xref: /qemu/target/arm/helper.c (revision b355f08a)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/cpu-timers.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
37 #endif
38 
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
41 
42 #ifndef CONFIG_USER_ONLY
43 
44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
45                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
46                                bool s1_is_el0,
47                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
48                                target_ulong *page_size_ptr,
49                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
50     __attribute__((nonnull));
51 #endif
52 
53 static void switch_mode(CPUARMState *env, int mode);
54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
55 
56 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
57 {
58     assert(ri->fieldoffset);
59     if (cpreg_field_is_64bit(ri)) {
60         return CPREG_FIELD64(env, ri);
61     } else {
62         return CPREG_FIELD32(env, ri);
63     }
64 }
65 
66 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
67                       uint64_t value)
68 {
69     assert(ri->fieldoffset);
70     if (cpreg_field_is_64bit(ri)) {
71         CPREG_FIELD64(env, ri) = value;
72     } else {
73         CPREG_FIELD32(env, ri) = value;
74     }
75 }
76 
77 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
78 {
79     return (char *)env + ri->fieldoffset;
80 }
81 
82 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
83 {
84     /* Raw read of a coprocessor register (as needed for migration, etc). */
85     if (ri->type & ARM_CP_CONST) {
86         return ri->resetvalue;
87     } else if (ri->raw_readfn) {
88         return ri->raw_readfn(env, ri);
89     } else if (ri->readfn) {
90         return ri->readfn(env, ri);
91     } else {
92         return raw_read(env, ri);
93     }
94 }
95 
96 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
97                              uint64_t v)
98 {
99     /* Raw write of a coprocessor register (as needed for migration, etc).
100      * Note that constant registers are treated as write-ignored; the
101      * caller should check for success by whether a readback gives the
102      * value written.
103      */
104     if (ri->type & ARM_CP_CONST) {
105         return;
106     } else if (ri->raw_writefn) {
107         ri->raw_writefn(env, ri, v);
108     } else if (ri->writefn) {
109         ri->writefn(env, ri, v);
110     } else {
111         raw_write(env, ri, v);
112     }
113 }
114 
115 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
116 {
117    /* Return true if the regdef would cause an assertion if you called
118     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
119     * program bug for it not to have the NO_RAW flag).
120     * NB that returning false here doesn't necessarily mean that calling
121     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
122     * read/write access functions which are safe for raw use" from "has
123     * read/write access functions which have side effects but has forgotten
124     * to provide raw access functions".
125     * The tests here line up with the conditions in read/write_raw_cp_reg()
126     * and assertions in raw_read()/raw_write().
127     */
128     if ((ri->type & ARM_CP_CONST) ||
129         ri->fieldoffset ||
130         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
131         return false;
132     }
133     return true;
134 }
135 
136 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
137 {
138     /* Write the coprocessor state from cpu->env to the (index,value) list. */
139     int i;
140     bool ok = true;
141 
142     for (i = 0; i < cpu->cpreg_array_len; i++) {
143         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
144         const ARMCPRegInfo *ri;
145         uint64_t newval;
146 
147         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
148         if (!ri) {
149             ok = false;
150             continue;
151         }
152         if (ri->type & ARM_CP_NO_RAW) {
153             continue;
154         }
155 
156         newval = read_raw_cp_reg(&cpu->env, ri);
157         if (kvm_sync) {
158             /*
159              * Only sync if the previous list->cpustate sync succeeded.
160              * Rather than tracking the success/failure state for every
161              * item in the list, we just recheck "does the raw write we must
162              * have made in write_list_to_cpustate() read back OK" here.
163              */
164             uint64_t oldval = cpu->cpreg_values[i];
165 
166             if (oldval == newval) {
167                 continue;
168             }
169 
170             write_raw_cp_reg(&cpu->env, ri, oldval);
171             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
172                 continue;
173             }
174 
175             write_raw_cp_reg(&cpu->env, ri, newval);
176         }
177         cpu->cpreg_values[i] = newval;
178     }
179     return ok;
180 }
181 
182 bool write_list_to_cpustate(ARMCPU *cpu)
183 {
184     int i;
185     bool ok = true;
186 
187     for (i = 0; i < cpu->cpreg_array_len; i++) {
188         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
189         uint64_t v = cpu->cpreg_values[i];
190         const ARMCPRegInfo *ri;
191 
192         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
193         if (!ri) {
194             ok = false;
195             continue;
196         }
197         if (ri->type & ARM_CP_NO_RAW) {
198             continue;
199         }
200         /* Write value and confirm it reads back as written
201          * (to catch read-only registers and partially read-only
202          * registers where the incoming migration value doesn't match)
203          */
204         write_raw_cp_reg(&cpu->env, ri, v);
205         if (read_raw_cp_reg(&cpu->env, ri) != v) {
206             ok = false;
207         }
208     }
209     return ok;
210 }
211 
212 static void add_cpreg_to_list(gpointer key, gpointer opaque)
213 {
214     ARMCPU *cpu = opaque;
215     uint64_t regidx;
216     const ARMCPRegInfo *ri;
217 
218     regidx = *(uint32_t *)key;
219     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
220 
221     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
222         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
223         /* The value array need not be initialized at this point */
224         cpu->cpreg_array_len++;
225     }
226 }
227 
228 static void count_cpreg(gpointer key, gpointer opaque)
229 {
230     ARMCPU *cpu = opaque;
231     uint64_t regidx;
232     const ARMCPRegInfo *ri;
233 
234     regidx = *(uint32_t *)key;
235     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
236 
237     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
238         cpu->cpreg_array_len++;
239     }
240 }
241 
242 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
243 {
244     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
245     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
246 
247     if (aidx > bidx) {
248         return 1;
249     }
250     if (aidx < bidx) {
251         return -1;
252     }
253     return 0;
254 }
255 
256 void init_cpreg_list(ARMCPU *cpu)
257 {
258     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
259      * Note that we require cpreg_tuples[] to be sorted by key ID.
260      */
261     GList *keys;
262     int arraylen;
263 
264     keys = g_hash_table_get_keys(cpu->cp_regs);
265     keys = g_list_sort(keys, cpreg_key_compare);
266 
267     cpu->cpreg_array_len = 0;
268 
269     g_list_foreach(keys, count_cpreg, cpu);
270 
271     arraylen = cpu->cpreg_array_len;
272     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
273     cpu->cpreg_values = g_new(uint64_t, arraylen);
274     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
275     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
276     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
277     cpu->cpreg_array_len = 0;
278 
279     g_list_foreach(keys, add_cpreg_to_list, cpu);
280 
281     assert(cpu->cpreg_array_len == arraylen);
282 
283     g_list_free(keys);
284 }
285 
286 /*
287  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
288  */
289 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
290                                         const ARMCPRegInfo *ri,
291                                         bool isread)
292 {
293     if (!is_a64(env) && arm_current_el(env) == 3 &&
294         arm_is_secure_below_el3(env)) {
295         return CP_ACCESS_TRAP_UNCATEGORIZED;
296     }
297     return CP_ACCESS_OK;
298 }
299 
300 /* Some secure-only AArch32 registers trap to EL3 if used from
301  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
302  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
303  * We assume that the .access field is set to PL1_RW.
304  */
305 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
306                                             const ARMCPRegInfo *ri,
307                                             bool isread)
308 {
309     if (arm_current_el(env) == 3) {
310         return CP_ACCESS_OK;
311     }
312     if (arm_is_secure_below_el3(env)) {
313         if (env->cp15.scr_el3 & SCR_EEL2) {
314             return CP_ACCESS_TRAP_EL2;
315         }
316         return CP_ACCESS_TRAP_EL3;
317     }
318     /* This will be EL1 NS and EL2 NS, which just UNDEF */
319     return CP_ACCESS_TRAP_UNCATEGORIZED;
320 }
321 
322 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
323 {
324     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
325 }
326 
327 /* Check for traps to "powerdown debug" registers, which are controlled
328  * by MDCR.TDOSA
329  */
330 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
331                                    bool isread)
332 {
333     int el = arm_current_el(env);
334     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
335     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
336         (arm_hcr_el2_eff(env) & HCR_TGE);
337 
338     if (el < 2 && mdcr_el2_tdosa) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
342         return CP_ACCESS_TRAP_EL3;
343     }
344     return CP_ACCESS_OK;
345 }
346 
347 /* Check for traps to "debug ROM" registers, which are controlled
348  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
349  */
350 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
351                                   bool isread)
352 {
353     int el = arm_current_el(env);
354     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
355     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
356         (arm_hcr_el2_eff(env) & HCR_TGE);
357 
358     if (el < 2 && mdcr_el2_tdra) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
362         return CP_ACCESS_TRAP_EL3;
363     }
364     return CP_ACCESS_OK;
365 }
366 
367 /* Check for traps to general debug registers, which are controlled
368  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
369  */
370 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
371                                   bool isread)
372 {
373     int el = arm_current_el(env);
374     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
375     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
376         (arm_hcr_el2_eff(env) & HCR_TGE);
377 
378     if (el < 2 && mdcr_el2_tda) {
379         return CP_ACCESS_TRAP_EL2;
380     }
381     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
382         return CP_ACCESS_TRAP_EL3;
383     }
384     return CP_ACCESS_OK;
385 }
386 
387 /* Check for traps to performance monitor registers, which are controlled
388  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
389  */
390 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
391                                  bool isread)
392 {
393     int el = arm_current_el(env);
394     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
395 
396     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
397         return CP_ACCESS_TRAP_EL2;
398     }
399     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
400         return CP_ACCESS_TRAP_EL3;
401     }
402     return CP_ACCESS_OK;
403 }
404 
405 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
406 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
407                                       bool isread)
408 {
409     if (arm_current_el(env) == 1) {
410         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
411         if (arm_hcr_el2_eff(env) & trap) {
412             return CP_ACCESS_TRAP_EL2;
413         }
414     }
415     return CP_ACCESS_OK;
416 }
417 
418 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
419 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
420                                  bool isread)
421 {
422     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
423         return CP_ACCESS_TRAP_EL2;
424     }
425     return CP_ACCESS_OK;
426 }
427 
428 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
429 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
433         return CP_ACCESS_TRAP_EL2;
434     }
435     return CP_ACCESS_OK;
436 }
437 
438 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
439 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
440                                   bool isread)
441 {
442     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
443         return CP_ACCESS_TRAP_EL2;
444     }
445     return CP_ACCESS_OK;
446 }
447 
448 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
449 {
450     ARMCPU *cpu = env_archcpu(env);
451 
452     raw_write(env, ri, value);
453     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
454 }
455 
456 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
457 {
458     ARMCPU *cpu = env_archcpu(env);
459 
460     if (raw_read(env, ri) != value) {
461         /* Unlike real hardware the qemu TLB uses virtual addresses,
462          * not modified virtual addresses, so this causes a TLB flush.
463          */
464         tlb_flush(CPU(cpu));
465         raw_write(env, ri, value);
466     }
467 }
468 
469 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
470                              uint64_t value)
471 {
472     ARMCPU *cpu = env_archcpu(env);
473 
474     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
475         && !extended_addresses_enabled(env)) {
476         /* For VMSA (when not using the LPAE long descriptor page table
477          * format) this register includes the ASID, so do a TLB flush.
478          * For PMSA it is purely a process ID and no action is needed.
479          */
480         tlb_flush(CPU(cpu));
481     }
482     raw_write(env, ri, value);
483 }
484 
485 /* IS variants of TLB operations must affect all cores */
486 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
487                              uint64_t value)
488 {
489     CPUState *cs = env_cpu(env);
490 
491     tlb_flush_all_cpus_synced(cs);
492 }
493 
494 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
495                              uint64_t value)
496 {
497     CPUState *cs = env_cpu(env);
498 
499     tlb_flush_all_cpus_synced(cs);
500 }
501 
502 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
503                              uint64_t value)
504 {
505     CPUState *cs = env_cpu(env);
506 
507     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
508 }
509 
510 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
511                              uint64_t value)
512 {
513     CPUState *cs = env_cpu(env);
514 
515     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
516 }
517 
518 /*
519  * Non-IS variants of TLB operations are upgraded to
520  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
521  * force broadcast of these operations.
522  */
523 static bool tlb_force_broadcast(CPUARMState *env)
524 {
525     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
526 }
527 
528 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
529                           uint64_t value)
530 {
531     /* Invalidate all (TLBIALL) */
532     CPUState *cs = env_cpu(env);
533 
534     if (tlb_force_broadcast(env)) {
535         tlb_flush_all_cpus_synced(cs);
536     } else {
537         tlb_flush(cs);
538     }
539 }
540 
541 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
542                           uint64_t value)
543 {
544     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
545     CPUState *cs = env_cpu(env);
546 
547     value &= TARGET_PAGE_MASK;
548     if (tlb_force_broadcast(env)) {
549         tlb_flush_page_all_cpus_synced(cs, value);
550     } else {
551         tlb_flush_page(cs, value);
552     }
553 }
554 
555 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
556                            uint64_t value)
557 {
558     /* Invalidate by ASID (TLBIASID) */
559     CPUState *cs = env_cpu(env);
560 
561     if (tlb_force_broadcast(env)) {
562         tlb_flush_all_cpus_synced(cs);
563     } else {
564         tlb_flush(cs);
565     }
566 }
567 
568 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                            uint64_t value)
570 {
571     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
572     CPUState *cs = env_cpu(env);
573 
574     value &= TARGET_PAGE_MASK;
575     if (tlb_force_broadcast(env)) {
576         tlb_flush_page_all_cpus_synced(cs, value);
577     } else {
578         tlb_flush_page(cs, value);
579     }
580 }
581 
582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586 
587     tlb_flush_by_mmuidx(cs,
588                         ARMMMUIdxBit_E10_1 |
589                         ARMMMUIdxBit_E10_1_PAN |
590                         ARMMMUIdxBit_E10_0);
591 }
592 
593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
594                                   uint64_t value)
595 {
596     CPUState *cs = env_cpu(env);
597 
598     tlb_flush_by_mmuidx_all_cpus_synced(cs,
599                                         ARMMMUIdxBit_E10_1 |
600                                         ARMMMUIdxBit_E10_1_PAN |
601                                         ARMMMUIdxBit_E10_0);
602 }
603 
604 
605 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606                               uint64_t value)
607 {
608     CPUState *cs = env_cpu(env);
609 
610     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
611 }
612 
613 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                                  uint64_t value)
615 {
616     CPUState *cs = env_cpu(env);
617 
618     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
619 }
620 
621 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
622                               uint64_t value)
623 {
624     CPUState *cs = env_cpu(env);
625     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
626 
627     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
628 }
629 
630 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
631                                  uint64_t value)
632 {
633     CPUState *cs = env_cpu(env);
634     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
635 
636     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
637                                              ARMMMUIdxBit_E2);
638 }
639 
640 static const ARMCPRegInfo cp_reginfo[] = {
641     /* Define the secure and non-secure FCSE identifier CP registers
642      * separately because there is no secure bank in V8 (no _EL3).  This allows
643      * the secure register to be properly reset and migrated. There is also no
644      * v8 EL1 version of the register so the non-secure instance stands alone.
645      */
646     { .name = "FCSEIDR",
647       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
648       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
649       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
650       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
651     { .name = "FCSEIDR_S",
652       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
653       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
654       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
655       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
656     /* Define the secure and non-secure context identifier CP registers
657      * separately because there is no secure bank in V8 (no _EL3).  This allows
658      * the secure register to be properly reset and migrated.  In the
659      * non-secure case, the 32-bit register will have reset and migration
660      * disabled during registration as it is handled by the 64-bit instance.
661      */
662     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
663       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
664       .access = PL1_RW, .accessfn = access_tvm_trvm,
665       .secure = ARM_CP_SECSTATE_NS,
666       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
667       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
668     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
670       .access = PL1_RW, .accessfn = access_tvm_trvm,
671       .secure = ARM_CP_SECSTATE_S,
672       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
673       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
674     REGINFO_SENTINEL
675 };
676 
677 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
678     /* NB: Some of these registers exist in v8 but with more precise
679      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
680      */
681     /* MMU Domain access control / MPU write buffer control */
682     { .name = "DACR",
683       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
684       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
685       .writefn = dacr_write, .raw_writefn = raw_write,
686       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
687                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
688     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
689      * For v6 and v5, these mappings are overly broad.
690      */
691     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
692       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
696       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
697     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
699     /* Cache maintenance ops; some of this space may be overridden later. */
700     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
701       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
702       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
703     REGINFO_SENTINEL
704 };
705 
706 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
707     /* Not all pre-v6 cores implemented this WFI, so this is slightly
708      * over-broad.
709      */
710     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
711       .access = PL1_W, .type = ARM_CP_WFI },
712     REGINFO_SENTINEL
713 };
714 
715 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
716     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
717      * is UNPREDICTABLE; we choose to NOP as most implementations do).
718      */
719     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
720       .access = PL1_W, .type = ARM_CP_WFI },
721     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
722      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
723      * OMAPCP will override this space.
724      */
725     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
726       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
727       .resetvalue = 0 },
728     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
729       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
730       .resetvalue = 0 },
731     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
732     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
733       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
734       .resetvalue = 0 },
735     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
736      * implementing it as RAZ means the "debug architecture version" bits
737      * will read as a reserved value, which should cause Linux to not try
738      * to use the debug hardware.
739      */
740     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
741       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
742     /* MMU TLB control. Note that the wildcarding means we cover not just
743      * the unified TLB ops but also the dside/iside/inner-shareable variants.
744      */
745     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
749       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
750       .type = ARM_CP_NO_RAW },
751     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
752       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
753       .type = ARM_CP_NO_RAW },
754     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
755       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
756       .type = ARM_CP_NO_RAW },
757     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
758       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
759     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
760       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
761     REGINFO_SENTINEL
762 };
763 
764 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
765                         uint64_t value)
766 {
767     uint32_t mask = 0;
768 
769     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
770     if (!arm_feature(env, ARM_FEATURE_V8)) {
771         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
772          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
773          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
774          */
775         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
776             /* VFP coprocessor: cp10 & cp11 [23:20] */
777             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
778 
779             if (!arm_feature(env, ARM_FEATURE_NEON)) {
780                 /* ASEDIS [31] bit is RAO/WI */
781                 value |= (1 << 31);
782             }
783 
784             /* VFPv3 and upwards with NEON implement 32 double precision
785              * registers (D0-D31).
786              */
787             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
788                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
789                 value |= (1 << 30);
790             }
791         }
792         value &= mask;
793     }
794 
795     /*
796      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
797      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
798      */
799     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
800         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
801         value &= ~(0xf << 20);
802         value |= env->cp15.cpacr_el1 & (0xf << 20);
803     }
804 
805     env->cp15.cpacr_el1 = value;
806 }
807 
808 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
809 {
810     /*
811      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
812      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
813      */
814     uint64_t value = env->cp15.cpacr_el1;
815 
816     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
817         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
818         value &= ~(0xf << 20);
819     }
820     return value;
821 }
822 
823 
824 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
825 {
826     /* Call cpacr_write() so that we reset with the correct RAO bits set
827      * for our CPU features.
828      */
829     cpacr_write(env, ri, 0);
830 }
831 
832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                    bool isread)
834 {
835     if (arm_feature(env, ARM_FEATURE_V8)) {
836         /* Check if CPACR accesses are to be trapped to EL2 */
837         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
838             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
839             return CP_ACCESS_TRAP_EL2;
840         /* Check if CPACR accesses are to be trapped to EL3 */
841         } else if (arm_current_el(env) < 3 &&
842                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
843             return CP_ACCESS_TRAP_EL3;
844         }
845     }
846 
847     return CP_ACCESS_OK;
848 }
849 
850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
851                                   bool isread)
852 {
853     /* Check if CPTR accesses are set to trap to EL3 */
854     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
855         return CP_ACCESS_TRAP_EL3;
856     }
857 
858     return CP_ACCESS_OK;
859 }
860 
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862     /* prefetch by MVA in v6, NOP in v7 */
863     { .name = "MVA_prefetch",
864       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865       .access = PL1_W, .type = ARM_CP_NOP },
866     /* We need to break the TB after ISB to execute self-modifying code
867      * correctly and also to take any pending interrupts immediately.
