xref: /qemu/target/arm/helper.c (revision a81df1b6)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
37 
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 
40 #ifndef CONFIG_USER_ONLY
41 
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
44                                bool s1_is_el0,
45                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46                                target_ulong *page_size_ptr,
47                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
48     __attribute__((nonnull));
49 #endif
50 
51 static void switch_mode(CPUARMState *env, int mode);
52 
53 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
54 {
55     ARMCPU *cpu = env_archcpu(env);
56     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
57 
58     /* VFP data registers are always little-endian.  */
59     if (reg < nregs) {
60         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
61     }
62     if (arm_feature(env, ARM_FEATURE_NEON)) {
63         /* Aliases for Q regs.  */
64         nregs += 16;
65         if (reg < nregs) {
66             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
67             return gdb_get_reg128(buf, q[0], q[1]);
68         }
69     }
70     switch (reg - nregs) {
71     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
72     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
73     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
74     }
75     return 0;
76 }
77 
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
79 {
80     ARMCPU *cpu = env_archcpu(env);
81     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
82 
83     if (reg < nregs) {
84         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85         return 8;
86     }
87     if (arm_feature(env, ARM_FEATURE_NEON)) {
88         nregs += 16;
89         if (reg < nregs) {
90             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91             q[0] = ldq_le_p(buf);
92             q[1] = ldq_le_p(buf + 8);
93             return 16;
94         }
95     }
96     switch (reg - nregs) {
97     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
100     }
101     return 0;
102 }
103 
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
105 {
106     switch (reg) {
107     case 0 ... 31:
108     {
109         /* 128 bit FP register - quads are in LE order */
110         uint64_t *q = aa64_vfp_qreg(env, reg);
111         return gdb_get_reg128(buf, q[1], q[0]);
112     }
113     case 32:
114         /* FPSR */
115         return gdb_get_reg32(buf, vfp_get_fpsr(env));
116     case 33:
117         /* FPCR */
118         return gdb_get_reg32(buf,vfp_get_fpcr(env));
119     default:
120         return 0;
121     }
122 }
123 
124 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
125 {
126     switch (reg) {
127     case 0 ... 31:
128         /* 128 bit FP register */
129         {
130             uint64_t *q = aa64_vfp_qreg(env, reg);
131             q[0] = ldq_le_p(buf);
132             q[1] = ldq_le_p(buf + 8);
133             return 16;
134         }
135     case 32:
136         /* FPSR */
137         vfp_set_fpsr(env, ldl_p(buf));
138         return 4;
139     case 33:
140         /* FPCR */
141         vfp_set_fpcr(env, ldl_p(buf));
142         return 4;
143     default:
144         return 0;
145     }
146 }
147 
148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
149 {
150     assert(ri->fieldoffset);
151     if (cpreg_field_is_64bit(ri)) {
152         return CPREG_FIELD64(env, ri);
153     } else {
154         return CPREG_FIELD32(env, ri);
155     }
156 }
157 
158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
159                       uint64_t value)
160 {
161     assert(ri->fieldoffset);
162     if (cpreg_field_is_64bit(ri)) {
163         CPREG_FIELD64(env, ri) = value;
164     } else {
165         CPREG_FIELD32(env, ri) = value;
166     }
167 }
168 
169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
170 {
171     return (char *)env + ri->fieldoffset;
172 }
173 
174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
175 {
176     /* Raw read of a coprocessor register (as needed for migration, etc). */
177     if (ri->type & ARM_CP_CONST) {
178         return ri->resetvalue;
179     } else if (ri->raw_readfn) {
180         return ri->raw_readfn(env, ri);
181     } else if (ri->readfn) {
182         return ri->readfn(env, ri);
183     } else {
184         return raw_read(env, ri);
185     }
186 }
187 
188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
189                              uint64_t v)
190 {
191     /* Raw write of a coprocessor register (as needed for migration, etc).
192      * Note that constant registers are treated as write-ignored; the
193      * caller should check for success by whether a readback gives the
194      * value written.
195      */
196     if (ri->type & ARM_CP_CONST) {
197         return;
198     } else if (ri->raw_writefn) {
199         ri->raw_writefn(env, ri, v);
200     } else if (ri->writefn) {
201         ri->writefn(env, ri, v);
202     } else {
203         raw_write(env, ri, v);
204     }
205 }
206 
207 /**
208  * arm_get/set_gdb_*: get/set a gdb register
209  * @env: the CPU state
210  * @buf: a buffer to copy to/from
211  * @reg: register number (offset from start of group)
212  *
213  * We return the number of bytes copied
214  */
215 
216 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
217 {
218     ARMCPU *cpu = env_archcpu(env);
219     const ARMCPRegInfo *ri;
220     uint32_t key;
221 
222     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
223     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
224     if (ri) {
225         if (cpreg_field_is_64bit(ri)) {
226             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
227         } else {
228             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
229         }
230     }
231     return 0;
232 }
233 
234 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
235 {
236     return 0;
237 }
238 
239 #ifdef TARGET_AARCH64
240 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
241 {
242     ARMCPU *cpu = env_archcpu(env);
243 
244     switch (reg) {
245     /* The first 32 registers are the zregs */
246     case 0 ... 31:
247     {
248         int vq, len = 0;
249         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
250             len += gdb_get_reg128(buf,
251                                   env->vfp.zregs[reg].d[vq * 2 + 1],
252                                   env->vfp.zregs[reg].d[vq * 2]);
253         }
254         return len;
255     }
256     case 32:
257         return gdb_get_reg32(buf, vfp_get_fpsr(env));
258     case 33:
259         return gdb_get_reg32(buf, vfp_get_fpcr(env));
260     /* then 16 predicates and the ffr */
261     case 34 ... 50:
262     {
263         int preg = reg - 34;
264         int vq, len = 0;
265         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
266             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
267         }
268         return len;
269     }
270     case 51:
271     {
272         /*
273          * We report in Vector Granules (VG) which is 64bit in a Z reg
274          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
275          */
276         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
277         return gdb_get_reg32(buf, vq * 2);
278     }
279     default:
280         /* gdbstub asked for something out our range */
281         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
282         break;
283     }
284 
285     return 0;
286 }
287 
288 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
289 {
290     ARMCPU *cpu = env_archcpu(env);
291 
292     /* The first 32 registers are the zregs */
293     switch (reg) {
294     /* The first 32 registers are the zregs */
295     case 0 ... 31:
296     {
297         int vq, len = 0;
298         uint64_t *p = (uint64_t *) buf;
299         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
300             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
301             env->vfp.zregs[reg].d[vq * 2] = *p++;
302             len += 16;
303         }
304         return len;
305     }
306     case 32:
307         vfp_set_fpsr(env, *(uint32_t *)buf);
308         return 4;
309     case 33:
310         vfp_set_fpcr(env, *(uint32_t *)buf);
311         return 4;
312     case 34 ... 50:
313     {
314         int preg = reg - 34;
315         int vq, len = 0;
316         uint64_t *p = (uint64_t *) buf;
317         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
318             env->vfp.pregs[preg].p[vq / 4] = *p++;
319             len += 8;
320         }
321         return len;
322     }
323     case 51:
324         /* cannot set vg via gdbstub */
325         return 0;
326     default:
327         /* gdbstub asked for something out our range */
328         break;
329     }
330 
331     return 0;
332 }
333 #endif /* TARGET_AARCH64 */
334 
335 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
336 {
337    /* Return true if the regdef would cause an assertion if you called
338     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
339     * program bug for it not to have the NO_RAW flag).
340     * NB that returning false here doesn't necessarily mean that calling
341     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
342     * read/write access functions which are safe for raw use" from "has
343     * read/write access functions which have side effects but has forgotten
344     * to provide raw access functions".
345     * The tests here line up with the conditions in read/write_raw_cp_reg()
346     * and assertions in raw_read()/raw_write().
347     */
348     if ((ri->type & ARM_CP_CONST) ||
349         ri->fieldoffset ||
350         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
351         return false;
352     }
353     return true;
354 }
355 
356 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
357 {
358     /* Write the coprocessor state from cpu->env to the (index,value) list. */
359     int i;
360     bool ok = true;
361 
362     for (i = 0; i < cpu->cpreg_array_len; i++) {
363         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
364         const ARMCPRegInfo *ri;
365         uint64_t newval;
366 
367         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
368         if (!ri) {
369             ok = false;
370             continue;
371         }
372         if (ri->type & ARM_CP_NO_RAW) {
373             continue;
374         }
375 
376         newval = read_raw_cp_reg(&cpu->env, ri);
377         if (kvm_sync) {
378             /*
379              * Only sync if the previous list->cpustate sync succeeded.
380              * Rather than tracking the success/failure state for every
381              * item in the list, we just recheck "does the raw write we must
382              * have made in write_list_to_cpustate() read back OK" here.
383              */
384             uint64_t oldval = cpu->cpreg_values[i];
385 
386             if (oldval == newval) {
387                 continue;
388             }
389 
390             write_raw_cp_reg(&cpu->env, ri, oldval);
391             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
392                 continue;
393             }
394 
395             write_raw_cp_reg(&cpu->env, ri, newval);
396         }
397         cpu->cpreg_values[i] = newval;
398     }
399     return ok;
400 }
401 
402 bool write_list_to_cpustate(ARMCPU *cpu)
403 {
404     int i;
405     bool ok = true;
406 
407     for (i = 0; i < cpu->cpreg_array_len; i++) {
408         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
409         uint64_t v = cpu->cpreg_values[i];
410         const ARMCPRegInfo *ri;
411 
412         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
413         if (!ri) {
414             ok = false;
415             continue;
416         }
417         if (ri->type & ARM_CP_NO_RAW) {
418             continue;
419         }
420         /* Write value and confirm it reads back as written
421          * (to catch read-only registers and partially read-only
422          * registers where the incoming migration value doesn't match)
423          */
424         write_raw_cp_reg(&cpu->env, ri, v);
425         if (read_raw_cp_reg(&cpu->env, ri) != v) {
426             ok = false;
427         }
428     }
429     return ok;
430 }
431 
432 static void add_cpreg_to_list(gpointer key, gpointer opaque)
433 {
434     ARMCPU *cpu = opaque;
435     uint64_t regidx;
436     const ARMCPRegInfo *ri;
437 
438     regidx = *(uint32_t *)key;
439     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
440 
441     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
442         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
443         /* The value array need not be initialized at this point */
444         cpu->cpreg_array_len++;
445     }
446 }
447 
448 static void count_cpreg(gpointer key, gpointer opaque)
449 {
450     ARMCPU *cpu = opaque;
451     uint64_t regidx;
452     const ARMCPRegInfo *ri;
453 
454     regidx = *(uint32_t *)key;
455     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
456 
457     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
458         cpu->cpreg_array_len++;
459     }
460 }
461 
462 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
463 {
464     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
465     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
466 
467     if (aidx > bidx) {
468         return 1;
469     }
470     if (aidx < bidx) {
471         return -1;
472     }
473     return 0;
474 }
475 
476 void init_cpreg_list(ARMCPU *cpu)
477 {
478     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
479      * Note that we require cpreg_tuples[] to be sorted by key ID.
480      */
481     GList *keys;
482     int arraylen;
483 
484     keys = g_hash_table_get_keys(cpu->cp_regs);
485     keys = g_list_sort(keys, cpreg_key_compare);
486 
487     cpu->cpreg_array_len = 0;
488 
489     g_list_foreach(keys, count_cpreg, cpu);
490 
491     arraylen = cpu->cpreg_array_len;
492     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
493     cpu->cpreg_values = g_new(uint64_t, arraylen);
494     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
495     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
496     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
497     cpu->cpreg_array_len = 0;
498 
499     g_list_foreach(keys, add_cpreg_to_list, cpu);
500 
501     assert(cpu->cpreg_array_len == arraylen);
502 
503     g_list_free(keys);
504 }
505 
506 /*
507  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
508  */
509 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
510                                         const ARMCPRegInfo *ri,
511                                         bool isread)
512 {
513     if (!is_a64(env) && arm_current_el(env) == 3 &&
514         arm_is_secure_below_el3(env)) {
515         return CP_ACCESS_TRAP_UNCATEGORIZED;
516     }
517     return CP_ACCESS_OK;
518 }
519 
520 /* Some secure-only AArch32 registers trap to EL3 if used from
521  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
522  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
523  * We assume that the .access field is set to PL1_RW.
524  */
525 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
526                                             const ARMCPRegInfo *ri,
527                                             bool isread)
528 {
529     if (arm_current_el(env) == 3) {
530         return CP_ACCESS_OK;
531     }
532     if (arm_is_secure_below_el3(env)) {
533         return CP_ACCESS_TRAP_EL3;
534     }
535     /* This will be EL1 NS and EL2 NS, which just UNDEF */
536     return CP_ACCESS_TRAP_UNCATEGORIZED;
537 }
538 
539 /* Check for traps to "powerdown debug" registers, which are controlled
540  * by MDCR.TDOSA
541  */
542 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
543                                    bool isread)
544 {
545     int el = arm_current_el(env);
546     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
547         (env->cp15.mdcr_el2 & MDCR_TDE) ||
548         (arm_hcr_el2_eff(env) & HCR_TGE);
549 
550     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
551         return CP_ACCESS_TRAP_EL2;
552     }
553     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
554         return CP_ACCESS_TRAP_EL3;
555     }
556     return CP_ACCESS_OK;
557 }
558 
559 /* Check for traps to "debug ROM" registers, which are controlled
560  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
561  */
562 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
563                                   bool isread)
564 {
565     int el = arm_current_el(env);
566     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
567         (env->cp15.mdcr_el2 & MDCR_TDE) ||
568         (arm_hcr_el2_eff(env) & HCR_TGE);
569 
570     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
571         return CP_ACCESS_TRAP_EL2;
572     }
573     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
574         return CP_ACCESS_TRAP_EL3;
575     }
576     return CP_ACCESS_OK;
577 }
578 
579 /* Check for traps to general debug registers, which are controlled
580  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
581  */
582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
583                                   bool isread)
584 {
585     int el = arm_current_el(env);
586     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
587         (env->cp15.mdcr_el2 & MDCR_TDE) ||
588         (arm_hcr_el2_eff(env) & HCR_TGE);
589 
590     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
591         return CP_ACCESS_TRAP_EL2;
592     }
593     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
594         return CP_ACCESS_TRAP_EL3;
595     }
596     return CP_ACCESS_OK;
597 }
598 
599 /* Check for traps to performance monitor registers, which are controlled
600  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
601  */
602 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
603                                  bool isread)
604 {
605     int el = arm_current_el(env);
606 
607     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
608         && !arm_is_secure_below_el3(env)) {
609         return CP_ACCESS_TRAP_EL2;
610     }
611     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
612         return CP_ACCESS_TRAP_EL3;
613     }
614     return CP_ACCESS_OK;
615 }
616 
617 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
618 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
619                                       bool isread)
620 {
621     if (arm_current_el(env) == 1) {
622         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
623         if (arm_hcr_el2_eff(env) & trap) {
624             return CP_ACCESS_TRAP_EL2;
625         }
626     }
627     return CP_ACCESS_OK;
628 }
629 
630 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
631 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
632                                  bool isread)
633 {
634     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
635         return CP_ACCESS_TRAP_EL2;
636     }
637     return CP_ACCESS_OK;
638 }
639 
640 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
641 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
642                                   bool isread)
643 {
644     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
645         return CP_ACCESS_TRAP_EL2;
646     }
647     return CP_ACCESS_OK;
648 }
649 
650 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
651 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
652                                   bool isread)
653 {
654     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
655         return CP_ACCESS_TRAP_EL2;
656     }
657     return CP_ACCESS_OK;
658 }
659 
660 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
661 {
662     ARMCPU *cpu = env_archcpu(env);
663 
664     raw_write(env, ri, value);
665     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
666 }
667 
668 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
669 {
670     ARMCPU *cpu = env_archcpu(env);
671 
672     if (raw_read(env, ri) != value) {
673         /* Unlike real hardware the qemu TLB uses virtual addresses,
674          * not modified virtual addresses, so this causes a TLB flush.
675          */
676         tlb_flush(CPU(cpu));
677         raw_write(env, ri, value);
678     }
679 }
680 
681 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
682                              uint64_t value)
683 {
684     ARMCPU *cpu = env_archcpu(env);
685 
686     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
687         && !extended_addresses_enabled(env)) {
688         /* For VMSA (when not using the LPAE long descriptor page table
689          * format) this register includes the ASID, so do a TLB flush.
690          * For PMSA it is purely a process ID and no action is needed.
691          */
692         tlb_flush(CPU(cpu));
693     }
694     raw_write(env, ri, value);
695 }
696 
697 /* IS variants of TLB operations must affect all cores */
698 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
699                              uint64_t value)
700 {
701     CPUState *cs = env_cpu(env);
702 
703     tlb_flush_all_cpus_synced(cs);
704 }
705 
706 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
707                              uint64_t value)
708 {
709     CPUState *cs = env_cpu(env);
710 
711     tlb_flush_all_cpus_synced(cs);
712 }
713 
714 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
715                              uint64_t value)
716 {
717     CPUState *cs = env_cpu(env);
718 
719     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
720 }
721 
722 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
723                              uint64_t value)
724 {
725     CPUState *cs = env_cpu(env);
726 
727     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
728 }
729 
730 /*
731  * Non-IS variants of TLB operations are upgraded to
732  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
733  * force broadcast of these operations.
734  */
735 static bool tlb_force_broadcast(CPUARMState *env)
736 {
737     return (env->cp15.hcr_el2 & HCR_FB) &&
738         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
739 }
740 
741 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
742                           uint64_t value)
743 {
744     /* Invalidate all (TLBIALL) */
745     CPUState *cs = env_cpu(env);
746 
747     if (tlb_force_broadcast(env)) {
748         tlb_flush_all_cpus_synced(cs);
749     } else {
750         tlb_flush(cs);
751     }
752 }
753 
754 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
755                           uint64_t value)
756 {
757     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
758     CPUState *cs = env_cpu(env);
759 
760     value &= TARGET_PAGE_MASK;
761     if (tlb_force_broadcast(env)) {
762         tlb_flush_page_all_cpus_synced(cs, value);
763     } else {
764         tlb_flush_page(cs, value);
765     }
766 }
767 
768 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
769                            uint64_t value)
770 {
771     /* Invalidate by ASID (TLBIASID) */
772     CPUState *cs = env_cpu(env);
773 
774     if (tlb_force_broadcast(env)) {
775         tlb_flush_all_cpus_synced(cs);
776     } else {
777         tlb_flush(cs);
778     }
779 }
780 
781 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
782                            uint64_t value)
783 {
784     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
785     CPUState *cs = env_cpu(env);
786 
787     value &= TARGET_PAGE_MASK;
788     if (tlb_force_broadcast(env)) {
789         tlb_flush_page_all_cpus_synced(cs, value);
790     } else {
791         tlb_flush_page(cs, value);
792     }
793 }
794 
795 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
796                                uint64_t value)
797 {
798     CPUState *cs = env_cpu(env);
799 
800     tlb_flush_by_mmuidx(cs,
801                         ARMMMUIdxBit_E10_1 |
802                         ARMMMUIdxBit_E10_1_PAN |
803                         ARMMMUIdxBit_E10_0);
804 }
805 
806 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
807                                   uint64_t value)
808 {
809     CPUState *cs = env_cpu(env);
810 
811     tlb_flush_by_mmuidx_all_cpus_synced(cs,
812                                         ARMMMUIdxBit_E10_1 |
813                                         ARMMMUIdxBit_E10_1_PAN |
814                                         ARMMMUIdxBit_E10_0);
815 }
816 
817 
818 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
819                               uint64_t value)
820 {
821     CPUState *cs = env_cpu(env);
822 
823     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
824 }
825 
826 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
827                                  uint64_t value)
828 {
829     CPUState *cs = env_cpu(env);
830 
831     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
832 }
833 
834 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
835                               uint64_t value)
836 {
837     CPUState *cs = env_cpu(env);
838     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
839 
840     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
841 }
842 
843 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
844                                  uint64_t value)
845 {
846     CPUState *cs = env_cpu(env);
847     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
848 
849     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
850                                              ARMMMUIdxBit_E2);
851 }
852 
853 static const ARMCPRegInfo cp_reginfo[] = {
854     /* Define the secure and non-secure FCSE identifier CP registers
855      * separately because there is no secure bank in V8 (no _EL3).  This allows
856      * the secure register to be properly reset and migrated. There is also no
857      * v8 EL1 version of the register so the non-secure instance stands alone.
858      */
859     { .name = "FCSEIDR",
860       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
861       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
862       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
863       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
864     { .name = "FCSEIDR_S",
865       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
866       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
867       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
868       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
869     /* Define the secure and non-secure context identifier CP registers
870      * separately because there is no secure bank in V8 (no _EL3).  This allows
871      * the secure register to be properly reset and migrated.  In the
872      * non-secure case, the 32-bit register will have reset and migration
873      * disabled during registration as it is handled by the 64-bit instance.
874      */
875     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
876       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
877       .access = PL1_RW, .accessfn = access_tvm_trvm,
878       .secure = ARM_CP_SECSTATE_NS,
879       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
880       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
881     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
882       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
883       .access = PL1_RW, .accessfn = access_tvm_trvm,
884       .secure = ARM_CP_SECSTATE_S,
885       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
886       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
887     REGINFO_SENTINEL
888 };
889 
890 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
891     /* NB: Some of these registers exist in v8 but with more precise
892      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
893      */
894     /* MMU Domain access control / MPU write buffer control */
895     { .name = "DACR",
896       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
897       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
898       .writefn = dacr_write, .raw_writefn = raw_write,
899       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
900                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
901     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
902      * For v6 and v5, these mappings are overly broad.
903      */
904     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
905       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
906     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
907       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
908     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
909       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
910     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
911       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
912     /* Cache maintenance ops; some of this space may be overridden later. */
913     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
914       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
915       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
916     REGINFO_SENTINEL
917 };
918 
919 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
920     /* Not all pre-v6 cores implemented this WFI, so this is slightly
921      * over-broad.
922      */
923     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
924       .access = PL1_W, .type = ARM_CP_WFI },
925     REGINFO_SENTINEL
926 };
927 
928 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
929     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
930      * is UNPREDICTABLE; we choose to NOP as most implementations do).
931      */
932     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
933       .access = PL1_W, .type = ARM_CP_WFI },
934     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
935      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
936      * OMAPCP will override this space.
937      */
938     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
939       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
940       .resetvalue = 0 },
941     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
942       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
943       .resetvalue = 0 },
944     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
945     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
946       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
947       .resetvalue = 0 },
948     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
949      * implementing it as RAZ means the "debug architecture version" bits
950      * will read as a reserved value, which should cause Linux to not try
951      * to use the debug hardware.
952      */
953     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
954       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
955     /* MMU TLB control. Note that the wildcarding means we cover not just
956      * the unified TLB ops but also the dside/iside/inner-shareable variants.
957      */
958     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
959       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
960       .type = ARM_CP_NO_RAW },
961     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
962       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
963       .type = ARM_CP_NO_RAW },
964     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
965       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
966       .type = ARM_CP_NO_RAW },
967     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
968       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
969       .type = ARM_CP_NO_RAW },
970     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
971       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
972     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
973       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
974     REGINFO_SENTINEL
975 };
976 
977 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
978                         uint64_t value)
979 {
980     uint32_t mask = 0;
981 
982     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
983     if (!arm_feature(env, ARM_FEATURE_V8)) {
984         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
985          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
986          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
987          */
988         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
989             /* VFP coprocessor: cp10 & cp11 [23:20] */
990             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
991 
992             if (!arm_feature(env, ARM_FEATURE_NEON)) {
993                 /* ASEDIS [31] bit is RAO/WI */
994                 value |= (1 << 31);
995             }
996 
997             /* VFPv3 and upwards with NEON implement 32 double precision
998              * registers (D0-D31).
999              */
1000             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1001                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1002                 value |= (1 << 30);
1003             }
1004         }
1005         value &= mask;
1006     }
1007 
1008     /*
1009      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1010      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1011      */
1012     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1013         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1014         value &= ~(0xf << 20);
1015         value |= env->cp15.cpacr_el1 & (0xf << 20);
1016     }
1017 
1018     env->cp15.cpacr_el1 = value;
1019 }
1020 
1021 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1022 {
1023     /*
1024      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1025      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1026      */
1027     uint64_t value = env->cp15.cpacr_el1;
1028 
1029     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1030         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1031         value &= ~(0xf << 20);
1032     }
1033     return value;
1034 }
1035 
1036 
1037 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1038 {
1039     /* Call cpacr_write() so that we reset with the correct RAO bits set
1040      * for our CPU features.
1041      */
1042     cpacr_write(env, ri, 0);
1043 }
1044 
1045 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1046                                    bool isread)
1047 {
1048     if (arm_feature(env, ARM_FEATURE_V8)) {
1049         /* Check if CPACR accesses are to be trapped to EL2 */
1050         if (arm_current_el(env) == 1 &&
1051             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1052             return CP_ACCESS_TRAP_EL2;
1053         /* Check if CPACR accesses are to be trapped to EL3 */
1054         } else if (arm_current_el(env) < 3 &&
1055                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1056             return CP_ACCESS_TRAP_EL3;
1057         }
1058     }
1059 
1060     return CP_ACCESS_OK;
1061 }
1062 
1063 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1064                                   bool isread)
1065 {
1066     /* Check if CPTR accesses are set to trap to EL3 */
1067     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1068         return CP_ACCESS_TRAP_EL3;
1069     }
1070 
1071     return CP_ACCESS_OK;
1072 }
1073 
1074 static const ARMCPRegInfo v6_cp_reginfo[] = {
1075     /* prefetch by MVA in v6, NOP in v7 */
1076     { .name = "MVA_prefetch",
1077       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1078       .access = PL1_W, .type = ARM_CP_NOP },
1079     /* We need to break the TB after ISB to execute self-modifying code
1080      * correctly and also to take any pending interrupts immediately.
1081      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1082      */
1083     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1084       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1085     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1086       .access = PL0_W, .type = ARM_CP_NOP },
1087     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1088       .access = PL0_W, .type = ARM_CP_NOP },
1089     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1090       .access = PL1_RW, .accessfn = access_tvm_trvm,
1091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1092                              offsetof(CPUARMState, cp15.ifar_ns) },
1093       .resetvalue = 0, },
1094     /* Watchpoint Fault Address Register : should actually only be present
1095      * for 1136, 1176, 11MPCore.
1096      */
1097     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1098       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1099     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1100       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1101       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1102       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1103     REGINFO_SENTINEL
1104 };
1105 
1106 /* Definitions for the PMU registers */
1107 #define PMCRN_MASK  0xf800
1108 #define PMCRN_SHIFT 11
1109 #define PMCRLC  0x40
1110 #define PMCRDP  0x20
1111 #define PMCRX   0x10
1112 #define PMCRD   0x8
1113 #define PMCRC   0x4
1114 #define PMCRP   0x2
1115 #define PMCRE   0x1
1116 /*
1117  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1118  * which can be written as 1 to trigger behaviour but which stay RAZ).
1119  */
1120 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1121 
1122 #define PMXEVTYPER_P          0x80000000
1123 #define PMXEVTYPER_U          0x40000000
1124 #define PMXEVTYPER_NSK        0x20000000
1125 #define PMXEVTYPER_NSU        0x10000000
1126 #define PMXEVTYPER_NSH        0x08000000
1127 #define PMXEVTYPER_M          0x04000000
1128 #define PMXEVTYPER_MT         0x02000000
1129 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1130 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1131                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1132                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1133                                PMXEVTYPER_EVTCOUNT)
1134 
1135 #define PMCCFILTR             0xf8000000
1136 #define PMCCFILTR_M           PMXEVTYPER_M
1137 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1138 
1139 static inline uint32_t pmu_num_counters(CPUARMState *env)
1140 {
1141   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1142 }
1143 
1144 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1145 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1146 {
1147   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1148 }
1149 
1150 typedef struct pm_event {
1151     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1152     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1153     bool (*supported)(CPUARMState *);
1154     /*
1155      * Retrieve the current count of the underlying event. The programmed
1156      * counters hold a difference from the return value from this function
1157      */
1158     uint64_t (*get_count)(CPUARMState *);
1159     /*
1160      * Return how many nanoseconds it will take (at a minimum) for count events
1161      * to occur. A negative value indicates the counter will never overflow, or
1162      * that the counter has otherwise arranged for the overflow bit to be set
1163      * and the PMU interrupt to be raised on overflow.
1164      */
1165     int64_t (*ns_per_count)(uint64_t);
1166 } pm_event;
1167 
1168 static bool event_always_supported(CPUARMState *env)
1169 {
1170     return true;
1171 }
1172 
1173 static uint64_t swinc_get_count(CPUARMState *env)
1174 {
1175     /*
1176      * SW_INCR events are written directly to the pmevcntr's by writes to
1177      * PMSWINC, so there is no underlying count maintained by the PMU itself
1178      */
1179     return 0;
1180 }
1181 
1182 static int64_t swinc_ns_per(uint64_t ignored)
1183 {
1184     return -1;
1185 }
1186 
1187 /*
1188  * Return the underlying cycle count for the PMU cycle counters. If we're in
1189  * usermode, simply return 0.
1190  */
1191 static uint64_t cycles_get_count(CPUARMState *env)
1192 {
1193 #ifndef CONFIG_USER_ONLY
1194     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1195                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1196 #else
1197     return cpu_get_host_ticks();
1198 #endif
1199 }
1200 
1201 #ifndef CONFIG_USER_ONLY
1202 static int64_t cycles_ns_per(uint64_t cycles)
1203 {
1204     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1205 }
1206 
1207 static bool instructions_supported(CPUARMState *env)
1208 {
1209     return use_icount == 1 /* Precise instruction counting */;
1210 }
1211 
1212 static uint64_t instructions_get_count(CPUARMState *env)
1213 {
1214     return (uint64_t)cpu_get_icount_raw();
1215 }
1216 
1217 static int64_t instructions_ns_per(uint64_t icount)
1218 {
1219     return cpu_icount_to_ns((int64_t)icount);
1220 }
1221 #endif
1222 
1223 static bool pmu_8_1_events_supported(CPUARMState *env)
1224 {
1225     /* For events which are supported in any v8.1 PMU */
1226     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1227 }
1228 
1229 static bool pmu_8_4_events_supported(CPUARMState *env)
1230 {
1231     /* For events which are supported in any v8.1 PMU */
1232     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1233 }
1234 
1235 static uint64_t zero_event_get_count(CPUARMState *env)
1236 {
1237     /* For events which on QEMU never fire, so their count is always zero */
1238     return 0;
1239 }
1240 
1241 static int64_t zero_event_ns_per(uint64_t cycles)
1242 {
1243     /* An event which never fires can never overflow */
1244     return -1;
1245 }
1246 
1247 static const pm_event pm_events[] = {
1248     { .number = 0x000, /* SW_INCR */
1249       .supported = event_always_supported,
1250       .get_count = swinc_get_count,
1251       .ns_per_count = swinc_ns_per,
1252     },
1253 #ifndef CONFIG_USER_ONLY
1254     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1255       .supported = instructions_supported,
1256       .get_count = instructions_get_count,
1257       .ns_per_count = instructions_ns_per,
1258     },
1259     { .number = 0x011, /* CPU_CYCLES, Cycle */
1260       .supported = event_always_supported,
1261       .get_count = cycles_get_count,
1262       .ns_per_count = cycles_ns_per,
1263     },
1264 #endif
1265     { .number = 0x023, /* STALL_FRONTEND */
1266       .supported = pmu_8_1_events_supported,
1267       .get_count = zero_event_get_count,
1268       .ns_per_count = zero_event_ns_per,
1269     },
1270     { .number = 0x024, /* STALL_BACKEND */
1271       .supported = pmu_8_1_events_supported,
1272       .get_count = zero_event_get_count,
1273       .ns_per_count = zero_event_ns_per,
1274     },
1275     { .number = 0x03c, /* STALL */
1276       .supported = pmu_8_4_events_supported,
1277       .get_count = zero_event_get_count,
1278       .ns_per_count = zero_event_ns_per,
1279     },
1280 };
1281 
1282 /*
1283  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1284  * events (i.e. the statistical profiling extension), this implementation
1285  * should first be updated to something sparse instead of the current
1286  * supported_event_map[] array.
1287  */
1288 #define MAX_EVENT_ID 0x3c
1289 #define UNSUPPORTED_EVENT UINT16_MAX
1290 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1291 
1292 /*
1293  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1294  * of ARM event numbers to indices in our pm_events array.
1295  *
1296  * Note: Events in the 0x40XX range are not currently supported.
1297  */
1298 void pmu_init(ARMCPU *cpu)
1299 {
1300     unsigned int i;
1301 
1302     /*
1303      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1304      * events to them
1305      */
1306     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1307         supported_event_map[i] = UNSUPPORTED_EVENT;
1308     }
1309     cpu->pmceid0 = 0;
1310     cpu->pmceid1 = 0;
1311 
1312     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1313         const pm_event *cnt = &pm_events[i];
1314         assert(cnt->number <= MAX_EVENT_ID);
1315         /* We do not currently support events in the 0x40xx range */
1316         assert(cnt->number <= 0x3f);
1317 
1318         if (cnt->supported(&cpu->env)) {
1319             supported_event_map[cnt->number] = i;
1320             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1321             if (cnt->number & 0x20) {
1322                 cpu->pmceid1 |= event_mask;
1323             } else {
1324                 cpu->pmceid0 |= event_mask;
1325             }
1326         }
1327     }
1328 }
1329 
1330 /*
1331  * Check at runtime whether a PMU event is supported for the current machine
1332  */
1333 static bool event_supported(uint16_t number)
1334 {
1335     if (number > MAX_EVENT_ID) {
1336         return false;
1337     }
1338     return supported_event_map[number] != UNSUPPORTED_EVENT;
1339 }
1340 
1341 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1342                                    bool isread)
1343 {
1344     /* Performance monitor registers user accessibility is controlled
1345      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1346      * trapping to EL2 or EL3 for other accesses.
1347      */
1348     int el = arm_current_el(env);
1349 
1350     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1351         return CP_ACCESS_TRAP;
1352     }
1353     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1354         && !arm_is_secure_below_el3(env)) {
1355         return CP_ACCESS_TRAP_EL2;
1356     }
1357     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1358         return CP_ACCESS_TRAP_EL3;
1359     }
1360 
1361     return CP_ACCESS_OK;
1362 }
1363 
1364 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1365                                            const ARMCPRegInfo *ri,
1366                                            bool isread)
1367 {
1368     /* ER: event counter read trap control */
1369     if (arm_feature(env, ARM_FEATURE_V8)
1370         && arm_current_el(env) == 0
1371         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1372         && isread) {
1373         return CP_ACCESS_OK;
1374     }
1375 
1376     return pmreg_access(env, ri, isread);
1377 }
1378 
1379 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1380                                          const ARMCPRegInfo *ri,
1381                                          bool isread)
1382 {
1383     /* SW: software increment write trap control */
1384     if (arm_feature(env, ARM_FEATURE_V8)
1385         && arm_current_el(env) == 0
1386         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1387         && !isread) {
1388         return CP_ACCESS_OK;
1389     }
1390 
1391     return pmreg_access(env, ri, isread);
1392 }
1393 
1394 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1395                                         const ARMCPRegInfo *ri,
1396                                         bool isread)
1397 {
1398     /* ER: event counter read trap control */
1399     if (arm_feature(env, ARM_FEATURE_V8)
1400         && arm_current_el(env) == 0
1401         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1402         return CP_ACCESS_OK;
1403     }
1404 
1405     return pmreg_access(env, ri, isread);
1406 }
1407 
1408 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1409                                          const ARMCPRegInfo *ri,
1410                                          bool isread)
1411 {
1412     /* CR: cycle counter read trap control */
1413     if (arm_feature(env, ARM_FEATURE_V8)
1414         && arm_current_el(env) == 0
1415         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1416         && isread) {
1417         return CP_ACCESS_OK;
1418     }
1419 
1420     return pmreg_access(env, ri, isread);
1421 }
1422 
1423 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1424  * the current EL, security state, and register configuration.
1425  */
1426 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1427 {
1428     uint64_t filter;
1429     bool e, p, u, nsk, nsu, nsh, m;
1430     bool enabled, prohibited, filtered;
1431     bool secure = arm_is_secure(env);
1432     int el = arm_current_el(env);
1433     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1434 
1435     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1436         return false;
1437     }
1438 
1439     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1440             (counter < hpmn || counter == 31)) {
1441         e = env->cp15.c9_pmcr & PMCRE;
1442     } else {
1443         e = env->cp15.mdcr_el2 & MDCR_HPME;
1444     }
1445     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1446 
1447     if (!secure) {
1448         if (el == 2 && (counter < hpmn || counter == 31)) {
1449             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1450         } else {
1451             prohibited = false;
1452         }
1453     } else {
1454         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1455            (env->cp15.mdcr_el3 & MDCR_SPME);
1456     }
1457 
1458     if (prohibited && counter == 31) {
1459         prohibited = env->cp15.c9_pmcr & PMCRDP;
1460     }
1461 
1462     if (counter == 31) {
1463         filter = env->cp15.pmccfiltr_el0;
1464     } else {
1465         filter = env->cp15.c14_pmevtyper[counter];
1466     }
1467 
1468     p   = filter & PMXEVTYPER_P;
1469     u   = filter & PMXEVTYPER_U;
1470     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1471     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1472     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1473     m   = arm_el_is_aa64(env, 1) &&
1474               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1475 
1476     if (el == 0) {
1477         filtered = secure ? u : u != nsu;
1478     } else if (el == 1) {
1479         filtered = secure ? p : p != nsk;
1480     } else if (el == 2) {
1481         filtered = !nsh;
1482     } else { /* EL3 */
1483         filtered = m != p;
1484     }
1485 
1486     if (counter != 31) {
1487         /*
1488          * If not checking PMCCNTR, ensure the counter is setup to an event we
1489          * support
1490          */
1491         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1492         if (!event_supported(event)) {
1493             return false;
1494         }
1495     }
1496 
1497     return enabled && !prohibited && !filtered;
1498 }
1499 
1500 static void pmu_update_irq(CPUARMState *env)
1501 {
1502     ARMCPU *cpu = env_archcpu(env);
1503     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1504             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1505 }
1506 
1507 /*
1508  * Ensure c15_ccnt is the guest-visible count so that operations such as
1509  * enabling/disabling the counter or filtering, modifying the count itself,
1510  * etc. can be done logically. This is essentially a no-op if the counter is
1511  * not enabled at the time of the call.
1512  */
1513 static void pmccntr_op_start(CPUARMState *env)
1514 {
1515     uint64_t cycles = cycles_get_count(env);
1516 
1517     if (pmu_counter_enabled(env, 31)) {
1518         uint64_t eff_cycles = cycles;
1519         if (env->cp15.c9_pmcr & PMCRD) {
1520             /* Increment once every 64 processor clock cycles */
1521             eff_cycles /= 64;
1522         }
1523 
1524         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1525 
1526         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1527                                  1ull << 63 : 1ull << 31;
1528         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1529             env->cp15.c9_pmovsr |= (1 << 31);
1530             pmu_update_irq(env);
1531         }
1532 
1533         env->cp15.c15_ccnt = new_pmccntr;
1534     }
1535     env->cp15.c15_ccnt_delta = cycles;
1536 }
1537 
1538 /*
1539  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1540  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1541  * pmccntr_op_start.
1542  */
1543 static void pmccntr_op_finish(CPUARMState *env)
1544 {
1545     if (pmu_counter_enabled(env, 31)) {
1546 #ifndef CONFIG_USER_ONLY
1547         /* Calculate when the counter will next overflow */
1548         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1549         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1550             remaining_cycles = (uint32_t)remaining_cycles;
1551         }
1552         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1553 
1554         if (overflow_in > 0) {
1555             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1556                 overflow_in;
1557             ARMCPU *cpu = env_archcpu(env);
1558             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1559         }
1560 #endif
1561 
1562         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1563         if (env->cp15.c9_pmcr & PMCRD) {
1564             /* Increment once every 64 processor clock cycles */
1565             prev_cycles /= 64;
1566         }
1567         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1568     }
1569 }
1570 
1571 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1572 {
1573 
1574     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1575     uint64_t count = 0;
1576     if (event_supported(event)) {
1577         uint16_t event_idx = supported_event_map[event];
1578         count = pm_events[event_idx].get_count(env);
1579     }
1580 
1581     if (pmu_counter_enabled(env, counter)) {
1582         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1583 
1584         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1585             env->cp15.c9_pmovsr |= (1 << counter);
1586             pmu_update_irq(env);
1587         }
1588         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1589     }
1590     env->cp15.c14_pmevcntr_delta[counter] = count;
1591 }
1592 
1593 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1594 {
1595     if (pmu_counter_enabled(env, counter)) {
1596 #ifndef CONFIG_USER_ONLY
1597         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1598         uint16_t event_idx = supported_event_map[event];
1599         uint64_t delta = UINT32_MAX -
1600             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1601         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1602 
1603         if (overflow_in > 0) {
1604             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1605                 overflow_in;
1606             ARMCPU *cpu = env_archcpu(env);
1607             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1608         }
1609 #endif
1610 
1611         env->cp15.c14_pmevcntr_delta[counter] -=
1612             env->cp15.c14_pmevcntr[counter];
1613     }
1614 }
1615 
1616 void pmu_op_start(CPUARMState *env)
1617 {
1618     unsigned int i;
1619     pmccntr_op_start(env);
1620     for (i = 0; i < pmu_num_counters(env); i++) {
1621         pmevcntr_op_start(env, i);
1622     }
1623 }
1624 
1625 void pmu_op_finish(CPUARMState *env)
1626 {
1627     unsigned int i;
1628     pmccntr_op_finish(env);
1629     for (i = 0; i < pmu_num_counters(env); i++) {
1630         pmevcntr_op_finish(env, i);
1631     }
1632 }
1633 
1634 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1635 {
1636     pmu_op_start(&cpu->env);
1637 }
1638 
1639 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1640 {
1641     pmu_op_finish(&cpu->env);
1642 }
1643 
1644 void arm_pmu_timer_cb(void *opaque)
1645 {
1646     ARMCPU *cpu = opaque;
1647 
1648     /*
1649      * Update all the counter values based on the current underlying counts,
1650      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1651      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1652      * counter may expire.
1653      */
1654     pmu_op_start(&cpu->env);
1655     pmu_op_finish(&cpu->env);
1656 }
1657 
1658 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659                        uint64_t value)
1660 {
1661     pmu_op_start(env);
1662 
1663     if (value & PMCRC) {
1664         /* The counter has been reset */
1665         env->cp15.c15_ccnt = 0;
1666     }
1667 
1668     if (value & PMCRP) {
1669         unsigned int i;
1670         for (i = 0; i < pmu_num_counters(env); i++) {
1671             env->cp15.c14_pmevcntr[i] = 0;
1672         }
1673     }
1674 
1675     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1676     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1677 
1678     pmu_op_finish(env);
1679 }
1680 
1681 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1682                           uint64_t value)
1683 {
1684     unsigned int i;
1685     for (i = 0; i < pmu_num_counters(env); i++) {
1686         /* Increment a counter's count iff: */
1687         if ((value & (1 << i)) && /* counter's bit is set */
1688                 /* counter is enabled and not filtered */
1689                 pmu_counter_enabled(env, i) &&
1690                 /* counter is SW_INCR */
1691                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1692             pmevcntr_op_start(env, i);
1693 
1694             /*
1695              * Detect if this write causes an overflow since we can't predict
1696              * PMSWINC overflows like we can for other events
1697              */
1698             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1699 
1700             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1701                 env->cp15.c9_pmovsr |= (1 << i);
1702                 pmu_update_irq(env);
1703             }
1704 
1705             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1706 
1707             pmevcntr_op_finish(env, i);
1708         }
1709     }
1710 }
1711 
1712 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1713 {
1714     uint64_t ret;
1715     pmccntr_op_start(env);
1716     ret = env->cp15.c15_ccnt;
1717     pmccntr_op_finish(env);
1718     return ret;
1719 }
1720 
1721 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1722                          uint64_t value)
1723 {
1724     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1725      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1726      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1727      * accessed.
1728      */
1729     env->cp15.c9_pmselr = value & 0x1f;
1730 }
1731 
1732 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1733                         uint64_t value)
1734 {
1735     pmccntr_op_start(env);
1736     env->cp15.c15_ccnt = value;
1737     pmccntr_op_finish(env);
1738 }
1739 
1740 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1741                             uint64_t value)
1742 {
1743     uint64_t cur_val = pmccntr_read(env, NULL);
1744 
1745     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1746 }
1747 
1748 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1749                             uint64_t value)
1750 {
1751     pmccntr_op_start(env);
1752     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1753     pmccntr_op_finish(env);
1754 }
1755 
1756 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1757                             uint64_t value)
1758 {
1759     pmccntr_op_start(env);
1760     /* M is not accessible from AArch32 */
1761     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1762         (value & PMCCFILTR);
1763     pmccntr_op_finish(env);
1764 }
1765 
1766 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1767 {
1768     /* M is not visible in AArch32 */
1769     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1770 }
1771 
1772 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773                             uint64_t value)
1774 {
1775     value &= pmu_counter_mask(env);
1776     env->cp15.c9_pmcnten |= value;
1777 }
1778 
1779 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1780                              uint64_t value)
1781 {
1782     value &= pmu_counter_mask(env);
1783     env->cp15.c9_pmcnten &= ~value;
1784 }
1785 
1786 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787                          uint64_t value)
1788 {
1789     value &= pmu_counter_mask(env);
1790     env->cp15.c9_pmovsr &= ~value;
1791     pmu_update_irq(env);
1792 }
1793 
1794 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                          uint64_t value)
1796 {
1797     value &= pmu_counter_mask(env);
1798     env->cp15.c9_pmovsr |= value;
1799     pmu_update_irq(env);
1800 }
1801 
1802 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                              uint64_t value, const uint8_t counter)
1804 {
1805     if (counter == 31) {
1806         pmccfiltr_write(env, ri, value);
1807     } else if (counter < pmu_num_counters(env)) {
1808         pmevcntr_op_start(env, counter);
1809 
1810         /*
1811          * If this counter's event type is changing, store the current
1812          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1813          * pmevcntr_op_finish has the correct baseline when it converts back to
1814          * a delta.
