
4191     CPUState *cs = env_cpu(env);
4192     int mask = vae1_tlbmask(env);
4193 
4194     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4195 }
4196 
4197 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4198                                     uint64_t value)
4199 {
4200     CPUState *cs = env_cpu(env);
4201     int mask = vae1_tlbmask(env);
4202 
4203     if (tlb_force_broadcast(env)) {
4204         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4205     } else {
4206         tlb_flush_by_mmuidx(cs, mask);
4207     }
4208 }
4209 
4210 static int alle1_tlbmask(CPUARMState *env)
4211 {
4212     /*
4213      * Note that the 'ALL' scope must invalidate both stage 1 and
4214      * stage 2 translations, whereas most other scopes only invalidate
4215      * stage 1 translations.
4216      */
4217     if (arm_is_secure_below_el3(env)) {
4218         return ARMMMUIdxBit_SE10_1 | ARMMMUIdxBit_SE10_0;
4219     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
4220         return ARMMMUIdxBit_E10_1 | ARMMMUIdxBit_E10_0 | ARMMMUIdxBit_Stage2;
4221     } else {
4222         return ARMMMUIdxBit_E10_1 | ARMMMUIdxBit_E10_0;
4223     }
4224 }
4225 
4226 static int e2_tlbmask(CPUARMState *env)
4227 {
4228     /* TODO: ARMv8.4-SecEL2 */
4229     return ARMMMUIdxBit_E20_0 | ARMMMUIdxBit_E20_2 | ARMMMUIdxBit_E2;
4230 }
4231 
4232 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4233                                   uint64_t value)
4234 {
4235     CPUState *cs = env_cpu(env);
4236     int mask = alle1_tlbmask(env);
4237 
4238     tlb_flush_by_mmuidx(cs, mask);
4239 }
4240 
4241 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                                   uint64_t value)
4243 {
4244     CPUState *cs = env_cpu(env);
4245     int mask = e2_tlbmask(env);
4246 
4247     tlb_flush_by_mmuidx(cs, mask);
4248 }
4249 
4250 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4251                                   uint64_t value)
4252 {
4253     ARMCPU *cpu = env_archcpu(env);
4254     CPUState *cs = CPU(cpu);
4255 
4256     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4257 }
4258 
4259 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4260                                     uint64_t value)
4261 {
4262     CPUState *cs = env_cpu(env);
4263     int mask = alle1_tlbmask(env);
4264 
4265     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4266 }
4267 
4268 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4269                                     uint64_t value)
4270 {
4271     CPUState *cs = env_cpu(env);
4272     int mask = e2_tlbmask(env);
4273 
4274     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4275 }
4276 
4277 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4278                                     uint64_t value)
4279 {
4280     CPUState *cs = env_cpu(env);
4281 
4282     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4283 }
4284 
4285 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4286                                  uint64_t value)
4287 {
4288     /* Invalidate by VA, EL2
4289      * Currently handles both VAE2 and VALE2, since we don't support
4290      * flush-last-level-only.
4291      */
4292     CPUState *cs = env_cpu(env);
4293     int mask = e2_tlbmask(env);
4294     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4295 
4296     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4297 }
4298 
4299 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4300                                  uint64_t value)
4301 {
4302     /* Invalidate by VA, EL3
4303      * Currently handles both VAE3 and VALE3, since we don't support
4304      * flush-last-level-only.
4305      */
4306     ARMCPU *cpu = env_archcpu(env);
4307     CPUState *cs = CPU(cpu);
4308     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4309 
4310     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4311 }
4312 
4313 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4314                                    uint64_t value)
4315 {
4316     CPUState *cs = env_cpu(env);
4317     int mask = vae1_tlbmask(env);
4318     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4319 
4320     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4321 }
4322 
4323 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4324                                  uint64_t value)
4325 {
4326     /* Invalidate by VA, EL1&0 (AArch64 version).
4327      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4328      * since we don't support flush-for-specific-ASID-only or
4329      * flush-last-level-only.
4330      */
4331     CPUState *cs = env_cpu(env);
4332     int mask = vae1_tlbmask(env);
4333     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4334 
4335     if (tlb_force_broadcast(env)) {
4336         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4337     } else {
4338         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4339     }
4340 }
4341 
4342 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4343                                    uint64_t value)
4344 {
4345     CPUState *cs = env_cpu(env);
4346     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4347 
4348     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4349                                              ARMMMUIdxBit_E2);
4350 }
4351 
4352 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4353                                    uint64_t value)
4354 {
4355     CPUState *cs = env_cpu(env);
4356     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4357 
4358     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4359                                              ARMMMUIdxBit_SE3);
4360 }
4361 
4362 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363                                     uint64_t value)
4364 {
4365     /* Invalidate by IPA. This has to invalidate any structures that
4366      * contain only stage 2 translation information, but does not need
4367      * to apply to structures that contain combined stage 1 and stage 2
4368      * translation information.
4369      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4370      */
4371     ARMCPU *cpu = env_archcpu(env);
4372     CPUState *cs = CPU(cpu);
4373     uint64_t pageaddr;
4374 
4375     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4376         return;
4377     }
4378 
4379     pageaddr = sextract64(value << 12, 0, 48);
4380 
4381     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
4382 }
4383 
4384 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                       uint64_t value)
4386 {
4387     CPUState *cs = env_cpu(env);
4388     uint64_t pageaddr;
4389 
4390     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4391         return;
4392     }
4393 
4394     pageaddr = sextract64(value << 12, 0, 48);
4395 
4396     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4397                                              ARMMMUIdxBit_Stage2);
4398 }
4399 
4400 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4401                                       bool isread)
4402 {
4403     int cur_el = arm_current_el(env);
4404 
4405     if (cur_el < 2) {
4406         uint64_t hcr = arm_hcr_el2_eff(env);
4407 
4408         if (cur_el == 0) {
4409             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4410                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4411                     return CP_ACCESS_TRAP_EL2;
4412                 }
4413             } else {
4414                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4415                     return CP_ACCESS_TRAP;
4416                 }
4417                 if (hcr & HCR_TDZ) {
4418                     return CP_ACCESS_TRAP_EL2;
4419                 }
4420             }
4421         } else if (hcr & HCR_TDZ) {
4422             return CP_ACCESS_TRAP_EL2;
4423         }
4424     }
4425     return CP_ACCESS_OK;
4426 }
4427 
4428 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4429 {
4430     ARMCPU *cpu = env_archcpu(env);
4431     int dzp_bit = 1 << 4;
4432 
4433     /* DZP indicates whether DC ZVA access is allowed */
4434     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4435         dzp_bit = 0;
4436     }
4437     return cpu->dcz_blocksize | dzp_bit;
4438 }
4439 
4440 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4441                                     bool isread)
4442 {
4443     if (!(env->pstate & PSTATE_SP)) {
4444         /* Access to SP_EL0 is undefined if it's being used as
4445          * the stack pointer.
4446          */
4447         return CP_ACCESS_TRAP_UNCATEGORIZED;
4448     }
4449     return CP_ACCESS_OK;
4450 }
4451 
4452 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4453 {
4454     return env->pstate & PSTATE_SP;
4455 }
4456 
4457 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4458 {
4459     update_spsel(env, val);
4460 }
4461 
4462 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4463                         uint64_t value)
4464 {
4465     ARMCPU *cpu = env_archcpu(env);
4466 
4467     if (raw_read(env, ri) == value) {
4468         /* Skip the TLB flush if nothing actually changed; Linux likes
4469          * to do a lot of pointless SCTLR writes.
4470          */
4471         return;
4472     }
4473 
4474     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4475         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4476         value &= ~SCTLR_M;
4477     }
4478 
4479     raw_write(env, ri, value);
4480     /* ??? Lots of these bits are not implemented.  */
4481     /* This may enable/disable the MMU, so do a TLB flush.  */
4482     tlb_flush(CPU(cpu));
4483 
4484     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4485         /*
4486          * Normally we would always end the TB on an SCTLR write; see the
4487          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4488          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4489          * of hflags from the translator, so do it here.
4490          */
4491         arm_rebuild_hflags(env);
4492     }
4493 }
4494 
4495 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4496                                      bool isread)
4497 {
4498     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4499         return CP_ACCESS_TRAP_FP_EL2;
4500     }
4501     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4502         return CP_ACCESS_TRAP_FP_EL3;
4503     }
4504     return CP_ACCESS_OK;
4505 }
4506 
4507 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4508                        uint64_t value)
4509 {
4510     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4511 }
4512 
4513 static const ARMCPRegInfo v8_cp_reginfo[] = {
4514     /* Minimal set of EL0-visible registers. This will need to be expanded
4515      * significantly for system emulation of AArch64 CPUs.
4516      */
4517     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4518       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4519       .access = PL0_RW, .type = ARM_CP_NZCV },
4520     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4521       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4522       .type = ARM_CP_NO_RAW,
4523       .access = PL0_RW, .accessfn = aa64_daif_access,
4524       .fieldoffset = offsetof(CPUARMState, daif),
4525       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4526     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4527       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4528       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4529       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4530     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4531       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4532       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4533       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4534     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4535       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4536       .access = PL0_R, .type = ARM_CP_NO_RAW,
4537       .readfn = aa64_dczid_read },
4538     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4539       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4540       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4541 #ifndef CONFIG_USER_ONLY
4542       /* Avoid overhead of an access check that always passes in user-mode */
4543       .accessfn = aa64_zva_access,
4544 #endif
4545     },
4546     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4547       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4548       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4549     /* Cache ops: all NOPs since we don't emulate caches */
4550     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4551       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4552       .access = PL1_W, .type = ARM_CP_NOP },
4553     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4554       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4555       .access = PL1_W, .type = ARM_CP_NOP },
4556     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4557       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4558       .access = PL0_W, .type = ARM_CP_NOP,
4559       .accessfn = aa64_cacheop_access },
4560     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4561       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4562       .access = PL1_W, .type = ARM_CP_NOP },
4563     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4564       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4565       .access = PL1_W, .type = ARM_CP_NOP },
4566     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4567       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4568       .access = PL0_W, .type = ARM_CP_NOP,
4569       .accessfn = aa64_cacheop_access },
4570     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4571       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4572       .access = PL1_W, .type = ARM_CP_NOP },
4573     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4574       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4575       .access = PL0_W, .type = ARM_CP_NOP,
4576       .accessfn = aa64_cacheop_access },
4577     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4578       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4579       .access = PL0_W, .type = ARM_CP_NOP,
4580       .accessfn = aa64_cacheop_access },
4581     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4582       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4583       .access = PL1_W, .type = ARM_CP_NOP },
4584     /* TLBI operations */
4585     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4586       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4587       .access = PL1_W, .type = ARM_CP_NO_RAW,
4588       .writefn = tlbi_aa64_vmalle1is_write },
4589     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4590       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4591       .access = PL1_W, .type = ARM_CP_NO_RAW,
4592       .writefn = tlbi_aa64_vae1is_write },
4593     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4594       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4595       .access = PL1_W, .type = ARM_CP_NO_RAW,
4596       .writefn = tlbi_aa64_vmalle1is_write },
4597     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4598       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4599       .access = PL1_W, .type = ARM_CP_NO_RAW,
4600       .writefn = tlbi_aa64_vae1is_write },
4601     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4602       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4603       .access = PL1_W, .type = ARM_CP_NO_RAW,
4604       .writefn = tlbi_aa64_vae1is_write },
4605     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4606       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4607       .access = PL1_W, .type = ARM_CP_NO_RAW,
4608       .writefn = tlbi_aa64_vae1is_write },
4609     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4610       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4611       .access = PL1_W, .type = ARM_CP_NO_RAW,
4612       .writefn = tlbi_aa64_vmalle1_write },
4613     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4614       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4615       .access = PL1_W, .type = ARM_CP_NO_RAW,
4616       .writefn = tlbi_aa64_vae1_write },
4617     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4618       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4619       .access = PL1_W, .type = ARM_CP_NO_RAW,
4620       .writefn = tlbi_aa64_vmalle1_write },
4621     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4622       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4623       .access = PL1_W, .type = ARM_CP_NO_RAW,
4624       .writefn = tlbi_aa64_vae1_write },
4625     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4626       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4627       .access = PL1_W, .type = ARM_CP_NO_RAW,
4628       .writefn = tlbi_aa64_vae1_write },
4629     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4630       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4631       .access = PL1_W, .type = ARM_CP_NO_RAW,
4632       .writefn = tlbi_aa64_vae1_write },
4633     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4634       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4635       .access = PL2_W, .type = ARM_CP_NO_RAW,
4636       .writefn = tlbi_aa64_ipas2e1is_write },
4637     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4638       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4639       .access = PL2_W, .type = ARM_CP_NO_RAW,
4640       .writefn = tlbi_aa64_ipas2e1is_write },
4641     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4642       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4643       .access = PL2_W, .type = ARM_CP_NO_RAW,
4644       .writefn = tlbi_aa64_alle1is_write },
4645     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4646       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4647       .access = PL2_W, .type = ARM_CP_NO_RAW,
4648       .writefn = tlbi_aa64_alle1is_write },
4649     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4650       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4651       .access = PL2_W, .type = ARM_CP_NO_RAW,
4652       .writefn = tlbi_aa64_ipas2e1_write },
4653     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4654       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4655       .access = PL2_W, .type = ARM_CP_NO_RAW,
4656       .writefn = tlbi_aa64_ipas2e1_write },
4657     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4658       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4659       .access = PL2_W, .type = ARM_CP_NO_RAW,
4660       .writefn = tlbi_aa64_alle1_write },
4661     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4662       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4663       .access = PL2_W, .type = ARM_CP_NO_RAW,
4664       .writefn = tlbi_aa64_alle1is_write },
4665 #ifndef CONFIG_USER_ONLY
4666     /* 64 bit address translation operations */
4667     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4668       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4669       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4670       .writefn = ats_write64 },
4671     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4672       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4673       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4674       .writefn = ats_write64 },
4675     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4676       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4677       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4678       .writefn = ats_write64 },
4679     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4680       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4681       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4682       .writefn = ats_write64 },
4683     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4684       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4685       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4686       .writefn = ats_write64 },
4687     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4688       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4689       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4690       .writefn = ats_write64 },
4691     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4692       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4693       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4694       .writefn = ats_write64 },
4695     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4696       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4697       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4698       .writefn = ats_write64 },
4699     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4700     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4701       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4702       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4703       .writefn = ats_write64 },
4704     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4705       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4706       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4707       .writefn = ats_write64 },
4708     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4709       .type = ARM_CP_ALIAS,
4710       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4711       .access = PL1_RW, .resetvalue = 0,
4712       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4713       .writefn = par_write },
4714 #endif
4715     /* TLB invalidate last level of translation table walk */
4716     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4717       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4718     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4719       .type = ARM_CP_NO_RAW, .access = PL1_W,
4720       .writefn = tlbimvaa_is_write },
4721     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4722       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4723     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4724       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4725     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4726       .type = ARM_CP_NO_RAW, .access = PL2_W,
4727       .writefn = tlbimva_hyp_write },
4728     { .name = "TLBIMVALHIS",
4729       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4730       .type = ARM_CP_NO_RAW, .access = PL2_W,
4731       .writefn = tlbimva_hyp_is_write },
4732     { .name = "TLBIIPAS2",
4733       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4734       .type = ARM_CP_NO_RAW, .access = PL2_W,
4735       .writefn = tlbiipas2_write },
4736     { .name = "TLBIIPAS2IS",
4737       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4738       .type = ARM_CP_NO_RAW, .access = PL2_W,
4739       .writefn = tlbiipas2_is_write },
4740     { .name = "TLBIIPAS2L",
4741       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4742       .type = ARM_CP_NO_RAW, .access = PL2_W,
4743       .writefn = tlbiipas2_write },
4744     { .name = "TLBIIPAS2LIS",
4745       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4746       .type = ARM_CP_NO_RAW, .access = PL2_W,
4747       .writefn = tlbiipas2_is_write },
4748     /* 32 bit cache operations */
4749     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4750       .type = ARM_CP_NOP, .access = PL1_W },
4751     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4752       .type = ARM_CP_NOP, .access = PL1_W },
4753     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4754       .type = ARM_CP_NOP, .access = PL1_W },
4755     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4756       .type = ARM_CP_NOP, .access = PL1_W },
4757     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4758       .type = ARM_CP_NOP, .access = PL1_W },
4759     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4760       .type = ARM_CP_NOP, .access = PL1_W },
4761     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4762       .type = ARM_CP_NOP, .access = PL1_W },
4763     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4764       .type = ARM_CP_NOP, .access = PL1_W },
4765     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4766       .type = ARM_CP_NOP, .access = PL1_W },
4767     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4768       .type = ARM_CP_NOP, .access = PL1_W },
4769     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4770       .type = ARM_CP_NOP, .access = PL1_W },
4771     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4772       .type = ARM_CP_NOP, .access = PL1_W },
4773     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4774       .type = ARM_CP_NOP, .access = PL1_W },
4775     /* MMU Domain access control / MPU write buffer control */
4776     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4777       .access = PL1_RW, .resetvalue = 0,
4778       .writefn = dacr_write, .raw_writefn = raw_write,
4779       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4780                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4781     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4782       .type = ARM_CP_ALIAS,
4783       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4784       .access = PL1_RW,
4785       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4786     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4787       .type = ARM_CP_ALIAS,
4788       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4789       .access = PL1_RW,
4790       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4791     /* We rely on the access checks not allowing the guest to write to the
4792      * state field when SPSel indicates that it's being used as the stack
4793      * pointer.
4794      */
4795     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4796       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4797       .access = PL1_RW, .accessfn = sp_el0_access,
4798       .type = ARM_CP_ALIAS,
4799       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4800     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4801       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4802       .access = PL2_RW, .type = ARM_CP_ALIAS,
4803       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4804     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4805       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4806       .type = ARM_CP_NO_RAW,
4807       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4808     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4810       .type = ARM_CP_ALIAS,
4811       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4812       .access = PL2_RW, .accessfn = fpexc32_access },
4813     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4814       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4815       .access = PL2_RW, .resetvalue = 0,
4816       .writefn = dacr_write, .raw_writefn = raw_write,
4817       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4818     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4820       .access = PL2_RW, .resetvalue = 0,
4821       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4822     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4823       .type = ARM_CP_ALIAS,
4824       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4825       .access = PL2_RW,
4826       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4827     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4828       .type = ARM_CP_ALIAS,
4829       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4830       .access = PL2_RW,
4831       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4832     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4833       .type = ARM_CP_ALIAS,
4834       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4835       .access = PL2_RW,
4836       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4837     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4838       .type = ARM_CP_ALIAS,
4839       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4840       .access = PL2_RW,
4841       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4842     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4843       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4844       .resetvalue = 0,
4845       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4846     { .name = "SDCR", .type = ARM_CP_ALIAS,
4847       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4848       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4849       .writefn = sdcr_write,
4850       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4851     REGINFO_SENTINEL
4852 };
4853 
4854 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4855 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4856     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4857       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4858       .access = PL2_RW,
4859       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4860     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4861       .type = ARM_CP_NO_RAW,
4862       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4863       .access = PL2_RW,
4864       .type = ARM_CP_CONST, .resetvalue = 0 },
4865     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4866       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4867       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4868     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4869       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4870       .access = PL2_RW,
4871       .type = ARM_CP_CONST, .resetvalue = 0 },
4872     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4873       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4874       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4875     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4876       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4877       .access = PL2_RW, .type = ARM_CP_CONST,
4878       .resetvalue = 0 },
4879     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4880       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4881       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4882     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4883       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4884       .access = PL2_RW, .type = ARM_CP_CONST,
4885       .resetvalue = 0 },
4886     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4887       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4888       .access = PL2_RW, .type = ARM_CP_CONST,
4889       .resetvalue = 0 },
4890     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4891       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4892       .access = PL2_RW, .type = ARM_CP_CONST,
4893       .resetvalue = 0 },
4894     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4895       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4896       .access = PL2_RW, .type = ARM_CP_CONST,
4897       .resetvalue = 0 },
4898     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4899       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4900       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4901     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4902       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4903       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4904       .type = ARM_CP_CONST, .resetvalue = 0 },
4905     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4906       .cp = 15, .opc1 = 6, .crm = 2,
4907       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4908       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4909     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4911       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4912     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4913       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4914       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4915     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4916       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4917       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4918     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4919       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4920       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4921     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4922       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4923       .resetvalue = 0 },
4924     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4925       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4926       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4927     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4929       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4930     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4931       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4932       .resetvalue = 0 },
4933     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4934       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4935       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4936     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4937       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4938       .resetvalue = 0 },
4939     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4940       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4941       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4942     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4943       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4944       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4945     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4946       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4947       .access = PL2_RW, .accessfn = access_tda,
4948       .type = ARM_CP_CONST, .resetvalue = 0 },
4949     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4950       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4951       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4952       .type = ARM_CP_CONST, .resetvalue = 0 },
4953     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4954       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4955       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4956     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4957       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4958       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4959     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4960       .type = ARM_CP_CONST,
4961       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4962       .access = PL2_RW, .resetvalue = 0 },
4963     REGINFO_SENTINEL
4964 };
4965 
4966 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4967 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4968     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4969       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4970       .access = PL2_RW,
4971       .type = ARM_CP_CONST, .resetvalue = 0 },
4972     REGINFO_SENTINEL
4973 };
4974 
4975 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4976 {
4977     ARMCPU *cpu = env_archcpu(env);
4978     /* Begin with bits defined in base ARMv8.0.  */
4979     uint64_t valid_mask = MAKE_64BIT_MASK(0, 34);
4980 
4981     if (arm_feature(env, ARM_FEATURE_EL3)) {
4982         valid_mask &= ~HCR_HCD;
4983     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4984         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4985          * However, if we're using the SMC PSCI conduit then QEMU is
4986          * effectively acting like EL3 firmware and so the guest at
4987          * EL2 should retain the ability to prevent EL1 from being
4988          * able to make SMC calls into the ersatz firmware, so in
4989          * that case HCR.TSC should be read/write.
4990          */
4991         valid_mask &= ~HCR_TSC;
4992     }
4993     if (cpu_isar_feature(aa64_vh, cpu)) {
4994         valid_mask |= HCR_E2H;
4995     }
4996     if (cpu_isar_feature(aa64_lor, cpu)) {
4997         valid_mask |= HCR_TLOR;
4998     }
4999     if (cpu_isar_feature(aa64_pauth, cpu)) {
5000         valid_mask |= HCR_API | HCR_APK;
5001     }
5002 
5003     /* Clear RES0 bits.  */
5004     value &= valid_mask;
5005 
5006     /* These bits change the MMU setup:
5007      * HCR_VM enables stage 2 translation
5008      * HCR_PTW forbids certain page-table setups
5009      * HCR_DC Disables stage1 and enables stage2 translation
5010      */
5011     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5012         tlb_flush(CPU(cpu));
5013     }
5014     env->cp15.hcr_el2 = value;
5015 
5016     /*
5017      * Updates to VI and VF require us to update the status of
5018      * virtual interrupts, which are the logical OR of these bits
5019      * and the state of the input lines from the GIC. (This requires
5020      * that we have the iothread lock, which is done by marking the
5021      * reginfo structs as ARM_CP_IO.)
5022      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5023      * possible for it to be taken immediately, because VIRQ and
5024      * VFIQ are masked unless running at EL0 or EL1, and HCR
5025      * can only be written at EL2.
5026      */
5027     g_assert(qemu_mutex_iothread_locked());
5028     arm_cpu_update_virq(cpu);
5029     arm_cpu_update_vfiq(cpu);
5030 }
5031 
5032 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5033                           uint64_t value)
5034 {
5035     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5036     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5037     hcr_write(env, NULL, value);
5038 }
5039 
5040 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5041                          uint64_t value)
5042 {
5043     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5044     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5045     hcr_write(env, NULL, value);
5046 }
5047 
5048 /*
5049  * Return the effective value of HCR_EL2.
5050  * Bits that are not included here:
5051  * RW       (read from SCR_EL3.RW as needed)
5052  */
5053 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5054 {
5055     uint64_t ret = env->cp15.hcr_el2;
5056 
5057     if (arm_is_secure_below_el3(env)) {
5058         /*
5059          * "This register has no effect if EL2 is not enabled in the
5060          * current Security state".  This is ARMv8.4-SecEL2 speak for
5061          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5062          *
5063          * Prior to that, the language was "In an implementation that
5064          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5065          * as if this field is 0 for all purposes other than a direct
5066          * read or write access of HCR_EL2".  With lots of enumeration
5067          * on a per-field basis.  In current QEMU, this is condition
5068          * is arm_is_secure_below_el3.
5069          *
5070          * Since the v8.4 language applies to the entire register, and
5071          * appears to be backward compatible, use that.
5072          */
5073         ret = 0;
5074     } else if (ret & HCR_TGE) {
5075         /* These bits are up-to-date as of ARMv8.4.  */
5076         if (ret & HCR_E2H) {
5077             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5078                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5079                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5080                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
5081         } else {
5082             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5083         }
5084         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5085                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5086                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5087                  HCR_TLOR);
5088     }
5089 
5090     return ret;
5091 }
5092 
5093 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5094                            uint64_t value)
5095 {
5096     /*
5097      * For A-profile AArch32 EL3, if NSACR.CP10
5098      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5099      */
5100     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5101         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5102         value &= ~(0x3 << 10);
5103         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5104     }
5105     env->cp15.cptr_el[2] = value;
5106 }
5107 
5108 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5109 {
5110     /*
5111      * For A-profile AArch32 EL3, if NSACR.CP10
5112      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5113      */
5114     uint64_t value = env->cp15.cptr_el[2];
5115 
5116     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5117         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5118         value |= 0x3 << 10;
5119     }
5120     return value;
5121 }
5122 
5123 static const ARMCPRegInfo el2_cp_reginfo[] = {
5124     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5125       .type = ARM_CP_IO,
5126       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5127       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5128       .writefn = hcr_write },
5129     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5130       .type = ARM_CP_ALIAS | ARM_CP_IO,
5131       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5132       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5133       .writefn = hcr_writelow },
5134     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5135       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5136       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5137     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5138       .type = ARM_CP_ALIAS,
5139       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5140       .access = PL2_RW,
5141       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5142     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5143       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5144       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5145     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5146       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5147       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5148     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5149       .type = ARM_CP_ALIAS,
5150       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5151       .access = PL2_RW,
5152       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5153     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5154       .type = ARM_CP_ALIAS,
5155       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5156       .access = PL2_RW,
5157       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5158     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5159       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5160       .access = PL2_RW, .writefn = vbar_write,
5161       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5162       .resetvalue = 0 },
5163     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5164       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5165       .access = PL3_RW, .type = ARM_CP_ALIAS,
5166       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5167     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5168       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5169       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5170       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5171       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5172     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5173       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5174       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5175       .resetvalue = 0 },
5176     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5177       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5178       .access = PL2_RW, .type = ARM_CP_ALIAS,
5179       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5180     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5181       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5182       .access = PL2_RW, .type = ARM_CP_CONST,
5183       .resetvalue = 0 },
5184     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5185     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5186       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5187       .access = PL2_RW, .type = ARM_CP_CONST,
5188       .resetvalue = 0 },
5189     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5190       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5191       .access = PL2_RW, .type = ARM_CP_CONST,
5192       .resetvalue = 0 },
5193     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5194       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5195       .access = PL2_RW, .type = ARM_CP_CONST,
5196       .resetvalue = 0 },
5197     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5198       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5199       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5200       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5201       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5202     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5203       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5204       .type = ARM_CP_ALIAS,
5205       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5206       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5207     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5208       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5209       .access = PL2_RW,
5210       /* no .writefn needed as this can't cause an ASID change;
5211        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5212        */
5213       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5214     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5215       .cp = 15, .opc1 = 6, .crm = 2,
5216       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5217       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5218       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5219       .writefn = vttbr_write },
5220     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5221       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5222       .access = PL2_RW, .writefn = vttbr_write,
5223       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5224     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5225       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5226       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5227       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5228     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5229       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5230       .access = PL2_RW, .resetvalue = 0,
5231       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5232     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5233       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5234       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5235       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5236     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5237       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5238       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5239     { .name = "TLBIALLNSNH",
5240       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5241       .type = ARM_CP_NO_RAW, .access = PL2_W,
5242       .writefn = tlbiall_nsnh_write },
5243     { .name = "TLBIALLNSNHIS",
5244       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5245       .type = ARM_CP_NO_RAW, .access = PL2_W,
5246       .writefn = tlbiall_nsnh_is_write },
5247     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5248       .type = ARM_CP_NO_RAW, .access = PL2_W,
5249       .writefn = tlbiall_hyp_write },
5250     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5251       .type = ARM_CP_NO_RAW, .access = PL2_W,
5252       .writefn = tlbiall_hyp_is_write },
5253     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5254       .type = ARM_CP_NO_RAW, .access = PL2_W,
5255       .writefn = tlbimva_hyp_write },
5256     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5257       .type = ARM_CP_NO_RAW, .access = PL2_W,
5258       .writefn = tlbimva_hyp_is_write },
5259     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5260       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5261       .type = ARM_CP_NO_RAW, .access = PL2_W,
5262       .writefn = tlbi_aa64_alle2_write },
5263     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5264       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5265       .type = ARM_CP_NO_RAW, .access = PL2_W,
5266       .writefn = tlbi_aa64_vae2_write },
5267     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5268       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5269       .access = PL2_W, .type = ARM_CP_NO_RAW,
5270       .writefn = tlbi_aa64_vae2_write },
5271     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5272       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5273       .access = PL2_W, .type = ARM_CP_NO_RAW,
5274       .writefn = tlbi_aa64_alle2is_write },
5275     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5276       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5277       .type = ARM_CP_NO_RAW, .access = PL2_W,
5278       .writefn = tlbi_aa64_vae2is_write },
5279     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5280       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5281       .access = PL2_W, .type = ARM_CP_NO_RAW,
5282       .writefn = tlbi_aa64_vae2is_write },
5283 #ifndef CONFIG_USER_ONLY
5284     /* Unlike the other EL2-related AT operations, these must
5285      * UNDEF from EL3 if EL2 is not implemented, which is why we
5286      * define them here rather than with the rest of the AT ops.