868      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
869      */
870     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
871       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
872     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NOP },
874     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
877       .access = PL1_RW, .accessfn = access_tvm_trvm,
878       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
879                              offsetof(CPUARMState, cp15.ifar_ns) },
880       .resetvalue = 0, },
881     /* Watchpoint Fault Address Register : should actually only be present
882      * for 1136, 1176, 11MPCore.
883      */
884     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
885       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
886     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
887       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
888       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
890     REGINFO_SENTINEL
891 };
892 
893 typedef struct pm_event {
894     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896     bool (*supported)(CPUARMState *);
897     /*
898      * Retrieve the current count of the underlying event. The programmed
899      * counters hold a difference from the return value from this function
900      */
901     uint64_t (*get_count)(CPUARMState *);
902     /*
903      * Return how many nanoseconds it will take (at a minimum) for count events
904      * to occur. A negative value indicates the counter will never overflow, or
905      * that the counter has otherwise arranged for the overflow bit to be set
906      * and the PMU interrupt to be raised on overflow.
907      */
908     int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910 
911 static bool event_always_supported(CPUARMState *env)
912 {
913     return true;
914 }
915 
916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918     /*
919      * SW_INCR events are written directly to the pmevcntr's by writes to
920      * PMSWINC, so there is no underlying count maintained by the PMU itself
921      */
922     return 0;
923 }
924 
925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927     return -1;
928 }
929 
930 /*
931  * Return the underlying cycle count for the PMU cycle counters. If we're in
932  * usermode, simply return 0.
933  */
934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940     return cpu_get_host_ticks();
941 #endif
942 }
943 
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949 
950 static bool instructions_supported(CPUARMState *env)
951 {
952     return icount_enabled() == 1; /* Precise instruction counting */
953 }
954 
955 static uint64_t instructions_get_count(CPUARMState *env)
956 {
957     return (uint64_t)icount_get_raw();
958 }
959 
960 static int64_t instructions_ns_per(uint64_t icount)
961 {
962     return icount_to_ns((int64_t)icount);
963 }
964 #endif
965 
966 static bool pmu_8_1_events_supported(CPUARMState *env)
967 {
968     /* For events which are supported in any v8.1 PMU */
969     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
970 }
971 
972 static bool pmu_8_4_events_supported(CPUARMState *env)
973 {
974     /* For events which are supported in any v8.1 PMU */
975     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
976 }
977 
978 static uint64_t zero_event_get_count(CPUARMState *env)
979 {
980     /* For events which on QEMU never fire, so their count is always zero */
981     return 0;
982 }
983 
984 static int64_t zero_event_ns_per(uint64_t cycles)
985 {
986     /* An event which never fires can never overflow */
987     return -1;
988 }
989 
990 static const pm_event pm_events[] = {
991     { .number = 0x000, /* SW_INCR */
992       .supported = event_always_supported,
993       .get_count = swinc_get_count,
994       .ns_per_count = swinc_ns_per,
995     },
996 #ifndef CONFIG_USER_ONLY
997     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
998       .supported = instructions_supported,
999       .get_count = instructions_get_count,
1000       .ns_per_count = instructions_ns_per,
1001     },
1002     { .number = 0x011, /* CPU_CYCLES, Cycle */
1003       .supported = event_always_supported,
1004       .get_count = cycles_get_count,
1005       .ns_per_count = cycles_ns_per,
1006     },
1007 #endif
1008     { .number = 0x023, /* STALL_FRONTEND */
1009       .supported = pmu_8_1_events_supported,
1010       .get_count = zero_event_get_count,
1011       .ns_per_count = zero_event_ns_per,
1012     },
1013     { .number = 0x024, /* STALL_BACKEND */
1014       .supported = pmu_8_1_events_supported,
1015       .get_count = zero_event_get_count,
1016       .ns_per_count = zero_event_ns_per,
1017     },
1018     { .number = 0x03c, /* STALL */
1019       .supported = pmu_8_4_events_supported,
1020       .get_count = zero_event_get_count,
1021       .ns_per_count = zero_event_ns_per,
1022     },
1023 };
1024 
1025 /*
1026  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1027  * events (i.e. the statistical profiling extension), this implementation
1028  * should first be updated to something sparse instead of the current
1029  * supported_event_map[] array.
1030  */
1031 #define MAX_EVENT_ID 0x3c
1032 #define UNSUPPORTED_EVENT UINT16_MAX
1033 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1034 
1035 /*
1036  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1037  * of ARM event numbers to indices in our pm_events array.
1038  *
1039  * Note: Events in the 0x40XX range are not currently supported.
1040  */
1041 void pmu_init(ARMCPU *cpu)
1042 {
1043     unsigned int i;
1044 
1045     /*
1046      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1047      * events to them
1048      */
1049     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1050         supported_event_map[i] = UNSUPPORTED_EVENT;
1051     }
1052     cpu->pmceid0 = 0;
1053     cpu->pmceid1 = 0;
1054 
1055     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1056         const pm_event *cnt = &pm_events[i];
1057         assert(cnt->number <= MAX_EVENT_ID);
1058         /* We do not currently support events in the 0x40xx range */
1059         assert(cnt->number <= 0x3f);
1060 
1061         if (cnt->supported(&cpu->env)) {
1062             supported_event_map[cnt->number] = i;
1063             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1064             if (cnt->number & 0x20) {
1065                 cpu->pmceid1 |= event_mask;
1066             } else {
1067                 cpu->pmceid0 |= event_mask;
1068             }
1069         }
1070     }
1071 }
1072 
1073 /*
1074  * Check at runtime whether a PMU event is supported for the current machine
1075  */
1076 static bool event_supported(uint16_t number)
1077 {
1078     if (number > MAX_EVENT_ID) {
1079         return false;
1080     }
1081     return supported_event_map[number] != UNSUPPORTED_EVENT;
1082 }
1083 
1084 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1085                                    bool isread)
1086 {
1087     /* Performance monitor registers user accessibility is controlled
1088      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089      * trapping to EL2 or EL3 for other accesses.
1090      */
1091     int el = arm_current_el(env);
1092     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093 
1094     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1095         return CP_ACCESS_TRAP;
1096     }
1097     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1098         return CP_ACCESS_TRAP_EL2;
1099     }
1100     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1101         return CP_ACCESS_TRAP_EL3;
1102     }
1103 
1104     return CP_ACCESS_OK;
1105 }
1106 
1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1108                                            const ARMCPRegInfo *ri,
1109                                            bool isread)
1110 {
1111     /* ER: event counter read trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1115         && isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1123                                          const ARMCPRegInfo *ri,
1124                                          bool isread)
1125 {
1126     /* SW: software increment write trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1130         && !isread) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
1137 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1138                                         const ARMCPRegInfo *ri,
1139                                         bool isread)
1140 {
1141     /* ER: event counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1152                                          const ARMCPRegInfo *ri,
1153                                          bool isread)
1154 {
1155     /* CR: cycle counter read trap control */
1156     if (arm_feature(env, ARM_FEATURE_V8)
1157         && arm_current_el(env) == 0
1158         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1159         && isread) {
1160         return CP_ACCESS_OK;
1161     }
1162 
1163     return pmreg_access(env, ri, isread);
1164 }
1165 
1166 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1167  * the current EL, security state, and register configuration.
1168  */
1169 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1170 {
1171     uint64_t filter;
1172     bool e, p, u, nsk, nsu, nsh, m;
1173     bool enabled, prohibited, filtered;
1174     bool secure = arm_is_secure(env);
1175     int el = arm_current_el(env);
1176     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1177     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1178 
1179     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1180         return false;
1181     }
1182 
1183     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1184             (counter < hpmn || counter == 31)) {
1185         e = env->cp15.c9_pmcr & PMCRE;
1186     } else {
1187         e = mdcr_el2 & MDCR_HPME;
1188     }
1189     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1190 
1191     if (!secure) {
1192         if (el == 2 && (counter < hpmn || counter == 31)) {
1193             prohibited = mdcr_el2 & MDCR_HPMD;
1194         } else {
1195             prohibited = false;
1196         }
1197     } else {
1198         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1199            !(env->cp15.mdcr_el3 & MDCR_SPME);
1200     }
1201 
1202     if (prohibited && counter == 31) {
1203         prohibited = env->cp15.c9_pmcr & PMCRDP;
1204     }
1205 
1206     if (counter == 31) {
1207         filter = env->cp15.pmccfiltr_el0;
1208     } else {
1209         filter = env->cp15.c14_pmevtyper[counter];
1210     }
1211 
1212     p   = filter & PMXEVTYPER_P;
1213     u   = filter & PMXEVTYPER_U;
1214     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1215     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1216     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1217     m   = arm_el_is_aa64(env, 1) &&
1218               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1219 
1220     if (el == 0) {
1221         filtered = secure ? u : u != nsu;
1222     } else if (el == 1) {
1223         filtered = secure ? p : p != nsk;
1224     } else if (el == 2) {
1225         filtered = !nsh;
1226     } else { /* EL3 */
1227         filtered = m != p;
1228     }
1229 
1230     if (counter != 31) {
1231         /*
1232          * If not checking PMCCNTR, ensure the counter is setup to an event we
1233          * support
1234          */
1235         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1236         if (!event_supported(event)) {
1237             return false;
1238         }
1239     }
1240 
1241     return enabled && !prohibited && !filtered;
1242 }
1243 
1244 static void pmu_update_irq(CPUARMState *env)
1245 {
1246     ARMCPU *cpu = env_archcpu(env);
1247     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1248             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1249 }
1250 
1251 /*
1252  * Ensure c15_ccnt is the guest-visible count so that operations such as
1253  * enabling/disabling the counter or filtering, modifying the count itself,
1254  * etc. can be done logically. This is essentially a no-op if the counter is
1255  * not enabled at the time of the call.
1256  */
1257 static void pmccntr_op_start(CPUARMState *env)
1258 {
1259     uint64_t cycles = cycles_get_count(env);
1260 
1261     if (pmu_counter_enabled(env, 31)) {
1262         uint64_t eff_cycles = cycles;
1263         if (env->cp15.c9_pmcr & PMCRD) {
1264             /* Increment once every 64 processor clock cycles */
1265             eff_cycles /= 64;
1266         }
1267 
1268         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1269 
1270         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1271                                  1ull << 63 : 1ull << 31;
1272         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1273             env->cp15.c9_pmovsr |= (1 << 31);
1274             pmu_update_irq(env);
1275         }
1276 
1277         env->cp15.c15_ccnt = new_pmccntr;
1278     }
1279     env->cp15.c15_ccnt_delta = cycles;
1280 }
1281 
1282 /*
1283  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1284  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1285  * pmccntr_op_start.
1286  */
1287 static void pmccntr_op_finish(CPUARMState *env)
1288 {
1289     if (pmu_counter_enabled(env, 31)) {
1290 #ifndef CONFIG_USER_ONLY
1291         /* Calculate when the counter will next overflow */
1292         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1293         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1294             remaining_cycles = (uint32_t)remaining_cycles;
1295         }
1296         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1297 
1298         if (overflow_in > 0) {
1299             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1300                 overflow_in;
1301             ARMCPU *cpu = env_archcpu(env);
1302             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1303         }
1304 #endif
1305 
1306         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1307         if (env->cp15.c9_pmcr & PMCRD) {
1308             /* Increment once every 64 processor clock cycles */
1309             prev_cycles /= 64;
1310         }
1311         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1312     }
1313 }
1314 
1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1316 {
1317 
1318     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1319     uint64_t count = 0;
1320     if (event_supported(event)) {
1321         uint16_t event_idx = supported_event_map[event];
1322         count = pm_events[event_idx].get_count(env);
1323     }
1324 
1325     if (pmu_counter_enabled(env, counter)) {
1326         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1327 
1328         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1329             env->cp15.c9_pmovsr |= (1 << counter);
1330             pmu_update_irq(env);
1331         }
1332         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1333     }
1334     env->cp15.c14_pmevcntr_delta[counter] = count;
1335 }
1336 
1337 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1338 {
1339     if (pmu_counter_enabled(env, counter)) {
1340 #ifndef CONFIG_USER_ONLY
1341         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1342         uint16_t event_idx = supported_event_map[event];
1343         uint64_t delta = UINT32_MAX -
1344             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1345         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1346 
1347         if (overflow_in > 0) {
1348             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1349                 overflow_in;
1350             ARMCPU *cpu = env_archcpu(env);
1351             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1352         }
1353 #endif
1354 
1355         env->cp15.c14_pmevcntr_delta[counter] -=
1356             env->cp15.c14_pmevcntr[counter];
1357     }
1358 }
1359 
1360 void pmu_op_start(CPUARMState *env)
1361 {
1362     unsigned int i;
1363     pmccntr_op_start(env);
1364     for (i = 0; i < pmu_num_counters(env); i++) {
1365         pmevcntr_op_start(env, i);
1366     }
1367 }
1368 
1369 void pmu_op_finish(CPUARMState *env)
1370 {
1371     unsigned int i;
1372     pmccntr_op_finish(env);
1373     for (i = 0; i < pmu_num_counters(env); i++) {
1374         pmevcntr_op_finish(env, i);
1375     }
1376 }
1377 
1378 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1379 {
1380     pmu_op_start(&cpu->env);
1381 }
1382 
1383 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1384 {
1385     pmu_op_finish(&cpu->env);
1386 }
1387 
1388 void arm_pmu_timer_cb(void *opaque)
1389 {
1390     ARMCPU *cpu = opaque;
1391 
1392     /*
1393      * Update all the counter values based on the current underlying counts,
1394      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1395      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1396      * counter may expire.
1397      */
1398     pmu_op_start(&cpu->env);
1399     pmu_op_finish(&cpu->env);
1400 }
1401 
1402 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1403                        uint64_t value)
1404 {
1405     pmu_op_start(env);
1406 
1407     if (value & PMCRC) {
1408         /* The counter has been reset */
1409         env->cp15.c15_ccnt = 0;
1410     }
1411 
1412     if (value & PMCRP) {
1413         unsigned int i;
1414         for (i = 0; i < pmu_num_counters(env); i++) {
1415             env->cp15.c14_pmevcntr[i] = 0;
1416         }
1417     }
1418 
1419     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1420     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1421 
1422     pmu_op_finish(env);
1423 }
1424 
1425 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1426                           uint64_t value)
1427 {
1428     unsigned int i;
1429     for (i = 0; i < pmu_num_counters(env); i++) {
1430         /* Increment a counter's count iff: */
1431         if ((value & (1 << i)) && /* counter's bit is set */
1432                 /* counter is enabled and not filtered */
1433                 pmu_counter_enabled(env, i) &&
1434                 /* counter is SW_INCR */
1435                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1436             pmevcntr_op_start(env, i);
1437 
1438             /*
1439              * Detect if this write causes an overflow since we can't predict
1440              * PMSWINC overflows like we can for other events
1441              */
1442             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1443 
1444             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1445                 env->cp15.c9_pmovsr |= (1 << i);
1446                 pmu_update_irq(env);
1447             }
1448 
1449             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1450 
1451             pmevcntr_op_finish(env, i);
1452         }
1453     }
1454 }
1455 
1456 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1457 {
1458     uint64_t ret;
1459     pmccntr_op_start(env);
1460     ret = env->cp15.c15_ccnt;
1461     pmccntr_op_finish(env);
1462     return ret;
1463 }
1464 
1465 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1466                          uint64_t value)
1467 {
1468     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1469      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1470      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1471      * accessed.
1472      */
1473     env->cp15.c9_pmselr = value & 0x1f;
1474 }
1475 
1476 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477                         uint64_t value)
1478 {
1479     pmccntr_op_start(env);
1480     env->cp15.c15_ccnt = value;
1481     pmccntr_op_finish(env);
1482 }
1483 
1484 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1485                             uint64_t value)
1486 {
1487     uint64_t cur_val = pmccntr_read(env, NULL);
1488 
1489     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1490 }
1491 
1492 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1493                             uint64_t value)
1494 {
1495     pmccntr_op_start(env);
1496     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1497     pmccntr_op_finish(env);
1498 }
1499 
1500 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1501                             uint64_t value)
1502 {
1503     pmccntr_op_start(env);
1504     /* M is not accessible from AArch32 */
1505     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1506         (value & PMCCFILTR);
1507     pmccntr_op_finish(env);
1508 }
1509 
1510 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1511 {
1512     /* M is not visible in AArch32 */
1513     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1514 }
1515 
1516 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517                             uint64_t value)
1518 {
1519     value &= pmu_counter_mask(env);
1520     env->cp15.c9_pmcnten |= value;
1521 }
1522 
1523 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                              uint64_t value)
1525 {
1526     value &= pmu_counter_mask(env);
1527     env->cp15.c9_pmcnten &= ~value;
1528 }
1529 
1530 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531                          uint64_t value)
1532 {
1533     value &= pmu_counter_mask(env);
1534     env->cp15.c9_pmovsr &= ~value;
1535     pmu_update_irq(env);
1536 }
1537 
1538 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1539                          uint64_t value)
1540 {
1541     value &= pmu_counter_mask(env);
1542     env->cp15.c9_pmovsr |= value;
1543     pmu_update_irq(env);
1544 }
1545 
1546 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547                              uint64_t value, const uint8_t counter)
1548 {
1549     if (counter == 31) {
1550         pmccfiltr_write(env, ri, value);
1551     } else if (counter < pmu_num_counters(env)) {
1552         pmevcntr_op_start(env, counter);
1553 
1554         /*
1555          * If this counter's event type is changing, store the current
1556          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1557          * pmevcntr_op_finish has the correct baseline when it converts back to
1558          * a delta.
1559          */
1560         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1561             PMXEVTYPER_EVTCOUNT;
1562         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1563         if (old_event != new_event) {
1564             uint64_t count = 0;
1565             if (event_supported(new_event)) {
1566                 uint16_t event_idx = supported_event_map[new_event];
1567                 count = pm_events[event_idx].get_count(env);
1568             }
1569             env->cp15.c14_pmevcntr_delta[counter] = count;
1570         }
1571 
1572         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1573         pmevcntr_op_finish(env, counter);
1574     }
1575     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1576      * PMSELR value is equal to or greater than the number of implemented
1577      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1578      */
1579 }
1580 
1581 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1582                                const uint8_t counter)
1583 {
1584     if (counter == 31) {
1585         return env->cp15.pmccfiltr_el0;
1586     } else if (counter < pmu_num_counters(env)) {
1587         return env->cp15.c14_pmevtyper[counter];
1588     } else {
1589       /*
1590        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1591        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1592        */
1593         return 0;
1594     }
1595 }
1596 
1597 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1598                               uint64_t value)
1599 {
1600     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1601     pmevtyper_write(env, ri, value, counter);
1602 }
1603 
1604 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1605                                uint64_t value)
1606 {
1607     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1608     env->cp15.c14_pmevtyper[counter] = value;
1609 
1610     /*
1611      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1612      * pmu_op_finish calls when loading saved state for a migration. Because
1613      * we're potentially updating the type of event here, the value written to
1614      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1615      * different counter type. Therefore, we need to set this value to the
1616      * current count for the counter type we're writing so that pmu_op_finish
1617      * has the correct count for its calculation.
1618      */
1619     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1620     if (event_supported(event)) {
1621         uint16_t event_idx = supported_event_map[event];
1622         env->cp15.c14_pmevcntr_delta[counter] =
1623             pm_events[event_idx].get_count(env);
1624     }
1625 }
1626 
1627 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1628 {
1629     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1630     return pmevtyper_read(env, ri, counter);
1631 }
1632 
1633 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634                              uint64_t value)
1635 {
1636     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1637 }
1638 
1639 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1640 {
1641     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1642 }
1643 
1644 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645                              uint64_t value, uint8_t counter)
1646 {
1647     if (counter < pmu_num_counters(env)) {
1648         pmevcntr_op_start(env, counter);
1649         env->cp15.c14_pmevcntr[counter] = value;
1650         pmevcntr_op_finish(env, counter);
1651     }
1652     /*
1653      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1654      * are CONSTRAINED UNPREDICTABLE.