1815          */
1816         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1817             PMXEVTYPER_EVTCOUNT;
1818         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1819         if (old_event != new_event) {
1820             uint64_t count = 0;
1821             if (event_supported(new_event)) {
1822                 uint16_t event_idx = supported_event_map[new_event];
1823                 count = pm_events[event_idx].get_count(env);
1824             }
1825             env->cp15.c14_pmevcntr_delta[counter] = count;
1826         }
1827 
1828         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1829         pmevcntr_op_finish(env, counter);
1830     }
1831     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1832      * PMSELR value is equal to or greater than the number of implemented
1833      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1834      */
1835 }
1836 
1837 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1838                                const uint8_t counter)
1839 {
1840     if (counter == 31) {
1841         return env->cp15.pmccfiltr_el0;
1842     } else if (counter < pmu_num_counters(env)) {
1843         return env->cp15.c14_pmevtyper[counter];
1844     } else {
1845       /*
1846        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1847        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1848        */
1849         return 0;
1850     }
1851 }
1852 
1853 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1854                               uint64_t value)
1855 {
1856     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1857     pmevtyper_write(env, ri, value, counter);
1858 }
1859 
1860 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1861                                uint64_t value)
1862 {
1863     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1864     env->cp15.c14_pmevtyper[counter] = value;
1865 
1866     /*
1867      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1868      * pmu_op_finish calls when loading saved state for a migration. Because
1869      * we're potentially updating the type of event here, the value written to
1870      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1871      * different counter type. Therefore, we need to set this value to the
1872      * current count for the counter type we're writing so that pmu_op_finish
1873      * has the correct count for its calculation.
1874      */
1875     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1876     if (event_supported(event)) {
1877         uint16_t event_idx = supported_event_map[event];
1878         env->cp15.c14_pmevcntr_delta[counter] =
1879             pm_events[event_idx].get_count(env);
1880     }
1881 }
1882 
1883 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1886     return pmevtyper_read(env, ri, counter);
1887 }
1888 
1889 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890                              uint64_t value)
1891 {
1892     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1893 }
1894 
1895 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1898 }
1899 
1900 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1901                              uint64_t value, uint8_t counter)
1902 {
1903     if (counter < pmu_num_counters(env)) {
1904         pmevcntr_op_start(env, counter);
1905         env->cp15.c14_pmevcntr[counter] = value;
1906         pmevcntr_op_finish(env, counter);
1907     }
1908     /*
1909      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1910      * are CONSTRAINED UNPREDICTABLE.
1911      */
1912 }
1913 
1914 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1915                               uint8_t counter)
1916 {
1917     if (counter < pmu_num_counters(env)) {
1918         uint64_t ret;
1919         pmevcntr_op_start(env, counter);
1920         ret = env->cp15.c14_pmevcntr[counter];
1921         pmevcntr_op_finish(env, counter);
1922         return ret;
1923     } else {
1924       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1925        * are CONSTRAINED UNPREDICTABLE. */
1926         return 0;
1927     }
1928 }
1929 
1930 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1931                              uint64_t value)
1932 {
1933     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1934     pmevcntr_write(env, ri, value, counter);
1935 }
1936 
1937 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1938 {
1939     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1940     return pmevcntr_read(env, ri, counter);
1941 }
1942 
1943 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1944                              uint64_t value)
1945 {
1946     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1947     assert(counter < pmu_num_counters(env));
1948     env->cp15.c14_pmevcntr[counter] = value;
1949     pmevcntr_write(env, ri, value, counter);
1950 }
1951 
1952 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1953 {
1954     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1955     assert(counter < pmu_num_counters(env));
1956     return env->cp15.c14_pmevcntr[counter];
1957 }
1958 
1959 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1960                              uint64_t value)
1961 {
1962     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1963 }
1964 
1965 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1966 {
1967     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1968 }
1969 
1970 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1971                             uint64_t value)
1972 {
1973     if (arm_feature(env, ARM_FEATURE_V8)) {
1974         env->cp15.c9_pmuserenr = value & 0xf;
1975     } else {
1976         env->cp15.c9_pmuserenr = value & 1;
1977     }
1978 }
1979 
1980 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1981                              uint64_t value)
1982 {
1983     /* We have no event counters so only the C bit can be changed */
1984     value &= pmu_counter_mask(env);
1985     env->cp15.c9_pminten |= value;
1986     pmu_update_irq(env);
1987 }
1988 
1989 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1990                              uint64_t value)
1991 {
1992     value &= pmu_counter_mask(env);
1993     env->cp15.c9_pminten &= ~value;
1994     pmu_update_irq(env);
1995 }
1996 
1997 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1998                        uint64_t value)
1999 {
2000     /* Note that even though the AArch64 view of this register has bits
2001      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2002      * architectural requirements for bits which are RES0 only in some
2003      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2004      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2005      */
2006     raw_write(env, ri, value & ~0x1FULL);
2007 }
2008 
2009 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2010 {
2011     /* Begin with base v8.0 state.  */
2012     uint32_t valid_mask = 0x3fff;
2013     ARMCPU *cpu = env_archcpu(env);
2014 
2015     if (ri->state == ARM_CP_STATE_AA64) {
2016         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2017         valid_mask &= ~SCR_NET;
2018 
2019         if (cpu_isar_feature(aa64_lor, cpu)) {
2020             valid_mask |= SCR_TLOR;
2021         }
2022         if (cpu_isar_feature(aa64_pauth, cpu)) {
2023             valid_mask |= SCR_API | SCR_APK;
2024         }
2025         if (cpu_isar_feature(aa64_mte, cpu)) {
2026             valid_mask |= SCR_ATA;
2027         }
2028     } else {
2029         valid_mask &= ~(SCR_RW | SCR_ST);
2030     }
2031 
2032     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2033         valid_mask &= ~SCR_HCE;
2034 
2035         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2036          * supported if EL2 exists. The bit is UNK/SBZP when
2037          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2038          * when EL2 is unavailable.
2039          * On ARMv8, this bit is always available.
2040          */
2041         if (arm_feature(env, ARM_FEATURE_V7) &&
2042             !arm_feature(env, ARM_FEATURE_V8)) {
2043             valid_mask &= ~SCR_SMD;
2044         }
2045     }
2046 
2047     /* Clear all-context RES0 bits.  */
2048     value &= valid_mask;
2049     raw_write(env, ri, value);
2050 }
2051 
2052 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2053                                        const ARMCPRegInfo *ri,
2054                                        bool isread)
2055 {
2056     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2057         return CP_ACCESS_TRAP_EL2;
2058     }
2059 
2060     return CP_ACCESS_OK;
2061 }
2062 
2063 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2064 {
2065     ARMCPU *cpu = env_archcpu(env);
2066 
2067     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2068      * bank
2069      */
2070     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2071                                         ri->secure & ARM_CP_SECSTATE_S);
2072 
2073     return cpu->ccsidr[index];
2074 }
2075 
2076 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2077                          uint64_t value)
2078 {
2079     raw_write(env, ri, value & 0xf);
2080 }
2081 
2082 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2083 {
2084     CPUState *cs = env_cpu(env);
2085     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2086     uint64_t ret = 0;
2087     bool allow_virt = (arm_current_el(env) == 1 &&
2088                        (!arm_is_secure_below_el3(env) ||
2089                         (env->cp15.scr_el3 & SCR_EEL2)));
2090 
2091     if (allow_virt && (hcr_el2 & HCR_IMO)) {
2092         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2093             ret |= CPSR_I;
2094         }
2095     } else {
2096         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2097             ret |= CPSR_I;
2098         }
2099     }
2100 
2101     if (allow_virt && (hcr_el2 & HCR_FMO)) {
2102         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2103             ret |= CPSR_F;
2104         }
2105     } else {
2106         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2107             ret |= CPSR_F;
2108         }
2109     }
2110 
2111     /* External aborts are not possible in QEMU so A bit is always clear */
2112     return ret;
2113 }
2114 
2115 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2116                                        bool isread)
2117 {
2118     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2119         return CP_ACCESS_TRAP_EL2;
2120     }
2121 
2122     return CP_ACCESS_OK;
2123 }
2124 
2125 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2126                                        bool isread)
2127 {
2128     if (arm_feature(env, ARM_FEATURE_V8)) {
2129         return access_aa64_tid1(env, ri, isread);
2130     }
2131 
2132     return CP_ACCESS_OK;
2133 }
2134 
2135 static const ARMCPRegInfo v7_cp_reginfo[] = {
2136     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2137     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2138       .access = PL1_W, .type = ARM_CP_NOP },
2139     /* Performance monitors are implementation defined in v7,
2140      * but with an ARM recommended set of registers, which we
2141      * follow.
2142      *
2143      * Performance registers fall into three categories:
2144      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2145      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2146      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2147      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2148      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2149      */
2150     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2151       .access = PL0_RW, .type = ARM_CP_ALIAS,
2152       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2153       .writefn = pmcntenset_write,
2154       .accessfn = pmreg_access,
2155       .raw_writefn = raw_write },
2156     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2157       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2158       .access = PL0_RW, .accessfn = pmreg_access,
2159       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2160       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2161     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2162       .access = PL0_RW,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2164       .accessfn = pmreg_access,
2165       .writefn = pmcntenclr_write,
2166       .type = ARM_CP_ALIAS },
2167     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2168       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2169       .access = PL0_RW, .accessfn = pmreg_access,
2170       .type = ARM_CP_ALIAS,
2171       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2172       .writefn = pmcntenclr_write },
2173     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2174       .access = PL0_RW, .type = ARM_CP_IO,
2175       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2176       .accessfn = pmreg_access,
2177       .writefn = pmovsr_write,
2178       .raw_writefn = raw_write },
2179     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2180       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2181       .access = PL0_RW, .accessfn = pmreg_access,
2182       .type = ARM_CP_ALIAS | ARM_CP_IO,
2183       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2184       .writefn = pmovsr_write,
2185       .raw_writefn = raw_write },
2186     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2187       .access = PL0_W, .accessfn = pmreg_access_swinc,
2188       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2189       .writefn = pmswinc_write },
2190     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2191       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2192       .access = PL0_W, .accessfn = pmreg_access_swinc,
2193       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2194       .writefn = pmswinc_write },
2195     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2196       .access = PL0_RW, .type = ARM_CP_ALIAS,
2197       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2198       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2199       .raw_writefn = raw_write},
2200     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2201       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2202       .access = PL0_RW, .accessfn = pmreg_access_selr,
2203       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2204       .writefn = pmselr_write, .raw_writefn = raw_write, },
2205     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2206       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2207       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2208       .accessfn = pmreg_access_ccntr },
2209     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2210       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2211       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2212       .type = ARM_CP_IO,
2213       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2214       .readfn = pmccntr_read, .writefn = pmccntr_write,
2215       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2216     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2217       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2218       .access = PL0_RW, .accessfn = pmreg_access,
2219       .type = ARM_CP_ALIAS | ARM_CP_IO,
2220       .resetvalue = 0, },
2221     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2222       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2223       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2224       .access = PL0_RW, .accessfn = pmreg_access,
2225       .type = ARM_CP_IO,
2226       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2227       .resetvalue = 0, },
2228     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2229       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2230       .accessfn = pmreg_access,
2231       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2232     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2233       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2234       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2235       .accessfn = pmreg_access,
2236       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2237     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2238       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2239       .accessfn = pmreg_access_xevcntr,
2240       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2241     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2242       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2243       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2244       .accessfn = pmreg_access_xevcntr,
2245       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2246     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2247       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2248       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2249       .resetvalue = 0,
2250       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2251     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2252       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2253       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2254       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2255       .resetvalue = 0,
2256       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2257     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2258       .access = PL1_RW, .accessfn = access_tpm,
2259       .type = ARM_CP_ALIAS | ARM_CP_IO,
2260       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2261       .resetvalue = 0,
2262       .writefn = pmintenset_write, .raw_writefn = raw_write },
2263     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2264       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2265       .access = PL1_RW, .accessfn = access_tpm,
2266       .type = ARM_CP_IO,
2267       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2268       .writefn = pmintenset_write, .raw_writefn = raw_write,
2269       .resetvalue = 0x0 },
2270     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2271       .access = PL1_RW, .accessfn = access_tpm,
2272       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2273       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2274       .writefn = pmintenclr_write, },
2275     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2276       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2277       .access = PL1_RW, .accessfn = access_tpm,
2278       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2279       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2280       .writefn = pmintenclr_write },
2281     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2282       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2283       .access = PL1_R,
2284       .accessfn = access_aa64_tid2,
2285       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2286     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2287       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2288       .access = PL1_RW,
2289       .accessfn = access_aa64_tid2,
2290       .writefn = csselr_write, .resetvalue = 0,
2291       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2292                              offsetof(CPUARMState, cp15.csselr_ns) } },
2293     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2294      * just RAZ for all cores:
2295      */
2296     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2297       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2298       .access = PL1_R, .type = ARM_CP_CONST,
2299       .accessfn = access_aa64_tid1,
2300       .resetvalue = 0 },
2301     /* Auxiliary fault status registers: these also are IMPDEF, and we
2302      * choose to RAZ/WI for all cores.
2303      */
2304     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2305       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2306       .access = PL1_RW, .accessfn = access_tvm_trvm,
2307       .type = ARM_CP_CONST, .resetvalue = 0 },
2308     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2309       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2310       .access = PL1_RW, .accessfn = access_tvm_trvm,
2311       .type = ARM_CP_CONST, .resetvalue = 0 },
2312     /* MAIR can just read-as-written because we don't implement caches
2313      * and so don't need to care about memory attributes.
2314      */
2315     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2316       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317       .access = PL1_RW, .accessfn = access_tvm_trvm,
2318       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2319       .resetvalue = 0 },
2320     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2321       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2322       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2323       .resetvalue = 0 },
2324     /* For non-long-descriptor page tables these are PRRR and NMRR;
2325      * regardless they still act as reads-as-written for QEMU.
2326      */
2327      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2328       * allows them to assign the correct fieldoffset based on the endianness
2329       * handled in the field definitions.
2330       */
2331     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2332       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2333       .access = PL1_RW, .accessfn = access_tvm_trvm,
2334       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2335                              offsetof(CPUARMState, cp15.mair0_ns) },
2336       .resetfn = arm_cp_reset_ignore },
2337     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2338       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2339       .access = PL1_RW, .accessfn = access_tvm_trvm,
2340       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2341                              offsetof(CPUARMState, cp15.mair1_ns) },
2342       .resetfn = arm_cp_reset_ignore },
2343     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2344       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2345       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2346     /* 32 bit ITLB invalidates */
2347     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2348       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2349       .writefn = tlbiall_write },
2350     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2351       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2352       .writefn = tlbimva_write },
2353     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2354       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2355       .writefn = tlbiasid_write },
2356     /* 32 bit DTLB invalidates */
2357     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2358       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2359       .writefn = tlbiall_write },
2360     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2361       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2362       .writefn = tlbimva_write },
2363     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2364       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2365       .writefn = tlbiasid_write },
2366     /* 32 bit TLB invalidates */
2367     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2368       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2369       .writefn = tlbiall_write },
2370     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2371       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2372       .writefn = tlbimva_write },
2373     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2374       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2375       .writefn = tlbiasid_write },
2376     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2377       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2378       .writefn = tlbimvaa_write },
2379     REGINFO_SENTINEL
2380 };
2381 
2382 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2383     /* 32 bit TLB invalidates, Inner Shareable */
2384     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2385       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2386       .writefn = tlbiall_is_write },
2387     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2388       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2389       .writefn = tlbimva_is_write },
2390     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2391       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2392       .writefn = tlbiasid_is_write },
2393     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2394       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2395       .writefn = tlbimvaa_is_write },
2396     REGINFO_SENTINEL
2397 };
2398 
2399 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2400     /* PMOVSSET is not implemented in v7 before v7ve */
2401     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2402       .access = PL0_RW, .accessfn = pmreg_access,
2403       .type = ARM_CP_ALIAS | ARM_CP_IO,
2404       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2405       .writefn = pmovsset_write,
2406       .raw_writefn = raw_write },
2407     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2408       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2409       .access = PL0_RW, .accessfn = pmreg_access,
2410       .type = ARM_CP_ALIAS | ARM_CP_IO,
2411       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2412       .writefn = pmovsset_write,
2413       .raw_writefn = raw_write },
2414     REGINFO_SENTINEL
2415 };
2416 
2417 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2418                         uint64_t value)
2419 {
2420     value &= 1;
2421     env->teecr = value;
2422 }
2423 
2424 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2425                                     bool isread)
2426 {
2427     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2428         return CP_ACCESS_TRAP;
2429     }
2430     return CP_ACCESS_OK;
2431 }
2432 
2433 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2434     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2435       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2436       .resetvalue = 0,
2437       .writefn = teecr_write },
2438     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2439       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2440       .accessfn = teehbr_access, .resetvalue = 0 },
2441     REGINFO_SENTINEL
2442 };
2443 
2444 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2445     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2446       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2447       .access = PL0_RW,
2448       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2449     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2450       .access = PL0_RW,
2451       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2452                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2453       .resetfn = arm_cp_reset_ignore },
2454     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2455       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2456       .access = PL0_R|PL1_W,
2457       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458       .resetvalue = 0},
2459     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460       .access = PL0_R|PL1_W,
2461       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2462                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2463       .resetfn = arm_cp_reset_ignore },
2464     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2465       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2466       .access = PL1_RW,
2467       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2468     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2469       .access = PL1_RW,
2470       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2471                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2472       .resetvalue = 0 },
2473     REGINFO_SENTINEL
2474 };
2475 
2476 #ifndef CONFIG_USER_ONLY
2477 
2478 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2479                                        bool isread)
2480 {
2481     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2482      * Writable only at the highest implemented exception level.
2483      */
2484     int el = arm_current_el(env);
2485     uint64_t hcr;
2486     uint32_t cntkctl;
2487 
2488     switch (el) {
2489     case 0:
2490         hcr = arm_hcr_el2_eff(env);
2491         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2492             cntkctl = env->cp15.cnthctl_el2;
2493         } else {
2494             cntkctl = env->cp15.c14_cntkctl;
2495         }
2496         if (!extract32(cntkctl, 0, 2)) {
2497             return CP_ACCESS_TRAP;
2498         }
2499         break;
2500     case 1:
2501         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2502             arm_is_secure_below_el3(env)) {
2503             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2504             return CP_ACCESS_TRAP_UNCATEGORIZED;
2505         }
2506         break;
2507     case 2:
2508     case 3:
2509         break;
2510     }
2511 
2512     if (!isread && el < arm_highest_el(env)) {
2513         return CP_ACCESS_TRAP_UNCATEGORIZED;
2514     }
2515 
2516     return CP_ACCESS_OK;
2517 }
2518 
2519 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2520                                         bool isread)
2521 {
2522     unsigned int cur_el = arm_current_el(env);
2523     bool secure = arm_is_secure(env);
2524     uint64_t hcr = arm_hcr_el2_eff(env);
2525 
2526     switch (cur_el) {
2527     case 0:
2528         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2529         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2530             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2531                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2532         }
2533 
2534         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2535         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2536             return CP_ACCESS_TRAP;
2537         }
2538 
2539         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2540         if (hcr & HCR_E2H) {
2541             if (timeridx == GTIMER_PHYS &&
2542                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2543                 return CP_ACCESS_TRAP_EL2;
2544             }
2545         } else {
2546             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2547             if (arm_feature(env, ARM_FEATURE_EL2) &&
2548                 timeridx == GTIMER_PHYS && !secure &&
2549                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2550                 return CP_ACCESS_TRAP_EL2;
2551             }
2552         }
2553         break;
2554 
2555     case 1:
2556         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2557         if (arm_feature(env, ARM_FEATURE_EL2) &&
2558             timeridx == GTIMER_PHYS && !secure &&
2559             (hcr & HCR_E2H
2560              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2561              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2562             return CP_ACCESS_TRAP_EL2;
2563         }
2564         break;
2565     }
2566     return CP_ACCESS_OK;
2567 }
2568 
2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2570                                       bool isread)
2571 {
2572     unsigned int cur_el = arm_current_el(env);
2573     bool secure = arm_is_secure(env);
2574     uint64_t hcr = arm_hcr_el2_eff(env);
2575 
2576     switch (cur_el) {
2577     case 0:
2578         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2579             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2580             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2581                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2582         }
2583 
2584         /*
2585          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2586          * EL0 if EL0[PV]TEN is zero.
2587          */
2588         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2589             return CP_ACCESS_TRAP;
2590         }
2591         /* fall through */
2592 
2593     case 1:
2594         if (arm_feature(env, ARM_FEATURE_EL2) &&
2595             timeridx == GTIMER_PHYS && !secure) {
2596             if (hcr & HCR_E2H) {
2597                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2598                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2599                     return CP_ACCESS_TRAP_EL2;
2600                 }
2601             } else {
2602                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2603                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2604                     return CP_ACCESS_TRAP_EL2;
2605                 }
2606             }
2607         }
2608         break;
2609     }
2610     return CP_ACCESS_OK;
2611 }
2612 
2613 static CPAccessResult gt_pct_access(CPUARMState *env,
2614                                     const ARMCPRegInfo *ri,
2615                                     bool isread)
2616 {
2617     return gt_counter_access(env, GTIMER_PHYS, isread);
2618 }
2619 
2620 static CPAccessResult gt_vct_access(CPUARMState *env,
2621                                     const ARMCPRegInfo *ri,
2622                                     bool isread)
2623 {
2624     return gt_counter_access(env, GTIMER_VIRT, isread);
2625 }
2626 
2627 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2628                                        bool isread)
2629 {
2630     return gt_timer_access(env, GTIMER_PHYS, isread);
2631 }
2632 
2633 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2634                                        bool isread)
2635 {
2636     return gt_timer_access(env, GTIMER_VIRT, isread);
2637 }
2638 
2639 static CPAccessResult gt_stimer_access(CPUARMState *env,
2640                                        const ARMCPRegInfo *ri,
2641                                        bool isread)
2642 {
2643     /* The AArch64 register view of the secure physical timer is
2644      * always accessible from EL3, and configurably accessible from
2645      * Secure EL1.
2646      */
2647     switch (arm_current_el(env)) {
2648     case 1:
2649         if (!arm_is_secure(env)) {
2650             return CP_ACCESS_TRAP;
2651         }
2652         if (!(env->cp15.scr_el3 & SCR_ST)) {
2653             return CP_ACCESS_TRAP_EL3;
2654         }
2655         return CP_ACCESS_OK;
2656     case 0:
2657     case 2:
2658         return CP_ACCESS_TRAP;
2659     case 3:
2660         return CP_ACCESS_OK;
2661     default:
2662         g_assert_not_reached();
2663     }
2664 }
2665 
2666 static uint64_t gt_get_countervalue(CPUARMState *env)
2667 {
2668     ARMCPU *cpu = env_archcpu(env);
2669 
2670     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2671 }
2672 
2673 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2674 {
2675     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2676 
2677     if (gt->ctl & 1) {
2678         /* Timer enabled: calculate and set current ISTATUS, irq, and
2679          * reset timer to when ISTATUS next has to change
2680          */
2681         uint64_t offset = timeridx == GTIMER_VIRT ?
2682                                       cpu->env.cp15.cntvoff_el2 : 0;
2683         uint64_t count = gt_get_countervalue(&cpu->env);
2684         /* Note that this must be unsigned 64 bit arithmetic: */
2685         int istatus = count - offset >= gt->cval;
2686         uint64_t nexttick;
2687         int irqstate;
2688 
2689         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2690 
2691         irqstate = (istatus && !(gt->ctl & 2));
2692         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2693 
2694         if (istatus) {
2695             /* Next transition is when count rolls back over to zero */
2696             nexttick = UINT64_MAX;
2697         } else {
2698             /* Next transition is when we hit cval */
2699             nexttick = gt->cval + offset;
2700         }
2701         /* Note that the desired next expiry time might be beyond the
2702          * signed-64-bit range of a QEMUTimer -- in this case we just
2703          * set the timer for as far in the future as possible. When the
2704          * timer expires we will reset the timer for any remaining period.
2705          */
2706         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2707             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2708         } else {
2709             timer_mod(cpu->gt_timer[timeridx], nexttick);
2710         }
2711         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2712     } else {
2713         /* Timer disabled: ISTATUS and timer output always clear */
2714         gt->ctl &= ~4;
2715         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2716         timer_del(cpu->gt_timer[timeridx]);
2717         trace_arm_gt_recalc_disabled(timeridx);
2718     }
2719 }
2720 
2721 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2722                            int timeridx)
2723 {
2724     ARMCPU *cpu = env_archcpu(env);
2725 
2726     timer_del(cpu->gt_timer[timeridx]);
2727 }
2728 
2729 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2730 {
2731     return gt_get_countervalue(env);
2732 }
2733 
2734 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2735 {
2736     uint64_t hcr;
2737 
2738     switch (arm_current_el(env)) {
2739     case 2:
2740         hcr = arm_hcr_el2_eff(env);
2741         if (hcr & HCR_E2H) {
2742             return 0;
2743         }
2744         break;
2745     case 0:
2746         hcr = arm_hcr_el2_eff(env);
2747         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2748             return 0;
2749         }
2750         break;
2751     }
2752 
2753     return env->cp15.cntvoff_el2;
2754 }
2755 
2756 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2757 {
2758     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2759 }
2760 
2761 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2762                           int timeridx,
2763                           uint64_t value)
2764 {
2765     trace_arm_gt_cval_write(timeridx, value);
2766     env->cp15.c14_timer[timeridx].cval = value;
2767     gt_recalc_timer(env_archcpu(env), timeridx);
2768 }
2769 
2770 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2771                              int timeridx)
2772 {
2773     uint64_t offset = 0;
2774 
2775     switch (timeridx) {
2776     case GTIMER_VIRT:
2777     case GTIMER_HYPVIRT:
2778         offset = gt_virt_cnt_offset(env);
2779         break;
2780     }
2781 
2782     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2783                       (gt_get_countervalue(env) - offset));
2784 }
2785 
2786 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787                           int timeridx,
2788                           uint64_t value)
2789 {
2790     uint64_t offset = 0;
2791 
2792     switch (timeridx) {
2793     case GTIMER_VIRT:
2794     case GTIMER_HYPVIRT:
2795         offset = gt_virt_cnt_offset(env);
2796         break;
2797     }
2798 
2799     trace_arm_gt_tval_write(timeridx, value);
2800     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2801                                          sextract64(value, 0, 32);
2802     gt_recalc_timer(env_archcpu(env), timeridx);
2803 }
2804 
2805 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2806                          int timeridx,
2807                          uint64_t value)
2808 {
2809     ARMCPU *cpu = env_archcpu(env);
2810     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2811 
2812     trace_arm_gt_ctl_write(timeridx, value);
2813     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2814     if ((oldval ^ value) & 1) {
2815         /* Enable toggled */
2816         gt_recalc_timer(cpu, timeridx);
2817     } else if ((oldval ^ value) & 2) {
2818         /* IMASK toggled: don't need to recalculate,
2819          * just set the interrupt line based on ISTATUS
2820          */
2821         int irqstate = (oldval & 4) && !(value & 2);
2822 
2823         trace_arm_gt_imask_toggle(timeridx, irqstate);
2824         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2825     }
2826 }
2827 
2828 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2829 {
2830     gt_timer_reset(env, ri, GTIMER_PHYS);
2831 }
2832 
2833 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834                                uint64_t value)
2835 {
2836     gt_cval_write(env, ri, GTIMER_PHYS, value);
2837 }
2838 
2839 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2840 {
2841     return gt_tval_read(env, ri, GTIMER_PHYS);
2842 }
2843 
2844 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2845                                uint64_t value)
2846 {
2847     gt_tval_write(env, ri, GTIMER_PHYS, value);
2848 }
2849 
2850 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                               uint64_t value)
2852 {
2853     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2854 }
2855 
2856 static int gt_phys_redir_timeridx(CPUARMState *env)
2857 {
2858     switch (arm_mmu_idx(env)) {
2859     case ARMMMUIdx_E20_0:
2860     case ARMMMUIdx_E20_2:
2861     case ARMMMUIdx_E20_2_PAN:
2862         return GTIMER_HYP;
2863     default:
2864         return GTIMER_PHYS;
2865     }
2866 }
2867 
2868 static int gt_virt_redir_timeridx(CPUARMState *env)
2869 {
2870     switch (arm_mmu_idx(env)) {
2871     case ARMMMUIdx_E20_0:
2872     case ARMMMUIdx_E20_2:
2873     case ARMMMUIdx_E20_2_PAN:
2874         return GTIMER_HYPVIRT;
2875     default:
2876         return GTIMER_VIRT;
2877     }
2878 }
2879 
2880 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2881                                         const ARMCPRegInfo *ri)
2882 {
2883     int timeridx = gt_phys_redir_timeridx(env);
2884     return env->cp15.c14_timer[timeridx].cval;
2885 }
2886 
2887 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888                                      uint64_t value)
2889 {
2890     int timeridx = gt_phys_redir_timeridx(env);
2891     gt_cval_write(env, ri, timeridx, value);
2892 }
2893 
2894 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2895                                         const ARMCPRegInfo *ri)
2896 {
2897     int timeridx = gt_phys_redir_timeridx(env);
2898     return gt_tval_read(env, ri, timeridx);
2899 }
2900 
2901 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2902                                      uint64_t value)
2903 {
2904     int timeridx = gt_phys_redir_timeridx(env);
2905     gt_tval_write(env, ri, timeridx, value);
2906 }
2907 
2908 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2909                                        const ARMCPRegInfo *ri)
2910 {
2911     int timeridx = gt_phys_redir_timeridx(env);
2912     return env->cp15.c14_timer[timeridx].ctl;
2913 }
2914 
2915 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916                                     uint64_t value)
2917 {
2918     int timeridx = gt_phys_redir_timeridx(env);
2919     gt_ctl_write(env, ri, timeridx, value);
2920 }
2921 
2922 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2923 {
2924     gt_timer_reset(env, ri, GTIMER_VIRT);
2925 }
2926 
2927 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928                                uint64_t value)
2929 {
2930     gt_cval_write(env, ri, GTIMER_VIRT, value);
2931 }
2932 
2933 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2934 {
2935     return gt_tval_read(env, ri, GTIMER_VIRT);
2936 }
2937 
2938 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2939                                uint64_t value)
2940 {
2941     gt_tval_write(env, ri, GTIMER_VIRT, value);
2942 }
2943 
2944 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2945                               uint64_t value)
2946 {
2947     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2948 }
2949 
2950 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951                               uint64_t value)
2952 {
2953     ARMCPU *cpu = env_archcpu(env);
2954 
2955     trace_arm_gt_cntvoff_write(value);
2956     raw_write(env, ri, value);
2957     gt_recalc_timer(cpu, GTIMER_VIRT);
2958 }
2959 
2960 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2961                                         const ARMCPRegInfo *ri)
2962 {
2963     int timeridx = gt_virt_redir_timeridx(env);
2964     return env->cp15.c14_timer[timeridx].cval;
2965 }
2966 
2967 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2968                                      uint64_t value)
2969 {
2970     int timeridx = gt_virt_redir_timeridx(env);
2971     gt_cval_write(env, ri, timeridx, value);
2972 }
2973 
2974 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2975                                         const ARMCPRegInfo *ri)
2976 {
2977     int timeridx = gt_virt_redir_timeridx(env);
2978     return gt_tval_read(env, ri, timeridx);
2979 }
2980 
2981 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982                                      uint64_t value)
2983 {
2984     int timeridx = gt_virt_redir_timeridx(env);
2985     gt_tval_write(env, ri, timeridx, value);
2986 }
2987 
2988 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2989                                        const ARMCPRegInfo *ri)
2990 {
2991     int timeridx = gt_virt_redir_timeridx(env);
2992     return env->cp15.c14_timer[timeridx].ctl;
2993 }
2994 
2995 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996                                     uint64_t value)
2997 {
2998     int timeridx = gt_virt_redir_timeridx(env);
2999     gt_ctl_write(env, ri, timeridx, value);
3000 }
3001 
3002 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3003 {
3004     gt_timer_reset(env, ri, GTIMER_HYP);
3005 }
3006 
3007 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008                               uint64_t value)
3009 {
3010     gt_cval_write(env, ri, GTIMER_HYP, value);
3011 }
3012 
3013 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3014 {
3015     return gt_tval_read(env, ri, GTIMER_HYP);
3016 }
3017 
3018 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019                               uint64_t value)
3020 {
3021     gt_tval_write(env, ri, GTIMER_HYP, value);
3022 }
3023 
3024 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025                               uint64_t value)
3026 {
3027     gt_ctl_write(env, ri, GTIMER_HYP, value);
3028 }
3029 
3030 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3031 {
3032     gt_timer_reset(env, ri, GTIMER_SEC);
3033 }
3034 
3035 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036                               uint64_t value)
3037 {
3038     gt_cval_write(env, ri, GTIMER_SEC, value);
3039 }
3040 
3041 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 {
3043     return gt_tval_read(env, ri, GTIMER_SEC);
3044 }
3045 
3046 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047                               uint64_t value)
3048 {
3049     gt_tval_write(env, ri, GTIMER_SEC, value);
3050 }
3051 
3052 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053                               uint64_t value)
3054 {
3055     gt_ctl_write(env, ri, GTIMER_SEC, value);
3056 }
3057 
3058 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3059 {
3060     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3061 }
3062 
3063 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                              uint64_t value)
3065 {
3066     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3067 }
3068 
3069 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3070 {
3071     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3072 }
3073 
3074 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075                              uint64_t value)
3076 {
3077     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3078 }
3079 
3080 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081                             uint64_t value)
3082 {
3083     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3084 }
3085 
3086 void arm_gt_ptimer_cb(void *opaque)
3087 {
3088     ARMCPU *cpu = opaque;
3089 
3090     gt_recalc_timer(cpu, GTIMER_PHYS);
3091 }
3092 
3093 void arm_gt_vtimer_cb(void *opaque)
3094 {
3095     ARMCPU *cpu = opaque;
3096 
3097     gt_recalc_timer(cpu, GTIMER_VIRT);
3098 }
3099 
3100 void arm_gt_htimer_cb(void *opaque)
3101 {
3102     ARMCPU *cpu = opaque;
3103 
3104     gt_recalc_timer(cpu, GTIMER_HYP);
3105 }
3106 
3107 void arm_gt_stimer_cb(void *opaque)
3108 {
3109     ARMCPU *cpu = opaque;
3110 
3111     gt_recalc_timer(cpu, GTIMER_SEC);
3112 }
3113 
3114 void arm_gt_hvtimer_cb(void *opaque)
3115 {
3116     ARMCPU *cpu = opaque;
3117 
3118     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3119 }
3120 
3121 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3122 {
3123     ARMCPU *cpu = env_archcpu(env);
3124 
3125     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3126 }
3127 
3128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3129     /* Note that CNTFRQ is purely reads-as-written for the benefit
3130      * of software; writing it doesn't actually change the timer frequency.
3131      * Our reset value matches the fixed frequency we implement the timer at.
3132      */
3133     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3134       .type = ARM_CP_ALIAS,
3135       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3136       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3137     },
3138     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3139       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3140       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3141       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3142       .resetfn = arm_gt_cntfrq_reset,
3143     },
3144     /* overall control: mostly access permissions */
3145     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3146       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3147       .access = PL1_RW,
3148       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3149       .resetvalue = 0,
3150     },
3151     /* per-timer control */
3152     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3153       .secure = ARM_CP_SECSTATE_NS,
3154       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3155       .accessfn = gt_ptimer_access,
3156       .fieldoffset = offsetoflow32(CPUARMState,
3157                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3158       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3159       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3160     },
3161     { .name = "CNTP_CTL_S",
3162       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3163       .secure = ARM_CP_SECSTATE_S,
3164       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3165       .accessfn = gt_ptimer_access,
3166       .fieldoffset = offsetoflow32(CPUARMState,
3167                                    cp15.c14_timer[GTIMER_SEC].ctl),
3168       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3169     },
3170     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3171       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3172       .type = ARM_CP_IO, .access = PL0_RW,
3173       .accessfn = gt_ptimer_access,
3174       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3175       .resetvalue = 0,
3176       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3177       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3178     },
3179     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3180       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3181       .accessfn = gt_vtimer_access,
3182       .fieldoffset = offsetoflow32(CPUARMState,
3183                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3184       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3185       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3186     },
3187     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3188       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3189       .type = ARM_CP_IO, .access = PL0_RW,
3190       .accessfn = gt_vtimer_access,
3191       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3192       .resetvalue = 0,
3193       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3194       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3195     },
3196     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3197     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3198       .secure = ARM_CP_SECSTATE_NS,
3199       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3200       .accessfn = gt_ptimer_access,
3201       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3202     },
3203     { .name = "CNTP_TVAL_S",
3204       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3205       .secure = ARM_CP_SECSTATE_S,
3206       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3207       .accessfn = gt_ptimer_access,
3208       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3209     },
3210     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3211       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3212       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3213       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3214       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3215     },
3216     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3217       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3218       .accessfn = gt_vtimer_access,
3219       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3220     },
3221     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3222       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3223       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3224       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3225       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3226     },
3227     /* The counter itself */
3228     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3229       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3230       .accessfn = gt_pct_access,
3231       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3232     },
3233     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3234       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3235       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3236       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3237     },
3238     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3239       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3240       .accessfn = gt_vct_access,
3241       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3242     },
3243     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3244       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3245       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3246       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3247     },
3248     /* Comparison value, indicating when the timer goes off */
3249     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3250       .secure = ARM_CP_SECSTATE_NS,
3251       .access = PL0_RW,
3252       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3253       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3254       .accessfn = gt_ptimer_access,
3255       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3256       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3257     },
3258     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3259       .secure = ARM_CP_SECSTATE_S,
3260       .access = PL0_RW,
3261       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3262       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3263       .accessfn = gt_ptimer_access,
3264       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3265     },
3266     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3267       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3268       .access = PL0_RW,
3269       .type = ARM_CP_IO,
3270       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3271       .resetvalue = 0, .accessfn = gt_ptimer_access,
3272       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3273       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3274     },
3275     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3276       .access = PL0_RW,
3277       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3278       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3279       .accessfn = gt_vtimer_access,
3280       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3281       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3282     },
3283     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3284       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3285       .access = PL0_RW,
3286       .type = ARM_CP_IO,
3287       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3288       .resetvalue = 0, .accessfn = gt_vtimer_access,
3289       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3290       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3291     },
3292     /* Secure timer -- this is actually restricted to only EL3
3293      * and configurably Secure-EL1 via the accessfn.
3294      */
3295     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3296       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3297       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3298       .accessfn = gt_stimer_access,
3299       .readfn = gt_sec_tval_read,
3300       .writefn = gt_sec_tval_write,
3301       .resetfn = gt_sec_timer_reset,
3302     },
3303     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3304       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3305       .type = ARM_CP_IO, .access = PL1_RW,
3306       .accessfn = gt_stimer_access,
3307       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3308       .resetvalue = 0,
3309       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3310     },
3311     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3312       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3313       .type = ARM_CP_IO, .access = PL1_RW,
3314       .accessfn = gt_stimer_access,
3315       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3316       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3317     },
3318     REGINFO_SENTINEL
3319 };
3320 
3321 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322                                  bool isread)
3323 {
3324     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3325         return CP_ACCESS_TRAP;
3326     }
3327     return CP_ACCESS_OK;
3328 }
3329 
3330 #else
3331 
3332 /* In user-mode most of the generic timer registers are inaccessible
3333  * however modern kernels (4.12+) allow access to cntvct_el0
3334  */
3335 
3336 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3337 {
3338     ARMCPU *cpu = env_archcpu(env);
3339 
3340     /* Currently we have no support for QEMUTimer in linux-user so we
3341      * can't call gt_get_countervalue(env), instead we directly
3342      * call the lower level functions.
3343      */
3344     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3345 }
3346 
3347 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3348     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3350       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3351       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3352       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3353     },
3354     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3355       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3356       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3357       .readfn = gt_virt_cnt_read,
3358     },
3359     REGINFO_SENTINEL
3360 };
3361 
3362 #endif
3363 
3364 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3365 {
3366     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3367         raw_write(env, ri, value);
3368     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3369         raw_write(env, ri, value & 0xfffff6ff);
3370     } else {
3371         raw_write(env, ri, value & 0xfffff1ff);
3372     }
3373 }
3374 
3375 #ifndef CONFIG_USER_ONLY
3376 /* get_phys_addr() isn't present for user-mode-only targets */
3377 
3378 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3379                                  bool isread)
3380 {
3381     if (ri->opc2 & 4) {
3382         /* The ATS12NSO* operations must trap to EL3 if executed in
3383          * Secure EL1 (which can only happen if EL3 is AArch64).
3384          * They are simply UNDEF if executed from NS EL1.
3385          * They function normally from EL2 or EL3.
3386          */
3387         if (arm_current_el(env) == 1) {
3388             if (arm_is_secure_below_el3(env)) {
3389                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3390             }
3391             return CP_ACCESS_TRAP_UNCATEGORIZED;
3392         }
3393     }
3394     return CP_ACCESS_OK;
3395 }
3396 
3397 #ifdef CONFIG_TCG
3398 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3399                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3400 {
3401     hwaddr phys_addr;
3402     target_ulong page_size;
3403     int prot;
3404     bool ret;
3405     uint64_t par64;
3406     bool format64 = false;
3407     MemTxAttrs attrs = {};
3408     ARMMMUFaultInfo fi = {};
3409     ARMCacheAttrs cacheattrs = {};
3410 
3411     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3412                         &prot, &page_size, &fi, &cacheattrs);
3413 
3414     if (ret) {
3415         /*
3416          * Some kinds of translation fault must cause exceptions rather
3417          * than being reported in the PAR.
3418          */
3419         int current_el = arm_current_el(env);
3420         int target_el;
3421         uint32_t syn, fsr, fsc;
3422         bool take_exc = false;
3423 
3424         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3425             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3426             /*
3427              * Synchronous stage 2 fault on an access made as part of the
3428              * translation table walk for AT S1E0* or AT S1E1* insn
3429              * executed from NS EL1. If this is a synchronous external abort
3430              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3431              * to EL3. Otherwise the fault is taken as an exception to EL2,
3432              * and HPFAR_EL2 holds the faulting IPA.
3433              */
3434             if (fi.type == ARMFault_SyncExternalOnWalk &&
3435                 (env->cp15.scr_el3 & SCR_EA)) {
3436                 target_el = 3;
3437             } else {
3438                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3439                 target_el = 2;
3440             }
3441             take_exc = true;
3442         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3443             /*
3444              * Synchronous external aborts during a translation table walk
3445              * are taken as Data Abort exceptions.
3446              */
3447             if (fi.stage2) {
3448                 if (current_el == 3) {
3449                     target_el = 3;
3450                 } else {
3451                     target_el = 2;
3452                 }
3453             } else {
3454                 target_el = exception_target_el(env);
3455             }
3456             take_exc = true;
3457         }
3458 
3459         if (take_exc) {
3460             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3461             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3462                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3463                 fsr = arm_fi_to_lfsc(&fi);
3464                 fsc = extract32(fsr, 0, 6);
3465             } else {
3466                 fsr = arm_fi_to_sfsc(&fi);
3467                 fsc = 0x3f;
3468             }
3469             /*
3470              * Report exception with ESR indicating a fault due to a
3471              * translation table walk for a cache maintenance instruction.
3472              */
3473             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3474                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3475             env->exception.vaddress = value;
3476             env->exception.fsr = fsr;
3477             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3478         }
3479     }
3480 
3481     if (is_a64(env)) {
3482         format64 = true;
3483     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3484         /*
3485          * ATS1Cxx:
3486          * * TTBCR.EAE determines whether the result is returned using the
3487          *   32-bit or the 64-bit PAR format
3488          * * Instructions executed in Hyp mode always use the 64bit format
3489          *
3490          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3491          * * The Non-secure TTBCR.EAE bit is set to 1
3492          * * The implementation includes EL2, and the value of HCR.VM is 1
3493          *
3494          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3495          *
3496          * ATS1Hx always uses the 64bit format.
3497          */
3498         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3499 
3500         if (arm_feature(env, ARM_FEATURE_EL2)) {
3501             if (mmu_idx == ARMMMUIdx_E10_0 ||
3502                 mmu_idx == ARMMMUIdx_E10_1 ||
3503                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3504                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3505             } else {
3506                 format64 |= arm_current_el(env) == 2;
3507             }
3508         }
3509     }
3510 
3511     if (format64) {
3512         /* Create a 64-bit PAR */
3513         par64 = (1 << 11); /* LPAE bit always set */
3514         if (!ret) {
3515             par64 |= phys_addr & ~0xfffULL;
3516             if (!attrs.secure) {
3517                 par64 |= (1 << 9); /* NS */
3518             }
3519             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3520             par64 |= cacheattrs.shareability << 7; /* SH */
3521         } else {
3522             uint32_t fsr = arm_fi_to_lfsc(&fi);
3523 
3524             par64 |= 1; /* F */
3525             par64 |= (fsr & 0x3f) << 1; /* FS */
3526             if (fi.stage2) {
3527                 par64 |= (1 << 9); /* S */
3528             }
3529             if (fi.s1ptw) {
3530                 par64 |= (1 << 8); /* PTW */
3531             }
3532         }
3533     } else {
3534         /* fsr is a DFSR/IFSR value for the short descriptor
3535          * translation table format (with WnR always clear).