5287      */
5288     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5289       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5290       .access = PL2_W, .accessfn = at_s1e2_access,
5291       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5292     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5293       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5294       .access = PL2_W, .accessfn = at_s1e2_access,
5295       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5296     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5297      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5298      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5299      * to behave as if SCR.NS was 1.
5300      */
5301     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5302       .access = PL2_W,
5303       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5304     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5305       .access = PL2_W,
5306       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5307     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5308       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5309       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5310        * reset values as IMPDEF. We choose to reset to 3 to comply with
5311        * both ARMv7 and ARMv8.
5312        */
5313       .access = PL2_RW, .resetvalue = 3,
5314       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5315     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5316       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5317       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5318       .writefn = gt_cntvoff_write,
5319       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5320     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5321       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5322       .writefn = gt_cntvoff_write,
5323       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5324     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5325       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5326       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5327       .type = ARM_CP_IO, .access = PL2_RW,
5328       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5329     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5330       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5331       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5332       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5333     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5334       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5335       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5336       .resetfn = gt_hyp_timer_reset,
5337       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5338     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5339       .type = ARM_CP_IO,
5340       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5341       .access = PL2_RW,
5342       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5343       .resetvalue = 0,
5344       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5345 #endif
5346     /* The only field of MDCR_EL2 that has a defined architectural reset value
5347      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5348      * don't implement any PMU event counters, so using zero as a reset
5349      * value for MDCR_EL2 is okay
5350      */
5351     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5352       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5353       .access = PL2_RW, .resetvalue = 0,
5354       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5355     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5356       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5357       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5358       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5359     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5360       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5361       .access = PL2_RW,
5362       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5363     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5364       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5365       .access = PL2_RW,
5366       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5367     REGINFO_SENTINEL
5368 };
5369 
5370 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5371     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5372       .type = ARM_CP_ALIAS | ARM_CP_IO,
5373       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5374       .access = PL2_RW,
5375       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5376       .writefn = hcr_writehigh },
5377     REGINFO_SENTINEL
5378 };
5379 
5380 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5381                                    bool isread)
5382 {
5383     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5384      * At Secure EL1 it traps to EL3.
5385      */
5386     if (arm_current_el(env) == 3) {
5387         return CP_ACCESS_OK;
5388     }
5389     if (arm_is_secure_below_el3(env)) {
5390         return CP_ACCESS_TRAP_EL3;
5391     }
5392     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5393     if (isread) {
5394         return CP_ACCESS_OK;
5395     }
5396     return CP_ACCESS_TRAP_UNCATEGORIZED;
5397 }
5398 
5399 static const ARMCPRegInfo el3_cp_reginfo[] = {
5400     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5401       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5402       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5403       .resetvalue = 0, .writefn = scr_write },
5404     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5405       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5406       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5407       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5408       .writefn = scr_write },
5409     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5410       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5411       .access = PL3_RW, .resetvalue = 0,
5412       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5413     { .name = "SDER",
5414       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5415       .access = PL3_RW, .resetvalue = 0,
5416       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5417     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5418       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5419       .writefn = vbar_write, .resetvalue = 0,
5420       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5421     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5422       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5423       .access = PL3_RW, .resetvalue = 0,
5424       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5425     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5426       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5427       .access = PL3_RW,
5428       /* no .writefn needed as this can't cause an ASID change;
5429        * we must provide a .raw_writefn and .resetfn because we handle
5430        * reset and migration for the AArch32 TTBCR(S), which might be
5431        * using mask and base_mask.
5432        */
5433       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5434       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5435     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5436       .type = ARM_CP_ALIAS,
5437       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5438       .access = PL3_RW,
5439       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5440     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5441       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5442       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5443     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5444       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5445       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5446     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5447       .type = ARM_CP_ALIAS,
5448       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5449       .access = PL3_RW,
5450       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5451     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5452       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5453       .access = PL3_RW, .writefn = vbar_write,
5454       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5455       .resetvalue = 0 },
5456     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5457       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5458       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5459       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5460     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5462       .access = PL3_RW, .resetvalue = 0,
5463       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5464     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5465       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5466       .access = PL3_RW, .type = ARM_CP_CONST,
5467       .resetvalue = 0 },
5468     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5469       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5470       .access = PL3_RW, .type = ARM_CP_CONST,
5471       .resetvalue = 0 },
5472     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5473       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5474       .access = PL3_RW, .type = ARM_CP_CONST,
5475       .resetvalue = 0 },
5476     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5477       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5478       .access = PL3_W, .type = ARM_CP_NO_RAW,
5479       .writefn = tlbi_aa64_alle3is_write },
5480     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5482       .access = PL3_W, .type = ARM_CP_NO_RAW,
5483       .writefn = tlbi_aa64_vae3is_write },
5484     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5485       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5486       .access = PL3_W, .type = ARM_CP_NO_RAW,
5487       .writefn = tlbi_aa64_vae3is_write },
5488     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5489       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5490       .access = PL3_W, .type = ARM_CP_NO_RAW,
5491       .writefn = tlbi_aa64_alle3_write },
5492     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5493       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5494       .access = PL3_W, .type = ARM_CP_NO_RAW,
5495       .writefn = tlbi_aa64_vae3_write },
5496     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5497       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5498       .access = PL3_W, .type = ARM_CP_NO_RAW,
5499       .writefn = tlbi_aa64_vae3_write },
5500     REGINFO_SENTINEL
5501 };
5502 
5503 #ifndef CONFIG_USER_ONLY
5504 /* Test if system register redirection is to occur in the current state.  */
5505 static bool redirect_for_e2h(CPUARMState *env)
5506 {
5507     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5508 }
5509 
5510 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5511 {
5512     CPReadFn *readfn;
5513 
5514     if (redirect_for_e2h(env)) {
5515         /* Switch to the saved EL2 version of the register.  */
5516         ri = ri->opaque;
5517         readfn = ri->readfn;
5518     } else {
5519         readfn = ri->orig_readfn;
5520     }
5521     if (readfn == NULL) {
5522         readfn = raw_read;
5523     }
5524     return readfn(env, ri);
5525 }
5526 
5527 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5528                           uint64_t value)
5529 {
5530     CPWriteFn *writefn;
5531 
5532     if (redirect_for_e2h(env)) {
5533         /* Switch to the saved EL2 version of the register.  */
5534         ri = ri->opaque;
5535         writefn = ri->writefn;
5536     } else {
5537         writefn = ri->orig_writefn;
5538     }
5539     if (writefn == NULL) {
5540         writefn = raw_write;
5541     }
5542     writefn(env, ri, value);
5543 }
5544 
5545 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5546 {
5547     struct E2HAlias {
5548         uint32_t src_key, dst_key, new_key;
5549         const char *src_name, *dst_name, *new_name;
5550         bool (*feature)(const ARMISARegisters *id);
5551     };
5552 
5553 #define K(op0, op1, crn, crm, op2) \
5554     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5555 
5556     static const struct E2HAlias aliases[] = {
5557         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5558           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5559         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5560           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5561         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5562           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5563         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5564           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5565         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5566           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5567         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5568           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5569         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5570           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5571         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5572           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5573         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5574           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5575         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5576           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5577         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5578           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5579         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5580           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5581         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5582           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5583         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5584           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5585         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5586           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5587         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5588           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5589 
5590         /*
5591          * Note that redirection of ZCR is mentioned in the description
5592          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5593          * not in the summary table.
5594          */
5595         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5596           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5597 
5598         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5599         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5600     };
5601 #undef K
5602 
5603     size_t i;
5604 
5605     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5606         const struct E2HAlias *a = &aliases[i];
5607         ARMCPRegInfo *src_reg, *dst_reg;
5608 
5609         if (a->feature && !a->feature(&cpu->isar)) {
5610             continue;
5611         }
5612 
5613         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5614         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5615         g_assert(src_reg != NULL);
5616         g_assert(dst_reg != NULL);
5617 
5618         /* Cross-compare names to detect typos in the keys.  */
5619         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5620         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5621 
5622         /* None of the core system registers use opaque; we will.  */
5623         g_assert(src_reg->opaque == NULL);
5624 
5625         /* Create alias before redirection so we dup the right data. */
5626         if (a->new_key) {
5627             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5628             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5629             bool ok;
5630 
5631             new_reg->name = a->new_name;
5632             new_reg->type |= ARM_CP_ALIAS;
5633             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5634             new_reg->access &= PL2_RW | PL3_RW;
5635 
5636             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5637             g_assert(ok);
5638         }
5639 
5640         src_reg->opaque = dst_reg;
5641         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5642         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5643         if (!src_reg->raw_readfn) {
5644             src_reg->raw_readfn = raw_read;
5645         }
5646         if (!src_reg->raw_writefn) {
5647             src_reg->raw_writefn = raw_write;
5648         }
5649         src_reg->readfn = el2_e2h_read;
5650         src_reg->writefn = el2_e2h_write;
5651     }
5652 }
5653 #endif
5654 
5655 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5656                                      bool isread)
5657 {
5658     int cur_el = arm_current_el(env);
5659 
5660     if (cur_el < 2) {
5661         uint64_t hcr = arm_hcr_el2_eff(env);
5662 
5663         if (cur_el == 0) {
5664             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5665                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5666                     return CP_ACCESS_TRAP_EL2;
5667                 }
5668             } else {
5669                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5670                     return CP_ACCESS_TRAP;
5671                 }
5672                 if (hcr & HCR_TID2) {
5673                     return CP_ACCESS_TRAP_EL2;
5674                 }
5675             }
5676         } else if (hcr & HCR_TID2) {
5677             return CP_ACCESS_TRAP_EL2;
5678         }
5679     }
5680 
5681     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5682         return CP_ACCESS_TRAP_EL2;
5683     }
5684 
5685     return CP_ACCESS_OK;
5686 }
5687 
5688 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5689                         uint64_t value)
5690 {
5691     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5692      * read via a bit in OSLSR_EL1.
5693      */
5694     int oslock;
5695 
5696     if (ri->state == ARM_CP_STATE_AA32) {
5697         oslock = (value == 0xC5ACCE55);
5698     } else {
5699         oslock = value & 1;
5700     }
5701 
5702     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5703 }
5704 
5705 static const ARMCPRegInfo debug_cp_reginfo[] = {
5706     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5707      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5708      * unlike DBGDRAR it is never accessible from EL0.
5709      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5710      * accessor.
5711      */
5712     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5713       .access = PL0_R, .accessfn = access_tdra,
5714       .type = ARM_CP_CONST, .resetvalue = 0 },
5715     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5716       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5717       .access = PL1_R, .accessfn = access_tdra,
5718       .type = ARM_CP_CONST, .resetvalue = 0 },
5719     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5720       .access = PL0_R, .accessfn = access_tdra,
5721       .type = ARM_CP_CONST, .resetvalue = 0 },
5722     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5723     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5724       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5725       .access = PL1_RW, .accessfn = access_tda,
5726       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5727       .resetvalue = 0 },
5728     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5729      * We don't implement the configurable EL0 access.
5730      */
5731     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5732       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5733       .type = ARM_CP_ALIAS,
5734       .access = PL1_R, .accessfn = access_tda,
5735       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5736     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5737       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5738       .access = PL1_W, .type = ARM_CP_NO_RAW,
5739       .accessfn = access_tdosa,
5740       .writefn = oslar_write },
5741     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5742       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5743       .access = PL1_R, .resetvalue = 10,
5744       .accessfn = access_tdosa,
5745       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5746     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5747     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5748       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5749       .access = PL1_RW, .accessfn = access_tdosa,
5750       .type = ARM_CP_NOP },
5751     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5752      * implement vector catch debug events yet.
5753      */
5754     { .name = "DBGVCR",
5755       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5756       .access = PL1_RW, .accessfn = access_tda,
5757       .type = ARM_CP_NOP },
5758     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5759      * to save and restore a 32-bit guest's DBGVCR)
5760      */
5761     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5762       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5763       .access = PL2_RW, .accessfn = access_tda,
5764       .type = ARM_CP_NOP },
5765     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5766      * Channel but Linux may try to access this register. The 32-bit
5767      * alias is DBGDCCINT.
5768      */
5769     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5770       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5771       .access = PL1_RW, .accessfn = access_tda,
5772       .type = ARM_CP_NOP },
5773     REGINFO_SENTINEL
5774 };
5775 
5776 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5777     /* 64 bit access versions of the (dummy) debug registers */
5778     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5779       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5780     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5781       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5782     REGINFO_SENTINEL
5783 };
5784 
5785 /* Return the exception level to which exceptions should be taken
5786  * via SVEAccessTrap.  If an exception should be routed through
5787  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5788  * take care of raising that exception.
5789  * C.f. the ARM pseudocode function CheckSVEEnabled.
5790  */
5791 int sve_exception_el(CPUARMState *env, int el)
5792 {
5793 #ifndef CONFIG_USER_ONLY
5794     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
5795 
5796     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
5797         bool disabled = false;
5798 
5799         /* The CPACR.ZEN controls traps to EL1:
5800          * 0, 2 : trap EL0 and EL1 accesses
5801          * 1    : trap only EL0 accesses
5802          * 3    : trap no accesses
5803          */
5804         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5805             disabled = true;
5806         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5807             disabled = el == 0;
5808         }
5809         if (disabled) {
5810             /* route_to_el2 */
5811             return hcr_el2 & HCR_TGE ? 2 : 1;
5812         }
5813 
5814         /* Check CPACR.FPEN.  */
5815         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5816             disabled = true;
5817         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5818             disabled = el == 0;
5819         }
5820         if (disabled) {
5821             return 0;
5822         }
5823     }
5824 
5825     /* CPTR_EL2.  Since TZ and TFP are positive,
5826      * they will be zero when EL2 is not present.
5827      */
5828     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5829         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5830             return 2;
5831         }
5832         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5833             return 0;
5834         }
5835     }
5836 
5837     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5838     if (arm_feature(env, ARM_FEATURE_EL3)
5839         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5840         return 3;
5841     }
5842 #endif
5843     return 0;
5844 }
5845 
5846 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5847 {
5848     uint32_t end_len;
5849 
5850     end_len = start_len &= 0xf;
5851     if (!test_bit(start_len, cpu->sve_vq_map)) {
5852         end_len = find_last_bit(cpu->sve_vq_map, start_len);
5853         assert(end_len < start_len);
5854     }
5855     return end_len;
5856 }
5857 
5858 /*
5859  * Given that SVE is enabled, return the vector length for EL.
5860  */
5861 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5862 {
5863     ARMCPU *cpu = env_archcpu(env);
5864     uint32_t zcr_len = cpu->sve_max_vq - 1;
5865 
5866     if (el <= 1) {
5867         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5868     }
5869     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5870         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5871     }
5872     if (arm_feature(env, ARM_FEATURE_EL3)) {
5873         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5874     }
5875 
5876     return sve_zcr_get_valid_len(cpu, zcr_len);
5877 }
5878 
5879 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5880                       uint64_t value)
5881 {
5882     int cur_el = arm_current_el(env);
5883     int old_len = sve_zcr_len_for_el(env, cur_el);
5884     int new_len;
5885 
5886     /* Bits other than [3:0] are RAZ/WI.  */
5887     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
5888     raw_write(env, ri, value & 0xf);
5889 
5890     /*
5891      * Because we arrived here, we know both FP and SVE are enabled;
5892      * otherwise we would have trapped access to the ZCR_ELn register.
5893      */
5894     new_len = sve_zcr_len_for_el(env, cur_el);
5895     if (new_len < old_len) {
5896         aarch64_sve_narrow_vq(env, new_len + 1);
5897     }
5898 }
5899 
5900 static const ARMCPRegInfo zcr_el1_reginfo = {
5901     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5902     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5903     .access = PL1_RW, .type = ARM_CP_SVE,
5904     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5905     .writefn = zcr_write, .raw_writefn = raw_write
5906 };
5907 
5908 static const ARMCPRegInfo zcr_el2_reginfo = {
5909     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5910     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5911     .access = PL2_RW, .type = ARM_CP_SVE,
5912     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5913     .writefn = zcr_write, .raw_writefn = raw_write
5914 };
5915 
5916 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5917     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5918     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5919     .access = PL2_RW, .type = ARM_CP_SVE,
5920     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5921 };
5922 
5923 static const ARMCPRegInfo zcr_el3_reginfo = {
5924     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5925     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5926     .access = PL3_RW, .type = ARM_CP_SVE,
5927     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5928     .writefn = zcr_write, .raw_writefn = raw_write
5929 };
5930 
5931 void hw_watchpoint_update(ARMCPU *cpu, int n)
5932 {
5933     CPUARMState *env = &cpu->env;
5934     vaddr len = 0;
5935     vaddr wvr = env->cp15.dbgwvr[n];
5936     uint64_t wcr = env->cp15.dbgwcr[n];
5937     int mask;
5938     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5939 
5940     if (env->cpu_watchpoint[n]) {
5941         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5942         env->cpu_watchpoint[n] = NULL;
5943     }
5944 
5945     if (!extract64(wcr, 0, 1)) {
5946         /* E bit clear : watchpoint disabled */
5947         return;
5948     }
5949 
5950     switch (extract64(wcr, 3, 2)) {
5951     case 0:
5952         /* LSC 00 is reserved and must behave as if the wp is disabled */
5953         return;
5954     case 1:
5955         flags |= BP_MEM_READ;
5956         break;
5957     case 2:
5958         flags |= BP_MEM_WRITE;
5959         break;
5960     case 3:
5961         flags |= BP_MEM_ACCESS;
5962         break;
5963     }
5964 
5965     /* Attempts to use both MASK and BAS fields simultaneously are
5966      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5967      * thus generating a watchpoint for every byte in the masked region.
5968      */
5969     mask = extract64(wcr, 24, 4);
5970     if (mask == 1 || mask == 2) {
5971         /* Reserved values of MASK; we must act as if the mask value was
5972          * some non-reserved value, or as if the watchpoint were disabled.
5973          * We choose the latter.
5974          */
5975         return;
5976     } else if (mask) {
5977         /* Watchpoint covers an aligned area up to 2GB in size */
5978         len = 1ULL << mask;
5979         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5980          * whether the watchpoint fires when the unmasked bits match; we opt
5981          * to generate the exceptions.
5982          */
5983         wvr &= ~(len - 1);
5984     } else {
5985         /* Watchpoint covers bytes defined by the byte address select bits */
5986         int bas = extract64(wcr, 5, 8);
5987         int basstart;
5988 
5989         if (bas == 0) {
5990             /* This must act as if the watchpoint is disabled */
5991             return;
5992         }
5993 
5994         if (extract64(wvr, 2, 1)) {
5995             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5996              * ignored, and BAS[3:0] define which bytes to watch.
5997              */
5998             bas &= 0xf;
5999         }
6000         /* The BAS bits are supposed to be programmed to indicate a contiguous
6001          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6002          * we fire for each byte in the word/doubleword addressed by the WVR.
6003          * We choose to ignore any non-zero bits after the first range of 1s.
6004          */
6005         basstart = ctz32(bas);
6006         len = cto32(bas >> basstart);
6007         wvr += basstart;
6008     }
6009 
6010     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6011                           &env->cpu_watchpoint[n]);
6012 }
6013 
6014 void hw_watchpoint_update_all(ARMCPU *cpu)
6015 {
6016     int i;
6017     CPUARMState *env = &cpu->env;
6018 
6019     /* Completely clear out existing QEMU watchpoints and our array, to
6020      * avoid possible stale entries following migration load.
6021      */
6022     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6023     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6024 
6025     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6026         hw_watchpoint_update(cpu, i);
6027     }
6028 }
6029 
6030 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6031                          uint64_t value)
6032 {
6033     ARMCPU *cpu = env_archcpu(env);
6034     int i = ri->crm;
6035 
6036     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6037      * register reads and behaves as if values written are sign extended.
6038      * Bits [1:0] are RES0.
6039      */
6040     value = sextract64(value, 0, 49) & ~3ULL;
6041 
6042     raw_write(env, ri, value);
6043     hw_watchpoint_update(cpu, i);
6044 }
6045 
6046 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6047                          uint64_t value)
6048 {
6049     ARMCPU *cpu = env_archcpu(env);
6050     int i = ri->crm;
6051 
6052     raw_write(env, ri, value);
6053     hw_watchpoint_update(cpu, i);
6054 }
6055 
6056 void hw_breakpoint_update(ARMCPU *cpu, int n)
6057 {
6058     CPUARMState *env = &cpu->env;
6059     uint64_t bvr = env->cp15.dbgbvr[n];
6060     uint64_t bcr = env->cp15.dbgbcr[n];
6061     vaddr addr;
6062     int bt;
6063     int flags = BP_CPU;
6064 
6065     if (env->cpu_breakpoint[n]) {
6066         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6067         env->cpu_breakpoint[n] = NULL;
6068     }
6069 
6070     if (!extract64(bcr, 0, 1)) {
6071         /* E bit clear : watchpoint disabled */
6072         return;
6073     }
6074 
6075     bt = extract64(bcr, 20, 4);
6076 
6077     switch (bt) {
6078     case 4: /* unlinked address mismatch (reserved if AArch64) */
6079     case 5: /* linked address mismatch (reserved if AArch64) */
6080         qemu_log_mask(LOG_UNIMP,
6081                       "arm: address mismatch breakpoint types not implemented\n");
6082         return;
6083     case 0: /* unlinked address match */
6084     case 1: /* linked address match */
6085     {
6086         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6087          * we behave as if the register was sign extended. Bits [1:0] are
6088          * RES0. The BAS field is used to allow setting breakpoints on 16
6089          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6090          * a bp will fire if the addresses covered by the bp and the addresses
6091          * covered by the insn overlap but the insn doesn't start at the
6092          * start of the bp address range. We choose to require the insn and
6093          * the bp to have the same address. The constraints on writing to
6094          * BAS enforced in dbgbcr_write mean we have only four cases:
6095          *  0b0000  => no breakpoint
6096          *  0b0011  => breakpoint on addr
6097          *  0b1100  => breakpoint on addr + 2
6098          *  0b1111  => breakpoint on addr
6099          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6100          */
6101         int bas = extract64(bcr, 5, 4);
6102         addr = sextract64(bvr, 0, 49) & ~3ULL;
6103         if (bas == 0) {
6104             return;
6105         }
6106         if (bas == 0xc) {
6107             addr += 2;
6108         }
6109         break;
6110     }
6111     case 2: /* unlinked context ID match */
6112     case 8: /* unlinked VMID match (reserved if no EL2) */
6113     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6114         qemu_log_mask(LOG_UNIMP,
6115                       "arm: unlinked context breakpoint types not implemented\n");
6116         return;
6117     case 9: /* linked VMID match (reserved if no EL2) */
6118     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6119     case 3: /* linked context ID match */
6120     default:
6121         /* We must generate no events for Linked context matches (unless
6122          * they are linked to by some other bp/wp, which is handled in
6123          * updates for the linking bp/wp). We choose to also generate no events
6124          * for reserved values.
6125          */
6126         return;
6127     }
6128 
6129     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6130 }
6131 
6132 void hw_breakpoint_update_all(ARMCPU *cpu)
6133 {
6134     int i;
6135     CPUARMState *env = &cpu->env;
6136 
6137     /* Completely clear out existing QEMU breakpoints and our array, to
6138      * avoid possible stale entries following migration load.
6139      */
6140     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6141     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6142 
6143     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6144         hw_breakpoint_update(cpu, i);
6145     }
6146 }
6147 
6148 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6149                          uint64_t value)
6150 {
6151     ARMCPU *cpu = env_archcpu(env);
6152     int i = ri->crm;
6153 
6154     raw_write(env, ri, value);
6155     hw_breakpoint_update(cpu, i);
6156 }
6157 
6158 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6159                          uint64_t value)
6160 {
6161     ARMCPU *cpu = env_archcpu(env);
6162     int i = ri->crm;
6163 
6164     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6165      * copy of BAS[0].
6166      */
6167     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6168     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6169 
6170     raw_write(env, ri, value);
6171     hw_breakpoint_update(cpu, i);
6172 }
6173 
6174 static void define_debug_regs(ARMCPU *cpu)
6175 {
6176     /* Define v7 and v8 architectural debug registers.
6177      * These are just dummy implementations for now.
6178      */
6179     int i;
6180     int wrps, brps, ctx_cmps;
6181     ARMCPRegInfo dbgdidr = {
6182         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6183         .access = PL0_R, .accessfn = access_tda,
6184         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
6185     };
6186 
6187     /* Note that all these register fields hold "number of Xs minus 1". */
6188     brps = extract32(cpu->dbgdidr, 24, 4);
6189     wrps = extract32(cpu->dbgdidr, 28, 4);
6190     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
6191 
6192     assert(ctx_cmps <= brps);
6193 
6194     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
6195      * of the debug registers such as number of breakpoints;
6196      * check that if they both exist then they agree.
6197      */
6198     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
6199         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
6200         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
6201         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
6202     }
6203 
6204     define_one_arm_cp_reg(cpu, &dbgdidr);
6205     define_arm_cp_regs(cpu, debug_cp_reginfo);
6206 
6207     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6208         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6209     }
6210 
6211     for (i = 0; i < brps + 1; i++) {
6212         ARMCPRegInfo dbgregs[] = {
6213             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6214               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6215               .access = PL1_RW, .accessfn = access_tda,
6216               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6217               .writefn = dbgbvr_write, .raw_writefn = raw_write
6218             },
6219             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6220               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6221               .access = PL1_RW, .accessfn = access_tda,
6222               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6223               .writefn = dbgbcr_write, .raw_writefn = raw_write
6224             },
6225             REGINFO_SENTINEL
6226         };
6227         define_arm_cp_regs(cpu, dbgregs);
6228     }
6229 
6230     for (i = 0; i < wrps + 1; i++) {
6231         ARMCPRegInfo dbgregs[] = {
6232             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6233               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6234               .access = PL1_RW, .accessfn = access_tda,
6235               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6236               .writefn = dbgwvr_write, .raw_writefn = raw_write
6237             },
6238             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6239               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6240               .access = PL1_RW, .accessfn = access_tda,
6241               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6242               .writefn = dbgwcr_write, .raw_writefn = raw_write
6243             },
6244             REGINFO_SENTINEL
6245         };
6246         define_arm_cp_regs(cpu, dbgregs);
6247     }
6248 }
6249 
6250 /* We don't know until after realize whether there's a GICv3
6251  * attached, and that is what registers the gicv3 sysregs.
6252  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6253  * at runtime.
6254  */
6255 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6256 {
6257     ARMCPU *cpu = env_archcpu(env);
6258     uint64_t pfr1 = cpu->id_pfr1;
6259 
6260     if (env->gicv3state) {
6261         pfr1 |= 1 << 28;
6262     }
6263     return pfr1;
6264 }
6265 
6266 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6267 {
6268     ARMCPU *cpu = env_archcpu(env);
6269     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6270 
6271     if (env->gicv3state) {
6272         pfr0 |= 1 << 24;
6273     }
6274     return pfr0;
6275 }
6276 
6277 /* Shared logic between LORID and the rest of the LOR* registers.
6278  * Secure state has already been delt with.
6279  */
6280 static CPAccessResult access_lor_ns(CPUARMState *env)
6281 {
6282     int el = arm_current_el(env);
6283 
6284     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6285         return CP_ACCESS_TRAP_EL2;
6286     }
6287     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6288         return CP_ACCESS_TRAP_EL3;
6289     }
6290     return CP_ACCESS_OK;
6291 }
6292 
6293 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6294                                    bool isread)
6295 {
6296     if (arm_is_secure_below_el3(env)) {
6297         /* Access ok in secure mode.  */
6298         return CP_ACCESS_OK;
6299     }
6300     return access_lor_ns(env);
6301 }
6302 
6303 static CPAccessResult access_lor_other(CPUARMState *env,
6304                                        const ARMCPRegInfo *ri, bool isread)
6305 {
6306     if (arm_is_secure_below_el3(env)) {
6307         /* Access denied in secure mode.  */
6308         return CP_ACCESS_TRAP;
6309     }
6310     return access_lor_ns(env);
6311 }
6312 
6313 #ifdef TARGET_AARCH64
6314 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6315                                    bool isread)
6316 {
6317     int el = arm_current_el(env);
6318 
6319     if (el < 2 &&
6320         arm_feature(env, ARM_FEATURE_EL2) &&
6321         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6322         return CP_ACCESS_TRAP_EL2;
6323     }
6324     if (el < 3 &&
6325         arm_feature(env, ARM_FEATURE_EL3) &&
6326         !(env->cp15.scr_el3 & SCR_APK)) {
6327         return CP_ACCESS_TRAP_EL3;
6328     }
6329     return CP_ACCESS_OK;
6330 }
6331 
6332 static const ARMCPRegInfo pauth_reginfo[] = {
6333     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6334       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6335       .access = PL1_RW, .accessfn = access_pauth,
6336       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6337     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6338       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6339       .access = PL1_RW, .accessfn = access_pauth,
6340       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6341     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6342       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6343       .access = PL1_RW, .accessfn = access_pauth,
6344       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6345     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6346       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6347       .access = PL1_RW, .accessfn = access_pauth,
6348       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6349     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6350       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6351       .access = PL1_RW, .accessfn = access_pauth,
6352       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6353     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6354       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6355       .access = PL1_RW, .accessfn = access_pauth,
6356       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6357     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6358       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6359       .access = PL1_RW, .accessfn = access_pauth,
6360       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6361     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6362       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6363       .access = PL1_RW, .accessfn = access_pauth,
6364       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6365     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6366       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6367       .access = PL1_RW, .accessfn = access_pauth,
6368       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6369     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6370       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6371       .access = PL1_RW, .accessfn = access_pauth,
6372       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6373     REGINFO_SENTINEL
6374 };
6375 
6376 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6377 {
6378     Error *err = NULL;
6379     uint64_t ret;
6380 
6381     /* Success sets NZCV = 0000.  */
6382     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6383 
6384     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6385         /*
6386          * ??? Failed, for unknown reasons in the crypto subsystem.