1655      */
1656 }
1657 
1658 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1659                               uint8_t counter)
1660 {
1661     if (counter < pmu_num_counters(env)) {
1662         uint64_t ret;
1663         pmevcntr_op_start(env, counter);
1664         ret = env->cp15.c14_pmevcntr[counter];
1665         pmevcntr_op_finish(env, counter);
1666         return ret;
1667     } else {
1668       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1669        * are CONSTRAINED UNPREDICTABLE. */
1670         return 0;
1671     }
1672 }
1673 
1674 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1675                              uint64_t value)
1676 {
1677     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1678     pmevcntr_write(env, ri, value, counter);
1679 }
1680 
1681 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1682 {
1683     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1684     return pmevcntr_read(env, ri, counter);
1685 }
1686 
1687 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1688                              uint64_t value)
1689 {
1690     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1691     assert(counter < pmu_num_counters(env));
1692     env->cp15.c14_pmevcntr[counter] = value;
1693     pmevcntr_write(env, ri, value, counter);
1694 }
1695 
1696 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1697 {
1698     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1699     assert(counter < pmu_num_counters(env));
1700     return env->cp15.c14_pmevcntr[counter];
1701 }
1702 
1703 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1704                              uint64_t value)
1705 {
1706     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1707 }
1708 
1709 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 {
1711     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1712 }
1713 
1714 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1715                             uint64_t value)
1716 {
1717     if (arm_feature(env, ARM_FEATURE_V8)) {
1718         env->cp15.c9_pmuserenr = value & 0xf;
1719     } else {
1720         env->cp15.c9_pmuserenr = value & 1;
1721     }
1722 }
1723 
1724 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725                              uint64_t value)
1726 {
1727     /* We have no event counters so only the C bit can be changed */
1728     value &= pmu_counter_mask(env);
1729     env->cp15.c9_pminten |= value;
1730     pmu_update_irq(env);
1731 }
1732 
1733 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                              uint64_t value)
1735 {
1736     value &= pmu_counter_mask(env);
1737     env->cp15.c9_pminten &= ~value;
1738     pmu_update_irq(env);
1739 }
1740 
1741 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1742                        uint64_t value)
1743 {
1744     /* Note that even though the AArch64 view of this register has bits
1745      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1746      * architectural requirements for bits which are RES0 only in some
1747      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1748      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1749      */
1750     raw_write(env, ri, value & ~0x1FULL);
1751 }
1752 
1753 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1754 {
1755     /* Begin with base v8.0 state.  */
1756     uint32_t valid_mask = 0x3fff;
1757     ARMCPU *cpu = env_archcpu(env);
1758 
1759     if (ri->state == ARM_CP_STATE_AA64) {
1760         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1761             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1762                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1763         }
1764         valid_mask &= ~SCR_NET;
1765 
1766         if (cpu_isar_feature(aa64_lor, cpu)) {
1767             valid_mask |= SCR_TLOR;
1768         }
1769         if (cpu_isar_feature(aa64_pauth, cpu)) {
1770             valid_mask |= SCR_API | SCR_APK;
1771         }
1772         if (cpu_isar_feature(aa64_sel2, cpu)) {
1773             valid_mask |= SCR_EEL2;
1774         }
1775         if (cpu_isar_feature(aa64_mte, cpu)) {
1776             valid_mask |= SCR_ATA;
1777         }
1778     } else {
1779         valid_mask &= ~(SCR_RW | SCR_ST);
1780     }
1781 
1782     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1783         valid_mask &= ~SCR_HCE;
1784 
1785         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1786          * supported if EL2 exists. The bit is UNK/SBZP when
1787          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1788          * when EL2 is unavailable.
1789          * On ARMv8, this bit is always available.
1790          */
1791         if (arm_feature(env, ARM_FEATURE_V7) &&
1792             !arm_feature(env, ARM_FEATURE_V8)) {
1793             valid_mask &= ~SCR_SMD;
1794         }
1795     }
1796 
1797     /* Clear all-context RES0 bits.  */
1798     value &= valid_mask;
1799     raw_write(env, ri, value);
1800 }
1801 
1802 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1803 {
1804     /*
1805      * scr_write will set the RES1 bits on an AArch64-only CPU.
1806      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1807      */
1808     scr_write(env, ri, 0);
1809 }
1810 
1811 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1812                                        const ARMCPRegInfo *ri,
1813                                        bool isread)
1814 {
1815     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1816         return CP_ACCESS_TRAP_EL2;
1817     }
1818 
1819     return CP_ACCESS_OK;
1820 }
1821 
1822 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1823 {
1824     ARMCPU *cpu = env_archcpu(env);
1825 
1826     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1827      * bank
1828      */
1829     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1830                                         ri->secure & ARM_CP_SECSTATE_S);
1831 
1832     return cpu->ccsidr[index];
1833 }
1834 
1835 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836                          uint64_t value)
1837 {
1838     raw_write(env, ri, value & 0xf);
1839 }
1840 
1841 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1842 {
1843     CPUState *cs = env_cpu(env);
1844     bool el1 = arm_current_el(env) == 1;
1845     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1846     uint64_t ret = 0;
1847 
1848     if (hcr_el2 & HCR_IMO) {
1849         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1850             ret |= CPSR_I;
1851         }
1852     } else {
1853         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1854             ret |= CPSR_I;
1855         }
1856     }
1857 
1858     if (hcr_el2 & HCR_FMO) {
1859         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1860             ret |= CPSR_F;
1861         }
1862     } else {
1863         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1864             ret |= CPSR_F;
1865         }
1866     }
1867 
1868     /* External aborts are not possible in QEMU so A bit is always clear */
1869     return ret;
1870 }
1871 
1872 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                        bool isread)
1874 {
1875     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1876         return CP_ACCESS_TRAP_EL2;
1877     }
1878 
1879     return CP_ACCESS_OK;
1880 }
1881 
1882 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1883                                        bool isread)
1884 {
1885     if (arm_feature(env, ARM_FEATURE_V8)) {
1886         return access_aa64_tid1(env, ri, isread);
1887     }
1888 
1889     return CP_ACCESS_OK;
1890 }
1891 
1892 static const ARMCPRegInfo v7_cp_reginfo[] = {
1893     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1894     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1895       .access = PL1_W, .type = ARM_CP_NOP },
1896     /* Performance monitors are implementation defined in v7,
1897      * but with an ARM recommended set of registers, which we
1898      * follow.
1899      *
1900      * Performance registers fall into three categories:
1901      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1902      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1903      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1904      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1905      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1906      */
1907     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1908       .access = PL0_RW, .type = ARM_CP_ALIAS,
1909       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1910       .writefn = pmcntenset_write,
1911       .accessfn = pmreg_access,
1912       .raw_writefn = raw_write },
1913     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1914       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1915       .access = PL0_RW, .accessfn = pmreg_access,
1916       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1917       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1918     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1919       .access = PL0_RW,
1920       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1921       .accessfn = pmreg_access,
1922       .writefn = pmcntenclr_write,
1923       .type = ARM_CP_ALIAS },
1924     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1925       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1926       .access = PL0_RW, .accessfn = pmreg_access,
1927       .type = ARM_CP_ALIAS,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1929       .writefn = pmcntenclr_write },
1930     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1931       .access = PL0_RW, .type = ARM_CP_IO,
1932       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1933       .accessfn = pmreg_access,
1934       .writefn = pmovsr_write,
1935       .raw_writefn = raw_write },
1936     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1937       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1938       .access = PL0_RW, .accessfn = pmreg_access,
1939       .type = ARM_CP_ALIAS | ARM_CP_IO,
1940       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1941       .writefn = pmovsr_write,
1942       .raw_writefn = raw_write },
1943     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1944       .access = PL0_W, .accessfn = pmreg_access_swinc,
1945       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1946       .writefn = pmswinc_write },
1947     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1948       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1949       .access = PL0_W, .accessfn = pmreg_access_swinc,
1950       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1951       .writefn = pmswinc_write },
1952     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1953       .access = PL0_RW, .type = ARM_CP_ALIAS,
1954       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1955       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1956       .raw_writefn = raw_write},
1957     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1958       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1959       .access = PL0_RW, .accessfn = pmreg_access_selr,
1960       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1961       .writefn = pmselr_write, .raw_writefn = raw_write, },
1962     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1963       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1964       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1965       .accessfn = pmreg_access_ccntr },
1966     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1967       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1968       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1969       .type = ARM_CP_IO,
1970       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1971       .readfn = pmccntr_read, .writefn = pmccntr_write,
1972       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1973     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1974       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1975       .access = PL0_RW, .accessfn = pmreg_access,
1976       .type = ARM_CP_ALIAS | ARM_CP_IO,
1977       .resetvalue = 0, },
1978     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1979       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1980       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1981       .access = PL0_RW, .accessfn = pmreg_access,
1982       .type = ARM_CP_IO,
1983       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1984       .resetvalue = 0, },
1985     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1986       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1987       .accessfn = pmreg_access,
1988       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1989     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1990       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1991       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1992       .accessfn = pmreg_access,
1993       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1994     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1995       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1996       .accessfn = pmreg_access_xevcntr,
1997       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1998     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1999       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2000       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2001       .accessfn = pmreg_access_xevcntr,
2002       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2003     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2004       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2005       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2006       .resetvalue = 0,
2007       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2008     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2009       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2010       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2011       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2012       .resetvalue = 0,
2013       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2014     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2015       .access = PL1_RW, .accessfn = access_tpm,
2016       .type = ARM_CP_ALIAS | ARM_CP_IO,
2017       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2018       .resetvalue = 0,
2019       .writefn = pmintenset_write, .raw_writefn = raw_write },
2020     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2021       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2022       .access = PL1_RW, .accessfn = access_tpm,
2023       .type = ARM_CP_IO,
2024       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2025       .writefn = pmintenset_write, .raw_writefn = raw_write,
2026       .resetvalue = 0x0 },
2027     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2028       .access = PL1_RW, .accessfn = access_tpm,
2029       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2030       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2031       .writefn = pmintenclr_write, },
2032     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2034       .access = PL1_RW, .accessfn = access_tpm,
2035       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2037       .writefn = pmintenclr_write },
2038     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2039       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2040       .access = PL1_R,
2041       .accessfn = access_aa64_tid2,
2042       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2043     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2044       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2045       .access = PL1_RW,
2046       .accessfn = access_aa64_tid2,
2047       .writefn = csselr_write, .resetvalue = 0,
2048       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2049                              offsetof(CPUARMState, cp15.csselr_ns) } },
2050     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2051      * just RAZ for all cores:
2052      */
2053     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2054       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2055       .access = PL1_R, .type = ARM_CP_CONST,
2056       .accessfn = access_aa64_tid1,
2057       .resetvalue = 0 },
2058     /* Auxiliary fault status registers: these also are IMPDEF, and we
2059      * choose to RAZ/WI for all cores.
2060      */
2061     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2062       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2063       .access = PL1_RW, .accessfn = access_tvm_trvm,
2064       .type = ARM_CP_CONST, .resetvalue = 0 },
2065     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2066       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2067       .access = PL1_RW, .accessfn = access_tvm_trvm,
2068       .type = ARM_CP_CONST, .resetvalue = 0 },
2069     /* MAIR can just read-as-written because we don't implement caches
2070      * and so don't need to care about memory attributes.
2071      */
2072     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2074       .access = PL1_RW, .accessfn = access_tvm_trvm,
2075       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2076       .resetvalue = 0 },
2077     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2078       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2079       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2080       .resetvalue = 0 },
2081     /* For non-long-descriptor page tables these are PRRR and NMRR;
2082      * regardless they still act as reads-as-written for QEMU.
2083      */
2084      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2085       * allows them to assign the correct fieldoffset based on the endianness
2086       * handled in the field definitions.
2087       */
2088     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2089       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2090       .access = PL1_RW, .accessfn = access_tvm_trvm,
2091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2092                              offsetof(CPUARMState, cp15.mair0_ns) },
2093       .resetfn = arm_cp_reset_ignore },
2094     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2095       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2096       .access = PL1_RW, .accessfn = access_tvm_trvm,
2097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2098                              offsetof(CPUARMState, cp15.mair1_ns) },
2099       .resetfn = arm_cp_reset_ignore },
2100     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2101       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2102       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2103     /* 32 bit ITLB invalidates */
2104     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2105       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2106       .writefn = tlbiall_write },
2107     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2108       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2109       .writefn = tlbimva_write },
2110     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2111       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2112       .writefn = tlbiasid_write },
2113     /* 32 bit DTLB invalidates */
2114     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2115       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2116       .writefn = tlbiall_write },
2117     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2118       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2119       .writefn = tlbimva_write },
2120     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2121       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2122       .writefn = tlbiasid_write },
2123     /* 32 bit TLB invalidates */
2124     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2125       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2126       .writefn = tlbiall_write },
2127     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2128       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2129       .writefn = tlbimva_write },
2130     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2131       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2132       .writefn = tlbiasid_write },
2133     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2134       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2135       .writefn = tlbimvaa_write },
2136     REGINFO_SENTINEL
2137 };
2138 
2139 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2140     /* 32 bit TLB invalidates, Inner Shareable */
2141     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2142       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2143       .writefn = tlbiall_is_write },
2144     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2145       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2146       .writefn = tlbimva_is_write },
2147     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2148       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2149       .writefn = tlbiasid_is_write },
2150     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2151       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2152       .writefn = tlbimvaa_is_write },
2153     REGINFO_SENTINEL
2154 };
2155 
2156 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2157     /* PMOVSSET is not implemented in v7 before v7ve */
2158     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2159       .access = PL0_RW, .accessfn = pmreg_access,
2160       .type = ARM_CP_ALIAS | ARM_CP_IO,
2161       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2162       .writefn = pmovsset_write,
2163       .raw_writefn = raw_write },
2164     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2165       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2166       .access = PL0_RW, .accessfn = pmreg_access,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2169       .writefn = pmovsset_write,
2170       .raw_writefn = raw_write },
2171     REGINFO_SENTINEL
2172 };
2173 
2174 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175                         uint64_t value)
2176 {
2177     value &= 1;
2178     env->teecr = value;
2179 }
2180 
2181 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2182                                    bool isread)
2183 {
2184     /*
2185      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2186      * at all, so we don't need to check whether we're v8A.
2187      */
2188     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2189         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2190         return CP_ACCESS_TRAP_EL2;
2191     }
2192     return CP_ACCESS_OK;
2193 }
2194 
2195 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2196                                     bool isread)
2197 {
2198     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2199         return CP_ACCESS_TRAP;
2200     }
2201     return teecr_access(env, ri, isread);
2202 }
2203 
2204 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2205     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2206       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2207       .resetvalue = 0,
2208       .writefn = teecr_write, .accessfn = teecr_access },
2209     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2210       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2211       .accessfn = teehbr_access, .resetvalue = 0 },
2212     REGINFO_SENTINEL
2213 };
2214 
2215 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2216     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2217       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2218       .access = PL0_RW,
2219       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2220     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2221       .access = PL0_RW,
2222       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2223                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2224       .resetfn = arm_cp_reset_ignore },
2225     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2227       .access = PL0_R|PL1_W,
2228       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2229       .resetvalue = 0},
2230     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2231       .access = PL0_R|PL1_W,
2232       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2233                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2234       .resetfn = arm_cp_reset_ignore },
2235     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2236       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2237       .access = PL1_RW,
2238       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2239     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2240       .access = PL1_RW,
2241       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2242                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2243       .resetvalue = 0 },
2244     REGINFO_SENTINEL
2245 };
2246 
2247 #ifndef CONFIG_USER_ONLY
2248 
2249 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2250                                        bool isread)
2251 {
2252     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2253      * Writable only at the highest implemented exception level.
2254      */
2255     int el = arm_current_el(env);
2256     uint64_t hcr;
2257     uint32_t cntkctl;
2258 
2259     switch (el) {
2260     case 0:
2261         hcr = arm_hcr_el2_eff(env);
2262         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2263             cntkctl = env->cp15.cnthctl_el2;
2264         } else {
2265             cntkctl = env->cp15.c14_cntkctl;
2266         }
2267         if (!extract32(cntkctl, 0, 2)) {
2268             return CP_ACCESS_TRAP;
2269         }
2270         break;
2271     case 1:
2272         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2273             arm_is_secure_below_el3(env)) {
2274             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2275             return CP_ACCESS_TRAP_UNCATEGORIZED;
2276         }
2277         break;
2278     case 2:
2279     case 3:
2280         break;
2281     }
2282 
2283     if (!isread && el < arm_highest_el(env)) {
2284         return CP_ACCESS_TRAP_UNCATEGORIZED;
2285     }
2286 
2287     return CP_ACCESS_OK;
2288 }
2289 
2290 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2291                                         bool isread)
2292 {
2293     unsigned int cur_el = arm_current_el(env);
2294     bool has_el2 = arm_is_el2_enabled(env);
2295     uint64_t hcr = arm_hcr_el2_eff(env);
2296 
2297     switch (cur_el) {
2298     case 0:
2299         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2300         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2301             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2302                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2303         }
2304 
2305         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2306         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2307             return CP_ACCESS_TRAP;
2308         }
2309 
2310         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2311         if (hcr & HCR_E2H) {
2312             if (timeridx == GTIMER_PHYS &&
2313                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2314                 return CP_ACCESS_TRAP_EL2;
2315             }
2316         } else {
2317             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2318             if (has_el2 && timeridx == GTIMER_PHYS &&
2319                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2320                 return CP_ACCESS_TRAP_EL2;
2321             }
2322         }
2323         break;
2324 
2325     case 1:
2326         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2327         if (has_el2 && timeridx == GTIMER_PHYS &&
2328             (hcr & HCR_E2H
2329              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2330              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2331             return CP_ACCESS_TRAP_EL2;
2332         }
2333         break;
2334     }
2335     return CP_ACCESS_OK;
2336 }
2337 
2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2339                                       bool isread)
2340 {
2341     unsigned int cur_el = arm_current_el(env);
2342     bool has_el2 = arm_is_el2_enabled(env);
2343     uint64_t hcr = arm_hcr_el2_eff(env);
2344 
2345     switch (cur_el) {
2346     case 0:
2347         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2348             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2349             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2350                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2351         }
2352 
2353         /*
2354          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2355          * EL0 if EL0[PV]TEN is zero.
2356          */
2357         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2358             return CP_ACCESS_TRAP;
2359         }
2360         /* fall through */
2361 
2362     case 1:
2363         if (has_el2 && timeridx == GTIMER_PHYS) {
2364             if (hcr & HCR_E2H) {
2365                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2366                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2367                     return CP_ACCESS_TRAP_EL2;
2368                 }
2369             } else {
2370                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2371                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2372                     return CP_ACCESS_TRAP_EL2;
2373                 }
2374             }
2375         }
2376         break;
2377     }
2378     return CP_ACCESS_OK;
2379 }
2380 
2381 static CPAccessResult gt_pct_access(CPUARMState *env,
2382                                     const ARMCPRegInfo *ri,
2383                                     bool isread)
2384 {
2385     return gt_counter_access(env, GTIMER_PHYS, isread);
2386 }
2387 
2388 static CPAccessResult gt_vct_access(CPUARMState *env,
2389                                     const ARMCPRegInfo *ri,
2390                                     bool isread)
2391 {
2392     return gt_counter_access(env, GTIMER_VIRT, isread);
2393 }
2394 
2395 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2396                                        bool isread)
2397 {
2398     return gt_timer_access(env, GTIMER_PHYS, isread);
2399 }
2400 
2401 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2402                                        bool isread)
2403 {
2404     return gt_timer_access(env, GTIMER_VIRT, isread);
2405 }
2406 
2407 static CPAccessResult gt_stimer_access(CPUARMState *env,
2408                                        const ARMCPRegInfo *ri,
2409                                        bool isread)
2410 {
2411     /* The AArch64 register view of the secure physical timer is
2412      * always accessible from EL3, and configurably accessible from
2413      * Secure EL1.