3536          * Convert it to a 32-bit PAR.
3537          */
3538         if (!ret) {
3539             /* We do not set any attribute bits in the PAR */
3540             if (page_size == (1 << 24)
3541                 && arm_feature(env, ARM_FEATURE_V7)) {
3542                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3543             } else {
3544                 par64 = phys_addr & 0xfffff000;
3545             }
3546             if (!attrs.secure) {
3547                 par64 |= (1 << 9); /* NS */
3548             }
3549         } else {
3550             uint32_t fsr = arm_fi_to_sfsc(&fi);
3551 
3552             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3553                     ((fsr & 0xf) << 1) | 1;
3554         }
3555     }
3556     return par64;
3557 }
3558 #endif /* CONFIG_TCG */
3559 
3560 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3561 {
3562 #ifdef CONFIG_TCG
3563     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3564     uint64_t par64;
3565     ARMMMUIdx mmu_idx;
3566     int el = arm_current_el(env);
3567     bool secure = arm_is_secure_below_el3(env);
3568 
3569     switch (ri->opc2 & 6) {
3570     case 0:
3571         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3572         switch (el) {
3573         case 3:
3574             mmu_idx = ARMMMUIdx_SE3;
3575             break;
3576         case 2:
3577             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
3578             /* fall through */
3579         case 1:
3580             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3581                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3582                            : ARMMMUIdx_Stage1_E1_PAN);
3583             } else {
3584                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3585             }
3586             break;
3587         default:
3588             g_assert_not_reached();
3589         }
3590         break;
3591     case 2:
3592         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3593         switch (el) {
3594         case 3:
3595             mmu_idx = ARMMMUIdx_SE10_0;
3596             break;
3597         case 2:
3598             mmu_idx = ARMMMUIdx_Stage1_E0;
3599             break;
3600         case 1:
3601             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3602             break;
3603         default:
3604             g_assert_not_reached();
3605         }
3606         break;
3607     case 4:
3608         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3609         mmu_idx = ARMMMUIdx_E10_1;
3610         break;
3611     case 6:
3612         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3613         mmu_idx = ARMMMUIdx_E10_0;
3614         break;
3615     default:
3616         g_assert_not_reached();
3617     }
3618 
3619     par64 = do_ats_write(env, value, access_type, mmu_idx);
3620 
3621     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3622 #else
3623     /* Handled by hardware accelerator. */
3624     g_assert_not_reached();
3625 #endif /* CONFIG_TCG */
3626 }
3627 
3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3629                         uint64_t value)
3630 {
3631 #ifdef CONFIG_TCG
3632     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3633     uint64_t par64;
3634 
3635     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3636 
3637     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3638 #else
3639     /* Handled by hardware accelerator. */
3640     g_assert_not_reached();
3641 #endif /* CONFIG_TCG */
3642 }
3643 
3644 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3645                                      bool isread)
3646 {
3647     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3648         return CP_ACCESS_TRAP;
3649     }
3650     return CP_ACCESS_OK;
3651 }
3652 
3653 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3654                         uint64_t value)
3655 {
3656 #ifdef CONFIG_TCG
3657     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3658     ARMMMUIdx mmu_idx;
3659     int secure = arm_is_secure_below_el3(env);
3660 
3661     switch (ri->opc2 & 6) {
3662     case 0:
3663         switch (ri->opc1) {
3664         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3665             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3666                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3667                            : ARMMMUIdx_Stage1_E1_PAN);
3668             } else {
3669                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3670             }
3671             break;
3672         case 4: /* AT S1E2R, AT S1E2W */
3673             mmu_idx = ARMMMUIdx_E2;
3674             break;
3675         case 6: /* AT S1E3R, AT S1E3W */
3676             mmu_idx = ARMMMUIdx_SE3;
3677             break;
3678         default:
3679             g_assert_not_reached();
3680         }
3681         break;
3682     case 2: /* AT S1E0R, AT S1E0W */
3683         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3684         break;
3685     case 4: /* AT S12E1R, AT S12E1W */
3686         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3687         break;
3688     case 6: /* AT S12E0R, AT S12E0W */
3689         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3690         break;
3691     default:
3692         g_assert_not_reached();
3693     }
3694 
3695     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3696 #else
3697     /* Handled by hardware accelerator. */
3698     g_assert_not_reached();
3699 #endif /* CONFIG_TCG */
3700 }
3701 #endif
3702 
3703 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3704     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3705       .access = PL1_RW, .resetvalue = 0,
3706       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3707                              offsetoflow32(CPUARMState, cp15.par_ns) },
3708       .writefn = par_write },
3709 #ifndef CONFIG_USER_ONLY
3710     /* This underdecoding is safe because the reginfo is NO_RAW. */
3711     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3712       .access = PL1_W, .accessfn = ats_access,
3713       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3714 #endif
3715     REGINFO_SENTINEL
3716 };
3717 
3718 /* Return basic MPU access permission bits.  */
3719 static uint32_t simple_mpu_ap_bits(uint32_t val)
3720 {
3721     uint32_t ret;
3722     uint32_t mask;
3723     int i;
3724     ret = 0;
3725     mask = 3;
3726     for (i = 0; i < 16; i += 2) {
3727         ret |= (val >> i) & mask;
3728         mask <<= 2;
3729     }
3730     return ret;
3731 }
3732 
3733 /* Pad basic MPU access permission bits to extended format.  */
3734 static uint32_t extended_mpu_ap_bits(uint32_t val)
3735 {
3736     uint32_t ret;
3737     uint32_t mask;
3738     int i;
3739     ret = 0;
3740     mask = 3;
3741     for (i = 0; i < 16; i += 2) {
3742         ret |= (val & mask) << i;
3743         mask <<= 2;
3744     }
3745     return ret;
3746 }
3747 
3748 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3749                                  uint64_t value)
3750 {
3751     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3752 }
3753 
3754 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3755 {
3756     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3757 }
3758 
3759 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760                                  uint64_t value)
3761 {
3762     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3763 }
3764 
3765 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3766 {
3767     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3768 }
3769 
3770 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3771 {
3772     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3773 
3774     if (!u32p) {
3775         return 0;
3776     }
3777 
3778     u32p += env->pmsav7.rnr[M_REG_NS];
3779     return *u32p;
3780 }
3781 
3782 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783                          uint64_t value)
3784 {
3785     ARMCPU *cpu = env_archcpu(env);
3786     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3787 
3788     if (!u32p) {
3789         return;
3790     }
3791 
3792     u32p += env->pmsav7.rnr[M_REG_NS];
3793     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3794     *u32p = value;
3795 }
3796 
3797 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3798                               uint64_t value)
3799 {
3800     ARMCPU *cpu = env_archcpu(env);
3801     uint32_t nrgs = cpu->pmsav7_dregion;
3802 
3803     if (value >= nrgs) {
3804         qemu_log_mask(LOG_GUEST_ERROR,
3805                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3806                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3807         return;
3808     }
3809 
3810     raw_write(env, ri, value);
3811 }
3812 
3813 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3814     /* Reset for all these registers is handled in arm_cpu_reset(),
3815      * because the PMSAv7 is also used by M-profile CPUs, which do
3816      * not register cpregs but still need the state to be reset.
3817      */
3818     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3819       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3820       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3821       .readfn = pmsav7_read, .writefn = pmsav7_write,
3822       .resetfn = arm_cp_reset_ignore },
3823     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3824       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3825       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3826       .readfn = pmsav7_read, .writefn = pmsav7_write,
3827       .resetfn = arm_cp_reset_ignore },
3828     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3829       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3830       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3831       .readfn = pmsav7_read, .writefn = pmsav7_write,
3832       .resetfn = arm_cp_reset_ignore },
3833     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3834       .access = PL1_RW,
3835       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3836       .writefn = pmsav7_rgnr_write,
3837       .resetfn = arm_cp_reset_ignore },
3838     REGINFO_SENTINEL
3839 };
3840 
3841 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3842     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3843       .access = PL1_RW, .type = ARM_CP_ALIAS,
3844       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3845       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3846     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3847       .access = PL1_RW, .type = ARM_CP_ALIAS,
3848       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3849       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3850     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3851       .access = PL1_RW,
3852       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3853       .resetvalue = 0, },
3854     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3855       .access = PL1_RW,
3856       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3857       .resetvalue = 0, },
3858     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3859       .access = PL1_RW,
3860       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3861     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3862       .access = PL1_RW,
3863       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3864     /* Protection region base and size registers */
3865     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3866       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3867       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3868     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3869       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3870       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3871     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3872       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3873       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3874     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3875       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3876       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3877     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3878       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3879       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3880     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3881       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3882       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3883     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3884       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3885       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3886     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3887       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3888       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3889     REGINFO_SENTINEL
3890 };
3891 
3892 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                                  uint64_t value)
3894 {
3895     TCR *tcr = raw_ptr(env, ri);
3896     int maskshift = extract32(value, 0, 3);
3897 
3898     if (!arm_feature(env, ARM_FEATURE_V8)) {
3899         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3900             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3901              * using Long-desciptor translation table format */
3902             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3903         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3904             /* In an implementation that includes the Security Extensions
3905              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3906              * Short-descriptor translation table format.
3907              */
3908             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3909         } else {
3910             value &= TTBCR_N;
3911         }
3912     }
3913 
3914     /* Update the masks corresponding to the TCR bank being written
3915      * Note that we always calculate mask and base_mask, but
3916      * they are only used for short-descriptor tables (ie if EAE is 0);
3917      * for long-descriptor tables the TCR fields are used differently
3918      * and the mask and base_mask values are meaningless.
3919      */
3920     tcr->raw_tcr = value;
3921     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3922     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3923 }
3924 
3925 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3926                              uint64_t value)
3927 {
3928     ARMCPU *cpu = env_archcpu(env);
3929     TCR *tcr = raw_ptr(env, ri);
3930 
3931     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3932         /* With LPAE the TTBCR could result in a change of ASID
3933          * via the TTBCR.A1 bit, so do a TLB flush.
3934          */
3935         tlb_flush(CPU(cpu));
3936     }
3937     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3938     value = deposit64(tcr->raw_tcr, 0, 32, value);
3939     vmsa_ttbcr_raw_write(env, ri, value);
3940 }
3941 
3942 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3943 {
3944     TCR *tcr = raw_ptr(env, ri);
3945 
3946     /* Reset both the TCR as well as the masks corresponding to the bank of
3947      * the TCR being reset.
3948      */
3949     tcr->raw_tcr = 0;
3950     tcr->mask = 0;
3951     tcr->base_mask = 0xffffc000u;
3952 }
3953 
3954 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3955                                uint64_t value)
3956 {
3957     ARMCPU *cpu = env_archcpu(env);
3958     TCR *tcr = raw_ptr(env, ri);
3959 
3960     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3961     tlb_flush(CPU(cpu));
3962     tcr->raw_tcr = value;
3963 }
3964 
3965 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3966                             uint64_t value)
3967 {
3968     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3969     if (cpreg_field_is_64bit(ri) &&
3970         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3971         ARMCPU *cpu = env_archcpu(env);
3972         tlb_flush(CPU(cpu));
3973     }
3974     raw_write(env, ri, value);
3975 }
3976 
3977 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978                                     uint64_t value)
3979 {
3980     /*
3981      * If we are running with E2&0 regime, then an ASID is active.
3982      * Flush if that might be changing.  Note we're not checking
3983      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3984      * holds the active ASID, only checking the field that might.
3985      */
3986     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3987         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3988         tlb_flush_by_mmuidx(env_cpu(env),
3989                             ARMMMUIdxBit_E20_2 |
3990                             ARMMMUIdxBit_E20_2_PAN |
3991                             ARMMMUIdxBit_E20_0);
3992     }
3993     raw_write(env, ri, value);
3994 }
3995 
3996 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3997                         uint64_t value)
3998 {
3999     ARMCPU *cpu = env_archcpu(env);
4000     CPUState *cs = CPU(cpu);
4001 
4002     /*
4003      * A change in VMID to the stage2 page table (Stage2) invalidates
4004      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4005      */
4006     if (raw_read(env, ri) != value) {
4007         tlb_flush_by_mmuidx(cs,
4008                             ARMMMUIdxBit_E10_1 |
4009                             ARMMMUIdxBit_E10_1_PAN |
4010                             ARMMMUIdxBit_E10_0);
4011         raw_write(env, ri, value);
4012     }
4013 }
4014 
4015 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4016     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4017       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4018       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4019                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4020     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4021       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4022       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4023                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4024     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4025       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4026       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4027                              offsetof(CPUARMState, cp15.dfar_ns) } },
4028     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4029       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4030       .access = PL1_RW, .accessfn = access_tvm_trvm,
4031       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4032       .resetvalue = 0, },
4033     REGINFO_SENTINEL
4034 };
4035 
4036 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4037     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4038       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4039       .access = PL1_RW, .accessfn = access_tvm_trvm,
4040       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4041     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4042       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4043       .access = PL1_RW, .accessfn = access_tvm_trvm,
4044       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4046                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4047     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4048       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4049       .access = PL1_RW, .accessfn = access_tvm_trvm,
4050       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4051       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4052                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4053     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4054       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4055       .access = PL1_RW, .accessfn = access_tvm_trvm,
4056       .writefn = vmsa_tcr_el12_write,
4057       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4058       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4059     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4060       .access = PL1_RW, .accessfn = access_tvm_trvm,
4061       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4062       .raw_writefn = vmsa_ttbcr_raw_write,
4063       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4064                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4065     REGINFO_SENTINEL
4066 };
4067 
4068 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4069  * qemu tlbs nor adjusting cached masks.
4070  */
4071 static const ARMCPRegInfo ttbcr2_reginfo = {
4072     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4073     .access = PL1_RW, .accessfn = access_tvm_trvm,
4074     .type = ARM_CP_ALIAS,
4075     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4076                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4077 };
4078 
4079 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4080                                 uint64_t value)
4081 {
4082     env->cp15.c15_ticonfig = value & 0xe7;
4083     /* The OS_TYPE bit in this register changes the reported CPUID! */
4084     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4085         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4086 }
4087 
4088 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089                                 uint64_t value)
4090 {
4091     env->cp15.c15_threadid = value & 0xffff;
4092 }
4093 
4094 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095                            uint64_t value)
4096 {
4097     /* Wait-for-interrupt (deprecated) */
4098     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4099 }
4100 
4101 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4102                                   uint64_t value)
4103 {
4104     /* On OMAP there are registers indicating the max/min index of dcache lines
4105      * containing a dirty line; cache flush operations have to reset these.
4106      */
4107     env->cp15.c15_i_max = 0x000;
4108     env->cp15.c15_i_min = 0xff0;
4109 }
4110 
4111 static const ARMCPRegInfo omap_cp_reginfo[] = {
4112     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4113       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4114       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4115       .resetvalue = 0, },
4116     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4117       .access = PL1_RW, .type = ARM_CP_NOP },
4118     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4119       .access = PL1_RW,
4120       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4121       .writefn = omap_ticonfig_write },
4122     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4123       .access = PL1_RW,
4124       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4125     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4126       .access = PL1_RW, .resetvalue = 0xff0,
4127       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4128     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4129       .access = PL1_RW,
4130       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4131       .writefn = omap_threadid_write },
4132     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4133       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4134       .type = ARM_CP_NO_RAW,
4135       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4136     /* TODO: Peripheral port remap register:
4137      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4138      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4139      * when MMU is off.
4140      */
4141     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4142       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4143       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4144       .writefn = omap_cachemaint_write },
4145     { .name = "C9", .cp = 15, .crn = 9,
4146       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4147       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4148     REGINFO_SENTINEL
4149 };
4150 
4151 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152                               uint64_t value)
4153 {
4154     env->cp15.c15_cpar = value & 0x3fff;
4155 }
4156 
4157 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4158     { .name = "XSCALE_CPAR",
4159       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4160       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4161       .writefn = xscale_cpar_write, },
4162     { .name = "XSCALE_AUXCR",
4163       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4164       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4165       .resetvalue = 0, },
4166     /* XScale specific cache-lockdown: since we have no cache we NOP these
4167      * and hope the guest does not really rely on cache behaviour.
4168      */
4169     { .name = "XSCALE_LOCK_ICACHE_LINE",
4170       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4171       .access = PL1_W, .type = ARM_CP_NOP },
4172     { .name = "XSCALE_UNLOCK_ICACHE",
4173       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4174       .access = PL1_W, .type = ARM_CP_NOP },
4175     { .name = "XSCALE_DCACHE_LOCK",
4176       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4177       .access = PL1_RW, .type = ARM_CP_NOP },
4178     { .name = "XSCALE_UNLOCK_DCACHE",
4179       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4180       .access = PL1_W, .type = ARM_CP_NOP },
4181     REGINFO_SENTINEL
4182 };
4183 
4184 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4185     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4186      * implementation of this implementation-defined space.
4187      * Ideally this should eventually disappear in favour of actually
4188      * implementing the correct behaviour for all cores.
4189      */
4190     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4191       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4192       .access = PL1_RW,
4193       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4194       .resetvalue = 0 },
4195     REGINFO_SENTINEL
4196 };
4197 
4198 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4199     /* Cache status: RAZ because we have no cache so it's always clean */
4200     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4201       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4202       .resetvalue = 0 },
4203     REGINFO_SENTINEL
4204 };
4205 
4206 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4207     /* We never have a a block transfer operation in progress */
4208     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4209       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4210       .resetvalue = 0 },
4211     /* The cache ops themselves: these all NOP for QEMU */
4212     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4213       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4214     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4215       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4216     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4217       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4218     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4219       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4220     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4221       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4222     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4223       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4224     REGINFO_SENTINEL
4225 };
4226 
4227 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4228     /* The cache test-and-clean instructions always return (1 << 30)
4229      * to indicate that there are no dirty cache lines.
4230      */
4231     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4232       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4233       .resetvalue = (1 << 30) },
4234     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4235       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4236       .resetvalue = (1 << 30) },
4237     REGINFO_SENTINEL
4238 };
4239 
4240 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4241     /* Ignore ReadBuffer accesses */
4242     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4243       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4244       .access = PL1_RW, .resetvalue = 0,
4245       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4246     REGINFO_SENTINEL
4247 };
4248 
4249 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4250 {
4251     ARMCPU *cpu = env_archcpu(env);
4252     unsigned int cur_el = arm_current_el(env);
4253     bool secure = arm_is_secure(env);
4254 
4255     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4256         return env->cp15.vpidr_el2;
4257     }
4258     return raw_read(env, ri);
4259 }
4260 
4261 static uint64_t mpidr_read_val(CPUARMState *env)
4262 {
4263     ARMCPU *cpu = env_archcpu(env);
4264     uint64_t mpidr = cpu->mp_affinity;
4265 
4266     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4267         mpidr |= (1U << 31);
4268         /* Cores which are uniprocessor (non-coherent)
4269          * but still implement the MP extensions set
4270          * bit 30. (For instance, Cortex-R5).
4271          */
4272         if (cpu->mp_is_up) {
4273             mpidr |= (1u << 30);
4274         }
4275     }
4276     return mpidr;
4277 }
4278 
4279 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4280 {
4281     unsigned int cur_el = arm_current_el(env);
4282     bool secure = arm_is_secure(env);
4283 
4284     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4285         return env->cp15.vmpidr_el2;
4286     }
4287     return mpidr_read_val(env);
4288 }
4289 
4290 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4291     /* NOP AMAIR0/1 */
4292     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4293       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4294       .access = PL1_RW, .accessfn = access_tvm_trvm,
4295       .type = ARM_CP_CONST, .resetvalue = 0 },
4296     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4297     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4298       .access = PL1_RW, .accessfn = access_tvm_trvm,
4299       .type = ARM_CP_CONST, .resetvalue = 0 },
4300     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4301       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4302       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4303                              offsetof(CPUARMState, cp15.par_ns)} },
4304     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4305       .access = PL1_RW, .accessfn = access_tvm_trvm,
4306       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4307       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4308                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4309       .writefn = vmsa_ttbr_write, },
4310     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4311       .access = PL1_RW, .accessfn = access_tvm_trvm,
4312       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4313       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4314                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4315       .writefn = vmsa_ttbr_write, },
4316     REGINFO_SENTINEL
4317 };
4318 
4319 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4320 {
4321     return vfp_get_fpcr(env);
4322 }
4323 
4324 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4325                             uint64_t value)
4326 {
4327     vfp_set_fpcr(env, value);
4328 }
4329 
4330 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4331 {
4332     return vfp_get_fpsr(env);
4333 }
4334 
4335 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4336                             uint64_t value)
4337 {
4338     vfp_set_fpsr(env, value);
4339 }
4340 
4341 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4342                                        bool isread)
4343 {
4344     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4345         return CP_ACCESS_TRAP;
4346     }
4347     return CP_ACCESS_OK;
4348 }
4349 
4350 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4351                             uint64_t value)
4352 {
4353     env->daif = value & PSTATE_DAIF;
4354 }
4355 
4356 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4357 {
4358     return env->pstate & PSTATE_PAN;
4359 }
4360 
4361 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362                            uint64_t value)
4363 {
4364     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4365 }
4366 
4367 static const ARMCPRegInfo pan_reginfo = {
4368     .name = "PAN", .state = ARM_CP_STATE_AA64,
4369     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4370     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4371     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4372 };
4373 
4374 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4375 {
4376     return env->pstate & PSTATE_UAO;
4377 }
4378 
4379 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4380                            uint64_t value)
4381 {
4382     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4383 }
4384 
4385 static const ARMCPRegInfo uao_reginfo = {
4386     .name = "UAO", .state = ARM_CP_STATE_AA64,
4387     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4388     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4389     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4390 };
4391 
4392 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4393                                               const ARMCPRegInfo *ri,
4394                                               bool isread)
4395 {
4396     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4397     switch (arm_current_el(env)) {
4398     case 0:
4399         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4400         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4401             return CP_ACCESS_TRAP;
4402         }
4403         /* fall through */
4404     case 1:
4405         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4406         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4407             return CP_ACCESS_TRAP_EL2;
4408         }
4409         break;
4410     }
4411     return CP_ACCESS_OK;
4412 }
4413 
4414 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4415                                               const ARMCPRegInfo *ri,
4416                                               bool isread)
4417 {
4418     /* Cache invalidate/clean to Point of Unification... */
4419     switch (arm_current_el(env)) {
4420     case 0:
4421         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4422         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4423             return CP_ACCESS_TRAP;
4424         }
4425         /* fall through */
4426     case 1:
4427         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4428         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4429             return CP_ACCESS_TRAP_EL2;
4430         }
4431         break;
4432     }
4433     return CP_ACCESS_OK;
4434 }
4435 
4436 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4437  * Page D4-1736 (DDI0487A.b)
4438  */
4439 
4440 static int vae1_tlbmask(CPUARMState *env)
4441 {
4442     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4443     if (arm_is_secure_below_el3(env)) {
4444         return ARMMMUIdxBit_SE10_1 |
4445                ARMMMUIdxBit_SE10_1_PAN |
4446                ARMMMUIdxBit_SE10_0;
4447     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4448                == (HCR_E2H | HCR_TGE)) {
4449         return ARMMMUIdxBit_E20_2 |
4450                ARMMMUIdxBit_E20_2_PAN |
4451                ARMMMUIdxBit_E20_0;
4452     } else {
4453         return ARMMMUIdxBit_E10_1 |
4454                ARMMMUIdxBit_E10_1_PAN |
4455                ARMMMUIdxBit_E10_0;
4456     }
4457 }
4458 
4459 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4460                                       uint64_t value)
4461 {
4462     CPUState *cs = env_cpu(env);
4463     int mask = vae1_tlbmask(env);
4464 
4465     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4466 }
4467 
4468 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4469                                     uint64_t value)
4470 {
4471     CPUState *cs = env_cpu(env);
4472     int mask = vae1_tlbmask(env);
4473 
4474     if (tlb_force_broadcast(env)) {
4475         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4476     } else {
4477         tlb_flush_by_mmuidx(cs, mask);
4478     }
4479 }
4480 
4481 static int alle1_tlbmask(CPUARMState *env)
4482 {
4483     /*
4484      * Note that the 'ALL' scope must invalidate both stage 1 and
4485      * stage 2 translations, whereas most other scopes only invalidate
4486      * stage 1 translations.
4487      */
4488     if (arm_is_secure_below_el3(env)) {
4489         return ARMMMUIdxBit_SE10_1 |
4490                ARMMMUIdxBit_SE10_1_PAN |
4491                ARMMMUIdxBit_SE10_0;
4492     } else {
4493         return ARMMMUIdxBit_E10_1 |
4494                ARMMMUIdxBit_E10_1_PAN |
4495                ARMMMUIdxBit_E10_0;
4496     }
4497 }
4498 
4499 static int e2_tlbmask(CPUARMState *env)
4500 {
4501     /* TODO: ARMv8.4-SecEL2 */
4502     return ARMMMUIdxBit_E20_0 |
4503            ARMMMUIdxBit_E20_2 |
4504            ARMMMUIdxBit_E20_2_PAN |
4505            ARMMMUIdxBit_E2;
4506 }
4507 
4508 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4509                                   uint64_t value)
4510 {
4511     CPUState *cs = env_cpu(env);
4512     int mask = alle1_tlbmask(env);
4513 
4514     tlb_flush_by_mmuidx(cs, mask);
4515 }
4516 
4517 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4518                                   uint64_t value)
4519 {
4520     CPUState *cs = env_cpu(env);
4521     int mask = e2_tlbmask(env);
4522 
4523     tlb_flush_by_mmuidx(cs, mask);
4524 }
4525 
4526 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4527                                   uint64_t value)
4528 {
4529     ARMCPU *cpu = env_archcpu(env);
4530     CPUState *cs = CPU(cpu);
4531 
4532     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4533 }
4534 
4535 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4536                                     uint64_t value)
4537 {
4538     CPUState *cs = env_cpu(env);
4539     int mask = alle1_tlbmask(env);
4540 
4541     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4542 }
4543 
4544 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4545                                     uint64_t value)
4546 {
4547     CPUState *cs = env_cpu(env);
4548     int mask = e2_tlbmask(env);
4549 
4550     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4551 }
4552 
4553 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4554                                     uint64_t value)
4555 {
4556     CPUState *cs = env_cpu(env);
4557 
4558     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4559 }
4560 
4561 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4562                                  uint64_t value)
4563 {
4564     /* Invalidate by VA, EL2
4565      * Currently handles both VAE2 and VALE2, since we don't support
4566      * flush-last-level-only.
4567      */
4568     CPUState *cs = env_cpu(env);
4569     int mask = e2_tlbmask(env);
4570     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4571 
4572     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4573 }
4574 
4575 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4576                                  uint64_t value)
4577 {
4578     /* Invalidate by VA, EL3
4579      * Currently handles both VAE3 and VALE3, since we don't support
4580      * flush-last-level-only.
4581      */
4582     ARMCPU *cpu = env_archcpu(env);
4583     CPUState *cs = CPU(cpu);
4584     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4585 
4586     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4587 }
4588 
4589 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590                                    uint64_t value)
4591 {
4592     CPUState *cs = env_cpu(env);
4593     int mask = vae1_tlbmask(env);
4594     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4595 
4596     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4597 }
4598 
4599 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4600                                  uint64_t value)
4601 {
4602     /* Invalidate by VA, EL1&0 (AArch64 version).
4603      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4604      * since we don't support flush-for-specific-ASID-only or
4605      * flush-last-level-only.
4606      */
4607     CPUState *cs = env_cpu(env);
4608     int mask = vae1_tlbmask(env);
4609     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4610 
4611     if (tlb_force_broadcast(env)) {
4612         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4613     } else {
4614         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4615     }
4616 }
4617 
4618 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619                                    uint64_t value)
4620 {
4621     CPUState *cs = env_cpu(env);
4622     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4623 
4624     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4625                                              ARMMMUIdxBit_E2);
4626 }
4627 
4628 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4629                                    uint64_t value)
4630 {
4631     CPUState *cs = env_cpu(env);
4632     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4633 
4634     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4635                                              ARMMMUIdxBit_SE3);
4636 }
4637 
4638 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4639                                       bool isread)
4640 {
4641     int cur_el = arm_current_el(env);
4642 
4643     if (cur_el < 2) {
4644         uint64_t hcr = arm_hcr_el2_eff(env);
4645 
4646         if (cur_el == 0) {
4647             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4648                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4649                     return CP_ACCESS_TRAP_EL2;
4650                 }
4651             } else {
4652                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4653                     return CP_ACCESS_TRAP;
4654                 }
4655                 if (hcr & HCR_TDZ) {
4656                     return CP_ACCESS_TRAP_EL2;
4657                 }
4658             }
4659         } else if (hcr & HCR_TDZ) {
4660             return CP_ACCESS_TRAP_EL2;
4661         }
4662     }
4663     return CP_ACCESS_OK;
4664 }
4665 
4666 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4667 {
4668     ARMCPU *cpu = env_archcpu(env);
4669     int dzp_bit = 1 << 4;
4670 
4671     /* DZP indicates whether DC ZVA access is allowed */
4672     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4673         dzp_bit = 0;
4674     }
4675     return cpu->dcz_blocksize | dzp_bit;
4676 }
4677 
4678 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4679                                     bool isread)
4680 {
4681     if (!(env->pstate & PSTATE_SP)) {
4682         /* Access to SP_EL0 is undefined if it's being used as
4683          * the stack pointer.
4684          */
4685         return CP_ACCESS_TRAP_UNCATEGORIZED;
4686     }
4687     return CP_ACCESS_OK;
4688 }
4689 
4690 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4691 {
4692     return env->pstate & PSTATE_SP;
4693 }
4694 
4695 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4696 {
4697     update_spsel(env, val);
4698 }
4699 
4700 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4701                         uint64_t value)
4702 {
4703     ARMCPU *cpu = env_archcpu(env);
4704 
4705     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4706         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4707         value &= ~SCTLR_M;
4708     }
4709 
4710     /* ??? Lots of these bits are not implemented.  */
4711 
4712     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4713         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4714             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4715         } else {
4716             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4717                        SCTLR_ATA0 | SCTLR_ATA);
4718         }
4719     }
4720 
4721     if (raw_read(env, ri) == value) {
4722         /* Skip the TLB flush if nothing actually changed; Linux likes
4723          * to do a lot of pointless SCTLR writes.
4724          */
4725         return;
4726     }
4727 
4728     raw_write(env, ri, value);
4729 
4730     /* This may enable/disable the MMU, so do a TLB flush.  */
4731     tlb_flush(CPU(cpu));
4732 
4733     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4734         /*
4735          * Normally we would always end the TB on an SCTLR write; see the
4736          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4737          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4738          * of hflags from the translator, so do it here.
4739          */
4740         arm_rebuild_hflags(env);
4741     }
4742 }
4743 
4744 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4745                                      bool isread)
4746 {
4747     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4748         return CP_ACCESS_TRAP_FP_EL2;
4749     }
4750     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4751         return CP_ACCESS_TRAP_FP_EL3;
4752     }
4753     return CP_ACCESS_OK;
4754 }
4755 
4756 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757                        uint64_t value)
4758 {
4759     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4760 }
4761 
4762 static const ARMCPRegInfo v8_cp_reginfo[] = {
4763     /* Minimal set of EL0-visible registers. This will need to be expanded
4764      * significantly for system emulation of AArch64 CPUs.
4765      */
4766     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4767       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4768       .access = PL0_RW, .type = ARM_CP_NZCV },
4769     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4770       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4771       .type = ARM_CP_NO_RAW,
4772       .access = PL0_RW, .accessfn = aa64_daif_access,
4773       .fieldoffset = offsetof(CPUARMState, daif),
4774       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4775     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4776       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4777       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4778       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4779     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4780       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4781       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4782       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4783     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4784       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4785       .access = PL0_R, .type = ARM_CP_NO_RAW,
4786       .readfn = aa64_dczid_read },
4787     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4788       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4789       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4790 #ifndef CONFIG_USER_ONLY
4791       /* Avoid overhead of an access check that always passes in user-mode */
4792       .accessfn = aa64_zva_access,
4793 #endif
4794     },
4795     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4796       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4797       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4798     /* Cache ops: all NOPs since we don't emulate caches */
4799     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4800       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4801       .access = PL1_W, .type = ARM_CP_NOP,
4802       .accessfn = aa64_cacheop_pou_access },
4803     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4804       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4805       .access = PL1_W, .type = ARM_CP_NOP,
4806       .accessfn = aa64_cacheop_pou_access },
4807     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4808       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4809       .access = PL0_W, .type = ARM_CP_NOP,
4810       .accessfn = aa64_cacheop_pou_access },
4811     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4812       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4813       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4814       .type = ARM_CP_NOP },
4815     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4817       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4818     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4820       .access = PL0_W, .type = ARM_CP_NOP,
4821       .accessfn = aa64_cacheop_poc_access },
4822     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4823       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4824       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4825     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4826       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4827       .access = PL0_W, .type = ARM_CP_NOP,
4828       .accessfn = aa64_cacheop_pou_access },
4829     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4830       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4831       .access = PL0_W, .type = ARM_CP_NOP,
4832       .accessfn = aa64_cacheop_poc_access },
4833     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4834       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4835       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4836     /* TLBI operations */
4837     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4838       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4839       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4840       .writefn = tlbi_aa64_vmalle1is_write },
4841     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4842       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4843       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4844       .writefn = tlbi_aa64_vae1is_write },
4845     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4846       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4847       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4848       .writefn = tlbi_aa64_vmalle1is_write },
4849     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4850       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4851       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4852       .writefn = tlbi_aa64_vae1is_write },
4853     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4854       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4855       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4856       .writefn = tlbi_aa64_vae1is_write },
4857     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4859       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4860       .writefn = tlbi_aa64_vae1is_write },
4861     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4863       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4864       .writefn = tlbi_aa64_vmalle1_write },
4865     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4867       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868       .writefn = tlbi_aa64_vae1_write },
4869     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4871       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872       .writefn = tlbi_aa64_vmalle1_write },
4873     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876       .writefn = tlbi_aa64_vae1_write },
4877     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vae1_write },
4881     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1_write },
4885     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4887       .access = PL2_W, .type = ARM_CP_NOP },
4888     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4889       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4890       .access = PL2_W, .type = ARM_CP_NOP },
4891     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4892       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4893       .access = PL2_W, .type = ARM_CP_NO_RAW,
4894       .writefn = tlbi_aa64_alle1is_write },
4895     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4896       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4897       .access = PL2_W, .type = ARM_CP_NO_RAW,
4898       .writefn = tlbi_aa64_alle1is_write },
4899     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4900       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4901       .access = PL2_W, .type = ARM_CP_NOP },
4902     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4904       .access = PL2_W, .type = ARM_CP_NOP },
4905     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4907       .access = PL2_W, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_alle1_write },
4909     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4911       .access = PL2_W, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_alle1is_write },
4913 #ifndef CONFIG_USER_ONLY
4914     /* 64 bit address translation operations */
4915     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4916       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4917       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4918       .writefn = ats_write64 },
4919     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4920       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4921       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4922       .writefn = ats_write64 },
4923     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4924       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4925       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4926       .writefn = ats_write64 },
4927     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4929       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4930       .writefn = ats_write64 },
4931     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4933       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4934       .writefn = ats_write64 },
4935     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4936       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4937       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4938       .writefn = ats_write64 },
4939     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4940       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4941       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4942       .writefn = ats_write64 },
4943     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4945       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4946       .writefn = ats_write64 },
4947     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4948     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4949       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4950       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951       .writefn = ats_write64 },
4952     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4953       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4954       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955       .writefn = ats_write64 },
4956     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4957       .type = ARM_CP_ALIAS,
4958       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4959       .access = PL1_RW, .resetvalue = 0,
4960       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4961       .writefn = par_write },
4962 #endif
4963     /* TLB invalidate last level of translation table walk */
4964     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4965       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4966       .writefn = tlbimva_is_write },
4967     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4968       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4969       .writefn = tlbimvaa_is_write },
4970     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4971       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4972       .writefn = tlbimva_write },
4973     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4974       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4975       .writefn = tlbimvaa_write },
4976     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4977       .type = ARM_CP_NO_RAW, .access = PL2_W,
4978       .writefn = tlbimva_hyp_write },
4979     { .name = "TLBIMVALHIS",
4980       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4981       .type = ARM_CP_NO_RAW, .access = PL2_W,
4982       .writefn = tlbimva_hyp_is_write },
4983     { .name = "TLBIIPAS2",
4984       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4985       .type = ARM_CP_NOP, .access = PL2_W },
4986     { .name = "TLBIIPAS2IS",
4987       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4988       .type = ARM_CP_NOP, .access = PL2_W },
4989     { .name = "TLBIIPAS2L",
4990       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4991       .type = ARM_CP_NOP, .access = PL2_W },
4992     { .name = "TLBIIPAS2LIS",
4993       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4994       .type = ARM_CP_NOP, .access = PL2_W },
4995     /* 32 bit cache operations */
4996     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4997       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4998     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4999       .type = ARM_CP_NOP, .access = PL1_W },
5000     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5001       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5002     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5003       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5004     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5005       .type = ARM_CP_NOP, .access = PL1_W },
5006     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5007       .type = ARM_CP_NOP, .access = PL1_W },
5008     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5009       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5010     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5011       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5012     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5013       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5014     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5015       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5016     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5017       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5018     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5019       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5020     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5021       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5022     /* MMU Domain access control / MPU write buffer control */
5023     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5024       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5025       .writefn = dacr_write, .raw_writefn = raw_write,
5026       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5027                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5028     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5029       .type = ARM_CP_ALIAS,
5030       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5031       .access = PL1_RW,
5032       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5033     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5034       .type = ARM_CP_ALIAS,
5035       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5036       .access = PL1_RW,
5037       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5038     /* We rely on the access checks not allowing the guest to write to the
5039      * state field when SPSel indicates that it's being used as the stack
5040      * pointer.
5041      */
5042     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5043       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5044       .access = PL1_RW, .accessfn = sp_el0_access,
5045       .type = ARM_CP_ALIAS,
5046       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5047     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5048       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5049       .access = PL2_RW, .type = ARM_CP_ALIAS,
5050       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5051     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5052       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5053       .type = ARM_CP_NO_RAW,
5054       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5055     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5056       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5057       .type = ARM_CP_ALIAS,
5058       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5059       .access = PL2_RW, .accessfn = fpexc32_access },
5060     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5061       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5062       .access = PL2_RW, .resetvalue = 0,
5063       .writefn = dacr_write, .raw_writefn = raw_write,
5064       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5065     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5066       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5067       .access = PL2_RW, .resetvalue = 0,
5068       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5069     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5070       .type = ARM_CP_ALIAS,
5071       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5072       .access = PL2_RW,
5073       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5074     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5075       .type = ARM_CP_ALIAS,
5076       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5077       .access = PL2_RW,
5078       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5079     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5080       .type = ARM_CP_ALIAS,
5081       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5082       .access = PL2_RW,
5083       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5084     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5085       .type = ARM_CP_ALIAS,
5086       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5087       .access = PL2_RW,
5088       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5089     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5090       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5091       .resetvalue = 0,
5092       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5093     { .name = "SDCR", .type = ARM_CP_ALIAS,
5094       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5095       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5096       .writefn = sdcr_write,
5097       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5098     REGINFO_SENTINEL
5099 };
5100 
5101 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5102 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5103     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5104       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5105       .access = PL2_RW,
5106       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5107     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5108       .type = ARM_CP_NO_RAW,
5109       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5110       .access = PL2_RW,
5111       .type = ARM_CP_CONST, .resetvalue = 0 },
5112     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5113       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5114       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5115     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5116       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5117       .access = PL2_RW,
5118       .type = ARM_CP_CONST, .resetvalue = 0 },
5119     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5120       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5121       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5122     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5123       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5124       .access = PL2_RW, .type = ARM_CP_CONST,
5125       .resetvalue = 0 },
5126     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5127       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5128       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5129     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5130       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5131       .access = PL2_RW, .type = ARM_CP_CONST,
5132       .resetvalue = 0 },
5133     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5134       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5135       .access = PL2_RW, .type = ARM_CP_CONST,
5136       .resetvalue = 0 },
5137     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5138       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5139       .access = PL2_RW, .type = ARM_CP_CONST,
5140       .resetvalue = 0 },
5141     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5142       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5143       .access = PL2_RW, .type = ARM_CP_CONST,
5144       .resetvalue = 0 },
5145     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5146       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5147       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5148     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5149       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5150       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5151       .type = ARM_CP_CONST, .resetvalue = 0 },
5152     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5153       .cp = 15, .opc1 = 6, .crm = 2,
5154       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5155       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5156     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5157       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5158       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5159     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5161       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5162     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5163       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5164       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5165     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5166       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5167       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5168     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5169       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5172       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5173       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5174     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5175       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5176       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5177     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5178       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5179       .resetvalue = 0 },
5180     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5181       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5182       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5183     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5184       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5185       .resetvalue = 0 },
5186     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5187       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5188       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5189     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5190       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5191       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5192     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5193       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5194       .access = PL2_RW, .accessfn = access_tda,
5195       .type = ARM_CP_CONST, .resetvalue = 0 },
5196     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5197       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5198       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5199       .type = ARM_CP_CONST, .resetvalue = 0 },
5200     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5201       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5202       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5204       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5205       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5207       .type = ARM_CP_CONST,
5208       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5209       .access = PL2_RW, .resetvalue = 0 },
5210     REGINFO_SENTINEL
5211 };
5212 
5213 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5214 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5215     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5216       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5217       .access = PL2_RW,
5218       .type = ARM_CP_CONST, .resetvalue = 0 },
5219     REGINFO_SENTINEL
5220 };
5221 
5222 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5223 {
5224     ARMCPU *cpu = env_archcpu(env);
5225 
5226     if (arm_feature(env, ARM_FEATURE_V8)) {
5227         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5228     } else {
5229         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5230     }
5231 
5232     if (arm_feature(env, ARM_FEATURE_EL3)) {
5233         valid_mask &= ~HCR_HCD;
5234     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5235         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5236          * However, if we're using the SMC PSCI conduit then QEMU is
5237          * effectively acting like EL3 firmware and so the guest at
5238          * EL2 should retain the ability to prevent EL1 from being
5239          * able to make SMC calls into the ersatz firmware, so in
5240          * that case HCR.TSC should be read/write.
5241          */
5242         valid_mask &= ~HCR_TSC;
5243     }
5244 
5245     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5246         if (cpu_isar_feature(aa64_vh, cpu)) {
5247             valid_mask |= HCR_E2H;
5248         }
5249         if (cpu_isar_feature(aa64_lor, cpu)) {
5250             valid_mask |= HCR_TLOR;
5251         }
5252         if (cpu_isar_feature(aa64_pauth, cpu)) {
5253             valid_mask |= HCR_API | HCR_APK;
5254         }
5255         if (cpu_isar_feature(aa64_mte, cpu)) {
5256             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5257         }
5258     }
5259 
5260     /* Clear RES0 bits.  */
5261     value &= valid_mask;
5262 
5263     /*
5264      * These bits change the MMU setup:
5265      * HCR_VM enables stage 2 translation
5266      * HCR_PTW forbids certain page-table setups
5267      * HCR_DC disables stage1 and enables stage2 translation
5268      * HCR_DCT enables tagging on (disabled) stage1 translation
5269      */
5270     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5271         tlb_flush(CPU(cpu));
5272     }
5273     env->cp15.hcr_el2 = value;
5274 
5275     /*
5276      * Updates to VI and VF require us to update the status of
5277      * virtual interrupts, which are the logical OR of these bits
5278      * and the state of the input lines from the GIC. (This requires
5279      * that we have the iothread lock, which is done by marking the
5280      * reginfo structs as ARM_CP_IO.)
5281      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5282      * possible for it to be taken immediately, because VIRQ and
5283      * VFIQ are masked unless running at EL0 or EL1, and HCR
5284      * can only be written at EL2.
5285      */
5286     g_assert(qemu_mutex_iothread_locked());
5287     arm_cpu_update_virq(cpu);
5288     arm_cpu_update_vfiq(cpu);
5289 }
5290 
5291 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5292 {
5293     do_hcr_write(env, value, 0);
5294 }
5295 
5296 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5297                           uint64_t value)
5298 {
5299     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5300     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5301     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5302 }
5303 
5304 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5305                          uint64_t value)
5306 {
5307     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5308     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5309     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5310 }
5311 
5312 /*
5313  * Return the effective value of HCR_EL2.
5314  * Bits that are not included here:
5315  * RW       (read from SCR_EL3.RW as needed)
5316  */
5317 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5318 {
5319     uint64_t ret = env->cp15.hcr_el2;
5320 
5321     if (arm_is_secure_below_el3(env)) {
5322         /*
5323          * "This register has no effect if EL2 is not enabled in the
5324          * current Security state".  This is ARMv8.4-SecEL2 speak for
5325          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5326          *
5327          * Prior to that, the language was "In an implementation that
5328          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5329          * as if this field is 0 for all purposes other than a direct
5330          * read or write access of HCR_EL2".  With lots of enumeration
5331          * on a per-field basis.  In current QEMU, this is condition
5332          * is arm_is_secure_below_el3.
5333          *
5334          * Since the v8.4 language applies to the entire register, and
5335          * appears to be backward compatible, use that.
5336          */
5337         return 0;
5338     }
5339 
5340     /*
5341      * For a cpu that supports both aarch64 and aarch32, we can set bits
5342      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5343      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5344      */
5345     if (!arm_el_is_aa64(env, 2)) {
5346         uint64_t aa32_valid;
5347 
5348         /*
5349          * These bits are up-to-date as of ARMv8.6.