6387          * The best we can do is log the reason and return the
6388          * timed-out indication to the guest.  There is no reason
6389          * we know to expect this failure to be transitory, so the
6390          * guest may well hang retrying the operation.
6391          */
6392         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6393                       ri->name, error_get_pretty(err));
6394         error_free(err);
6395 
6396         env->ZF = 0; /* NZCF = 0100 */
6397         return 0;
6398     }
6399     return ret;
6400 }
6401 
6402 /* We do not support re-seeding, so the two registers operate the same.  */
6403 static const ARMCPRegInfo rndr_reginfo[] = {
6404     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6405       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6406       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6407       .access = PL0_R, .readfn = rndr_readfn },
6408     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6409       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6410       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6411       .access = PL0_R, .readfn = rndr_readfn },
6412     REGINFO_SENTINEL
6413 };
6414 
6415 #ifndef CONFIG_USER_ONLY
6416 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6417                           uint64_t value)
6418 {
6419     ARMCPU *cpu = env_archcpu(env);
6420     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6421     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6422     uint64_t vaddr_in = (uint64_t) value;
6423     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6424     void *haddr;
6425     int mem_idx = cpu_mmu_index(env, false);
6426 
6427     /* This won't be crossing page boundaries */
6428     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6429     if (haddr) {
6430 
6431         ram_addr_t offset;
6432         MemoryRegion *mr;
6433 
6434         /* RCU lock is already being held */
6435         mr = memory_region_from_host(haddr, &offset);
6436 
6437         if (mr) {
6438             memory_region_do_writeback(mr, offset, dline_size);
6439         }
6440     }
6441 }
6442 
6443 static const ARMCPRegInfo dcpop_reg[] = {
6444     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6445       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6446       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6447       .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6448     REGINFO_SENTINEL
6449 };
6450 
6451 static const ARMCPRegInfo dcpodp_reg[] = {
6452     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6453       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6454       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6455       .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6456     REGINFO_SENTINEL
6457 };
6458 #endif /*CONFIG_USER_ONLY*/
6459 
6460 #endif
6461 
6462 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6463                                      bool isread)
6464 {
6465     int el = arm_current_el(env);
6466 
6467     if (el == 0) {
6468         uint64_t sctlr = arm_sctlr(env, el);
6469         if (!(sctlr & SCTLR_EnRCTX)) {
6470             return CP_ACCESS_TRAP;
6471         }
6472     } else if (el == 1) {
6473         uint64_t hcr = arm_hcr_el2_eff(env);
6474         if (hcr & HCR_NV) {
6475             return CP_ACCESS_TRAP_EL2;
6476         }
6477     }
6478     return CP_ACCESS_OK;
6479 }
6480 
6481 static const ARMCPRegInfo predinv_reginfo[] = {
6482     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6483       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6484       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6485     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6486       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6487       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6488     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6489       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6490       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6491     /*
6492      * Note the AArch32 opcodes have a different OPC1.
6493      */
6494     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6495       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6496       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6497     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6498       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6499       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6500     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6501       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6502       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6503     REGINFO_SENTINEL
6504 };
6505 
6506 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6507                                        bool isread)
6508 {
6509     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6510         return CP_ACCESS_TRAP_EL2;
6511     }
6512 
6513     return CP_ACCESS_OK;
6514 }
6515 
6516 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6517                                        bool isread)
6518 {
6519     if (arm_feature(env, ARM_FEATURE_V8)) {
6520         return access_aa64_tid3(env, ri, isread);
6521     }
6522 
6523     return CP_ACCESS_OK;
6524 }
6525 
6526 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6527                                      bool isread)
6528 {
6529     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6530         return CP_ACCESS_TRAP_EL2;
6531     }
6532 
6533     return CP_ACCESS_OK;
6534 }
6535 
6536 static const ARMCPRegInfo jazelle_regs[] = {
6537     { .name = "JIDR",
6538       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6539       .access = PL1_R, .accessfn = access_jazelle,
6540       .type = ARM_CP_CONST, .resetvalue = 0 },
6541     { .name = "JOSCR",
6542       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6543       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6544     { .name = "JMCR",
6545       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6546       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6547     REGINFO_SENTINEL
6548 };
6549 
6550 static const ARMCPRegInfo vhe_reginfo[] = {
6551     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6552       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6553       .access = PL2_RW,
6554       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6555     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6556       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6557       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6558       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6559 #ifndef CONFIG_USER_ONLY
6560     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6561       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6562       .fieldoffset =
6563         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6564       .type = ARM_CP_IO, .access = PL2_RW,
6565       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6566     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6567       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6568       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6569       .resetfn = gt_hv_timer_reset,
6570       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6571     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6572       .type = ARM_CP_IO,
6573       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6574       .access = PL2_RW,
6575       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6576       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6577     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6578       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6579       .type = ARM_CP_IO | ARM_CP_ALIAS,
6580       .access = PL2_RW, .accessfn = e2h_access,
6581       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6582       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6583     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6584       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6585       .type = ARM_CP_IO | ARM_CP_ALIAS,
6586       .access = PL2_RW, .accessfn = e2h_access,
6587       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
6588       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
6589     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6590       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
6591       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6592       .access = PL2_RW, .accessfn = e2h_access,
6593       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
6594     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6595       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
6596       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6597       .access = PL2_RW, .accessfn = e2h_access,
6598       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
6599     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6600       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
6601       .type = ARM_CP_IO | ARM_CP_ALIAS,
6602       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
6603       .access = PL2_RW, .accessfn = e2h_access,
6604       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
6605     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6606       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
6607       .type = ARM_CP_IO | ARM_CP_ALIAS,
6608       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
6609       .access = PL2_RW, .accessfn = e2h_access,
6610       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
6611 #endif
6612     REGINFO_SENTINEL
6613 };
6614 
6615 void register_cp_regs_for_features(ARMCPU *cpu)
6616 {
6617     /* Register all the coprocessor registers based on feature bits */
6618     CPUARMState *env = &cpu->env;
6619     if (arm_feature(env, ARM_FEATURE_M)) {
6620         /* M profile has no coprocessor registers */
6621         return;
6622     }
6623 
6624     define_arm_cp_regs(cpu, cp_reginfo);
6625     if (!arm_feature(env, ARM_FEATURE_V8)) {
6626         /* Must go early as it is full of wildcards that may be
6627          * overridden by later definitions.
6628          */
6629         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6630     }
6631 
6632     if (arm_feature(env, ARM_FEATURE_V6)) {
6633         /* The ID registers all have impdef reset values */
6634         ARMCPRegInfo v6_idregs[] = {
6635             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6636               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6637               .access = PL1_R, .type = ARM_CP_CONST,
6638               .accessfn = access_aa32_tid3,
6639               .resetvalue = cpu->id_pfr0 },
6640             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6641              * the value of the GIC field until after we define these regs.
6642              */
6643             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6644               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6645               .access = PL1_R, .type = ARM_CP_NO_RAW,
6646               .accessfn = access_aa32_tid3,
6647               .readfn = id_pfr1_read,
6648               .writefn = arm_cp_write_ignore },
6649             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6650               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6651               .access = PL1_R, .type = ARM_CP_CONST,
6652               .accessfn = access_aa32_tid3,
6653               .resetvalue = cpu->id_dfr0 },
6654             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6655               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6656               .access = PL1_R, .type = ARM_CP_CONST,
6657               .accessfn = access_aa32_tid3,
6658               .resetvalue = cpu->id_afr0 },
6659             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6660               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6661               .access = PL1_R, .type = ARM_CP_CONST,
6662               .accessfn = access_aa32_tid3,
6663               .resetvalue = cpu->id_mmfr0 },
6664             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6665               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6666               .access = PL1_R, .type = ARM_CP_CONST,
6667               .accessfn = access_aa32_tid3,
6668               .resetvalue = cpu->id_mmfr1 },
6669             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6670               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6671               .access = PL1_R, .type = ARM_CP_CONST,
6672               .accessfn = access_aa32_tid3,
6673               .resetvalue = cpu->id_mmfr2 },
6674             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6675               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6676               .access = PL1_R, .type = ARM_CP_CONST,
6677               .accessfn = access_aa32_tid3,
6678               .resetvalue = cpu->id_mmfr3 },
6679             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6680               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6681               .access = PL1_R, .type = ARM_CP_CONST,
6682               .accessfn = access_aa32_tid3,
6683               .resetvalue = cpu->isar.id_isar0 },
6684             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6685               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6686               .access = PL1_R, .type = ARM_CP_CONST,
6687               .accessfn = access_aa32_tid3,
6688               .resetvalue = cpu->isar.id_isar1 },
6689             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6690               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6691               .access = PL1_R, .type = ARM_CP_CONST,
6692               .accessfn = access_aa32_tid3,
6693               .resetvalue = cpu->isar.id_isar2 },
6694             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6695               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6696               .access = PL1_R, .type = ARM_CP_CONST,
6697               .accessfn = access_aa32_tid3,
6698               .resetvalue = cpu->isar.id_isar3 },
6699             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6700               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6701               .access = PL1_R, .type = ARM_CP_CONST,
6702               .accessfn = access_aa32_tid3,
6703               .resetvalue = cpu->isar.id_isar4 },
6704             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6705               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6706               .access = PL1_R, .type = ARM_CP_CONST,
6707               .accessfn = access_aa32_tid3,
6708               .resetvalue = cpu->isar.id_isar5 },
6709             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6710               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6711               .access = PL1_R, .type = ARM_CP_CONST,
6712               .accessfn = access_aa32_tid3,
6713               .resetvalue = cpu->id_mmfr4 },
6714             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6715               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6716               .access = PL1_R, .type = ARM_CP_CONST,
6717               .accessfn = access_aa32_tid3,
6718               .resetvalue = cpu->isar.id_isar6 },
6719             REGINFO_SENTINEL
6720         };
6721         define_arm_cp_regs(cpu, v6_idregs);
6722         define_arm_cp_regs(cpu, v6_cp_reginfo);
6723     } else {
6724         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6725     }
6726     if (arm_feature(env, ARM_FEATURE_V6K)) {
6727         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6728     }
6729     if (arm_feature(env, ARM_FEATURE_V7MP) &&
6730         !arm_feature(env, ARM_FEATURE_PMSA)) {
6731         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
6732     }
6733     if (arm_feature(env, ARM_FEATURE_V7VE)) {
6734         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
6735     }
6736     if (arm_feature(env, ARM_FEATURE_V7)) {
6737         /* v7 performance monitor control register: same implementor
6738          * field as main ID register, and we implement four counters in
6739          * addition to the cycle count register.
6740          */
6741         unsigned int i, pmcrn = 4;
6742         ARMCPRegInfo pmcr = {
6743             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6744             .access = PL0_RW,
6745             .type = ARM_CP_IO | ARM_CP_ALIAS,
6746             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6747             .accessfn = pmreg_access, .writefn = pmcr_write,
6748             .raw_writefn = raw_write,
6749         };
6750         ARMCPRegInfo pmcr64 = {
6751             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6752             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6753             .access = PL0_RW, .accessfn = pmreg_access,
6754             .type = ARM_CP_IO,
6755             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6756             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
6757             .writefn = pmcr_write, .raw_writefn = raw_write,
6758         };
6759         define_one_arm_cp_reg(cpu, &pmcr);
6760         define_one_arm_cp_reg(cpu, &pmcr64);
6761         for (i = 0; i < pmcrn; i++) {
6762             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6763             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6764             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6765             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6766             ARMCPRegInfo pmev_regs[] = {
6767                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6768                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6769                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6770                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6771                   .accessfn = pmreg_access },
6772                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6773                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6774                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6775                   .type = ARM_CP_IO,
6776                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6777                   .raw_readfn = pmevcntr_rawread,
6778                   .raw_writefn = pmevcntr_rawwrite },
6779                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6780                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6781                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6782                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6783                   .accessfn = pmreg_access },
6784                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6785                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6786                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6787                   .type = ARM_CP_IO,
6788                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6789                   .raw_writefn = pmevtyper_rawwrite },
6790                 REGINFO_SENTINEL
6791             };
6792             define_arm_cp_regs(cpu, pmev_regs);
6793             g_free(pmevcntr_name);
6794             g_free(pmevcntr_el0_name);
6795             g_free(pmevtyper_name);
6796             g_free(pmevtyper_el0_name);
6797         }
6798         ARMCPRegInfo clidr = {
6799             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
6800             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
6801             .access = PL1_R, .type = ARM_CP_CONST,
6802             .accessfn = access_aa64_tid2,
6803             .resetvalue = cpu->clidr
6804         };
6805         define_one_arm_cp_reg(cpu, &clidr);
6806         define_arm_cp_regs(cpu, v7_cp_reginfo);
6807         define_debug_regs(cpu);
6808     } else {
6809         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
6810     }
6811     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
6812             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
6813         ARMCPRegInfo v81_pmu_regs[] = {
6814             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6815               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6816               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6817               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6818             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6819               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6820               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6821               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6822             REGINFO_SENTINEL
6823         };
6824         define_arm_cp_regs(cpu, v81_pmu_regs);
6825     }
6826     if (arm_feature(env, ARM_FEATURE_V8)) {
6827         /* AArch64 ID registers, which all have impdef reset values.
6828          * Note that within the ID register ranges the unused slots
6829          * must all RAZ, not UNDEF; future architecture versions may
6830          * define new registers here.
6831          */
6832         ARMCPRegInfo v8_idregs[] = {
6833             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
6834              * know the right value for the GIC field until after we
6835              * define these regs.
6836              */
6837             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
6838               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
6839               .access = PL1_R, .type = ARM_CP_NO_RAW,
6840               .accessfn = access_aa64_tid3,
6841               .readfn = id_aa64pfr0_read,
6842               .writefn = arm_cp_write_ignore },
6843             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
6844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
6845               .access = PL1_R, .type = ARM_CP_CONST,
6846               .accessfn = access_aa64_tid3,
6847               .resetvalue = cpu->isar.id_aa64pfr1},
6848             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6849               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
6850               .access = PL1_R, .type = ARM_CP_CONST,
6851               .accessfn = access_aa64_tid3,
6852               .resetvalue = 0 },
6853             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6854               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
6855               .access = PL1_R, .type = ARM_CP_CONST,
6856               .accessfn = access_aa64_tid3,
6857               .resetvalue = 0 },
6858             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
6859               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
6860               .access = PL1_R, .type = ARM_CP_CONST,
6861               .accessfn = access_aa64_tid3,
6862               /* At present, only SVEver == 0 is defined anyway.  */
6863               .resetvalue = 0 },
6864             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6865               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
6866               .access = PL1_R, .type = ARM_CP_CONST,
6867               .accessfn = access_aa64_tid3,
6868               .resetvalue = 0 },
6869             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6870               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
6871               .access = PL1_R, .type = ARM_CP_CONST,
6872               .accessfn = access_aa64_tid3,
6873               .resetvalue = 0 },
6874             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6875               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
6876               .access = PL1_R, .type = ARM_CP_CONST,
6877               .accessfn = access_aa64_tid3,
6878               .resetvalue = 0 },
6879             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
6880               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
6881               .access = PL1_R, .type = ARM_CP_CONST,
6882               .accessfn = access_aa64_tid3,
6883               .resetvalue = cpu->id_aa64dfr0 },
6884             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
6885               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
6886               .access = PL1_R, .type = ARM_CP_CONST,
6887               .accessfn = access_aa64_tid3,
6888               .resetvalue = cpu->id_aa64dfr1 },
6889             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6890               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
6891               .access = PL1_R, .type = ARM_CP_CONST,
6892               .accessfn = access_aa64_tid3,
6893               .resetvalue = 0 },
6894             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6895               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
6896               .access = PL1_R, .type = ARM_CP_CONST,
6897               .accessfn = access_aa64_tid3,
6898               .resetvalue = 0 },
6899             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6900               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6901               .access = PL1_R, .type = ARM_CP_CONST,
6902               .accessfn = access_aa64_tid3,
6903               .resetvalue = cpu->id_aa64afr0 },
6904             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6905               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6906               .access = PL1_R, .type = ARM_CP_CONST,
6907               .accessfn = access_aa64_tid3,
6908               .resetvalue = cpu->id_aa64afr1 },
6909             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6911               .access = PL1_R, .type = ARM_CP_CONST,
6912               .accessfn = access_aa64_tid3,
6913               .resetvalue = 0 },
6914             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6915               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6916               .access = PL1_R, .type = ARM_CP_CONST,
6917               .accessfn = access_aa64_tid3,
6918               .resetvalue = 0 },
6919             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6920               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6921               .access = PL1_R, .type = ARM_CP_CONST,
6922               .accessfn = access_aa64_tid3,
6923               .resetvalue = cpu->isar.id_aa64isar0 },
6924             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6925               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6926               .access = PL1_R, .type = ARM_CP_CONST,
6927               .accessfn = access_aa64_tid3,
6928               .resetvalue = cpu->isar.id_aa64isar1 },
6929             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6931               .access = PL1_R, .type = ARM_CP_CONST,
6932               .accessfn = access_aa64_tid3,
6933               .resetvalue = 0 },
6934             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6935               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6936               .access = PL1_R, .type = ARM_CP_CONST,
6937               .accessfn = access_aa64_tid3,
6938               .resetvalue = 0 },
6939             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6940               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6941               .access = PL1_R, .type = ARM_CP_CONST,
6942               .accessfn = access_aa64_tid3,
6943               .resetvalue = 0 },
6944             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6945               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6946               .access = PL1_R, .type = ARM_CP_CONST,
6947               .accessfn = access_aa64_tid3,
6948               .resetvalue = 0 },
6949             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6951               .access = PL1_R, .type = ARM_CP_CONST,
6952               .accessfn = access_aa64_tid3,
6953               .resetvalue = 0 },
6954             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6956               .access = PL1_R, .type = ARM_CP_CONST,
6957               .accessfn = access_aa64_tid3,
6958               .resetvalue = 0 },
6959             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6960               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6961               .access = PL1_R, .type = ARM_CP_CONST,
6962               .accessfn = access_aa64_tid3,
6963               .resetvalue = cpu->isar.id_aa64mmfr0 },
6964             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6966               .access = PL1_R, .type = ARM_CP_CONST,
6967               .accessfn = access_aa64_tid3,
6968               .resetvalue = cpu->isar.id_aa64mmfr1 },
6969             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6971               .access = PL1_R, .type = ARM_CP_CONST,
6972               .accessfn = access_aa64_tid3,
6973               .resetvalue = 0 },
6974             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6975               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6976               .access = PL1_R, .type = ARM_CP_CONST,
6977               .accessfn = access_aa64_tid3,
6978               .resetvalue = 0 },
6979             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6980               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6981               .access = PL1_R, .type = ARM_CP_CONST,
6982               .accessfn = access_aa64_tid3,
6983               .resetvalue = 0 },
6984             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6986               .access = PL1_R, .type = ARM_CP_CONST,
6987               .accessfn = access_aa64_tid3,
6988               .resetvalue = 0 },
6989             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6991               .access = PL1_R, .type = ARM_CP_CONST,
6992               .accessfn = access_aa64_tid3,
6993               .resetvalue = 0 },
6994             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6995               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6996               .access = PL1_R, .type = ARM_CP_CONST,
6997               .accessfn = access_aa64_tid3,
6998               .resetvalue = 0 },
6999             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7000               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7001               .access = PL1_R, .type = ARM_CP_CONST,
7002               .accessfn = access_aa64_tid3,
7003               .resetvalue = cpu->isar.mvfr0 },
7004             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7005               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7006               .access = PL1_R, .type = ARM_CP_CONST,
7007               .accessfn = access_aa64_tid3,
7008               .resetvalue = cpu->isar.mvfr1 },
7009             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7011               .access = PL1_R, .type = ARM_CP_CONST,
7012               .accessfn = access_aa64_tid3,
7013               .resetvalue = cpu->isar.mvfr2 },
7014             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7015               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7016               .access = PL1_R, .type = ARM_CP_CONST,
7017               .accessfn = access_aa64_tid3,
7018               .resetvalue = 0 },
7019             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7020               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7021               .access = PL1_R, .type = ARM_CP_CONST,
7022               .accessfn = access_aa64_tid3,
7023               .resetvalue = 0 },
7024             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7026               .access = PL1_R, .type = ARM_CP_CONST,
7027               .accessfn = access_aa64_tid3,
7028               .resetvalue = 0 },
7029             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7031               .access = PL1_R, .type = ARM_CP_CONST,
7032               .accessfn = access_aa64_tid3,
7033               .resetvalue = 0 },
7034             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7035               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7036               .access = PL1_R, .type = ARM_CP_CONST,
7037               .accessfn = access_aa64_tid3,
7038               .resetvalue = 0 },
7039             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7040               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7041               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7042               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7043             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7044               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7045               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7046               .resetvalue = cpu->pmceid0 },
7047             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7048               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7049               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7050               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7051             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7052               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7053               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7054               .resetvalue = cpu->pmceid1 },
7055             REGINFO_SENTINEL
7056         };
7057 #ifdef CONFIG_USER_ONLY
7058         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7059             { .name = "ID_AA64PFR0_EL1",
7060               .exported_bits = 0x000f000f00ff0000,
7061               .fixed_bits    = 0x0000000000000011 },
7062             { .name = "ID_AA64PFR1_EL1",
7063               .exported_bits = 0x00000000000000f0 },
7064             { .name = "ID_AA64PFR*_EL1_RESERVED",
7065               .is_glob = true                     },
7066             { .name = "ID_AA64ZFR0_EL1"           },
7067             { .name = "ID_AA64MMFR0_EL1",
7068               .fixed_bits    = 0x00000000ff000000 },
7069             { .name = "ID_AA64MMFR1_EL1"          },
7070             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7071               .is_glob = true                     },
7072             { .name = "ID_AA64DFR0_EL1",
7073               .fixed_bits    = 0x0000000000000006 },
7074             { .name = "ID_AA64DFR1_EL1"           },
7075             { .name = "ID_AA64DFR*_EL1_RESERVED",
7076               .is_glob = true                     },
7077             { .name = "ID_AA64AFR*",
7078               .is_glob = true                     },
7079             { .name = "ID_AA64ISAR0_EL1",
7080               .exported_bits = 0x00fffffff0fffff0 },
7081             { .name = "ID_AA64ISAR1_EL1",
7082               .exported_bits = 0x000000f0ffffffff },
7083             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7084               .is_glob = true                     },
7085             REGUSERINFO_SENTINEL
7086         };
7087         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7088 #endif
7089         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7090         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7091             !arm_feature(env, ARM_FEATURE_EL2)) {
7092             ARMCPRegInfo rvbar = {
7093                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7094                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7095                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7096             };
7097             define_one_arm_cp_reg(cpu, &rvbar);
7098         }
7099         define_arm_cp_regs(cpu, v8_idregs);
7100         define_arm_cp_regs(cpu, v8_cp_reginfo);
7101     }
7102     if (arm_feature(env, ARM_FEATURE_EL2)) {
7103         uint64_t vmpidr_def = mpidr_read_val(env);
7104         ARMCPRegInfo vpidr_regs[] = {
7105             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7106               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7107               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7108               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7109               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7110             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7111               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7112               .access = PL2_RW, .resetvalue = cpu->midr,
7113               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7114             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7115               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7116               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7117               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7118               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7119             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7120               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7121               .access = PL2_RW,
7122               .resetvalue = vmpidr_def,
7123               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7124             REGINFO_SENTINEL
7125         };
7126         define_arm_cp_regs(cpu, vpidr_regs);
7127         define_arm_cp_regs(cpu, el2_cp_reginfo);
7128         if (arm_feature(env, ARM_FEATURE_V8)) {
7129             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7130         }
7131         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7132         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7133             ARMCPRegInfo rvbar = {
7134                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7135                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7136                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7137             };
7138             define_one_arm_cp_reg(cpu, &rvbar);
7139         }
7140     } else {
7141         /* If EL2 is missing but higher ELs are enabled, we need to
7142          * register the no_el2 reginfos.
7143          */
7144         if (arm_feature(env, ARM_FEATURE_EL3)) {
7145             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7146              * of MIDR_EL1 and MPIDR_EL1.
7147              */
7148             ARMCPRegInfo vpidr_regs[] = {
7149                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7150                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7151                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7152                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7153                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7154                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7155                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7156                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7157                   .type = ARM_CP_NO_RAW,
7158                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7159                 REGINFO_SENTINEL
7160             };
7161             define_arm_cp_regs(cpu, vpidr_regs);
7162             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7163             if (arm_feature(env, ARM_FEATURE_V8)) {
7164                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7165             }
7166         }
7167     }
7168     if (arm_feature(env, ARM_FEATURE_EL3)) {
7169         define_arm_cp_regs(cpu, el3_cp_reginfo);
7170         ARMCPRegInfo el3_regs[] = {
7171             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7172               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7173               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7174             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7175               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7176               .access = PL3_RW,
7177               .raw_writefn = raw_write, .writefn = sctlr_write,
7178               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7179               .resetvalue = cpu->reset_sctlr },
7180             REGINFO_SENTINEL
7181         };
7182 
7183         define_arm_cp_regs(cpu, el3_regs);
7184     }
7185     /* The behaviour of NSACR is sufficiently various that we don't
7186      * try to describe it in a single reginfo:
7187      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7188      *     reads as constant 0xc00 from NS EL1 and NS EL2
7189      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7190      *  if v7 without EL3, register doesn't exist
7191      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7192      */
7193     if (arm_feature(env, ARM_FEATURE_EL3)) {
7194         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7195             ARMCPRegInfo nsacr = {
7196                 .name = "NSACR", .type = ARM_CP_CONST,
7197                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7198                 .access = PL1_RW, .accessfn = nsacr_access,
7199                 .resetvalue = 0xc00
7200             };
7201             define_one_arm_cp_reg(cpu, &nsacr);
7202         } else {
7203             ARMCPRegInfo nsacr = {
7204                 .name = "NSACR",
7205                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7206                 .access = PL3_RW | PL1_R,
7207                 .resetvalue = 0,
7208                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7209             };
7210             define_one_arm_cp_reg(cpu, &nsacr);
7211         }
7212     } else {
7213         if (arm_feature(env, ARM_FEATURE_V8)) {
7214             ARMCPRegInfo nsacr = {
7215                 .name = "NSACR", .type = ARM_CP_CONST,
7216                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7217                 .access = PL1_R,
7218                 .resetvalue = 0xc00
7219             };
7220             define_one_arm_cp_reg(cpu, &nsacr);
7221         }
7222     }
7223 
7224     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7225         if (arm_feature(env, ARM_FEATURE_V6)) {
7226             /* PMSAv6 not implemented */
7227             assert(arm_feature(env, ARM_FEATURE_V7));
7228             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7229             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7230         } else {
7231             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7232         }
7233     } else {
7234         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7235         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7236         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
7237         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
7238             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7239         }
7240     }
7241     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7242         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7243     }
7244     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7245         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7246     }
7247     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7248         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7249     }
7250     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7251         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7252     }
7253     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7254         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7255     }
7256     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7257         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7258     }
7259     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7260         define_arm_cp_regs(cpu, omap_cp_reginfo);
7261     }
7262     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7263         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7264     }
7265     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7266         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7267     }
7268     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7269         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7270     }
7271     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7272         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7273     }
7274     if (cpu_isar_feature(jazelle, cpu)) {
7275         define_arm_cp_regs(cpu, jazelle_regs);
7276     }
7277     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7278      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7279      * be read-only (ie write causes UNDEF exception).
7280      */
7281     {
7282         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7283             /* Pre-v8 MIDR space.
7284              * Note that the MIDR isn't a simple constant register because
7285              * of the TI925 behaviour where writes to another register can
7286              * cause the MIDR value to change.
7287              *
7288              * Unimplemented registers in the c15 0 0 0 space default to
7289              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7290              * and friends override accordingly.
7291              */
7292             { .name = "MIDR",
7293               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7294               .access = PL1_R, .resetvalue = cpu->midr,
7295               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7296               .readfn = midr_read,
7297               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7298               .type = ARM_CP_OVERRIDE },
7299             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7300             { .name = "DUMMY",
7301               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7302               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7303             { .name = "DUMMY",
7304               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7305               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7306             { .name = "DUMMY",
7307               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7308               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7309             { .name = "DUMMY",
7310               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7311               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7312             { .name = "DUMMY",
7313               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7314               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7315             REGINFO_SENTINEL
7316         };
7317         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7318             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7319               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7320               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7321               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7322               .readfn = midr_read },
7323             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7324             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7325               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7326               .access = PL1_R, .resetvalue = cpu->midr },
7327             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7328               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7329               .access = PL1_R, .resetvalue = cpu->midr },
7330             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7331               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7332               .access = PL1_R,
7333               .accessfn = access_aa64_tid1,
7334               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7335             REGINFO_SENTINEL
7336         };
7337         ARMCPRegInfo id_cp_reginfo[] = {
7338             /* These are common to v8 and pre-v8 */
7339             { .name = "CTR",
7340               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7341               .access = PL1_R, .accessfn = ctr_el0_access,
7342               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7343             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7344               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7345               .access = PL0_R, .accessfn = ctr_el0_access,
7346               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7347             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7348             { .name = "TCMTR",
7349               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7350               .access = PL1_R,
7351               .accessfn = access_aa32_tid1,
7352               .type = ARM_CP_CONST, .resetvalue = 0 },
7353             REGINFO_SENTINEL
7354         };
7355         /* TLBTR is specific to VMSA */
7356         ARMCPRegInfo id_tlbtr_reginfo = {
7357               .name = "TLBTR",
7358               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7359               .access = PL1_R,
7360               .accessfn = access_aa32_tid1,
7361               .type = ARM_CP_CONST, .resetvalue = 0,
7362         };
7363         /* MPUIR is specific to PMSA V6+ */
7364         ARMCPRegInfo id_mpuir_reginfo = {
7365               .name = "MPUIR",
7366               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7367               .access = PL1_R, .type = ARM_CP_CONST,
7368               .resetvalue = cpu->pmsav7_dregion << 8
7369         };
7370         ARMCPRegInfo crn0_wi_reginfo = {
7371             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7372             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7373             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7374         };
7375 #ifdef CONFIG_USER_ONLY
7376         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7377             { .name = "MIDR_EL1",
7378               .exported_bits = 0x00000000ffffffff },
7379             { .name = "REVIDR_EL1"                },
7380             REGUSERINFO_SENTINEL
7381         };
7382         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7383 #endif
7384         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7385             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7386             ARMCPRegInfo *r;
7387             /* Register the blanket "writes ignored" value first to cover the
7388              * whole space. Then update the specific ID registers to allow write
7389              * access, so that they ignore writes rather than causing them to
7390              * UNDEF.