2414      */
2415     switch (arm_current_el(env)) {
2416     case 1:
2417         if (!arm_is_secure(env)) {
2418             return CP_ACCESS_TRAP;
2419         }
2420         if (!(env->cp15.scr_el3 & SCR_ST)) {
2421             return CP_ACCESS_TRAP_EL3;
2422         }
2423         return CP_ACCESS_OK;
2424     case 0:
2425     case 2:
2426         return CP_ACCESS_TRAP;
2427     case 3:
2428         return CP_ACCESS_OK;
2429     default:
2430         g_assert_not_reached();
2431     }
2432 }
2433 
2434 static uint64_t gt_get_countervalue(CPUARMState *env)
2435 {
2436     ARMCPU *cpu = env_archcpu(env);
2437 
2438     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2439 }
2440 
2441 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2442 {
2443     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2444 
2445     if (gt->ctl & 1) {
2446         /* Timer enabled: calculate and set current ISTATUS, irq, and
2447          * reset timer to when ISTATUS next has to change
2448          */
2449         uint64_t offset = timeridx == GTIMER_VIRT ?
2450                                       cpu->env.cp15.cntvoff_el2 : 0;
2451         uint64_t count = gt_get_countervalue(&cpu->env);
2452         /* Note that this must be unsigned 64 bit arithmetic: */
2453         int istatus = count - offset >= gt->cval;
2454         uint64_t nexttick;
2455         int irqstate;
2456 
2457         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2458 
2459         irqstate = (istatus && !(gt->ctl & 2));
2460         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2461 
2462         if (istatus) {
2463             /* Next transition is when count rolls back over to zero */
2464             nexttick = UINT64_MAX;
2465         } else {
2466             /* Next transition is when we hit cval */
2467             nexttick = gt->cval + offset;
2468         }
2469         /* Note that the desired next expiry time might be beyond the
2470          * signed-64-bit range of a QEMUTimer -- in this case we just
2471          * set the timer for as far in the future as possible. When the
2472          * timer expires we will reset the timer for any remaining period.
2473          */
2474         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2475             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2476         } else {
2477             timer_mod(cpu->gt_timer[timeridx], nexttick);
2478         }
2479         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2480     } else {
2481         /* Timer disabled: ISTATUS and timer output always clear */
2482         gt->ctl &= ~4;
2483         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2484         timer_del(cpu->gt_timer[timeridx]);
2485         trace_arm_gt_recalc_disabled(timeridx);
2486     }
2487 }
2488 
2489 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2490                            int timeridx)
2491 {
2492     ARMCPU *cpu = env_archcpu(env);
2493 
2494     timer_del(cpu->gt_timer[timeridx]);
2495 }
2496 
2497 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2498 {
2499     return gt_get_countervalue(env);
2500 }
2501 
2502 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2503 {
2504     uint64_t hcr;
2505 
2506     switch (arm_current_el(env)) {
2507     case 2:
2508         hcr = arm_hcr_el2_eff(env);
2509         if (hcr & HCR_E2H) {
2510             return 0;
2511         }
2512         break;
2513     case 0:
2514         hcr = arm_hcr_el2_eff(env);
2515         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2516             return 0;
2517         }
2518         break;
2519     }
2520 
2521     return env->cp15.cntvoff_el2;
2522 }
2523 
2524 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2525 {
2526     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2527 }
2528 
2529 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2530                           int timeridx,
2531                           uint64_t value)
2532 {
2533     trace_arm_gt_cval_write(timeridx, value);
2534     env->cp15.c14_timer[timeridx].cval = value;
2535     gt_recalc_timer(env_archcpu(env), timeridx);
2536 }
2537 
2538 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2539                              int timeridx)
2540 {
2541     uint64_t offset = 0;
2542 
2543     switch (timeridx) {
2544     case GTIMER_VIRT:
2545     case GTIMER_HYPVIRT:
2546         offset = gt_virt_cnt_offset(env);
2547         break;
2548     }
2549 
2550     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2551                       (gt_get_countervalue(env) - offset));
2552 }
2553 
2554 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2555                           int timeridx,
2556                           uint64_t value)
2557 {
2558     uint64_t offset = 0;
2559 
2560     switch (timeridx) {
2561     case GTIMER_VIRT:
2562     case GTIMER_HYPVIRT:
2563         offset = gt_virt_cnt_offset(env);
2564         break;
2565     }
2566 
2567     trace_arm_gt_tval_write(timeridx, value);
2568     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2569                                          sextract64(value, 0, 32);
2570     gt_recalc_timer(env_archcpu(env), timeridx);
2571 }
2572 
2573 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574                          int timeridx,
2575                          uint64_t value)
2576 {
2577     ARMCPU *cpu = env_archcpu(env);
2578     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2579 
2580     trace_arm_gt_ctl_write(timeridx, value);
2581     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2582     if ((oldval ^ value) & 1) {
2583         /* Enable toggled */
2584         gt_recalc_timer(cpu, timeridx);
2585     } else if ((oldval ^ value) & 2) {
2586         /* IMASK toggled: don't need to recalculate,
2587          * just set the interrupt line based on ISTATUS
2588          */
2589         int irqstate = (oldval & 4) && !(value & 2);
2590 
2591         trace_arm_gt_imask_toggle(timeridx, irqstate);
2592         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2593     }
2594 }
2595 
2596 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2597 {
2598     gt_timer_reset(env, ri, GTIMER_PHYS);
2599 }
2600 
2601 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2602                                uint64_t value)
2603 {
2604     gt_cval_write(env, ri, GTIMER_PHYS, value);
2605 }
2606 
2607 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2608 {
2609     return gt_tval_read(env, ri, GTIMER_PHYS);
2610 }
2611 
2612 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2613                                uint64_t value)
2614 {
2615     gt_tval_write(env, ri, GTIMER_PHYS, value);
2616 }
2617 
2618 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619                               uint64_t value)
2620 {
2621     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2622 }
2623 
2624 static int gt_phys_redir_timeridx(CPUARMState *env)
2625 {
2626     switch (arm_mmu_idx(env)) {
2627     case ARMMMUIdx_E20_0:
2628     case ARMMMUIdx_E20_2:
2629     case ARMMMUIdx_E20_2_PAN:
2630     case ARMMMUIdx_SE20_0:
2631     case ARMMMUIdx_SE20_2:
2632     case ARMMMUIdx_SE20_2_PAN:
2633         return GTIMER_HYP;
2634     default:
2635         return GTIMER_PHYS;
2636     }
2637 }
2638 
2639 static int gt_virt_redir_timeridx(CPUARMState *env)
2640 {
2641     switch (arm_mmu_idx(env)) {
2642     case ARMMMUIdx_E20_0:
2643     case ARMMMUIdx_E20_2:
2644     case ARMMMUIdx_E20_2_PAN:
2645     case ARMMMUIdx_SE20_0:
2646     case ARMMMUIdx_SE20_2:
2647     case ARMMMUIdx_SE20_2_PAN:
2648         return GTIMER_HYPVIRT;
2649     default:
2650         return GTIMER_VIRT;
2651     }
2652 }
2653 
2654 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2655                                         const ARMCPRegInfo *ri)
2656 {
2657     int timeridx = gt_phys_redir_timeridx(env);
2658     return env->cp15.c14_timer[timeridx].cval;
2659 }
2660 
2661 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2662                                      uint64_t value)
2663 {
2664     int timeridx = gt_phys_redir_timeridx(env);
2665     gt_cval_write(env, ri, timeridx, value);
2666 }
2667 
2668 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2669                                         const ARMCPRegInfo *ri)
2670 {
2671     int timeridx = gt_phys_redir_timeridx(env);
2672     return gt_tval_read(env, ri, timeridx);
2673 }
2674 
2675 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676                                      uint64_t value)
2677 {
2678     int timeridx = gt_phys_redir_timeridx(env);
2679     gt_tval_write(env, ri, timeridx, value);
2680 }
2681 
2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2683                                        const ARMCPRegInfo *ri)
2684 {
2685     int timeridx = gt_phys_redir_timeridx(env);
2686     return env->cp15.c14_timer[timeridx].ctl;
2687 }
2688 
2689 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2690                                     uint64_t value)
2691 {
2692     int timeridx = gt_phys_redir_timeridx(env);
2693     gt_ctl_write(env, ri, timeridx, value);
2694 }
2695 
2696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698     gt_timer_reset(env, ri, GTIMER_VIRT);
2699 }
2700 
2701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                                uint64_t value)
2703 {
2704     gt_cval_write(env, ri, GTIMER_VIRT, value);
2705 }
2706 
2707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2708 {
2709     return gt_tval_read(env, ri, GTIMER_VIRT);
2710 }
2711 
2712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2713                                uint64_t value)
2714 {
2715     gt_tval_write(env, ri, GTIMER_VIRT, value);
2716 }
2717 
2718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2719                               uint64_t value)
2720 {
2721     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2722 }
2723 
2724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2725                               uint64_t value)
2726 {
2727     ARMCPU *cpu = env_archcpu(env);
2728 
2729     trace_arm_gt_cntvoff_write(value);
2730     raw_write(env, ri, value);
2731     gt_recalc_timer(cpu, GTIMER_VIRT);
2732 }
2733 
2734 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2735                                         const ARMCPRegInfo *ri)
2736 {
2737     int timeridx = gt_virt_redir_timeridx(env);
2738     return env->cp15.c14_timer[timeridx].cval;
2739 }
2740 
2741 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                                      uint64_t value)
2743 {
2744     int timeridx = gt_virt_redir_timeridx(env);
2745     gt_cval_write(env, ri, timeridx, value);
2746 }
2747 
2748 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2749                                         const ARMCPRegInfo *ri)
2750 {
2751     int timeridx = gt_virt_redir_timeridx(env);
2752     return gt_tval_read(env, ri, timeridx);
2753 }
2754 
2755 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                      uint64_t value)
2757 {
2758     int timeridx = gt_virt_redir_timeridx(env);
2759     gt_tval_write(env, ri, timeridx, value);
2760 }
2761 
2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2763                                        const ARMCPRegInfo *ri)
2764 {
2765     int timeridx = gt_virt_redir_timeridx(env);
2766     return env->cp15.c14_timer[timeridx].ctl;
2767 }
2768 
2769 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770                                     uint64_t value)
2771 {
2772     int timeridx = gt_virt_redir_timeridx(env);
2773     gt_ctl_write(env, ri, timeridx, value);
2774 }
2775 
2776 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2777 {
2778     gt_timer_reset(env, ri, GTIMER_HYP);
2779 }
2780 
2781 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782                               uint64_t value)
2783 {
2784     gt_cval_write(env, ri, GTIMER_HYP, value);
2785 }
2786 
2787 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2788 {
2789     return gt_tval_read(env, ri, GTIMER_HYP);
2790 }
2791 
2792 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2793                               uint64_t value)
2794 {
2795     gt_tval_write(env, ri, GTIMER_HYP, value);
2796 }
2797 
2798 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                               uint64_t value)
2800 {
2801     gt_ctl_write(env, ri, GTIMER_HYP, value);
2802 }
2803 
2804 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2805 {
2806     gt_timer_reset(env, ri, GTIMER_SEC);
2807 }
2808 
2809 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810                               uint64_t value)
2811 {
2812     gt_cval_write(env, ri, GTIMER_SEC, value);
2813 }
2814 
2815 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2816 {
2817     return gt_tval_read(env, ri, GTIMER_SEC);
2818 }
2819 
2820 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821                               uint64_t value)
2822 {
2823     gt_tval_write(env, ri, GTIMER_SEC, value);
2824 }
2825 
2826 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                               uint64_t value)
2828 {
2829     gt_ctl_write(env, ri, GTIMER_SEC, value);
2830 }
2831 
2832 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2835 }
2836 
2837 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                              uint64_t value)
2839 {
2840     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2841 }
2842 
2843 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2844 {
2845     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2846 }
2847 
2848 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849                              uint64_t value)
2850 {
2851     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2852 }
2853 
2854 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855                             uint64_t value)
2856 {
2857     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2858 }
2859 
2860 void arm_gt_ptimer_cb(void *opaque)
2861 {
2862     ARMCPU *cpu = opaque;
2863 
2864     gt_recalc_timer(cpu, GTIMER_PHYS);
2865 }
2866 
2867 void arm_gt_vtimer_cb(void *opaque)
2868 {
2869     ARMCPU *cpu = opaque;
2870 
2871     gt_recalc_timer(cpu, GTIMER_VIRT);
2872 }
2873 
2874 void arm_gt_htimer_cb(void *opaque)
2875 {
2876     ARMCPU *cpu = opaque;
2877 
2878     gt_recalc_timer(cpu, GTIMER_HYP);
2879 }
2880 
2881 void arm_gt_stimer_cb(void *opaque)
2882 {
2883     ARMCPU *cpu = opaque;
2884 
2885     gt_recalc_timer(cpu, GTIMER_SEC);
2886 }
2887 
2888 void arm_gt_hvtimer_cb(void *opaque)
2889 {
2890     ARMCPU *cpu = opaque;
2891 
2892     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2893 }
2894 
2895 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2896 {
2897     ARMCPU *cpu = env_archcpu(env);
2898 
2899     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2900 }
2901 
2902 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2903     /* Note that CNTFRQ is purely reads-as-written for the benefit
2904      * of software; writing it doesn't actually change the timer frequency.
2905      * Our reset value matches the fixed frequency we implement the timer at.
2906      */
2907     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2908       .type = ARM_CP_ALIAS,
2909       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2910       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2911     },
2912     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2913       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2914       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2915       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2916       .resetfn = arm_gt_cntfrq_reset,
2917     },
2918     /* overall control: mostly access permissions */
2919     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2920       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2921       .access = PL1_RW,
2922       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2923       .resetvalue = 0,
2924     },
2925     /* per-timer control */
2926     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2927       .secure = ARM_CP_SECSTATE_NS,
2928       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2929       .accessfn = gt_ptimer_access,
2930       .fieldoffset = offsetoflow32(CPUARMState,
2931                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2932       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2933       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2934     },
2935     { .name = "CNTP_CTL_S",
2936       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2937       .secure = ARM_CP_SECSTATE_S,
2938       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2939       .accessfn = gt_ptimer_access,
2940       .fieldoffset = offsetoflow32(CPUARMState,
2941                                    cp15.c14_timer[GTIMER_SEC].ctl),
2942       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2943     },
2944     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2945       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2946       .type = ARM_CP_IO, .access = PL0_RW,
2947       .accessfn = gt_ptimer_access,
2948       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2949       .resetvalue = 0,
2950       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2951       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2952     },
2953     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2954       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2955       .accessfn = gt_vtimer_access,
2956       .fieldoffset = offsetoflow32(CPUARMState,
2957                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2958       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2959       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2960     },
2961     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2962       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2963       .type = ARM_CP_IO, .access = PL0_RW,
2964       .accessfn = gt_vtimer_access,
2965       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2966       .resetvalue = 0,
2967       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2968       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2969     },
2970     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2971     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2972       .secure = ARM_CP_SECSTATE_NS,
2973       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2974       .accessfn = gt_ptimer_access,
2975       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2976     },
2977     { .name = "CNTP_TVAL_S",
2978       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2979       .secure = ARM_CP_SECSTATE_S,
2980       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2981       .accessfn = gt_ptimer_access,
2982       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2983     },
2984     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2986       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2987       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2988       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2989     },
2990     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2991       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2992       .accessfn = gt_vtimer_access,
2993       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2994     },
2995     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2996       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2997       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2998       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2999       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3000     },
3001     /* The counter itself */
3002     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3003       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3004       .accessfn = gt_pct_access,
3005       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3006     },
3007     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3008       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3009       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3010       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3011     },
3012     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3013       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3014       .accessfn = gt_vct_access,
3015       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3016     },
3017     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3018       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3019       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3020       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3021     },
3022     /* Comparison value, indicating when the timer goes off */
3023     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3024       .secure = ARM_CP_SECSTATE_NS,
3025       .access = PL0_RW,
3026       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3027       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3028       .accessfn = gt_ptimer_access,
3029       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3030       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3031     },
3032     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3033       .secure = ARM_CP_SECSTATE_S,
3034       .access = PL0_RW,
3035       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3036       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3037       .accessfn = gt_ptimer_access,
3038       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3039     },
3040     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3041       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3042       .access = PL0_RW,
3043       .type = ARM_CP_IO,
3044       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3045       .resetvalue = 0, .accessfn = gt_ptimer_access,
3046       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3047       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3048     },
3049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3050       .access = PL0_RW,
3051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3053       .accessfn = gt_vtimer_access,
3054       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3055       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3056     },
3057     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3058       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3059       .access = PL0_RW,
3060       .type = ARM_CP_IO,
3061       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3062       .resetvalue = 0, .accessfn = gt_vtimer_access,
3063       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3064       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3065     },
3066     /* Secure timer -- this is actually restricted to only EL3
3067      * and configurably Secure-EL1 via the accessfn.
3068      */
3069     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3070       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3071       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3072       .accessfn = gt_stimer_access,
3073       .readfn = gt_sec_tval_read,
3074       .writefn = gt_sec_tval_write,
3075       .resetfn = gt_sec_timer_reset,
3076     },
3077     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3078       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3079       .type = ARM_CP_IO, .access = PL1_RW,
3080       .accessfn = gt_stimer_access,
3081       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3082       .resetvalue = 0,
3083       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3084     },
3085     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3086       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3087       .type = ARM_CP_IO, .access = PL1_RW,
3088       .accessfn = gt_stimer_access,
3089       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3090       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3091     },
3092     REGINFO_SENTINEL
3093 };
3094 
3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3096                                  bool isread)
3097 {
3098     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3099         return CP_ACCESS_TRAP;
3100     }
3101     return CP_ACCESS_OK;
3102 }
3103 
3104 #else
3105 
3106 /* In user-mode most of the generic timer registers are inaccessible
3107  * however modern kernels (4.12+) allow access to cntvct_el0
3108  */
3109 
3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3111 {
3112     ARMCPU *cpu = env_archcpu(env);
3113 
3114     /* Currently we have no support for QEMUTimer in linux-user so we
3115      * can't call gt_get_countervalue(env), instead we directly
3116      * call the lower level functions.
3117      */
3118     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3119 }
3120 
3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3122     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3123       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3124       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3125       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3126       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3127     },
3128     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3129       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3130       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3131       .readfn = gt_virt_cnt_read,
3132     },
3133     REGINFO_SENTINEL
3134 };
3135 
3136 #endif
3137 
3138 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3139 {
3140     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3141         raw_write(env, ri, value);
3142     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3143         raw_write(env, ri, value & 0xfffff6ff);
3144     } else {
3145         raw_write(env, ri, value & 0xfffff1ff);
3146     }
3147 }
3148 
3149 #ifndef CONFIG_USER_ONLY
3150 /* get_phys_addr() isn't present for user-mode-only targets */
3151 
3152 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                  bool isread)
3154 {
3155     if (ri->opc2 & 4) {
3156         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3157          * Secure EL1 (which can only happen if EL3 is AArch64).
3158          * They are simply UNDEF if executed from NS EL1.
3159          * They function normally from EL2 or EL3.
3160          */
3161         if (arm_current_el(env) == 1) {
3162             if (arm_is_secure_below_el3(env)) {
3163                 if (env->cp15.scr_el3 & SCR_EEL2) {
3164                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3165                 }
3166                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3167             }
3168             return CP_ACCESS_TRAP_UNCATEGORIZED;
3169         }
3170     }
3171     return CP_ACCESS_OK;
3172 }
3173 
3174 #ifdef CONFIG_TCG
3175 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3176                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3177 {
3178     hwaddr phys_addr;
3179     target_ulong page_size;
3180     int prot;
3181     bool ret;
3182     uint64_t par64;
3183     bool format64 = false;
3184     MemTxAttrs attrs = {};
3185     ARMMMUFaultInfo fi = {};
3186     ARMCacheAttrs cacheattrs = {};
3187 
3188     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3189                         &prot, &page_size, &fi, &cacheattrs);
3190 
3191     if (ret) {
3192         /*
3193          * Some kinds of translation fault must cause exceptions rather
3194          * than being reported in the PAR.