5350          * For HCR, it's easiest to list just the 2 bits that are invalid.
5351          * For HCR2, list those that are valid.
5352          */
5353         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5354         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5355                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5356         ret &= aa32_valid;
5357     }
5358 
5359     if (ret & HCR_TGE) {
5360         /* These bits are up-to-date as of ARMv8.6.  */
5361         if (ret & HCR_E2H) {
5362             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5363                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5364                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5365                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5366                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5367                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5368         } else {
5369             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5370         }
5371         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5372                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5373                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5374                  HCR_TLOR);
5375     }
5376 
5377     return ret;
5378 }
5379 
5380 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5381                            uint64_t value)
5382 {
5383     /*
5384      * For A-profile AArch32 EL3, if NSACR.CP10
5385      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5386      */
5387     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5388         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5389         value &= ~(0x3 << 10);
5390         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5391     }
5392     env->cp15.cptr_el[2] = value;
5393 }
5394 
5395 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5396 {
5397     /*
5398      * For A-profile AArch32 EL3, if NSACR.CP10
5399      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5400      */
5401     uint64_t value = env->cp15.cptr_el[2];
5402 
5403     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5404         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5405         value |= 0x3 << 10;
5406     }
5407     return value;
5408 }
5409 
5410 static const ARMCPRegInfo el2_cp_reginfo[] = {
5411     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5412       .type = ARM_CP_IO,
5413       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5414       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5415       .writefn = hcr_write },
5416     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5417       .type = ARM_CP_ALIAS | ARM_CP_IO,
5418       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5419       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5420       .writefn = hcr_writelow },
5421     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5422       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5423       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5424     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5425       .type = ARM_CP_ALIAS,
5426       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5427       .access = PL2_RW,
5428       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5429     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5430       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5431       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5432     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5433       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5434       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5435     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5436       .type = ARM_CP_ALIAS,
5437       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5438       .access = PL2_RW,
5439       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5440     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5441       .type = ARM_CP_ALIAS,
5442       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5443       .access = PL2_RW,
5444       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5445     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5446       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5447       .access = PL2_RW, .writefn = vbar_write,
5448       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5449       .resetvalue = 0 },
5450     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5452       .access = PL3_RW, .type = ARM_CP_ALIAS,
5453       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5454     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5455       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5456       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5457       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5458       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5459     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5460       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5461       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5462       .resetvalue = 0 },
5463     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5464       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5465       .access = PL2_RW, .type = ARM_CP_ALIAS,
5466       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5467     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5468       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5469       .access = PL2_RW, .type = ARM_CP_CONST,
5470       .resetvalue = 0 },
5471     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5472     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5473       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5474       .access = PL2_RW, .type = ARM_CP_CONST,
5475       .resetvalue = 0 },
5476     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5477       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5478       .access = PL2_RW, .type = ARM_CP_CONST,
5479       .resetvalue = 0 },
5480     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5481       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5482       .access = PL2_RW, .type = ARM_CP_CONST,
5483       .resetvalue = 0 },
5484     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5485       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5486       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5487       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5488       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5489     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5490       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5491       .type = ARM_CP_ALIAS,
5492       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5493       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5494     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5495       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5496       .access = PL2_RW,
5497       /* no .writefn needed as this can't cause an ASID change;
5498        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5499        */
5500       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5501     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5502       .cp = 15, .opc1 = 6, .crm = 2,
5503       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5504       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5505       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5506       .writefn = vttbr_write },
5507     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5508       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5509       .access = PL2_RW, .writefn = vttbr_write,
5510       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5511     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5512       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5513       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5514       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5515     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5516       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5517       .access = PL2_RW, .resetvalue = 0,
5518       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5519     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5520       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5521       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5522       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5523     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5524       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5525       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5526     { .name = "TLBIALLNSNH",
5527       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5528       .type = ARM_CP_NO_RAW, .access = PL2_W,
5529       .writefn = tlbiall_nsnh_write },
5530     { .name = "TLBIALLNSNHIS",
5531       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5532       .type = ARM_CP_NO_RAW, .access = PL2_W,
5533       .writefn = tlbiall_nsnh_is_write },
5534     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5535       .type = ARM_CP_NO_RAW, .access = PL2_W,
5536       .writefn = tlbiall_hyp_write },
5537     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5538       .type = ARM_CP_NO_RAW, .access = PL2_W,
5539       .writefn = tlbiall_hyp_is_write },
5540     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5541       .type = ARM_CP_NO_RAW, .access = PL2_W,
5542       .writefn = tlbimva_hyp_write },
5543     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5544       .type = ARM_CP_NO_RAW, .access = PL2_W,
5545       .writefn = tlbimva_hyp_is_write },
5546     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5547       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5548       .type = ARM_CP_NO_RAW, .access = PL2_W,
5549       .writefn = tlbi_aa64_alle2_write },
5550     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5552       .type = ARM_CP_NO_RAW, .access = PL2_W,
5553       .writefn = tlbi_aa64_vae2_write },
5554     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5555       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5556       .access = PL2_W, .type = ARM_CP_NO_RAW,
5557       .writefn = tlbi_aa64_vae2_write },
5558     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5559       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5560       .access = PL2_W, .type = ARM_CP_NO_RAW,
5561       .writefn = tlbi_aa64_alle2is_write },
5562     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5563       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5564       .type = ARM_CP_NO_RAW, .access = PL2_W,
5565       .writefn = tlbi_aa64_vae2is_write },
5566     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5567       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5568       .access = PL2_W, .type = ARM_CP_NO_RAW,
5569       .writefn = tlbi_aa64_vae2is_write },
5570 #ifndef CONFIG_USER_ONLY
5571     /* Unlike the other EL2-related AT operations, these must
5572      * UNDEF from EL3 if EL2 is not implemented, which is why we
5573      * define them here rather than with the rest of the AT ops.
5574      */
5575     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5576       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5577       .access = PL2_W, .accessfn = at_s1e2_access,
5578       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5579     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5580       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5581       .access = PL2_W, .accessfn = at_s1e2_access,
5582       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5583     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5584      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5585      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5586      * to behave as if SCR.NS was 1.
5587      */
5588     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5589       .access = PL2_W,
5590       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5591     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5592       .access = PL2_W,
5593       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5594     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5595       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5596       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5597        * reset values as IMPDEF. We choose to reset to 3 to comply with
5598        * both ARMv7 and ARMv8.
5599        */
5600       .access = PL2_RW, .resetvalue = 3,
5601       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5602     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5603       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5604       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5605       .writefn = gt_cntvoff_write,
5606       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5607     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5608       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5609       .writefn = gt_cntvoff_write,
5610       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5611     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5612       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5613       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5614       .type = ARM_CP_IO, .access = PL2_RW,
5615       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5616     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5617       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5618       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5619       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5620     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5621       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5622       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5623       .resetfn = gt_hyp_timer_reset,
5624       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5625     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5626       .type = ARM_CP_IO,
5627       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5628       .access = PL2_RW,
5629       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5630       .resetvalue = 0,
5631       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5632 #endif
5633     /* The only field of MDCR_EL2 that has a defined architectural reset value
5634      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5635      * don't implement any PMU event counters, so using zero as a reset
5636      * value for MDCR_EL2 is okay
5637      */
5638     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5639       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5640       .access = PL2_RW, .resetvalue = 0,
5641       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5642     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5643       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5644       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5645       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5646     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5647       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5648       .access = PL2_RW,
5649       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5650     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5651       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5652       .access = PL2_RW,
5653       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5654     REGINFO_SENTINEL
5655 };
5656 
5657 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5658     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5659       .type = ARM_CP_ALIAS | ARM_CP_IO,
5660       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5661       .access = PL2_RW,
5662       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5663       .writefn = hcr_writehigh },
5664     REGINFO_SENTINEL
5665 };
5666 
5667 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5668                                    bool isread)
5669 {
5670     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5671      * At Secure EL1 it traps to EL3.
5672      */
5673     if (arm_current_el(env) == 3) {
5674         return CP_ACCESS_OK;
5675     }
5676     if (arm_is_secure_below_el3(env)) {
5677         return CP_ACCESS_TRAP_EL3;
5678     }
5679     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5680     if (isread) {
5681         return CP_ACCESS_OK;
5682     }
5683     return CP_ACCESS_TRAP_UNCATEGORIZED;
5684 }
5685 
5686 static const ARMCPRegInfo el3_cp_reginfo[] = {
5687     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5688       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5689       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5690       .resetvalue = 0, .writefn = scr_write },
5691     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5692       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5693       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5694       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5695       .writefn = scr_write },
5696     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5697       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5698       .access = PL3_RW, .resetvalue = 0,
5699       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5700     { .name = "SDER",
5701       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5702       .access = PL3_RW, .resetvalue = 0,
5703       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5704     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5705       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5706       .writefn = vbar_write, .resetvalue = 0,
5707       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5708     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5709       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5710       .access = PL3_RW, .resetvalue = 0,
5711       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5712     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5713       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5714       .access = PL3_RW,
5715       /* no .writefn needed as this can't cause an ASID change;
5716        * we must provide a .raw_writefn and .resetfn because we handle
5717        * reset and migration for the AArch32 TTBCR(S), which might be
5718        * using mask and base_mask.
5719        */
5720       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5721       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5722     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5723       .type = ARM_CP_ALIAS,
5724       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5725       .access = PL3_RW,
5726       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5727     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5728       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5729       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5730     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5731       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5732       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5733     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5734       .type = ARM_CP_ALIAS,
5735       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5736       .access = PL3_RW,
5737       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5738     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5739       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5740       .access = PL3_RW, .writefn = vbar_write,
5741       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5742       .resetvalue = 0 },
5743     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5744       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5745       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5746       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5747     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5749       .access = PL3_RW, .resetvalue = 0,
5750       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5751     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5752       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5753       .access = PL3_RW, .type = ARM_CP_CONST,
5754       .resetvalue = 0 },
5755     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5756       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5757       .access = PL3_RW, .type = ARM_CP_CONST,
5758       .resetvalue = 0 },
5759     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5760       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5761       .access = PL3_RW, .type = ARM_CP_CONST,
5762       .resetvalue = 0 },
5763     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5764       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5765       .access = PL3_W, .type = ARM_CP_NO_RAW,
5766       .writefn = tlbi_aa64_alle3is_write },
5767     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5768       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5769       .access = PL3_W, .type = ARM_CP_NO_RAW,
5770       .writefn = tlbi_aa64_vae3is_write },
5771     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5772       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5773       .access = PL3_W, .type = ARM_CP_NO_RAW,
5774       .writefn = tlbi_aa64_vae3is_write },
5775     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5776       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5777       .access = PL3_W, .type = ARM_CP_NO_RAW,
5778       .writefn = tlbi_aa64_alle3_write },
5779     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5780       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5781       .access = PL3_W, .type = ARM_CP_NO_RAW,
5782       .writefn = tlbi_aa64_vae3_write },
5783     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5784       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5785       .access = PL3_W, .type = ARM_CP_NO_RAW,
5786       .writefn = tlbi_aa64_vae3_write },
5787     REGINFO_SENTINEL
5788 };
5789 
5790 #ifndef CONFIG_USER_ONLY
5791 /* Test if system register redirection is to occur in the current state.  */
5792 static bool redirect_for_e2h(CPUARMState *env)
5793 {
5794     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5795 }
5796 
5797 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5798 {
5799     CPReadFn *readfn;
5800 
5801     if (redirect_for_e2h(env)) {
5802         /* Switch to the saved EL2 version of the register.  */
5803         ri = ri->opaque;
5804         readfn = ri->readfn;
5805     } else {
5806         readfn = ri->orig_readfn;
5807     }
5808     if (readfn == NULL) {
5809         readfn = raw_read;
5810     }
5811     return readfn(env, ri);
5812 }
5813 
5814 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5815                           uint64_t value)
5816 {
5817     CPWriteFn *writefn;
5818 
5819     if (redirect_for_e2h(env)) {
5820         /* Switch to the saved EL2 version of the register.  */
5821         ri = ri->opaque;
5822         writefn = ri->writefn;
5823     } else {
5824         writefn = ri->orig_writefn;
5825     }
5826     if (writefn == NULL) {
5827         writefn = raw_write;
5828     }
5829     writefn(env, ri, value);
5830 }
5831 
5832 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5833 {
5834     struct E2HAlias {
5835         uint32_t src_key, dst_key, new_key;
5836         const char *src_name, *dst_name, *new_name;
5837         bool (*feature)(const ARMISARegisters *id);
5838     };
5839 
5840 #define K(op0, op1, crn, crm, op2) \
5841     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5842 
5843     static const struct E2HAlias aliases[] = {
5844         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5845           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5846         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5847           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5848         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5849           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5850         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5851           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5852         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5853           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5854         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5855           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5856         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5857           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5858         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5859           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5860         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5861           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5862         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5863           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5864         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5865           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5866         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5867           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5868         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5869           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5870         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5871           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5872         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5873           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5874         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5875           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5876 
5877         /*
5878          * Note that redirection of ZCR is mentioned in the description
5879          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5880          * not in the summary table.
5881          */
5882         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5883           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5884 
5885         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5886           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5887 
5888         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5889         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5890     };
5891 #undef K
5892 
5893     size_t i;
5894 
5895     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5896         const struct E2HAlias *a = &aliases[i];
5897         ARMCPRegInfo *src_reg, *dst_reg;
5898 
5899         if (a->feature && !a->feature(&cpu->isar)) {
5900             continue;
5901         }
5902 
5903         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5904         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5905         g_assert(src_reg != NULL);
5906         g_assert(dst_reg != NULL);
5907 
5908         /* Cross-compare names to detect typos in the keys.  */
5909         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5910         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5911 
5912         /* None of the core system registers use opaque; we will.  */
5913         g_assert(src_reg->opaque == NULL);
5914 
5915         /* Create alias before redirection so we dup the right data. */
5916         if (a->new_key) {
5917             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5918             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5919             bool ok;
5920 
5921             new_reg->name = a->new_name;
5922             new_reg->type |= ARM_CP_ALIAS;
5923             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5924             new_reg->access &= PL2_RW | PL3_RW;
5925 
5926             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5927             g_assert(ok);
5928         }
5929 
5930         src_reg->opaque = dst_reg;
5931         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5932         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5933         if (!src_reg->raw_readfn) {
5934             src_reg->raw_readfn = raw_read;
5935         }
5936         if (!src_reg->raw_writefn) {
5937             src_reg->raw_writefn = raw_write;
5938         }
5939         src_reg->readfn = el2_e2h_read;
5940         src_reg->writefn = el2_e2h_write;
5941     }
5942 }
5943 #endif
5944 
5945 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5946                                      bool isread)
5947 {
5948     int cur_el = arm_current_el(env);
5949 
5950     if (cur_el < 2) {
5951         uint64_t hcr = arm_hcr_el2_eff(env);
5952 
5953         if (cur_el == 0) {
5954             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5955                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5956                     return CP_ACCESS_TRAP_EL2;
5957                 }
5958             } else {
5959                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5960                     return CP_ACCESS_TRAP;
5961                 }
5962                 if (hcr & HCR_TID2) {
5963                     return CP_ACCESS_TRAP_EL2;
5964                 }
5965             }
5966         } else if (hcr & HCR_TID2) {
5967             return CP_ACCESS_TRAP_EL2;
5968         }
5969     }
5970 
5971     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5972         return CP_ACCESS_TRAP_EL2;
5973     }
5974 
5975     return CP_ACCESS_OK;
5976 }
5977 
5978 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5979                         uint64_t value)
5980 {
5981     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5982      * read via a bit in OSLSR_EL1.
5983      */
5984     int oslock;
5985 
5986     if (ri->state == ARM_CP_STATE_AA32) {
5987         oslock = (value == 0xC5ACCE55);
5988     } else {
5989         oslock = value & 1;
5990     }
5991 
5992     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5993 }
5994 
5995 static const ARMCPRegInfo debug_cp_reginfo[] = {
5996     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5997      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5998      * unlike DBGDRAR it is never accessible from EL0.
5999      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6000      * accessor.
6001      */
6002     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6003       .access = PL0_R, .accessfn = access_tdra,
6004       .type = ARM_CP_CONST, .resetvalue = 0 },
6005     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6006       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6007       .access = PL1_R, .accessfn = access_tdra,
6008       .type = ARM_CP_CONST, .resetvalue = 0 },
6009     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6010       .access = PL0_R, .accessfn = access_tdra,
6011       .type = ARM_CP_CONST, .resetvalue = 0 },
6012     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6013     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6014       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6015       .access = PL1_RW, .accessfn = access_tda,
6016       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6017       .resetvalue = 0 },
6018     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6019      * We don't implement the configurable EL0 access.
6020      */
6021     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6022       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6023       .type = ARM_CP_ALIAS,
6024       .access = PL1_R, .accessfn = access_tda,
6025       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6026     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6027       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6028       .access = PL1_W, .type = ARM_CP_NO_RAW,
6029       .accessfn = access_tdosa,
6030       .writefn = oslar_write },
6031     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6032       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6033       .access = PL1_R, .resetvalue = 10,
6034       .accessfn = access_tdosa,
6035       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6036     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6037     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6038       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6039       .access = PL1_RW, .accessfn = access_tdosa,
6040       .type = ARM_CP_NOP },
6041     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6042      * implement vector catch debug events yet.
6043      */
6044     { .name = "DBGVCR",
6045       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6046       .access = PL1_RW, .accessfn = access_tda,
6047       .type = ARM_CP_NOP },
6048     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6049      * to save and restore a 32-bit guest's DBGVCR)
6050      */
6051     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6052       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6053       .access = PL2_RW, .accessfn = access_tda,
6054       .type = ARM_CP_NOP },
6055     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6056      * Channel but Linux may try to access this register. The 32-bit
6057      * alias is DBGDCCINT.
6058      */
6059     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6060       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6061       .access = PL1_RW, .accessfn = access_tda,
6062       .type = ARM_CP_NOP },
6063     REGINFO_SENTINEL
6064 };
6065 
6066 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6067     /* 64 bit access versions of the (dummy) debug registers */
6068     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6069       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6070     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6071       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6072     REGINFO_SENTINEL
6073 };
6074 
6075 /* Return the exception level to which exceptions should be taken
6076  * via SVEAccessTrap.  If an exception should be routed through
6077  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6078  * take care of raising that exception.
6079  * C.f. the ARM pseudocode function CheckSVEEnabled.
6080  */
6081 int sve_exception_el(CPUARMState *env, int el)
6082 {
6083 #ifndef CONFIG_USER_ONLY
6084     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6085 
6086     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6087         bool disabled = false;
6088 
6089         /* The CPACR.ZEN controls traps to EL1:
6090          * 0, 2 : trap EL0 and EL1 accesses
6091          * 1    : trap only EL0 accesses
6092          * 3    : trap no accesses
6093          */
6094         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6095             disabled = true;
6096         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6097             disabled = el == 0;
6098         }
6099         if (disabled) {
6100             /* route_to_el2 */
6101             return hcr_el2 & HCR_TGE ? 2 : 1;
6102         }
6103 
6104         /* Check CPACR.FPEN.  */
6105         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6106             disabled = true;
6107         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6108             disabled = el == 0;
6109         }
6110         if (disabled) {
6111             return 0;
6112         }
6113     }
6114 
6115     /* CPTR_EL2.  Since TZ and TFP are positive,
6116      * they will be zero when EL2 is not present.
6117      */
6118     if (el <= 2 && !arm_is_secure_below_el3(env)) {
6119         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6120             return 2;
6121         }
6122         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6123             return 0;
6124         }
6125     }
6126 
6127     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6128     if (arm_feature(env, ARM_FEATURE_EL3)
6129         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6130         return 3;
6131     }
6132 #endif
6133     return 0;
6134 }
6135 
6136 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6137 {
6138     uint32_t end_len;
6139 
6140     end_len = start_len &= 0xf;
6141     if (!test_bit(start_len, cpu->sve_vq_map)) {
6142         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6143         assert(end_len < start_len);
6144     }
6145     return end_len;
6146 }
6147 
6148 /*
6149  * Given that SVE is enabled, return the vector length for EL.
6150  */
6151 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6152 {
6153     ARMCPU *cpu = env_archcpu(env);
6154     uint32_t zcr_len = cpu->sve_max_vq - 1;
6155 
6156     if (el <= 1) {
6157         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6158     }
6159     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6160         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6161     }
6162     if (arm_feature(env, ARM_FEATURE_EL3)) {
6163         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6164     }
6165 
6166     return sve_zcr_get_valid_len(cpu, zcr_len);
6167 }
6168 
6169 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6170                       uint64_t value)
6171 {
6172     int cur_el = arm_current_el(env);
6173     int old_len = sve_zcr_len_for_el(env, cur_el);
6174     int new_len;
6175 
6176     /* Bits other than [3:0] are RAZ/WI.  */
6177     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6178     raw_write(env, ri, value & 0xf);
6179 
6180     /*
6181      * Because we arrived here, we know both FP and SVE are enabled;
6182      * otherwise we would have trapped access to the ZCR_ELn register.
6183      */
6184     new_len = sve_zcr_len_for_el(env, cur_el);
6185     if (new_len < old_len) {
6186         aarch64_sve_narrow_vq(env, new_len + 1);
6187     }
6188 }
6189 
6190 static const ARMCPRegInfo zcr_el1_reginfo = {
6191     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6192     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6193     .access = PL1_RW, .type = ARM_CP_SVE,
6194     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6195     .writefn = zcr_write, .raw_writefn = raw_write
6196 };
6197 
6198 static const ARMCPRegInfo zcr_el2_reginfo = {
6199     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6200     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6201     .access = PL2_RW, .type = ARM_CP_SVE,
6202     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6203     .writefn = zcr_write, .raw_writefn = raw_write
6204 };
6205 
6206 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6207     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6208     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6209     .access = PL2_RW, .type = ARM_CP_SVE,
6210     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6211 };
6212 
6213 static const ARMCPRegInfo zcr_el3_reginfo = {
6214     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6215     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6216     .access = PL3_RW, .type = ARM_CP_SVE,
6217     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6218     .writefn = zcr_write, .raw_writefn = raw_write
6219 };
6220 
6221 void hw_watchpoint_update(ARMCPU *cpu, int n)
6222 {
6223     CPUARMState *env = &cpu->env;
6224     vaddr len = 0;
6225     vaddr wvr = env->cp15.dbgwvr[n];
6226     uint64_t wcr = env->cp15.dbgwcr[n];
6227     int mask;
6228     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6229 
6230     if (env->cpu_watchpoint[n]) {
6231         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6232         env->cpu_watchpoint[n] = NULL;
6233     }
6234 
6235     if (!extract64(wcr, 0, 1)) {
6236         /* E bit clear : watchpoint disabled */
6237         return;
6238     }
6239 
6240     switch (extract64(wcr, 3, 2)) {
6241     case 0:
6242         /* LSC 00 is reserved and must behave as if the wp is disabled */
6243         return;
6244     case 1:
6245         flags |= BP_MEM_READ;
6246         break;
6247     case 2:
6248         flags |= BP_MEM_WRITE;
6249         break;
6250     case 3:
6251         flags |= BP_MEM_ACCESS;
6252         break;
6253     }
6254 
6255     /* Attempts to use both MASK and BAS fields simultaneously are
6256      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6257      * thus generating a watchpoint for every byte in the masked region.
6258      */
6259     mask = extract64(wcr, 24, 4);
6260     if (mask == 1 || mask == 2) {
6261         /* Reserved values of MASK; we must act as if the mask value was
6262          * some non-reserved value, or as if the watchpoint were disabled.
6263          * We choose the latter.
6264          */
6265         return;
6266     } else if (mask) {
6267         /* Watchpoint covers an aligned area up to 2GB in size */
6268         len = 1ULL << mask;
6269         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6270          * whether the watchpoint fires when the unmasked bits match; we opt
6271          * to generate the exceptions.
6272          */
6273         wvr &= ~(len - 1);
6274     } else {
6275         /* Watchpoint covers bytes defined by the byte address select bits */
6276         int bas = extract64(wcr, 5, 8);
6277         int basstart;
6278 
6279         if (extract64(wvr, 2, 1)) {
6280             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6281              * ignored, and BAS[3:0] define which bytes to watch.
6282              */
6283             bas &= 0xf;
6284         }
6285 
6286         if (bas == 0) {
6287             /* This must act as if the watchpoint is disabled */
6288             return;
6289         }
6290 
6291         /* The BAS bits are supposed to be programmed to indicate a contiguous
6292          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6293          * we fire for each byte in the word/doubleword addressed by the WVR.
6294          * We choose to ignore any non-zero bits after the first range of 1s.
6295          */
6296         basstart = ctz32(bas);
6297         len = cto32(bas >> basstart);
6298         wvr += basstart;
6299     }
6300 
6301     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6302                           &env->cpu_watchpoint[n]);
6303 }
6304 
6305 void hw_watchpoint_update_all(ARMCPU *cpu)
6306 {
6307     int i;
6308     CPUARMState *env = &cpu->env;
6309 
6310     /* Completely clear out existing QEMU watchpoints and our array, to
6311      * avoid possible stale entries following migration load.
6312      */
6313     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6314     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6315 
6316     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6317         hw_watchpoint_update(cpu, i);
6318     }
6319 }
6320 
6321 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6322                          uint64_t value)
6323 {
6324     ARMCPU *cpu = env_archcpu(env);
6325     int i = ri->crm;
6326 
6327     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6328      * register reads and behaves as if values written are sign extended.
6329      * Bits [1:0] are RES0.
6330      */
6331     value = sextract64(value, 0, 49) & ~3ULL;
6332 
6333     raw_write(env, ri, value);
6334     hw_watchpoint_update(cpu, i);
6335 }
6336 
6337 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6338                          uint64_t value)
6339 {
6340     ARMCPU *cpu = env_archcpu(env);
6341     int i = ri->crm;
6342 
6343     raw_write(env, ri, value);
6344     hw_watchpoint_update(cpu, i);
6345 }
6346 
6347 void hw_breakpoint_update(ARMCPU *cpu, int n)
6348 {
6349     CPUARMState *env = &cpu->env;
6350     uint64_t bvr = env->cp15.dbgbvr[n];
6351     uint64_t bcr = env->cp15.dbgbcr[n];
6352     vaddr addr;
6353     int bt;
6354     int flags = BP_CPU;
6355 
6356     if (env->cpu_breakpoint[n]) {
6357         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6358         env->cpu_breakpoint[n] = NULL;
6359     }
6360 
6361     if (!extract64(bcr, 0, 1)) {
6362         /* E bit clear : watchpoint disabled */
6363         return;
6364     }
6365 
6366     bt = extract64(bcr, 20, 4);
6367 
6368     switch (bt) {
6369     case 4: /* unlinked address mismatch (reserved if AArch64) */
6370     case 5: /* linked address mismatch (reserved if AArch64) */
6371         qemu_log_mask(LOG_UNIMP,
6372                       "arm: address mismatch breakpoint types not implemented\n");
6373         return;
6374     case 0: /* unlinked address match */
6375     case 1: /* linked address match */
6376     {
6377         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6378          * we behave as if the register was sign extended. Bits [1:0] are
6379          * RES0. The BAS field is used to allow setting breakpoints on 16
6380          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6381          * a bp will fire if the addresses covered by the bp and the addresses
6382          * covered by the insn overlap but the insn doesn't start at the
6383          * start of the bp address range. We choose to require the insn and
6384          * the bp to have the same address. The constraints on writing to
6385          * BAS enforced in dbgbcr_write mean we have only four cases:
6386          *  0b0000  => no breakpoint
6387          *  0b0011  => breakpoint on addr
6388          *  0b1100  => breakpoint on addr + 2
6389          *  0b1111  => breakpoint on addr
6390          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6391          */
6392         int bas = extract64(bcr, 5, 4);
6393         addr = sextract64(bvr, 0, 49) & ~3ULL;
6394         if (bas == 0) {
6395             return;
6396         }
6397         if (bas == 0xc) {
6398             addr += 2;
6399         }
6400         break;
6401     }
6402     case 2: /* unlinked context ID match */
6403     case 8: /* unlinked VMID match (reserved if no EL2) */
6404     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6405         qemu_log_mask(LOG_UNIMP,
6406                       "arm: unlinked context breakpoint types not implemented\n");
6407         return;
6408     case 9: /* linked VMID match (reserved if no EL2) */
6409     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6410     case 3: /* linked context ID match */
6411     default:
6412         /* We must generate no events for Linked context matches (unless
6413          * they are linked to by some other bp/wp, which is handled in
6414          * updates for the linking bp/wp). We choose to also generate no events
6415          * for reserved values.
6416          */
6417         return;
6418     }
6419 
6420     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6421 }
6422 
6423 void hw_breakpoint_update_all(ARMCPU *cpu)
6424 {
6425     int i;
6426     CPUARMState *env = &cpu->env;
6427 
6428     /* Completely clear out existing QEMU breakpoints and our array, to
6429      * avoid possible stale entries following migration load.
6430      */
6431     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6432     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6433 
6434     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6435         hw_breakpoint_update(cpu, i);
6436     }
6437 }
6438 
6439 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6440                          uint64_t value)
6441 {
6442     ARMCPU *cpu = env_archcpu(env);
6443     int i = ri->crm;
6444 
6445     raw_write(env, ri, value);
6446     hw_breakpoint_update(cpu, i);
6447 }
6448 
6449 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6450                          uint64_t value)
6451 {
6452     ARMCPU *cpu = env_archcpu(env);
6453     int i = ri->crm;
6454 
6455     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6456      * copy of BAS[0].
6457      */
6458     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6459     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6460 
6461     raw_write(env, ri, value);
6462     hw_breakpoint_update(cpu, i);
6463 }
6464 
6465 static void define_debug_regs(ARMCPU *cpu)
6466 {
6467     /* Define v7 and v8 architectural debug registers.
6468      * These are just dummy implementations for now.
6469      */
6470     int i;
6471     int wrps, brps, ctx_cmps;
6472     ARMCPRegInfo dbgdidr = {
6473         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6474         .access = PL0_R, .accessfn = access_tda,
6475         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6476     };
6477 
6478     /* Note that all these register fields hold "number of Xs minus 1". */
6479     brps = arm_num_brps(cpu);
6480     wrps = arm_num_wrps(cpu);
6481     ctx_cmps = arm_num_ctx_cmps(cpu);
6482 
6483     assert(ctx_cmps <= brps);
6484 
6485     define_one_arm_cp_reg(cpu, &dbgdidr);
6486     define_arm_cp_regs(cpu, debug_cp_reginfo);
6487 
6488     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6489         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6490     }
6491 
6492     for (i = 0; i < brps; i++) {
6493         ARMCPRegInfo dbgregs[] = {
6494             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6495               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6496               .access = PL1_RW, .accessfn = access_tda,
6497               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6498               .writefn = dbgbvr_write, .raw_writefn = raw_write
6499             },
6500             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6501               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6502               .access = PL1_RW, .accessfn = access_tda,
6503               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6504               .writefn = dbgbcr_write, .raw_writefn = raw_write
6505             },
6506             REGINFO_SENTINEL
6507         };
6508         define_arm_cp_regs(cpu, dbgregs);
6509     }
6510 
6511     for (i = 0; i < wrps; i++) {
6512         ARMCPRegInfo dbgregs[] = {
6513             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6514               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6515               .access = PL1_RW, .accessfn = access_tda,
6516               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6517               .writefn = dbgwvr_write, .raw_writefn = raw_write
6518             },
6519             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6520               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6521               .access = PL1_RW, .accessfn = access_tda,
6522               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6523               .writefn = dbgwcr_write, .raw_writefn = raw_write
6524             },
6525             REGINFO_SENTINEL
6526         };
6527         define_arm_cp_regs(cpu, dbgregs);
6528     }
6529 }
6530 
6531 static void define_pmu_regs(ARMCPU *cpu)
6532 {
6533     /*
6534      * v7 performance monitor control register: same implementor
6535      * field as main ID register, and we implement four counters in
6536      * addition to the cycle count register.
6537      */
6538     unsigned int i, pmcrn = 4;
6539     ARMCPRegInfo pmcr = {
6540         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6541         .access = PL0_RW,
6542         .type = ARM_CP_IO | ARM_CP_ALIAS,
6543         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6544         .accessfn = pmreg_access, .writefn = pmcr_write,
6545         .raw_writefn = raw_write,
6546     };
6547     ARMCPRegInfo pmcr64 = {
6548         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6549         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6550         .access = PL0_RW, .accessfn = pmreg_access,
6551         .type = ARM_CP_IO,
6552         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6553         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6554                       PMCRLC,
6555         .writefn = pmcr_write, .raw_writefn = raw_write,
6556     };
6557     define_one_arm_cp_reg(cpu, &pmcr);
6558     define_one_arm_cp_reg(cpu, &pmcr64);
6559     for (i = 0; i < pmcrn; i++) {
6560         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6561         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6562         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6563         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6564         ARMCPRegInfo pmev_regs[] = {
6565             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6566               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6567               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6568               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6569               .accessfn = pmreg_access },
6570             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6571               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6572               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6573               .type = ARM_CP_IO,
6574               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6575               .raw_readfn = pmevcntr_rawread,
6576               .raw_writefn = pmevcntr_rawwrite },
6577             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6578               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6579               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6580               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6581               .accessfn = pmreg_access },
6582             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6583               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6584               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6585               .type = ARM_CP_IO,
6586               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6587               .raw_writefn = pmevtyper_rawwrite },
6588             REGINFO_SENTINEL
6589         };
6590         define_arm_cp_regs(cpu, pmev_regs);
6591         g_free(pmevcntr_name);
6592         g_free(pmevcntr_el0_name);
6593         g_free(pmevtyper_name);
6594         g_free(pmevtyper_el0_name);
6595     }
6596     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6597         ARMCPRegInfo v81_pmu_regs[] = {
6598             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6599               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6600               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6601               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6602             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6603               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6604               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6605               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6606             REGINFO_SENTINEL
6607         };
6608         define_arm_cp_regs(cpu, v81_pmu_regs);
6609     }
6610     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6611         static const ARMCPRegInfo v84_pmmir = {
6612             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6613             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6614             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6615             .resetvalue = 0
6616         };
6617         define_one_arm_cp_reg(cpu, &v84_pmmir);
6618     }
6619 }
6620 
6621 /* We don't know until after realize whether there's a GICv3
6622  * attached, and that is what registers the gicv3 sysregs.
6623  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6624  * at runtime.
6625  */
6626 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6627 {
6628     ARMCPU *cpu = env_archcpu(env);
6629     uint64_t pfr1 = cpu->id_pfr1;
6630 
6631     if (env->gicv3state) {
6632         pfr1 |= 1 << 28;
6633     }
6634     return pfr1;
6635 }
6636 
6637 #ifndef CONFIG_USER_ONLY
6638 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6639 {
6640     ARMCPU *cpu = env_archcpu(env);
6641     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6642 
6643     if (env->gicv3state) {
6644         pfr0 |= 1 << 24;
6645     }
6646     return pfr0;
6647 }
6648 #endif
6649 
6650 /* Shared logic between LORID and the rest of the LOR* registers.
6651  * Secure state has already been delt with.
6652  */
6653 static CPAccessResult access_lor_ns(CPUARMState *env)
6654 {
6655     int el = arm_current_el(env);
6656 
6657     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6658         return CP_ACCESS_TRAP_EL2;
6659     }
6660     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6661         return CP_ACCESS_TRAP_EL3;
6662     }
6663     return CP_ACCESS_OK;
6664 }
6665 
6666 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6667                                    bool isread)
6668 {
6669     if (arm_is_secure_below_el3(env)) {
6670         /* Access ok in secure mode.  */
6671         return CP_ACCESS_OK;
6672     }
6673     return access_lor_ns(env);
6674 }
6675 
6676 static CPAccessResult access_lor_other(CPUARMState *env,
6677                                        const ARMCPRegInfo *ri, bool isread)
6678 {
6679     if (arm_is_secure_below_el3(env)) {
6680         /* Access denied in secure mode.  */
6681         return CP_ACCESS_TRAP;
6682     }
6683     return access_lor_ns(env);
6684 }
6685 
6686 /*
6687  * A trivial implementation of ARMv8.1-LOR leaves all of these
6688  * registers fixed at 0, which indicates that there are zero
6689  * supported Limited Ordering regions.
6690  */
6691 static const ARMCPRegInfo lor_reginfo[] = {
6692     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6693       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6694       .access = PL1_RW, .accessfn = access_lor_other,
6695       .type = ARM_CP_CONST, .resetvalue = 0 },
6696     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6697       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6698       .access = PL1_RW, .accessfn = access_lor_other,
6699       .type = ARM_CP_CONST, .resetvalue = 0 },
6700     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6701       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6702       .access = PL1_RW, .accessfn = access_lor_other,
6703       .type = ARM_CP_CONST, .resetvalue = 0 },
6704     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6705       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6706       .access = PL1_RW, .accessfn = access_lor_other,
6707       .type = ARM_CP_CONST, .resetvalue = 0 },
6708     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6710       .access = PL1_R, .accessfn = access_lorid,
6711       .type = ARM_CP_CONST, .resetvalue = 0 },
6712     REGINFO_SENTINEL
6713 };
6714 
6715 #ifdef TARGET_AARCH64
6716 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6717                                    bool isread)
6718 {
6719     int el = arm_current_el(env);
6720 
6721     if (el < 2 &&
6722         arm_feature(env, ARM_FEATURE_EL2) &&
6723         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6724         return CP_ACCESS_TRAP_EL2;
6725     }
6726     if (el < 3 &&
6727         arm_feature(env, ARM_FEATURE_EL3) &&
6728         !(env->cp15.scr_el3 & SCR_APK)) {
6729         return CP_ACCESS_TRAP_EL3;
6730     }
6731     return CP_ACCESS_OK;
6732 }
6733 
6734 static const ARMCPRegInfo pauth_reginfo[] = {
6735     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6736       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6737       .access = PL1_RW, .accessfn = access_pauth,
6738       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6739     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6740       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6741       .access = PL1_RW, .accessfn = access_pauth,
6742       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6743     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6744       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6745       .access = PL1_RW, .accessfn = access_pauth,
6746       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6747     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6748       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6749       .access = PL1_RW, .accessfn = access_pauth,
6750       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6751     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6752       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6753       .access = PL1_RW, .accessfn = access_pauth,
6754       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6755     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6756       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6757       .access = PL1_RW, .accessfn = access_pauth,
6758       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6759     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6760       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6761       .access = PL1_RW, .accessfn = access_pauth,
6762       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6763     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6764       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6765       .access = PL1_RW, .accessfn = access_pauth,
6766       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6767     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6768       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6769       .access = PL1_RW, .accessfn = access_pauth,
6770       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6771     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6772       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6773       .access = PL1_RW, .accessfn = access_pauth,
6774       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6775     REGINFO_SENTINEL
6776 };
6777 
6778 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6779 {
6780     Error *err = NULL;
6781     uint64_t ret;
6782 
6783     /* Success sets NZCV = 0000.  */
6784     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6785 
6786     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6787         /*
6788          * ??? Failed, for unknown reasons in the crypto subsystem.
6789          * The best we can do is log the reason and return the
6790          * timed-out indication to the guest.  There is no reason
6791          * we know to expect this failure to be transitory, so the
6792          * guest may well hang retrying the operation.
6793          */
6794         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6795                       ri->name, error_get_pretty(err));
6796         error_free(err);
6797 
6798         env->ZF = 0; /* NZCF = 0100 */
6799         return 0;
6800     }
6801     return ret;
6802 }
6803 
6804 /* We do not support re-seeding, so the two registers operate the same.  */
6805 static const ARMCPRegInfo rndr_reginfo[] = {
6806     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6807       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6808       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6809       .access = PL0_R, .readfn = rndr_readfn },
6810     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6811       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6812       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6813       .access = PL0_R, .readfn = rndr_readfn },
6814     REGINFO_SENTINEL
6815 };
6816 
6817 #ifndef CONFIG_USER_ONLY
6818 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6819                           uint64_t value)
6820 {
6821     ARMCPU *cpu = env_archcpu(env);
6822     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6823     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6824     uint64_t vaddr_in = (uint64_t) value;
6825     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6826     void *haddr;
6827     int mem_idx = cpu_mmu_index(env, false);
6828 
6829     /* This won't be crossing page boundaries */
6830     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6831     if (haddr) {
6832 
6833         ram_addr_t offset;
6834         MemoryRegion *mr;
6835 
6836         /* RCU lock is already being held */
6837         mr = memory_region_from_host(haddr, &offset);
6838 
6839         if (mr) {
6840             memory_region_writeback(mr, offset, dline_size);
6841         }
6842     }
6843 }
6844 
6845 static const ARMCPRegInfo dcpop_reg[] = {
6846     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6847       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6848       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6849       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6850     REGINFO_SENTINEL
6851 };
6852 
6853 static const ARMCPRegInfo dcpodp_reg[] = {
6854     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6855       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6856       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6857       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6858     REGINFO_SENTINEL
6859 };
6860 #endif /*CONFIG_USER_ONLY*/
6861 
6862 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6863                                        bool isread)
6864 {
6865     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6866         return CP_ACCESS_TRAP_EL2;
6867     }
6868 
6869     return CP_ACCESS_OK;
6870 }
6871 
6872 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6873                                  bool isread)
6874 {
6875     int el = arm_current_el(env);
6876 
6877     if (el < 2 &&
6878         arm_feature(env, ARM_FEATURE_EL2) &&
6879         !(arm_hcr_el2_eff(env) & HCR_ATA)) {
6880         return CP_ACCESS_TRAP_EL2;
6881     }
6882     if (el < 3 &&
6883         arm_feature(env, ARM_FEATURE_EL3) &&
6884         !(env->cp15.scr_el3 & SCR_ATA)) {
6885         return CP_ACCESS_TRAP_EL3;
6886     }
6887     return CP_ACCESS_OK;
6888 }
6889 
6890 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6891 {
6892     return env->pstate & PSTATE_TCO;
6893 }
6894 
6895 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6896 {
6897     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6898 }
6899 
6900 static const ARMCPRegInfo mte_reginfo[] = {
6901     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6902       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6903       .access = PL1_RW, .accessfn = access_mte,
6904       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6905     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6907       .access = PL1_RW, .accessfn = access_mte,
6908       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6909     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6911       .access = PL2_RW, .accessfn = access_mte,
6912       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6913     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6915       .access = PL3_RW,
6916       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6917     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6918       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6919       .access = PL1_RW, .accessfn = access_mte,
6920       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6921     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6922       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6923       .access = PL1_RW, .accessfn = access_mte,
6924       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6925     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6926       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6927       .access = PL1_R, .accessfn = access_aa64_tid5,
6928       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6929     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6930       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6931       .type = ARM_CP_NO_RAW,
6932       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6933     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6934       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6935       .type = ARM_CP_NOP, .access = PL1_W,
6936       .accessfn = aa64_cacheop_poc_access },
6937     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6938       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6939       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6940     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6941       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6942       .type = ARM_CP_NOP, .access = PL1_W,
6943       .accessfn = aa64_cacheop_poc_access },
6944     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6945       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6946       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6947     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6948       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6949       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6950     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6951       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6952       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6953     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6954       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6955       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6956     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6957       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6958       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6959     REGINFO_SENTINEL
6960 };
6961 
6962 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6963     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6964       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6965       .type = ARM_CP_CONST, .access = PL0_RW, },
6966     REGINFO_SENTINEL
6967 };
6968 
6969 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6970     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6971       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6972       .type = ARM_CP_NOP, .access = PL0_W,
6973       .accessfn = aa64_cacheop_poc_access },
6974     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6976       .type = ARM_CP_NOP, .access = PL0_W,
6977       .accessfn = aa64_cacheop_poc_access },
6978     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
6979       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
6980       .type = ARM_CP_NOP, .access = PL0_W,
6981       .accessfn = aa64_cacheop_poc_access },
6982     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
6983       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
6984       .type = ARM_CP_NOP, .access = PL0_W,
6985       .accessfn = aa64_cacheop_poc_access },
6986     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
6987       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
6988       .type = ARM_CP_NOP, .access = PL0_W,
6989       .accessfn = aa64_cacheop_poc_access },
6990     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
6991       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
6992       .type = ARM_CP_NOP, .access = PL0_W,
6993       .accessfn = aa64_cacheop_poc_access },
6994     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
6995       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
6996       .type = ARM_CP_NOP, .access = PL0_W,
6997       .accessfn = aa64_cacheop_poc_access },
6998     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
6999       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7000       .type = ARM_CP_NOP, .access = PL0_W,
7001       .accessfn = aa64_cacheop_poc_access },
7002     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7003       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7004       .access = PL0_W, .type = ARM_CP_DC_GVA,
7005 #ifndef CONFIG_USER_ONLY
7006       /* Avoid overhead of an access check that always passes in user-mode */
7007       .accessfn = aa64_zva_access,
7008 #endif
7009     },
7010     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7011       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7012       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7013 #ifndef CONFIG_USER_ONLY
7014       /* Avoid overhead of an access check that always passes in user-mode */
7015       .accessfn = aa64_zva_access,
7016 #endif
7017     },
7018     REGINFO_SENTINEL
7019 };
7020 
7021 #endif
7022 
7023 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7024                                      bool isread)
7025 {
7026     int el = arm_current_el(env);
7027 
7028     if (el == 0) {
7029         uint64_t sctlr = arm_sctlr(env, el);
7030         if (!(sctlr & SCTLR_EnRCTX)) {
7031             return CP_ACCESS_TRAP;
7032         }
7033     } else if (el == 1) {
7034         uint64_t hcr = arm_hcr_el2_eff(env);
7035         if (hcr & HCR_NV) {
7036             return CP_ACCESS_TRAP_EL2;
7037         }
7038     }
7039     return CP_ACCESS_OK;
7040 }
7041 
7042 static const ARMCPRegInfo predinv_reginfo[] = {
7043     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7044       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7045       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7046     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7047       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7048       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7049     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7050       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7051       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7052     /*
7053      * Note the AArch32 opcodes have a different OPC1.