7391              */
7392             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7393             for (r = id_pre_v8_midr_cp_reginfo;
7394                  r->type != ARM_CP_SENTINEL; r++) {
7395                 r->access = PL1_RW;
7396             }
7397             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7398                 r->access = PL1_RW;
7399             }
7400             id_mpuir_reginfo.access = PL1_RW;
7401             id_tlbtr_reginfo.access = PL1_RW;
7402         }
7403         if (arm_feature(env, ARM_FEATURE_V8)) {
7404             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7405         } else {
7406             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7407         }
7408         define_arm_cp_regs(cpu, id_cp_reginfo);
7409         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7410             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7411         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7412             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7413         }
7414     }
7415 
7416     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7417         ARMCPRegInfo mpidr_cp_reginfo[] = {
7418             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7419               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7420               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7421             REGINFO_SENTINEL
7422         };
7423 #ifdef CONFIG_USER_ONLY
7424         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7425             { .name = "MPIDR_EL1",
7426               .fixed_bits = 0x0000000080000000 },
7427             REGUSERINFO_SENTINEL
7428         };
7429         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7430 #endif
7431         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7432     }
7433 
7434     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7435         ARMCPRegInfo auxcr_reginfo[] = {
7436             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7437               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7438               .access = PL1_RW, .type = ARM_CP_CONST,
7439               .resetvalue = cpu->reset_auxcr },
7440             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7441               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7442               .access = PL2_RW, .type = ARM_CP_CONST,
7443               .resetvalue = 0 },
7444             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7445               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7446               .access = PL3_RW, .type = ARM_CP_CONST,
7447               .resetvalue = 0 },
7448             REGINFO_SENTINEL
7449         };
7450         define_arm_cp_regs(cpu, auxcr_reginfo);
7451         if (arm_feature(env, ARM_FEATURE_V8)) {
7452             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
7453             ARMCPRegInfo hactlr2_reginfo = {
7454                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7455                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7456                 .access = PL2_RW, .type = ARM_CP_CONST,
7457                 .resetvalue = 0
7458             };
7459             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
7460         }
7461     }
7462 
7463     if (arm_feature(env, ARM_FEATURE_CBAR)) {
7464         /*
7465          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7466          * There are two flavours:
7467          *  (1) older 32-bit only cores have a simple 32-bit CBAR
7468          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7469          *      32-bit register visible to AArch32 at a different encoding
7470          *      to the "flavour 1" register and with the bits rearranged to
7471          *      be able to squash a 64-bit address into the 32-bit view.
7472          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7473          * in future if we support AArch32-only configs of some of the
7474          * AArch64 cores we might need to add a specific feature flag
7475          * to indicate cores with "flavour 2" CBAR.
7476          */
7477         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7478             /* 32 bit view is [31:18] 0...0 [43:32]. */
7479             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7480                 | extract64(cpu->reset_cbar, 32, 12);
7481             ARMCPRegInfo cbar_reginfo[] = {
7482                 { .name = "CBAR",
7483                   .type = ARM_CP_CONST,
7484                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7485                   .access = PL1_R, .resetvalue = cbar32 },
7486                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7487                   .type = ARM_CP_CONST,
7488                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7489                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
7490                 REGINFO_SENTINEL
7491             };
7492             /* We don't implement a r/w 64 bit CBAR currently */
7493             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7494             define_arm_cp_regs(cpu, cbar_reginfo);
7495         } else {
7496             ARMCPRegInfo cbar = {
7497                 .name = "CBAR",
7498                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7499                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7500                 .fieldoffset = offsetof(CPUARMState,
7501                                         cp15.c15_config_base_address)
7502             };
7503             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7504                 cbar.access = PL1_R;
7505                 cbar.fieldoffset = 0;
7506                 cbar.type = ARM_CP_CONST;
7507             }
7508             define_one_arm_cp_reg(cpu, &cbar);
7509         }
7510     }
7511 
7512     if (arm_feature(env, ARM_FEATURE_VBAR)) {
7513         ARMCPRegInfo vbar_cp_reginfo[] = {
7514             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7515               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7516               .access = PL1_RW, .writefn = vbar_write,
7517               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7518                                      offsetof(CPUARMState, cp15.vbar_ns) },
7519               .resetvalue = 0 },
7520             REGINFO_SENTINEL
7521         };
7522         define_arm_cp_regs(cpu, vbar_cp_reginfo);
7523     }
7524 
7525     /* Generic registers whose values depend on the implementation */
7526     {
7527         ARMCPRegInfo sctlr = {
7528             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7529             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7530             .access = PL1_RW,
7531             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7532                                    offsetof(CPUARMState, cp15.sctlr_ns) },
7533             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7534             .raw_writefn = raw_write,
7535         };
7536         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7537             /* Normally we would always end the TB on an SCTLR write, but Linux
7538              * arch/arm/mach-pxa/sleep.S expects two instructions following
7539              * an MMU enable to execute from cache.  Imitate this behaviour.
7540              */
7541             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7542         }
7543         define_one_arm_cp_reg(cpu, &sctlr);
7544     }
7545 
7546     if (cpu_isar_feature(aa64_lor, cpu)) {
7547         /*
7548          * A trivial implementation of ARMv8.1-LOR leaves all of these
7549          * registers fixed at 0, which indicates that there are zero
7550          * supported Limited Ordering regions.
7551          */
7552         static const ARMCPRegInfo lor_reginfo[] = {
7553             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7554               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7555               .access = PL1_RW, .accessfn = access_lor_other,
7556               .type = ARM_CP_CONST, .resetvalue = 0 },
7557             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7558               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7559               .access = PL1_RW, .accessfn = access_lor_other,
7560               .type = ARM_CP_CONST, .resetvalue = 0 },
7561             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7562               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7563               .access = PL1_RW, .accessfn = access_lor_other,
7564               .type = ARM_CP_CONST, .resetvalue = 0 },
7565             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7566               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7567               .access = PL1_RW, .accessfn = access_lor_other,
7568               .type = ARM_CP_CONST, .resetvalue = 0 },
7569             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7570               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7571               .access = PL1_R, .accessfn = access_lorid,
7572               .type = ARM_CP_CONST, .resetvalue = 0 },
7573             REGINFO_SENTINEL
7574         };
7575         define_arm_cp_regs(cpu, lor_reginfo);
7576     }
7577 
7578     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7579         define_arm_cp_regs(cpu, vhe_reginfo);
7580     }
7581 
7582     if (cpu_isar_feature(aa64_sve, cpu)) {
7583         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7584         if (arm_feature(env, ARM_FEATURE_EL2)) {
7585             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7586         } else {
7587             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7588         }
7589         if (arm_feature(env, ARM_FEATURE_EL3)) {
7590             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7591         }
7592     }
7593 
7594 #ifdef TARGET_AARCH64
7595     if (cpu_isar_feature(aa64_pauth, cpu)) {
7596         define_arm_cp_regs(cpu, pauth_reginfo);
7597     }
7598     if (cpu_isar_feature(aa64_rndr, cpu)) {
7599         define_arm_cp_regs(cpu, rndr_reginfo);
7600     }
7601 #ifndef CONFIG_USER_ONLY
7602     /* Data Cache clean instructions up to PoP */
7603     if (cpu_isar_feature(aa64_dcpop, cpu)) {
7604         define_one_arm_cp_reg(cpu, dcpop_reg);
7605 
7606         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7607             define_one_arm_cp_reg(cpu, dcpodp_reg);
7608         }
7609     }
7610 #endif /*CONFIG_USER_ONLY*/
7611 #endif
7612 
7613     /*
7614      * While all v8.0 cpus support aarch64, QEMU does have configurations
7615      * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max,
7616      * which will set ID_ISAR6.
7617      */
7618     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
7619         ? cpu_isar_feature(aa64_predinv, cpu)
7620         : cpu_isar_feature(aa32_predinv, cpu)) {
7621         define_arm_cp_regs(cpu, predinv_reginfo);
7622     }
7623 
7624 #ifndef CONFIG_USER_ONLY
7625     /*
7626      * Register redirections and aliases must be done last,
7627      * after the registers from the other extensions have been defined.
7628      */
7629     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7630         define_arm_vh_e2h_redirects_aliases(cpu);
7631     }
7632 #endif
7633 }
7634 
7635 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7636 {
7637     CPUState *cs = CPU(cpu);
7638     CPUARMState *env = &cpu->env;
7639 
7640     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7641         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
7642                                  aarch64_fpu_gdb_set_reg,
7643                                  34, "aarch64-fpu.xml", 0);
7644     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
7645         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7646                                  51, "arm-neon.xml", 0);
7647     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
7648         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7649                                  35, "arm-vfp3.xml", 0);
7650     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7651         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7652                                  19, "arm-vfp.xml", 0);
7653     }
7654     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7655                              arm_gen_dynamic_xml(cs),
7656                              "system-registers.xml", 0);
7657 }
7658 
7659 /* Sort alphabetically by type name, except for "any". */
7660 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7661 {
7662     ObjectClass *class_a = (ObjectClass *)a;
7663     ObjectClass *class_b = (ObjectClass *)b;
7664     const char *name_a, *name_b;
7665 
7666     name_a = object_class_get_name(class_a);
7667     name_b = object_class_get_name(class_b);
7668     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7669         return 1;
7670     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7671         return -1;
7672     } else {
7673         return strcmp(name_a, name_b);
7674     }
7675 }
7676 
7677 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7678 {
7679     ObjectClass *oc = data;
7680     const char *typename;
7681     char *name;
7682 
7683     typename = object_class_get_name(oc);
7684     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7685     qemu_printf("  %s\n", name);
7686     g_free(name);
7687 }
7688 
7689 void arm_cpu_list(void)
7690 {
7691     GSList *list;
7692 
7693     list = object_class_get_list(TYPE_ARM_CPU, false);
7694     list = g_slist_sort(list, arm_cpu_list_compare);
7695     qemu_printf("Available CPUs:\n");
7696     g_slist_foreach(list, arm_cpu_list_entry, NULL);
7697     g_slist_free(list);
7698 }
7699 
7700 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7701 {
7702     ObjectClass *oc = data;
7703     CpuDefinitionInfoList **cpu_list = user_data;
7704     CpuDefinitionInfoList *entry;
7705     CpuDefinitionInfo *info;
7706     const char *typename;
7707 
7708     typename = object_class_get_name(oc);
7709     info = g_malloc0(sizeof(*info));
7710     info->name = g_strndup(typename,
7711                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
7712     info->q_typename = g_strdup(typename);
7713 
7714     entry = g_malloc0(sizeof(*entry));
7715     entry->value = info;
7716     entry->next = *cpu_list;
7717     *cpu_list = entry;
7718 }
7719 
7720 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7721 {
7722     CpuDefinitionInfoList *cpu_list = NULL;
7723     GSList *list;
7724 
7725     list = object_class_get_list(TYPE_ARM_CPU, false);
7726     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7727     g_slist_free(list);
7728 
7729     return cpu_list;
7730 }
7731 
7732 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7733                                    void *opaque, int state, int secstate,
7734                                    int crm, int opc1, int opc2,
7735                                    const char *name)
7736 {
7737     /* Private utility function for define_one_arm_cp_reg_with_opaque():
7738      * add a single reginfo struct to the hash table.
7739      */
7740     uint32_t *key = g_new(uint32_t, 1);
7741     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7742     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7743     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7744 
7745     r2->name = g_strdup(name);
7746     /* Reset the secure state to the specific incoming state.  This is
7747      * necessary as the register may have been defined with both states.
7748      */
7749     r2->secure = secstate;
7750 
7751     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7752         /* Register is banked (using both entries in array).
7753          * Overwriting fieldoffset as the array is only used to define
7754          * banked registers but later only fieldoffset is used.
7755          */
7756         r2->fieldoffset = r->bank_fieldoffsets[ns];
7757     }
7758 
7759     if (state == ARM_CP_STATE_AA32) {
7760         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7761             /* If the register is banked then we don't need to migrate or
7762              * reset the 32-bit instance in certain cases:
7763              *
7764              * 1) If the register has both 32-bit and 64-bit instances then we
7765              *    can count on the 64-bit instance taking care of the
7766              *    non-secure bank.
7767              * 2) If ARMv8 is enabled then we can count on a 64-bit version
7768              *    taking care of the secure bank.  This requires that separate
7769              *    32 and 64-bit definitions are provided.
7770              */
7771             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7772                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7773                 r2->type |= ARM_CP_ALIAS;
7774             }
7775         } else if ((secstate != r->secure) && !ns) {
7776             /* The register is not banked so we only want to allow migration of
7777              * the non-secure instance.
7778              */
7779             r2->type |= ARM_CP_ALIAS;
7780         }
7781 
7782         if (r->state == ARM_CP_STATE_BOTH) {
7783             /* We assume it is a cp15 register if the .cp field is left unset.
7784              */
7785             if (r2->cp == 0) {
7786                 r2->cp = 15;
7787             }
7788 
7789 #ifdef HOST_WORDS_BIGENDIAN
7790             if (r2->fieldoffset) {
7791                 r2->fieldoffset += sizeof(uint32_t);
7792             }
7793 #endif
7794         }
7795     }
7796     if (state == ARM_CP_STATE_AA64) {
7797         /* To allow abbreviation of ARMCPRegInfo
7798          * definitions, we treat cp == 0 as equivalent to
7799          * the value for "standard guest-visible sysreg".
7800          * STATE_BOTH definitions are also always "standard
7801          * sysreg" in their AArch64 view (the .cp value may
7802          * be non-zero for the benefit of the AArch32 view).
7803          */
7804         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7805             r2->cp = CP_REG_ARM64_SYSREG_CP;
7806         }
7807         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7808                                   r2->opc0, opc1, opc2);
7809     } else {
7810         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7811     }
7812     if (opaque) {
7813         r2->opaque = opaque;
7814     }
7815     /* reginfo passed to helpers is correct for the actual access,
7816      * and is never ARM_CP_STATE_BOTH:
7817      */
7818     r2->state = state;
7819     /* Make sure reginfo passed to helpers for wildcarded regs
7820      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7821      */
7822     r2->crm = crm;
7823     r2->opc1 = opc1;
7824     r2->opc2 = opc2;
7825     /* By convention, for wildcarded registers only the first
7826      * entry is used for migration; the others are marked as
7827      * ALIAS so we don't try to transfer the register
7828      * multiple times. Special registers (ie NOP/WFI) are
7829      * never migratable and not even raw-accessible.
7830      */
7831     if ((r->type & ARM_CP_SPECIAL)) {
7832         r2->type |= ARM_CP_NO_RAW;
7833     }
7834     if (((r->crm == CP_ANY) && crm != 0) ||
7835         ((r->opc1 == CP_ANY) && opc1 != 0) ||
7836         ((r->opc2 == CP_ANY) && opc2 != 0)) {
7837         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
7838     }
7839 
7840     /* Check that raw accesses are either forbidden or handled. Note that
7841      * we can't assert this earlier because the setup of fieldoffset for
7842      * banked registers has to be done first.
7843      */
7844     if (!(r2->type & ARM_CP_NO_RAW)) {
7845         assert(!raw_accessors_invalid(r2));
7846     }
7847 
7848     /* Overriding of an existing definition must be explicitly
7849      * requested.
7850      */
7851     if (!(r->type & ARM_CP_OVERRIDE)) {
7852         ARMCPRegInfo *oldreg;
7853         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
7854         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
7855             fprintf(stderr, "Register redefined: cp=%d %d bit "
7856                     "crn=%d crm=%d opc1=%d opc2=%d, "
7857                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
7858                     r2->crn, r2->crm, r2->opc1, r2->opc2,
7859                     oldreg->name, r2->name);
7860             g_assert_not_reached();
7861         }
7862     }
7863     g_hash_table_insert(cpu->cp_regs, key, r2);
7864 }
7865 
7866 
7867 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
7868                                        const ARMCPRegInfo *r, void *opaque)
7869 {
7870     /* Define implementations of coprocessor registers.
7871      * We store these in a hashtable because typically
7872      * there are less than 150 registers in a space which
7873      * is 16*16*16*8*8 = 262144 in size.
7874      * Wildcarding is supported for the crm, opc1 and opc2 fields.
7875      * If a register is defined twice then the second definition is
7876      * used, so this can be used to define some generic registers and
7877      * then override them with implementation specific variations.
7878      * At least one of the original and the second definition should
7879      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
7880      * against accidental use.
7881      *
7882      * The state field defines whether the register is to be
7883      * visible in the AArch32 or AArch64 execution state. If the
7884      * state is set to ARM_CP_STATE_BOTH then we synthesise a
7885      * reginfo structure for the AArch32 view, which sees the lower
7886      * 32 bits of the 64 bit register.
7887      *
7888      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
7889      * be wildcarded. AArch64 registers are always considered to be 64
7890      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
7891      * the register, if any.
7892      */
7893     int crm, opc1, opc2, state;
7894     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
7895     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
7896     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
7897     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
7898     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
7899     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
7900     /* 64 bit registers have only CRm and Opc1 fields */
7901     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
7902     /* op0 only exists in the AArch64 encodings */
7903     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
7904     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
7905     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
7906     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
7907      * encodes a minimum access level for the register. We roll this
7908      * runtime check into our general permission check code, so check
7909      * here that the reginfo's specified permissions are strict enough
7910      * to encompass the generic architectural permission check.
7911      */
7912     if (r->state != ARM_CP_STATE_AA32) {
7913         int mask = 0;
7914         switch (r->opc1) {
7915         case 0:
7916             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
7917             mask = PL0U_R | PL1_RW;
7918             break;
7919         case 1: case 2:
7920             /* min_EL EL1 */
7921             mask = PL1_RW;
7922             break;
7923         case 3:
7924             /* min_EL EL0 */
7925             mask = PL0_RW;
7926             break;
7927         case 4:
7928         case 5:
7929             /* min_EL EL2 */
7930             mask = PL2_RW;
7931             break;
7932         case 6:
7933             /* min_EL EL3 */
7934             mask = PL3_RW;
7935             break;
7936         case 7:
7937             /* min_EL EL1, secure mode only (we don't check the latter) */
7938             mask = PL1_RW;
7939             break;
7940         default:
7941             /* broken reginfo with out-of-range opc1 */
7942             assert(false);
7943             break;
7944         }
7945         /* assert our permissions are not too lax (stricter is fine) */
7946         assert((r->access & ~mask) == 0);
7947     }
7948 
7949     /* Check that the register definition has enough info to handle
7950      * reads and writes if they are permitted.
7951      */
7952     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
7953         if (r->access & PL3_R) {
7954             assert((r->fieldoffset ||
7955                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7956                    r->readfn);
7957         }
7958         if (r->access & PL3_W) {
7959             assert((r->fieldoffset ||
7960                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
7961                    r->writefn);
7962         }
7963     }
7964     /* Bad type field probably means missing sentinel at end of reg list */
7965     assert(cptype_valid(r->type));
7966     for (crm = crmmin; crm <= crmmax; crm++) {
7967         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
7968             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
7969                 for (state = ARM_CP_STATE_AA32;
7970                      state <= ARM_CP_STATE_AA64; state++) {
7971                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
7972                         continue;
7973                     }
7974                     if (state == ARM_CP_STATE_AA32) {
7975                         /* Under AArch32 CP registers can be common
7976                          * (same for secure and non-secure world) or banked.
7977                          */
7978                         char *name;
7979 
7980                         switch (r->secure) {
7981                         case ARM_CP_SECSTATE_S:
7982                         case ARM_CP_SECSTATE_NS:
7983                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7984                                                    r->secure, crm, opc1, opc2,
7985                                                    r->name);
7986                             break;
7987                         default:
7988                             name = g_strdup_printf("%s_S", r->name);
7989                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7990                                                    ARM_CP_SECSTATE_S,
7991                                                    crm, opc1, opc2, name);
7992                             g_free(name);
7993                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7994                                                    ARM_CP_SECSTATE_NS,
7995                                                    crm, opc1, opc2, r->name);
7996                             break;
7997                         }
7998                     } else {
7999                         /* AArch64 registers get mapped to non-secure instance
8000                          * of AArch32 */
8001                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8002                                                ARM_CP_SECSTATE_NS,
8003                                                crm, opc1, opc2, r->name);
8004                     }
8005                 }
8006             }
8007         }
8008     }
8009 }
8010 
8011 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8012                                     const ARMCPRegInfo *regs, void *opaque)
8013 {
8014     /* Define a whole list of registers */
8015     const ARMCPRegInfo *r;
8016     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8017         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8018     }
8019 }
8020 
8021 /*
8022  * Modify ARMCPRegInfo for access from userspace.
8023  *
8024  * This is a data driven modification directed by
8025  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8026  * user-space cannot alter any values and dynamic values pertaining to
8027  * execution state are hidden from user space view anyway.
8028  */
8029 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8030 {
8031     const ARMCPRegUserSpaceInfo *m;
8032     ARMCPRegInfo *r;
8033 
8034     for (m = mods; m->name; m++) {
8035         GPatternSpec *pat = NULL;
8036         if (m->is_glob) {
8037             pat = g_pattern_spec_new(m->name);
8038         }
8039         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8040             if (pat && g_pattern_match_string(pat, r->name)) {
8041                 r->type = ARM_CP_CONST;
8042                 r->access = PL0U_R;
8043                 r->resetvalue = 0;
8044                 /* continue */
8045             } else if (strcmp(r->name, m->name) == 0) {
8046                 r->type = ARM_CP_CONST;
8047                 r->access = PL0U_R;
8048                 r->resetvalue &= m->exported_bits;
8049                 r->resetvalue |= m->fixed_bits;
8050                 break;
8051             }
8052         }
8053         if (pat) {
8054             g_pattern_spec_free(pat);
8055         }
8056     }
8057 }
8058 
8059 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8060 {
8061     return g_hash_table_lookup(cpregs, &encoded_cp);
8062 }
8063 
8064 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8065                          uint64_t value)
8066 {
8067     /* Helper coprocessor write function for write-ignore registers */
8068 }
8069 
8070 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8071 {
8072     /* Helper coprocessor write function for read-as-zero registers */
8073     return 0;
8074 }
8075 
8076 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8077 {
8078     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8079 }
8080 
8081 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8082 {
8083     /* Return true if it is not valid for us to switch to
8084      * this CPU mode (ie all the UNPREDICTABLE cases in
8085      * the ARM ARM CPSRWriteByInstr pseudocode).
8086      */
8087 
8088     /* Changes to or from Hyp via MSR and CPS are illegal. */
8089     if (write_type == CPSRWriteByInstr &&
8090         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8091          mode == ARM_CPU_MODE_HYP)) {
8092         return 1;
8093     }
8094 
8095     switch (mode) {
8096     case ARM_CPU_MODE_USR:
8097         return 0;
8098     case ARM_CPU_MODE_SYS:
8099     case ARM_CPU_MODE_SVC:
8100     case ARM_CPU_MODE_ABT:
8101     case ARM_CPU_MODE_UND:
8102     case ARM_CPU_MODE_IRQ:
8103     case ARM_CPU_MODE_FIQ:
8104         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8105          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8106          */
8107         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8108          * and CPS are treated as illegal mode changes.
8109          */
8110         if (write_type == CPSRWriteByInstr &&
8111             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8112             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8113             return 1;
8114         }
8115         return 0;
8116     case ARM_CPU_MODE_HYP:
8117         return !arm_feature(env, ARM_FEATURE_EL2)
8118             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8119     case ARM_CPU_MODE_MON:
8120         return arm_current_el(env) < 3;
8121     default:
8122         return 1;
8123     }
8124 }
8125 
8126 uint32_t cpsr_read(CPUARMState *env)
8127 {
8128     int ZF;
8129     ZF = (env->ZF == 0);
8130     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8131         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8132         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8133         | ((env->condexec_bits & 0xfc) << 8)
8134         | (env->GE << 16) | (env->daif & CPSR_AIF);
8135 }
8136 
8137 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8138                 CPSRWriteType write_type)
8139 {
8140     uint32_t changed_daif;
8141 
8142     if (mask & CPSR_NZCV) {
8143         env->ZF = (~val) & CPSR_Z;
8144         env->NF = val;
8145         env->CF = (val >> 29) & 1;
8146         env->VF = (val << 3) & 0x80000000;
8147     }
8148     if (mask & CPSR_Q)
8149         env->QF = ((val & CPSR_Q) != 0);
8150     if (mask & CPSR_T)
8151         env->thumb = ((val & CPSR_T) != 0);
8152     if (mask & CPSR_IT_0_1) {
8153         env->condexec_bits &= ~3;
8154         env->condexec_bits |= (val >> 25) & 3;
8155     }
8156     if (mask & CPSR_IT_2_7) {
8157         env->condexec_bits &= 3;
8158         env->condexec_bits |= (val >> 8) & 0xfc;
8159     }
8160     if (mask & CPSR_GE) {
8161         env->GE = (val >> 16) & 0xf;
8162     }
8163 
8164     /* In a V7 implementation that includes the security extensions but does
8165      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8166      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8167      * bits respectively.
8168      *
8169      * In a V8 implementation, it is permitted for privileged software to
8170      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8171      */
8172     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8173         arm_feature(env, ARM_FEATURE_EL3) &&
8174         !arm_feature(env, ARM_FEATURE_EL2) &&
8175         !arm_is_secure(env)) {
8176 
8177         changed_daif = (env->daif ^ val) & mask;
8178 
8179         if (changed_daif & CPSR_A) {
8180             /* Check to see if we are allowed to change the masking of async
8181              * abort exceptions from a non-secure state.
8182              */
8183             if (!(env->cp15.scr_el3 & SCR_AW)) {
8184                 qemu_log_mask(LOG_GUEST_ERROR,
8185                               "Ignoring attempt to switch CPSR_A flag from "
8186                               "non-secure world with SCR.AW bit clear\n");
8187                 mask &= ~CPSR_A;
8188             }
8189         }
8190 
8191         if (changed_daif & CPSR_F) {
8192             /* Check to see if we are allowed to change the masking of FIQ
8193              * exceptions from a non-secure state.
8194              */
8195             if (!(env->cp15.scr_el3 & SCR_FW)) {
8196                 qemu_log_mask(LOG_GUEST_ERROR,
8197                               "Ignoring attempt to switch CPSR_F flag from "
8198                               "non-secure world with SCR.FW bit clear\n");
8199                 mask &= ~CPSR_F;
8200             }
8201 
8202             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8203              * If this bit is set software is not allowed to mask
8204              * FIQs, but is allowed to set CPSR_F to 0.
8205              */
8206             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8207                 (val & CPSR_F)) {
8208                 qemu_log_mask(LOG_GUEST_ERROR,
8209                               "Ignoring attempt to enable CPSR_F flag "
8210                               "(non-maskable FIQ [NMFI] support enabled)\n");
8211                 mask &= ~CPSR_F;
8212             }
8213         }
8214     }
8215 
8216     env->daif &= ~(CPSR_AIF & mask);
8217     env->daif |= val & CPSR_AIF & mask;
8218 
8219     if (write_type != CPSRWriteRaw &&
8220         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8221         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8222             /* Note that we can only get here in USR mode if this is a
8223              * gdb stub write; for this case we follow the architectural
8224              * behaviour for guest writes in USR mode of ignoring an attempt
8225              * to switch mode. (Those are caught by translate.c for writes
8226              * triggered by guest instructions.)
8227              */
8228             mask &= ~CPSR_M;
8229         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8230             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8231              * v7, and has defined behaviour in v8:
8232              *  + leave CPSR.M untouched
8233              *  + allow changes to the other CPSR fields
8234              *  + set PSTATE.IL
8235              * For user changes via the GDB stub, we don't set PSTATE.IL,
8236              * as this would be unnecessarily harsh for a user error.
8237              */
8238             mask &= ~CPSR_M;
8239             if (write_type != CPSRWriteByGDBStub &&
8240                 arm_feature(env, ARM_FEATURE_V8)) {
8241                 mask |= CPSR_IL;
8242                 val |= CPSR_IL;
8243             }
8244             qemu_log_mask(LOG_GUEST_ERROR,
8245                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8246                           aarch32_mode_name(env->uncached_cpsr),
8247                           aarch32_mode_name(val));
8248         } else {
8249             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8250                           write_type == CPSRWriteExceptionReturn ?