3195          */
3196         int current_el = arm_current_el(env);
3197         int target_el;
3198         uint32_t syn, fsr, fsc;
3199         bool take_exc = false;
3200 
3201         if (fi.s1ptw && current_el == 1
3202             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3203             /*
3204              * Synchronous stage 2 fault on an access made as part of the
3205              * translation table walk for AT S1E0* or AT S1E1* insn
3206              * executed from NS EL1. If this is a synchronous external abort
3207              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3208              * to EL3. Otherwise the fault is taken as an exception to EL2,
3209              * and HPFAR_EL2 holds the faulting IPA.
3210              */
3211             if (fi.type == ARMFault_SyncExternalOnWalk &&
3212                 (env->cp15.scr_el3 & SCR_EA)) {
3213                 target_el = 3;
3214             } else {
3215                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3216                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3217                     env->cp15.hpfar_el2 |= HPFAR_NS;
3218                 }
3219                 target_el = 2;
3220             }
3221             take_exc = true;
3222         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3223             /*
3224              * Synchronous external aborts during a translation table walk
3225              * are taken as Data Abort exceptions.
3226              */
3227             if (fi.stage2) {
3228                 if (current_el == 3) {
3229                     target_el = 3;
3230                 } else {
3231                     target_el = 2;
3232                 }
3233             } else {
3234                 target_el = exception_target_el(env);
3235             }
3236             take_exc = true;
3237         }
3238 
3239         if (take_exc) {
3240             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3241             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3242                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3243                 fsr = arm_fi_to_lfsc(&fi);
3244                 fsc = extract32(fsr, 0, 6);
3245             } else {
3246                 fsr = arm_fi_to_sfsc(&fi);
3247                 fsc = 0x3f;
3248             }
3249             /*
3250              * Report exception with ESR indicating a fault due to a
3251              * translation table walk for a cache maintenance instruction.
3252              */
3253             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3254                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3255             env->exception.vaddress = value;
3256             env->exception.fsr = fsr;
3257             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3258         }
3259     }
3260 
3261     if (is_a64(env)) {
3262         format64 = true;
3263     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3264         /*
3265          * ATS1Cxx:
3266          * * TTBCR.EAE determines whether the result is returned using the
3267          *   32-bit or the 64-bit PAR format
3268          * * Instructions executed in Hyp mode always use the 64bit format
3269          *
3270          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3271          * * The Non-secure TTBCR.EAE bit is set to 1
3272          * * The implementation includes EL2, and the value of HCR.VM is 1
3273          *
3274          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3275          *
3276          * ATS1Hx always uses the 64bit format.
3277          */
3278         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3279 
3280         if (arm_feature(env, ARM_FEATURE_EL2)) {
3281             if (mmu_idx == ARMMMUIdx_E10_0 ||
3282                 mmu_idx == ARMMMUIdx_E10_1 ||
3283                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3284                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3285             } else {
3286                 format64 |= arm_current_el(env) == 2;
3287             }
3288         }
3289     }
3290 
3291     if (format64) {
3292         /* Create a 64-bit PAR */
3293         par64 = (1 << 11); /* LPAE bit always set */
3294         if (!ret) {
3295             par64 |= phys_addr & ~0xfffULL;
3296             if (!attrs.secure) {
3297                 par64 |= (1 << 9); /* NS */
3298             }
3299             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3300             par64 |= cacheattrs.shareability << 7; /* SH */
3301         } else {
3302             uint32_t fsr = arm_fi_to_lfsc(&fi);
3303 
3304             par64 |= 1; /* F */
3305             par64 |= (fsr & 0x3f) << 1; /* FS */
3306             if (fi.stage2) {
3307                 par64 |= (1 << 9); /* S */
3308             }
3309             if (fi.s1ptw) {
3310                 par64 |= (1 << 8); /* PTW */
3311             }
3312         }
3313     } else {
3314         /* fsr is a DFSR/IFSR value for the short descriptor
3315          * translation table format (with WnR always clear).
3316          * Convert it to a 32-bit PAR.
3317          */
3318         if (!ret) {
3319             /* We do not set any attribute bits in the PAR */
3320             if (page_size == (1 << 24)
3321                 && arm_feature(env, ARM_FEATURE_V7)) {
3322                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3323             } else {
3324                 par64 = phys_addr & 0xfffff000;
3325             }
3326             if (!attrs.secure) {
3327                 par64 |= (1 << 9); /* NS */
3328             }
3329         } else {
3330             uint32_t fsr = arm_fi_to_sfsc(&fi);
3331 
3332             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3333                     ((fsr & 0xf) << 1) | 1;
3334         }
3335     }
3336     return par64;
3337 }
3338 #endif /* CONFIG_TCG */
3339 
3340 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3341 {
3342 #ifdef CONFIG_TCG
3343     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3344     uint64_t par64;
3345     ARMMMUIdx mmu_idx;
3346     int el = arm_current_el(env);
3347     bool secure = arm_is_secure_below_el3(env);
3348 
3349     switch (ri->opc2 & 6) {
3350     case 0:
3351         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3352         switch (el) {
3353         case 3:
3354             mmu_idx = ARMMMUIdx_SE3;
3355             break;
3356         case 2:
3357             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3358             /* fall through */
3359         case 1:
3360             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3361                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3362                            : ARMMMUIdx_Stage1_E1_PAN);
3363             } else {
3364                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3365             }
3366             break;
3367         default:
3368             g_assert_not_reached();
3369         }
3370         break;
3371     case 2:
3372         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3373         switch (el) {
3374         case 3:
3375             mmu_idx = ARMMMUIdx_SE10_0;
3376             break;
3377         case 2:
3378             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3379             mmu_idx = ARMMMUIdx_Stage1_E0;
3380             break;
3381         case 1:
3382             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3383             break;
3384         default:
3385             g_assert_not_reached();
3386         }
3387         break;
3388     case 4:
3389         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3390         mmu_idx = ARMMMUIdx_E10_1;
3391         break;
3392     case 6:
3393         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3394         mmu_idx = ARMMMUIdx_E10_0;
3395         break;
3396     default:
3397         g_assert_not_reached();
3398     }
3399 
3400     par64 = do_ats_write(env, value, access_type, mmu_idx);
3401 
3402     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3403 #else
3404     /* Handled by hardware accelerator. */
3405     g_assert_not_reached();
3406 #endif /* CONFIG_TCG */
3407 }
3408 
3409 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3410                         uint64_t value)
3411 {
3412 #ifdef CONFIG_TCG
3413     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3414     uint64_t par64;
3415 
3416     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3417 
3418     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3419 #else
3420     /* Handled by hardware accelerator. */
3421     g_assert_not_reached();
3422 #endif /* CONFIG_TCG */
3423 }
3424 
3425 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3426                                      bool isread)
3427 {
3428     if (arm_current_el(env) == 3 &&
3429         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3430         return CP_ACCESS_TRAP;
3431     }
3432     return CP_ACCESS_OK;
3433 }
3434 
3435 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3436                         uint64_t value)
3437 {
3438 #ifdef CONFIG_TCG
3439     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3440     ARMMMUIdx mmu_idx;
3441     int secure = arm_is_secure_below_el3(env);
3442 
3443     switch (ri->opc2 & 6) {
3444     case 0:
3445         switch (ri->opc1) {
3446         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3447             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3448                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3449                            : ARMMMUIdx_Stage1_E1_PAN);
3450             } else {
3451                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3452             }
3453             break;
3454         case 4: /* AT S1E2R, AT S1E2W */
3455             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3456             break;
3457         case 6: /* AT S1E3R, AT S1E3W */
3458             mmu_idx = ARMMMUIdx_SE3;
3459             break;
3460         default:
3461             g_assert_not_reached();
3462         }
3463         break;
3464     case 2: /* AT S1E0R, AT S1E0W */
3465         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3466         break;
3467     case 4: /* AT S12E1R, AT S12E1W */
3468         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3469         break;
3470     case 6: /* AT S12E0R, AT S12E0W */
3471         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3472         break;
3473     default:
3474         g_assert_not_reached();
3475     }
3476 
3477     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3478 #else
3479     /* Handled by hardware accelerator. */
3480     g_assert_not_reached();
3481 #endif /* CONFIG_TCG */
3482 }
3483 #endif
3484 
3485 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3486     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3487       .access = PL1_RW, .resetvalue = 0,
3488       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3489                              offsetoflow32(CPUARMState, cp15.par_ns) },
3490       .writefn = par_write },
3491 #ifndef CONFIG_USER_ONLY
3492     /* This underdecoding is safe because the reginfo is NO_RAW. */
3493     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3494       .access = PL1_W, .accessfn = ats_access,
3495       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3496 #endif
3497     REGINFO_SENTINEL
3498 };
3499 
3500 /* Return basic MPU access permission bits.  */
3501 static uint32_t simple_mpu_ap_bits(uint32_t val)
3502 {
3503     uint32_t ret;
3504     uint32_t mask;
3505     int i;
3506     ret = 0;
3507     mask = 3;
3508     for (i = 0; i < 16; i += 2) {
3509         ret |= (val >> i) & mask;
3510         mask <<= 2;
3511     }
3512     return ret;
3513 }
3514 
3515 /* Pad basic MPU access permission bits to extended format.  */
3516 static uint32_t extended_mpu_ap_bits(uint32_t val)
3517 {
3518     uint32_t ret;
3519     uint32_t mask;
3520     int i;
3521     ret = 0;
3522     mask = 3;
3523     for (i = 0; i < 16; i += 2) {
3524         ret |= (val & mask) << i;
3525         mask <<= 2;
3526     }
3527     return ret;
3528 }
3529 
3530 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3531                                  uint64_t value)
3532 {
3533     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3534 }
3535 
3536 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3537 {
3538     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3539 }
3540 
3541 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3542                                  uint64_t value)
3543 {
3544     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3545 }
3546 
3547 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3548 {
3549     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3550 }
3551 
3552 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3553 {
3554     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3555 
3556     if (!u32p) {
3557         return 0;
3558     }
3559 
3560     u32p += env->pmsav7.rnr[M_REG_NS];
3561     return *u32p;
3562 }
3563 
3564 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3565                          uint64_t value)
3566 {
3567     ARMCPU *cpu = env_archcpu(env);
3568     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3569 
3570     if (!u32p) {
3571         return;
3572     }
3573 
3574     u32p += env->pmsav7.rnr[M_REG_NS];
3575     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3576     *u32p = value;
3577 }
3578 
3579 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3580                               uint64_t value)
3581 {
3582     ARMCPU *cpu = env_archcpu(env);
3583     uint32_t nrgs = cpu->pmsav7_dregion;
3584 
3585     if (value >= nrgs) {
3586         qemu_log_mask(LOG_GUEST_ERROR,
3587                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3588                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3589         return;
3590     }
3591 
3592     raw_write(env, ri, value);
3593 }
3594 
3595 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3596     /* Reset for all these registers is handled in arm_cpu_reset(),
3597      * because the PMSAv7 is also used by M-profile CPUs, which do
3598      * not register cpregs but still need the state to be reset.
3599      */
3600     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3601       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3602       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3603       .readfn = pmsav7_read, .writefn = pmsav7_write,
3604       .resetfn = arm_cp_reset_ignore },
3605     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3606       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3607       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3608       .readfn = pmsav7_read, .writefn = pmsav7_write,
3609       .resetfn = arm_cp_reset_ignore },
3610     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3611       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3612       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3613       .readfn = pmsav7_read, .writefn = pmsav7_write,
3614       .resetfn = arm_cp_reset_ignore },
3615     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3616       .access = PL1_RW,
3617       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3618       .writefn = pmsav7_rgnr_write,
3619       .resetfn = arm_cp_reset_ignore },
3620     REGINFO_SENTINEL
3621 };
3622 
3623 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3624     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3625       .access = PL1_RW, .type = ARM_CP_ALIAS,
3626       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3627       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3628     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3629       .access = PL1_RW, .type = ARM_CP_ALIAS,
3630       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3631       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3632     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3633       .access = PL1_RW,
3634       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3635       .resetvalue = 0, },
3636     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3637       .access = PL1_RW,
3638       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3639       .resetvalue = 0, },
3640     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3641       .access = PL1_RW,
3642       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3643     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3644       .access = PL1_RW,
3645       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3646     /* Protection region base and size registers */
3647     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3648       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3649       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3650     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3651       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3652       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3653     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3654       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3655       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3656     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3657       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3658       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3659     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3660       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3661       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3662     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3663       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3664       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3665     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3666       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3667       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3668     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3669       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3670       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3671     REGINFO_SENTINEL
3672 };
3673 
3674 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3675                                  uint64_t value)
3676 {
3677     TCR *tcr = raw_ptr(env, ri);
3678     int maskshift = extract32(value, 0, 3);
3679 
3680     if (!arm_feature(env, ARM_FEATURE_V8)) {
3681         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3682             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3683              * using Long-desciptor translation table format */
3684             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3685         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3686             /* In an implementation that includes the Security Extensions
3687              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3688              * Short-descriptor translation table format.
3689              */
3690             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3691         } else {
3692             value &= TTBCR_N;
3693         }
3694     }
3695 
3696     /* Update the masks corresponding to the TCR bank being written
3697      * Note that we always calculate mask and base_mask, but
3698      * they are only used for short-descriptor tables (ie if EAE is 0);
3699      * for long-descriptor tables the TCR fields are used differently
3700      * and the mask and base_mask values are meaningless.
3701      */
3702     tcr->raw_tcr = value;
3703     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3704     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3705 }
3706 
3707 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3708                              uint64_t value)
3709 {
3710     ARMCPU *cpu = env_archcpu(env);
3711     TCR *tcr = raw_ptr(env, ri);
3712 
3713     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3714         /* With LPAE the TTBCR could result in a change of ASID
3715          * via the TTBCR.A1 bit, so do a TLB flush.
3716          */
3717         tlb_flush(CPU(cpu));
3718     }
3719     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3720     value = deposit64(tcr->raw_tcr, 0, 32, value);
3721     vmsa_ttbcr_raw_write(env, ri, value);
3722 }
3723 
3724 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3725 {
3726     TCR *tcr = raw_ptr(env, ri);
3727 
3728     /* Reset both the TCR as well as the masks corresponding to the bank of
3729      * the TCR being reset.
3730      */
3731     tcr->raw_tcr = 0;
3732     tcr->mask = 0;
3733     tcr->base_mask = 0xffffc000u;
3734 }
3735 
3736 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3737                                uint64_t value)
3738 {
3739     ARMCPU *cpu = env_archcpu(env);
3740     TCR *tcr = raw_ptr(env, ri);
3741 
3742     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3743     tlb_flush(CPU(cpu));
3744     tcr->raw_tcr = value;
3745 }
3746 
3747 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                             uint64_t value)
3749 {
3750     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3751     if (cpreg_field_is_64bit(ri) &&
3752         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3753         ARMCPU *cpu = env_archcpu(env);
3754         tlb_flush(CPU(cpu));
3755     }
3756     raw_write(env, ri, value);
3757 }
3758 
3759 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760                                     uint64_t value)
3761 {
3762     /*
3763      * If we are running with E2&0 regime, then an ASID is active.
3764      * Flush if that might be changing.  Note we're not checking
3765      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3766      * holds the active ASID, only checking the field that might.
3767      */
3768     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3769         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3770         uint16_t mask = ARMMMUIdxBit_E20_2 |
3771                         ARMMMUIdxBit_E20_2_PAN |
3772                         ARMMMUIdxBit_E20_0;
3773 
3774         if (arm_is_secure_below_el3(env)) {
3775             mask >>= ARM_MMU_IDX_A_NS;
3776         }
3777 
3778         tlb_flush_by_mmuidx(env_cpu(env), mask);
3779     }
3780     raw_write(env, ri, value);
3781 }
3782 
3783 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784                         uint64_t value)
3785 {
3786     ARMCPU *cpu = env_archcpu(env);
3787     CPUState *cs = CPU(cpu);
3788 
3789     /*
3790      * A change in VMID to the stage2 page table (Stage2) invalidates
3791      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3792      */
3793     if (raw_read(env, ri) != value) {
3794         uint16_t mask = ARMMMUIdxBit_E10_1 |
3795                         ARMMMUIdxBit_E10_1_PAN |
3796                         ARMMMUIdxBit_E10_0;
3797 
3798         if (arm_is_secure_below_el3(env)) {
3799             mask >>= ARM_MMU_IDX_A_NS;
3800         }
3801 
3802         tlb_flush_by_mmuidx(cs, mask);
3803         raw_write(env, ri, value);
3804     }
3805 }
3806 
3807 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3808     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3809       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3810       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3811                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3812     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3813       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3814       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3815                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3816     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3817       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3818       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3819                              offsetof(CPUARMState, cp15.dfar_ns) } },
3820     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3821       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3822       .access = PL1_RW, .accessfn = access_tvm_trvm,
3823       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3824       .resetvalue = 0, },
3825     REGINFO_SENTINEL
3826 };
3827 
3828 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3829     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3830       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3831       .access = PL1_RW, .accessfn = access_tvm_trvm,
3832       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3833     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3835       .access = PL1_RW, .accessfn = access_tvm_trvm,
3836       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3837       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3838                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3839     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3840       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3841       .access = PL1_RW, .accessfn = access_tvm_trvm,
3842       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3843       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3844                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3845     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3846       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3847       .access = PL1_RW, .accessfn = access_tvm_trvm,
3848       .writefn = vmsa_tcr_el12_write,
3849       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3850       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3851     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3852       .access = PL1_RW, .accessfn = access_tvm_trvm,
3853       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3854       .raw_writefn = vmsa_ttbcr_raw_write,
3855       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3856       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3857                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3858     REGINFO_SENTINEL
3859 };
3860 
3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3862  * qemu tlbs nor adjusting cached masks.
3863  */
3864 static const ARMCPRegInfo ttbcr2_reginfo = {
3865     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3866     .access = PL1_RW, .accessfn = access_tvm_trvm,
3867     .type = ARM_CP_ALIAS,
3868     .bank_fieldoffsets = {
3869         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3870         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3871     },
3872 };
3873 
3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875                                 uint64_t value)
3876 {
3877     env->cp15.c15_ticonfig = value & 0xe7;
3878     /* The OS_TYPE bit in this register changes the reported CPUID! */
3879     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3880         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3881 }
3882 
3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884                                 uint64_t value)
3885 {
3886     env->cp15.c15_threadid = value & 0xffff;
3887 }
3888 
3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890                            uint64_t value)
3891 {
3892     /* Wait-for-interrupt (deprecated) */
3893     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3894 }
3895 
3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3897                                   uint64_t value)
3898 {
3899     /* On OMAP there are registers indicating the max/min index of dcache lines
3900      * containing a dirty line; cache flush operations have to reset these.
3901      */
3902     env->cp15.c15_i_max = 0x000;
3903     env->cp15.c15_i_min = 0xff0;
3904 }
3905 
3906 static const ARMCPRegInfo omap_cp_reginfo[] = {
3907     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3908       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3909       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3910       .resetvalue = 0, },
3911     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3912       .access = PL1_RW, .type = ARM_CP_NOP },
3913     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3914       .access = PL1_RW,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3916       .writefn = omap_ticonfig_write },
3917     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3918       .access = PL1_RW,
3919       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3920     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3921       .access = PL1_RW, .resetvalue = 0xff0,
3922       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3923     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3924       .access = PL1_RW,
3925       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3926       .writefn = omap_threadid_write },
3927     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3928       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3929       .type = ARM_CP_NO_RAW,
3930       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3931     /* TODO: Peripheral port remap register:
3932      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3933      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3934      * when MMU is off.
3935      */
3936     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3937       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3938       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3939       .writefn = omap_cachemaint_write },
3940     { .name = "C9", .cp = 15, .crn = 9,
3941       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3942       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3943     REGINFO_SENTINEL
3944 };
3945 
3946 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947                               uint64_t value)
3948 {
3949     env->cp15.c15_cpar = value & 0x3fff;
3950 }
3951 
3952 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3953     { .name = "XSCALE_CPAR",
3954       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3955       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3956       .writefn = xscale_cpar_write, },
3957     { .name = "XSCALE_AUXCR",
3958       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3959       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3960       .resetvalue = 0, },
3961     /* XScale specific cache-lockdown: since we have no cache we NOP these
3962      * and hope the guest does not really rely on cache behaviour.