7054      */
7055     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7056       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7057       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7058     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7059       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7060       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7061     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7062       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7063       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7064     REGINFO_SENTINEL
7065 };
7066 
7067 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7068 {
7069     /* Read the high 32 bits of the current CCSIDR */
7070     return extract64(ccsidr_read(env, ri), 32, 32);
7071 }
7072 
7073 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7074     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7075       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7076       .access = PL1_R,
7077       .accessfn = access_aa64_tid2,
7078       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7079     REGINFO_SENTINEL
7080 };
7081 
7082 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7083                                        bool isread)
7084 {
7085     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7086         return CP_ACCESS_TRAP_EL2;
7087     }
7088 
7089     return CP_ACCESS_OK;
7090 }
7091 
7092 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7093                                        bool isread)
7094 {
7095     if (arm_feature(env, ARM_FEATURE_V8)) {
7096         return access_aa64_tid3(env, ri, isread);
7097     }
7098 
7099     return CP_ACCESS_OK;
7100 }
7101 
7102 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7103                                      bool isread)
7104 {
7105     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7106         return CP_ACCESS_TRAP_EL2;
7107     }
7108 
7109     return CP_ACCESS_OK;
7110 }
7111 
7112 static const ARMCPRegInfo jazelle_regs[] = {
7113     { .name = "JIDR",
7114       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7115       .access = PL1_R, .accessfn = access_jazelle,
7116       .type = ARM_CP_CONST, .resetvalue = 0 },
7117     { .name = "JOSCR",
7118       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7119       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7120     { .name = "JMCR",
7121       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7122       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7123     REGINFO_SENTINEL
7124 };
7125 
7126 static const ARMCPRegInfo vhe_reginfo[] = {
7127     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7128       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7129       .access = PL2_RW,
7130       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7131     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7132       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7133       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7134       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7135 #ifndef CONFIG_USER_ONLY
7136     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7137       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7138       .fieldoffset =
7139         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7140       .type = ARM_CP_IO, .access = PL2_RW,
7141       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7142     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7143       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7144       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7145       .resetfn = gt_hv_timer_reset,
7146       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7147     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7148       .type = ARM_CP_IO,
7149       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7150       .access = PL2_RW,
7151       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7152       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7153     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7154       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7155       .type = ARM_CP_IO | ARM_CP_ALIAS,
7156       .access = PL2_RW, .accessfn = e2h_access,
7157       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7158       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7159     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7160       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7161       .type = ARM_CP_IO | ARM_CP_ALIAS,
7162       .access = PL2_RW, .accessfn = e2h_access,
7163       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7164       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7165     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7167       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7168       .access = PL2_RW, .accessfn = e2h_access,
7169       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7170     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7172       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7173       .access = PL2_RW, .accessfn = e2h_access,
7174       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7175     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7176       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7177       .type = ARM_CP_IO | ARM_CP_ALIAS,
7178       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7179       .access = PL2_RW, .accessfn = e2h_access,
7180       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7181     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7182       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7183       .type = ARM_CP_IO | ARM_CP_ALIAS,
7184       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7185       .access = PL2_RW, .accessfn = e2h_access,
7186       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7187 #endif
7188     REGINFO_SENTINEL
7189 };
7190 
7191 #ifndef CONFIG_USER_ONLY
7192 static const ARMCPRegInfo ats1e1_reginfo[] = {
7193     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7194       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7195       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7196       .writefn = ats_write64 },
7197     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7198       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7199       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7200       .writefn = ats_write64 },
7201     REGINFO_SENTINEL
7202 };
7203 
7204 static const ARMCPRegInfo ats1cp_reginfo[] = {
7205     { .name = "ATS1CPRP",
7206       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7207       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7208       .writefn = ats_write },
7209     { .name = "ATS1CPWP",
7210       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7211       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7212       .writefn = ats_write },
7213     REGINFO_SENTINEL
7214 };
7215 #endif
7216 
7217 /*
7218  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7219  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7220  * is non-zero, which is never for ARMv7, optionally in ARMv8
7221  * and mandatorily for ARMv8.2 and up.
7222  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7223  * implementation is RAZ/WI we can ignore this detail, as we
7224  * do for ACTLR.
7225  */
7226 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7227     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7228       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7229       .access = PL1_RW, .accessfn = access_tacr,
7230       .type = ARM_CP_CONST, .resetvalue = 0 },
7231     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7232       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7233       .access = PL2_RW, .type = ARM_CP_CONST,
7234       .resetvalue = 0 },
7235     REGINFO_SENTINEL
7236 };
7237 
7238 void register_cp_regs_for_features(ARMCPU *cpu)
7239 {
7240     /* Register all the coprocessor registers based on feature bits */
7241     CPUARMState *env = &cpu->env;
7242     if (arm_feature(env, ARM_FEATURE_M)) {
7243         /* M profile has no coprocessor registers */
7244         return;
7245     }
7246 
7247     define_arm_cp_regs(cpu, cp_reginfo);
7248     if (!arm_feature(env, ARM_FEATURE_V8)) {
7249         /* Must go early as it is full of wildcards that may be
7250          * overridden by later definitions.
7251          */
7252         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7253     }
7254 
7255     if (arm_feature(env, ARM_FEATURE_V6)) {
7256         /* The ID registers all have impdef reset values */
7257         ARMCPRegInfo v6_idregs[] = {
7258             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7259               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7260               .access = PL1_R, .type = ARM_CP_CONST,
7261               .accessfn = access_aa32_tid3,
7262               .resetvalue = cpu->id_pfr0 },
7263             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7264              * the value of the GIC field until after we define these regs.
7265              */
7266             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7267               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7268               .access = PL1_R, .type = ARM_CP_NO_RAW,
7269               .accessfn = access_aa32_tid3,
7270               .readfn = id_pfr1_read,
7271               .writefn = arm_cp_write_ignore },
7272             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7274               .access = PL1_R, .type = ARM_CP_CONST,
7275               .accessfn = access_aa32_tid3,
7276               .resetvalue = cpu->isar.id_dfr0 },
7277             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7278               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7279               .access = PL1_R, .type = ARM_CP_CONST,
7280               .accessfn = access_aa32_tid3,
7281               .resetvalue = cpu->id_afr0 },
7282             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7284               .access = PL1_R, .type = ARM_CP_CONST,
7285               .accessfn = access_aa32_tid3,
7286               .resetvalue = cpu->isar.id_mmfr0 },
7287             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7288               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7289               .access = PL1_R, .type = ARM_CP_CONST,
7290               .accessfn = access_aa32_tid3,
7291               .resetvalue = cpu->isar.id_mmfr1 },
7292             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7293               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7294               .access = PL1_R, .type = ARM_CP_CONST,
7295               .accessfn = access_aa32_tid3,
7296               .resetvalue = cpu->isar.id_mmfr2 },
7297             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7298               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7299               .access = PL1_R, .type = ARM_CP_CONST,
7300               .accessfn = access_aa32_tid3,
7301               .resetvalue = cpu->isar.id_mmfr3 },
7302             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7303               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7304               .access = PL1_R, .type = ARM_CP_CONST,
7305               .accessfn = access_aa32_tid3,
7306               .resetvalue = cpu->isar.id_isar0 },
7307             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7308               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7309               .access = PL1_R, .type = ARM_CP_CONST,
7310               .accessfn = access_aa32_tid3,
7311               .resetvalue = cpu->isar.id_isar1 },
7312             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7313               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7314               .access = PL1_R, .type = ARM_CP_CONST,
7315               .accessfn = access_aa32_tid3,
7316               .resetvalue = cpu->isar.id_isar2 },
7317             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7318               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7319               .access = PL1_R, .type = ARM_CP_CONST,
7320               .accessfn = access_aa32_tid3,
7321               .resetvalue = cpu->isar.id_isar3 },
7322             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7323               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7324               .access = PL1_R, .type = ARM_CP_CONST,
7325               .accessfn = access_aa32_tid3,
7326               .resetvalue = cpu->isar.id_isar4 },
7327             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7328               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7329               .access = PL1_R, .type = ARM_CP_CONST,
7330               .accessfn = access_aa32_tid3,
7331               .resetvalue = cpu->isar.id_isar5 },
7332             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7333               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7334               .access = PL1_R, .type = ARM_CP_CONST,
7335               .accessfn = access_aa32_tid3,
7336               .resetvalue = cpu->isar.id_mmfr4 },
7337             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7338               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7339               .access = PL1_R, .type = ARM_CP_CONST,
7340               .accessfn = access_aa32_tid3,
7341               .resetvalue = cpu->isar.id_isar6 },
7342             REGINFO_SENTINEL
7343         };
7344         define_arm_cp_regs(cpu, v6_idregs);
7345         define_arm_cp_regs(cpu, v6_cp_reginfo);
7346     } else {
7347         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7348     }
7349     if (arm_feature(env, ARM_FEATURE_V6K)) {
7350         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7351     }
7352     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7353         !arm_feature(env, ARM_FEATURE_PMSA)) {
7354         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7355     }
7356     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7357         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7358     }
7359     if (arm_feature(env, ARM_FEATURE_V7)) {
7360         ARMCPRegInfo clidr = {
7361             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7362             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7363             .access = PL1_R, .type = ARM_CP_CONST,
7364             .accessfn = access_aa64_tid2,
7365             .resetvalue = cpu->clidr
7366         };
7367         define_one_arm_cp_reg(cpu, &clidr);
7368         define_arm_cp_regs(cpu, v7_cp_reginfo);
7369         define_debug_regs(cpu);
7370         define_pmu_regs(cpu);
7371     } else {
7372         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7373     }
7374     if (arm_feature(env, ARM_FEATURE_V8)) {
7375         /* AArch64 ID registers, which all have impdef reset values.
7376          * Note that within the ID register ranges the unused slots
7377          * must all RAZ, not UNDEF; future architecture versions may
7378          * define new registers here.
7379          */
7380         ARMCPRegInfo v8_idregs[] = {
7381             /*
7382              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7383              * emulation because we don't know the right value for the
7384              * GIC field until after we define these regs.
7385              */
7386             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7387               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7388               .access = PL1_R,
7389 #ifdef CONFIG_USER_ONLY
7390               .type = ARM_CP_CONST,
7391               .resetvalue = cpu->isar.id_aa64pfr0
7392 #else
7393               .type = ARM_CP_NO_RAW,
7394               .accessfn = access_aa64_tid3,
7395               .readfn = id_aa64pfr0_read,
7396               .writefn = arm_cp_write_ignore
7397 #endif
7398             },
7399             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7400               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7401               .access = PL1_R, .type = ARM_CP_CONST,
7402               .accessfn = access_aa64_tid3,
7403               .resetvalue = cpu->isar.id_aa64pfr1},
7404             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7405               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7406               .access = PL1_R, .type = ARM_CP_CONST,
7407               .accessfn = access_aa64_tid3,
7408               .resetvalue = 0 },
7409             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7410               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7411               .access = PL1_R, .type = ARM_CP_CONST,
7412               .accessfn = access_aa64_tid3,
7413               .resetvalue = 0 },
7414             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7415               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7416               .access = PL1_R, .type = ARM_CP_CONST,
7417               .accessfn = access_aa64_tid3,
7418               /* At present, only SVEver == 0 is defined anyway.  */
7419               .resetvalue = 0 },
7420             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7421               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7422               .access = PL1_R, .type = ARM_CP_CONST,
7423               .accessfn = access_aa64_tid3,
7424               .resetvalue = 0 },
7425             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7426               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7427               .access = PL1_R, .type = ARM_CP_CONST,
7428               .accessfn = access_aa64_tid3,
7429               .resetvalue = 0 },
7430             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7431               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7432               .access = PL1_R, .type = ARM_CP_CONST,
7433               .accessfn = access_aa64_tid3,
7434               .resetvalue = 0 },
7435             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7436               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7437               .access = PL1_R, .type = ARM_CP_CONST,
7438               .accessfn = access_aa64_tid3,
7439               .resetvalue = cpu->isar.id_aa64dfr0 },
7440             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7441               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7442               .access = PL1_R, .type = ARM_CP_CONST,
7443               .accessfn = access_aa64_tid3,
7444               .resetvalue = cpu->isar.id_aa64dfr1 },
7445             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7446               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7447               .access = PL1_R, .type = ARM_CP_CONST,
7448               .accessfn = access_aa64_tid3,
7449               .resetvalue = 0 },
7450             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7451               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7452               .access = PL1_R, .type = ARM_CP_CONST,
7453               .accessfn = access_aa64_tid3,
7454               .resetvalue = 0 },
7455             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7456               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7457               .access = PL1_R, .type = ARM_CP_CONST,
7458               .accessfn = access_aa64_tid3,
7459               .resetvalue = cpu->id_aa64afr0 },
7460             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7461               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7462               .access = PL1_R, .type = ARM_CP_CONST,
7463               .accessfn = access_aa64_tid3,
7464               .resetvalue = cpu->id_aa64afr1 },
7465             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7466               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7467               .access = PL1_R, .type = ARM_CP_CONST,
7468               .accessfn = access_aa64_tid3,
7469               .resetvalue = 0 },
7470             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7471               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7472               .access = PL1_R, .type = ARM_CP_CONST,
7473               .accessfn = access_aa64_tid3,
7474               .resetvalue = 0 },
7475             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7476               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7477               .access = PL1_R, .type = ARM_CP_CONST,
7478               .accessfn = access_aa64_tid3,
7479               .resetvalue = cpu->isar.id_aa64isar0 },
7480             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7481               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7482               .access = PL1_R, .type = ARM_CP_CONST,
7483               .accessfn = access_aa64_tid3,
7484               .resetvalue = cpu->isar.id_aa64isar1 },
7485             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7486               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7487               .access = PL1_R, .type = ARM_CP_CONST,
7488               .accessfn = access_aa64_tid3,
7489               .resetvalue = 0 },
7490             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7491               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7492               .access = PL1_R, .type = ARM_CP_CONST,
7493               .accessfn = access_aa64_tid3,
7494               .resetvalue = 0 },
7495             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7496               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7497               .access = PL1_R, .type = ARM_CP_CONST,
7498               .accessfn = access_aa64_tid3,
7499               .resetvalue = 0 },
7500             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7501               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7502               .access = PL1_R, .type = ARM_CP_CONST,
7503               .accessfn = access_aa64_tid3,
7504               .resetvalue = 0 },
7505             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7506               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7507               .access = PL1_R, .type = ARM_CP_CONST,
7508               .accessfn = access_aa64_tid3,
7509               .resetvalue = 0 },
7510             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7511               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7512               .access = PL1_R, .type = ARM_CP_CONST,
7513               .accessfn = access_aa64_tid3,
7514               .resetvalue = 0 },
7515             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7516               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7517               .access = PL1_R, .type = ARM_CP_CONST,
7518               .accessfn = access_aa64_tid3,
7519               .resetvalue = cpu->isar.id_aa64mmfr0 },
7520             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7521               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7522               .access = PL1_R, .type = ARM_CP_CONST,
7523               .accessfn = access_aa64_tid3,
7524               .resetvalue = cpu->isar.id_aa64mmfr1 },
7525             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7526               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7527               .access = PL1_R, .type = ARM_CP_CONST,
7528               .accessfn = access_aa64_tid3,
7529               .resetvalue = cpu->isar.id_aa64mmfr2 },
7530             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7531               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7532               .access = PL1_R, .type = ARM_CP_CONST,
7533               .accessfn = access_aa64_tid3,
7534               .resetvalue = 0 },
7535             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7536               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7537               .access = PL1_R, .type = ARM_CP_CONST,
7538               .accessfn = access_aa64_tid3,
7539               .resetvalue = 0 },
7540             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7541               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7542               .access = PL1_R, .type = ARM_CP_CONST,
7543               .accessfn = access_aa64_tid3,
7544               .resetvalue = 0 },
7545             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7546               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7547               .access = PL1_R, .type = ARM_CP_CONST,
7548               .accessfn = access_aa64_tid3,
7549               .resetvalue = 0 },
7550             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7551               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7552               .access = PL1_R, .type = ARM_CP_CONST,
7553               .accessfn = access_aa64_tid3,
7554               .resetvalue = 0 },
7555             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7556               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7557               .access = PL1_R, .type = ARM_CP_CONST,
7558               .accessfn = access_aa64_tid3,
7559               .resetvalue = cpu->isar.mvfr0 },
7560             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7561               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7562               .access = PL1_R, .type = ARM_CP_CONST,
7563               .accessfn = access_aa64_tid3,
7564               .resetvalue = cpu->isar.mvfr1 },
7565             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7566               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7567               .access = PL1_R, .type = ARM_CP_CONST,
7568               .accessfn = access_aa64_tid3,
7569               .resetvalue = cpu->isar.mvfr2 },
7570             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7571               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7572               .access = PL1_R, .type = ARM_CP_CONST,
7573               .accessfn = access_aa64_tid3,
7574               .resetvalue = 0 },
7575             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7576               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7577               .access = PL1_R, .type = ARM_CP_CONST,
7578               .accessfn = access_aa64_tid3,
7579               .resetvalue = 0 },
7580             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7581               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7582               .access = PL1_R, .type = ARM_CP_CONST,
7583               .accessfn = access_aa64_tid3,
7584               .resetvalue = 0 },
7585             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7586               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7587               .access = PL1_R, .type = ARM_CP_CONST,
7588               .accessfn = access_aa64_tid3,
7589               .resetvalue = 0 },
7590             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7591               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7592               .access = PL1_R, .type = ARM_CP_CONST,
7593               .accessfn = access_aa64_tid3,
7594               .resetvalue = 0 },
7595             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7596               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7597               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7598               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7599             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7600               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7601               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7602               .resetvalue = cpu->pmceid0 },
7603             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7604               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7605               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7606               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7607             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7608               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7609               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7610               .resetvalue = cpu->pmceid1 },
7611             REGINFO_SENTINEL
7612         };
7613 #ifdef CONFIG_USER_ONLY
7614         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7615             { .name = "ID_AA64PFR0_EL1",
7616               .exported_bits = 0x000f000f00ff0000,
7617               .fixed_bits    = 0x0000000000000011 },
7618             { .name = "ID_AA64PFR1_EL1",
7619               .exported_bits = 0x00000000000000f0 },
7620             { .name = "ID_AA64PFR*_EL1_RESERVED",
7621               .is_glob = true                     },
7622             { .name = "ID_AA64ZFR0_EL1"           },
7623             { .name = "ID_AA64MMFR0_EL1",
7624               .fixed_bits    = 0x00000000ff000000 },
7625             { .name = "ID_AA64MMFR1_EL1"          },
7626             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7627               .is_glob = true                     },
7628             { .name = "ID_AA64DFR0_EL1",
7629               .fixed_bits    = 0x0000000000000006 },
7630             { .name = "ID_AA64DFR1_EL1"           },
7631             { .name = "ID_AA64DFR*_EL1_RESERVED",
7632               .is_glob = true                     },
7633             { .name = "ID_AA64AFR*",
7634               .is_glob = true                     },
7635             { .name = "ID_AA64ISAR0_EL1",
7636               .exported_bits = 0x00fffffff0fffff0 },
7637             { .name = "ID_AA64ISAR1_EL1",
7638               .exported_bits = 0x000000f0ffffffff },
7639             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7640               .is_glob = true                     },
7641             REGUSERINFO_SENTINEL
7642         };
7643         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7644 #endif
7645         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7646         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7647             !arm_feature(env, ARM_FEATURE_EL2)) {
7648             ARMCPRegInfo rvbar = {
7649                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7650                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7651                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7652             };
7653             define_one_arm_cp_reg(cpu, &rvbar);
7654         }
7655         define_arm_cp_regs(cpu, v8_idregs);
7656         define_arm_cp_regs(cpu, v8_cp_reginfo);
7657     }
7658     if (arm_feature(env, ARM_FEATURE_EL2)) {
7659         uint64_t vmpidr_def = mpidr_read_val(env);
7660         ARMCPRegInfo vpidr_regs[] = {
7661             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7662               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7663               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7664               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7665               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7666             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7667               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7668               .access = PL2_RW, .resetvalue = cpu->midr,
7669               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7670             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7671               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7672               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7673               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7674               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7675             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7676               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7677               .access = PL2_RW,
7678               .resetvalue = vmpidr_def,
7679               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7680             REGINFO_SENTINEL
7681         };
7682         define_arm_cp_regs(cpu, vpidr_regs);
7683         define_arm_cp_regs(cpu, el2_cp_reginfo);
7684         if (arm_feature(env, ARM_FEATURE_V8)) {
7685             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7686         }
7687         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7688         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7689             ARMCPRegInfo rvbar = {
7690                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7691                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7692                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7693             };
7694             define_one_arm_cp_reg(cpu, &rvbar);
7695         }
7696     } else {
7697         /* If EL2 is missing but higher ELs are enabled, we need to
7698          * register the no_el2 reginfos.
7699          */
7700         if (arm_feature(env, ARM_FEATURE_EL3)) {
7701             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7702              * of MIDR_EL1 and MPIDR_EL1.
7703              */
7704             ARMCPRegInfo vpidr_regs[] = {
7705                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7706                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7707                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7708                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7709                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7710                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7711                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7712                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7713                   .type = ARM_CP_NO_RAW,
7714                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7715                 REGINFO_SENTINEL
7716             };
7717             define_arm_cp_regs(cpu, vpidr_regs);
7718             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7719             if (arm_feature(env, ARM_FEATURE_V8)) {
7720                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7721             }
7722         }
7723     }
7724     if (arm_feature(env, ARM_FEATURE_EL3)) {
7725         define_arm_cp_regs(cpu, el3_cp_reginfo);
7726         ARMCPRegInfo el3_regs[] = {
7727             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7728               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7729               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7730             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7731               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7732               .access = PL3_RW,
7733               .raw_writefn = raw_write, .writefn = sctlr_write,
7734               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7735               .resetvalue = cpu->reset_sctlr },
7736             REGINFO_SENTINEL
7737         };
7738 
7739         define_arm_cp_regs(cpu, el3_regs);
7740     }
7741     /* The behaviour of NSACR is sufficiently various that we don't
7742      * try to describe it in a single reginfo:
7743      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7744      *     reads as constant 0xc00 from NS EL1 and NS EL2
7745      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7746      *  if v7 without EL3, register doesn't exist
7747      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7748      */
7749     if (arm_feature(env, ARM_FEATURE_EL3)) {
7750         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7751             ARMCPRegInfo nsacr = {
7752                 .name = "NSACR", .type = ARM_CP_CONST,
7753                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7754                 .access = PL1_RW, .accessfn = nsacr_access,
7755                 .resetvalue = 0xc00
7756             };
7757             define_one_arm_cp_reg(cpu, &nsacr);
7758         } else {
7759             ARMCPRegInfo nsacr = {
7760                 .name = "NSACR",
7761                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7762                 .access = PL3_RW | PL1_R,
7763                 .resetvalue = 0,
7764                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7765             };
7766             define_one_arm_cp_reg(cpu, &nsacr);
7767         }
7768     } else {
7769         if (arm_feature(env, ARM_FEATURE_V8)) {
7770             ARMCPRegInfo nsacr = {
7771                 .name = "NSACR", .type = ARM_CP_CONST,
7772                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7773                 .access = PL1_R,
7774                 .resetvalue = 0xc00
7775             };
7776             define_one_arm_cp_reg(cpu, &nsacr);
7777         }
7778     }
7779 
7780     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7781         if (arm_feature(env, ARM_FEATURE_V6)) {
7782             /* PMSAv6 not implemented */
7783             assert(arm_feature(env, ARM_FEATURE_V7));
7784             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7785             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7786         } else {
7787             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7788         }
7789     } else {
7790         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7791         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7792         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7793         if (cpu_isar_feature(aa32_hpd, cpu)) {
7794             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7795         }
7796     }
7797     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7798         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7799     }
7800     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7801         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7802     }
7803     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7804         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7805     }
7806     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7807         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7808     }
7809     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7810         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7811     }
7812     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7813         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7814     }
7815     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7816         define_arm_cp_regs(cpu, omap_cp_reginfo);
7817     }
7818     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7819         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7820     }
7821     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7822         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7823     }
7824     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7825         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7826     }
7827     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7828         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7829     }
7830     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7831         define_arm_cp_regs(cpu, jazelle_regs);
7832     }
7833     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7834      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7835      * be read-only (ie write causes UNDEF exception).
7836      */
7837     {
7838         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7839             /* Pre-v8 MIDR space.
7840              * Note that the MIDR isn't a simple constant register because
7841              * of the TI925 behaviour where writes to another register can
7842              * cause the MIDR value to change.
7843              *
7844              * Unimplemented registers in the c15 0 0 0 space default to
7845              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7846              * and friends override accordingly.
7847              */
7848             { .name = "MIDR",
7849               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7850               .access = PL1_R, .resetvalue = cpu->midr,
7851               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7852               .readfn = midr_read,
7853               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7854               .type = ARM_CP_OVERRIDE },
7855             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7856             { .name = "DUMMY",
7857               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7858               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7859             { .name = "DUMMY",
7860               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7861               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7862             { .name = "DUMMY",
7863               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7864               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7865             { .name = "DUMMY",
7866               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7867               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7868             { .name = "DUMMY",
7869               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7870               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7871             REGINFO_SENTINEL
7872         };
7873         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7874             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7875               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7876               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7877               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7878               .readfn = midr_read },
7879             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7880             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7881               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7882               .access = PL1_R, .resetvalue = cpu->midr },
7883             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7884               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7885               .access = PL1_R, .resetvalue = cpu->midr },
7886             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7887               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7888               .access = PL1_R,
7889               .accessfn = access_aa64_tid1,
7890               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7891             REGINFO_SENTINEL
7892         };
7893         ARMCPRegInfo id_cp_reginfo[] = {
7894             /* These are common to v8 and pre-v8 */
7895             { .name = "CTR",
7896               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7897               .access = PL1_R, .accessfn = ctr_el0_access,
7898               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7899             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7900               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7901               .access = PL0_R, .accessfn = ctr_el0_access,
7902               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7903             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7904             { .name = "TCMTR",
7905               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7906               .access = PL1_R,
7907               .accessfn = access_aa32_tid1,
7908               .type = ARM_CP_CONST, .resetvalue = 0 },
7909             REGINFO_SENTINEL
7910         };
7911         /* TLBTR is specific to VMSA */
7912         ARMCPRegInfo id_tlbtr_reginfo = {
7913               .name = "TLBTR",
7914               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7915               .access = PL1_R,
7916               .accessfn = access_aa32_tid1,
7917               .type = ARM_CP_CONST, .resetvalue = 0,
7918         };
7919         /* MPUIR is specific to PMSA V6+ */
7920         ARMCPRegInfo id_mpuir_reginfo = {
7921               .name = "MPUIR",
7922               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7923               .access = PL1_R, .type = ARM_CP_CONST,
7924               .resetvalue = cpu->pmsav7_dregion << 8
7925         };
7926         ARMCPRegInfo crn0_wi_reginfo = {
7927             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7928             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7929             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7930         };
7931 #ifdef CONFIG_USER_ONLY
7932         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7933             { .name = "MIDR_EL1",
7934               .exported_bits = 0x00000000ffffffff },
7935             { .name = "REVIDR_EL1"                },
7936             REGUSERINFO_SENTINEL
7937         };
7938         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7939 #endif
7940         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7941             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7942             ARMCPRegInfo *r;
7943             /* Register the blanket "writes ignored" value first to cover the
7944              * whole space. Then update the specific ID registers to allow write
7945              * access, so that they ignore writes rather than causing them to
7946              * UNDEF.
7947              */
7948             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7949             for (r = id_pre_v8_midr_cp_reginfo;
7950                  r->type != ARM_CP_SENTINEL; r++) {
7951                 r->access = PL1_RW;
7952             }
7953             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7954                 r->access = PL1_RW;
7955             }
7956             id_mpuir_reginfo.access = PL1_RW;
7957             id_tlbtr_reginfo.access = PL1_RW;
7958         }
7959         if (arm_feature(env, ARM_FEATURE_V8)) {
7960             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7961         } else {
7962             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7963         }
7964         define_arm_cp_regs(cpu, id_cp_reginfo);
7965         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7966             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7967         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7968             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7969         }
7970     }
7971 
7972     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7973         ARMCPRegInfo mpidr_cp_reginfo[] = {
7974             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7975               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7976               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7977             REGINFO_SENTINEL
7978         };
7979 #ifdef CONFIG_USER_ONLY
7980         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7981             { .name = "MPIDR_EL1",
7982               .fixed_bits = 0x0000000080000000 },
7983             REGUSERINFO_SENTINEL
7984         };
7985         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7986 #endif
7987         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7988     }
7989 
7990     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7991         ARMCPRegInfo auxcr_reginfo[] = {
7992             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7993               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7994               .access = PL1_RW, .accessfn = access_tacr,
7995               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7996             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7997               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7998               .access = PL2_RW, .type = ARM_CP_CONST,
7999               .resetvalue = 0 },
8000             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8001               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8002               .access = PL3_RW, .type = ARM_CP_CONST,
8003               .resetvalue = 0 },
8004             REGINFO_SENTINEL
8005         };
8006         define_arm_cp_regs(cpu, auxcr_reginfo);
8007         if (cpu_isar_feature(aa32_ac2, cpu)) {
8008             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8009         }
8010     }
8011 
8012     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8013         /*
8014          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8015          * There are two flavours:
8016          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8017          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8018          *      32-bit register visible to AArch32 at a different encoding
8019          *      to the "flavour 1" register and with the bits rearranged to
8020          *      be able to squash a 64-bit address into the 32-bit view.
8021          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8022          * in future if we support AArch32-only configs of some of the
8023          * AArch64 cores we might need to add a specific feature flag
8024          * to indicate cores with "flavour 2" CBAR.
8025          */
8026         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8027             /* 32 bit view is [31:18] 0...0 [43:32]. */
8028             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8029                 | extract64(cpu->reset_cbar, 32, 12);
8030             ARMCPRegInfo cbar_reginfo[] = {
8031                 { .name = "CBAR",
8032                   .type = ARM_CP_CONST,
8033                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8034                   .access = PL1_R, .resetvalue = cbar32 },
8035                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8036                   .type = ARM_CP_CONST,
8037                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8038                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8039                 REGINFO_SENTINEL
8040             };
8041             /* We don't implement a r/w 64 bit CBAR currently */
8042             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8043             define_arm_cp_regs(cpu, cbar_reginfo);
8044         } else {
8045             ARMCPRegInfo cbar = {
8046                 .name = "CBAR",
8047                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8048                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8049                 .fieldoffset = offsetof(CPUARMState,
8050                                         cp15.c15_config_base_address)
8051             };
8052             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8053                 cbar.access = PL1_R;
8054                 cbar.fieldoffset = 0;
8055                 cbar.type = ARM_CP_CONST;
8056             }
8057             define_one_arm_cp_reg(cpu, &cbar);
8058         }
8059     }
8060 
8061     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8062         ARMCPRegInfo vbar_cp_reginfo[] = {
8063             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8064               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8065               .access = PL1_RW, .writefn = vbar_write,
8066               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8067                                      offsetof(CPUARMState, cp15.vbar_ns) },
8068               .resetvalue = 0 },
8069             REGINFO_SENTINEL
8070         };
8071         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8072     }
8073 
8074     /* Generic registers whose values depend on the implementation */
8075     {
8076         ARMCPRegInfo sctlr = {
8077             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8078             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8079             .access = PL1_RW, .accessfn = access_tvm_trvm,
8080             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8081                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8082             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8083             .raw_writefn = raw_write,
8084         };
8085         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8086             /* Normally we would always end the TB on an SCTLR write, but Linux
8087              * arch/arm/mach-pxa/sleep.S expects two instructions following
8088              * an MMU enable to execute from cache.  Imitate this behaviour.
8089              */
8090             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8091         }
8092         define_one_arm_cp_reg(cpu, &sctlr);
8093     }
8094 
8095     if (cpu_isar_feature(aa64_lor, cpu)) {
8096         define_arm_cp_regs(cpu, lor_reginfo);
8097     }
8098     if (cpu_isar_feature(aa64_pan, cpu)) {
8099         define_one_arm_cp_reg(cpu, &pan_reginfo);
8100     }
8101 #ifndef CONFIG_USER_ONLY
8102     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8103         define_arm_cp_regs(cpu, ats1e1_reginfo);
8104     }
8105     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8106         define_arm_cp_regs(cpu, ats1cp_reginfo);
8107     }
8108 #endif
8109     if (cpu_isar_feature(aa64_uao, cpu)) {
8110         define_one_arm_cp_reg(cpu, &uao_reginfo);
8111     }
8112 
8113     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8114         define_arm_cp_regs(cpu, vhe_reginfo);
8115     }
8116 
8117     if (cpu_isar_feature(aa64_sve, cpu)) {
8118         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8119         if (arm_feature(env, ARM_FEATURE_EL2)) {
8120             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8121         } else {
8122             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8123         }
8124         if (arm_feature(env, ARM_FEATURE_EL3)) {
8125             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8126         }
8127     }
8128 
8129 #ifdef TARGET_AARCH64
8130     if (cpu_isar_feature(aa64_pauth, cpu)) {
8131         define_arm_cp_regs(cpu, pauth_reginfo);
8132     }
8133     if (cpu_isar_feature(aa64_rndr, cpu)) {
8134         define_arm_cp_regs(cpu, rndr_reginfo);
8135     }
8136 #ifndef CONFIG_USER_ONLY
8137     /* Data Cache clean instructions up to PoP */
8138     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8139         define_one_arm_cp_reg(cpu, dcpop_reg);
8140 
8141         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8142             define_one_arm_cp_reg(cpu, dcpodp_reg);
8143         }
8144     }
8145 #endif /*CONFIG_USER_ONLY*/
8146 
8147     /*
8148      * If full MTE is enabled, add all of the system registers.
8149      * If only "instructions available at EL0" are enabled,
8150      * then define only a RAZ/WI version of PSTATE.TCO.
8151      */
8152     if (cpu_isar_feature(aa64_mte, cpu)) {
8153         define_arm_cp_regs(cpu, mte_reginfo);
8154         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8155     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8156         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8157         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8158     }
8159 #endif
8160 
8161     if (cpu_isar_feature(any_predinv, cpu)) {
8162         define_arm_cp_regs(cpu, predinv_reginfo);
8163     }
8164 
8165     if (cpu_isar_feature(any_ccidx, cpu)) {
8166         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8167     }
8168 
8169 #ifndef CONFIG_USER_ONLY
8170     /*
8171      * Register redirections and aliases must be done last,
8172      * after the registers from the other extensions have been defined.
8173      */
8174     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8175         define_arm_vh_e2h_redirects_aliases(cpu);
8176     }
8177 #endif
8178 }
8179 
8180 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8181 {
8182     CPUState *cs = CPU(cpu);
8183     CPUARMState *env = &cpu->env;
8184 
8185     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8186         /*
8187          * The lower part of each SVE register aliases to the FPU
8188          * registers so we don't need to include both.
8189          */
8190 #ifdef TARGET_AARCH64
8191         if (isar_feature_aa64_sve(&cpu->isar)) {
8192             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8193                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8194                                      "sve-registers.xml", 0);
8195         } else
8196 #endif
8197         {
8198             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8199                                      aarch64_fpu_gdb_set_reg,
8200                                      34, "aarch64-fpu.xml", 0);
8201         }
8202     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8203         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8204                                  51, "arm-neon.xml", 0);
8205     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8206         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8207                                  35, "arm-vfp3.xml", 0);
8208     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8209         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8210                                  19, "arm-vfp.xml", 0);
8211     }
8212     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8213                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8214                              "system-registers.xml", 0);
8215 
8216 }
8217 
8218 /* Sort alphabetically by type name, except for "any". */
8219 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8220 {
8221     ObjectClass *class_a = (ObjectClass *)a;
8222     ObjectClass *class_b = (ObjectClass *)b;
8223     const char *name_a, *name_b;
8224 
8225     name_a = object_class_get_name(class_a);
8226     name_b = object_class_get_name(class_b);
8227     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8228         return 1;
8229     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8230         return -1;
8231     } else {
8232         return strcmp(name_a, name_b);
8233     }
8234 }
8235 
8236 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8237 {
8238     ObjectClass *oc = data;
8239     const char *typename;
8240     char *name;
8241 
8242     typename = object_class_get_name(oc);
8243     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8244     qemu_printf("  %s\n", name);
8245     g_free(name);
8246 }
8247 
8248 void arm_cpu_list(void)
8249 {
8250     GSList *list;
8251 
8252     list = object_class_get_list(TYPE_ARM_CPU, false);
8253     list = g_slist_sort(list, arm_cpu_list_compare);
8254     qemu_printf("Available CPUs:\n");
8255     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8256     g_slist_free(list);
8257 }
8258 
8259 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8260 {
8261     ObjectClass *oc = data;
8262     CpuDefinitionInfoList **cpu_list = user_data;
8263     CpuDefinitionInfoList *entry;
8264     CpuDefinitionInfo *info;
8265     const char *typename;
8266 
8267     typename = object_class_get_name(oc);
8268     info = g_malloc0(sizeof(*info));
8269     info->name = g_strndup(typename,
8270                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8271     info->q_typename = g_strdup(typename);
8272 
8273     entry = g_malloc0(sizeof(*entry));
8274     entry->value = info;
8275     entry->next = *cpu_list;
8276     *cpu_list = entry;
8277 }
8278 
8279 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8280 {
8281     CpuDefinitionInfoList *cpu_list = NULL;
8282     GSList *list;
8283 
8284     list = object_class_get_list(TYPE_ARM_CPU, false);
8285     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8286     g_slist_free(list);
8287 
8288     return cpu_list;
8289 }
8290 
8291 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8292                                    void *opaque, int state, int secstate,
8293                                    int crm, int opc1, int opc2,
8294                                    const char *name)
8295 {
8296     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8297      * add a single reginfo struct to the hash table.
8298      */
8299     uint32_t *key = g_new(uint32_t, 1);
8300     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8301     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8302     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8303 
8304     r2->name = g_strdup(name);
8305     /* Reset the secure state to the specific incoming state.  This is
8306      * necessary as the register may have been defined with both states.
8307      */
8308     r2->secure = secstate;
8309 
8310     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8311         /* Register is banked (using both entries in array).
8312          * Overwriting fieldoffset as the array is only used to define
8313          * banked registers but later only fieldoffset is used.
8314          */
8315         r2->fieldoffset = r->bank_fieldoffsets[ns];
8316     }
8317 
8318     if (state == ARM_CP_STATE_AA32) {
8319         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8320             /* If the register is banked then we don't need to migrate or
8321              * reset the 32-bit instance in certain cases:
8322              *
8323              * 1) If the register has both 32-bit and 64-bit instances then we
8324              *    can count on the 64-bit instance taking care of the
8325              *    non-secure bank.
8326              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8327              *    taking care of the secure bank.  This requires that separate
8328              *    32 and 64-bit definitions are provided.
8329              */
8330             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8331                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8332                 r2->type |= ARM_CP_ALIAS;
8333             }
8334         } else if ((secstate != r->secure) && !ns) {
8335             /* The register is not banked so we only want to allow migration of
8336              * the non-secure instance.
8337              */
8338             r2->type |= ARM_CP_ALIAS;
8339         }
8340 
8341         if (r->state == ARM_CP_STATE_BOTH) {
8342             /* We assume it is a cp15 register if the .cp field is left unset.
8343              */
8344             if (r2->cp == 0) {
8345                 r2->cp = 15;
8346             }
8347 
8348 #ifdef HOST_WORDS_BIGENDIAN
8349             if (r2->fieldoffset) {
8350                 r2->fieldoffset += sizeof(uint32_t);
8351             }
8352 #endif
8353         }
8354     }
8355     if (state == ARM_CP_STATE_AA64) {
8356         /* To allow abbreviation of ARMCPRegInfo
8357          * definitions, we treat cp == 0 as equivalent to
8358          * the value for "standard guest-visible sysreg".
8359          * STATE_BOTH definitions are also always "standard
8360          * sysreg" in their AArch64 view (the .cp value may
8361          * be non-zero for the benefit of the AArch32 view).
8362          */
8363         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8364             r2->cp = CP_REG_ARM64_SYSREG_CP;
8365         }
8366         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8367                                   r2->opc0, opc1, opc2);
8368     } else {
8369         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8370     }
8371     if (opaque) {
8372         r2->opaque = opaque;
8373     }
8374     /* reginfo passed to helpers is correct for the actual access,
8375      * and is never ARM_CP_STATE_BOTH:
8376      */
8377     r2->state = state;
8378     /* Make sure reginfo passed to helpers for wildcarded regs
8379      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8380      */
8381     r2->crm = crm;
8382     r2->opc1 = opc1;
8383     r2->opc2 = opc2;
8384     /* By convention, for wildcarded registers only the first
8385      * entry is used for migration; the others are marked as
8386      * ALIAS so we don't try to transfer the register
8387      * multiple times. Special registers (ie NOP/WFI) are
8388      * never migratable and not even raw-accessible.
8389      */
8390     if ((r->type & ARM_CP_SPECIAL)) {
8391         r2->type |= ARM_CP_NO_RAW;
8392     }
8393     if (((r->crm == CP_ANY) && crm != 0) ||
8394         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8395         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8396         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8397     }
8398 
8399     /* Check that raw accesses are either forbidden or handled. Note that
8400      * we can't assert this earlier because the setup of fieldoffset for
8401      * banked registers has to be done first.
8402      */
8403     if (!(r2->type & ARM_CP_NO_RAW)) {
8404         assert(!raw_accessors_invalid(r2));
8405     }
8406 
8407     /* Overriding of an existing definition must be explicitly
8408      * requested.
8409      */
8410     if (!(r->type & ARM_CP_OVERRIDE)) {
8411         ARMCPRegInfo *oldreg;
8412         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8413         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8414             fprintf(stderr, "Register redefined: cp=%d %d bit "
8415                     "crn=%d crm=%d opc1=%d opc2=%d, "
8416                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8417                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8418                     oldreg->name, r2->name);
8419             g_assert_not_reached();
8420         }
8421     }
8422     g_hash_table_insert(cpu->cp_regs, key, r2);
8423 }
8424 
8425 
8426 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8427                                        const ARMCPRegInfo *r, void *opaque)
8428 {
8429     /* Define implementations of coprocessor registers.
8430      * We store these in a hashtable because typically
8431      * there are less than 150 registers in a space which
8432      * is 16*16*16*8*8 = 262144 in size.
8433      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8434      * If a register is defined twice then the second definition is
8435      * used, so this can be used to define some generic registers and
8436      * then override them with implementation specific variations.
8437      * At least one of the original and the second definition should
8438      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8439      * against accidental use.
8440      *
8441      * The state field defines whether the register is to be
8442      * visible in the AArch32 or AArch64 execution state. If the
8443      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8444      * reginfo structure for the AArch32 view, which sees the lower
8445      * 32 bits of the 64 bit register.
8446      *
8447      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8448      * be wildcarded. AArch64 registers are always considered to be 64
8449      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8450      * the register, if any.
8451      */
8452     int crm, opc1, opc2, state;
8453     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8454     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8455     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8456     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8457     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8458     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8459     /* 64 bit registers have only CRm and Opc1 fields */
8460     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8461     /* op0 only exists in the AArch64 encodings */
8462     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8463     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8464     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8465     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8466      * encodes a minimum access level for the register. We roll this
8467      * runtime check into our general permission check code, so check
8468      * here that the reginfo's specified permissions are strict enough
8469      * to encompass the generic architectural permission check.
8470      */
8471     if (r->state != ARM_CP_STATE_AA32) {
8472         int mask = 0;
8473         switch (r->opc1) {
8474         case 0:
8475             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8476             mask = PL0U_R | PL1_RW;
8477             break;
8478         case 1: case 2:
8479             /* min_EL EL1 */
8480             mask = PL1_RW;
8481             break;
8482         case 3:
8483             /* min_EL EL0 */
8484             mask = PL0_RW;
8485             break;
8486         case 4:
8487         case 5:
8488             /* min_EL EL2 */
8489             mask = PL2_RW;
8490             break;
8491         case 6:
8492             /* min_EL EL3 */
8493             mask = PL3_RW;
8494             break;
8495         case 7:
8496             /* min_EL EL1, secure mode only (we don't check the latter) */
8497             mask = PL1_RW;
8498             break;
8499         default:
8500             /* broken reginfo with out-of-range opc1 */
8501             assert(false);
8502             break;
8503         }
8504         /* assert our permissions are not too lax (stricter is fine) */
8505         assert((r->access & ~mask) == 0);
8506     }
8507 
8508     /* Check that the register definition has enough info to handle
8509      * reads and writes if they are permitted.
8510      */
8511     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8512         if (r->access & PL3_R) {
8513             assert((r->fieldoffset ||
8514                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8515                    r->readfn);
8516         }
8517         if (r->access & PL3_W) {
8518             assert((r->fieldoffset ||
8519                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8520                    r->writefn);
8521         }
8522     }
8523     /* Bad type field probably means missing sentinel at end of reg list */
8524     assert(cptype_valid(r->type));
8525     for (crm = crmmin; crm <= crmmax; crm++) {
8526         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8527             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8528                 for (state = ARM_CP_STATE_AA32;
8529                      state <= ARM_CP_STATE_AA64; state++) {
8530                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8531                         continue;
8532                     }
8533                     if (state == ARM_CP_STATE_AA32) {
8534                         /* Under AArch32 CP registers can be common
8535                          * (same for secure and non-secure world) or banked.