8251                           "Exception return from AArch32" :
8252                           "AArch32 mode switch from",
8253                           aarch32_mode_name(env->uncached_cpsr),
8254                           aarch32_mode_name(val), env->regs[15]);
8255             switch_mode(env, val & CPSR_M);
8256         }
8257     }
8258     mask &= ~CACHED_CPSR_BITS;
8259     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8260 }
8261 
8262 /* Sign/zero extend */
8263 uint32_t HELPER(sxtb16)(uint32_t x)
8264 {
8265     uint32_t res;
8266     res = (uint16_t)(int8_t)x;
8267     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8268     return res;
8269 }
8270 
8271 uint32_t HELPER(uxtb16)(uint32_t x)
8272 {
8273     uint32_t res;
8274     res = (uint16_t)(uint8_t)x;
8275     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8276     return res;
8277 }
8278 
8279 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8280 {
8281     if (den == 0)
8282       return 0;
8283     if (num == INT_MIN && den == -1)
8284       return INT_MIN;
8285     return num / den;
8286 }
8287 
8288 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8289 {
8290     if (den == 0)
8291       return 0;
8292     return num / den;
8293 }
8294 
8295 uint32_t HELPER(rbit)(uint32_t x)
8296 {
8297     return revbit32(x);
8298 }
8299 
8300 #ifdef CONFIG_USER_ONLY
8301 
8302 static void switch_mode(CPUARMState *env, int mode)
8303 {
8304     ARMCPU *cpu = env_archcpu(env);
8305 
8306     if (mode != ARM_CPU_MODE_USR) {
8307         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8308     }
8309 }
8310 
8311 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8312                                  uint32_t cur_el, bool secure)
8313 {
8314     return 1;
8315 }
8316 
8317 void aarch64_sync_64_to_32(CPUARMState *env)
8318 {
8319     g_assert_not_reached();
8320 }
8321 
8322 #else
8323 
8324 static void switch_mode(CPUARMState *env, int mode)
8325 {
8326     int old_mode;
8327     int i;
8328 
8329     old_mode = env->uncached_cpsr & CPSR_M;
8330     if (mode == old_mode)
8331         return;
8332 
8333     if (old_mode == ARM_CPU_MODE_FIQ) {
8334         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8335         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8336     } else if (mode == ARM_CPU_MODE_FIQ) {
8337         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8338         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8339     }
8340 
8341     i = bank_number(old_mode);
8342     env->banked_r13[i] = env->regs[13];
8343     env->banked_spsr[i] = env->spsr;
8344 
8345     i = bank_number(mode);
8346     env->regs[13] = env->banked_r13[i];
8347     env->spsr = env->banked_spsr[i];
8348 
8349     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8350     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8351 }
8352 
8353 /* Physical Interrupt Target EL Lookup Table
8354  *
8355  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8356  *
8357  * The below multi-dimensional table is used for looking up the target
8358  * exception level given numerous condition criteria.  Specifically, the
8359  * target EL is based on SCR and HCR routing controls as well as the
8360  * currently executing EL and secure state.
8361  *
8362  *    Dimensions:
8363  *    target_el_table[2][2][2][2][2][4]
8364  *                    |  |  |  |  |  +--- Current EL
8365  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8366  *                    |  |  |  +--------- HCR mask override
8367  *                    |  |  +------------ SCR exec state control
8368  *                    |  +--------------- SCR mask override
8369  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8370  *
8371  *    The table values are as such:
8372  *    0-3 = EL0-EL3
8373  *     -1 = Cannot occur
8374  *
8375  * The ARM ARM target EL table includes entries indicating that an "exception
8376  * is not taken".  The two cases where this is applicable are:
8377  *    1) An exception is taken from EL3 but the SCR does not have the exception
8378  *    routed to EL3.
8379  *    2) An exception is taken from EL2 but the HCR does not have the exception
8380  *    routed to EL2.
8381  * In these two cases, the below table contain a target of EL1.  This value is
8382  * returned as it is expected that the consumer of the table data will check
8383  * for "target EL >= current EL" to ensure the exception is not taken.
8384  *
8385  *            SCR     HCR
8386  *         64  EA     AMO                 From
8387  *        BIT IRQ     IMO      Non-secure         Secure
8388  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8389  */
8390 static const int8_t target_el_table[2][2][2][2][2][4] = {
8391     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8392        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
8393       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8394        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
8395      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8396        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
8397       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8398        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
8399     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
8400        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
8401       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
8402        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
8403      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8404        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
8405       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8406        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
8407 };
8408 
8409 /*
8410  * Determine the target EL for physical exceptions
8411  */
8412 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8413                                  uint32_t cur_el, bool secure)
8414 {
8415     CPUARMState *env = cs->env_ptr;
8416     bool rw;
8417     bool scr;
8418     bool hcr;
8419     int target_el;
8420     /* Is the highest EL AArch64? */
8421     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8422     uint64_t hcr_el2;
8423 
8424     if (arm_feature(env, ARM_FEATURE_EL3)) {
8425         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8426     } else {
8427         /* Either EL2 is the highest EL (and so the EL2 register width
8428          * is given by is64); or there is no EL2 or EL3, in which case
8429          * the value of 'rw' does not affect the table lookup anyway.
8430          */
8431         rw = is64;
8432     }
8433 
8434     hcr_el2 = arm_hcr_el2_eff(env);
8435     switch (excp_idx) {
8436     case EXCP_IRQ:
8437         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8438         hcr = hcr_el2 & HCR_IMO;
8439         break;
8440     case EXCP_FIQ:
8441         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8442         hcr = hcr_el2 & HCR_FMO;
8443         break;
8444     default:
8445         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8446         hcr = hcr_el2 & HCR_AMO;
8447         break;
8448     };
8449 
8450     /*
8451      * For these purposes, TGE and AMO/IMO/FMO both force the
8452      * interrupt to EL2.  Fold TGE into the bit extracted above.
8453      */
8454     hcr |= (hcr_el2 & HCR_TGE) != 0;
8455 
8456     /* Perform a table-lookup for the target EL given the current state */
8457     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8458 
8459     assert(target_el > 0);
8460 
8461     return target_el;
8462 }
8463 
8464 void arm_log_exception(int idx)
8465 {
8466     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8467         const char *exc = NULL;
8468         static const char * const excnames[] = {
8469             [EXCP_UDEF] = "Undefined Instruction",
8470             [EXCP_SWI] = "SVC",
8471             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8472             [EXCP_DATA_ABORT] = "Data Abort",
8473             [EXCP_IRQ] = "IRQ",
8474             [EXCP_FIQ] = "FIQ",
8475             [EXCP_BKPT] = "Breakpoint",
8476             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8477             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8478             [EXCP_HVC] = "Hypervisor Call",
8479             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8480             [EXCP_SMC] = "Secure Monitor Call",
8481             [EXCP_VIRQ] = "Virtual IRQ",
8482             [EXCP_VFIQ] = "Virtual FIQ",
8483             [EXCP_SEMIHOST] = "Semihosting call",
8484             [EXCP_NOCP] = "v7M NOCP UsageFault",
8485             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8486             [EXCP_STKOF] = "v8M STKOF UsageFault",
8487             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8488             [EXCP_LSERR] = "v8M LSERR UsageFault",
8489             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8490         };
8491 
8492         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8493             exc = excnames[idx];
8494         }
8495         if (!exc) {
8496             exc = "unknown";
8497         }
8498         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8499     }
8500 }
8501 
8502 /*
8503  * Function used to synchronize QEMU's AArch64 register set with AArch32
8504  * register set.  This is necessary when switching between AArch32 and AArch64
8505  * execution state.
8506  */
8507 void aarch64_sync_32_to_64(CPUARMState *env)
8508 {
8509     int i;
8510     uint32_t mode = env->uncached_cpsr & CPSR_M;
8511 
8512     /* We can blanket copy R[0:7] to X[0:7] */
8513     for (i = 0; i < 8; i++) {
8514         env->xregs[i] = env->regs[i];
8515     }
8516 
8517     /*
8518      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8519      * Otherwise, they come from the banked user regs.
8520      */
8521     if (mode == ARM_CPU_MODE_FIQ) {
8522         for (i = 8; i < 13; i++) {
8523             env->xregs[i] = env->usr_regs[i - 8];
8524         }
8525     } else {
8526         for (i = 8; i < 13; i++) {
8527             env->xregs[i] = env->regs[i];
8528         }
8529     }
8530 
8531     /*
8532      * Registers x13-x23 are the various mode SP and FP registers. Registers
8533      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8534      * from the mode banked register.
8535      */
8536     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8537         env->xregs[13] = env->regs[13];
8538         env->xregs[14] = env->regs[14];
8539     } else {
8540         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8541         /* HYP is an exception in that it is copied from r14 */
8542         if (mode == ARM_CPU_MODE_HYP) {
8543             env->xregs[14] = env->regs[14];
8544         } else {
8545             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8546         }
8547     }
8548 
8549     if (mode == ARM_CPU_MODE_HYP) {
8550         env->xregs[15] = env->regs[13];
8551     } else {
8552         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8553     }
8554 
8555     if (mode == ARM_CPU_MODE_IRQ) {
8556         env->xregs[16] = env->regs[14];
8557         env->xregs[17] = env->regs[13];
8558     } else {
8559         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8560         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8561     }
8562 
8563     if (mode == ARM_CPU_MODE_SVC) {
8564         env->xregs[18] = env->regs[14];
8565         env->xregs[19] = env->regs[13];
8566     } else {
8567         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8568         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8569     }
8570 
8571     if (mode == ARM_CPU_MODE_ABT) {
8572         env->xregs[20] = env->regs[14];
8573         env->xregs[21] = env->regs[13];
8574     } else {
8575         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8576         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8577     }
8578 
8579     if (mode == ARM_CPU_MODE_UND) {
8580         env->xregs[22] = env->regs[14];
8581         env->xregs[23] = env->regs[13];
8582     } else {
8583         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8584         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8585     }
8586 
8587     /*
8588      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8589      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8590      * FIQ bank for r8-r14.
8591      */
8592     if (mode == ARM_CPU_MODE_FIQ) {
8593         for (i = 24; i < 31; i++) {
8594             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8595         }
8596     } else {
8597         for (i = 24; i < 29; i++) {
8598             env->xregs[i] = env->fiq_regs[i - 24];
8599         }
8600         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8601         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8602     }
8603 
8604     env->pc = env->regs[15];
8605 }
8606 
8607 /*
8608  * Function used to synchronize QEMU's AArch32 register set with AArch64
8609  * register set.  This is necessary when switching between AArch32 and AArch64
8610  * execution state.
8611  */
8612 void aarch64_sync_64_to_32(CPUARMState *env)
8613 {
8614     int i;
8615     uint32_t mode = env->uncached_cpsr & CPSR_M;
8616 
8617     /* We can blanket copy X[0:7] to R[0:7] */
8618     for (i = 0; i < 8; i++) {
8619         env->regs[i] = env->xregs[i];
8620     }
8621 
8622     /*
8623      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8624      * Otherwise, we copy x8-x12 into the banked user regs.
8625      */
8626     if (mode == ARM_CPU_MODE_FIQ) {
8627         for (i = 8; i < 13; i++) {
8628             env->usr_regs[i - 8] = env->xregs[i];
8629         }
8630     } else {
8631         for (i = 8; i < 13; i++) {
8632             env->regs[i] = env->xregs[i];
8633         }
8634     }
8635 
8636     /*
8637      * Registers r13 & r14 depend on the current mode.
8638      * If we are in a given mode, we copy the corresponding x registers to r13
8639      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
8640      * for the mode.
8641      */
8642     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8643         env->regs[13] = env->xregs[13];
8644         env->regs[14] = env->xregs[14];
8645     } else {
8646         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8647 
8648         /*
8649          * HYP is an exception in that it does not have its own banked r14 but
8650          * shares the USR r14
8651          */
8652         if (mode == ARM_CPU_MODE_HYP) {
8653             env->regs[14] = env->xregs[14];
8654         } else {
8655             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8656         }
8657     }
8658 
8659     if (mode == ARM_CPU_MODE_HYP) {
8660         env->regs[13] = env->xregs[15];
8661     } else {
8662         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8663     }
8664 
8665     if (mode == ARM_CPU_MODE_IRQ) {
8666         env->regs[14] = env->xregs[16];
8667         env->regs[13] = env->xregs[17];
8668     } else {
8669         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8670         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8671     }
8672 
8673     if (mode == ARM_CPU_MODE_SVC) {
8674         env->regs[14] = env->xregs[18];
8675         env->regs[13] = env->xregs[19];
8676     } else {
8677         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8678         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8679     }
8680 
8681     if (mode == ARM_CPU_MODE_ABT) {
8682         env->regs[14] = env->xregs[20];
8683         env->regs[13] = env->xregs[21];
8684     } else {
8685         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8686         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8687     }
8688 
8689     if (mode == ARM_CPU_MODE_UND) {
8690         env->regs[14] = env->xregs[22];
8691         env->regs[13] = env->xregs[23];
8692     } else {
8693         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8694         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8695     }
8696 
8697     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8698      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8699      * FIQ bank for r8-r14.
8700      */
8701     if (mode == ARM_CPU_MODE_FIQ) {
8702         for (i = 24; i < 31; i++) {
8703             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8704         }
8705     } else {
8706         for (i = 24; i < 29; i++) {
8707             env->fiq_regs[i - 24] = env->xregs[i];
8708         }
8709         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8710         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8711     }
8712 
8713     env->regs[15] = env->pc;
8714 }
8715 
8716 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8717                                    uint32_t mask, uint32_t offset,
8718                                    uint32_t newpc)
8719 {
8720     /* Change the CPU state so as to actually take the exception. */
8721     switch_mode(env, new_mode);
8722     /*
8723      * For exceptions taken to AArch32 we must clear the SS bit in both
8724      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8725      */
8726     env->uncached_cpsr &= ~PSTATE_SS;
8727     env->spsr = cpsr_read(env);
8728     /* Clear IT bits.  */
8729     env->condexec_bits = 0;
8730     /* Switch to the new mode, and to the correct instruction set.  */
8731     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8732     /* Set new mode endianness */
8733     env->uncached_cpsr &= ~CPSR_E;
8734     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8735         env->uncached_cpsr |= CPSR_E;
8736     }
8737     /* J and IL must always be cleared for exception entry */
8738     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8739     env->daif |= mask;
8740 
8741     if (new_mode == ARM_CPU_MODE_HYP) {
8742         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8743         env->elr_el[2] = env->regs[15];
8744     } else {
8745         /*
8746          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8747          * and we should just guard the thumb mode on V4
8748          */
8749         if (arm_feature(env, ARM_FEATURE_V4T)) {
8750             env->thumb =
8751                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8752         }
8753         env->regs[14] = env->regs[15] + offset;
8754     }
8755     env->regs[15] = newpc;
8756     arm_rebuild_hflags(env);
8757 }
8758 
8759 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8760 {
8761     /*
8762      * Handle exception entry to Hyp mode; this is sufficiently
8763      * different to entry to other AArch32 modes that we handle it
8764      * separately here.
8765      *
8766      * The vector table entry used is always the 0x14 Hyp mode entry point,
8767      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8768      * The offset applied to the preferred return address is always zero
8769      * (see DDI0487C.a section G1.12.3).
8770      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8771      */
8772     uint32_t addr, mask;
8773     ARMCPU *cpu = ARM_CPU(cs);
8774     CPUARMState *env = &cpu->env;
8775 
8776     switch (cs->exception_index) {
8777     case EXCP_UDEF:
8778         addr = 0x04;
8779         break;
8780     case EXCP_SWI:
8781         addr = 0x14;
8782         break;
8783     case EXCP_BKPT:
8784         /* Fall through to prefetch abort.  */
8785     case EXCP_PREFETCH_ABORT:
8786         env->cp15.ifar_s = env->exception.vaddress;
8787         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8788                       (uint32_t)env->exception.vaddress);
8789         addr = 0x0c;
8790         break;
8791     case EXCP_DATA_ABORT:
8792         env->cp15.dfar_s = env->exception.vaddress;
8793         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8794                       (uint32_t)env->exception.vaddress);
8795         addr = 0x10;
8796         break;
8797     case EXCP_IRQ:
8798         addr = 0x18;
8799         break;
8800     case EXCP_FIQ:
8801         addr = 0x1c;
8802         break;
8803     case EXCP_HVC:
8804         addr = 0x08;
8805         break;
8806     case EXCP_HYP_TRAP:
8807         addr = 0x14;
8808         break;
8809     default:
8810         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8811     }
8812 
8813     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8814         if (!arm_feature(env, ARM_FEATURE_V8)) {
8815             /*
8816              * QEMU syndrome values are v8-style. v7 has the IL bit
8817              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8818              * If this is a v7 CPU, squash the IL bit in those cases.
8819              */
8820             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8821                 (cs->exception_index == EXCP_DATA_ABORT &&
8822                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8823                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8824                 env->exception.syndrome &= ~ARM_EL_IL;
8825             }
8826         }
8827         env->cp15.esr_el[2] = env->exception.syndrome;
8828     }
8829 
8830     if (arm_current_el(env) != 2 && addr < 0x14) {
8831         addr = 0x14;
8832     }
8833 
8834     mask = 0;
8835     if (!(env->cp15.scr_el3 & SCR_EA)) {
8836         mask |= CPSR_A;
8837     }
8838     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8839         mask |= CPSR_I;
8840     }
8841     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8842         mask |= CPSR_F;
8843     }
8844 
8845     addr += env->cp15.hvbar;
8846 
8847     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8848 }
8849 
8850 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8851 {
8852     ARMCPU *cpu = ARM_CPU(cs);
8853     CPUARMState *env = &cpu->env;
8854     uint32_t addr;
8855     uint32_t mask;
8856     int new_mode;
8857     uint32_t offset;
8858     uint32_t moe;
8859 
8860     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8861     switch (syn_get_ec(env->exception.syndrome)) {
8862     case EC_BREAKPOINT:
8863     case EC_BREAKPOINT_SAME_EL:
8864         moe = 1;
8865         break;
8866     case EC_WATCHPOINT:
8867     case EC_WATCHPOINT_SAME_EL:
8868         moe = 10;
8869         break;
8870     case EC_AA32_BKPT:
8871         moe = 3;
8872         break;
8873     case EC_VECTORCATCH:
8874         moe = 5;
8875         break;
8876     default:
8877         moe = 0;
8878         break;
8879     }
8880 
8881     if (moe) {
8882         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8883     }
8884 
8885     if (env->exception.target_el == 2) {
8886         arm_cpu_do_interrupt_aarch32_hyp(cs);
8887         return;
8888     }
8889 
8890     switch (cs->exception_index) {
8891     case EXCP_UDEF:
8892         new_mode = ARM_CPU_MODE_UND;
8893         addr = 0x04;
8894         mask = CPSR_I;
8895         if (env->thumb)
8896             offset = 2;
8897         else
8898             offset = 4;
8899         break;
8900     case EXCP_SWI:
8901         new_mode = ARM_CPU_MODE_SVC;
8902         addr = 0x08;
8903         mask = CPSR_I;
8904         /* The PC already points to the next instruction.  */
8905         offset = 0;
8906         break;
8907     case EXCP_BKPT:
8908         /* Fall through to prefetch abort.  */
8909     case EXCP_PREFETCH_ABORT:
8910         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8911         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8912         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8913                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8914         new_mode = ARM_CPU_MODE_ABT;
8915         addr = 0x0c;
8916         mask = CPSR_A | CPSR_I;
8917         offset = 4;
8918         break;
8919     case EXCP_DATA_ABORT:
8920         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8921         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8922         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8923                       env->exception.fsr,
8924                       (uint32_t)env->exception.vaddress);
8925         new_mode = ARM_CPU_MODE_ABT;
8926         addr = 0x10;
8927         mask = CPSR_A | CPSR_I;
8928         offset = 8;
8929         break;
8930     case EXCP_IRQ:
8931         new_mode = ARM_CPU_MODE_IRQ;
8932         addr = 0x18;
8933         /* Disable IRQ and imprecise data aborts.  */
8934         mask = CPSR_A | CPSR_I;
8935         offset = 4;
8936         if (env->cp15.scr_el3 & SCR_IRQ) {
8937             /* IRQ routed to monitor mode */
8938             new_mode = ARM_CPU_MODE_MON;
8939             mask |= CPSR_F;
8940         }
8941         break;
8942     case EXCP_FIQ:
8943         new_mode = ARM_CPU_MODE_FIQ;
8944         addr = 0x1c;
8945         /* Disable FIQ, IRQ and imprecise data aborts.  */
8946         mask = CPSR_A | CPSR_I | CPSR_F;
8947         if (env->cp15.scr_el3 & SCR_FIQ) {
8948             /* FIQ routed to monitor mode */
8949             new_mode = ARM_CPU_MODE_MON;
8950         }
8951         offset = 4;
8952         break;
8953     case EXCP_VIRQ:
8954         new_mode = ARM_CPU_MODE_IRQ;
8955         addr = 0x18;
8956         /* Disable IRQ and imprecise data aborts.  */
8957         mask = CPSR_A | CPSR_I;
8958         offset = 4;
8959         break;
8960     case EXCP_VFIQ:
8961         new_mode = ARM_CPU_MODE_FIQ;
8962         addr = 0x1c;
8963         /* Disable FIQ, IRQ and imprecise data aborts.  */
8964         mask = CPSR_A | CPSR_I | CPSR_F;
8965         offset = 4;
8966         break;
8967     case EXCP_SMC:
8968         new_mode = ARM_CPU_MODE_MON;
8969         addr = 0x08;
8970         mask = CPSR_A | CPSR_I | CPSR_F;
8971         offset = 0;
8972         break;
8973     default:
8974         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8975         return; /* Never happens.  Keep compiler happy.  */
8976     }
8977 
8978     if (new_mode == ARM_CPU_MODE_MON) {
8979         addr += env->cp15.mvbar;
8980     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8981         /* High vectors. When enabled, base address cannot be remapped. */
8982         addr += 0xffff0000;
8983     } else {
8984         /* ARM v7 architectures provide a vector base address register to remap
8985          * the interrupt vector table.
8986          * This register is only followed in non-monitor mode, and is banked.
8987          * Note: only bits 31:5 are valid.
8988          */
8989         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8990     }
8991 
8992     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8993         env->cp15.scr_el3 &= ~SCR_NS;
8994     }
8995 
8996     take_aarch32_exception(env, new_mode, mask, offset, addr);
8997 }
8998 
8999 /* Handle exception entry to a target EL which is using AArch64 */
9000 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9001 {
9002     ARMCPU *cpu = ARM_CPU(cs);
9003     CPUARMState *env = &cpu->env;
9004     unsigned int new_el = env->exception.target_el;
9005     target_ulong addr = env->cp15.vbar_el[new_el];
9006     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9007     unsigned int cur_el = arm_current_el(env);
9008 
9009     /*
9010      * Note that new_el can never be 0.  If cur_el is 0, then
9011      * el0_a64 is is_a64(), else el0_a64 is ignored.
9012      */
9013     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9014 
9015     if (cur_el < new_el) {
9016         /* Entry vector offset depends on whether the implemented EL
9017          * immediately lower than the target level is using AArch32 or AArch64
9018          */
9019         bool is_aa64;
9020         uint64_t hcr;
9021 
9022         switch (new_el) {
9023         case 3:
9024             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9025             break;
9026         case 2:
9027             hcr = arm_hcr_el2_eff(env);
9028             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9029                 is_aa64 = (hcr & HCR_RW) != 0;
9030                 break;
9031             }
9032             /* fall through */
9033         case 1:
9034             is_aa64 = is_a64(env);
9035             break;
9036         default:
9037             g_assert_not_reached();
9038         }
9039 
9040         if (is_aa64) {
9041             addr += 0x400;
9042         } else {
9043             addr += 0x600;
9044         }
9045     } else if (pstate_read(env) & PSTATE_SP) {
9046         addr += 0x200;
9047     }
9048 
9049     switch (cs->exception_index) {
9050     case EXCP_PREFETCH_ABORT:
9051     case EXCP_DATA_ABORT:
9052         env->cp15.far_el[new_el] = env->exception.vaddress;
9053         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9054                       env->cp15.far_el[new_el]);
9055         /* fall through */
9056     case EXCP_BKPT:
9057     case EXCP_UDEF:
9058     case EXCP_SWI:
9059     case EXCP_HVC:
9060     case EXCP_HYP_TRAP:
9061     case EXCP_SMC:
9062         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9063             /*
9064              * QEMU internal FP/SIMD syndromes from AArch32 include the
9065              * TA and coproc fields which are only exposed if the exception
9066              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9067              * AArch64 format syndrome.
9068              */
9069             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9070         }
9071         env->cp15.esr_el[new_el] = env->exception.syndrome;
9072         break;
9073     case EXCP_IRQ:
9074     case EXCP_VIRQ:
9075         addr += 0x80;
9076         break;
9077     case EXCP_FIQ:
9078     case EXCP_VFIQ:
9079         addr += 0x100;
9080         break;
9081     default:
9082         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9083     }
9084 
9085     if (is_a64(env)) {
9086         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9087         aarch64_save_sp(env, arm_current_el(env));
9088         env->elr_el[new_el] = env->pc;
9089     } else {
9090         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9091         env->elr_el[new_el] = env->regs[15];
9092 
9093         aarch64_sync_32_to_64(env);
9094 
9095         env->condexec_bits = 0;
9096     }
9097     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9098                   env->elr_el[new_el]);
9099 
9100     pstate_write(env, PSTATE_DAIF | new_mode);
9101     env->aarch64 = 1;
9102     aarch64_restore_sp(env, new_el);
9103     helper_rebuild_hflags_a64(env, new_el);
9104 
9105     env->pc = addr;
9106 
9107     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9108                   new_el, env->pc, pstate_read(env));
9109 }
9110 
9111 /*
9112  * Do semihosting call and set the appropriate return value. All the
9113  * permission and validity checks have been done at translate time.
9114  *
9115  * We only see semihosting exceptions in TCG only as they are not
9116  * trapped to the hypervisor in KVM.
9117  */
9118 #ifdef CONFIG_TCG
9119 static void handle_semihosting(CPUState *cs)
9120 {
9121     ARMCPU *cpu = ARM_CPU(cs);
9122     CPUARMState *env = &cpu->env;
9123 
9124     if (is_a64(env)) {
9125         qemu_log_mask(CPU_LOG_INT,
9126                       "...handling as semihosting call 0x%" PRIx64 "\n",
9127                       env->xregs[0]);
9128         env->xregs[0] = do_arm_semihosting(env);
9129         env->pc += 4;
9130     } else {
9131         qemu_log_mask(CPU_LOG_INT,
9132                       "...handling as semihosting call 0x%x\n",
9133                       env->regs[0]);
9134         env->regs[0] = do_arm_semihosting(env);
9135         env->regs[15] += env->thumb ? 2 : 4;
9136     }
9137 }
9138 #endif
9139 
9140 /* Handle a CPU exception for A and R profile CPUs.
9141  * Do any appropriate logging, handle PSCI calls, and then hand off
9142  * to the AArch64-entry or AArch32-entry function depending on the
9143  * target exception level's register width.
9144  */
9145 void arm_cpu_do_interrupt(CPUState *cs)
9146 {
9147     ARMCPU *cpu = ARM_CPU(cs);
9148     CPUARMState *env = &cpu->env;
9149     unsigned int new_el = env->exception.target_el;
9150 
9151     assert(!arm_feature(env, ARM_FEATURE_M));
9152 
9153     arm_log_exception(cs->exception_index);
9154     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9155                   new_el);
9156     if (qemu_loglevel_mask(CPU_LOG_INT)
9157         && !excp_is_internal(cs->exception_index)) {
9158         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9159                       syn_get_ec(env->exception.syndrome),
9160                       env->exception.syndrome);
9161     }
9162 
9163     if (arm_is_psci_call(cpu, cs->exception_index)) {
9164         arm_handle_psci_call(cpu);
9165         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9166         return;
9167     }
9168 
9169     /*
9170      * Semihosting semantics depend on the register width of the code
9171      * that caused the exception, not the target exception level, so
9172      * must be handled here.
9173      */
9174 #ifdef CONFIG_TCG
9175     if (cs->exception_index == EXCP_SEMIHOST) {
9176         handle_semihosting(cs);
9177         return;
9178     }
9179 #endif
9180 
9181     /* Hooks may change global state so BQL should be held, also the
9182      * BQL needs to be held for any modification of
9183      * cs->interrupt_request.
9184      */
9185     g_assert(qemu_mutex_iothread_locked());
9186 
9187     arm_call_pre_el_change_hook(cpu);
9188 
9189     assert(!excp_is_internal(cs->exception_index));
9190     if (arm_el_is_aa64(env, new_el)) {
9191         arm_cpu_do_interrupt_aarch64(cs);
9192     } else {
9193         arm_cpu_do_interrupt_aarch32(cs);
9194     }
9195 
9196     arm_call_el_change_hook(cpu);
9197 
9198     if (!kvm_enabled()) {
9199         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9200     }
9201 }
9202 #endif /* !CONFIG_USER_ONLY */
9203 
9204 /* Return the exception level which controls this address translation regime */
9205 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9206 {
9207     switch (mmu_idx) {
9208     case ARMMMUIdx_E20_0:
9209     case ARMMMUIdx_E20_2:
9210     case ARMMMUIdx_Stage2:
9211     case ARMMMUIdx_E2:
9212         return 2;
9213     case ARMMMUIdx_SE3:
9214         return 3;
9215     case ARMMMUIdx_SE10_0:
9216         return arm_el_is_aa64(env, 3) ? 1 : 3;
9217     case ARMMMUIdx_SE10_1:
9218     case ARMMMUIdx_Stage1_E0:
9219     case ARMMMUIdx_Stage1_E1:
9220     case ARMMMUIdx_E10_0:
9221     case ARMMMUIdx_E10_1:
9222     case ARMMMUIdx_MPrivNegPri:
9223     case ARMMMUIdx_MUserNegPri:
9224     case ARMMMUIdx_MPriv:
9225     case ARMMMUIdx_MUser:
9226     case ARMMMUIdx_MSPrivNegPri:
9227     case ARMMMUIdx_MSUserNegPri:
9228     case ARMMMUIdx_MSPriv:
9229     case ARMMMUIdx_MSUser:
9230         return 1;
9231     default:
9232         g_assert_not_reached();
9233     }
9234 }
9235 
9236 uint64_t arm_sctlr(CPUARMState *env, int el)
9237 {
9238     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9239     if (el == 0) {
9240         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9241         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9242     }
9243     return env->cp15.sctlr_el[el];
9244 }
9245 
9246 /* Return the SCTLR value which controls this address translation regime */
9247 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9248 {
9249     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9250 }
9251 
9252 #ifndef CONFIG_USER_ONLY
9253 
9254 /* Return true if the specified stage of address translation is disabled */
9255 static inline bool regime_translation_disabled(CPUARMState *env,
9256                                                ARMMMUIdx mmu_idx)
9257 {
9258     if (arm_feature(env, ARM_FEATURE_M)) {
9259         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9260                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9261         case R_V7M_MPU_CTRL_ENABLE_MASK:
9262             /* Enabled, but not for HardFault and NMI */
9263             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9264         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9265             /* Enabled for all cases */
9266             return false;
9267         case 0:
9268         default:
9269             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9270              * we warned about that in armv7m_nvic.c when the guest set it.