3963      */
3964     { .name = "XSCALE_LOCK_ICACHE_LINE",
3965       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3966       .access = PL1_W, .type = ARM_CP_NOP },
3967     { .name = "XSCALE_UNLOCK_ICACHE",
3968       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3969       .access = PL1_W, .type = ARM_CP_NOP },
3970     { .name = "XSCALE_DCACHE_LOCK",
3971       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3972       .access = PL1_RW, .type = ARM_CP_NOP },
3973     { .name = "XSCALE_UNLOCK_DCACHE",
3974       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3975       .access = PL1_W, .type = ARM_CP_NOP },
3976     REGINFO_SENTINEL
3977 };
3978 
3979 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3980     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3981      * implementation of this implementation-defined space.
3982      * Ideally this should eventually disappear in favour of actually
3983      * implementing the correct behaviour for all cores.
3984      */
3985     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3986       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3987       .access = PL1_RW,
3988       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3989       .resetvalue = 0 },
3990     REGINFO_SENTINEL
3991 };
3992 
3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3994     /* Cache status: RAZ because we have no cache so it's always clean */
3995     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3996       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3997       .resetvalue = 0 },
3998     REGINFO_SENTINEL
3999 };
4000 
4001 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4002     /* We never have a a block transfer operation in progress */
4003     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4004       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4005       .resetvalue = 0 },
4006     /* The cache ops themselves: these all NOP for QEMU */
4007     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4008       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4009     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4010       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4012       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4014       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4016       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4018       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019     REGINFO_SENTINEL
4020 };
4021 
4022 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4023     /* The cache test-and-clean instructions always return (1 << 30)
4024      * to indicate that there are no dirty cache lines.
4025      */
4026     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4027       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4028       .resetvalue = (1 << 30) },
4029     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4030       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4031       .resetvalue = (1 << 30) },
4032     REGINFO_SENTINEL
4033 };
4034 
4035 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4036     /* Ignore ReadBuffer accesses */
4037     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4038       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4039       .access = PL1_RW, .resetvalue = 0,
4040       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4041     REGINFO_SENTINEL
4042 };
4043 
4044 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 {
4046     unsigned int cur_el = arm_current_el(env);
4047 
4048     if (arm_is_el2_enabled(env) && cur_el == 1) {
4049         return env->cp15.vpidr_el2;
4050     }
4051     return raw_read(env, ri);
4052 }
4053 
4054 static uint64_t mpidr_read_val(CPUARMState *env)
4055 {
4056     ARMCPU *cpu = env_archcpu(env);
4057     uint64_t mpidr = cpu->mp_affinity;
4058 
4059     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4060         mpidr |= (1U << 31);
4061         /* Cores which are uniprocessor (non-coherent)
4062          * but still implement the MP extensions set
4063          * bit 30. (For instance, Cortex-R5).
4064          */
4065         if (cpu->mp_is_up) {
4066             mpidr |= (1u << 30);
4067         }
4068     }
4069     return mpidr;
4070 }
4071 
4072 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4073 {
4074     unsigned int cur_el = arm_current_el(env);
4075 
4076     if (arm_is_el2_enabled(env) && cur_el == 1) {
4077         return env->cp15.vmpidr_el2;
4078     }
4079     return mpidr_read_val(env);
4080 }
4081 
4082 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4083     /* NOP AMAIR0/1 */
4084     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4085       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4086       .access = PL1_RW, .accessfn = access_tvm_trvm,
4087       .type = ARM_CP_CONST, .resetvalue = 0 },
4088     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4089     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4090       .access = PL1_RW, .accessfn = access_tvm_trvm,
4091       .type = ARM_CP_CONST, .resetvalue = 0 },
4092     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4093       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4094       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4095                              offsetof(CPUARMState, cp15.par_ns)} },
4096     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4097       .access = PL1_RW, .accessfn = access_tvm_trvm,
4098       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4099       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4100                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4101       .writefn = vmsa_ttbr_write, },
4102     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4103       .access = PL1_RW, .accessfn = access_tvm_trvm,
4104       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4105       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4106                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4107       .writefn = vmsa_ttbr_write, },
4108     REGINFO_SENTINEL
4109 };
4110 
4111 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4112 {
4113     return vfp_get_fpcr(env);
4114 }
4115 
4116 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4117                             uint64_t value)
4118 {
4119     vfp_set_fpcr(env, value);
4120 }
4121 
4122 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4123 {
4124     return vfp_get_fpsr(env);
4125 }
4126 
4127 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4128                             uint64_t value)
4129 {
4130     vfp_set_fpsr(env, value);
4131 }
4132 
4133 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4134                                        bool isread)
4135 {
4136     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4137         return CP_ACCESS_TRAP;
4138     }
4139     return CP_ACCESS_OK;
4140 }
4141 
4142 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143                             uint64_t value)
4144 {
4145     env->daif = value & PSTATE_DAIF;
4146 }
4147 
4148 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4149 {
4150     return env->pstate & PSTATE_PAN;
4151 }
4152 
4153 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154                            uint64_t value)
4155 {
4156     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4157 }
4158 
4159 static const ARMCPRegInfo pan_reginfo = {
4160     .name = "PAN", .state = ARM_CP_STATE_AA64,
4161     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4162     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4163     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4164 };
4165 
4166 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4167 {
4168     return env->pstate & PSTATE_UAO;
4169 }
4170 
4171 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4172                            uint64_t value)
4173 {
4174     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4175 }
4176 
4177 static const ARMCPRegInfo uao_reginfo = {
4178     .name = "UAO", .state = ARM_CP_STATE_AA64,
4179     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4180     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4181     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4182 };
4183 
4184 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4185 {
4186     return env->pstate & PSTATE_DIT;
4187 }
4188 
4189 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4190                            uint64_t value)
4191 {
4192     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4193 }
4194 
4195 static const ARMCPRegInfo dit_reginfo = {
4196     .name = "DIT", .state = ARM_CP_STATE_AA64,
4197     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4198     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4199     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4200 };
4201 
4202 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4203 {
4204     return env->pstate & PSTATE_SSBS;
4205 }
4206 
4207 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4208                            uint64_t value)
4209 {
4210     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4211 }
4212 
4213 static const ARMCPRegInfo ssbs_reginfo = {
4214     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4215     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4216     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4217     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4218 };
4219 
4220 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4221                                               const ARMCPRegInfo *ri,
4222                                               bool isread)
4223 {
4224     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4225     switch (arm_current_el(env)) {
4226     case 0:
4227         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4228         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4229             return CP_ACCESS_TRAP;
4230         }
4231         /* fall through */
4232     case 1:
4233         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4234         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4235             return CP_ACCESS_TRAP_EL2;
4236         }
4237         break;
4238     }
4239     return CP_ACCESS_OK;
4240 }
4241 
4242 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4243                                               const ARMCPRegInfo *ri,
4244                                               bool isread)
4245 {
4246     /* Cache invalidate/clean to Point of Unification... */
4247     switch (arm_current_el(env)) {
4248     case 0:
4249         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4250         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4251             return CP_ACCESS_TRAP;
4252         }
4253         /* fall through */
4254     case 1:
4255         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4256         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4257             return CP_ACCESS_TRAP_EL2;
4258         }
4259         break;
4260     }
4261     return CP_ACCESS_OK;
4262 }
4263 
4264 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4265  * Page D4-1736 (DDI0487A.b)
4266  */
4267 
4268 static int vae1_tlbmask(CPUARMState *env)
4269 {
4270     uint64_t hcr = arm_hcr_el2_eff(env);
4271     uint16_t mask;
4272 
4273     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4274         mask = ARMMMUIdxBit_E20_2 |
4275                ARMMMUIdxBit_E20_2_PAN |
4276                ARMMMUIdxBit_E20_0;
4277     } else {
4278         mask = ARMMMUIdxBit_E10_1 |
4279                ARMMMUIdxBit_E10_1_PAN |
4280                ARMMMUIdxBit_E10_0;
4281     }
4282 
4283     if (arm_is_secure_below_el3(env)) {
4284         mask >>= ARM_MMU_IDX_A_NS;
4285     }
4286 
4287     return mask;
4288 }
4289 
4290 /* Return 56 if TBI is enabled, 64 otherwise. */
4291 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4292                               uint64_t addr)
4293 {
4294     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4295     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4296     int select = extract64(addr, 55, 1);
4297 
4298     return (tbi >> select) & 1 ? 56 : 64;
4299 }
4300 
4301 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4302 {
4303     uint64_t hcr = arm_hcr_el2_eff(env);
4304     ARMMMUIdx mmu_idx;
4305 
4306     /* Only the regime of the mmu_idx below is significant. */
4307     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4308         mmu_idx = ARMMMUIdx_E20_0;
4309     } else {
4310         mmu_idx = ARMMMUIdx_E10_0;
4311     }
4312 
4313     if (arm_is_secure_below_el3(env)) {
4314         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4315     }
4316 
4317     return tlbbits_for_regime(env, mmu_idx, addr);
4318 }
4319 
4320 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321                                       uint64_t value)
4322 {
4323     CPUState *cs = env_cpu(env);
4324     int mask = vae1_tlbmask(env);
4325 
4326     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4327 }
4328 
4329 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4330                                     uint64_t value)
4331 {
4332     CPUState *cs = env_cpu(env);
4333     int mask = vae1_tlbmask(env);
4334 
4335     if (tlb_force_broadcast(env)) {
4336         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4337     } else {
4338         tlb_flush_by_mmuidx(cs, mask);
4339     }
4340 }
4341 
4342 static int alle1_tlbmask(CPUARMState *env)
4343 {
4344     /*
4345      * Note that the 'ALL' scope must invalidate both stage 1 and
4346      * stage 2 translations, whereas most other scopes only invalidate
4347      * stage 1 translations.
4348      */
4349     if (arm_is_secure_below_el3(env)) {
4350         return ARMMMUIdxBit_SE10_1 |
4351                ARMMMUIdxBit_SE10_1_PAN |
4352                ARMMMUIdxBit_SE10_0;
4353     } else {
4354         return ARMMMUIdxBit_E10_1 |
4355                ARMMMUIdxBit_E10_1_PAN |
4356                ARMMMUIdxBit_E10_0;
4357     }
4358 }
4359 
4360 static int e2_tlbmask(CPUARMState *env)
4361 {
4362     if (arm_is_secure_below_el3(env)) {
4363         return ARMMMUIdxBit_SE20_0 |
4364                ARMMMUIdxBit_SE20_2 |
4365                ARMMMUIdxBit_SE20_2_PAN |
4366                ARMMMUIdxBit_SE2;
4367     } else {
4368         return ARMMMUIdxBit_E20_0 |
4369                ARMMMUIdxBit_E20_2 |
4370                ARMMMUIdxBit_E20_2_PAN |
4371                ARMMMUIdxBit_E2;
4372     }
4373 }
4374 
4375 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4376                                   uint64_t value)
4377 {
4378     CPUState *cs = env_cpu(env);
4379     int mask = alle1_tlbmask(env);
4380 
4381     tlb_flush_by_mmuidx(cs, mask);
4382 }
4383 
4384 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                   uint64_t value)
4386 {
4387     CPUState *cs = env_cpu(env);
4388     int mask = e2_tlbmask(env);
4389 
4390     tlb_flush_by_mmuidx(cs, mask);
4391 }
4392 
4393 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                                   uint64_t value)
4395 {
4396     ARMCPU *cpu = env_archcpu(env);
4397     CPUState *cs = CPU(cpu);
4398 
4399     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4400 }
4401 
4402 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4403                                     uint64_t value)
4404 {
4405     CPUState *cs = env_cpu(env);
4406     int mask = alle1_tlbmask(env);
4407 
4408     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4409 }
4410 
4411 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4412                                     uint64_t value)
4413 {
4414     CPUState *cs = env_cpu(env);
4415     int mask = e2_tlbmask(env);
4416 
4417     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4418 }
4419 
4420 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421                                     uint64_t value)
4422 {
4423     CPUState *cs = env_cpu(env);
4424 
4425     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4426 }
4427 
4428 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                                  uint64_t value)
4430 {
4431     /* Invalidate by VA, EL2
4432      * Currently handles both VAE2 and VALE2, since we don't support
4433      * flush-last-level-only.
4434      */
4435     CPUState *cs = env_cpu(env);
4436     int mask = e2_tlbmask(env);
4437     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4438 
4439     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4440 }
4441 
4442 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4443                                  uint64_t value)
4444 {
4445     /* Invalidate by VA, EL3
4446      * Currently handles both VAE3 and VALE3, since we don't support
4447      * flush-last-level-only.
4448      */
4449     ARMCPU *cpu = env_archcpu(env);
4450     CPUState *cs = CPU(cpu);
4451     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4452 
4453     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4454 }
4455 
4456 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4457                                    uint64_t value)
4458 {
4459     CPUState *cs = env_cpu(env);
4460     int mask = vae1_tlbmask(env);
4461     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4462     int bits = vae1_tlbbits(env, pageaddr);
4463 
4464     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4465 }
4466 
4467 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                                  uint64_t value)
4469 {
4470     /* Invalidate by VA, EL1&0 (AArch64 version).
4471      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4472      * since we don't support flush-for-specific-ASID-only or
4473      * flush-last-level-only.
4474      */
4475     CPUState *cs = env_cpu(env);
4476     int mask = vae1_tlbmask(env);
4477     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4478     int bits = vae1_tlbbits(env, pageaddr);
4479 
4480     if (tlb_force_broadcast(env)) {
4481         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4482     } else {
4483         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4484     }
4485 }
4486 
4487 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488                                    uint64_t value)
4489 {
4490     CPUState *cs = env_cpu(env);
4491     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4492     bool secure = arm_is_secure_below_el3(env);
4493     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4494     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4495                                   pageaddr);
4496 
4497     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4498 }
4499 
4500 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4501                                    uint64_t value)
4502 {
4503     CPUState *cs = env_cpu(env);
4504     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4505     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4506 
4507     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4508                                                   ARMMMUIdxBit_SE3, bits);
4509 }
4510 
4511 #ifdef TARGET_AARCH64
4512 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4513                                            uint64_t value)
4514 {
4515     unsigned int page_shift;
4516     unsigned int page_size_granule;
4517     uint64_t num;
4518     uint64_t scale;
4519     uint64_t exponent;
4520     uint64_t length;
4521 
4522     num = extract64(value, 39, 4);
4523     scale = extract64(value, 44, 2);
4524     page_size_granule = extract64(value, 46, 2);
4525 
4526     page_shift = page_size_granule * 2 + 12;
4527 
4528     if (page_size_granule == 0) {
4529         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4530                       page_size_granule);
4531         return 0;
4532     }
4533 
4534     exponent = (5 * scale) + 1;
4535     length = (num + 1) << (exponent + page_shift);
4536 
4537     return length;
4538 }
4539 
4540 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4541                                         bool two_ranges)
4542 {
4543     /* TODO: ARMv8.7 FEAT_LPA2 */
4544     uint64_t pageaddr;
4545 
4546     if (two_ranges) {
4547         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4548     } else {
4549         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4550     }
4551 
4552     return pageaddr;
4553 }
4554 
4555 static void do_rvae_write(CPUARMState *env, uint64_t value,
4556                           int idxmap, bool synced)
4557 {
4558     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4559     bool two_ranges = regime_has_2_ranges(one_idx);
4560     uint64_t baseaddr, length;
4561     int bits;
4562 
4563     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4564     length = tlbi_aa64_range_get_length(env, value);
4565     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4566 
4567     if (synced) {
4568         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4569                                                   baseaddr,
4570                                                   length,
4571                                                   idxmap,
4572                                                   bits);
4573     } else {
4574         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4575                                   length, idxmap, bits);
4576     }
4577 }
4578 
4579 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4580                                   const ARMCPRegInfo *ri,
4581                                   uint64_t value)
4582 {
4583     /*
4584      * Invalidate by VA range, EL1&0.
4585      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4586      * since we don't support flush-for-specific-ASID-only or
4587      * flush-last-level-only.
4588      */
4589 
4590     do_rvae_write(env, value, vae1_tlbmask(env),
4591                   tlb_force_broadcast(env));
4592 }
4593 
4594 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4595                                     const ARMCPRegInfo *ri,
4596                                     uint64_t value)
4597 {
4598     /*
4599      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4600      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4601      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4602      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4603      * shareable specific flushes.
4604      */
4605 
4606     do_rvae_write(env, value, vae1_tlbmask(env), true);
4607 }
4608 
4609 static int vae2_tlbmask(CPUARMState *env)
4610 {
4611     return (arm_is_secure_below_el3(env)
4612             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4613 }
4614 
4615 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4616                                   const ARMCPRegInfo *ri,
4617                                   uint64_t value)
4618 {
4619     /*
4620      * Invalidate by VA range, EL2.
4621      * Currently handles all of RVAE2 and RVALE2,
4622      * since we don't support flush-for-specific-ASID-only or
4623      * flush-last-level-only.
4624      */
4625 
4626     do_rvae_write(env, value, vae2_tlbmask(env),
4627                   tlb_force_broadcast(env));
4628 
4629 
4630 }
4631 
4632 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4633                                     const ARMCPRegInfo *ri,
4634                                     uint64_t value)
4635 {
4636     /*
4637      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4638      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4639      * since we don't support flush-for-specific-ASID-only,
4640      * flush-last-level-only or inner/outer shareable specific flushes.
4641      */
4642 
4643     do_rvae_write(env, value, vae2_tlbmask(env), true);
4644 
4645 }
4646 
4647 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4648                                   const ARMCPRegInfo *ri,
4649                                   uint64_t value)
4650 {
4651     /*
4652      * Invalidate by VA range, EL3.
4653      * Currently handles all of RVAE3 and RVALE3,
4654      * since we don't support flush-for-specific-ASID-only or
4655      * flush-last-level-only.
4656      */
4657 
4658     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4659                   tlb_force_broadcast(env));
4660 }
4661 
4662 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4663                                     const ARMCPRegInfo *ri,
4664                                     uint64_t value)
4665 {
4666     /*
4667      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4668      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4669      * since we don't support flush-for-specific-ASID-only,
4670      * flush-last-level-only or inner/outer specific flushes.
4671      */
4672 
4673     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4674 }
4675 #endif
4676 
4677 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4678                                       bool isread)
4679 {
4680     int cur_el = arm_current_el(env);
4681 
4682     if (cur_el < 2) {
4683         uint64_t hcr = arm_hcr_el2_eff(env);
4684 
4685         if (cur_el == 0) {
4686             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4687                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4688                     return CP_ACCESS_TRAP_EL2;
4689                 }
4690             } else {
4691                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4692                     return CP_ACCESS_TRAP;
4693                 }
4694                 if (hcr & HCR_TDZ) {
4695                     return CP_ACCESS_TRAP_EL2;
4696                 }
4697             }
4698         } else if (hcr & HCR_TDZ) {
4699             return CP_ACCESS_TRAP_EL2;
4700         }
4701     }
4702     return CP_ACCESS_OK;
4703 }
4704 
4705 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4706 {
4707     ARMCPU *cpu = env_archcpu(env);
4708     int dzp_bit = 1 << 4;
4709 
4710     /* DZP indicates whether DC ZVA access is allowed */
4711     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4712         dzp_bit = 0;
4713     }
4714     return cpu->dcz_blocksize | dzp_bit;
4715 }
4716 
4717 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4718                                     bool isread)
4719 {
4720     if (!(env->pstate & PSTATE_SP)) {
4721         /* Access to SP_EL0 is undefined if it's being used as
4722          * the stack pointer.