8536                          */
8537                         char *name;
8538 
8539                         switch (r->secure) {
8540                         case ARM_CP_SECSTATE_S:
8541                         case ARM_CP_SECSTATE_NS:
8542                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8543                                                    r->secure, crm, opc1, opc2,
8544                                                    r->name);
8545                             break;
8546                         default:
8547                             name = g_strdup_printf("%s_S", r->name);
8548                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8549                                                    ARM_CP_SECSTATE_S,
8550                                                    crm, opc1, opc2, name);
8551                             g_free(name);
8552                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8553                                                    ARM_CP_SECSTATE_NS,
8554                                                    crm, opc1, opc2, r->name);
8555                             break;
8556                         }
8557                     } else {
8558                         /* AArch64 registers get mapped to non-secure instance
8559                          * of AArch32 */
8560                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8561                                                ARM_CP_SECSTATE_NS,
8562                                                crm, opc1, opc2, r->name);
8563                     }
8564                 }
8565             }
8566         }
8567     }
8568 }
8569 
8570 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8571                                     const ARMCPRegInfo *regs, void *opaque)
8572 {
8573     /* Define a whole list of registers */
8574     const ARMCPRegInfo *r;
8575     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8576         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8577     }
8578 }
8579 
8580 /*
8581  * Modify ARMCPRegInfo for access from userspace.
8582  *
8583  * This is a data driven modification directed by
8584  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8585  * user-space cannot alter any values and dynamic values pertaining to
8586  * execution state are hidden from user space view anyway.
8587  */
8588 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8589 {
8590     const ARMCPRegUserSpaceInfo *m;
8591     ARMCPRegInfo *r;
8592 
8593     for (m = mods; m->name; m++) {
8594         GPatternSpec *pat = NULL;
8595         if (m->is_glob) {
8596             pat = g_pattern_spec_new(m->name);
8597         }
8598         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8599             if (pat && g_pattern_match_string(pat, r->name)) {
8600                 r->type = ARM_CP_CONST;
8601                 r->access = PL0U_R;
8602                 r->resetvalue = 0;
8603                 /* continue */
8604             } else if (strcmp(r->name, m->name) == 0) {
8605                 r->type = ARM_CP_CONST;
8606                 r->access = PL0U_R;
8607                 r->resetvalue &= m->exported_bits;
8608                 r->resetvalue |= m->fixed_bits;
8609                 break;
8610             }
8611         }
8612         if (pat) {
8613             g_pattern_spec_free(pat);
8614         }
8615     }
8616 }
8617 
8618 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8619 {
8620     return g_hash_table_lookup(cpregs, &encoded_cp);
8621 }
8622 
8623 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8624                          uint64_t value)
8625 {
8626     /* Helper coprocessor write function for write-ignore registers */
8627 }
8628 
8629 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8630 {
8631     /* Helper coprocessor write function for read-as-zero registers */
8632     return 0;
8633 }
8634 
8635 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8636 {
8637     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8638 }
8639 
8640 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8641 {
8642     /* Return true if it is not valid for us to switch to
8643      * this CPU mode (ie all the UNPREDICTABLE cases in
8644      * the ARM ARM CPSRWriteByInstr pseudocode).
8645      */
8646 
8647     /* Changes to or from Hyp via MSR and CPS are illegal. */
8648     if (write_type == CPSRWriteByInstr &&
8649         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8650          mode == ARM_CPU_MODE_HYP)) {
8651         return 1;
8652     }
8653 
8654     switch (mode) {
8655     case ARM_CPU_MODE_USR:
8656         return 0;
8657     case ARM_CPU_MODE_SYS:
8658     case ARM_CPU_MODE_SVC:
8659     case ARM_CPU_MODE_ABT:
8660     case ARM_CPU_MODE_UND:
8661     case ARM_CPU_MODE_IRQ:
8662     case ARM_CPU_MODE_FIQ:
8663         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8664          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8665          */
8666         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8667          * and CPS are treated as illegal mode changes.
8668          */
8669         if (write_type == CPSRWriteByInstr &&
8670             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8671             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8672             return 1;
8673         }
8674         return 0;
8675     case ARM_CPU_MODE_HYP:
8676         return !arm_feature(env, ARM_FEATURE_EL2)
8677             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8678     case ARM_CPU_MODE_MON:
8679         return arm_current_el(env) < 3;
8680     default:
8681         return 1;
8682     }
8683 }
8684 
8685 uint32_t cpsr_read(CPUARMState *env)
8686 {
8687     int ZF;
8688     ZF = (env->ZF == 0);
8689     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8690         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8691         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8692         | ((env->condexec_bits & 0xfc) << 8)
8693         | (env->GE << 16) | (env->daif & CPSR_AIF);
8694 }
8695 
8696 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8697                 CPSRWriteType write_type)
8698 {
8699     uint32_t changed_daif;
8700 
8701     if (mask & CPSR_NZCV) {
8702         env->ZF = (~val) & CPSR_Z;
8703         env->NF = val;
8704         env->CF = (val >> 29) & 1;
8705         env->VF = (val << 3) & 0x80000000;
8706     }
8707     if (mask & CPSR_Q)
8708         env->QF = ((val & CPSR_Q) != 0);
8709     if (mask & CPSR_T)
8710         env->thumb = ((val & CPSR_T) != 0);
8711     if (mask & CPSR_IT_0_1) {
8712         env->condexec_bits &= ~3;
8713         env->condexec_bits |= (val >> 25) & 3;
8714     }
8715     if (mask & CPSR_IT_2_7) {
8716         env->condexec_bits &= 3;
8717         env->condexec_bits |= (val >> 8) & 0xfc;
8718     }
8719     if (mask & CPSR_GE) {
8720         env->GE = (val >> 16) & 0xf;
8721     }
8722 
8723     /* In a V7 implementation that includes the security extensions but does
8724      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8725      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8726      * bits respectively.
8727      *
8728      * In a V8 implementation, it is permitted for privileged software to
8729      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8730      */
8731     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8732         arm_feature(env, ARM_FEATURE_EL3) &&
8733         !arm_feature(env, ARM_FEATURE_EL2) &&
8734         !arm_is_secure(env)) {
8735 
8736         changed_daif = (env->daif ^ val) & mask;
8737 
8738         if (changed_daif & CPSR_A) {
8739             /* Check to see if we are allowed to change the masking of async
8740              * abort exceptions from a non-secure state.
8741              */
8742             if (!(env->cp15.scr_el3 & SCR_AW)) {
8743                 qemu_log_mask(LOG_GUEST_ERROR,
8744                               "Ignoring attempt to switch CPSR_A flag from "
8745                               "non-secure world with SCR.AW bit clear\n");
8746                 mask &= ~CPSR_A;
8747             }
8748         }
8749 
8750         if (changed_daif & CPSR_F) {
8751             /* Check to see if we are allowed to change the masking of FIQ
8752              * exceptions from a non-secure state.
8753              */
8754             if (!(env->cp15.scr_el3 & SCR_FW)) {
8755                 qemu_log_mask(LOG_GUEST_ERROR,
8756                               "Ignoring attempt to switch CPSR_F flag from "
8757                               "non-secure world with SCR.FW bit clear\n");
8758                 mask &= ~CPSR_F;
8759             }
8760 
8761             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8762              * If this bit is set software is not allowed to mask
8763              * FIQs, but is allowed to set CPSR_F to 0.
8764              */
8765             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8766                 (val & CPSR_F)) {
8767                 qemu_log_mask(LOG_GUEST_ERROR,
8768                               "Ignoring attempt to enable CPSR_F flag "
8769                               "(non-maskable FIQ [NMFI] support enabled)\n");
8770                 mask &= ~CPSR_F;
8771             }
8772         }
8773     }
8774 
8775     env->daif &= ~(CPSR_AIF & mask);
8776     env->daif |= val & CPSR_AIF & mask;
8777 
8778     if (write_type != CPSRWriteRaw &&
8779         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8780         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8781             /* Note that we can only get here in USR mode if this is a
8782              * gdb stub write; for this case we follow the architectural
8783              * behaviour for guest writes in USR mode of ignoring an attempt
8784              * to switch mode. (Those are caught by translate.c for writes
8785              * triggered by guest instructions.)
8786              */
8787             mask &= ~CPSR_M;
8788         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8789             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8790              * v7, and has defined behaviour in v8:
8791              *  + leave CPSR.M untouched
8792              *  + allow changes to the other CPSR fields
8793              *  + set PSTATE.IL
8794              * For user changes via the GDB stub, we don't set PSTATE.IL,
8795              * as this would be unnecessarily harsh for a user error.
8796              */
8797             mask &= ~CPSR_M;
8798             if (write_type != CPSRWriteByGDBStub &&
8799                 arm_feature(env, ARM_FEATURE_V8)) {
8800                 mask |= CPSR_IL;
8801                 val |= CPSR_IL;
8802             }
8803             qemu_log_mask(LOG_GUEST_ERROR,
8804                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8805                           aarch32_mode_name(env->uncached_cpsr),
8806                           aarch32_mode_name(val));
8807         } else {
8808             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8809                           write_type == CPSRWriteExceptionReturn ?
8810                           "Exception return from AArch32" :
8811                           "AArch32 mode switch from",
8812                           aarch32_mode_name(env->uncached_cpsr),
8813                           aarch32_mode_name(val), env->regs[15]);
8814             switch_mode(env, val & CPSR_M);
8815         }
8816     }
8817     mask &= ~CACHED_CPSR_BITS;
8818     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8819 }
8820 
8821 /* Sign/zero extend */
8822 uint32_t HELPER(sxtb16)(uint32_t x)
8823 {
8824     uint32_t res;
8825     res = (uint16_t)(int8_t)x;
8826     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8827     return res;
8828 }
8829 
8830 uint32_t HELPER(uxtb16)(uint32_t x)
8831 {
8832     uint32_t res;
8833     res = (uint16_t)(uint8_t)x;
8834     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8835     return res;
8836 }
8837 
8838 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8839 {
8840     if (den == 0)
8841       return 0;
8842     if (num == INT_MIN && den == -1)
8843       return INT_MIN;
8844     return num / den;
8845 }
8846 
8847 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8848 {
8849     if (den == 0)
8850       return 0;
8851     return num / den;
8852 }
8853 
8854 uint32_t HELPER(rbit)(uint32_t x)
8855 {
8856     return revbit32(x);
8857 }
8858 
8859 #ifdef CONFIG_USER_ONLY
8860 
8861 static void switch_mode(CPUARMState *env, int mode)
8862 {
8863     ARMCPU *cpu = env_archcpu(env);
8864 
8865     if (mode != ARM_CPU_MODE_USR) {
8866         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8867     }
8868 }
8869 
8870 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8871                                  uint32_t cur_el, bool secure)
8872 {
8873     return 1;
8874 }
8875 
8876 void aarch64_sync_64_to_32(CPUARMState *env)
8877 {
8878     g_assert_not_reached();
8879 }
8880 
8881 #else
8882 
8883 static void switch_mode(CPUARMState *env, int mode)
8884 {
8885     int old_mode;
8886     int i;
8887 
8888     old_mode = env->uncached_cpsr & CPSR_M;
8889     if (mode == old_mode)
8890         return;
8891 
8892     if (old_mode == ARM_CPU_MODE_FIQ) {
8893         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8894         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8895     } else if (mode == ARM_CPU_MODE_FIQ) {
8896         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8897         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8898     }
8899 
8900     i = bank_number(old_mode);
8901     env->banked_r13[i] = env->regs[13];
8902     env->banked_spsr[i] = env->spsr;
8903 
8904     i = bank_number(mode);
8905     env->regs[13] = env->banked_r13[i];
8906     env->spsr = env->banked_spsr[i];
8907 
8908     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8909     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8910 }
8911 
8912 /* Physical Interrupt Target EL Lookup Table
8913  *
8914  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8915  *
8916  * The below multi-dimensional table is used for looking up the target
8917  * exception level given numerous condition criteria.  Specifically, the
8918  * target EL is based on SCR and HCR routing controls as well as the
8919  * currently executing EL and secure state.
8920  *
8921  *    Dimensions:
8922  *    target_el_table[2][2][2][2][2][4]
8923  *                    |  |  |  |  |  +--- Current EL
8924  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8925  *                    |  |  |  +--------- HCR mask override
8926  *                    |  |  +------------ SCR exec state control
8927  *                    |  +--------------- SCR mask override
8928  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8929  *
8930  *    The table values are as such:
8931  *    0-3 = EL0-EL3
8932  *     -1 = Cannot occur
8933  *
8934  * The ARM ARM target EL table includes entries indicating that an "exception
8935  * is not taken".  The two cases where this is applicable are:
8936  *    1) An exception is taken from EL3 but the SCR does not have the exception
8937  *    routed to EL3.
8938  *    2) An exception is taken from EL2 but the HCR does not have the exception
8939  *    routed to EL2.
8940  * In these two cases, the below table contain a target of EL1.  This value is
8941  * returned as it is expected that the consumer of the table data will check
8942  * for "target EL >= current EL" to ensure the exception is not taken.
8943  *
8944  *            SCR     HCR
8945  *         64  EA     AMO                 From
8946  *        BIT IRQ     IMO      Non-secure         Secure
8947  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8948  */
8949 static const int8_t target_el_table[2][2][2][2][2][4] = {
8950     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8951        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
8952       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8953        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
8954      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8955        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
8956       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8957        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
8958     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
8959        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
8960       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
8961        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
8962      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8963        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
8964       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8965        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
8966 };
8967 
8968 /*
8969  * Determine the target EL for physical exceptions
8970  */
8971 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8972                                  uint32_t cur_el, bool secure)
8973 {
8974     CPUARMState *env = cs->env_ptr;
8975     bool rw;
8976     bool scr;
8977     bool hcr;
8978     int target_el;
8979     /* Is the highest EL AArch64? */
8980     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8981     uint64_t hcr_el2;
8982 
8983     if (arm_feature(env, ARM_FEATURE_EL3)) {
8984         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8985     } else {
8986         /* Either EL2 is the highest EL (and so the EL2 register width
8987          * is given by is64); or there is no EL2 or EL3, in which case
8988          * the value of 'rw' does not affect the table lookup anyway.
8989          */
8990         rw = is64;
8991     }
8992 
8993     hcr_el2 = arm_hcr_el2_eff(env);
8994     switch (excp_idx) {
8995     case EXCP_IRQ:
8996         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8997         hcr = hcr_el2 & HCR_IMO;
8998         break;
8999     case EXCP_FIQ:
9000         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9001         hcr = hcr_el2 & HCR_FMO;
9002         break;
9003     default:
9004         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9005         hcr = hcr_el2 & HCR_AMO;
9006         break;
9007     };
9008 
9009     /*
9010      * For these purposes, TGE and AMO/IMO/FMO both force the
9011      * interrupt to EL2.  Fold TGE into the bit extracted above.
9012      */
9013     hcr |= (hcr_el2 & HCR_TGE) != 0;
9014 
9015     /* Perform a table-lookup for the target EL given the current state */
9016     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9017 
9018     assert(target_el > 0);
9019 
9020     return target_el;
9021 }
9022 
9023 void arm_log_exception(int idx)
9024 {
9025     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9026         const char *exc = NULL;
9027         static const char * const excnames[] = {
9028             [EXCP_UDEF] = "Undefined Instruction",
9029             [EXCP_SWI] = "SVC",
9030             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9031             [EXCP_DATA_ABORT] = "Data Abort",
9032             [EXCP_IRQ] = "IRQ",
9033             [EXCP_FIQ] = "FIQ",
9034             [EXCP_BKPT] = "Breakpoint",
9035             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9036             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9037             [EXCP_HVC] = "Hypervisor Call",
9038             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9039             [EXCP_SMC] = "Secure Monitor Call",
9040             [EXCP_VIRQ] = "Virtual IRQ",
9041             [EXCP_VFIQ] = "Virtual FIQ",
9042             [EXCP_SEMIHOST] = "Semihosting call",
9043             [EXCP_NOCP] = "v7M NOCP UsageFault",
9044             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9045             [EXCP_STKOF] = "v8M STKOF UsageFault",
9046             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9047             [EXCP_LSERR] = "v8M LSERR UsageFault",
9048             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9049         };
9050 
9051         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9052             exc = excnames[idx];
9053         }
9054         if (!exc) {
9055             exc = "unknown";
9056         }
9057         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9058     }
9059 }
9060 
9061 /*
9062  * Function used to synchronize QEMU's AArch64 register set with AArch32
9063  * register set.  This is necessary when switching between AArch32 and AArch64
9064  * execution state.
9065  */
9066 void aarch64_sync_32_to_64(CPUARMState *env)
9067 {
9068     int i;
9069     uint32_t mode = env->uncached_cpsr & CPSR_M;
9070 
9071     /* We can blanket copy R[0:7] to X[0:7] */
9072     for (i = 0; i < 8; i++) {
9073         env->xregs[i] = env->regs[i];
9074     }
9075 
9076     /*
9077      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9078      * Otherwise, they come from the banked user regs.
9079      */
9080     if (mode == ARM_CPU_MODE_FIQ) {
9081         for (i = 8; i < 13; i++) {
9082             env->xregs[i] = env->usr_regs[i - 8];
9083         }
9084     } else {
9085         for (i = 8; i < 13; i++) {
9086             env->xregs[i] = env->regs[i];
9087         }
9088     }
9089 
9090     /*
9091      * Registers x13-x23 are the various mode SP and FP registers. Registers
9092      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9093      * from the mode banked register.
9094      */
9095     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9096         env->xregs[13] = env->regs[13];
9097         env->xregs[14] = env->regs[14];
9098     } else {
9099         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9100         /* HYP is an exception in that it is copied from r14 */
9101         if (mode == ARM_CPU_MODE_HYP) {
9102             env->xregs[14] = env->regs[14];
9103         } else {
9104             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9105         }
9106     }
9107 
9108     if (mode == ARM_CPU_MODE_HYP) {
9109         env->xregs[15] = env->regs[13];
9110     } else {
9111         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9112     }
9113 
9114     if (mode == ARM_CPU_MODE_IRQ) {
9115         env->xregs[16] = env->regs[14];
9116         env->xregs[17] = env->regs[13];
9117     } else {
9118         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9119         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9120     }
9121 
9122     if (mode == ARM_CPU_MODE_SVC) {
9123         env->xregs[18] = env->regs[14];
9124         env->xregs[19] = env->regs[13];
9125     } else {
9126         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9127         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9128     }
9129 
9130     if (mode == ARM_CPU_MODE_ABT) {
9131         env->xregs[20] = env->regs[14];
9132         env->xregs[21] = env->regs[13];
9133     } else {
9134         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9135         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9136     }
9137 
9138     if (mode == ARM_CPU_MODE_UND) {
9139         env->xregs[22] = env->regs[14];
9140         env->xregs[23] = env->regs[13];
9141     } else {
9142         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9143         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9144     }
9145 
9146     /*
9147      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9148      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9149      * FIQ bank for r8-r14.
9150      */
9151     if (mode == ARM_CPU_MODE_FIQ) {
9152         for (i = 24; i < 31; i++) {
9153             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9154         }
9155     } else {
9156         for (i = 24; i < 29; i++) {
9157             env->xregs[i] = env->fiq_regs[i - 24];
9158         }
9159         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9160         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9161     }
9162 
9163     env->pc = env->regs[15];
9164 }
9165 
9166 /*
9167  * Function used to synchronize QEMU's AArch32 register set with AArch64
9168  * register set.  This is necessary when switching between AArch32 and AArch64
9169  * execution state.
9170  */
9171 void aarch64_sync_64_to_32(CPUARMState *env)
9172 {
9173     int i;
9174     uint32_t mode = env->uncached_cpsr & CPSR_M;
9175 
9176     /* We can blanket copy X[0:7] to R[0:7] */
9177     for (i = 0; i < 8; i++) {
9178         env->regs[i] = env->xregs[i];
9179     }
9180 
9181     /*
9182      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9183      * Otherwise, we copy x8-x12 into the banked user regs.
9184      */
9185     if (mode == ARM_CPU_MODE_FIQ) {
9186         for (i = 8; i < 13; i++) {
9187             env->usr_regs[i - 8] = env->xregs[i];
9188         }
9189     } else {
9190         for (i = 8; i < 13; i++) {
9191             env->regs[i] = env->xregs[i];
9192         }
9193     }
9194 
9195     /*
9196      * Registers r13 & r14 depend on the current mode.
9197      * If we are in a given mode, we copy the corresponding x registers to r13
9198      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9199      * for the mode.
9200      */
9201     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9202         env->regs[13] = env->xregs[13];
9203         env->regs[14] = env->xregs[14];
9204     } else {
9205         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9206 
9207         /*
9208          * HYP is an exception in that it does not have its own banked r14 but
9209          * shares the USR r14
9210          */
9211         if (mode == ARM_CPU_MODE_HYP) {
9212             env->regs[14] = env->xregs[14];
9213         } else {
9214             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9215         }
9216     }
9217 
9218     if (mode == ARM_CPU_MODE_HYP) {
9219         env->regs[13] = env->xregs[15];
9220     } else {
9221         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9222     }
9223 
9224     if (mode == ARM_CPU_MODE_IRQ) {
9225         env->regs[14] = env->xregs[16];
9226         env->regs[13] = env->xregs[17];
9227     } else {
9228         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9229         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9230     }
9231 
9232     if (mode == ARM_CPU_MODE_SVC) {
9233         env->regs[14] = env->xregs[18];
9234         env->regs[13] = env->xregs[19];
9235     } else {
9236         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9237         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9238     }
9239 
9240     if (mode == ARM_CPU_MODE_ABT) {
9241         env->regs[14] = env->xregs[20];
9242         env->regs[13] = env->xregs[21];
9243     } else {
9244         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9245         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9246     }
9247 
9248     if (mode == ARM_CPU_MODE_UND) {
9249         env->regs[14] = env->xregs[22];
9250         env->regs[13] = env->xregs[23];
9251     } else {
9252         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9253         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9254     }
9255 
9256     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9257      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9258      * FIQ bank for r8-r14.
9259      */
9260     if (mode == ARM_CPU_MODE_FIQ) {
9261         for (i = 24; i < 31; i++) {
9262             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9263         }
9264     } else {
9265         for (i = 24; i < 29; i++) {
9266             env->fiq_regs[i - 24] = env->xregs[i];
9267         }
9268         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9269         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9270     }
9271 
9272     env->regs[15] = env->pc;
9273 }
9274 
9275 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9276                                    uint32_t mask, uint32_t offset,
9277                                    uint32_t newpc)
9278 {
9279     int new_el;
9280 
9281     /* Change the CPU state so as to actually take the exception. */
9282     switch_mode(env, new_mode);
9283 
9284     /*
9285      * For exceptions taken to AArch32 we must clear the SS bit in both
9286      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9287      */
9288     env->uncached_cpsr &= ~PSTATE_SS;
9289     env->spsr = cpsr_read(env);
9290     /* Clear IT bits.  */
9291     env->condexec_bits = 0;
9292     /* Switch to the new mode, and to the correct instruction set.  */
9293     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9294 
9295     /* This must be after mode switching. */
9296     new_el = arm_current_el(env);
9297 
9298     /* Set new mode endianness */
9299     env->uncached_cpsr &= ~CPSR_E;
9300     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9301         env->uncached_cpsr |= CPSR_E;
9302     }
9303     /* J and IL must always be cleared for exception entry */
9304     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9305     env->daif |= mask;
9306 
9307     if (new_mode == ARM_CPU_MODE_HYP) {
9308         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9309         env->elr_el[2] = env->regs[15];
9310     } else {
9311         /* CPSR.PAN is normally preserved preserved unless...  */
9312         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9313             switch (new_el) {
9314             case 3:
9315                 if (!arm_is_secure_below_el3(env)) {
9316                     /* ... the target is EL3, from non-secure state.  */
9317                     env->uncached_cpsr &= ~CPSR_PAN;
9318                     break;
9319                 }
9320                 /* ... the target is EL3, from secure state ... */
9321                 /* fall through */
9322             case 1:
9323                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9324                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9325                     env->uncached_cpsr |= CPSR_PAN;
9326                 }
9327                 break;
9328             }
9329         }
9330         /*
9331          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9332          * and we should just guard the thumb mode on V4
9333          */
9334         if (arm_feature(env, ARM_FEATURE_V4T)) {
9335             env->thumb =
9336                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9337         }
9338         env->regs[14] = env->regs[15] + offset;
9339     }
9340     env->regs[15] = newpc;
9341     arm_rebuild_hflags(env);
9342 }
9343 
9344 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9345 {
9346     /*
9347      * Handle exception entry to Hyp mode; this is sufficiently
9348      * different to entry to other AArch32 modes that we handle it
9349      * separately here.
9350      *
9351      * The vector table entry used is always the 0x14 Hyp mode entry point,
9352      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9353      * The offset applied to the preferred return address is always zero
9354      * (see DDI0487C.a section G1.12.3).
9355      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9356      */
9357     uint32_t addr, mask;
9358     ARMCPU *cpu = ARM_CPU(cs);
9359     CPUARMState *env = &cpu->env;
9360 
9361     switch (cs->exception_index) {
9362     case EXCP_UDEF:
9363         addr = 0x04;
9364         break;
9365     case EXCP_SWI:
9366         addr = 0x14;
9367         break;
9368     case EXCP_BKPT:
9369         /* Fall through to prefetch abort.  */
9370     case EXCP_PREFETCH_ABORT:
9371         env->cp15.ifar_s = env->exception.vaddress;
9372         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9373                       (uint32_t)env->exception.vaddress);
9374         addr = 0x0c;
9375         break;
9376     case EXCP_DATA_ABORT:
9377         env->cp15.dfar_s = env->exception.vaddress;
9378         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9379                       (uint32_t)env->exception.vaddress);
9380         addr = 0x10;
9381         break;
9382     case EXCP_IRQ:
9383         addr = 0x18;
9384         break;
9385     case EXCP_FIQ:
9386         addr = 0x1c;
9387         break;
9388     case EXCP_HVC:
9389         addr = 0x08;
9390         break;
9391     case EXCP_HYP_TRAP:
9392         addr = 0x14;
9393         break;
9394     default:
9395         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9396     }
9397 
9398     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9399         if (!arm_feature(env, ARM_FEATURE_V8)) {
9400             /*
9401              * QEMU syndrome values are v8-style. v7 has the IL bit
9402              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9403              * If this is a v7 CPU, squash the IL bit in those cases.
9404              */
9405             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9406                 (cs->exception_index == EXCP_DATA_ABORT &&
9407                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9408                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9409                 env->exception.syndrome &= ~ARM_EL_IL;
9410             }
9411         }
9412         env->cp15.esr_el[2] = env->exception.syndrome;
9413     }
9414 
9415     if (arm_current_el(env) != 2 && addr < 0x14) {
9416         addr = 0x14;
9417     }
9418 
9419     mask = 0;
9420     if (!(env->cp15.scr_el3 & SCR_EA)) {
9421         mask |= CPSR_A;
9422     }
9423     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9424         mask |= CPSR_I;
9425     }
9426     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9427         mask |= CPSR_F;
9428     }
9429 
9430     addr += env->cp15.hvbar;
9431 
9432     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9433 }
9434 
9435 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9436 {
9437     ARMCPU *cpu = ARM_CPU(cs);
9438     CPUARMState *env = &cpu->env;
9439     uint32_t addr;
9440     uint32_t mask;
9441     int new_mode;
9442     uint32_t offset;
9443     uint32_t moe;
9444 
9445     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9446     switch (syn_get_ec(env->exception.syndrome)) {
9447     case EC_BREAKPOINT:
9448     case EC_BREAKPOINT_SAME_EL:
9449         moe = 1;
9450         break;
9451     case EC_WATCHPOINT:
9452     case EC_WATCHPOINT_SAME_EL:
9453         moe = 10;
9454         break;
9455     case EC_AA32_BKPT:
9456         moe = 3;
9457         break;
9458     case EC_VECTORCATCH:
9459         moe = 5;
9460         break;
9461     default:
9462         moe = 0;
9463         break;
9464     }
9465 
9466     if (moe) {
9467         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9468     }
9469 
9470     if (env->exception.target_el == 2) {
9471         arm_cpu_do_interrupt_aarch32_hyp(cs);
9472         return;
9473     }
9474 
9475     switch (cs->exception_index) {
9476     case EXCP_UDEF:
9477         new_mode = ARM_CPU_MODE_UND;
9478         addr = 0x04;
9479         mask = CPSR_I;
9480         if (env->thumb)
9481             offset = 2;
9482         else
9483             offset = 4;
9484         break;
9485     case EXCP_SWI:
9486         new_mode = ARM_CPU_MODE_SVC;
9487         addr = 0x08;
9488         mask = CPSR_I;
9489         /* The PC already points to the next instruction.  */
9490         offset = 0;
9491         break;
9492     case EXCP_BKPT:
9493         /* Fall through to prefetch abort.  */
9494     case EXCP_PREFETCH_ABORT:
9495         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9496         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9497         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9498                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9499         new_mode = ARM_CPU_MODE_ABT;
9500         addr = 0x0c;
9501         mask = CPSR_A | CPSR_I;
9502         offset = 4;
9503         break;
9504     case EXCP_DATA_ABORT:
9505         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9506         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9507         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9508                       env->exception.fsr,
9509                       (uint32_t)env->exception.vaddress);
9510         new_mode = ARM_CPU_MODE_ABT;
9511         addr = 0x10;
9512         mask = CPSR_A | CPSR_I;
9513         offset = 8;
9514         break;
9515     case EXCP_IRQ:
9516         new_mode = ARM_CPU_MODE_IRQ;
9517         addr = 0x18;
9518         /* Disable IRQ and imprecise data aborts.  */
9519         mask = CPSR_A | CPSR_I;
9520         offset = 4;
9521         if (env->cp15.scr_el3 & SCR_IRQ) {
9522             /* IRQ routed to monitor mode */
9523             new_mode = ARM_CPU_MODE_MON;
9524             mask |= CPSR_F;
9525         }
9526         break;
9527     case EXCP_FIQ:
9528         new_mode = ARM_CPU_MODE_FIQ;
9529         addr = 0x1c;
9530         /* Disable FIQ, IRQ and imprecise data aborts.  */
9531         mask = CPSR_A | CPSR_I | CPSR_F;
9532         if (env->cp15.scr_el3 & SCR_FIQ) {
9533             /* FIQ routed to monitor mode */
9534             new_mode = ARM_CPU_MODE_MON;
9535         }
9536         offset = 4;
9537         break;
9538     case EXCP_VIRQ:
9539         new_mode = ARM_CPU_MODE_IRQ;
9540         addr = 0x18;
9541         /* Disable IRQ and imprecise data aborts.  */
9542         mask = CPSR_A | CPSR_I;
9543         offset = 4;
9544         break;
9545     case EXCP_VFIQ:
9546         new_mode = ARM_CPU_MODE_FIQ;
9547         addr = 0x1c;
9548         /* Disable FIQ, IRQ and imprecise data aborts.  */
9549         mask = CPSR_A | CPSR_I | CPSR_F;
9550         offset = 4;
9551         break;
9552     case EXCP_SMC:
9553         new_mode = ARM_CPU_MODE_MON;
9554         addr = 0x08;
9555         mask = CPSR_A | CPSR_I | CPSR_F;
9556         offset = 0;
9557         break;
9558     default:
9559         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9560         return; /* Never happens.  Keep compiler happy.  */
9561     }
9562 
9563     if (new_mode == ARM_CPU_MODE_MON) {
9564         addr += env->cp15.mvbar;
9565     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9566         /* High vectors. When enabled, base address cannot be remapped. */
9567         addr += 0xffff0000;
9568     } else {
9569         /* ARM v7 architectures provide a vector base address register to remap
9570          * the interrupt vector table.
9571          * This register is only followed in non-monitor mode, and is banked.
9572          * Note: only bits 31:5 are valid.
9573          */
9574         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9575     }
9576 
9577     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9578         env->cp15.scr_el3 &= ~SCR_NS;
9579     }
9580 
9581     take_aarch32_exception(env, new_mode, mask, offset, addr);
9582 }
9583 
9584 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9585 {
9586     /*
9587      * Return the register number of the AArch64 view of the AArch32
9588      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9589      * be that of the AArch32 mode the exception came from.
9590      */
9591     int mode = env->uncached_cpsr & CPSR_M;
9592 
9593     switch (aarch32_reg) {
9594     case 0 ... 7:
9595         return aarch32_reg;
9596     case 8 ... 12:
9597         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9598     case 13:
9599         switch (mode) {
9600         case ARM_CPU_MODE_USR:
9601         case ARM_CPU_MODE_SYS:
9602             return 13;
9603         case ARM_CPU_MODE_HYP:
9604             return 15;
9605         case ARM_CPU_MODE_IRQ:
9606             return 17;
9607         case ARM_CPU_MODE_SVC:
9608             return 19;
9609         case ARM_CPU_MODE_ABT:
9610             return 21;
9611         case ARM_CPU_MODE_UND:
9612             return 23;
9613         case ARM_CPU_MODE_FIQ:
9614             return 29;
9615         default:
9616             g_assert_not_reached();
9617         }
9618     case 14:
9619         switch (mode) {
9620         case ARM_CPU_MODE_USR:
9621         case ARM_CPU_MODE_SYS:
9622         case ARM_CPU_MODE_HYP:
9623             return 14;
9624         case ARM_CPU_MODE_IRQ:
9625             return 16;
9626         case ARM_CPU_MODE_SVC:
9627             return 18;
9628         case ARM_CPU_MODE_ABT:
9629             return 20;
9630         case ARM_CPU_MODE_UND:
9631             return 22;
9632         case ARM_CPU_MODE_FIQ:
9633             return 30;
9634         default:
9635             g_assert_not_reached();
9636         }
9637     case 15:
9638         return 31;
9639     default:
9640         g_assert_not_reached();
9641     }
9642 }
9643 
9644 /* Handle exception entry to a target EL which is using AArch64 */
9645 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9646 {
9647     ARMCPU *cpu = ARM_CPU(cs);
9648     CPUARMState *env = &cpu->env;
9649     unsigned int new_el = env->exception.target_el;
9650     target_ulong addr = env->cp15.vbar_el[new_el];
9651     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9652     unsigned int old_mode;
9653     unsigned int cur_el = arm_current_el(env);
9654     int rt;
9655 
9656     /*
9657      * Note that new_el can never be 0.  If cur_el is 0, then
9658      * el0_a64 is is_a64(), else el0_a64 is ignored.
9659      */
9660     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9661 
9662     if (cur_el < new_el) {
9663         /* Entry vector offset depends on whether the implemented EL
9664          * immediately lower than the target level is using AArch32 or AArch64
9665          */
9666         bool is_aa64;
9667         uint64_t hcr;
9668 
9669         switch (new_el) {
9670         case 3:
9671             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9672             break;
9673         case 2:
9674             hcr = arm_hcr_el2_eff(env);
9675             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9676                 is_aa64 = (hcr & HCR_RW) != 0;
9677                 break;
9678             }
9679             /* fall through */
9680         case 1:
9681             is_aa64 = is_a64(env);
9682             break;
9683         default:
9684             g_assert_not_reached();
9685         }
9686 
9687         if (is_aa64) {
9688             addr += 0x400;
9689         } else {
9690             addr += 0x600;
9691         }
9692     } else if (pstate_read(env) & PSTATE_SP) {
9693         addr += 0x200;
9694     }
9695 
9696     switch (cs->exception_index) {
9697     case EXCP_PREFETCH_ABORT:
9698     case EXCP_DATA_ABORT:
9699         env->cp15.far_el[new_el] = env->exception.vaddress;
9700         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9701                       env->cp15.far_el[new_el]);
9702         /* fall through */
9703     case EXCP_BKPT:
9704     case EXCP_UDEF:
9705     case EXCP_SWI:
9706     case EXCP_HVC:
9707     case EXCP_HYP_TRAP:
9708     case EXCP_SMC:
9709         switch (syn_get_ec(env->exception.syndrome)) {
9710         case EC_ADVSIMDFPACCESSTRAP:
9711             /*
9712              * QEMU internal FP/SIMD syndromes from AArch32 include the
9713              * TA and coproc fields which are only exposed if the exception
9714              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9715              * AArch64 format syndrome.
9716              */
9717             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9718             break;
9719         case EC_CP14RTTRAP:
9720         case EC_CP15RTTRAP:
9721         case EC_CP14DTTRAP:
9722             /*
9723              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9724              * the raw register field from the insn; when taking this to
9725              * AArch64 we must convert it to the AArch64 view of the register
9726              * number. Notice that we read a 4-bit AArch32 register number and
9727              * write back a 5-bit AArch64 one.
9728              */
9729             rt = extract32(env->exception.syndrome, 5, 4);
9730             rt = aarch64_regnum(env, rt);
9731             env->exception.syndrome = deposit32(env->exception.syndrome,
9732                                                 5, 5, rt);
9733             break;
9734         case EC_CP15RRTTRAP:
9735         case EC_CP14RRTTRAP:
9736             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9737             rt = extract32(env->exception.syndrome, 5, 4);
9738             rt = aarch64_regnum(env, rt);
9739             env->exception.syndrome = deposit32(env->exception.syndrome,
9740                                                 5, 5, rt);
9741             rt = extract32(env->exception.syndrome, 10, 4);
9742             rt = aarch64_regnum(env, rt);
9743             env->exception.syndrome = deposit32(env->exception.syndrome,
9744                                                 10, 5, rt);
9745             break;
9746         }
9747         env->cp15.esr_el[new_el] = env->exception.syndrome;
9748         break;
9749     case EXCP_IRQ:
9750     case EXCP_VIRQ:
9751         addr += 0x80;
9752         break;
9753     case EXCP_FIQ:
9754     case EXCP_VFIQ:
9755         addr += 0x100;
9756         break;
9757     default:
9758         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9759     }
9760 
9761     if (is_a64(env)) {
9762         old_mode = pstate_read(env);
9763         aarch64_save_sp(env, arm_current_el(env));
9764         env->elr_el[new_el] = env->pc;
9765     } else {
9766         old_mode = cpsr_read(env);
9767         env->elr_el[new_el] = env->regs[15];
9768 
9769         aarch64_sync_32_to_64(env);
9770 
9771         env->condexec_bits = 0;
9772     }
9773     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9774 
9775     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9776                   env->elr_el[new_el]);
9777 
9778     if (cpu_isar_feature(aa64_pan, cpu)) {
9779         /* The value of PSTATE.PAN is normally preserved, except when ... */
9780         new_mode |= old_mode & PSTATE_PAN;
9781         switch (new_el) {
9782         case 2:
9783             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9784             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9785                 != (HCR_E2H | HCR_TGE)) {
9786                 break;
9787             }
9788             /* fall through */
9789         case 1:
9790             /* ... the target is EL1 ... */
9791             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9792             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9793                 new_mode |= PSTATE_PAN;
9794             }
9795             break;
9796         }
9797     }
9798     if (cpu_isar_feature(aa64_mte, cpu)) {
9799         new_mode |= PSTATE_TCO;
9800     }
9801 
9802     pstate_write(env, PSTATE_DAIF | new_mode);
9803     env->aarch64 = 1;
9804     aarch64_restore_sp(env, new_el);
9805     helper_rebuild_hflags_a64(env, new_el);
9806 
9807     env->pc = addr;
9808 
9809     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9810                   new_el, env->pc, pstate_read(env));
9811 }
9812 
9813 /*
9814  * Do semihosting call and set the appropriate return value. All the
9815  * permission and validity checks have been done at translate time.
9816  *
9817  * We only see semihosting exceptions in TCG only as they are not
9818  * trapped to the hypervisor in KVM.
9819  */
9820 #ifdef CONFIG_TCG
9821 static void handle_semihosting(CPUState *cs)
9822 {
9823     ARMCPU *cpu = ARM_CPU(cs);
9824     CPUARMState *env = &cpu->env;
9825 
9826     if (is_a64(env)) {
9827         qemu_log_mask(CPU_LOG_INT,
9828                       "...handling as semihosting call 0x%" PRIx64 "\n",
9829                       env->xregs[0]);
9830         env->xregs[0] = do_arm_semihosting(env);
9831         env->pc += 4;
9832     } else {
9833         qemu_log_mask(CPU_LOG_INT,
9834                       "...handling as semihosting call 0x%x\n",
9835                       env->regs[0]);
9836         env->regs[0] = do_arm_semihosting(env);
9837         env->regs[15] += env->thumb ? 2 : 4;
9838     }
9839 }
9840 #endif
9841 
9842 /* Handle a CPU exception for A and R profile CPUs.
9843  * Do any appropriate logging, handle PSCI calls, and then hand off
9844  * to the AArch64-entry or AArch32-entry function depending on the
9845  * target exception level's register width.
9846  */
9847 void arm_cpu_do_interrupt(CPUState *cs)
9848 {
9849     ARMCPU *cpu = ARM_CPU(cs);
9850     CPUARMState *env = &cpu->env;
9851     unsigned int new_el = env->exception.target_el;
9852 
9853     assert(!arm_feature(env, ARM_FEATURE_M));
9854 
9855     arm_log_exception(cs->exception_index);
9856     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9857                   new_el);
9858     if (qemu_loglevel_mask(CPU_LOG_INT)
9859         && !excp_is_internal(cs->exception_index)) {
9860         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9861                       syn_get_ec(env->exception.syndrome),
9862                       env->exception.syndrome);
9863     }
9864 
9865     if (arm_is_psci_call(cpu, cs->exception_index)) {
9866         arm_handle_psci_call(cpu);
9867         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9868         return;
9869     }
9870 
9871     /*
9872      * Semihosting semantics depend on the register width of the code
9873      * that caused the exception, not the target exception level, so
9874      * must be handled here.
9875      */
9876 #ifdef CONFIG_TCG
9877     if (cs->exception_index == EXCP_SEMIHOST) {
9878         handle_semihosting(cs);
9879         return;
9880     }
9881 #endif
9882 
9883     /* Hooks may change global state so BQL should be held, also the
9884      * BQL needs to be held for any modification of
9885      * cs->interrupt_request.
9886      */
9887     g_assert(qemu_mutex_iothread_locked());
9888 
9889     arm_call_pre_el_change_hook(cpu);
9890 
9891     assert(!excp_is_internal(cs->exception_index));
9892     if (arm_el_is_aa64(env, new_el)) {
9893         arm_cpu_do_interrupt_aarch64(cs);
9894     } else {
9895         arm_cpu_do_interrupt_aarch32(cs);
9896     }
9897 
9898     arm_call_el_change_hook(cpu);
9899 
9900     if (!kvm_enabled()) {
9901         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9902     }
9903 }
9904 #endif /* !CONFIG_USER_ONLY */
9905 
9906 uint64_t arm_sctlr(CPUARMState *env, int el)
9907 {
9908     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9909     if (el == 0) {
9910         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9911         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9912     }
9913     return env->cp15.sctlr_el[el];
9914 }
9915 
9916 /* Return the SCTLR value which controls this address translation regime */
9917 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9918 {
9919     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9920 }
9921 
9922 #ifndef CONFIG_USER_ONLY
9923 
9924 /* Return true if the specified stage of address translation is disabled */
9925 static inline bool regime_translation_disabled(CPUARMState *env,
9926                                                ARMMMUIdx mmu_idx)
9927 {
9928     if (arm_feature(env, ARM_FEATURE_M)) {
9929         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9930                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9931         case R_V7M_MPU_CTRL_ENABLE_MASK:
9932             /* Enabled, but not for HardFault and NMI */
9933             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9934         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9935             /* Enabled for all cases */
9936             return false;
9937         case 0:
9938         default:
9939             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9940              * we warned about that in armv7m_nvic.c when the guest set it.