9271              */
9272             return true;
9273         }
9274     }
9275 
9276     if (mmu_idx == ARMMMUIdx_Stage2) {
9277         /* HCR.DC means HCR.VM behaves as 1 */
9278         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9279     }
9280 
9281     if (env->cp15.hcr_el2 & HCR_TGE) {
9282         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9283         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9284             return true;
9285         }
9286     }
9287 
9288     if ((env->cp15.hcr_el2 & HCR_DC) &&
9289         (mmu_idx == ARMMMUIdx_Stage1_E0 || mmu_idx == ARMMMUIdx_Stage1_E1)) {
9290         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9291         return true;
9292     }
9293 
9294     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9295 }
9296 
9297 static inline bool regime_translation_big_endian(CPUARMState *env,
9298                                                  ARMMMUIdx mmu_idx)
9299 {
9300     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9301 }
9302 
9303 /* Return the TTBR associated with this translation regime */
9304 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9305                                    int ttbrn)
9306 {
9307     if (mmu_idx == ARMMMUIdx_Stage2) {
9308         return env->cp15.vttbr_el2;
9309     }
9310     if (ttbrn == 0) {
9311         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9312     } else {
9313         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9314     }
9315 }
9316 
9317 #endif /* !CONFIG_USER_ONLY */
9318 
9319 /* Return the TCR controlling this translation regime */
9320 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9321 {
9322     if (mmu_idx == ARMMMUIdx_Stage2) {
9323         return &env->cp15.vtcr_el2;
9324     }
9325     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9326 }
9327 
9328 /* Convert a possible stage1+2 MMU index into the appropriate
9329  * stage 1 MMU index
9330  */
9331 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9332 {
9333     switch (mmu_idx) {
9334     case ARMMMUIdx_E10_0:
9335         return ARMMMUIdx_Stage1_E0;
9336     case ARMMMUIdx_E10_1:
9337         return ARMMMUIdx_Stage1_E1;
9338     default:
9339         return mmu_idx;
9340     }
9341 }
9342 
9343 /* Return true if the translation regime is using LPAE format page tables */
9344 static inline bool regime_using_lpae_format(CPUARMState *env,
9345                                             ARMMMUIdx mmu_idx)
9346 {
9347     int el = regime_el(env, mmu_idx);
9348     if (el == 2 || arm_el_is_aa64(env, el)) {
9349         return true;
9350     }
9351     if (arm_feature(env, ARM_FEATURE_LPAE)
9352         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9353         return true;
9354     }
9355     return false;
9356 }
9357 
9358 /* Returns true if the stage 1 translation regime is using LPAE format page
9359  * tables. Used when raising alignment exceptions, whose FSR changes depending
9360  * on whether the long or short descriptor format is in use. */
9361 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9362 {
9363     mmu_idx = stage_1_mmu_idx(mmu_idx);
9364 
9365     return regime_using_lpae_format(env, mmu_idx);
9366 }
9367 
9368 #ifndef CONFIG_USER_ONLY
9369 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9370 {
9371     switch (mmu_idx) {
9372     case ARMMMUIdx_SE10_0:
9373     case ARMMMUIdx_E20_0:
9374     case ARMMMUIdx_Stage1_E0:
9375     case ARMMMUIdx_MUser:
9376     case ARMMMUIdx_MSUser:
9377     case ARMMMUIdx_MUserNegPri:
9378     case ARMMMUIdx_MSUserNegPri:
9379         return true;
9380     default:
9381         return false;
9382     case ARMMMUIdx_E10_0:
9383     case ARMMMUIdx_E10_1:
9384         g_assert_not_reached();
9385     }
9386 }
9387 
9388 /* Translate section/page access permissions to page
9389  * R/W protection flags
9390  *
9391  * @env:         CPUARMState
9392  * @mmu_idx:     MMU index indicating required translation regime
9393  * @ap:          The 3-bit access permissions (AP[2:0])
9394  * @domain_prot: The 2-bit domain access permissions
9395  */
9396 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9397                                 int ap, int domain_prot)
9398 {
9399     bool is_user = regime_is_user(env, mmu_idx);
9400 
9401     if (domain_prot == 3) {
9402         return PAGE_READ | PAGE_WRITE;
9403     }
9404 
9405     switch (ap) {
9406     case 0:
9407         if (arm_feature(env, ARM_FEATURE_V7)) {
9408             return 0;
9409         }
9410         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9411         case SCTLR_S:
9412             return is_user ? 0 : PAGE_READ;
9413         case SCTLR_R:
9414             return PAGE_READ;
9415         default:
9416             return 0;
9417         }
9418     case 1:
9419         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9420     case 2:
9421         if (is_user) {
9422             return PAGE_READ;
9423         } else {
9424             return PAGE_READ | PAGE_WRITE;
9425         }
9426     case 3:
9427         return PAGE_READ | PAGE_WRITE;
9428     case 4: /* Reserved.  */
9429         return 0;
9430     case 5:
9431         return is_user ? 0 : PAGE_READ;
9432     case 6:
9433         return PAGE_READ;
9434     case 7:
9435         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9436             return 0;
9437         }
9438         return PAGE_READ;
9439     default:
9440         g_assert_not_reached();
9441     }
9442 }
9443 
9444 /* Translate section/page access permissions to page
9445  * R/W protection flags.
9446  *
9447  * @ap:      The 2-bit simple AP (AP[2:1])
9448  * @is_user: TRUE if accessing from PL0
9449  */
9450 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9451 {
9452     switch (ap) {
9453     case 0:
9454         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9455     case 1:
9456         return PAGE_READ | PAGE_WRITE;
9457     case 2:
9458         return is_user ? 0 : PAGE_READ;
9459     case 3:
9460         return PAGE_READ;
9461     default:
9462         g_assert_not_reached();
9463     }
9464 }
9465 
9466 static inline int
9467 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9468 {
9469     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9470 }
9471 
9472 /* Translate S2 section/page access permissions to protection flags
9473  *
9474  * @env:     CPUARMState
9475  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9476  * @xn:      XN (execute-never) bit
9477  */
9478 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9479 {
9480     int prot = 0;
9481 
9482     if (s2ap & 1) {
9483         prot |= PAGE_READ;
9484     }
9485     if (s2ap & 2) {
9486         prot |= PAGE_WRITE;
9487     }
9488     if (!xn) {
9489         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9490             prot |= PAGE_EXEC;
9491         }
9492     }
9493     return prot;
9494 }
9495 
9496 /* Translate section/page access permissions to protection flags
9497  *
9498  * @env:     CPUARMState
9499  * @mmu_idx: MMU index indicating required translation regime
9500  * @is_aa64: TRUE if AArch64
9501  * @ap:      The 2-bit simple AP (AP[2:1])
9502  * @ns:      NS (non-secure) bit
9503  * @xn:      XN (execute-never) bit
9504  * @pxn:     PXN (privileged execute-never) bit
9505  */
9506 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9507                       int ap, int ns, int xn, int pxn)
9508 {
9509     bool is_user = regime_is_user(env, mmu_idx);
9510     int prot_rw, user_rw;
9511     bool have_wxn;
9512     int wxn = 0;
9513 
9514     assert(mmu_idx != ARMMMUIdx_Stage2);
9515 
9516     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9517     if (is_user) {
9518         prot_rw = user_rw;
9519     } else {
9520         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9521     }
9522 
9523     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9524         return prot_rw;
9525     }
9526 
9527     /* TODO have_wxn should be replaced with
9528      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9529      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9530      * compatible processors have EL2, which is required for [U]WXN.
9531      */
9532     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9533 
9534     if (have_wxn) {
9535         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9536     }
9537 
9538     if (is_aa64) {
9539         if (regime_has_2_ranges(mmu_idx) && !is_user) {
9540             xn = pxn || (user_rw & PAGE_WRITE);
9541         }
9542     } else if (arm_feature(env, ARM_FEATURE_V7)) {
9543         switch (regime_el(env, mmu_idx)) {
9544         case 1:
9545         case 3:
9546             if (is_user) {
9547                 xn = xn || !(user_rw & PAGE_READ);
9548             } else {
9549                 int uwxn = 0;
9550                 if (have_wxn) {
9551                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9552                 }
9553                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9554                      (uwxn && (user_rw & PAGE_WRITE));
9555             }
9556             break;
9557         case 2:
9558             break;
9559         }
9560     } else {
9561         xn = wxn = 0;
9562     }
9563 
9564     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9565         return prot_rw;
9566     }
9567     return prot_rw | PAGE_EXEC;
9568 }
9569 
9570 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9571                                      uint32_t *table, uint32_t address)
9572 {
9573     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9574     TCR *tcr = regime_tcr(env, mmu_idx);
9575 
9576     if (address & tcr->mask) {
9577         if (tcr->raw_tcr & TTBCR_PD1) {
9578             /* Translation table walk disabled for TTBR1 */
9579             return false;
9580         }
9581         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9582     } else {
9583         if (tcr->raw_tcr & TTBCR_PD0) {
9584             /* Translation table walk disabled for TTBR0 */
9585             return false;
9586         }
9587         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9588     }
9589     *table |= (address >> 18) & 0x3ffc;
9590     return true;
9591 }
9592 
9593 /* Translate a S1 pagetable walk through S2 if needed.  */
9594 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9595                                hwaddr addr, MemTxAttrs txattrs,
9596                                ARMMMUFaultInfo *fi)
9597 {
9598     if ((mmu_idx == ARMMMUIdx_Stage1_E0 || mmu_idx == ARMMMUIdx_Stage1_E1) &&
9599         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
9600         target_ulong s2size;
9601         hwaddr s2pa;
9602         int s2prot;
9603         int ret;
9604         ARMCacheAttrs cacheattrs = {};
9605         ARMCacheAttrs *pcacheattrs = NULL;
9606 
9607         if (env->cp15.hcr_el2 & HCR_PTW) {
9608             /*
9609              * PTW means we must fault if this S1 walk touches S2 Device
9610              * memory; otherwise we don't care about the attributes and can
9611              * save the S2 translation the effort of computing them.
9612              */
9613             pcacheattrs = &cacheattrs;
9614         }
9615 
9616         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa,
9617                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9618         if (ret) {
9619             assert(fi->type != ARMFault_None);
9620             fi->s2addr = addr;
9621             fi->stage2 = true;
9622             fi->s1ptw = true;
9623             return ~0;
9624         }
9625         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9626             /* Access was to Device memory: generate Permission fault */
9627             fi->type = ARMFault_Permission;
9628             fi->s2addr = addr;
9629             fi->stage2 = true;
9630             fi->s1ptw = true;
9631             return ~0;
9632         }
9633         addr = s2pa;
9634     }
9635     return addr;
9636 }
9637 
9638 /* All loads done in the course of a page table walk go through here. */
9639 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9640                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9641 {
9642     ARMCPU *cpu = ARM_CPU(cs);
9643     CPUARMState *env = &cpu->env;
9644     MemTxAttrs attrs = {};
9645     MemTxResult result = MEMTX_OK;
9646     AddressSpace *as;
9647     uint32_t data;
9648 
9649     attrs.secure = is_secure;
9650     as = arm_addressspace(cs, attrs);
9651     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9652     if (fi->s1ptw) {
9653         return 0;
9654     }
9655     if (regime_translation_big_endian(env, mmu_idx)) {
9656         data = address_space_ldl_be(as, addr, attrs, &result);
9657     } else {
9658         data = address_space_ldl_le(as, addr, attrs, &result);
9659     }
9660     if (result == MEMTX_OK) {
9661         return data;
9662     }
9663     fi->type = ARMFault_SyncExternalOnWalk;
9664     fi->ea = arm_extabort_type(result);
9665     return 0;
9666 }
9667 
9668 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9669                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9670 {
9671     ARMCPU *cpu = ARM_CPU(cs);
9672     CPUARMState *env = &cpu->env;
9673     MemTxAttrs attrs = {};
9674     MemTxResult result = MEMTX_OK;
9675     AddressSpace *as;
9676     uint64_t data;
9677 
9678     attrs.secure = is_secure;
9679     as = arm_addressspace(cs, attrs);
9680     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9681     if (fi->s1ptw) {
9682         return 0;
9683     }
9684     if (regime_translation_big_endian(env, mmu_idx)) {
9685         data = address_space_ldq_be(as, addr, attrs, &result);
9686     } else {
9687         data = address_space_ldq_le(as, addr, attrs, &result);
9688     }
9689     if (result == MEMTX_OK) {
9690         return data;
9691     }
9692     fi->type = ARMFault_SyncExternalOnWalk;
9693     fi->ea = arm_extabort_type(result);
9694     return 0;
9695 }
9696 
9697 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9698                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9699                              hwaddr *phys_ptr, int *prot,
9700                              target_ulong *page_size,
9701                              ARMMMUFaultInfo *fi)
9702 {
9703     CPUState *cs = env_cpu(env);
9704     int level = 1;
9705     uint32_t table;
9706     uint32_t desc;
9707     int type;
9708     int ap;
9709     int domain = 0;
9710     int domain_prot;
9711     hwaddr phys_addr;
9712     uint32_t dacr;
9713 
9714     /* Pagetable walk.  */
9715     /* Lookup l1 descriptor.  */
9716     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9717         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9718         fi->type = ARMFault_Translation;
9719         goto do_fault;
9720     }
9721     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9722                        mmu_idx, fi);
9723     if (fi->type != ARMFault_None) {
9724         goto do_fault;
9725     }
9726     type = (desc & 3);
9727     domain = (desc >> 5) & 0x0f;
9728     if (regime_el(env, mmu_idx) == 1) {
9729         dacr = env->cp15.dacr_ns;
9730     } else {
9731         dacr = env->cp15.dacr_s;
9732     }
9733     domain_prot = (dacr >> (domain * 2)) & 3;
9734     if (type == 0) {
9735         /* Section translation fault.  */
9736         fi->type = ARMFault_Translation;
9737         goto do_fault;
9738     }
9739     if (type != 2) {
9740         level = 2;
9741     }
9742     if (domain_prot == 0 || domain_prot == 2) {
9743         fi->type = ARMFault_Domain;
9744         goto do_fault;
9745     }
9746     if (type == 2) {
9747         /* 1Mb section.  */
9748         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9749         ap = (desc >> 10) & 3;
9750         *page_size = 1024 * 1024;
9751     } else {
9752         /* Lookup l2 entry.  */
9753         if (type == 1) {
9754             /* Coarse pagetable.  */
9755             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9756         } else {
9757             /* Fine pagetable.  */
9758             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9759         }
9760         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9761                            mmu_idx, fi);
9762         if (fi->type != ARMFault_None) {
9763             goto do_fault;
9764         }
9765         switch (desc & 3) {
9766         case 0: /* Page translation fault.  */
9767             fi->type = ARMFault_Translation;
9768             goto do_fault;
9769         case 1: /* 64k page.  */
9770             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9771             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9772             *page_size = 0x10000;
9773             break;
9774         case 2: /* 4k page.  */
9775             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9776             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9777             *page_size = 0x1000;
9778             break;
9779         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9780             if (type == 1) {
9781                 /* ARMv6/XScale extended small page format */
9782                 if (arm_feature(env, ARM_FEATURE_XSCALE)
9783                     || arm_feature(env, ARM_FEATURE_V6)) {
9784                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9785                     *page_size = 0x1000;
9786                 } else {
9787                     /* UNPREDICTABLE in ARMv5; we choose to take a
9788                      * page translation fault.
9789                      */
9790                     fi->type = ARMFault_Translation;
9791                     goto do_fault;
9792                 }
9793             } else {
9794                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9795                 *page_size = 0x400;
9796             }
9797             ap = (desc >> 4) & 3;
9798             break;
9799         default:
9800             /* Never happens, but compiler isn't smart enough to tell.  */
9801             abort();
9802         }
9803     }
9804     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9805     *prot |= *prot ? PAGE_EXEC : 0;
9806     if (!(*prot & (1 << access_type))) {
9807         /* Access permission fault.  */
9808         fi->type = ARMFault_Permission;
9809         goto do_fault;
9810     }
9811     *phys_ptr = phys_addr;
9812     return false;
9813 do_fault:
9814     fi->domain = domain;
9815     fi->level = level;
9816     return true;
9817 }
9818 
9819 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9820                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9821                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9822                              target_ulong *page_size, ARMMMUFaultInfo *fi)
9823 {
9824     CPUState *cs = env_cpu(env);
9825     int level = 1;
9826     uint32_t table;
9827     uint32_t desc;
9828     uint32_t xn;
9829     uint32_t pxn = 0;
9830     int type;
9831     int ap;
9832     int domain = 0;
9833     int domain_prot;
9834     hwaddr phys_addr;
9835     uint32_t dacr;
9836     bool ns;
9837 
9838     /* Pagetable walk.  */
9839     /* Lookup l1 descriptor.  */
9840     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9841         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9842         fi->type = ARMFault_Translation;
9843         goto do_fault;
9844     }
9845     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9846                        mmu_idx, fi);
9847     if (fi->type != ARMFault_None) {
9848         goto do_fault;
9849     }
9850     type = (desc & 3);
9851     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9852         /* Section translation fault, or attempt to use the encoding
9853          * which is Reserved on implementations without PXN.
9854          */
9855         fi->type = ARMFault_Translation;
9856         goto do_fault;
9857     }
9858     if ((type == 1) || !(desc & (1 << 18))) {
9859         /* Page or Section.  */
9860         domain = (desc >> 5) & 0x0f;
9861     }
9862     if (regime_el(env, mmu_idx) == 1) {
9863         dacr = env->cp15.dacr_ns;
9864     } else {
9865         dacr = env->cp15.dacr_s;
9866     }
9867     if (type == 1) {
9868         level = 2;
9869     }
9870     domain_prot = (dacr >> (domain * 2)) & 3;
9871     if (domain_prot == 0 || domain_prot == 2) {
9872         /* Section or Page domain fault */
9873         fi->type = ARMFault_Domain;
9874         goto do_fault;
9875     }
9876     if (type != 1) {
9877         if (desc & (1 << 18)) {
9878             /* Supersection.  */
9879             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9880             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9881             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9882             *page_size = 0x1000000;
9883         } else {
9884             /* Section.  */
9885             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9886             *page_size = 0x100000;
9887         }
9888         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9889         xn = desc & (1 << 4);
9890         pxn = desc & 1;
9891         ns = extract32(desc, 19, 1);
9892     } else {
9893         if (arm_feature(env, ARM_FEATURE_PXN)) {
9894             pxn = (desc >> 2) & 1;
9895         }
9896         ns = extract32(desc, 3, 1);
9897         /* Lookup l2 entry.  */
9898         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9899         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9900                            mmu_idx, fi);
9901         if (fi->type != ARMFault_None) {
9902             goto do_fault;
9903         }
9904         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9905         switch (desc & 3) {
9906         case 0: /* Page translation fault.  */
9907             fi->type = ARMFault_Translation;
9908             goto do_fault;
9909         case 1: /* 64k page.  */
9910             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9911             xn = desc & (1 << 15);
9912             *page_size = 0x10000;
9913             break;
9914         case 2: case 3: /* 4k page.  */
9915             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9916             xn = desc & 1;
9917             *page_size = 0x1000;
9918             break;
9919         default:
9920             /* Never happens, but compiler isn't smart enough to tell.  */
9921             abort();
9922         }
9923     }
9924     if (domain_prot == 3) {
9925         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9926     } else {
9927         if (pxn && !regime_is_user(env, mmu_idx)) {
9928             xn = 1;
9929         }
9930         if (xn && access_type == MMU_INST_FETCH) {
9931             fi->type = ARMFault_Permission;
9932             goto do_fault;
9933         }
9934 
9935         if (arm_feature(env, ARM_FEATURE_V6K) &&
9936                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9937             /* The simplified model uses AP[0] as an access control bit.  */
9938             if ((ap & 1) == 0) {
9939                 /* Access flag fault.  */
9940                 fi->type = ARMFault_AccessFlag;
9941                 goto do_fault;
9942             }
9943             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9944         } else {
9945             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9946         }
9947         if (*prot && !xn) {
9948             *prot |= PAGE_EXEC;
9949         }
9950         if (!(*prot & (1 << access_type))) {
9951             /* Access permission fault.  */
9952             fi->type = ARMFault_Permission;
9953             goto do_fault;
9954         }
9955     }
9956     if (ns) {
9957         /* The NS bit will (as required by the architecture) have no effect if
9958          * the CPU doesn't support TZ or this is a non-secure translation
9959          * regime, because the attribute will already be non-secure.
9960          */
9961         attrs->secure = false;
9962     }
9963     *phys_ptr = phys_addr;
9964     return false;
9965 do_fault:
9966     fi->domain = domain;
9967     fi->level = level;
9968     return true;
9969 }
9970 
9971 /*
9972  * check_s2_mmu_setup
9973  * @cpu:        ARMCPU
9974  * @is_aa64:    True if the translation regime is in AArch64 state
9975  * @startlevel: Suggested starting level
9976  * @inputsize:  Bitsize of IPAs
9977  * @stride:     Page-table stride (See the ARM ARM)
9978  *
9979  * Returns true if the suggested S2 translation parameters are OK and
9980  * false otherwise.
9981  */
9982 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9983                                int inputsize, int stride)
9984 {
9985     const int grainsize = stride + 3;
9986     int startsizecheck;
9987 
9988     /* Negative levels are never allowed.  */
9989     if (level < 0) {
9990         return false;
9991     }
9992 
9993     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9994     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9995         return false;
9996     }
9997 
9998     if (is_aa64) {
9999         CPUARMState *env = &cpu->env;
10000         unsigned int pamax = arm_pamax(cpu);
10001 
10002         switch (stride) {
10003         case 13: /* 64KB Pages.  */
10004             if (level == 0 || (level == 1 && pamax <= 42)) {
10005                 return false;
10006             }
10007             break;
10008         case 11: /* 16KB Pages.  */
10009             if (level == 0 || (level == 1 && pamax <= 40)) {
10010                 return false;
10011             }
10012             break;
10013         case 9: /* 4KB Pages.  */
10014             if (level == 0 && pamax <= 42) {
10015                 return false;
10016             }
10017             break;
10018         default:
10019             g_assert_not_reached();
10020         }
10021 
10022         /* Inputsize checks.  */
10023         if (inputsize > pamax &&
10024             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10025             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10026             return false;
10027         }
10028     } else {
10029         /* AArch32 only supports 4KB pages. Assert on that.  */
10030         assert(stride == 9);
10031 
10032         if (level == 0) {
10033             return false;
10034         }
10035     }
10036     return true;
10037 }
10038 
10039 /* Translate from the 4-bit stage 2 representation of
10040  * memory attributes (without cache-allocation hints) to
10041  * the 8-bit representation of the stage 1 MAIR registers
10042  * (which includes allocation hints).
10043  *
10044  * ref: shared/translation/attrs/S2AttrDecode()
10045  *      .../S2ConvertAttrsHints()
10046  */
10047 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10048 {
10049     uint8_t hiattr = extract32(s2attrs, 2, 2);
10050     uint8_t loattr = extract32(s2attrs, 0, 2);
10051     uint8_t hihint = 0, lohint = 0;
10052 
10053     if (hiattr != 0) { /* normal memory */
10054         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10055             hiattr = loattr = 1; /* non-cacheable */
10056         } else {
10057             if (hiattr != 1) { /* Write-through or write-back */
10058                 hihint = 3; /* RW allocate */
10059             }
10060             if (loattr != 1) { /* Write-through or write-back */
10061                 lohint = 3; /* RW allocate */
10062             }
10063         }
10064     }
10065 
10066     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10067 }
10068 #endif /* !CONFIG_USER_ONLY */
10069 
10070 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10071                                         ARMMMUIdx mmu_idx)
10072 {
10073     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10074     bool tbi, tbid, epd, hpd, using16k, using64k;
10075     int select, tsz;
10076 
10077     /*
10078      * Bit 55 is always between the two regions, and is canonical for
10079      * determining if address tagging is enabled.
10080      */
10081     select = extract64(va, 55, 1);
10082 
10083     if (!regime_has_2_ranges(mmu_idx)) {
10084         tsz = extract32(tcr, 0, 6);
10085         using64k = extract32(tcr, 14, 1);
10086         using16k = extract32(tcr, 15, 1);
10087         if (mmu_idx == ARMMMUIdx_Stage2) {
10088             /* VTCR_EL2 */
10089             tbi = tbid = hpd = false;
10090         } else {
10091             tbi = extract32(tcr, 20, 1);
10092             hpd = extract32(tcr, 24, 1);
10093             tbid = extract32(tcr, 29, 1);
10094         }
10095         epd = false;
10096     } else if (!select) {
10097         tsz = extract32(tcr, 0, 6);
10098         epd = extract32(tcr, 7, 1);
10099         using64k = extract32(tcr, 14, 1);
10100         using16k = extract32(tcr, 15, 1);
10101         tbi = extract64(tcr, 37, 1);
10102         hpd = extract64(tcr, 41, 1);
10103         tbid = extract64(tcr, 51, 1);
10104     } else {
10105         int tg = extract32(tcr, 30, 2);
10106         using16k = tg == 1;
10107         using64k = tg == 3;
10108         tsz = extract32(tcr, 16, 6);
10109         epd = extract32(tcr, 23, 1);
10110         tbi = extract64(tcr, 38, 1);
10111         hpd = extract64(tcr, 42, 1);
10112         tbid = extract64(tcr, 52, 1);
10113     }
10114     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10115     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10116 
10117     return (ARMVAParameters) {
10118         .tsz = tsz,
10119         .select = select,
10120         .tbi = tbi,
10121         .tbid = tbid,
10122         .epd = epd,
10123         .hpd = hpd,
10124         .using16k = using16k,
10125         .using64k = using64k,
10126     };
10127 }
10128 
10129 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10130                                    ARMMMUIdx mmu_idx, bool data)
10131 {
10132     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10133 
10134     /* Present TBI as a composite with TBID.  */
10135     ret.tbi &= (data || !ret.tbid);
10136     return ret;
10137 }
10138 
10139 #ifndef CONFIG_USER_ONLY
10140 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10141                                           ARMMMUIdx mmu_idx)
10142 {
10143     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10144     uint32_t el = regime_el(env, mmu_idx);
10145     int select, tsz;
10146     bool epd, hpd;
10147 
10148     if (mmu_idx == ARMMMUIdx_Stage2) {
10149         /* VTCR */
10150         bool sext = extract32(tcr, 4, 1);
10151         bool sign = extract32(tcr, 3, 1);
10152 
10153         /*
10154          * If the sign-extend bit is not the same as t0sz[3], the result
10155          * is unpredictable. Flag this as a guest error.
10156          */
10157         if (sign != sext) {
10158             qemu_log_mask(LOG_GUEST_ERROR,
10159                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10160         }
10161         tsz = sextract32(tcr, 0, 4) + 8;
10162         select = 0;
10163         hpd = false;
10164         epd = false;
10165     } else if (el == 2) {
10166         /* HTCR */
10167         tsz = extract32(tcr, 0, 3);
10168         select = 0;
10169         hpd = extract64(tcr, 24, 1);
10170         epd = false;
10171     } else {
10172         int t0sz = extract32(tcr, 0, 3);
10173         int t1sz = extract32(tcr, 16, 3);
10174 
10175         if (t1sz == 0) {
10176             select = va > (0xffffffffu >> t0sz);
10177         } else {
10178             /* Note that we will detect errors later.  */
10179             select = va >= ~(0xffffffffu >> t1sz);
10180         }
10181         if (!select) {
10182             tsz = t0sz;
10183             epd = extract32(tcr, 7, 1);
10184             hpd = extract64(tcr, 41, 1);
10185         } else {
10186             tsz = t1sz;
10187             epd = extract32(tcr, 23, 1);
10188             hpd = extract64(tcr, 42, 1);
10189         }
10190         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10191         hpd &= extract32(tcr, 6, 1);
10192     }
10193 
10194     return (ARMVAParameters) {
10195         .tsz = tsz,
10196         .select = select,
10197         .epd = epd,
10198         .hpd = hpd,
10199     };
10200 }
10201 
10202 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10203                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10204                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10205                                target_ulong *page_size_ptr,
10206                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10207 {
10208     ARMCPU *cpu = env_archcpu(env);
10209     CPUState *cs = CPU(cpu);
10210     /* Read an LPAE long-descriptor translation table. */
10211     ARMFaultType fault_type = ARMFault_Translation;
10212     uint32_t level;
10213     ARMVAParameters param;
10214     uint64_t ttbr;
10215     hwaddr descaddr, indexmask, indexmask_grainsize;
10216     uint32_t tableattrs;
10217     target_ulong page_size;
10218     uint32_t attrs;
10219     int32_t stride;
10220     int addrsize, inputsize;
10221     TCR *tcr = regime_tcr(env, mmu_idx);
10222     int ap, ns, xn, pxn;
10223     uint32_t el = regime_el(env, mmu_idx);
10224     bool ttbr1_valid;
10225     uint64_t descaddrmask;
10226     bool aarch64 = arm_el_is_aa64(env, el);
10227     bool guarded = false;
10228 
10229     /* TODO:
10230      * This code does not handle the different format TCR for VTCR_EL2.