4723          */
4724         return CP_ACCESS_TRAP_UNCATEGORIZED;
4725     }
4726     return CP_ACCESS_OK;
4727 }
4728 
4729 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4730 {
4731     return env->pstate & PSTATE_SP;
4732 }
4733 
4734 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4735 {
4736     update_spsel(env, val);
4737 }
4738 
4739 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                         uint64_t value)
4741 {
4742     ARMCPU *cpu = env_archcpu(env);
4743 
4744     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4745         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4746         value &= ~SCTLR_M;
4747     }
4748 
4749     /* ??? Lots of these bits are not implemented.  */
4750 
4751     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4752         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4753             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4754         } else {
4755             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4756                        SCTLR_ATA0 | SCTLR_ATA);
4757         }
4758     }
4759 
4760     if (raw_read(env, ri) == value) {
4761         /* Skip the TLB flush if nothing actually changed; Linux likes
4762          * to do a lot of pointless SCTLR writes.
4763          */
4764         return;
4765     }
4766 
4767     raw_write(env, ri, value);
4768 
4769     /* This may enable/disable the MMU, so do a TLB flush.  */
4770     tlb_flush(CPU(cpu));
4771 
4772     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4773         /*
4774          * Normally we would always end the TB on an SCTLR write; see the
4775          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4776          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4777          * of hflags from the translator, so do it here.
4778          */
4779         arm_rebuild_hflags(env);
4780     }
4781 }
4782 
4783 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4784                                      bool isread)
4785 {
4786     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4787         return CP_ACCESS_TRAP_FP_EL2;
4788     }
4789     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4790         return CP_ACCESS_TRAP_FP_EL3;
4791     }
4792     return CP_ACCESS_OK;
4793 }
4794 
4795 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4796                        uint64_t value)
4797 {
4798     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4799 }
4800 
4801 static const ARMCPRegInfo v8_cp_reginfo[] = {
4802     /* Minimal set of EL0-visible registers. This will need to be expanded
4803      * significantly for system emulation of AArch64 CPUs.
4804      */
4805     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4806       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4807       .access = PL0_RW, .type = ARM_CP_NZCV },
4808     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4810       .type = ARM_CP_NO_RAW,
4811       .access = PL0_RW, .accessfn = aa64_daif_access,
4812       .fieldoffset = offsetof(CPUARMState, daif),
4813       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4814     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4815       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4816       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4817       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4818     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4820       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4821       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4822     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4823       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4824       .access = PL0_R, .type = ARM_CP_NO_RAW,
4825       .readfn = aa64_dczid_read },
4826     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4827       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4828       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4829 #ifndef CONFIG_USER_ONLY
4830       /* Avoid overhead of an access check that always passes in user-mode */
4831       .accessfn = aa64_zva_access,
4832 #endif
4833     },
4834     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4835       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4836       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4837     /* Cache ops: all NOPs since we don't emulate caches */
4838     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4839       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4840       .access = PL1_W, .type = ARM_CP_NOP,
4841       .accessfn = aa64_cacheop_pou_access },
4842     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4843       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4844       .access = PL1_W, .type = ARM_CP_NOP,
4845       .accessfn = aa64_cacheop_pou_access },
4846     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4847       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4848       .access = PL0_W, .type = ARM_CP_NOP,
4849       .accessfn = aa64_cacheop_pou_access },
4850     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4851       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4852       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4853       .type = ARM_CP_NOP },
4854     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4855       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4856       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4857     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4859       .access = PL0_W, .type = ARM_CP_NOP,
4860       .accessfn = aa64_cacheop_poc_access },
4861     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4863       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4864     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4865       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4866       .access = PL0_W, .type = ARM_CP_NOP,
4867       .accessfn = aa64_cacheop_pou_access },
4868     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4869       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4870       .access = PL0_W, .type = ARM_CP_NOP,
4871       .accessfn = aa64_cacheop_poc_access },
4872     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4873       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4874       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4875     /* TLBI operations */
4876     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4877       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4878       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4879       .writefn = tlbi_aa64_vmalle1is_write },
4880     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4881       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4882       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883       .writefn = tlbi_aa64_vae1is_write },
4884     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4885       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4886       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4887       .writefn = tlbi_aa64_vmalle1is_write },
4888     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4889       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4890       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4891       .writefn = tlbi_aa64_vae1is_write },
4892     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4893       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4894       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4895       .writefn = tlbi_aa64_vae1is_write },
4896     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4897       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4898       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4899       .writefn = tlbi_aa64_vae1is_write },
4900     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4901       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4902       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4903       .writefn = tlbi_aa64_vmalle1_write },
4904     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4905       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4906       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4907       .writefn = tlbi_aa64_vae1_write },
4908     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4909       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4910       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4911       .writefn = tlbi_aa64_vmalle1_write },
4912     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4913       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4914       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915       .writefn = tlbi_aa64_vae1_write },
4916     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4917       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4918       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919       .writefn = tlbi_aa64_vae1_write },
4920     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4921       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4922       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4923       .writefn = tlbi_aa64_vae1_write },
4924     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4925       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4926       .access = PL2_W, .type = ARM_CP_NOP },
4927     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4929       .access = PL2_W, .type = ARM_CP_NOP },
4930     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4932       .access = PL2_W, .type = ARM_CP_NO_RAW,
4933       .writefn = tlbi_aa64_alle1is_write },
4934     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4936       .access = PL2_W, .type = ARM_CP_NO_RAW,
4937       .writefn = tlbi_aa64_alle1is_write },
4938     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4940       .access = PL2_W, .type = ARM_CP_NOP },
4941     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4942       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4943       .access = PL2_W, .type = ARM_CP_NOP },
4944     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4945       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4946       .access = PL2_W, .type = ARM_CP_NO_RAW,
4947       .writefn = tlbi_aa64_alle1_write },
4948     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4949       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4950       .access = PL2_W, .type = ARM_CP_NO_RAW,
4951       .writefn = tlbi_aa64_alle1is_write },
4952 #ifndef CONFIG_USER_ONLY
4953     /* 64 bit address translation operations */
4954     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4955       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4956       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4957       .writefn = ats_write64 },
4958     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4959       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4960       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4961       .writefn = ats_write64 },
4962     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4963       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4964       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4965       .writefn = ats_write64 },
4966     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4967       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4968       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4969       .writefn = ats_write64 },
4970     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4971       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4972       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4973       .writefn = ats_write64 },
4974     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4975       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4976       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4977       .writefn = ats_write64 },
4978     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4979       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4980       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4981       .writefn = ats_write64 },
4982     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4983       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4984       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4985       .writefn = ats_write64 },
4986     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4987     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4988       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4989       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990       .writefn = ats_write64 },
4991     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4992       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4993       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4994       .writefn = ats_write64 },
4995     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4996       .type = ARM_CP_ALIAS,
4997       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4998       .access = PL1_RW, .resetvalue = 0,
4999       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5000       .writefn = par_write },
5001 #endif
5002     /* TLB invalidate last level of translation table walk */
5003     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5004       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5005       .writefn = tlbimva_is_write },
5006     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5007       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5008       .writefn = tlbimvaa_is_write },
5009     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5010       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5011       .writefn = tlbimva_write },
5012     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5013       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5014       .writefn = tlbimvaa_write },
5015     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5016       .type = ARM_CP_NO_RAW, .access = PL2_W,
5017       .writefn = tlbimva_hyp_write },
5018     { .name = "TLBIMVALHIS",
5019       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5020       .type = ARM_CP_NO_RAW, .access = PL2_W,
5021       .writefn = tlbimva_hyp_is_write },
5022     { .name = "TLBIIPAS2",
5023       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5024       .type = ARM_CP_NOP, .access = PL2_W },
5025     { .name = "TLBIIPAS2IS",
5026       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5027       .type = ARM_CP_NOP, .access = PL2_W },
5028     { .name = "TLBIIPAS2L",
5029       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5030       .type = ARM_CP_NOP, .access = PL2_W },
5031     { .name = "TLBIIPAS2LIS",
5032       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5033       .type = ARM_CP_NOP, .access = PL2_W },
5034     /* 32 bit cache operations */
5035     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5036       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5038       .type = ARM_CP_NOP, .access = PL1_W },
5039     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5040       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5041     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5042       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5043     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5044       .type = ARM_CP_NOP, .access = PL1_W },
5045     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5046       .type = ARM_CP_NOP, .access = PL1_W },
5047     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5048       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5049     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5050       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5051     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5052       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5054       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5056       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5057     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5058       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5059     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5060       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5061     /* MMU Domain access control / MPU write buffer control */
5062     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5063       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5064       .writefn = dacr_write, .raw_writefn = raw_write,
5065       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5066                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5067     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5068       .type = ARM_CP_ALIAS,
5069       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5070       .access = PL1_RW,
5071       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5072     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5073       .type = ARM_CP_ALIAS,
5074       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5075       .access = PL1_RW,
5076       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5077     /* We rely on the access checks not allowing the guest to write to the
5078      * state field when SPSel indicates that it's being used as the stack
5079      * pointer.
5080      */
5081     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5082       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5083       .access = PL1_RW, .accessfn = sp_el0_access,
5084       .type = ARM_CP_ALIAS,
5085       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5086     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5087       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5088       .access = PL2_RW, .type = ARM_CP_ALIAS,
5089       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5090     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5091       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5092       .type = ARM_CP_NO_RAW,
5093       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5094     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5095       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5096       .type = ARM_CP_ALIAS,
5097       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5098       .access = PL2_RW, .accessfn = fpexc32_access },
5099     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5100       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5101       .access = PL2_RW, .resetvalue = 0,
5102       .writefn = dacr_write, .raw_writefn = raw_write,
5103       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5104     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5106       .access = PL2_RW, .resetvalue = 0,
5107       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5108     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5109       .type = ARM_CP_ALIAS,
5110       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5111       .access = PL2_RW,
5112       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5113     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5114       .type = ARM_CP_ALIAS,
5115       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5116       .access = PL2_RW,
5117       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5118     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5119       .type = ARM_CP_ALIAS,
5120       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5121       .access = PL2_RW,
5122       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5123     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5124       .type = ARM_CP_ALIAS,
5125       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5126       .access = PL2_RW,
5127       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5128     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5129       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5130       .resetvalue = 0,
5131       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5132     { .name = "SDCR", .type = ARM_CP_ALIAS,
5133       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5134       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5135       .writefn = sdcr_write,
5136       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5137     REGINFO_SENTINEL
5138 };
5139 
5140 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5141 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5142     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5143       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5144       .access = PL2_RW,
5145       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5146     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5147       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5148       .access = PL2_RW,
5149       .type = ARM_CP_CONST, .resetvalue = 0 },
5150     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5151       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5152       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5153     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5154       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5155       .access = PL2_RW,
5156       .type = ARM_CP_CONST, .resetvalue = 0 },
5157     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5158       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5159       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5160     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5161       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5162       .access = PL2_RW, .type = ARM_CP_CONST,
5163       .resetvalue = 0 },
5164     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5165       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5166       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5168       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5169       .access = PL2_RW, .type = ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5172       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5173       .access = PL2_RW, .type = ARM_CP_CONST,
5174       .resetvalue = 0 },
5175     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5176       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5177       .access = PL2_RW, .type = ARM_CP_CONST,
5178       .resetvalue = 0 },
5179     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5180       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5181       .access = PL2_RW, .type = ARM_CP_CONST,
5182       .resetvalue = 0 },
5183     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5184       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5185       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5186     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5187       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5188       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5189       .type = ARM_CP_CONST, .resetvalue = 0 },
5190     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5191       .cp = 15, .opc1 = 6, .crm = 2,
5192       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5193       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5194     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5195       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5196       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5197     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5198       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5199       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5200     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5201       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5202       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5204       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5205       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5207       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5208       .resetvalue = 0 },
5209     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5210       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5211       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5212     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5214       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5215     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5216       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5217       .resetvalue = 0 },
5218     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5219       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5220       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5221     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5222       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5223       .resetvalue = 0 },
5224     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5225       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5226       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5227     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5228       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5229       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5230     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5231       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5232       .access = PL2_RW, .accessfn = access_tda,
5233       .type = ARM_CP_CONST, .resetvalue = 0 },
5234     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5235       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5236       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5237       .type = ARM_CP_CONST, .resetvalue = 0 },
5238     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5239       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5240       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5241     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5242       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5243       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5244     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5245       .type = ARM_CP_CONST,
5246       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5247       .access = PL2_RW, .resetvalue = 0 },
5248     REGINFO_SENTINEL
5249 };
5250 
5251 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5252 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5253     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5254       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5255       .access = PL2_RW,
5256       .type = ARM_CP_CONST, .resetvalue = 0 },
5257     REGINFO_SENTINEL
5258 };
5259 
5260 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5261 {
5262     ARMCPU *cpu = env_archcpu(env);
5263 
5264     if (arm_feature(env, ARM_FEATURE_V8)) {
5265         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5266     } else {
5267         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5268     }
5269 
5270     if (arm_feature(env, ARM_FEATURE_EL3)) {
5271         valid_mask &= ~HCR_HCD;
5272     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5273         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5274          * However, if we're using the SMC PSCI conduit then QEMU is
5275          * effectively acting like EL3 firmware and so the guest at
5276          * EL2 should retain the ability to prevent EL1 from being
5277          * able to make SMC calls into the ersatz firmware, so in
5278          * that case HCR.TSC should be read/write.
5279          */
5280         valid_mask &= ~HCR_TSC;
5281     }
5282 
5283     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5284         if (cpu_isar_feature(aa64_vh, cpu)) {
5285             valid_mask |= HCR_E2H;
5286         }
5287         if (cpu_isar_feature(aa64_lor, cpu)) {
5288             valid_mask |= HCR_TLOR;
5289         }
5290         if (cpu_isar_feature(aa64_pauth, cpu)) {
5291             valid_mask |= HCR_API | HCR_APK;
5292         }
5293         if (cpu_isar_feature(aa64_mte, cpu)) {
5294             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5295         }
5296     }
5297 
5298     /* Clear RES0 bits.  */
5299     value &= valid_mask;
5300 
5301     /*
5302      * These bits change the MMU setup:
5303      * HCR_VM enables stage 2 translation
5304      * HCR_PTW forbids certain page-table setups
5305      * HCR_DC disables stage1 and enables stage2 translation
5306      * HCR_DCT enables tagging on (disabled) stage1 translation
5307      */
5308     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5309         tlb_flush(CPU(cpu));
5310     }
5311     env->cp15.hcr_el2 = value;
5312 
5313     /*
5314      * Updates to VI and VF require us to update the status of
5315      * virtual interrupts, which are the logical OR of these bits
5316      * and the state of the input lines from the GIC. (This requires
5317      * that we have the iothread lock, which is done by marking the
5318      * reginfo structs as ARM_CP_IO.)
5319      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5320      * possible for it to be taken immediately, because VIRQ and
5321      * VFIQ are masked unless running at EL0 or EL1, and HCR
5322      * can only be written at EL2.
5323      */
5324     g_assert(qemu_mutex_iothread_locked());
5325     arm_cpu_update_virq(cpu);
5326     arm_cpu_update_vfiq(cpu);
5327 }
5328 
5329 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5330 {
5331     do_hcr_write(env, value, 0);
5332 }
5333 
5334 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5335                           uint64_t value)
5336 {
5337     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5338     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5339     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5340 }
5341 
5342 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5343                          uint64_t value)
5344 {
5345     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5346     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5347     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5348 }
5349 
5350 /*
5351  * Return the effective value of HCR_EL2.
5352  * Bits that are not included here:
5353  * RW       (read from SCR_EL3.RW as needed)
5354  */
5355 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5356 {
5357     uint64_t ret = env->cp15.hcr_el2;
5358 
5359     if (!arm_is_el2_enabled(env)) {
5360         /*
5361          * "This register has no effect if EL2 is not enabled in the
5362          * current Security state".  This is ARMv8.4-SecEL2 speak for
5363          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5364          *
5365          * Prior to that, the language was "In an implementation that
5366          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5367          * as if this field is 0 for all purposes other than a direct
5368          * read or write access of HCR_EL2".  With lots of enumeration
5369          * on a per-field basis.  In current QEMU, this is condition
5370          * is arm_is_secure_below_el3.
5371          *
5372          * Since the v8.4 language applies to the entire register, and
5373          * appears to be backward compatible, use that.
5374          */
5375         return 0;
5376     }
5377 
5378     /*
5379      * For a cpu that supports both aarch64 and aarch32, we can set bits
5380      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5381      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5382      */
5383     if (!arm_el_is_aa64(env, 2)) {
5384         uint64_t aa32_valid;
5385 
5386         /*
5387          * These bits are up-to-date as of ARMv8.6.
5388          * For HCR, it's easiest to list just the 2 bits that are invalid.
5389          * For HCR2, list those that are valid.
5390          */
5391         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5392         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5393                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5394         ret &= aa32_valid;
5395     }
5396 
5397     if (ret & HCR_TGE) {
5398         /* These bits are up-to-date as of ARMv8.6.  */
5399         if (ret & HCR_E2H) {
5400             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5401                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5402                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5403                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5404                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5405                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5406         } else {
5407             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5408         }
5409         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5410                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5411                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5412                  HCR_TLOR);
5413     }
5414 
5415     return ret;
5416 }
5417 
5418 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5419                            uint64_t value)
5420 {
5421     /*
5422      * For A-profile AArch32 EL3, if NSACR.CP10
5423      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5424      */
5425     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5426         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5427         value &= ~(0x3 << 10);
5428         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5429     }
5430     env->cp15.cptr_el[2] = value;
5431 }
5432 
5433 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5434 {
5435     /*
5436      * For A-profile AArch32 EL3, if NSACR.CP10
5437      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5438      */
5439     uint64_t value = env->cp15.cptr_el[2];
5440 
5441     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5442         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5443         value |= 0x3 << 10;
5444     }
5445     return value;
5446 }
5447 
5448 static const ARMCPRegInfo el2_cp_reginfo[] = {
5449     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5450       .type = ARM_CP_IO,
5451       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5452       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5453       .writefn = hcr_write },
5454     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5455       .type = ARM_CP_ALIAS | ARM_CP_IO,
5456       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5457       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5458       .writefn = hcr_writelow },
5459     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5460       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5461       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5462     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5463       .type = ARM_CP_ALIAS,
5464       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5465       .access = PL2_RW,
5466       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5467     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5468       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5469       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5470     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5471       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5472       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5473     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5474       .type = ARM_CP_ALIAS,
5475       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5476       .access = PL2_RW,
5477       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5478     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5479       .type = ARM_CP_ALIAS,
5480       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5481       .access = PL2_RW,
5482       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5483     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5484       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5485       .access = PL2_RW, .writefn = vbar_write,
5486       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5487       .resetvalue = 0 },
5488     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5489       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5490       .access = PL3_RW, .type = ARM_CP_ALIAS,
5491       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5492     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5494       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5495       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5496       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5497     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5498       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5499       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5500       .resetvalue = 0 },
5501     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5502       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5503       .access = PL2_RW, .type = ARM_CP_ALIAS,
5504       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5505     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5506       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5507       .access = PL2_RW, .type = ARM_CP_CONST,
5508       .resetvalue = 0 },
5509     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5510     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5511       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5512       .access = PL2_RW, .type = ARM_CP_CONST,
5513       .resetvalue = 0 },
5514     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5515       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5516       .access = PL2_RW, .type = ARM_CP_CONST,
5517       .resetvalue = 0 },
5518     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5519       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5520       .access = PL2_RW, .type = ARM_CP_CONST,
5521       .resetvalue = 0 },
5522     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5523       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5524       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5525       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5526       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5527     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5528       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5529       .type = ARM_CP_ALIAS,
5530       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5531       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5532     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5533       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5534       .access = PL2_RW,
5535       /* no .writefn needed as this can't cause an ASID change;
5536        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5537        */
5538       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5539     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5540       .cp = 15, .opc1 = 6, .crm = 2,
5541       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5542       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5543       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5544       .writefn = vttbr_write },
5545     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5546       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5547       .access = PL2_RW, .writefn = vttbr_write,
5548       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5549     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5550       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5551       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5552       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5553     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5554       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5555       .access = PL2_RW, .resetvalue = 0,
5556       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5557     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5558       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5559       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5560       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5561     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5562       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5563       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5564     { .name = "TLBIALLNSNH",
5565       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5566       .type = ARM_CP_NO_RAW, .access = PL2_W,
5567       .writefn = tlbiall_nsnh_write },
5568     { .name = "TLBIALLNSNHIS",
5569       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5570       .type = ARM_CP_NO_RAW, .access = PL2_W,
5571       .writefn = tlbiall_nsnh_is_write },
5572     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5573       .type = ARM_CP_NO_RAW, .access = PL2_W,
5574       .writefn = tlbiall_hyp_write },
5575     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5576       .type = ARM_CP_NO_RAW, .access = PL2_W,
5577       .writefn = tlbiall_hyp_is_write },
5578     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5579       .type = ARM_CP_NO_RAW, .access = PL2_W,
5580       .writefn = tlbimva_hyp_write },
5581     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5582       .type = ARM_CP_NO_RAW, .access = PL2_W,
5583       .writefn = tlbimva_hyp_is_write },
5584     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5585       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5586       .type = ARM_CP_NO_RAW, .access = PL2_W,
5587       .writefn = tlbi_aa64_alle2_write },
5588     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5589       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5590       .type = ARM_CP_NO_RAW, .access = PL2_W,
5591       .writefn = tlbi_aa64_vae2_write },
5592     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5593       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5594       .access = PL2_W, .type = ARM_CP_NO_RAW,
5595       .writefn = tlbi_aa64_vae2_write },
5596     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5597       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5598       .access = PL2_W, .type = ARM_CP_NO_RAW,
5599       .writefn = tlbi_aa64_alle2is_write },
5600     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5601       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5602       .type = ARM_CP_NO_RAW, .access = PL2_W,
5603       .writefn = tlbi_aa64_vae2is_write },
5604     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5605       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5606       .access = PL2_W, .type = ARM_CP_NO_RAW,
5607       .writefn = tlbi_aa64_vae2is_write },
5608 #ifndef CONFIG_USER_ONLY
5609     /* Unlike the other EL2-related AT operations, these must
5610      * UNDEF from EL3 if EL2 is not implemented, which is why we
5611      * define them here rather than with the rest of the AT ops.