9941              */
9942             return true;
9943         }
9944     }
9945 
9946     if (mmu_idx == ARMMMUIdx_Stage2) {
9947         /* HCR.DC means HCR.VM behaves as 1 */
9948         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9949     }
9950 
9951     if (env->cp15.hcr_el2 & HCR_TGE) {
9952         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9953         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9954             return true;
9955         }
9956     }
9957 
9958     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9959         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9960         return true;
9961     }
9962 
9963     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9964 }
9965 
9966 static inline bool regime_translation_big_endian(CPUARMState *env,
9967                                                  ARMMMUIdx mmu_idx)
9968 {
9969     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9970 }
9971 
9972 /* Return the TTBR associated with this translation regime */
9973 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9974                                    int ttbrn)
9975 {
9976     if (mmu_idx == ARMMMUIdx_Stage2) {
9977         return env->cp15.vttbr_el2;
9978     }
9979     if (ttbrn == 0) {
9980         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9981     } else {
9982         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9983     }
9984 }
9985 
9986 #endif /* !CONFIG_USER_ONLY */
9987 
9988 /* Convert a possible stage1+2 MMU index into the appropriate
9989  * stage 1 MMU index
9990  */
9991 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9992 {
9993     switch (mmu_idx) {
9994     case ARMMMUIdx_E10_0:
9995         return ARMMMUIdx_Stage1_E0;
9996     case ARMMMUIdx_E10_1:
9997         return ARMMMUIdx_Stage1_E1;
9998     case ARMMMUIdx_E10_1_PAN:
9999         return ARMMMUIdx_Stage1_E1_PAN;
10000     default:
10001         return mmu_idx;
10002     }
10003 }
10004 
10005 /* Return true if the translation regime is using LPAE format page tables */
10006 static inline bool regime_using_lpae_format(CPUARMState *env,
10007                                             ARMMMUIdx mmu_idx)
10008 {
10009     int el = regime_el(env, mmu_idx);
10010     if (el == 2 || arm_el_is_aa64(env, el)) {
10011         return true;
10012     }
10013     if (arm_feature(env, ARM_FEATURE_LPAE)
10014         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10015         return true;
10016     }
10017     return false;
10018 }
10019 
10020 /* Returns true if the stage 1 translation regime is using LPAE format page
10021  * tables. Used when raising alignment exceptions, whose FSR changes depending
10022  * on whether the long or short descriptor format is in use. */
10023 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10024 {
10025     mmu_idx = stage_1_mmu_idx(mmu_idx);
10026 
10027     return regime_using_lpae_format(env, mmu_idx);
10028 }
10029 
10030 #ifndef CONFIG_USER_ONLY
10031 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10032 {
10033     switch (mmu_idx) {
10034     case ARMMMUIdx_SE10_0:
10035     case ARMMMUIdx_E20_0:
10036     case ARMMMUIdx_Stage1_E0:
10037     case ARMMMUIdx_MUser:
10038     case ARMMMUIdx_MSUser:
10039     case ARMMMUIdx_MUserNegPri:
10040     case ARMMMUIdx_MSUserNegPri:
10041         return true;
10042     default:
10043         return false;
10044     case ARMMMUIdx_E10_0:
10045     case ARMMMUIdx_E10_1:
10046     case ARMMMUIdx_E10_1_PAN:
10047         g_assert_not_reached();
10048     }
10049 }
10050 
10051 /* Translate section/page access permissions to page
10052  * R/W protection flags
10053  *
10054  * @env:         CPUARMState
10055  * @mmu_idx:     MMU index indicating required translation regime
10056  * @ap:          The 3-bit access permissions (AP[2:0])
10057  * @domain_prot: The 2-bit domain access permissions
10058  */
10059 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10060                                 int ap, int domain_prot)
10061 {
10062     bool is_user = regime_is_user(env, mmu_idx);
10063 
10064     if (domain_prot == 3) {
10065         return PAGE_READ | PAGE_WRITE;
10066     }
10067 
10068     switch (ap) {
10069     case 0:
10070         if (arm_feature(env, ARM_FEATURE_V7)) {
10071             return 0;
10072         }
10073         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10074         case SCTLR_S:
10075             return is_user ? 0 : PAGE_READ;
10076         case SCTLR_R:
10077             return PAGE_READ;
10078         default:
10079             return 0;
10080         }
10081     case 1:
10082         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10083     case 2:
10084         if (is_user) {
10085             return PAGE_READ;
10086         } else {
10087             return PAGE_READ | PAGE_WRITE;
10088         }
10089     case 3:
10090         return PAGE_READ | PAGE_WRITE;
10091     case 4: /* Reserved.  */
10092         return 0;
10093     case 5:
10094         return is_user ? 0 : PAGE_READ;
10095     case 6:
10096         return PAGE_READ;
10097     case 7:
10098         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10099             return 0;
10100         }
10101         return PAGE_READ;
10102     default:
10103         g_assert_not_reached();
10104     }
10105 }
10106 
10107 /* Translate section/page access permissions to page
10108  * R/W protection flags.
10109  *
10110  * @ap:      The 2-bit simple AP (AP[2:1])
10111  * @is_user: TRUE if accessing from PL0
10112  */
10113 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10114 {
10115     switch (ap) {
10116     case 0:
10117         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10118     case 1:
10119         return PAGE_READ | PAGE_WRITE;
10120     case 2:
10121         return is_user ? 0 : PAGE_READ;
10122     case 3:
10123         return PAGE_READ;
10124     default:
10125         g_assert_not_reached();
10126     }
10127 }
10128 
10129 static inline int
10130 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10131 {
10132     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10133 }
10134 
10135 /* Translate S2 section/page access permissions to protection flags
10136  *
10137  * @env:     CPUARMState
10138  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10139  * @xn:      XN (execute-never) bits
10140  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10141  */
10142 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10143 {
10144     int prot = 0;
10145 
10146     if (s2ap & 1) {
10147         prot |= PAGE_READ;
10148     }
10149     if (s2ap & 2) {
10150         prot |= PAGE_WRITE;
10151     }
10152 
10153     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10154         switch (xn) {
10155         case 0:
10156             prot |= PAGE_EXEC;
10157             break;
10158         case 1:
10159             if (s1_is_el0) {
10160                 prot |= PAGE_EXEC;
10161             }
10162             break;
10163         case 2:
10164             break;
10165         case 3:
10166             if (!s1_is_el0) {
10167                 prot |= PAGE_EXEC;
10168             }
10169             break;
10170         default:
10171             g_assert_not_reached();
10172         }
10173     } else {
10174         if (!extract32(xn, 1, 1)) {
10175             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10176                 prot |= PAGE_EXEC;
10177             }
10178         }
10179     }
10180     return prot;
10181 }
10182 
10183 /* Translate section/page access permissions to protection flags
10184  *
10185  * @env:     CPUARMState
10186  * @mmu_idx: MMU index indicating required translation regime
10187  * @is_aa64: TRUE if AArch64
10188  * @ap:      The 2-bit simple AP (AP[2:1])
10189  * @ns:      NS (non-secure) bit
10190  * @xn:      XN (execute-never) bit
10191  * @pxn:     PXN (privileged execute-never) bit
10192  */
10193 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10194                       int ap, int ns, int xn, int pxn)
10195 {
10196     bool is_user = regime_is_user(env, mmu_idx);
10197     int prot_rw, user_rw;
10198     bool have_wxn;
10199     int wxn = 0;
10200 
10201     assert(mmu_idx != ARMMMUIdx_Stage2);
10202 
10203     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10204     if (is_user) {
10205         prot_rw = user_rw;
10206     } else {
10207         if (user_rw && regime_is_pan(env, mmu_idx)) {
10208             /* PAN forbids data accesses but doesn't affect insn fetch */
10209             prot_rw = 0;
10210         } else {
10211             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10212         }
10213     }
10214 
10215     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10216         return prot_rw;
10217     }
10218 
10219     /* TODO have_wxn should be replaced with
10220      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10221      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10222      * compatible processors have EL2, which is required for [U]WXN.
10223      */
10224     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10225 
10226     if (have_wxn) {
10227         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10228     }
10229 
10230     if (is_aa64) {
10231         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10232             xn = pxn || (user_rw & PAGE_WRITE);
10233         }
10234     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10235         switch (regime_el(env, mmu_idx)) {
10236         case 1:
10237         case 3:
10238             if (is_user) {
10239                 xn = xn || !(user_rw & PAGE_READ);
10240             } else {
10241                 int uwxn = 0;
10242                 if (have_wxn) {
10243                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10244                 }
10245                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10246                      (uwxn && (user_rw & PAGE_WRITE));
10247             }
10248             break;
10249         case 2:
10250             break;
10251         }
10252     } else {
10253         xn = wxn = 0;
10254     }
10255 
10256     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10257         return prot_rw;
10258     }
10259     return prot_rw | PAGE_EXEC;
10260 }
10261 
10262 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10263                                      uint32_t *table, uint32_t address)
10264 {
10265     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10266     TCR *tcr = regime_tcr(env, mmu_idx);
10267 
10268     if (address & tcr->mask) {
10269         if (tcr->raw_tcr & TTBCR_PD1) {
10270             /* Translation table walk disabled for TTBR1 */
10271             return false;
10272         }
10273         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10274     } else {
10275         if (tcr->raw_tcr & TTBCR_PD0) {
10276             /* Translation table walk disabled for TTBR0 */
10277             return false;
10278         }
10279         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10280     }
10281     *table |= (address >> 18) & 0x3ffc;
10282     return true;
10283 }
10284 
10285 /* Translate a S1 pagetable walk through S2 if needed.  */
10286 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10287                                hwaddr addr, MemTxAttrs txattrs,
10288                                ARMMMUFaultInfo *fi)
10289 {
10290     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10291         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10292         target_ulong s2size;
10293         hwaddr s2pa;
10294         int s2prot;
10295         int ret;
10296         ARMCacheAttrs cacheattrs = {};
10297 
10298         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10299                                  false,
10300                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10301                                  &cacheattrs);
10302         if (ret) {
10303             assert(fi->type != ARMFault_None);
10304             fi->s2addr = addr;
10305             fi->stage2 = true;
10306             fi->s1ptw = true;
10307             return ~0;
10308         }
10309         if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10310             /*
10311              * PTW set and S1 walk touched S2 Device memory:
10312              * generate Permission fault.
10313              */
10314             fi->type = ARMFault_Permission;
10315             fi->s2addr = addr;
10316             fi->stage2 = true;
10317             fi->s1ptw = true;
10318             return ~0;
10319         }
10320         addr = s2pa;
10321     }
10322     return addr;
10323 }
10324 
10325 /* All loads done in the course of a page table walk go through here. */
10326 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10327                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10328 {
10329     ARMCPU *cpu = ARM_CPU(cs);
10330     CPUARMState *env = &cpu->env;
10331     MemTxAttrs attrs = {};
10332     MemTxResult result = MEMTX_OK;
10333     AddressSpace *as;
10334     uint32_t data;
10335 
10336     attrs.secure = is_secure;
10337     as = arm_addressspace(cs, attrs);
10338     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10339     if (fi->s1ptw) {
10340         return 0;
10341     }
10342     if (regime_translation_big_endian(env, mmu_idx)) {
10343         data = address_space_ldl_be(as, addr, attrs, &result);
10344     } else {
10345         data = address_space_ldl_le(as, addr, attrs, &result);
10346     }
10347     if (result == MEMTX_OK) {
10348         return data;
10349     }
10350     fi->type = ARMFault_SyncExternalOnWalk;
10351     fi->ea = arm_extabort_type(result);
10352     return 0;
10353 }
10354 
10355 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10356                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10357 {
10358     ARMCPU *cpu = ARM_CPU(cs);
10359     CPUARMState *env = &cpu->env;
10360     MemTxAttrs attrs = {};
10361     MemTxResult result = MEMTX_OK;
10362     AddressSpace *as;
10363     uint64_t data;
10364 
10365     attrs.secure = is_secure;
10366     as = arm_addressspace(cs, attrs);
10367     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10368     if (fi->s1ptw) {
10369         return 0;
10370     }
10371     if (regime_translation_big_endian(env, mmu_idx)) {
10372         data = address_space_ldq_be(as, addr, attrs, &result);
10373     } else {
10374         data = address_space_ldq_le(as, addr, attrs, &result);
10375     }
10376     if (result == MEMTX_OK) {
10377         return data;
10378     }
10379     fi->type = ARMFault_SyncExternalOnWalk;
10380     fi->ea = arm_extabort_type(result);
10381     return 0;
10382 }
10383 
10384 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10385                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10386                              hwaddr *phys_ptr, int *prot,
10387                              target_ulong *page_size,
10388                              ARMMMUFaultInfo *fi)
10389 {
10390     CPUState *cs = env_cpu(env);
10391     int level = 1;
10392     uint32_t table;
10393     uint32_t desc;
10394     int type;
10395     int ap;
10396     int domain = 0;
10397     int domain_prot;
10398     hwaddr phys_addr;
10399     uint32_t dacr;
10400 
10401     /* Pagetable walk.  */
10402     /* Lookup l1 descriptor.  */
10403     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10404         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10405         fi->type = ARMFault_Translation;
10406         goto do_fault;
10407     }
10408     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10409                        mmu_idx, fi);
10410     if (fi->type != ARMFault_None) {
10411         goto do_fault;
10412     }
10413     type = (desc & 3);
10414     domain = (desc >> 5) & 0x0f;
10415     if (regime_el(env, mmu_idx) == 1) {
10416         dacr = env->cp15.dacr_ns;
10417     } else {
10418         dacr = env->cp15.dacr_s;
10419     }
10420     domain_prot = (dacr >> (domain * 2)) & 3;
10421     if (type == 0) {
10422         /* Section translation fault.  */
10423         fi->type = ARMFault_Translation;
10424         goto do_fault;
10425     }
10426     if (type != 2) {
10427         level = 2;
10428     }
10429     if (domain_prot == 0 || domain_prot == 2) {
10430         fi->type = ARMFault_Domain;
10431         goto do_fault;
10432     }
10433     if (type == 2) {
10434         /* 1Mb section.  */
10435         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10436         ap = (desc >> 10) & 3;
10437         *page_size = 1024 * 1024;
10438     } else {
10439         /* Lookup l2 entry.  */
10440         if (type == 1) {
10441             /* Coarse pagetable.  */
10442             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10443         } else {
10444             /* Fine pagetable.  */
10445             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10446         }
10447         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10448                            mmu_idx, fi);
10449         if (fi->type != ARMFault_None) {
10450             goto do_fault;
10451         }
10452         switch (desc & 3) {
10453         case 0: /* Page translation fault.  */
10454             fi->type = ARMFault_Translation;
10455             goto do_fault;
10456         case 1: /* 64k page.  */
10457             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10458             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10459             *page_size = 0x10000;
10460             break;
10461         case 2: /* 4k page.  */
10462             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10463             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10464             *page_size = 0x1000;
10465             break;
10466         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10467             if (type == 1) {
10468                 /* ARMv6/XScale extended small page format */
10469                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10470                     || arm_feature(env, ARM_FEATURE_V6)) {
10471                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10472                     *page_size = 0x1000;
10473                 } else {
10474                     /* UNPREDICTABLE in ARMv5; we choose to take a
10475                      * page translation fault.
10476                      */
10477                     fi->type = ARMFault_Translation;
10478                     goto do_fault;
10479                 }
10480             } else {
10481                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10482                 *page_size = 0x400;
10483             }
10484             ap = (desc >> 4) & 3;
10485             break;
10486         default:
10487             /* Never happens, but compiler isn't smart enough to tell.  */
10488             abort();
10489         }
10490     }
10491     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10492     *prot |= *prot ? PAGE_EXEC : 0;
10493     if (!(*prot & (1 << access_type))) {
10494         /* Access permission fault.  */
10495         fi->type = ARMFault_Permission;
10496         goto do_fault;
10497     }
10498     *phys_ptr = phys_addr;
10499     return false;
10500 do_fault:
10501     fi->domain = domain;
10502     fi->level = level;
10503     return true;
10504 }
10505 
10506 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10507                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10508                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10509                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10510 {
10511     CPUState *cs = env_cpu(env);
10512     int level = 1;
10513     uint32_t table;
10514     uint32_t desc;
10515     uint32_t xn;
10516     uint32_t pxn = 0;
10517     int type;
10518     int ap;
10519     int domain = 0;
10520     int domain_prot;
10521     hwaddr phys_addr;
10522     uint32_t dacr;
10523     bool ns;
10524 
10525     /* Pagetable walk.  */
10526     /* Lookup l1 descriptor.  */
10527     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10528         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10529         fi->type = ARMFault_Translation;
10530         goto do_fault;
10531     }
10532     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10533                        mmu_idx, fi);
10534     if (fi->type != ARMFault_None) {
10535         goto do_fault;
10536     }
10537     type = (desc & 3);
10538     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10539         /* Section translation fault, or attempt to use the encoding
10540          * which is Reserved on implementations without PXN.
10541          */
10542         fi->type = ARMFault_Translation;
10543         goto do_fault;
10544     }
10545     if ((type == 1) || !(desc & (1 << 18))) {
10546         /* Page or Section.  */
10547         domain = (desc >> 5) & 0x0f;
10548     }
10549     if (regime_el(env, mmu_idx) == 1) {
10550         dacr = env->cp15.dacr_ns;
10551     } else {
10552         dacr = env->cp15.dacr_s;
10553     }
10554     if (type == 1) {
10555         level = 2;
10556     }
10557     domain_prot = (dacr >> (domain * 2)) & 3;
10558     if (domain_prot == 0 || domain_prot == 2) {
10559         /* Section or Page domain fault */
10560         fi->type = ARMFault_Domain;
10561         goto do_fault;
10562     }
10563     if (type != 1) {
10564         if (desc & (1 << 18)) {
10565             /* Supersection.  */
10566             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10567             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10568             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10569             *page_size = 0x1000000;
10570         } else {
10571             /* Section.  */
10572             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10573             *page_size = 0x100000;
10574         }
10575         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10576         xn = desc & (1 << 4);
10577         pxn = desc & 1;
10578         ns = extract32(desc, 19, 1);
10579     } else {
10580         if (arm_feature(env, ARM_FEATURE_PXN)) {
10581             pxn = (desc >> 2) & 1;
10582         }
10583         ns = extract32(desc, 3, 1);
10584         /* Lookup l2 entry.  */
10585         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10586         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10587                            mmu_idx, fi);
10588         if (fi->type != ARMFault_None) {
10589             goto do_fault;
10590         }
10591         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10592         switch (desc & 3) {
10593         case 0: /* Page translation fault.  */
10594             fi->type = ARMFault_Translation;
10595             goto do_fault;
10596         case 1: /* 64k page.  */
10597             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10598             xn = desc & (1 << 15);
10599             *page_size = 0x10000;
10600             break;
10601         case 2: case 3: /* 4k page.  */
10602             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10603             xn = desc & 1;
10604             *page_size = 0x1000;
10605             break;
10606         default:
10607             /* Never happens, but compiler isn't smart enough to tell.  */
10608             abort();
10609         }
10610     }
10611     if (domain_prot == 3) {
10612         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10613     } else {
10614         if (pxn && !regime_is_user(env, mmu_idx)) {
10615             xn = 1;
10616         }
10617         if (xn && access_type == MMU_INST_FETCH) {
10618             fi->type = ARMFault_Permission;
10619             goto do_fault;
10620         }
10621 
10622         if (arm_feature(env, ARM_FEATURE_V6K) &&
10623                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10624             /* The simplified model uses AP[0] as an access control bit.  */
10625             if ((ap & 1) == 0) {
10626                 /* Access flag fault.  */
10627                 fi->type = ARMFault_AccessFlag;
10628                 goto do_fault;
10629             }
10630             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10631         } else {
10632             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10633         }
10634         if (*prot && !xn) {
10635             *prot |= PAGE_EXEC;
10636         }
10637         if (!(*prot & (1 << access_type))) {
10638             /* Access permission fault.  */
10639             fi->type = ARMFault_Permission;
10640             goto do_fault;
10641         }
10642     }
10643     if (ns) {
10644         /* The NS bit will (as required by the architecture) have no effect if
10645          * the CPU doesn't support TZ or this is a non-secure translation
10646          * regime, because the attribute will already be non-secure.
10647          */
10648         attrs->secure = false;
10649     }
10650     *phys_ptr = phys_addr;
10651     return false;
10652 do_fault:
10653     fi->domain = domain;
10654     fi->level = level;
10655     return true;
10656 }
10657 
10658 /*
10659  * check_s2_mmu_setup
10660  * @cpu:        ARMCPU
10661  * @is_aa64:    True if the translation regime is in AArch64 state
10662  * @startlevel: Suggested starting level
10663  * @inputsize:  Bitsize of IPAs
10664  * @stride:     Page-table stride (See the ARM ARM)
10665  *
10666  * Returns true if the suggested S2 translation parameters are OK and
10667  * false otherwise.
10668  */
10669 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10670                                int inputsize, int stride)
10671 {
10672     const int grainsize = stride + 3;
10673     int startsizecheck;
10674 
10675     /* Negative levels are never allowed.  */
10676     if (level < 0) {
10677         return false;
10678     }
10679 
10680     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10681     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10682         return false;
10683     }
10684 
10685     if (is_aa64) {
10686         CPUARMState *env = &cpu->env;
10687         unsigned int pamax = arm_pamax(cpu);
10688 
10689         switch (stride) {
10690         case 13: /* 64KB Pages.  */
10691             if (level == 0 || (level == 1 && pamax <= 42)) {
10692                 return false;
10693             }
10694             break;
10695         case 11: /* 16KB Pages.  */
10696             if (level == 0 || (level == 1 && pamax <= 40)) {
10697                 return false;
10698             }
10699             break;
10700         case 9: /* 4KB Pages.  */
10701             if (level == 0 && pamax <= 42) {
10702                 return false;
10703             }
10704             break;
10705         default:
10706             g_assert_not_reached();
10707         }
10708 
10709         /* Inputsize checks.  */
10710         if (inputsize > pamax &&
10711             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10712             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10713             return false;
10714         }
10715     } else {
10716         /* AArch32 only supports 4KB pages. Assert on that.  */
10717         assert(stride == 9);
10718 
10719         if (level == 0) {
10720             return false;
10721         }
10722     }
10723     return true;
10724 }
10725 
10726 /* Translate from the 4-bit stage 2 representation of
10727  * memory attributes (without cache-allocation hints) to
10728  * the 8-bit representation of the stage 1 MAIR registers
10729  * (which includes allocation hints).
10730  *
10731  * ref: shared/translation/attrs/S2AttrDecode()
10732  *      .../S2ConvertAttrsHints()
10733  */
10734 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10735 {
10736     uint8_t hiattr = extract32(s2attrs, 2, 2);
10737     uint8_t loattr = extract32(s2attrs, 0, 2);
10738     uint8_t hihint = 0, lohint = 0;
10739 
10740     if (hiattr != 0) { /* normal memory */
10741         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10742             hiattr = loattr = 1; /* non-cacheable */
10743         } else {
10744             if (hiattr != 1) { /* Write-through or write-back */
10745                 hihint = 3; /* RW allocate */
10746             }
10747             if (loattr != 1) { /* Write-through or write-back */
10748                 lohint = 3; /* RW allocate */
10749             }
10750         }
10751     }
10752 
10753     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10754 }
10755 #endif /* !CONFIG_USER_ONLY */
10756 
10757 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10758 {
10759     if (regime_has_2_ranges(mmu_idx)) {
10760         return extract64(tcr, 37, 2);
10761     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10762         return 0; /* VTCR_EL2 */
10763     } else {
10764         /* Replicate the single TBI bit so we always have 2 bits.  */
10765         return extract32(tcr, 20, 1) * 3;
10766     }
10767 }
10768 
10769 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10770 {
10771     if (regime_has_2_ranges(mmu_idx)) {
10772         return extract64(tcr, 51, 2);
10773     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10774         return 0; /* VTCR_EL2 */
10775     } else {
10776         /* Replicate the single TBID bit so we always have 2 bits.  */
10777         return extract32(tcr, 29, 1) * 3;
10778     }
10779 }
10780 
10781 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10782 {
10783     if (regime_has_2_ranges(mmu_idx)) {
10784         return extract64(tcr, 57, 2);
10785     } else {
10786         /* Replicate the single TCMA bit so we always have 2 bits.  */
10787         return extract32(tcr, 30, 1) * 3;
10788     }
10789 }
10790 
10791 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10792                                    ARMMMUIdx mmu_idx, bool data)
10793 {
10794     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10795     bool epd, hpd, using16k, using64k;
10796     int select, tsz, tbi;
10797 
10798     if (!regime_has_2_ranges(mmu_idx)) {
10799         select = 0;
10800         tsz = extract32(tcr, 0, 6);
10801         using64k = extract32(tcr, 14, 1);
10802         using16k = extract32(tcr, 15, 1);
10803         if (mmu_idx == ARMMMUIdx_Stage2) {
10804             /* VTCR_EL2 */
10805             hpd = false;
10806         } else {
10807             hpd = extract32(tcr, 24, 1);
10808         }
10809         epd = false;
10810     } else {
10811         /*
10812          * Bit 55 is always between the two regions, and is canonical for
10813          * determining if address tagging is enabled.
10814          */
10815         select = extract64(va, 55, 1);
10816         if (!select) {
10817             tsz = extract32(tcr, 0, 6);
10818             epd = extract32(tcr, 7, 1);
10819             using64k = extract32(tcr, 14, 1);
10820             using16k = extract32(tcr, 15, 1);
10821             hpd = extract64(tcr, 41, 1);
10822         } else {
10823             int tg = extract32(tcr, 30, 2);
10824             using16k = tg == 1;
10825             using64k = tg == 3;
10826             tsz = extract32(tcr, 16, 6);
10827             epd = extract32(tcr, 23, 1);
10828             hpd = extract64(tcr, 42, 1);
10829         }
10830     }
10831     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10832     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10833 
10834     /* Present TBI as a composite with TBID.  */
10835     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10836     if (!data) {
10837         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10838     }
10839     tbi = (tbi >> select) & 1;
10840 
10841     return (ARMVAParameters) {
10842         .tsz = tsz,
10843         .select = select,
10844         .tbi = tbi,
10845         .epd = epd,
10846         .hpd = hpd,
10847         .using16k = using16k,
10848         .using64k = using64k,
10849     };
10850 }
10851 
10852 #ifndef CONFIG_USER_ONLY
10853 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10854                                           ARMMMUIdx mmu_idx)
10855 {
10856     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10857     uint32_t el = regime_el(env, mmu_idx);
10858     int select, tsz;
10859     bool epd, hpd;
10860 
10861     if (mmu_idx == ARMMMUIdx_Stage2) {
10862         /* VTCR */
10863         bool sext = extract32(tcr, 4, 1);
10864         bool sign = extract32(tcr, 3, 1);
10865 
10866         /*
10867          * If the sign-extend bit is not the same as t0sz[3], the result
10868          * is unpredictable. Flag this as a guest error.
10869          */
10870         if (sign != sext) {
10871             qemu_log_mask(LOG_GUEST_ERROR,
10872                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10873         }
10874         tsz = sextract32(tcr, 0, 4) + 8;
10875         select = 0;
10876         hpd = false;
10877         epd = false;
10878     } else if (el == 2) {
10879         /* HTCR */
10880         tsz = extract32(tcr, 0, 3);
10881         select = 0;
10882         hpd = extract64(tcr, 24, 1);
10883         epd = false;
10884     } else {
10885         int t0sz = extract32(tcr, 0, 3);
10886         int t1sz = extract32(tcr, 16, 3);
10887 
10888         if (t1sz == 0) {
10889             select = va > (0xffffffffu >> t0sz);
10890         } else {
10891             /* Note that we will detect errors later.  */
10892             select = va >= ~(0xffffffffu >> t1sz);
10893         }
10894         if (!select) {
10895             tsz = t0sz;
10896             epd = extract32(tcr, 7, 1);
10897             hpd = extract64(tcr, 41, 1);
10898         } else {
10899             tsz = t1sz;
10900             epd = extract32(tcr, 23, 1);
10901             hpd = extract64(tcr, 42, 1);
10902         }
10903         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10904         hpd &= extract32(tcr, 6, 1);
10905     }
10906 
10907     return (ARMVAParameters) {
10908         .tsz = tsz,
10909         .select = select,
10910         .epd = epd,
10911         .hpd = hpd,
10912     };
10913 }
10914 
10915 /**
10916  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10917  *
10918  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10919  * prot and page_size may not be filled in, and the populated fsr value provides
10920  * information on why the translation aborted, in the format of a long-format
10921  * DFSR/IFSR fault register, with the following caveats:
10922  *  * the WnR bit is never set (the caller must do this).
10923  *
10924  * @env: CPUARMState
10925  * @address: virtual address to get physical address for
10926  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10927  * @mmu_idx: MMU index indicating required translation regime
10928  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10929  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
10930  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10931  * @phys_ptr: set to the physical address corresponding to the virtual address
10932  * @attrs: set to the memory transaction attributes to use
10933  * @prot: set to the permissions for the page containing phys_ptr
10934  * @page_size_ptr: set to the size of the page containing phys_ptr
10935  * @fi: set to fault info if the translation fails
10936  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10937  */
10938 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10939                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10940                                bool s1_is_el0,
10941                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10942                                target_ulong *page_size_ptr,
10943                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10944 {
10945     ARMCPU *cpu = env_archcpu(env);
10946     CPUState *cs = CPU(cpu);
10947     /* Read an LPAE long-descriptor translation table. */
10948     ARMFaultType fault_type = ARMFault_Translation;
10949     uint32_t level;
10950     ARMVAParameters param;
10951     uint64_t ttbr;
10952     hwaddr descaddr, indexmask, indexmask_grainsize;
10953     uint32_t tableattrs;
10954     target_ulong page_size;
10955     uint32_t attrs;
10956     int32_t stride;
10957     int addrsize, inputsize;
10958     TCR *tcr = regime_tcr(env, mmu_idx);
10959     int ap, ns, xn, pxn;
10960     uint32_t el = regime_el(env, mmu_idx);
10961     uint64_t descaddrmask;
10962     bool aarch64 = arm_el_is_aa64(env, el);
10963     bool guarded = false;
10964 
10965     /* TODO: This code does not support shareability levels. */
10966     if (aarch64) {
10967         param = aa64_va_parameters(env, address, mmu_idx,
10968                                    access_type != MMU_INST_FETCH);
10969         level = 0;
10970         addrsize = 64 - 8 * param.tbi;
10971         inputsize = 64 - param.tsz;
10972     } else {
10973         param = aa32_va_parameters(env, address, mmu_idx);
10974         level = 1;
10975         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10976         inputsize = addrsize - param.tsz;
10977     }
10978 
10979     /*
10980      * We determined the region when collecting the parameters, but we
10981      * have not yet validated that the address is valid for the region.
10982      * Extract the top bits and verify that they all match select.
10983      *
10984      * For aa32, if inputsize == addrsize, then we have selected the
10985      * region by exclusion in aa32_va_parameters and there is no more
10986      * validation to do here.
10987      */
10988     if (inputsize < addrsize) {
10989         target_ulong top_bits = sextract64(address, inputsize,
10990                                            addrsize - inputsize);
10991         if (-top_bits != param.select) {
10992             /* The gap between the two regions is a Translation fault */
10993             fault_type = ARMFault_Translation;
10994             goto do_fault;
10995         }
10996     }
10997 
10998     if (param.using64k) {
10999         stride = 13;
11000     } else if (param.using16k) {
11001         stride = 11;
11002     } else {
11003         stride = 9;
11004     }
11005 
11006     /* Note that QEMU ignores shareability and cacheability attributes,
11007      * so we don't need to do anything with the SH, ORGN, IRGN fields
11008      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11009      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11010      * implement any ASID-like capability so we can ignore it (instead
11011      * we will always flush the TLB any time the ASID is changed).
11012      */
11013     ttbr = regime_ttbr(env, mmu_idx, param.select);
11014 
11015     /* Here we should have set up all the parameters for the translation:
11016      * inputsize, ttbr, epd, stride, tbi
11017      */
11018 
11019     if (param.epd) {
11020         /* Translation table walk disabled => Translation fault on TLB miss
11021          * Note: This is always 0 on 64-bit EL2 and EL3.
11022          */
11023         goto do_fault;
11024     }
11025 
11026     if (mmu_idx != ARMMMUIdx_Stage2) {
11027         /* The starting level depends on the virtual address size (which can
11028          * be up to 48 bits) and the translation granule size. It indicates
11029          * the number of strides (stride bits at a time) needed to
11030          * consume the bits of the input address. In the pseudocode this is:
11031          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11032          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11033          * our 'stride + 3' and 'stride' is our 'stride'.
11034          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11035          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11036          * = 4 - (inputsize - 4) / stride;
11037          */
11038         level = 4 - (inputsize - 4) / stride;
11039     } else {
11040         /* For stage 2 translations the starting level is specified by the
11041          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11042          */
11043         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11044         uint32_t startlevel;
11045         bool ok;
11046 
11047         if (!aarch64 || stride == 9) {
11048             /* AArch32 or 4KB pages */
11049             startlevel = 2 - sl0;
11050         } else {
11051             /* 16KB or 64KB pages */
11052             startlevel = 3 - sl0;
11053         }
11054 
11055         /* Check that the starting level is valid. */
11056         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11057                                 inputsize, stride);
11058         if (!ok) {
11059             fault_type = ARMFault_Translation;
11060             goto do_fault;
11061         }
11062         level = startlevel;
11063     }
11064 
11065     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11066     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11067 
11068     /* Now we can extract the actual base address from the TTBR */
11069     descaddr = extract64(ttbr, 0, 48);
11070     /*
11071      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11072      * and also to mask out CnP (bit 0) which could validly be non-zero.
11073      */
11074     descaddr &= ~indexmask;
11075 
11076     /* The address field in the descriptor goes up to bit 39 for ARMv7
11077      * but up to bit 47 for ARMv8, but we use the descaddrmask
11078      * up to bit 39 for AArch32, because we don't need other bits in that case
11079      * to construct next descriptor address (anyway they should be all zeroes).
11080      */
11081     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11082                    ~indexmask_grainsize;
11083 
11084     /* Secure accesses start with the page table in secure memory and
11085      * can be downgraded to non-secure at any step. Non-secure accesses
11086      * remain non-secure. We implement this by just ORing in the NSTable/NS
11087      * bits at each step.
11088      */
11089     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11090     for (;;) {
11091         uint64_t descriptor;
11092         bool nstable;
11093 
11094         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11095         descaddr &= ~7ULL;
11096         nstable = extract32(tableattrs, 4, 1);
11097         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11098         if (fi->type != ARMFault_None) {
11099             goto do_fault;
11100         }
11101 
11102         if (!(descriptor & 1) ||
11103             (!(descriptor & 2) && (level == 3))) {
11104             /* Invalid, or the Reserved level 3 encoding */
11105             goto do_fault;
11106         }
11107         descaddr = descriptor & descaddrmask;
11108 
11109         if ((descriptor & 2) && (level < 3)) {
11110             /* Table entry. The top five bits are attributes which may
11111              * propagate down through lower levels of the table (and
11112              * which are all arranged so that 0 means "no effect", so
11113              * we can gather them up by ORing in the bits at each level).
11114              */
11115             tableattrs |= extract64(descriptor, 59, 5);
11116             level++;
11117             indexmask = indexmask_grainsize;
11118             continue;
11119         }
11120         /* Block entry at level 1 or 2, or page entry at level 3.
11121          * These are basically the same thing, although the number
11122          * of bits we pull in from the vaddr varies.
11123          */
11124         page_size = (1ULL << ((stride * (4 - level)) + 3));
11125         descaddr |= (address & (page_size - 1));
11126         /* Extract attributes from the descriptor */
11127         attrs = extract64(descriptor, 2, 10)
11128             | (extract64(descriptor, 52, 12) << 10);
11129 
11130         if (mmu_idx == ARMMMUIdx_Stage2) {
11131             /* Stage 2 table descriptors do not include any attribute fields */
11132             break;
11133         }
11134         /* Merge in attributes from table descriptors */
11135         attrs |= nstable << 3; /* NS */
11136         guarded = extract64(descriptor, 50, 1);  /* GP */
11137         if (param.hpd) {
11138             /* HPD disables all the table attributes except NSTable.  */
11139             break;
11140         }
11141         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11142         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11143          * means "force PL1 access only", which means forcing AP[1] to 0.
11144          */
11145         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11146         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11147         break;
11148     }
11149     /* Here descaddr is the final physical address, and attributes
11150      * are all in attrs.
11151      */
11152     fault_type = ARMFault_AccessFlag;
11153     if ((attrs & (1 << 8)) == 0) {
11154         /* Access flag */
11155         goto do_fault;
11156     }
11157 
11158     ap = extract32(attrs, 4, 2);
11159 
11160     if (mmu_idx == ARMMMUIdx_Stage2) {
11161         ns = true;
11162         xn = extract32(attrs, 11, 2);
11163         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11164     } else {
11165         ns = extract32(attrs, 3, 1);
11166         xn = extract32(attrs, 12, 1);
11167         pxn = extract32(attrs, 11, 1);
11168         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11169     }
11170 
11171     fault_type = ARMFault_Permission;
11172     if (!(*prot & (1 << access_type))) {
11173         goto do_fault;
11174     }
11175 
11176     if (ns) {
11177         /* The NS bit will (as required by the architecture) have no effect if
11178          * the CPU doesn't support TZ or this is a non-secure translation
11179          * regime, because the attribute will already be non-secure.
11180          */
11181         txattrs->secure = false;
11182     }
11183     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11184     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11185         arm_tlb_bti_gp(txattrs) = true;
11186     }
11187 
11188     if (mmu_idx == ARMMMUIdx_Stage2) {
11189         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11190     } else {
11191         /* Index into MAIR registers for cache attributes */
11192         uint8_t attrindx = extract32(attrs, 0, 3);
11193         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11194         assert(attrindx <= 7);
11195         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11196     }
11197     cacheattrs->shareability = extract32(attrs, 6, 2);
11198 
11199     *phys_ptr = descaddr;
11200     *page_size_ptr = page_size;
11201     return false;
11202 
11203 do_fault:
11204     fi->type = fault_type;
11205     fi->level = level;
11206     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11207     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11208     return true;
11209 }
11210 
11211 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11212                                                 ARMMMUIdx mmu_idx,
11213                                                 int32_t address, int *prot)
11214 {
11215     if (!arm_feature(env, ARM_FEATURE_M)) {
11216         *prot = PAGE_READ | PAGE_WRITE;
11217         switch (address) {
11218         case 0xF0000000 ... 0xFFFFFFFF:
11219             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11220                 /* hivecs execing is ok */
11221                 *prot |= PAGE_EXEC;
11222             }
11223             break;
11224         case 0x00000000 ... 0x7FFFFFFF:
11225             *prot |= PAGE_EXEC;
11226             break;
11227         }
11228     } else {
11229         /* Default system address map for M profile cores.
11230          * The architecture specifies which regions are execute-never;
11231          * at the MPU level no other checks are defined.
11232          */
11233         switch (address) {
11234         case 0x00000000 ... 0x1fffffff: /* ROM */
11235         case 0x20000000 ... 0x3fffffff: /* SRAM */
11236         case 0x60000000 ... 0x7fffffff: /* RAM */
11237         case 0x80000000 ... 0x9fffffff: /* RAM */
11238             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11239             break;
11240         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11241         case 0xa0000000 ... 0xbfffffff: /* Device */
11242         case 0xc0000000 ... 0xdfffffff: /* Device */
11243         case 0xe0000000 ... 0xffffffff: /* System */
11244             *prot = PAGE_READ | PAGE_WRITE;
11245             break;
11246         default:
11247             g_assert_not_reached();
11248         }
11249     }
11250 }
11251 
11252 static bool pmsav7_use_background_region(ARMCPU *cpu,
11253                                          ARMMMUIdx mmu_idx, bool is_user)
11254 {
11255     /* Return true if we should use the default memory map as a
11256      * "background" region if there are no hits against any MPU regions.
11257      */
11258     CPUARMState *env = &cpu->env;
11259 
11260     if (is_user) {
11261         return false;
11262     }
11263 
11264     if (arm_feature(env, ARM_FEATURE_M)) {
11265         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11266             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11267     } else {
11268         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11269     }
11270 }
11271 
11272 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11273 {
11274     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11275     return arm_feature(env, ARM_FEATURE_M) &&
11276         extract32(address, 20, 12) == 0xe00;
11277 }
11278 
11279 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11280 {
11281     /* True if address is in the M profile system region
11282      * 0xe0000000 - 0xffffffff
11283      */
11284     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11285 }
11286 
11287 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11288                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11289                                  hwaddr *phys_ptr, int *prot,
11290                                  target_ulong *page_size,
11291                                  ARMMMUFaultInfo *fi)
11292 {
11293     ARMCPU *cpu = env_archcpu(env);
11294     int n;
11295     bool is_user = regime_is_user(env, mmu_idx);
11296 
11297     *phys_ptr = address;
11298     *page_size = TARGET_PAGE_SIZE;
11299     *prot = 0;
11300 
11301     if (regime_translation_disabled(env, mmu_idx) ||
11302         m_is_ppb_region(env, address)) {
11303         /* MPU disabled or M profile PPB access: use default memory map.
11304          * The other case which uses the default memory map in the
11305          * v7M ARM ARM pseudocode is exception vector reads from the vector
11306          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11307          * which always does a direct read using address_space_ldl(), rather
11308          * than going via this function, so we don't need to check that here.
11309          */
11310         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11311     } else { /* MPU enabled */
11312         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11313             /* region search */
11314             uint32_t base = env->pmsav7.drbar[n];
11315             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11316             uint32_t rmask;
11317             bool srdis = false;
11318 
11319             if (!(env->pmsav7.drsr[n] & 0x1)) {
11320                 continue;
11321             }
11322 
11323             if (!rsize) {
11324                 qemu_log_mask(LOG_GUEST_ERROR,
11325                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11326                 continue;
11327             }
11328             rsize++;
11329             rmask = (1ull << rsize) - 1;
11330 
11331             if (base & rmask) {
11332                 qemu_log_mask(LOG_GUEST_ERROR,
11333                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11334                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11335                               n, base, rmask);
11336                 continue;
11337             }
11338 
11339             if (address < base || address > base + rmask) {
11340                 /*
11341                  * Address not in this region. We must check whether the
11342                  * region covers addresses in the same page as our address.
11343                  * In that case we must not report a size that covers the
11344                  * whole page for a subsequent hit against a different MPU
11345                  * region or the background region, because it would result in
11346                  * incorrect TLB hits for subsequent accesses to addresses that
11347                  * are in this MPU region.
11348                  */
11349                 if (ranges_overlap(base, rmask,
11350                                    address & TARGET_PAGE_MASK,
11351                                    TARGET_PAGE_SIZE)) {
11352                     *page_size = 1;
11353                 }
11354                 continue;
11355             }
11356 
11357             /* Region matched */
11358 
11359             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11360                 int i, snd;
11361                 uint32_t srdis_mask;
11362 
11363                 rsize -= 3; /* sub region size (power of 2) */
11364                 snd = ((address - base) >> rsize) & 0x7;
11365                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11366 
11367                 srdis_mask = srdis ? 0x3 : 0x0;
11368                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11369                     /* This will check in groups of 2, 4 and then 8, whether
11370                      * the subregion bits are consistent. rsize is incremented
11371                      * back up to give the region size, considering consistent
11372                      * adjacent subregions as one region. Stop testing if rsize
11373                      * is already big enough for an entire QEMU page.
11374                      */
11375                     int snd_rounded = snd & ~(i - 1);
11376                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11377                                                      snd_rounded + 8, i);
11378                     if (srdis_mask ^ srdis_multi) {
11379                         break;
11380                     }
11381                     srdis_mask = (srdis_mask << i) | srdis_mask;
11382                     rsize++;
11383                 }
11384             }
11385             if (srdis) {
11386                 continue;
11387             }
11388             if (rsize < TARGET_PAGE_BITS) {
11389                 *page_size = 1 << rsize;
11390             }
11391             break;
11392         }
11393 
11394         if (n == -1) { /* no hits */
11395             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11396                 /* background fault */
11397                 fi->type = ARMFault_Background;
11398                 return true;
11399             }
11400             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11401         } else { /* a MPU hit! */
11402             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11403             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11404 
11405             if (m_is_system_region(env, address)) {
11406                 /* System space is always execute never */
11407                 xn = 1;
11408             }
11409 
11410             if (is_user) { /* User mode AP bit decoding */
11411                 switch (ap) {
11412                 case 0:
11413                 case 1:
11414                 case 5:
11415                     break; /* no access */
11416                 case 3:
11417                     *prot |= PAGE_WRITE;
11418                     /* fall through */
11419                 case 2:
11420                 case 6:
11421                     *prot |= PAGE_READ | PAGE_EXEC;
11422                     break;
11423                 case 7:
11424                     /* for v7M, same as 6; for R profile a reserved value */
11425                     if (arm_feature(env, ARM_FEATURE_M)) {
11426                         *prot |= PAGE_READ | PAGE_EXEC;
11427                         break;
11428                     }
11429                     /* fall through */
11430                 default:
11431                     qemu_log_mask(LOG_GUEST_ERROR,
11432                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11433                                   PRIx32 "\n", n, ap);
11434                 }
11435             } else { /* Priv. mode AP bits decoding */
11436                 switch (ap) {
11437                 case 0:
11438                     break; /* no access */
11439                 case 1:
11440                 case 2:
11441                 case 3:
11442                     *prot |= PAGE_WRITE;
11443                     /* fall through */
11444                 case 5:
11445                 case 6:
11446                     *prot |= PAGE_READ | PAGE_EXEC;
11447                     break;
11448                 case 7:
11449                     /* for v7M, same as 6; for R profile a reserved value */
11450                     if (arm_feature(env, ARM_FEATURE_M)) {
11451                         *prot |= PAGE_READ | PAGE_EXEC;
11452                         break;
11453                     }
11454                     /* fall through */
11455                 default:
11456                     qemu_log_mask(LOG_GUEST_ERROR,
11457                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11458                                   PRIx32 "\n", n, ap);
11459                 }
11460             }
11461 
11462             /* execute never */
11463             if (xn) {
11464                 *prot &= ~PAGE_EXEC;
11465             }
11466         }
11467     }
11468 
11469     fi->type = ARMFault_Permission;
11470     fi->level = 1;
11471     return !(*prot & (1 << access_type));
11472 }
11473 
11474 static bool v8m_is_sau_exempt(CPUARMState *env,
11475                               uint32_t address, MMUAccessType access_type)
11476 {
11477     /* The architecture specifies that certain address ranges are
11478      * exempt from v8M SAU/IDAU checks.
11479      */
11480     return
11481         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11482         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11483         (address >= 0xe000e000 && address <= 0xe000efff) ||
11484         (address >= 0xe002e000 && address <= 0xe002efff) ||
11485         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11486         (address >= 0xe00ff000 && address <= 0xe00fffff);
11487 }
11488 
11489 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11490                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11491                                 V8M_SAttributes *sattrs)
11492 {
11493     /* Look up the security attributes for this address. Compare the
11494      * pseudocode SecurityCheck() function.
11495      * We assume the caller has zero-initialized *sattrs.