10231      * This code also does not support shareability levels.
10232      * Attribute and permission bit handling should also be checked when adding
10233      * support for those page table walks.
10234      */
10235     if (aarch64) {
10236         param = aa64_va_parameters(env, address, mmu_idx,
10237                                    access_type != MMU_INST_FETCH);
10238         level = 0;
10239         ttbr1_valid = regime_has_2_ranges(mmu_idx);
10240         addrsize = 64 - 8 * param.tbi;
10241         inputsize = 64 - param.tsz;
10242     } else {
10243         param = aa32_va_parameters(env, address, mmu_idx);
10244         level = 1;
10245         /* There is no TTBR1 for EL2 */
10246         ttbr1_valid = (el != 2);
10247         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10248         inputsize = addrsize - param.tsz;
10249     }
10250 
10251     /*
10252      * We determined the region when collecting the parameters, but we
10253      * have not yet validated that the address is valid for the region.
10254      * Extract the top bits and verify that they all match select.
10255      *
10256      * For aa32, if inputsize == addrsize, then we have selected the
10257      * region by exclusion in aa32_va_parameters and there is no more
10258      * validation to do here.
10259      */
10260     if (inputsize < addrsize) {
10261         target_ulong top_bits = sextract64(address, inputsize,
10262                                            addrsize - inputsize);
10263         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10264             /* The gap between the two regions is a Translation fault */
10265             fault_type = ARMFault_Translation;
10266             goto do_fault;
10267         }
10268     }
10269 
10270     if (param.using64k) {
10271         stride = 13;
10272     } else if (param.using16k) {
10273         stride = 11;
10274     } else {
10275         stride = 9;
10276     }
10277 
10278     /* Note that QEMU ignores shareability and cacheability attributes,
10279      * so we don't need to do anything with the SH, ORGN, IRGN fields
10280      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10281      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10282      * implement any ASID-like capability so we can ignore it (instead
10283      * we will always flush the TLB any time the ASID is changed).
10284      */
10285     ttbr = regime_ttbr(env, mmu_idx, param.select);
10286 
10287     /* Here we should have set up all the parameters for the translation:
10288      * inputsize, ttbr, epd, stride, tbi
10289      */
10290 
10291     if (param.epd) {
10292         /* Translation table walk disabled => Translation fault on TLB miss
10293          * Note: This is always 0 on 64-bit EL2 and EL3.
10294          */
10295         goto do_fault;
10296     }
10297 
10298     if (mmu_idx != ARMMMUIdx_Stage2) {
10299         /* The starting level depends on the virtual address size (which can
10300          * be up to 48 bits) and the translation granule size. It indicates
10301          * the number of strides (stride bits at a time) needed to
10302          * consume the bits of the input address. In the pseudocode this is:
10303          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10304          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10305          * our 'stride + 3' and 'stride' is our 'stride'.
10306          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10307          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10308          * = 4 - (inputsize - 4) / stride;
10309          */
10310         level = 4 - (inputsize - 4) / stride;
10311     } else {
10312         /* For stage 2 translations the starting level is specified by the
10313          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10314          */
10315         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10316         uint32_t startlevel;
10317         bool ok;
10318 
10319         if (!aarch64 || stride == 9) {
10320             /* AArch32 or 4KB pages */
10321             startlevel = 2 - sl0;
10322         } else {
10323             /* 16KB or 64KB pages */
10324             startlevel = 3 - sl0;
10325         }
10326 
10327         /* Check that the starting level is valid. */
10328         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10329                                 inputsize, stride);
10330         if (!ok) {
10331             fault_type = ARMFault_Translation;
10332             goto do_fault;
10333         }
10334         level = startlevel;
10335     }
10336 
10337     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10338     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10339 
10340     /* Now we can extract the actual base address from the TTBR */
10341     descaddr = extract64(ttbr, 0, 48);
10342     descaddr &= ~indexmask;
10343 
10344     /* The address field in the descriptor goes up to bit 39 for ARMv7
10345      * but up to bit 47 for ARMv8, but we use the descaddrmask
10346      * up to bit 39 for AArch32, because we don't need other bits in that case
10347      * to construct next descriptor address (anyway they should be all zeroes).
10348      */
10349     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10350                    ~indexmask_grainsize;
10351 
10352     /* Secure accesses start with the page table in secure memory and
10353      * can be downgraded to non-secure at any step. Non-secure accesses
10354      * remain non-secure. We implement this by just ORing in the NSTable/NS
10355      * bits at each step.
10356      */
10357     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10358     for (;;) {
10359         uint64_t descriptor;
10360         bool nstable;
10361 
10362         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10363         descaddr &= ~7ULL;
10364         nstable = extract32(tableattrs, 4, 1);
10365         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10366         if (fi->type != ARMFault_None) {
10367             goto do_fault;
10368         }
10369 
10370         if (!(descriptor & 1) ||
10371             (!(descriptor & 2) && (level == 3))) {
10372             /* Invalid, or the Reserved level 3 encoding */
10373             goto do_fault;
10374         }
10375         descaddr = descriptor & descaddrmask;
10376 
10377         if ((descriptor & 2) && (level < 3)) {
10378             /* Table entry. The top five bits are attributes which may
10379              * propagate down through lower levels of the table (and
10380              * which are all arranged so that 0 means "no effect", so
10381              * we can gather them up by ORing in the bits at each level).
10382              */
10383             tableattrs |= extract64(descriptor, 59, 5);
10384             level++;
10385             indexmask = indexmask_grainsize;
10386             continue;
10387         }
10388         /* Block entry at level 1 or 2, or page entry at level 3.
10389          * These are basically the same thing, although the number
10390          * of bits we pull in from the vaddr varies.
10391          */
10392         page_size = (1ULL << ((stride * (4 - level)) + 3));
10393         descaddr |= (address & (page_size - 1));
10394         /* Extract attributes from the descriptor */
10395         attrs = extract64(descriptor, 2, 10)
10396             | (extract64(descriptor, 52, 12) << 10);
10397 
10398         if (mmu_idx == ARMMMUIdx_Stage2) {
10399             /* Stage 2 table descriptors do not include any attribute fields */
10400             break;
10401         }
10402         /* Merge in attributes from table descriptors */
10403         attrs |= nstable << 3; /* NS */
10404         guarded = extract64(descriptor, 50, 1);  /* GP */
10405         if (param.hpd) {
10406             /* HPD disables all the table attributes except NSTable.  */
10407             break;
10408         }
10409         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10410         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10411          * means "force PL1 access only", which means forcing AP[1] to 0.
10412          */
10413         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10414         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10415         break;
10416     }
10417     /* Here descaddr is the final physical address, and attributes
10418      * are all in attrs.
10419      */
10420     fault_type = ARMFault_AccessFlag;
10421     if ((attrs & (1 << 8)) == 0) {
10422         /* Access flag */
10423         goto do_fault;
10424     }
10425 
10426     ap = extract32(attrs, 4, 2);
10427     xn = extract32(attrs, 12, 1);
10428 
10429     if (mmu_idx == ARMMMUIdx_Stage2) {
10430         ns = true;
10431         *prot = get_S2prot(env, ap, xn);
10432     } else {
10433         ns = extract32(attrs, 3, 1);
10434         pxn = extract32(attrs, 11, 1);
10435         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10436     }
10437 
10438     fault_type = ARMFault_Permission;
10439     if (!(*prot & (1 << access_type))) {
10440         goto do_fault;
10441     }
10442 
10443     if (ns) {
10444         /* The NS bit will (as required by the architecture) have no effect if
10445          * the CPU doesn't support TZ or this is a non-secure translation
10446          * regime, because the attribute will already be non-secure.
10447          */
10448         txattrs->secure = false;
10449     }
10450     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10451     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10452         txattrs->target_tlb_bit0 = true;
10453     }
10454 
10455     if (cacheattrs != NULL) {
10456         if (mmu_idx == ARMMMUIdx_Stage2) {
10457             cacheattrs->attrs = convert_stage2_attrs(env,
10458                                                      extract32(attrs, 0, 4));
10459         } else {
10460             /* Index into MAIR registers for cache attributes */
10461             uint8_t attrindx = extract32(attrs, 0, 3);
10462             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10463             assert(attrindx <= 7);
10464             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10465         }
10466         cacheattrs->shareability = extract32(attrs, 6, 2);
10467     }
10468 
10469     *phys_ptr = descaddr;
10470     *page_size_ptr = page_size;
10471     return false;
10472 
10473 do_fault:
10474     fi->type = fault_type;
10475     fi->level = level;
10476     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10477     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10478     return true;
10479 }
10480 
10481 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10482                                                 ARMMMUIdx mmu_idx,
10483                                                 int32_t address, int *prot)
10484 {
10485     if (!arm_feature(env, ARM_FEATURE_M)) {
10486         *prot = PAGE_READ | PAGE_WRITE;
10487         switch (address) {
10488         case 0xF0000000 ... 0xFFFFFFFF:
10489             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10490                 /* hivecs execing is ok */
10491                 *prot |= PAGE_EXEC;
10492             }
10493             break;
10494         case 0x00000000 ... 0x7FFFFFFF:
10495             *prot |= PAGE_EXEC;
10496             break;
10497         }
10498     } else {
10499         /* Default system address map for M profile cores.
10500          * The architecture specifies which regions are execute-never;
10501          * at the MPU level no other checks are defined.
10502          */
10503         switch (address) {
10504         case 0x00000000 ... 0x1fffffff: /* ROM */
10505         case 0x20000000 ... 0x3fffffff: /* SRAM */
10506         case 0x60000000 ... 0x7fffffff: /* RAM */
10507         case 0x80000000 ... 0x9fffffff: /* RAM */
10508             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10509             break;
10510         case 0x40000000 ... 0x5fffffff: /* Peripheral */
10511         case 0xa0000000 ... 0xbfffffff: /* Device */
10512         case 0xc0000000 ... 0xdfffffff: /* Device */
10513         case 0xe0000000 ... 0xffffffff: /* System */
10514             *prot = PAGE_READ | PAGE_WRITE;
10515             break;
10516         default:
10517             g_assert_not_reached();
10518         }
10519     }
10520 }
10521 
10522 static bool pmsav7_use_background_region(ARMCPU *cpu,
10523                                          ARMMMUIdx mmu_idx, bool is_user)
10524 {
10525     /* Return true if we should use the default memory map as a
10526      * "background" region if there are no hits against any MPU regions.
10527      */
10528     CPUARMState *env = &cpu->env;
10529 
10530     if (is_user) {
10531         return false;
10532     }
10533 
10534     if (arm_feature(env, ARM_FEATURE_M)) {
10535         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10536             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10537     } else {
10538         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10539     }
10540 }
10541 
10542 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10543 {
10544     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10545     return arm_feature(env, ARM_FEATURE_M) &&
10546         extract32(address, 20, 12) == 0xe00;
10547 }
10548 
10549 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10550 {
10551     /* True if address is in the M profile system region
10552      * 0xe0000000 - 0xffffffff
10553      */
10554     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10555 }
10556 
10557 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10558                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10559                                  hwaddr *phys_ptr, int *prot,
10560                                  target_ulong *page_size,
10561                                  ARMMMUFaultInfo *fi)
10562 {
10563     ARMCPU *cpu = env_archcpu(env);
10564     int n;
10565     bool is_user = regime_is_user(env, mmu_idx);
10566 
10567     *phys_ptr = address;
10568     *page_size = TARGET_PAGE_SIZE;
10569     *prot = 0;
10570 
10571     if (regime_translation_disabled(env, mmu_idx) ||
10572         m_is_ppb_region(env, address)) {
10573         /* MPU disabled or M profile PPB access: use default memory map.
10574          * The other case which uses the default memory map in the
10575          * v7M ARM ARM pseudocode is exception vector reads from the vector
10576          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10577          * which always does a direct read using address_space_ldl(), rather
10578          * than going via this function, so we don't need to check that here.
10579          */
10580         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10581     } else { /* MPU enabled */
10582         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10583             /* region search */
10584             uint32_t base = env->pmsav7.drbar[n];
10585             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10586             uint32_t rmask;
10587             bool srdis = false;
10588 
10589             if (!(env->pmsav7.drsr[n] & 0x1)) {
10590                 continue;
10591             }
10592 
10593             if (!rsize) {
10594                 qemu_log_mask(LOG_GUEST_ERROR,
10595                               "DRSR[%d]: Rsize field cannot be 0\n", n);
10596                 continue;
10597             }
10598             rsize++;
10599             rmask = (1ull << rsize) - 1;
10600 
10601             if (base & rmask) {
10602                 qemu_log_mask(LOG_GUEST_ERROR,
10603                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10604                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
10605                               n, base, rmask);
10606                 continue;
10607             }
10608 
10609             if (address < base || address > base + rmask) {
10610                 /*
10611                  * Address not in this region. We must check whether the
10612                  * region covers addresses in the same page as our address.
10613                  * In that case we must not report a size that covers the
10614                  * whole page for a subsequent hit against a different MPU
10615                  * region or the background region, because it would result in
10616                  * incorrect TLB hits for subsequent accesses to addresses that
10617                  * are in this MPU region.
10618                  */
10619                 if (ranges_overlap(base, rmask,
10620                                    address & TARGET_PAGE_MASK,
10621                                    TARGET_PAGE_SIZE)) {
10622                     *page_size = 1;
10623                 }
10624                 continue;
10625             }
10626 
10627             /* Region matched */
10628 
10629             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10630                 int i, snd;
10631                 uint32_t srdis_mask;
10632 
10633                 rsize -= 3; /* sub region size (power of 2) */
10634                 snd = ((address - base) >> rsize) & 0x7;
10635                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10636 
10637                 srdis_mask = srdis ? 0x3 : 0x0;
10638                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10639                     /* This will check in groups of 2, 4 and then 8, whether
10640                      * the subregion bits are consistent. rsize is incremented
10641                      * back up to give the region size, considering consistent
10642                      * adjacent subregions as one region. Stop testing if rsize
10643                      * is already big enough for an entire QEMU page.
10644                      */
10645                     int snd_rounded = snd & ~(i - 1);
10646                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10647                                                      snd_rounded + 8, i);
10648                     if (srdis_mask ^ srdis_multi) {
10649                         break;
10650                     }
10651                     srdis_mask = (srdis_mask << i) | srdis_mask;
10652                     rsize++;
10653                 }
10654             }
10655             if (srdis) {
10656                 continue;
10657             }
10658             if (rsize < TARGET_PAGE_BITS) {
10659                 *page_size = 1 << rsize;
10660             }
10661             break;
10662         }
10663 
10664         if (n == -1) { /* no hits */
10665             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10666                 /* background fault */
10667                 fi->type = ARMFault_Background;
10668                 return true;
10669             }
10670             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10671         } else { /* a MPU hit! */
10672             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10673             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10674 
10675             if (m_is_system_region(env, address)) {
10676                 /* System space is always execute never */
10677                 xn = 1;
10678             }
10679 
10680             if (is_user) { /* User mode AP bit decoding */
10681                 switch (ap) {
10682                 case 0:
10683                 case 1:
10684                 case 5:
10685                     break; /* no access */
10686                 case 3:
10687                     *prot |= PAGE_WRITE;
10688                     /* fall through */
10689                 case 2:
10690                 case 6:
10691                     *prot |= PAGE_READ | PAGE_EXEC;
10692                     break;
10693                 case 7:
10694                     /* for v7M, same as 6; for R profile a reserved value */
10695                     if (arm_feature(env, ARM_FEATURE_M)) {
10696                         *prot |= PAGE_READ | PAGE_EXEC;
10697                         break;
10698                     }
10699                     /* fall through */
10700                 default:
10701                     qemu_log_mask(LOG_GUEST_ERROR,
10702                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10703                                   PRIx32 "\n", n, ap);
10704                 }
10705             } else { /* Priv. mode AP bits decoding */
10706                 switch (ap) {
10707                 case 0:
10708                     break; /* no access */
10709                 case 1:
10710                 case 2:
10711                 case 3:
10712                     *prot |= PAGE_WRITE;
10713                     /* fall through */
10714                 case 5:
10715                 case 6:
10716                     *prot |= PAGE_READ | PAGE_EXEC;
10717                     break;
10718                 case 7:
10719                     /* for v7M, same as 6; for R profile a reserved value */
10720                     if (arm_feature(env, ARM_FEATURE_M)) {
10721                         *prot |= PAGE_READ | PAGE_EXEC;
10722                         break;
10723                     }
10724                     /* fall through */
10725                 default:
10726                     qemu_log_mask(LOG_GUEST_ERROR,
10727                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10728                                   PRIx32 "\n", n, ap);
10729                 }
10730             }
10731 
10732             /* execute never */
10733             if (xn) {
10734                 *prot &= ~PAGE_EXEC;
10735             }
10736         }
10737     }
10738 
10739     fi->type = ARMFault_Permission;
10740     fi->level = 1;
10741     return !(*prot & (1 << access_type));
10742 }
10743 
10744 static bool v8m_is_sau_exempt(CPUARMState *env,
10745                               uint32_t address, MMUAccessType access_type)
10746 {
10747     /* The architecture specifies that certain address ranges are
10748      * exempt from v8M SAU/IDAU checks.
10749      */
10750     return
10751         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10752         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10753         (address >= 0xe000e000 && address <= 0xe000efff) ||
10754         (address >= 0xe002e000 && address <= 0xe002efff) ||
10755         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10756         (address >= 0xe00ff000 && address <= 0xe00fffff);
10757 }
10758 
10759 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10760                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10761                                 V8M_SAttributes *sattrs)
10762 {
10763     /* Look up the security attributes for this address. Compare the
10764      * pseudocode SecurityCheck() function.
10765      * We assume the caller has zero-initialized *sattrs.
10766      */
10767     ARMCPU *cpu = env_archcpu(env);
10768     int r;
10769     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10770     int idau_region = IREGION_NOTVALID;
10771     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10772     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10773 
10774     if (cpu->idau) {
10775         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10776         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10777 
10778         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10779                    &idau_nsc);
10780     }
10781 
10782     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10783         /* 0xf0000000..0xffffffff is always S for insn fetches */
10784         return;
10785     }
10786 
10787     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10788         sattrs->ns = !regime_is_secure(env, mmu_idx);
10789         return;
10790     }
10791 
10792     if (idau_region != IREGION_NOTVALID) {
10793         sattrs->irvalid = true;
10794         sattrs->iregion = idau_region;
10795     }
10796 
10797     switch (env->sau.ctrl & 3) {
10798     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10799         break;
10800     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10801         sattrs->ns = true;
10802         break;
10803     default: /* SAU.ENABLE == 1 */
10804         for (r = 0; r < cpu->sau_sregion; r++) {
10805             if (env->sau.rlar[r] & 1) {
10806                 uint32_t base = env->sau.rbar[r] & ~0x1f;
10807                 uint32_t limit = env->sau.rlar[r] | 0x1f;
10808 
10809                 if (base <= address && limit >= address) {
10810                     if (base > addr_page_base || limit < addr_page_limit) {
10811                         sattrs->subpage = true;
10812                     }
10813                     if (sattrs->srvalid) {
10814                         /* If we hit in more than one region then we must report
10815                          * as Secure, not NS-Callable, with no valid region
10816                          * number info.
10817                          */
10818                         sattrs->ns = false;
10819                         sattrs->nsc = false;
10820                         sattrs->sregion = 0;
10821                         sattrs->srvalid = false;
10822                         break;
10823                     } else {
10824                         if (env->sau.rlar[r] & 2) {
10825                             sattrs->nsc = true;
10826                         } else {
10827                             sattrs->ns = true;
10828                         }
10829                         sattrs->srvalid = true;
10830                         sattrs->sregion = r;
10831                     }
10832                 } else {
10833                     /*
10834                      * Address not in this region. We must check whether the
10835                      * region covers addresses in the same page as our address.
10836                      * In that case we must not report a size that covers the
10837                      * whole page for a subsequent hit against a different MPU
10838                      * region or the background region, because it would result
10839                      * in incorrect TLB hits for subsequent accesses to
10840                      * addresses that are in this MPU region.
10841                      */
10842                     if (limit >= base &&
10843                         ranges_overlap(base, limit - base + 1,
10844                                        addr_page_base,
10845                                        TARGET_PAGE_SIZE)) {
10846                         sattrs->subpage = true;
10847                     }
10848                 }
10849             }
10850         }
10851         break;
10852     }
10853 
10854     /*
10855      * The IDAU will override the SAU lookup results if it specifies
10856      * higher security than the SAU does.
10857      */
10858     if (!idau_ns) {
10859         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10860             sattrs->ns = false;
10861             sattrs->nsc = idau_nsc;
10862         }
10863     }
10864 }
10865 
10866 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10867                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
10868                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
10869                               int *prot, bool *is_subpage,
10870                               ARMMMUFaultInfo *fi, uint32_t *mregion)
10871 {
10872     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10873      * that a full phys-to-virt translation does).
10874      * mregion is (if not NULL) set to the region number which matched,
10875      * or -1 if no region number is returned (MPU off, address did not
10876      * hit a region, address hit in multiple regions).
10877      * We set is_subpage to true if the region hit doesn't cover the
10878      * entire TARGET_PAGE the address is within.
10879      */
10880     ARMCPU *cpu = env_archcpu(env);
10881     bool is_user = regime_is_user(env, mmu_idx);
10882     uint32_t secure = regime_is_secure(env, mmu_idx);
10883     int n;
10884     int matchregion = -1;
10885     bool hit = false;
10886     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10887     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10888 
10889     *is_subpage = false;
10890     *phys_ptr = address;
10891     *prot = 0;
10892     if (mregion) {
10893         *mregion = -1;
10894     }
10895 
10896     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10897      * was an exception vector read from the vector table (which is always
10898      * done using the default system address map), because those accesses
10899      * are done in arm_v7m_load_vector(), which always does a direct
10900      * read using address_space_ldl(), rather than going via this function.
10901      */
10902     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10903         hit = true;
10904     } else if (m_is_ppb_region(env, address)) {
10905         hit = true;
10906     } else {
10907         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10908             hit = true;
10909         }
10910 
10911         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10912             /* region search */
10913             /* Note that the base address is bits [31:5] from the register
10914              * with bits [4:0] all zeroes, but the limit address is bits
10915              * [31:5] from the register with bits [4:0] all ones.
10916              */
10917             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10918             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10919 
10920             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10921                 /* Region disabled */
10922                 continue;
10923             }
10924 
10925             if (address < base || address > limit) {
10926                 /*
10927                  * Address not in this region. We must check whether the
10928                  * region covers addresses in the same page as our address.
10929                  * In that case we must not report a size that covers the
10930                  * whole page for a subsequent hit against a different MPU
10931                  * region or the background region, because it would result in
10932                  * incorrect TLB hits for subsequent accesses to addresses that
10933                  * are in this MPU region.
10934                  */
10935                 if (limit >= base &&
10936                     ranges_overlap(base, limit - base + 1,
10937                                    addr_page_base,
10938                                    TARGET_PAGE_SIZE)) {
10939                     *is_subpage = true;
10940                 }
10941                 continue;
10942             }
10943 
10944             if (base > addr_page_base || limit < addr_page_limit) {
10945                 *is_subpage = true;
10946             }
10947 
10948             if (matchregion != -1) {
10949                 /* Multiple regions match -- always a failure (unlike
10950                  * PMSAv7 where highest-numbered-region wins)
10951                  */
10952                 fi->type = ARMFault_Permission;
10953                 fi->level = 1;
10954                 return true;
10955             }
10956 
10957             matchregion = n;
10958             hit = true;
10959         }
10960     }
10961 
10962     if (!hit) {
10963         /* background fault */
10964         fi->type = ARMFault_Background;
10965         return true;
10966     }
10967 
10968     if (matchregion == -1) {
10969         /* hit using the background region */
10970         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10971     } else {
10972         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10973         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10974 
10975         if (m_is_system_region(env, address)) {
10976             /* System space is always execute never */
10977             xn = 1;
10978         }
10979 
10980         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10981         if (*prot && !xn) {
10982             *prot |= PAGE_EXEC;
10983         }
10984         /* We don't need to look the attribute up in the MAIR0/MAIR1
10985          * registers because that only tells us about cacheability.
10986          */
10987         if (mregion) {
10988             *mregion = matchregion;
10989         }
10990     }
10991 
10992     fi->type = ARMFault_Permission;
10993     fi->level = 1;
10994     return !(*prot & (1 << access_type));
10995 }
10996 
10997 
10998 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10999                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11000                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11001                                  int *prot, target_ulong *page_size,
11002                                  ARMMMUFaultInfo *fi)
11003 {
11004     uint32_t secure = regime_is_secure(env, mmu_idx);
11005     V8M_SAttributes sattrs = {};
11006     bool ret;
11007     bool mpu_is_subpage;
11008 
11009     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11010         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11011         if (access_type == MMU_INST_FETCH) {
11012             /* Instruction fetches always use the MMU bank and the
11013              * transaction attribute determined by the fetch address,
11014              * regardless of CPU state. This is painful for QEMU
11015              * to handle, because it would mean we need to encode
11016              * into the mmu_idx not just the (user, negpri) information
11017              * for the current security state but also that for the
11018              * other security state, which would balloon the number
11019              * of mmu_idx values needed alarmingly.
11020              * Fortunately we can avoid this because it's not actually
11021              * possible to arbitrarily execute code from memory with
11022              * the wrong security attribute: it will always generate
11023              * an exception of some kind or another, apart from the
11024              * special case of an NS CPU executing an SG instruction
11025              * in S&NSC memory. So we always just fail the translation
11026              * here and sort things out in the exception handler
11027              * (including possibly emulating an SG instruction).
11028              */
11029             if (sattrs.ns != !secure) {
11030                 if (sattrs.nsc) {
11031                     fi->type = ARMFault_QEMU_NSCExec;
11032                 } else {
11033                     fi->type = ARMFault_QEMU_SFault;
11034                 }
11035                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11036                 *phys_ptr = address;
11037                 *prot = 0;
11038                 return true;
11039             }
11040         } else {
11041             /* For data accesses we always use the MMU bank indicated
11042              * by the current CPU state, but the security attributes
11043              * might downgrade a secure access to nonsecure.
11044              */
11045             if (sattrs.ns) {
11046                 txattrs->secure = false;
11047             } else if (!secure) {
11048                 /* NS access to S memory must fault.
11049                  * Architecturally we should first check whether the
11050                  * MPU information for this address indicates that we
11051                  * are doing an unaligned access to Device memory, which
11052                  * should generate a UsageFault instead. QEMU does not
11053                  * currently check for that kind of unaligned access though.
11054                  * If we added it we would need to do so as a special case
11055                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11056                  */
11057                 fi->type = ARMFault_QEMU_SFault;
11058                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11059                 *phys_ptr = address;
11060                 *prot = 0;
11061                 return true;
11062             }
11063         }
11064     }
11065 
11066     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11067                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11068     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11069     return ret;
11070 }
11071 
11072 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11073                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11074                                  hwaddr *phys_ptr, int *prot,
11075                                  ARMMMUFaultInfo *fi)
11076 {
11077     int n;
11078     uint32_t mask;
11079     uint32_t base;
11080     bool is_user = regime_is_user(env, mmu_idx);
11081 
11082     if (regime_translation_disabled(env, mmu_idx)) {
11083         /* MPU disabled.  */
11084         *phys_ptr = address;
11085         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11086         return false;
11087     }
11088 
11089     *phys_ptr = address;
11090     for (n = 7; n >= 0; n--) {
11091         base = env->cp15.c6_region[n];
11092         if ((base & 1) == 0) {
11093             continue;
11094         }
11095         mask = 1 << ((base >> 1) & 0x1f);
11096         /* Keep this shift separate from the above to avoid an
11097            (undefined) << 32.  */
11098         mask = (mask << 1) - 1;
11099         if (((base ^ address) & ~mask) == 0) {
11100             break;
11101         }
11102     }
11103     if (n < 0) {
11104         fi->type = ARMFault_Background;
11105         return true;
11106     }
11107 
11108     if (access_type == MMU_INST_FETCH) {
11109         mask = env->cp15.pmsav5_insn_ap;
11110     } else {
11111         mask = env->cp15.pmsav5_data_ap;
11112     }
11113     mask = (mask >> (n * 4)) & 0xf;
11114     switch (mask) {
11115     case 0:
11116         fi->type = ARMFault_Permission;
11117         fi->level = 1;
11118         return true;
11119     case 1:
11120         if (is_user) {
11121             fi->type = ARMFault_Permission;
11122             fi->level = 1;
11123             return true;
11124         }
11125         *prot = PAGE_READ | PAGE_WRITE;
11126         break;
11127     case 2:
11128         *prot = PAGE_READ;
11129         if (!is_user) {
11130             *prot |= PAGE_WRITE;
11131         }
11132         break;
11133     case 3:
11134         *prot = PAGE_READ | PAGE_WRITE;
11135         break;
11136     case 5:
11137         if (is_user) {
11138             fi->type = ARMFault_Permission;
11139             fi->level = 1;
11140             return true;
11141         }
11142         *prot = PAGE_READ;
11143         break;
11144     case 6:
11145         *prot = PAGE_READ;
11146         break;
11147     default:
11148         /* Bad permission.  */
11149         fi->type = ARMFault_Permission;
11150         fi->level = 1;
11151         return true;
11152     }
11153     *prot |= PAGE_EXEC;
11154     return false;
11155 }
11156 
11157 /* Combine either inner or outer cacheability attributes for normal
11158  * memory, according to table D4-42 and pseudocode procedure
11159  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11160  *
11161  * NB: only stage 1 includes allocation hints (RW bits), leading to
11162  * some asymmetry.