11496      */
11497     ARMCPU *cpu = env_archcpu(env);
11498     int r;
11499     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11500     int idau_region = IREGION_NOTVALID;
11501     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11502     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11503 
11504     if (cpu->idau) {
11505         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11506         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11507 
11508         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11509                    &idau_nsc);
11510     }
11511 
11512     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11513         /* 0xf0000000..0xffffffff is always S for insn fetches */
11514         return;
11515     }
11516 
11517     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11518         sattrs->ns = !regime_is_secure(env, mmu_idx);
11519         return;
11520     }
11521 
11522     if (idau_region != IREGION_NOTVALID) {
11523         sattrs->irvalid = true;
11524         sattrs->iregion = idau_region;
11525     }
11526 
11527     switch (env->sau.ctrl & 3) {
11528     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11529         break;
11530     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11531         sattrs->ns = true;
11532         break;
11533     default: /* SAU.ENABLE == 1 */
11534         for (r = 0; r < cpu->sau_sregion; r++) {
11535             if (env->sau.rlar[r] & 1) {
11536                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11537                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11538 
11539                 if (base <= address && limit >= address) {
11540                     if (base > addr_page_base || limit < addr_page_limit) {
11541                         sattrs->subpage = true;
11542                     }
11543                     if (sattrs->srvalid) {
11544                         /* If we hit in more than one region then we must report
11545                          * as Secure, not NS-Callable, with no valid region
11546                          * number info.
11547                          */
11548                         sattrs->ns = false;
11549                         sattrs->nsc = false;
11550                         sattrs->sregion = 0;
11551                         sattrs->srvalid = false;
11552                         break;
11553                     } else {
11554                         if (env->sau.rlar[r] & 2) {
11555                             sattrs->nsc = true;
11556                         } else {
11557                             sattrs->ns = true;
11558                         }
11559                         sattrs->srvalid = true;
11560                         sattrs->sregion = r;
11561                     }
11562                 } else {
11563                     /*
11564                      * Address not in this region. We must check whether the
11565                      * region covers addresses in the same page as our address.
11566                      * In that case we must not report a size that covers the
11567                      * whole page for a subsequent hit against a different MPU
11568                      * region or the background region, because it would result
11569                      * in incorrect TLB hits for subsequent accesses to
11570                      * addresses that are in this MPU region.
11571                      */
11572                     if (limit >= base &&
11573                         ranges_overlap(base, limit - base + 1,
11574                                        addr_page_base,
11575                                        TARGET_PAGE_SIZE)) {
11576                         sattrs->subpage = true;
11577                     }
11578                 }
11579             }
11580         }
11581         break;
11582     }
11583 
11584     /*
11585      * The IDAU will override the SAU lookup results if it specifies
11586      * higher security than the SAU does.
11587      */
11588     if (!idau_ns) {
11589         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11590             sattrs->ns = false;
11591             sattrs->nsc = idau_nsc;
11592         }
11593     }
11594 }
11595 
11596 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11597                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11598                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11599                               int *prot, bool *is_subpage,
11600                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11601 {
11602     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11603      * that a full phys-to-virt translation does).
11604      * mregion is (if not NULL) set to the region number which matched,
11605      * or -1 if no region number is returned (MPU off, address did not
11606      * hit a region, address hit in multiple regions).
11607      * We set is_subpage to true if the region hit doesn't cover the
11608      * entire TARGET_PAGE the address is within.
11609      */
11610     ARMCPU *cpu = env_archcpu(env);
11611     bool is_user = regime_is_user(env, mmu_idx);
11612     uint32_t secure = regime_is_secure(env, mmu_idx);
11613     int n;
11614     int matchregion = -1;
11615     bool hit = false;
11616     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11617     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11618 
11619     *is_subpage = false;
11620     *phys_ptr = address;
11621     *prot = 0;
11622     if (mregion) {
11623         *mregion = -1;
11624     }
11625 
11626     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11627      * was an exception vector read from the vector table (which is always
11628      * done using the default system address map), because those accesses
11629      * are done in arm_v7m_load_vector(), which always does a direct
11630      * read using address_space_ldl(), rather than going via this function.
11631      */
11632     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11633         hit = true;
11634     } else if (m_is_ppb_region(env, address)) {
11635         hit = true;
11636     } else {
11637         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11638             hit = true;
11639         }
11640 
11641         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11642             /* region search */
11643             /* Note that the base address is bits [31:5] from the register
11644              * with bits [4:0] all zeroes, but the limit address is bits
11645              * [31:5] from the register with bits [4:0] all ones.
11646              */
11647             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11648             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11649 
11650             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11651                 /* Region disabled */
11652                 continue;
11653             }
11654 
11655             if (address < base || address > limit) {
11656                 /*
11657                  * Address not in this region. We must check whether the
11658                  * region covers addresses in the same page as our address.
11659                  * In that case we must not report a size that covers the
11660                  * whole page for a subsequent hit against a different MPU
11661                  * region or the background region, because it would result in
11662                  * incorrect TLB hits for subsequent accesses to addresses that
11663                  * are in this MPU region.
11664                  */
11665                 if (limit >= base &&
11666                     ranges_overlap(base, limit - base + 1,
11667                                    addr_page_base,
11668                                    TARGET_PAGE_SIZE)) {
11669                     *is_subpage = true;
11670                 }
11671                 continue;
11672             }
11673 
11674             if (base > addr_page_base || limit < addr_page_limit) {
11675                 *is_subpage = true;
11676             }
11677 
11678             if (matchregion != -1) {
11679                 /* Multiple regions match -- always a failure (unlike
11680                  * PMSAv7 where highest-numbered-region wins)
11681                  */
11682                 fi->type = ARMFault_Permission;
11683                 fi->level = 1;
11684                 return true;
11685             }
11686 
11687             matchregion = n;
11688             hit = true;
11689         }
11690     }
11691 
11692     if (!hit) {
11693         /* background fault */
11694         fi->type = ARMFault_Background;
11695         return true;
11696     }
11697 
11698     if (matchregion == -1) {
11699         /* hit using the background region */
11700         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11701     } else {
11702         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11703         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11704 
11705         if (m_is_system_region(env, address)) {
11706             /* System space is always execute never */
11707             xn = 1;
11708         }
11709 
11710         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11711         if (*prot && !xn) {
11712             *prot |= PAGE_EXEC;
11713         }
11714         /* We don't need to look the attribute up in the MAIR0/MAIR1
11715          * registers because that only tells us about cacheability.
11716          */
11717         if (mregion) {
11718             *mregion = matchregion;
11719         }
11720     }
11721 
11722     fi->type = ARMFault_Permission;
11723     fi->level = 1;
11724     return !(*prot & (1 << access_type));
11725 }
11726 
11727 
11728 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11729                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11730                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11731                                  int *prot, target_ulong *page_size,
11732                                  ARMMMUFaultInfo *fi)
11733 {
11734     uint32_t secure = regime_is_secure(env, mmu_idx);
11735     V8M_SAttributes sattrs = {};
11736     bool ret;
11737     bool mpu_is_subpage;
11738 
11739     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11740         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11741         if (access_type == MMU_INST_FETCH) {
11742             /* Instruction fetches always use the MMU bank and the
11743              * transaction attribute determined by the fetch address,
11744              * regardless of CPU state. This is painful for QEMU
11745              * to handle, because it would mean we need to encode
11746              * into the mmu_idx not just the (user, negpri) information
11747              * for the current security state but also that for the
11748              * other security state, which would balloon the number
11749              * of mmu_idx values needed alarmingly.
11750              * Fortunately we can avoid this because it's not actually
11751              * possible to arbitrarily execute code from memory with
11752              * the wrong security attribute: it will always generate
11753              * an exception of some kind or another, apart from the
11754              * special case of an NS CPU executing an SG instruction
11755              * in S&NSC memory. So we always just fail the translation
11756              * here and sort things out in the exception handler
11757              * (including possibly emulating an SG instruction).
11758              */
11759             if (sattrs.ns != !secure) {
11760                 if (sattrs.nsc) {
11761                     fi->type = ARMFault_QEMU_NSCExec;
11762                 } else {
11763                     fi->type = ARMFault_QEMU_SFault;
11764                 }
11765                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11766                 *phys_ptr = address;
11767                 *prot = 0;
11768                 return true;
11769             }
11770         } else {
11771             /* For data accesses we always use the MMU bank indicated
11772              * by the current CPU state, but the security attributes
11773              * might downgrade a secure access to nonsecure.
11774              */
11775             if (sattrs.ns) {
11776                 txattrs->secure = false;
11777             } else if (!secure) {
11778                 /* NS access to S memory must fault.
11779                  * Architecturally we should first check whether the
11780                  * MPU information for this address indicates that we
11781                  * are doing an unaligned access to Device memory, which
11782                  * should generate a UsageFault instead. QEMU does not
11783                  * currently check for that kind of unaligned access though.
11784                  * If we added it we would need to do so as a special case
11785                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11786                  */
11787                 fi->type = ARMFault_QEMU_SFault;
11788                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11789                 *phys_ptr = address;
11790                 *prot = 0;
11791                 return true;
11792             }
11793         }
11794     }
11795 
11796     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11797                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11798     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11799     return ret;
11800 }
11801 
11802 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11803                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11804                                  hwaddr *phys_ptr, int *prot,
11805                                  ARMMMUFaultInfo *fi)
11806 {
11807     int n;
11808     uint32_t mask;
11809     uint32_t base;
11810     bool is_user = regime_is_user(env, mmu_idx);
11811 
11812     if (regime_translation_disabled(env, mmu_idx)) {
11813         /* MPU disabled.  */
11814         *phys_ptr = address;
11815         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11816         return false;
11817     }
11818 
11819     *phys_ptr = address;
11820     for (n = 7; n >= 0; n--) {
11821         base = env->cp15.c6_region[n];
11822         if ((base & 1) == 0) {
11823             continue;
11824         }
11825         mask = 1 << ((base >> 1) & 0x1f);
11826         /* Keep this shift separate from the above to avoid an
11827            (undefined) << 32.  */
11828         mask = (mask << 1) - 1;
11829         if (((base ^ address) & ~mask) == 0) {
11830             break;
11831         }
11832     }
11833     if (n < 0) {
11834         fi->type = ARMFault_Background;
11835         return true;
11836     }
11837 
11838     if (access_type == MMU_INST_FETCH) {
11839         mask = env->cp15.pmsav5_insn_ap;
11840     } else {
11841         mask = env->cp15.pmsav5_data_ap;
11842     }
11843     mask = (mask >> (n * 4)) & 0xf;
11844     switch (mask) {
11845     case 0:
11846         fi->type = ARMFault_Permission;
11847         fi->level = 1;
11848         return true;
11849     case 1:
11850         if (is_user) {
11851             fi->type = ARMFault_Permission;
11852             fi->level = 1;
11853             return true;
11854         }
11855         *prot = PAGE_READ | PAGE_WRITE;
11856         break;
11857     case 2:
11858         *prot = PAGE_READ;
11859         if (!is_user) {
11860             *prot |= PAGE_WRITE;
11861         }
11862         break;
11863     case 3:
11864         *prot = PAGE_READ | PAGE_WRITE;
11865         break;
11866     case 5:
11867         if (is_user) {
11868             fi->type = ARMFault_Permission;
11869             fi->level = 1;
11870             return true;
11871         }
11872         *prot = PAGE_READ;
11873         break;
11874     case 6:
11875         *prot = PAGE_READ;
11876         break;
11877     default:
11878         /* Bad permission.  */
11879         fi->type = ARMFault_Permission;
11880         fi->level = 1;
11881         return true;
11882     }
11883     *prot |= PAGE_EXEC;
11884     return false;
11885 }
11886 
11887 /* Combine either inner or outer cacheability attributes for normal
11888  * memory, according to table D4-42 and pseudocode procedure
11889  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11890  *
11891  * NB: only stage 1 includes allocation hints (RW bits), leading to
11892  * some asymmetry.
11893  */
11894 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11895 {
11896     if (s1 == 4 || s2 == 4) {
11897         /* non-cacheable has precedence */
11898         return 4;
11899     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11900         /* stage 1 write-through takes precedence */
11901         return s1;
11902     } else if (extract32(s2, 2, 2) == 2) {
11903         /* stage 2 write-through takes precedence, but the allocation hint
11904          * is still taken from stage 1
11905          */
11906         return (2 << 2) | extract32(s1, 0, 2);
11907     } else { /* write-back */
11908         return s1;
11909     }
11910 }
11911 
11912 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11913  * and CombineS1S2Desc()
11914  *
11915  * @s1:      Attributes from stage 1 walk
11916  * @s2:      Attributes from stage 2 walk
11917  */
11918 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11919 {
11920     uint8_t s1lo, s2lo, s1hi, s2hi;
11921     ARMCacheAttrs ret;
11922     bool tagged = false;
11923 
11924     if (s1.attrs == 0xf0) {
11925         tagged = true;
11926         s1.attrs = 0xff;
11927     }
11928 
11929     s1lo = extract32(s1.attrs, 0, 4);
11930     s2lo = extract32(s2.attrs, 0, 4);
11931     s1hi = extract32(s1.attrs, 4, 4);
11932     s2hi = extract32(s2.attrs, 4, 4);
11933 
11934     /* Combine shareability attributes (table D4-43) */
11935     if (s1.shareability == 2 || s2.shareability == 2) {
11936         /* if either are outer-shareable, the result is outer-shareable */
11937         ret.shareability = 2;
11938     } else if (s1.shareability == 3 || s2.shareability == 3) {
11939         /* if either are inner-shareable, the result is inner-shareable */
11940         ret.shareability = 3;
11941     } else {
11942         /* both non-shareable */
11943         ret.shareability = 0;
11944     }
11945 
11946     /* Combine memory type and cacheability attributes */
11947     if (s1hi == 0 || s2hi == 0) {
11948         /* Device has precedence over normal */
11949         if (s1lo == 0 || s2lo == 0) {
11950             /* nGnRnE has precedence over anything */
11951             ret.attrs = 0;
11952         } else if (s1lo == 4 || s2lo == 4) {
11953             /* non-Reordering has precedence over Reordering */
11954             ret.attrs = 4;  /* nGnRE */
11955         } else if (s1lo == 8 || s2lo == 8) {
11956             /* non-Gathering has precedence over Gathering */
11957             ret.attrs = 8;  /* nGRE */
11958         } else {
11959             ret.attrs = 0xc; /* GRE */
11960         }
11961 
11962         /* Any location for which the resultant memory type is any
11963          * type of Device memory is always treated as Outer Shareable.
11964          */
11965         ret.shareability = 2;
11966     } else { /* Normal memory */
11967         /* Outer/inner cacheability combine independently */
11968         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11969                   | combine_cacheattr_nibble(s1lo, s2lo);
11970 
11971         if (ret.attrs == 0x44) {
11972             /* Any location for which the resultant memory type is Normal
11973              * Inner Non-cacheable, Outer Non-cacheable is always treated
11974              * as Outer Shareable.
11975              */
11976             ret.shareability = 2;
11977         }
11978     }
11979 
11980     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
11981     if (tagged && ret.attrs == 0xff) {
11982         ret.attrs = 0xf0;
11983     }
11984 
11985     return ret;
11986 }
11987 
11988 
11989 /* get_phys_addr - get the physical address for this virtual address
11990  *
11991  * Find the physical address corresponding to the given virtual address,
11992  * by doing a translation table walk on MMU based systems or using the
11993  * MPU state on MPU based systems.
11994  *
11995  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11996  * prot and page_size may not be filled in, and the populated fsr value provides
11997  * information on why the translation aborted, in the format of a
11998  * DFSR/IFSR fault register, with the following caveats:
11999  *  * we honour the short vs long DFSR format differences.
12000  *  * the WnR bit is never set (the caller must do this).
12001  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12002  *    value.
12003  *
12004  * @env: CPUARMState
12005  * @address: virtual address to get physical address for
12006  * @access_type: 0 for read, 1 for write, 2 for execute
12007  * @mmu_idx: MMU index indicating required translation regime
12008  * @phys_ptr: set to the physical address corresponding to the virtual address
12009  * @attrs: set to the memory transaction attributes to use
12010  * @prot: set to the permissions for the page containing phys_ptr
12011  * @page_size: set to the size of the page containing phys_ptr
12012  * @fi: set to fault info if the translation fails
12013  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12014  */
12015 bool get_phys_addr(CPUARMState *env, target_ulong address,
12016                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12017                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12018                    target_ulong *page_size,
12019                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12020 {
12021     if (mmu_idx == ARMMMUIdx_E10_0 ||
12022         mmu_idx == ARMMMUIdx_E10_1 ||
12023         mmu_idx == ARMMMUIdx_E10_1_PAN) {
12024         /* Call ourselves recursively to do the stage 1 and then stage 2
12025          * translations.
12026          */
12027         if (arm_feature(env, ARM_FEATURE_EL2)) {
12028             hwaddr ipa;
12029             int s2_prot;
12030             int ret;
12031             ARMCacheAttrs cacheattrs2 = {};
12032 
12033             ret = get_phys_addr(env, address, access_type,
12034                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12035                                 prot, page_size, fi, cacheattrs);
12036 
12037             /* If S1 fails or S2 is disabled, return early.  */
12038             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12039                 *phys_ptr = ipa;
12040                 return ret;
12041             }
12042 
12043             /* S1 is done. Now do S2 translation.  */
12044             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12045                                      mmu_idx == ARMMMUIdx_E10_0,
12046                                      phys_ptr, attrs, &s2_prot,
12047                                      page_size, fi, &cacheattrs2);
12048             fi->s2addr = ipa;
12049             /* Combine the S1 and S2 perms.  */
12050             *prot &= s2_prot;
12051 
12052             /* If S2 fails, return early.  */
12053             if (ret) {
12054                 return ret;
12055             }
12056 
12057             /* Combine the S1 and S2 cache attributes. */
12058             if (env->cp15.hcr_el2 & HCR_DC) {
12059                 /*
12060                  * HCR.DC forces the first stage attributes to
12061                  *  Normal Non-Shareable,
12062                  *  Inner Write-Back Read-Allocate Write-Allocate,
12063                  *  Outer Write-Back Read-Allocate Write-Allocate.
12064                  * Do not overwrite Tagged within attrs.
12065                  */
12066                 if (cacheattrs->attrs != 0xf0) {
12067                     cacheattrs->attrs = 0xff;
12068                 }
12069                 cacheattrs->shareability = 0;
12070             }
12071             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12072             return 0;
12073         } else {
12074             /*
12075              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12076              */
12077             mmu_idx = stage_1_mmu_idx(mmu_idx);
12078         }
12079     }
12080 
12081     /* The page table entries may downgrade secure to non-secure, but
12082      * cannot upgrade an non-secure translation regime's attributes
12083      * to secure.
12084      */
12085     attrs->secure = regime_is_secure(env, mmu_idx);
12086     attrs->user = regime_is_user(env, mmu_idx);
12087 
12088     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12089      * In v7 and earlier it affects all stage 1 translations.
12090      */
12091     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12092         && !arm_feature(env, ARM_FEATURE_V8)) {
12093         if (regime_el(env, mmu_idx) == 3) {
12094             address += env->cp15.fcseidr_s;
12095         } else {
12096             address += env->cp15.fcseidr_ns;
12097         }
12098     }
12099 
12100     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12101         bool ret;
12102         *page_size = TARGET_PAGE_SIZE;
12103 
12104         if (arm_feature(env, ARM_FEATURE_V8)) {
12105             /* PMSAv8 */
12106             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12107                                        phys_ptr, attrs, prot, page_size, fi);
12108         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12109             /* PMSAv7 */
12110             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12111                                        phys_ptr, prot, page_size, fi);
12112         } else {
12113             /* Pre-v7 MPU */
12114             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12115                                        phys_ptr, prot, fi);
12116         }
12117         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12118                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12119                       access_type == MMU_DATA_LOAD ? "reading" :
12120                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12121                       (uint32_t)address, mmu_idx,
12122                       ret ? "Miss" : "Hit",
12123                       *prot & PAGE_READ ? 'r' : '-',
12124                       *prot & PAGE_WRITE ? 'w' : '-',
12125                       *prot & PAGE_EXEC ? 'x' : '-');
12126 
12127         return ret;
12128     }
12129 
12130     /* Definitely a real MMU, not an MPU */
12131 
12132     if (regime_translation_disabled(env, mmu_idx)) {
12133         uint64_t hcr;
12134         uint8_t memattr;
12135 
12136         /*
12137          * MMU disabled.  S1 addresses within aa64 translation regimes are
12138          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12139          */
12140         if (mmu_idx != ARMMMUIdx_Stage2) {
12141             int r_el = regime_el(env, mmu_idx);
12142             if (arm_el_is_aa64(env, r_el)) {
12143                 int pamax = arm_pamax(env_archcpu(env));
12144                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12145                 int addrtop, tbi;
12146 
12147                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12148                 if (access_type == MMU_INST_FETCH) {
12149                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12150                 }
12151                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12152                 addrtop = (tbi ? 55 : 63);
12153 
12154                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12155                     fi->type = ARMFault_AddressSize;
12156                     fi->level = 0;
12157                     fi->stage2 = false;
12158                     return 1;
12159                 }
12160 
12161                 /*
12162                  * When TBI is disabled, we've just validated that all of the
12163                  * bits above PAMax are zero, so logically we only need to
12164                  * clear the top byte for TBI.  But it's clearer to follow
12165                  * the pseudocode set of addrdesc.paddress.
12166                  */
12167                 address = extract64(address, 0, 52);
12168             }
12169         }
12170         *phys_ptr = address;
12171         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12172         *page_size = TARGET_PAGE_SIZE;
12173 
12174         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12175         hcr = arm_hcr_el2_eff(env);
12176         cacheattrs->shareability = 0;
12177         if (hcr & HCR_DC) {
12178             if (hcr & HCR_DCT) {
12179                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12180             } else {
12181                 memattr = 0xff;  /* Normal, WB, RWA */
12182             }
12183         } else if (access_type == MMU_INST_FETCH) {
12184             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12185                 memattr = 0xee;  /* Normal, WT, RA, NT */
12186             } else {
12187                 memattr = 0x44;  /* Normal, NC, No */
12188             }
12189             cacheattrs->shareability = 2; /* outer sharable */
12190         } else {
12191             memattr = 0x00;      /* Device, nGnRnE */
12192         }
12193         cacheattrs->attrs = memattr;
12194         return 0;
12195     }
12196 
12197     if (regime_using_lpae_format(env, mmu_idx)) {
12198         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12199                                   phys_ptr, attrs, prot, page_size,
12200                                   fi, cacheattrs);
12201     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12202         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12203                                 phys_ptr, attrs, prot, page_size, fi);
12204     } else {
12205         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12206                                     phys_ptr, prot, page_size, fi);
12207     }
12208 }
12209 
12210 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12211                                          MemTxAttrs *attrs)
12212 {
12213     ARMCPU *cpu = ARM_CPU(cs);
12214     CPUARMState *env = &cpu->env;
12215     hwaddr phys_addr;
12216     target_ulong page_size;
12217     int prot;
12218     bool ret;
12219     ARMMMUFaultInfo fi = {};
12220     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12221     ARMCacheAttrs cacheattrs = {};
12222 
12223     *attrs = (MemTxAttrs) {};
12224 
12225     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12226                         attrs, &prot, &page_size, &fi, &cacheattrs);
12227 
12228     if (ret) {
12229         return -1;
12230     }
12231     return phys_addr;
12232 }
12233 
12234 #endif
12235 
12236 /* Note that signed overflow is undefined in C.  The following routines are
12237    careful to use unsigned types where modulo arithmetic is required.
12238    Failure to do so _will_ break on newer gcc.  */
12239 
12240 /* Signed saturating arithmetic.  */
12241 
12242 /* Perform 16-bit signed saturating addition.  */
12243 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12244 {
12245     uint16_t res;
12246 
12247     res = a + b;
12248     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12249         if (a & 0x8000)
12250             res = 0x8000;
12251         else
12252             res = 0x7fff;
12253     }
12254     return res;
12255 }
12256 
12257 /* Perform 8-bit signed saturating addition.  */
12258 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12259 {
12260     uint8_t res;
12261 
12262     res = a + b;
12263     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12264         if (a & 0x80)
12265             res = 0x80;
12266         else
12267             res = 0x7f;
12268     }
12269     return res;
12270 }
12271 
12272 /* Perform 16-bit signed saturating subtraction.  */
12273 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12274 {
12275     uint16_t res;
12276 
12277     res = a - b;
12278     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12279         if (a & 0x8000)
12280             res = 0x8000;
12281         else
12282             res = 0x7fff;
12283     }
12284     return res;
12285 }
12286 
12287 /* Perform 8-bit signed saturating subtraction.  */
12288 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12289 {
12290     uint8_t res;
12291 
12292     res = a - b;
12293     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12294         if (a & 0x80)
12295             res = 0x80;
12296         else
12297             res = 0x7f;
12298     }
12299     return res;
12300 }
12301 
12302 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12303 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12304 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12305 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12306 #define PFX q
12307 
12308 #include "op_addsub.h"
12309 
12310 /* Unsigned saturating arithmetic.  */
12311 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12312 {
12313     uint16_t res;
12314     res = a + b;
12315     if (res < a)
12316         res = 0xffff;
12317     return res;
12318 }
12319 
12320 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12321 {
12322     if (a > b)
12323         return a - b;
12324     else
12325         return 0;
12326 }
12327 
12328 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12329 {
12330     uint8_t res;
12331     res = a + b;
12332     if (res < a)
12333         res = 0xff;
12334     return res;
12335 }
12336 
12337 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12338 {
12339     if (a > b)
12340         return a - b;
12341     else
12342         return 0;
12343 }
12344 
12345 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12346 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12347 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12348 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12349 #define PFX uq
12350 
12351 #include "op_addsub.h"
12352 
12353 /* Signed modulo arithmetic.  */
12354 #define SARITH16(a, b, n, op) do { \
12355     int32_t sum; \
12356     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12357     RESULT(sum, n, 16); \
12358     if (sum >= 0) \
12359         ge |= 3 << (n * 2); \
12360     } while(0)
12361 
12362 #define SARITH8(a, b, n, op) do { \
12363     int32_t sum; \
12364     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12365     RESULT(sum, n, 8); \
12366     if (sum >= 0) \
12367         ge |= 1 << n; \
12368     } while(0)
12369 
12370 
12371 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12372 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12373 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12374 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12375 #define PFX s
12376 #define ARITH_GE
12377 
12378 #include "op_addsub.h"
12379 
12380 /* Unsigned modulo arithmetic.  */
12381 #define ADD16(a, b, n) do { \
12382     uint32_t sum; \
12383     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12384     RESULT(sum, n, 16); \
12385     if ((sum >> 16) == 1) \
12386         ge |= 3 << (n * 2); \
12387     } while(0)
12388 
12389 #define ADD8(a, b, n) do { \
12390     uint32_t sum; \
12391     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12392     RESULT(sum, n, 8); \
12393     if ((sum >> 8) == 1) \
12394         ge |= 1 << n; \
12395     } while(0)
12396 
12397 #define SUB16(a, b, n) do { \
12398     uint32_t sum; \
12399     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12400     RESULT(sum, n, 16); \
12401     if ((sum >> 16) == 0) \
12402         ge |= 3 << (n * 2); \
12403     } while(0)
12404 
12405 #define SUB8(a, b, n) do { \
12406     uint32_t sum; \
12407     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12408     RESULT(sum, n, 8); \
12409     if ((sum >> 8) == 0) \
12410         ge |= 1 << n; \
12411     } while(0)
12412 
12413 #define PFX u
12414 #define ARITH_GE
12415 
12416 #include "op_addsub.h"
12417 
12418 /* Halved signed arithmetic.  */
12419 #define ADD16(a, b, n) \
12420   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12421 #define SUB16(a, b, n) \
12422   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12423 #define ADD8(a, b, n) \
12424   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12425 #define SUB8(a, b, n) \
12426   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12427 #define PFX sh
12428 
12429 #include "op_addsub.h"
12430 
12431 /* Halved unsigned arithmetic.  */
12432 #define ADD16(a, b, n) \
12433   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12434 #define SUB16(a, b, n) \
12435   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12436 #define ADD8(a, b, n) \
12437   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12438 #define SUB8(a, b, n) \
12439   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12440 #define PFX uh
12441 
12442 #include "op_addsub.h"
12443 
12444 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12445 {
12446     if (a > b)
12447         return a - b;
12448     else
12449         return b - a;
12450 }
12451 
12452 /* Unsigned sum of absolute byte differences.  */
12453 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12454 {
12455     uint32_t sum;
12456     sum = do_usad(a, b);
12457     sum += do_usad(a >> 8, b >> 8);
12458     sum += do_usad(a >> 16, b >>16);
12459     sum += do_usad(a >> 24, b >> 24);
12460     return sum;
12461 }
12462 
12463 /* For ARMv6 SEL instruction.  */
12464 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12465 {
12466     uint32_t mask;
12467 
12468     mask = 0;
12469     if (flags & 1)
12470         mask |= 0xff;
12471     if (flags & 2)
12472         mask |= 0xff00;
12473     if (flags & 4)
12474         mask |= 0xff0000;
12475     if (flags & 8)
12476         mask |= 0xff000000;
12477     return (a & mask) | (b & ~mask);
12478 }
12479 
12480 /* CRC helpers.
12481  * The upper bytes of val (above the number specified by 'bytes') must have
12482  * been zeroed out by the caller.
12483  */
12484 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12485 {
12486     uint8_t buf[4];
12487 
12488     stl_le_p(buf, val);
12489 
12490     /* zlib crc32 converts the accumulator and output to one's complement.  */
12491     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12492 }
12493 
12494 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12495 {
12496     uint8_t buf[4];
12497 
12498     stl_le_p(buf, val);
12499 
12500     /* Linux crc32c converts the output to one's complement.  */
12501     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12502 }
12503 
12504 /* Return the exception level to which FP-disabled exceptions should
12505  * be taken, or 0 if FP is enabled.
12506  */
12507 int fp_exception_el(CPUARMState *env, int cur_el)
12508 {
12509 #ifndef CONFIG_USER_ONLY
12510     /* CPACR and the CPTR registers don't exist before v6, so FP is
12511      * always accessible
12512      */
12513     if (!arm_feature(env, ARM_FEATURE_V6)) {
12514         return 0;
12515     }
12516 
12517     if (arm_feature(env, ARM_FEATURE_M)) {
12518         /* CPACR can cause a NOCP UsageFault taken to current security state */
12519         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12520             return 1;
12521         }
12522 
12523         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12524             if (!extract32(env->v7m.nsacr, 10, 1)) {
12525                 /* FP insns cause a NOCP UsageFault taken to Secure */
12526                 return 3;
12527             }
12528         }
12529 
12530         return 0;
12531     }
12532 
12533     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12534      * 0, 2 : trap EL0 and EL1/PL1 accesses
12535      * 1    : trap only EL0 accesses
12536      * 3    : trap no accesses
12537      * This register is ignored if E2H+TGE are both set.
12538      */
12539     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12540         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12541 
12542         switch (fpen) {
12543         case 0:
12544         case 2:
12545             if (cur_el == 0 || cur_el == 1) {
12546                 /* Trap to PL1, which might be EL1 or EL3 */
12547                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12548                     return 3;
12549                 }
12550                 return 1;
12551             }
12552             if (cur_el == 3 && !is_a64(env)) {
12553                 /* Secure PL1 running at EL3 */
12554                 return 3;
12555             }
12556             break;
12557         case 1:
12558             if (cur_el == 0) {
12559                 return 1;
12560             }
12561             break;
12562         case 3:
12563             break;
12564         }
12565     }
12566 
12567     /*
12568      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12569      * to control non-secure access to the FPU. It doesn't have any
12570      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12571      */
12572     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12573          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12574         if (!extract32(env->cp15.nsacr, 10, 1)) {
12575             /* FP insns act as UNDEF */
12576             return cur_el == 2 ? 2 : 1;
12577         }
12578     }
12579 
12580     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12581      * check because zero bits in the registers mean "don't trap".
12582      */
12583 
12584     /* CPTR_EL2 : present in v7VE or v8 */
12585     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12586         && !arm_is_secure_below_el3(env)) {
12587         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12588         return 2;
12589     }
12590 
12591     /* CPTR_EL3 : present in v8 */
12592     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12593         /* Trap all FP ops to EL3 */
12594         return 3;
12595     }
12596 #endif
12597     return 0;
12598 }
12599 
12600 /* Return the exception level we're running at if this is our mmu_idx */
12601 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12602 {
12603     if (mmu_idx & ARM_MMU_IDX_M) {
12604         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12605     }
12606 
12607     switch (mmu_idx) {
12608     case ARMMMUIdx_E10_0:
12609     case ARMMMUIdx_E20_0:
12610     case ARMMMUIdx_SE10_0:
12611         return 0;
12612     case ARMMMUIdx_E10_1:
12613     case ARMMMUIdx_E10_1_PAN:
12614     case ARMMMUIdx_SE10_1:
12615     case ARMMMUIdx_SE10_1_PAN:
12616         return 1;
12617     case ARMMMUIdx_E2:
12618     case ARMMMUIdx_E20_2:
12619     case ARMMMUIdx_E20_2_PAN:
12620         return 2;
12621     case ARMMMUIdx_SE3:
12622         return 3;
12623     default:
12624         g_assert_not_reached();
12625     }
12626 }
12627 
12628 #ifndef CONFIG_TCG
12629 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12630 {
12631     g_assert_not_reached();
12632 }
12633 #endif
12634 
12635 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12636 {
12637     if (arm_feature(env, ARM_FEATURE_M)) {
12638         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12639     }
12640 
12641     /* See ARM pseudo-function ELIsInHost.  */
12642     switch (el) {
12643     case 0:
12644         if (arm_is_secure_below_el3(env)) {
12645             return ARMMMUIdx_SE10_0;
12646         }
12647         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12648             && arm_el_is_aa64(env, 2)) {
12649             return ARMMMUIdx_E20_0;
12650         }
12651         return ARMMMUIdx_E10_0;
12652     case 1:
12653         if (arm_is_secure_below_el3(env)) {
12654             if (env->pstate & PSTATE_PAN) {
12655                 return ARMMMUIdx_SE10_1_PAN;
12656             }
12657             return ARMMMUIdx_SE10_1;
12658         }
12659         if (env->pstate & PSTATE_PAN) {
12660             return ARMMMUIdx_E10_1_PAN;
12661         }
12662         return ARMMMUIdx_E10_1;
12663     case 2:
12664         /* TODO: ARMv8.4-SecEL2 */
12665         /* Note that TGE does not apply at EL2.  */
12666         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12667             if (env->pstate & PSTATE_PAN) {
12668                 return ARMMMUIdx_E20_2_PAN;
12669             }
12670             return ARMMMUIdx_E20_2;
12671         }
12672         return ARMMMUIdx_E2;
12673     case 3:
12674         return ARMMMUIdx_SE3;
12675     default:
12676         g_assert_not_reached();
12677     }
12678 }
12679 
12680 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12681 {
12682     return arm_mmu_idx_el(env, arm_current_el(env));
12683 }
12684 
12685 #ifndef CONFIG_USER_ONLY
12686 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12687 {
12688     return stage_1_mmu_idx(arm_mmu_idx(env));
12689 }
12690 #endif
12691 
12692 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12693                                       ARMMMUIdx mmu_idx, uint32_t flags)
12694 {
12695     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12696     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12697                        arm_to_core_mmu_idx(mmu_idx));
12698 
12699     if (arm_singlestep_active(env)) {
12700         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12701     }
12702     return flags;
12703 }
12704 
12705 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12706                                          ARMMMUIdx mmu_idx, uint32_t flags)
12707 {
12708     bool sctlr_b = arm_sctlr_b(env);
12709 
12710     if (sctlr_b) {
12711         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12712     }
12713     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12714         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12715     }
12716     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12717 
12718     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12719 }
12720 
12721 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12722                                    ARMMMUIdx mmu_idx)
12723 {
12724     uint32_t flags = 0;
12725 
12726     if (arm_v7m_is_handler_mode(env)) {
12727         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12728     }
12729 
12730     /*
12731      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12732      * is suppressing them because the requested execution priority
12733      * is less than 0.
12734      */
12735     if (arm_feature(env, ARM_FEATURE_V8) &&
12736         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12737           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12738         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12739     }
12740 
12741     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12742 }
12743 
12744 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12745 {
12746     int flags = 0;
12747 
12748     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12749                        arm_debug_target_el(env));
12750     return flags;
12751 }
12752 
12753 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12754                                    ARMMMUIdx mmu_idx)
12755 {
12756     uint32_t flags = rebuild_hflags_aprofile(env);
12757 
12758     if (arm_el_is_aa64(env, 1)) {
12759         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12760     }
12761 
12762     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12763         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12764         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12765     }
12766 
12767     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12768 }
12769 
12770 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12771                                    ARMMMUIdx mmu_idx)
12772 {
12773     uint32_t flags = rebuild_hflags_aprofile(env);
12774     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12775     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12776     uint64_t sctlr;
12777     int tbii, tbid;
12778 
12779     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12780 
12781     /* Get control bits for tagged addresses.  */
12782     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12783     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12784 
12785     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12786     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12787 
12788     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12789         int sve_el = sve_exception_el(env, el);
12790         uint32_t zcr_len;
12791 
12792         /*
12793          * If SVE is disabled, but FP is enabled,
12794          * then the effective len is 0.
12795          */
12796         if (sve_el != 0 && fp_el == 0) {
12797             zcr_len = 0;
12798         } else {
12799             zcr_len = sve_zcr_len_for_el(env, el);
12800         }
12801         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12802         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12803     }
12804 
12805     sctlr = regime_sctlr(env, stage1);
12806 
12807     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12808         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12809     }
12810 
12811     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12812         /*
12813          * In order to save space in flags, we record only whether
12814          * pauth is "inactive", meaning all insns are implemented as
12815          * a nop, or "active" when some action must be performed.
12816          * The decision of which action to take is left to a helper.
12817          */
12818         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12819             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12820         }
12821     }
12822 
12823     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12824         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12825         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12826             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12827         }
12828     }
12829 
12830     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12831     if (!(env->pstate & PSTATE_UAO)) {
12832         switch (mmu_idx) {
12833         case ARMMMUIdx_E10_1:
12834         case ARMMMUIdx_E10_1_PAN:
12835         case ARMMMUIdx_SE10_1:
12836         case ARMMMUIdx_SE10_1_PAN:
12837             /* TODO: ARMv8.3-NV */
12838             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12839             break;
12840         case ARMMMUIdx_E20_2:
12841         case ARMMMUIdx_E20_2_PAN:
12842             /* TODO: ARMv8.4-SecEL2 */
12843             /*
12844              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12845              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12846              */
12847             if (env->cp15.hcr_el2 & HCR_TGE) {
12848                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12849             }
12850             break;
12851         default:
12852             break;
12853         }
12854     }
12855 
12856     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12857         /*
12858          * Set MTE_ACTIVE if any access may be Checked, and leave clear
12859          * if all accesses must be Unchecked:
12860          * 1) If no TBI, then there are no tags in the address to check,
12861          * 2) If Tag Check Override, then all accesses are Unchecked,
12862          * 3) If Tag Check Fail == 0, then Checked access have no effect,
12863          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12864          */
12865         if (allocation_tag_access_enabled(env, el, sctlr)) {
12866             flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12867             if (tbid
12868                 && !(env->pstate & PSTATE_TCO)
12869                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12870                 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12871             }
12872         }
12873         /* And again for unprivileged accesses, if required.  */
12874         if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12875             && tbid
12876             && !(env->pstate & PSTATE_TCO)
12877             && (sctlr & SCTLR_TCF0)
12878             && allocation_tag_access_enabled(env, 0, sctlr)) {
12879             flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12880         }
12881         /* Cache TCMA as well as TBI. */
12882         flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12883                            aa64_va_parameter_tcma(tcr, mmu_idx));
12884     }
12885 
12886     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12887 }
12888 
12889 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12890 {
12891     int el = arm_current_el(env);
12892     int fp_el = fp_exception_el(env, el);
12893     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12894 
12895     if (is_a64(env)) {
12896         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12897     } else if (arm_feature(env, ARM_FEATURE_M)) {
12898         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12899     } else {
12900         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12901     }
12902 }
12903 
12904 void arm_rebuild_hflags(CPUARMState *env)
12905 {
12906     env->hflags = rebuild_hflags_internal(env);
12907 }
12908 
12909 /*
12910  * If we have triggered a EL state change we can't rely on the
12911  * translator having passed it to us, we need to recompute.
12912  */
12913 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12914 {
12915     int el = arm_current_el(env);
12916     int fp_el = fp_exception_el(env, el);
12917     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12918     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12919 }
12920 
12921 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12922 {
12923     int fp_el = fp_exception_el(env, el);
12924     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12925 
12926     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12927 }
12928 
12929 /*
12930  * If we have triggered a EL state change we can't rely on the
12931  * translator having passed it to us, we need to recompute.
12932  */
12933 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12934 {
12935     int el = arm_current_el(env);
12936     int fp_el = fp_exception_el(env, el);
12937     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12938     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12939 }
12940 
12941 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12942 {
12943     int fp_el = fp_exception_el(env, el);
12944     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12945 
12946     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12947 }
12948 
12949 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12950 {
12951     int fp_el = fp_exception_el(env, el);
12952     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12953 
12954     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12955 }
12956 
12957 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12958 {
12959 #ifdef CONFIG_DEBUG_TCG
12960     uint32_t env_flags_current = env->hflags;
12961     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12962 
12963     if (unlikely(env_flags_current != env_flags_rebuilt)) {
12964         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12965                 env_flags_current, env_flags_rebuilt);
12966         abort();
12967     }
12968 #endif
12969 }
12970 
12971 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12972                           target_ulong *cs_base, uint32_t *pflags)
12973 {
12974     uint32_t flags = env->hflags;
12975     uint32_t pstate_for_ss;
12976 
12977     *cs_base = 0;
12978     assert_hflags_rebuild_correctly(env);
12979 
12980     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12981         *pc = env->pc;
12982         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12983             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12984         }
12985         pstate_for_ss = env->pstate;
12986     } else {
12987         *pc = env->regs[15];
12988 
12989         if (arm_feature(env, ARM_FEATURE_M)) {
12990             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12991                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12992                 != env->v7m.secure) {
12993                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12994             }
12995 
12996             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12997                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12998                  (env->v7m.secure &&
12999                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13000                 /*
13001                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13002                  * active FP context; we must create a new FP context before
13003                  * executing any FP insn.
13004                  */
13005                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13006             }
13007 
13008             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13009             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13010                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13011             }
13012         } else {
13013             /*
13014              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13015              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13016              */
13017             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13018                 flags = FIELD_DP32(flags, TBFLAG_A32,
13019                                    XSCALE_CPAR, env->cp15.c15_cpar);
13020             } else {
13021                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13022                                    env->vfp.vec_len);
13023                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13024                                    env->vfp.vec_stride);
13025             }
13026             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13027                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13028             }
13029         }
13030 
13031         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13032         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13033         pstate_for_ss = env->uncached_cpsr;
13034     }
13035 
13036     /*
13037      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13038      * states defined in the ARM ARM for software singlestep:
13039      *  SS_ACTIVE   PSTATE.SS   State
13040      *     0            x       Inactive (the TB flag for SS is always 0)
13041      *     1            0       Active-pending
13042      *     1            1       Active-not-pending
13043      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13044      */
13045     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13046         (pstate_for_ss & PSTATE_SS)) {
13047         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13048     }
13049 
13050     *pflags = flags;
13051 }
13052 
13053 #ifdef TARGET_AARCH64
13054 /*
13055  * The manual says that when SVE is enabled and VQ is widened the
13056  * implementation is allowed to zero the previously inaccessible
13057  * portion of the registers.  The corollary to that is that when
13058  * SVE is enabled and VQ is narrowed we are also allowed to zero
13059  * the now inaccessible portion of the registers.
13060  *
13061  * The intent of this is that no predicate bit beyond VQ is ever set.
13062  * Which means that some operations on predicate registers themselves
13063  * may operate on full uint64_t or even unrolled across the maximum
13064  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13065  * may well be cheaper than conditionals to restrict the operation
13066  * to the relevant portion of a uint16_t[16].
13067  */
13068 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13069 {
13070     int i, j;
13071     uint64_t pmask;
13072 
13073     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13074     assert(vq <= env_archcpu(env)->sve_max_vq);
13075 
13076     /* Zap the high bits of the zregs.  */
13077     for (i = 0; i < 32; i++) {
13078         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13079     }
13080 
13081     /* Zap the high bits of the pregs and ffr.  */
13082     pmask = 0;
13083     if (vq & 3) {
13084         pmask = ~(-1ULL << (16 * (vq & 3)));
13085     }
13086     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13087         for (i = 0; i < 17; ++i) {
13088             env->vfp.pregs[i].p[j] &= pmask;
13089         }
13090         pmask = 0;
13091     }
13092 }
13093 
13094 /*
13095  * Notice a change in SVE vector size when changing EL.
13096  */
13097 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13098                            int new_el, bool el0_a64)
13099 {
13100     ARMCPU *cpu = env_archcpu(env);
13101     int old_len, new_len;
13102     bool old_a64, new_a64;
13103 
13104     /* Nothing to do if no SVE.  */
13105     if (!cpu_isar_feature(aa64_sve, cpu)) {
13106         return;
13107     }
13108 
13109     /* Nothing to do if FP is disabled in either EL.  */
13110     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13111         return;
13112     }
13113 
13114     /*
13115      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13116      * at ELx, or not available because the EL is in AArch32 state, then
13117      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13118      * has an effective value of 0".
13119      *
13120      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13121      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13122      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13123      * we already have the correct register contents when encountering the
13124      * vq0->vq0 transition between EL0->EL1.
13125      */
13126     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13127     old_len = (old_a64 && !sve_exception_el(env, old_el)
13128                ? sve_zcr_len_for_el(env, old_el) : 0);
13129     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13130     new_len = (new_a64 && !sve_exception_el(env, new_el)
13131                ? sve_zcr_len_for_el(env, new_el) : 0);
13132 
13133     /* When changing vector length, clear inaccessible state.  */
13134     if (new_len < old_len) {
13135         aarch64_sve_narrow_vq(env, new_len + 1);
13136     }
13137 }
13138 #endif
13139