11163  */
11164 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11165 {
11166     if (s1 == 4 || s2 == 4) {
11167         /* non-cacheable has precedence */
11168         return 4;
11169     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11170         /* stage 1 write-through takes precedence */
11171         return s1;
11172     } else if (extract32(s2, 2, 2) == 2) {
11173         /* stage 2 write-through takes precedence, but the allocation hint
11174          * is still taken from stage 1
11175          */
11176         return (2 << 2) | extract32(s1, 0, 2);
11177     } else { /* write-back */
11178         return s1;
11179     }
11180 }
11181 
11182 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11183  * and CombineS1S2Desc()
11184  *
11185  * @s1:      Attributes from stage 1 walk
11186  * @s2:      Attributes from stage 2 walk
11187  */
11188 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11189 {
11190     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11191     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11192     ARMCacheAttrs ret;
11193 
11194     /* Combine shareability attributes (table D4-43) */
11195     if (s1.shareability == 2 || s2.shareability == 2) {
11196         /* if either are outer-shareable, the result is outer-shareable */
11197         ret.shareability = 2;
11198     } else if (s1.shareability == 3 || s2.shareability == 3) {
11199         /* if either are inner-shareable, the result is inner-shareable */
11200         ret.shareability = 3;
11201     } else {
11202         /* both non-shareable */
11203         ret.shareability = 0;
11204     }
11205 
11206     /* Combine memory type and cacheability attributes */
11207     if (s1hi == 0 || s2hi == 0) {
11208         /* Device has precedence over normal */
11209         if (s1lo == 0 || s2lo == 0) {
11210             /* nGnRnE has precedence over anything */
11211             ret.attrs = 0;
11212         } else if (s1lo == 4 || s2lo == 4) {
11213             /* non-Reordering has precedence over Reordering */
11214             ret.attrs = 4;  /* nGnRE */
11215         } else if (s1lo == 8 || s2lo == 8) {
11216             /* non-Gathering has precedence over Gathering */
11217             ret.attrs = 8;  /* nGRE */
11218         } else {
11219             ret.attrs = 0xc; /* GRE */
11220         }
11221 
11222         /* Any location for which the resultant memory type is any
11223          * type of Device memory is always treated as Outer Shareable.
11224          */
11225         ret.shareability = 2;
11226     } else { /* Normal memory */
11227         /* Outer/inner cacheability combine independently */
11228         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11229                   | combine_cacheattr_nibble(s1lo, s2lo);
11230 
11231         if (ret.attrs == 0x44) {
11232             /* Any location for which the resultant memory type is Normal
11233              * Inner Non-cacheable, Outer Non-cacheable is always treated
11234              * as Outer Shareable.
11235              */
11236             ret.shareability = 2;
11237         }
11238     }
11239 
11240     return ret;
11241 }
11242 
11243 
11244 /* get_phys_addr - get the physical address for this virtual address
11245  *
11246  * Find the physical address corresponding to the given virtual address,
11247  * by doing a translation table walk on MMU based systems or using the
11248  * MPU state on MPU based systems.
11249  *
11250  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11251  * prot and page_size may not be filled in, and the populated fsr value provides
11252  * information on why the translation aborted, in the format of a
11253  * DFSR/IFSR fault register, with the following caveats:
11254  *  * we honour the short vs long DFSR format differences.
11255  *  * the WnR bit is never set (the caller must do this).
11256  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11257  *    value.
11258  *
11259  * @env: CPUARMState
11260  * @address: virtual address to get physical address for
11261  * @access_type: 0 for read, 1 for write, 2 for execute
11262  * @mmu_idx: MMU index indicating required translation regime
11263  * @phys_ptr: set to the physical address corresponding to the virtual address
11264  * @attrs: set to the memory transaction attributes to use
11265  * @prot: set to the permissions for the page containing phys_ptr
11266  * @page_size: set to the size of the page containing phys_ptr
11267  * @fi: set to fault info if the translation fails
11268  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11269  */
11270 bool get_phys_addr(CPUARMState *env, target_ulong address,
11271                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
11272                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11273                    target_ulong *page_size,
11274                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11275 {
11276     if (mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_E10_1) {
11277         /* Call ourselves recursively to do the stage 1 and then stage 2
11278          * translations.
11279          */
11280         if (arm_feature(env, ARM_FEATURE_EL2)) {
11281             hwaddr ipa;
11282             int s2_prot;
11283             int ret;
11284             ARMCacheAttrs cacheattrs2 = {};
11285 
11286             ret = get_phys_addr(env, address, access_type,
11287                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11288                                 prot, page_size, fi, cacheattrs);
11289 
11290             /* If S1 fails or S2 is disabled, return early.  */
11291             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11292                 *phys_ptr = ipa;
11293                 return ret;
11294             }
11295 
11296             /* S1 is done. Now do S2 translation.  */
11297             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11298                                      phys_ptr, attrs, &s2_prot,
11299                                      page_size, fi,
11300                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11301             fi->s2addr = ipa;
11302             /* Combine the S1 and S2 perms.  */
11303             *prot &= s2_prot;
11304 
11305             /* Combine the S1 and S2 cache attributes, if needed */
11306             if (!ret && cacheattrs != NULL) {
11307                 if (env->cp15.hcr_el2 & HCR_DC) {
11308                     /*
11309                      * HCR.DC forces the first stage attributes to
11310                      *  Normal Non-Shareable,
11311                      *  Inner Write-Back Read-Allocate Write-Allocate,
11312                      *  Outer Write-Back Read-Allocate Write-Allocate.
11313                      */
11314                     cacheattrs->attrs = 0xff;
11315                     cacheattrs->shareability = 0;
11316                 }
11317                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11318             }
11319 
11320             return ret;
11321         } else {
11322             /*
11323              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11324              */
11325             mmu_idx = stage_1_mmu_idx(mmu_idx);
11326         }
11327     }
11328 
11329     /* The page table entries may downgrade secure to non-secure, but
11330      * cannot upgrade an non-secure translation regime's attributes
11331      * to secure.
11332      */
11333     attrs->secure = regime_is_secure(env, mmu_idx);
11334     attrs->user = regime_is_user(env, mmu_idx);
11335 
11336     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11337      * In v7 and earlier it affects all stage 1 translations.
11338      */
11339     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11340         && !arm_feature(env, ARM_FEATURE_V8)) {
11341         if (regime_el(env, mmu_idx) == 3) {
11342             address += env->cp15.fcseidr_s;
11343         } else {
11344             address += env->cp15.fcseidr_ns;
11345         }
11346     }
11347 
11348     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11349         bool ret;
11350         *page_size = TARGET_PAGE_SIZE;
11351 
11352         if (arm_feature(env, ARM_FEATURE_V8)) {
11353             /* PMSAv8 */
11354             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11355                                        phys_ptr, attrs, prot, page_size, fi);
11356         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11357             /* PMSAv7 */
11358             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11359                                        phys_ptr, prot, page_size, fi);
11360         } else {
11361             /* Pre-v7 MPU */
11362             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11363                                        phys_ptr, prot, fi);
11364         }
11365         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11366                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11367                       access_type == MMU_DATA_LOAD ? "reading" :
11368                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11369                       (uint32_t)address, mmu_idx,
11370                       ret ? "Miss" : "Hit",
11371                       *prot & PAGE_READ ? 'r' : '-',
11372                       *prot & PAGE_WRITE ? 'w' : '-',
11373                       *prot & PAGE_EXEC ? 'x' : '-');
11374 
11375         return ret;
11376     }
11377 
11378     /* Definitely a real MMU, not an MPU */
11379 
11380     if (regime_translation_disabled(env, mmu_idx)) {
11381         /* MMU disabled. */
11382         *phys_ptr = address;
11383         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11384         *page_size = TARGET_PAGE_SIZE;
11385         return 0;
11386     }
11387 
11388     if (regime_using_lpae_format(env, mmu_idx)) {
11389         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11390                                   phys_ptr, attrs, prot, page_size,
11391                                   fi, cacheattrs);
11392     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11393         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11394                                 phys_ptr, attrs, prot, page_size, fi);
11395     } else {
11396         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11397                                     phys_ptr, prot, page_size, fi);
11398     }
11399 }
11400 
11401 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11402                                          MemTxAttrs *attrs)
11403 {
11404     ARMCPU *cpu = ARM_CPU(cs);
11405     CPUARMState *env = &cpu->env;
11406     hwaddr phys_addr;
11407     target_ulong page_size;
11408     int prot;
11409     bool ret;
11410     ARMMMUFaultInfo fi = {};
11411     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11412 
11413     *attrs = (MemTxAttrs) {};
11414 
11415     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11416                         attrs, &prot, &page_size, &fi, NULL);
11417 
11418     if (ret) {
11419         return -1;
11420     }
11421     return phys_addr;
11422 }
11423 
11424 #endif
11425 
11426 /* Note that signed overflow is undefined in C.  The following routines are
11427    careful to use unsigned types where modulo arithmetic is required.
11428    Failure to do so _will_ break on newer gcc.  */
11429 
11430 /* Signed saturating arithmetic.  */
11431 
11432 /* Perform 16-bit signed saturating addition.  */
11433 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11434 {
11435     uint16_t res;
11436 
11437     res = a + b;
11438     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11439         if (a & 0x8000)
11440             res = 0x8000;
11441         else
11442             res = 0x7fff;
11443     }
11444     return res;
11445 }
11446 
11447 /* Perform 8-bit signed saturating addition.  */
11448 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11449 {
11450     uint8_t res;
11451 
11452     res = a + b;
11453     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11454         if (a & 0x80)
11455             res = 0x80;
11456         else
11457             res = 0x7f;
11458     }
11459     return res;
11460 }
11461 
11462 /* Perform 16-bit signed saturating subtraction.  */
11463 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11464 {
11465     uint16_t res;
11466 
11467     res = a - b;
11468     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11469         if (a & 0x8000)
11470             res = 0x8000;
11471         else
11472             res = 0x7fff;
11473     }
11474     return res;
11475 }
11476 
11477 /* Perform 8-bit signed saturating subtraction.  */
11478 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11479 {
11480     uint8_t res;
11481 
11482     res = a - b;
11483     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11484         if (a & 0x80)
11485             res = 0x80;
11486         else
11487             res = 0x7f;
11488     }
11489     return res;
11490 }
11491 
11492 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11493 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11494 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11495 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11496 #define PFX q
11497 
11498 #include "op_addsub.h"
11499 
11500 /* Unsigned saturating arithmetic.  */
11501 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11502 {
11503     uint16_t res;
11504     res = a + b;
11505     if (res < a)
11506         res = 0xffff;
11507     return res;
11508 }
11509 
11510 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11511 {
11512     if (a > b)
11513         return a - b;
11514     else
11515         return 0;
11516 }
11517 
11518 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11519 {
11520     uint8_t res;
11521     res = a + b;
11522     if (res < a)
11523         res = 0xff;
11524     return res;
11525 }
11526 
11527 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11528 {
11529     if (a > b)
11530         return a - b;
11531     else
11532         return 0;
11533 }
11534 
11535 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11536 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11537 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11538 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11539 #define PFX uq
11540 
11541 #include "op_addsub.h"
11542 
11543 /* Signed modulo arithmetic.  */
11544 #define SARITH16(a, b, n, op) do { \
11545     int32_t sum; \
11546     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11547     RESULT(sum, n, 16); \
11548     if (sum >= 0) \
11549         ge |= 3 << (n * 2); \
11550     } while(0)
11551 
11552 #define SARITH8(a, b, n, op) do { \
11553     int32_t sum; \
11554     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11555     RESULT(sum, n, 8); \
11556     if (sum >= 0) \
11557         ge |= 1 << n; \
11558     } while(0)
11559 
11560 
11561 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11562 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11563 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11564 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11565 #define PFX s
11566 #define ARITH_GE
11567 
11568 #include "op_addsub.h"
11569 
11570 /* Unsigned modulo arithmetic.  */
11571 #define ADD16(a, b, n) do { \
11572     uint32_t sum; \
11573     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11574     RESULT(sum, n, 16); \
11575     if ((sum >> 16) == 1) \
11576         ge |= 3 << (n * 2); \
11577     } while(0)
11578 
11579 #define ADD8(a, b, n) do { \
11580     uint32_t sum; \
11581     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11582     RESULT(sum, n, 8); \
11583     if ((sum >> 8) == 1) \
11584         ge |= 1 << n; \
11585     } while(0)
11586 
11587 #define SUB16(a, b, n) do { \
11588     uint32_t sum; \
11589     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11590     RESULT(sum, n, 16); \
11591     if ((sum >> 16) == 0) \
11592         ge |= 3 << (n * 2); \
11593     } while(0)
11594 
11595 #define SUB8(a, b, n) do { \
11596     uint32_t sum; \
11597     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11598     RESULT(sum, n, 8); \
11599     if ((sum >> 8) == 0) \
11600         ge |= 1 << n; \
11601     } while(0)
11602 
11603 #define PFX u
11604 #define ARITH_GE
11605 
11606 #include "op_addsub.h"
11607 
11608 /* Halved signed arithmetic.  */
11609 #define ADD16(a, b, n) \
11610   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11611 #define SUB16(a, b, n) \
11612   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11613 #define ADD8(a, b, n) \
11614   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11615 #define SUB8(a, b, n) \
11616   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11617 #define PFX sh
11618 
11619 #include "op_addsub.h"
11620 
11621 /* Halved unsigned arithmetic.  */
11622 #define ADD16(a, b, n) \
11623   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11624 #define SUB16(a, b, n) \
11625   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11626 #define ADD8(a, b, n) \
11627   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11628 #define SUB8(a, b, n) \
11629   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11630 #define PFX uh
11631 
11632 #include "op_addsub.h"
11633 
11634 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11635 {
11636     if (a > b)
11637         return a - b;
11638     else
11639         return b - a;
11640 }
11641 
11642 /* Unsigned sum of absolute byte differences.  */
11643 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11644 {
11645     uint32_t sum;
11646     sum = do_usad(a, b);
11647     sum += do_usad(a >> 8, b >> 8);
11648     sum += do_usad(a >> 16, b >>16);
11649     sum += do_usad(a >> 24, b >> 24);
11650     return sum;
11651 }
11652 
11653 /* For ARMv6 SEL instruction.  */
11654 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11655 {
11656     uint32_t mask;
11657 
11658     mask = 0;
11659     if (flags & 1)
11660         mask |= 0xff;
11661     if (flags & 2)
11662         mask |= 0xff00;
11663     if (flags & 4)
11664         mask |= 0xff0000;
11665     if (flags & 8)
11666         mask |= 0xff000000;
11667     return (a & mask) | (b & ~mask);
11668 }
11669 
11670 /* CRC helpers.
11671  * The upper bytes of val (above the number specified by 'bytes') must have
11672  * been zeroed out by the caller.
11673  */
11674 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11675 {
11676     uint8_t buf[4];
11677 
11678     stl_le_p(buf, val);
11679 
11680     /* zlib crc32 converts the accumulator and output to one's complement.  */
11681     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11682 }
11683 
11684 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11685 {
11686     uint8_t buf[4];
11687 
11688     stl_le_p(buf, val);
11689 
11690     /* Linux crc32c converts the output to one's complement.  */
11691     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11692 }
11693 
11694 /* Return the exception level to which FP-disabled exceptions should
11695  * be taken, or 0 if FP is enabled.
11696  */
11697 int fp_exception_el(CPUARMState *env, int cur_el)
11698 {
11699 #ifndef CONFIG_USER_ONLY
11700     /* CPACR and the CPTR registers don't exist before v6, so FP is
11701      * always accessible
11702      */
11703     if (!arm_feature(env, ARM_FEATURE_V6)) {
11704         return 0;
11705     }
11706 
11707     if (arm_feature(env, ARM_FEATURE_M)) {
11708         /* CPACR can cause a NOCP UsageFault taken to current security state */
11709         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11710             return 1;
11711         }
11712 
11713         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11714             if (!extract32(env->v7m.nsacr, 10, 1)) {
11715                 /* FP insns cause a NOCP UsageFault taken to Secure */
11716                 return 3;
11717             }
11718         }
11719 
11720         return 0;
11721     }
11722 
11723     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11724      * 0, 2 : trap EL0 and EL1/PL1 accesses
11725      * 1    : trap only EL0 accesses
11726      * 3    : trap no accesses
11727      * This register is ignored if E2H+TGE are both set.
11728      */
11729     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11730         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11731 
11732         switch (fpen) {
11733         case 0:
11734         case 2:
11735             if (cur_el == 0 || cur_el == 1) {
11736                 /* Trap to PL1, which might be EL1 or EL3 */
11737                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11738                     return 3;
11739                 }
11740                 return 1;
11741             }
11742             if (cur_el == 3 && !is_a64(env)) {
11743                 /* Secure PL1 running at EL3 */
11744                 return 3;
11745             }
11746             break;
11747         case 1:
11748             if (cur_el == 0) {
11749                 return 1;
11750             }
11751             break;
11752         case 3:
11753             break;
11754         }
11755     }
11756 
11757     /*
11758      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11759      * to control non-secure access to the FPU. It doesn't have any
11760      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11761      */
11762     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11763          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11764         if (!extract32(env->cp15.nsacr, 10, 1)) {
11765             /* FP insns act as UNDEF */
11766             return cur_el == 2 ? 2 : 1;
11767         }
11768     }
11769 
11770     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
11771      * check because zero bits in the registers mean "don't trap".
11772      */
11773 
11774     /* CPTR_EL2 : present in v7VE or v8 */
11775     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
11776         && !arm_is_secure_below_el3(env)) {
11777         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
11778         return 2;
11779     }
11780 
11781     /* CPTR_EL3 : present in v8 */
11782     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
11783         /* Trap all FP ops to EL3 */
11784         return 3;
11785     }
11786 #endif
11787     return 0;
11788 }
11789 
11790 /* Return the exception level we're running at if this is our mmu_idx */
11791 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11792 {
11793     if (mmu_idx & ARM_MMU_IDX_M) {
11794         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11795     }
11796 
11797     switch (mmu_idx) {
11798     case ARMMMUIdx_E10_0:
11799     case ARMMMUIdx_E20_0:
11800     case ARMMMUIdx_SE10_0:
11801         return 0;
11802     case ARMMMUIdx_E10_1:
11803     case ARMMMUIdx_SE10_1:
11804         return 1;
11805     case ARMMMUIdx_E2:
11806     case ARMMMUIdx_E20_2:
11807         return 2;
11808     case ARMMMUIdx_SE3:
11809         return 3;
11810     default:
11811         g_assert_not_reached();
11812     }
11813 }
11814 
11815 #ifndef CONFIG_TCG
11816 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11817 {
11818     g_assert_not_reached();
11819 }
11820 #endif
11821 
11822 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11823 {
11824     if (arm_feature(env, ARM_FEATURE_M)) {
11825         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11826     }
11827 
11828     /* See ARM pseudo-function ELIsInHost.  */
11829     switch (el) {
11830     case 0:
11831         if (arm_is_secure_below_el3(env)) {
11832             return ARMMMUIdx_SE10_0;
11833         }
11834         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
11835             && arm_el_is_aa64(env, 2)) {
11836             return ARMMMUIdx_E20_0;
11837         }
11838         return ARMMMUIdx_E10_0;
11839     case 1:
11840         if (arm_is_secure_below_el3(env)) {
11841             return ARMMMUIdx_SE10_1;
11842         }
11843         return ARMMMUIdx_E10_1;
11844     case 2:
11845         /* TODO: ARMv8.4-SecEL2 */
11846         /* Note that TGE does not apply at EL2.  */
11847         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
11848             return ARMMMUIdx_E20_2;
11849         }
11850         return ARMMMUIdx_E2;
11851     case 3:
11852         return ARMMMUIdx_SE3;
11853     default:
11854         g_assert_not_reached();
11855     }
11856 }
11857 
11858 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11859 {
11860     return arm_mmu_idx_el(env, arm_current_el(env));
11861 }
11862 
11863 int cpu_mmu_index(CPUARMState *env, bool ifetch)
11864 {
11865     return arm_to_core_mmu_idx(arm_mmu_idx(env));
11866 }
11867 
11868 #ifndef CONFIG_USER_ONLY
11869 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
11870 {
11871     return stage_1_mmu_idx(arm_mmu_idx(env));
11872 }
11873 #endif
11874 
11875 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
11876                                       ARMMMUIdx mmu_idx, uint32_t flags)
11877 {
11878     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
11879     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
11880                        arm_to_core_mmu_idx(mmu_idx));
11881 
11882     if (arm_singlestep_active(env)) {
11883         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
11884     }
11885     return flags;
11886 }
11887 
11888 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11889                                          ARMMMUIdx mmu_idx, uint32_t flags)
11890 {
11891     bool sctlr_b = arm_sctlr_b(env);
11892 
11893     if (sctlr_b) {
11894         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
11895     }
11896     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11897         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11898     }
11899     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
11900 
11901     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11902 }
11903 
11904 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
11905                                    ARMMMUIdx mmu_idx)
11906 {
11907     uint32_t flags = 0;
11908 
11909     if (arm_v7m_is_handler_mode(env)) {
11910         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
11911     }
11912 
11913     /*
11914      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11915      * is suppressing them because the requested execution priority
11916      * is less than 0.
11917      */
11918     if (arm_feature(env, ARM_FEATURE_V8) &&
11919         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11920           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11921         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
11922     }
11923 
11924     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11925 }
11926 
11927 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
11928 {
11929     int flags = 0;
11930 
11931     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
11932                        arm_debug_target_el(env));
11933     return flags;
11934 }
11935 
11936 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
11937                                    ARMMMUIdx mmu_idx)
11938 {
11939     uint32_t flags = rebuild_hflags_aprofile(env);
11940 
11941     if (arm_el_is_aa64(env, 1)) {
11942         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
11943     }
11944 
11945     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
11946         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11947         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
11948     }
11949 
11950     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11951 }
11952 
11953 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11954                                    ARMMMUIdx mmu_idx)
11955 {
11956     uint32_t flags = rebuild_hflags_aprofile(env);
11957     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11958     ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
11959     uint64_t sctlr;
11960     int tbii, tbid;
11961 
11962     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
11963 
11964     /* Get control bits for tagged addresses.  */
11965     if (regime_has_2_ranges(mmu_idx)) {
11966         ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
11967         tbid = (p1.tbi << 1) | p0.tbi;
11968         tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
11969     } else {
11970         tbid = p0.tbi;
11971         tbii = tbid & !p0.tbid;
11972     }
11973 
11974     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
11975     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
11976 
11977     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
11978         int sve_el = sve_exception_el(env, el);
11979         uint32_t zcr_len;
11980 
11981         /*
11982          * If SVE is disabled, but FP is enabled,
11983          * then the effective len is 0.
11984          */
11985         if (sve_el != 0 && fp_el == 0) {
11986             zcr_len = 0;
11987         } else {
11988             zcr_len = sve_zcr_len_for_el(env, el);
11989         }
11990         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
11991         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
11992     }
11993 
11994     sctlr = regime_sctlr(env, stage1);
11995 
11996     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
11997         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
11998     }
11999 
12000     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12001         /*
12002          * In order to save space in flags, we record only whether
12003          * pauth is "inactive", meaning all insns are implemented as
12004          * a nop, or "active" when some action must be performed.
12005          * The decision of which action to take is left to a helper.
12006          */
12007         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12008             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12009         }
12010     }
12011 
12012     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12013         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12014         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12015             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12016         }
12017     }
12018 
12019     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12020     /* TODO: ARMv8.2-UAO */
12021     switch (mmu_idx) {
12022     case ARMMMUIdx_E10_1:
12023     case ARMMMUIdx_SE10_1:
12024         /* TODO: ARMv8.3-NV */
12025         flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12026         break;
12027     case ARMMMUIdx_E20_2:
12028         /* TODO: ARMv8.4-SecEL2 */
12029         /*
12030          * Note that E20_2 is gated by HCR_EL2.E2H == 1, but E20_0 is
12031          * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12032          */
12033         if (env->cp15.hcr_el2 & HCR_TGE) {
12034             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12035         }
12036         break;
12037     default:
12038         break;
12039     }
12040 
12041     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12042 }
12043 
12044 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12045 {
12046     int el = arm_current_el(env);
12047     int fp_el = fp_exception_el(env, el);
12048     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12049 
12050     if (is_a64(env)) {
12051         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12052     } else if (arm_feature(env, ARM_FEATURE_M)) {
12053         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12054     } else {
12055         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12056     }
12057 }
12058 
12059 void arm_rebuild_hflags(CPUARMState *env)
12060 {
12061     env->hflags = rebuild_hflags_internal(env);
12062 }
12063 
12064 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12065 {
12066     int fp_el = fp_exception_el(env, el);
12067     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12068 
12069     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12070 }
12071 
12072 /*
12073  * If we have triggered a EL state change we can't rely on the
12074  * translator having passed it too us, we need to recompute.
12075  */
12076 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12077 {
12078     int el = arm_current_el(env);
12079     int fp_el = fp_exception_el(env, el);
12080     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12081     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12082 }
12083 
12084 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12085 {
12086     int fp_el = fp_exception_el(env, el);
12087     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12088 
12089     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12090 }
12091 
12092 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12093 {
12094     int fp_el = fp_exception_el(env, el);
12095     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12096 
12097     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12098 }
12099 
12100 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12101 {
12102 #ifdef CONFIG_DEBUG_TCG
12103     uint32_t env_flags_current = env->hflags;
12104     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12105 
12106     if (unlikely(env_flags_current != env_flags_rebuilt)) {
12107         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12108                 env_flags_current, env_flags_rebuilt);
12109         abort();
12110     }
12111 #endif
12112 }
12113 
12114 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12115                           target_ulong *cs_base, uint32_t *pflags)
12116 {
12117     uint32_t flags = env->hflags;
12118     uint32_t pstate_for_ss;
12119 
12120     *cs_base = 0;
12121     assert_hflags_rebuild_correctly(env);
12122 
12123     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12124         *pc = env->pc;
12125         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12126             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12127         }
12128         pstate_for_ss = env->pstate;
12129     } else {
12130         *pc = env->regs[15];
12131 
12132         if (arm_feature(env, ARM_FEATURE_M)) {
12133             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12134                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12135                 != env->v7m.secure) {
12136                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12137             }
12138 
12139             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12140                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12141                  (env->v7m.secure &&
12142                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12143                 /*
12144                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12145                  * active FP context; we must create a new FP context before
12146                  * executing any FP insn.
12147                  */
12148                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12149             }
12150 
12151             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12152             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12153                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12154             }
12155         } else {
12156             /*
12157              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12158              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12159              */
12160             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12161                 flags = FIELD_DP32(flags, TBFLAG_A32,
12162                                    XSCALE_CPAR, env->cp15.c15_cpar);
12163             } else {
12164                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12165                                    env->vfp.vec_len);
12166                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12167                                    env->vfp.vec_stride);
12168             }
12169             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12170                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12171             }
12172         }
12173 
12174         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12175         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12176         pstate_for_ss = env->uncached_cpsr;
12177     }
12178 
12179     /*
12180      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12181      * states defined in the ARM ARM for software singlestep:
12182      *  SS_ACTIVE   PSTATE.SS   State
12183      *     0            x       Inactive (the TB flag for SS is always 0)
12184      *     1            0       Active-pending
12185      *     1            1       Active-not-pending
12186      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12187      */
12188     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12189         (pstate_for_ss & PSTATE_SS)) {
12190         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12191     }
12192 
12193     *pflags = flags;
12194 }
12195 
12196 #ifdef TARGET_AARCH64
12197 /*
12198  * The manual says that when SVE is enabled and VQ is widened the
12199  * implementation is allowed to zero the previously inaccessible
12200  * portion of the registers.  The corollary to that is that when
12201  * SVE is enabled and VQ is narrowed we are also allowed to zero
12202  * the now inaccessible portion of the registers.
12203  *
12204  * The intent of this is that no predicate bit beyond VQ is ever set.
12205  * Which means that some operations on predicate registers themselves
12206  * may operate on full uint64_t or even unrolled across the maximum
12207  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12208  * may well be cheaper than conditionals to restrict the operation
12209  * to the relevant portion of a uint16_t[16].
12210  */
12211 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12212 {
12213     int i, j;
12214     uint64_t pmask;
12215 
12216     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12217     assert(vq <= env_archcpu(env)->sve_max_vq);
12218 
12219     /* Zap the high bits of the zregs.  */
12220     for (i = 0; i < 32; i++) {
12221         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12222     }
12223 
12224     /* Zap the high bits of the pregs and ffr.  */
12225     pmask = 0;
12226     if (vq & 3) {
12227         pmask = ~(-1ULL << (16 * (vq & 3)));
12228     }
12229     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12230         for (i = 0; i < 17; ++i) {
12231             env->vfp.pregs[i].p[j] &= pmask;
12232         }
12233         pmask = 0;
12234     }
12235 }
12236 
12237 /*
12238  * Notice a change in SVE vector size when changing EL.
12239  */
12240 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12241                            int new_el, bool el0_a64)
12242 {
12243     ARMCPU *cpu = env_archcpu(env);
12244     int old_len, new_len;
12245     bool old_a64, new_a64;
12246 
12247     /* Nothing to do if no SVE.  */
12248     if (!cpu_isar_feature(aa64_sve, cpu)) {
12249         return;
12250     }
12251 
12252     /* Nothing to do if FP is disabled in either EL.  */
12253     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12254         return;
12255     }
12256 
12257     /*
12258      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12259      * at ELx, or not available because the EL is in AArch32 state, then
12260      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12261      * has an effective value of 0".
12262      *
12263      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12264      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12265      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12266      * we already have the correct register contents when encountering the
12267      * vq0->vq0 transition between EL0->EL1.
12268      */
12269     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12270     old_len = (old_a64 && !sve_exception_el(env, old_el)
12271                ? sve_zcr_len_for_el(env, old_el) : 0);
12272     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12273     new_len = (new_a64 && !sve_exception_el(env, new_el)
12274                ? sve_zcr_len_for_el(env, new_el) : 0);
12275 
12276     /* When changing vector length, clear inaccessible state.  */
12277     if (new_len < old_len) {
12278         aarch64_sve_narrow_vq(env, new_len + 1);
12279     }
12280 }
12281 #endif
12282