5612      */
5613     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5614       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5615       .access = PL2_W, .accessfn = at_s1e2_access,
5616       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5617     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5618       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5619       .access = PL2_W, .accessfn = at_s1e2_access,
5620       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5621     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5622      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5623      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5624      * to behave as if SCR.NS was 1.
5625      */
5626     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5627       .access = PL2_W,
5628       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5629     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5630       .access = PL2_W,
5631       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5632     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5633       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5634       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5635        * reset values as IMPDEF. We choose to reset to 3 to comply with
5636        * both ARMv7 and ARMv8.
5637        */
5638       .access = PL2_RW, .resetvalue = 3,
5639       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5640     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5641       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5642       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5643       .writefn = gt_cntvoff_write,
5644       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5645     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5646       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5647       .writefn = gt_cntvoff_write,
5648       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5649     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5650       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5651       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5652       .type = ARM_CP_IO, .access = PL2_RW,
5653       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5654     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5655       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5656       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5657       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5658     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5659       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5660       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5661       .resetfn = gt_hyp_timer_reset,
5662       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5663     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5664       .type = ARM_CP_IO,
5665       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5666       .access = PL2_RW,
5667       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5668       .resetvalue = 0,
5669       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5670 #endif
5671     /* The only field of MDCR_EL2 that has a defined architectural reset value
5672      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5673      */
5674     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5675       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5676       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5677       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5678     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5679       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5680       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5681       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5682     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5683       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5684       .access = PL2_RW,
5685       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5686     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5687       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5688       .access = PL2_RW,
5689       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5690     REGINFO_SENTINEL
5691 };
5692 
5693 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5694     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5695       .type = ARM_CP_ALIAS | ARM_CP_IO,
5696       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5697       .access = PL2_RW,
5698       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5699       .writefn = hcr_writehigh },
5700     REGINFO_SENTINEL
5701 };
5702 
5703 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5704                                   bool isread)
5705 {
5706     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5707         return CP_ACCESS_OK;
5708     }
5709     return CP_ACCESS_TRAP_UNCATEGORIZED;
5710 }
5711 
5712 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5713     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5714       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5715       .access = PL2_RW, .accessfn = sel2_access,
5716       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5717     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5718       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5719       .access = PL2_RW, .accessfn = sel2_access,
5720       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5721     REGINFO_SENTINEL
5722 };
5723 
5724 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5725                                    bool isread)
5726 {
5727     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5728      * At Secure EL1 it traps to EL3 or EL2.
5729      */
5730     if (arm_current_el(env) == 3) {
5731         return CP_ACCESS_OK;
5732     }
5733     if (arm_is_secure_below_el3(env)) {
5734         if (env->cp15.scr_el3 & SCR_EEL2) {
5735             return CP_ACCESS_TRAP_EL2;
5736         }
5737         return CP_ACCESS_TRAP_EL3;
5738     }
5739     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5740     if (isread) {
5741         return CP_ACCESS_OK;
5742     }
5743     return CP_ACCESS_TRAP_UNCATEGORIZED;
5744 }
5745 
5746 static const ARMCPRegInfo el3_cp_reginfo[] = {
5747     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5749       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5750       .resetfn = scr_reset, .writefn = scr_write },
5751     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5752       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5753       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5754       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5755       .writefn = scr_write },
5756     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5758       .access = PL3_RW, .resetvalue = 0,
5759       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5760     { .name = "SDER",
5761       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5762       .access = PL3_RW, .resetvalue = 0,
5763       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5764     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5765       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5766       .writefn = vbar_write, .resetvalue = 0,
5767       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5768     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5769       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5770       .access = PL3_RW, .resetvalue = 0,
5771       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5772     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5773       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5774       .access = PL3_RW,
5775       /* no .writefn needed as this can't cause an ASID change;
5776        * we must provide a .raw_writefn and .resetfn because we handle
5777        * reset and migration for the AArch32 TTBCR(S), which might be
5778        * using mask and base_mask.
5779        */
5780       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5781       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5782     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5783       .type = ARM_CP_ALIAS,
5784       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5785       .access = PL3_RW,
5786       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5787     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5788       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5789       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5790     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5791       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5792       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5793     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5794       .type = ARM_CP_ALIAS,
5795       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5796       .access = PL3_RW,
5797       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5798     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5799       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5800       .access = PL3_RW, .writefn = vbar_write,
5801       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5802       .resetvalue = 0 },
5803     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5804       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5805       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5806       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5807     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5808       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5809       .access = PL3_RW, .resetvalue = 0,
5810       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5811     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5813       .access = PL3_RW, .type = ARM_CP_CONST,
5814       .resetvalue = 0 },
5815     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5816       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5817       .access = PL3_RW, .type = ARM_CP_CONST,
5818       .resetvalue = 0 },
5819     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5820       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5821       .access = PL3_RW, .type = ARM_CP_CONST,
5822       .resetvalue = 0 },
5823     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5824       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5825       .access = PL3_W, .type = ARM_CP_NO_RAW,
5826       .writefn = tlbi_aa64_alle3is_write },
5827     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5828       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5829       .access = PL3_W, .type = ARM_CP_NO_RAW,
5830       .writefn = tlbi_aa64_vae3is_write },
5831     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5832       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5833       .access = PL3_W, .type = ARM_CP_NO_RAW,
5834       .writefn = tlbi_aa64_vae3is_write },
5835     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5836       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5837       .access = PL3_W, .type = ARM_CP_NO_RAW,
5838       .writefn = tlbi_aa64_alle3_write },
5839     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5840       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5841       .access = PL3_W, .type = ARM_CP_NO_RAW,
5842       .writefn = tlbi_aa64_vae3_write },
5843     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5844       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5845       .access = PL3_W, .type = ARM_CP_NO_RAW,
5846       .writefn = tlbi_aa64_vae3_write },
5847     REGINFO_SENTINEL
5848 };
5849 
5850 #ifndef CONFIG_USER_ONLY
5851 /* Test if system register redirection is to occur in the current state.  */
5852 static bool redirect_for_e2h(CPUARMState *env)
5853 {
5854     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5855 }
5856 
5857 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5858 {
5859     CPReadFn *readfn;
5860 
5861     if (redirect_for_e2h(env)) {
5862         /* Switch to the saved EL2 version of the register.  */
5863         ri = ri->opaque;
5864         readfn = ri->readfn;
5865     } else {
5866         readfn = ri->orig_readfn;
5867     }
5868     if (readfn == NULL) {
5869         readfn = raw_read;
5870     }
5871     return readfn(env, ri);
5872 }
5873 
5874 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5875                           uint64_t value)
5876 {
5877     CPWriteFn *writefn;
5878 
5879     if (redirect_for_e2h(env)) {
5880         /* Switch to the saved EL2 version of the register.  */
5881         ri = ri->opaque;
5882         writefn = ri->writefn;
5883     } else {
5884         writefn = ri->orig_writefn;
5885     }
5886     if (writefn == NULL) {
5887         writefn = raw_write;
5888     }
5889     writefn(env, ri, value);
5890 }
5891 
5892 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5893 {
5894     struct E2HAlias {
5895         uint32_t src_key, dst_key, new_key;
5896         const char *src_name, *dst_name, *new_name;
5897         bool (*feature)(const ARMISARegisters *id);
5898     };
5899 
5900 #define K(op0, op1, crn, crm, op2) \
5901     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5902 
5903     static const struct E2HAlias aliases[] = {
5904         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5905           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5906         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5907           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5908         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5909           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5910         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5911           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5912         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5913           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5914         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5915           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5916         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5917           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5918         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5919           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5920         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5921           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5922         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5923           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5924         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5925           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5926         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5927           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5928         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5929           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5930         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5931           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5932         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5933           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5934         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5935           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5936 
5937         /*
5938          * Note that redirection of ZCR is mentioned in the description
5939          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5940          * not in the summary table.
5941          */
5942         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5943           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5944 
5945         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5946           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5947 
5948         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5949         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5950     };
5951 #undef K
5952 
5953     size_t i;
5954 
5955     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5956         const struct E2HAlias *a = &aliases[i];
5957         ARMCPRegInfo *src_reg, *dst_reg;
5958 
5959         if (a->feature && !a->feature(&cpu->isar)) {
5960             continue;
5961         }
5962 
5963         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5964         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5965         g_assert(src_reg != NULL);
5966         g_assert(dst_reg != NULL);
5967 
5968         /* Cross-compare names to detect typos in the keys.  */
5969         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5970         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5971 
5972         /* None of the core system registers use opaque; we will.  */
5973         g_assert(src_reg->opaque == NULL);
5974 
5975         /* Create alias before redirection so we dup the right data. */
5976         if (a->new_key) {
5977             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5978             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5979             bool ok;
5980 
5981             new_reg->name = a->new_name;
5982             new_reg->type |= ARM_CP_ALIAS;
5983             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5984             new_reg->access &= PL2_RW | PL3_RW;
5985 
5986             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5987             g_assert(ok);
5988         }
5989 
5990         src_reg->opaque = dst_reg;
5991         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5992         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5993         if (!src_reg->raw_readfn) {
5994             src_reg->raw_readfn = raw_read;
5995         }
5996         if (!src_reg->raw_writefn) {
5997             src_reg->raw_writefn = raw_write;
5998         }
5999         src_reg->readfn = el2_e2h_read;
6000         src_reg->writefn = el2_e2h_write;
6001     }
6002 }
6003 #endif
6004 
6005 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6006                                      bool isread)
6007 {
6008     int cur_el = arm_current_el(env);
6009 
6010     if (cur_el < 2) {
6011         uint64_t hcr = arm_hcr_el2_eff(env);
6012 
6013         if (cur_el == 0) {
6014             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6015                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6016                     return CP_ACCESS_TRAP_EL2;
6017                 }
6018             } else {
6019                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6020                     return CP_ACCESS_TRAP;
6021                 }
6022                 if (hcr & HCR_TID2) {
6023                     return CP_ACCESS_TRAP_EL2;
6024                 }
6025             }
6026         } else if (hcr & HCR_TID2) {
6027             return CP_ACCESS_TRAP_EL2;
6028         }
6029     }
6030 
6031     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6032         return CP_ACCESS_TRAP_EL2;
6033     }
6034 
6035     return CP_ACCESS_OK;
6036 }
6037 
6038 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6039                         uint64_t value)
6040 {
6041     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6042      * read via a bit in OSLSR_EL1.
6043      */
6044     int oslock;
6045 
6046     if (ri->state == ARM_CP_STATE_AA32) {
6047         oslock = (value == 0xC5ACCE55);
6048     } else {
6049         oslock = value & 1;
6050     }
6051 
6052     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6053 }
6054 
6055 static const ARMCPRegInfo debug_cp_reginfo[] = {
6056     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6057      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6058      * unlike DBGDRAR it is never accessible from EL0.
6059      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6060      * accessor.
6061      */
6062     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6063       .access = PL0_R, .accessfn = access_tdra,
6064       .type = ARM_CP_CONST, .resetvalue = 0 },
6065     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6066       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6067       .access = PL1_R, .accessfn = access_tdra,
6068       .type = ARM_CP_CONST, .resetvalue = 0 },
6069     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6070       .access = PL0_R, .accessfn = access_tdra,
6071       .type = ARM_CP_CONST, .resetvalue = 0 },
6072     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6073     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6074       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6075       .access = PL1_RW, .accessfn = access_tda,
6076       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6077       .resetvalue = 0 },
6078     /*
6079      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6080      * Debug Communication Channel is not implemented.
6081      */
6082     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6083       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6084       .access = PL0_R, .accessfn = access_tda,
6085       .type = ARM_CP_CONST, .resetvalue = 0 },
6086     /*
6087      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6088      * it is unlikely a guest will care.
6089      * We don't implement the configurable EL0 access.
6090      */
6091     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6092       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6093       .type = ARM_CP_ALIAS,
6094       .access = PL1_R, .accessfn = access_tda,
6095       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6096     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6097       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6098       .access = PL1_W, .type = ARM_CP_NO_RAW,
6099       .accessfn = access_tdosa,
6100       .writefn = oslar_write },
6101     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6103       .access = PL1_R, .resetvalue = 10,
6104       .accessfn = access_tdosa,
6105       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6106     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6107     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6108       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6109       .access = PL1_RW, .accessfn = access_tdosa,
6110       .type = ARM_CP_NOP },
6111     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6112      * implement vector catch debug events yet.
6113      */
6114     { .name = "DBGVCR",
6115       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6116       .access = PL1_RW, .accessfn = access_tda,
6117       .type = ARM_CP_NOP },
6118     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6119      * to save and restore a 32-bit guest's DBGVCR)
6120      */
6121     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6122       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6123       .access = PL2_RW, .accessfn = access_tda,
6124       .type = ARM_CP_NOP },
6125     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6126      * Channel but Linux may try to access this register. The 32-bit
6127      * alias is DBGDCCINT.
6128      */
6129     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6130       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6131       .access = PL1_RW, .accessfn = access_tda,
6132       .type = ARM_CP_NOP },
6133     REGINFO_SENTINEL
6134 };
6135 
6136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6137     /* 64 bit access versions of the (dummy) debug registers */
6138     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6139       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6140     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6141       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6142     REGINFO_SENTINEL
6143 };
6144 
6145 /* Return the exception level to which exceptions should be taken
6146  * via SVEAccessTrap.  If an exception should be routed through
6147  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6148  * take care of raising that exception.
6149  * C.f. the ARM pseudocode function CheckSVEEnabled.
6150  */
6151 int sve_exception_el(CPUARMState *env, int el)
6152 {
6153 #ifndef CONFIG_USER_ONLY
6154     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6155 
6156     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6157         bool disabled = false;
6158 
6159         /* The CPACR.ZEN controls traps to EL1:
6160          * 0, 2 : trap EL0 and EL1 accesses
6161          * 1    : trap only EL0 accesses
6162          * 3    : trap no accesses
6163          */
6164         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6165             disabled = true;
6166         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6167             disabled = el == 0;
6168         }
6169         if (disabled) {
6170             /* route_to_el2 */
6171             return hcr_el2 & HCR_TGE ? 2 : 1;
6172         }
6173 
6174         /* Check CPACR.FPEN.  */
6175         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6176             disabled = true;
6177         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6178             disabled = el == 0;
6179         }
6180         if (disabled) {
6181             return 0;
6182         }
6183     }
6184 
6185     /* CPTR_EL2.  Since TZ and TFP are positive,
6186      * they will be zero when EL2 is not present.
6187      */
6188     if (el <= 2 && arm_is_el2_enabled(env)) {
6189         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6190             return 2;
6191         }
6192         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6193             return 0;
6194         }
6195     }
6196 
6197     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6198     if (arm_feature(env, ARM_FEATURE_EL3)
6199         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6200         return 3;
6201     }
6202 #endif
6203     return 0;
6204 }
6205 
6206 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6207 {
6208     uint32_t end_len;
6209 
6210     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6211     end_len = start_len;
6212 
6213     if (!test_bit(start_len, cpu->sve_vq_map)) {
6214         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6215         assert(end_len < start_len);
6216     }
6217     return end_len;
6218 }
6219 
6220 /*
6221  * Given that SVE is enabled, return the vector length for EL.
6222  */
6223 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6224 {
6225     ARMCPU *cpu = env_archcpu(env);
6226     uint32_t zcr_len = cpu->sve_max_vq - 1;
6227 
6228     if (el <= 1) {
6229         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6230     }
6231     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6232         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6233     }
6234     if (arm_feature(env, ARM_FEATURE_EL3)) {
6235         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6236     }
6237 
6238     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6239 }
6240 
6241 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6242                       uint64_t value)
6243 {
6244     int cur_el = arm_current_el(env);
6245     int old_len = sve_zcr_len_for_el(env, cur_el);
6246     int new_len;
6247 
6248     /* Bits other than [3:0] are RAZ/WI.  */
6249     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6250     raw_write(env, ri, value & 0xf);
6251 
6252     /*
6253      * Because we arrived here, we know both FP and SVE are enabled;
6254      * otherwise we would have trapped access to the ZCR_ELn register.
6255      */
6256     new_len = sve_zcr_len_for_el(env, cur_el);
6257     if (new_len < old_len) {
6258         aarch64_sve_narrow_vq(env, new_len + 1);
6259     }
6260 }
6261 
6262 static const ARMCPRegInfo zcr_el1_reginfo = {
6263     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6264     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6265     .access = PL1_RW, .type = ARM_CP_SVE,
6266     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6267     .writefn = zcr_write, .raw_writefn = raw_write
6268 };
6269 
6270 static const ARMCPRegInfo zcr_el2_reginfo = {
6271     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6272     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6273     .access = PL2_RW, .type = ARM_CP_SVE,
6274     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6275     .writefn = zcr_write, .raw_writefn = raw_write
6276 };
6277 
6278 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6279     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6280     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6281     .access = PL2_RW, .type = ARM_CP_SVE,
6282     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6283 };
6284 
6285 static const ARMCPRegInfo zcr_el3_reginfo = {
6286     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6287     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6288     .access = PL3_RW, .type = ARM_CP_SVE,
6289     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6290     .writefn = zcr_write, .raw_writefn = raw_write
6291 };
6292 
6293 void hw_watchpoint_update(ARMCPU *cpu, int n)
6294 {
6295     CPUARMState *env = &cpu->env;
6296     vaddr len = 0;
6297     vaddr wvr = env->cp15.dbgwvr[n];
6298     uint64_t wcr = env->cp15.dbgwcr[n];
6299     int mask;
6300     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6301 
6302     if (env->cpu_watchpoint[n]) {
6303         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6304         env->cpu_watchpoint[n] = NULL;
6305     }
6306 
6307     if (!extract64(wcr, 0, 1)) {
6308         /* E bit clear : watchpoint disabled */
6309         return;
6310     }
6311 
6312     switch (extract64(wcr, 3, 2)) {
6313     case 0:
6314         /* LSC 00 is reserved and must behave as if the wp is disabled */
6315         return;
6316     case 1:
6317         flags |= BP_MEM_READ;
6318         break;
6319     case 2:
6320         flags |= BP_MEM_WRITE;
6321         break;
6322     case 3:
6323         flags |= BP_MEM_ACCESS;
6324         break;
6325     }
6326 
6327     /* Attempts to use both MASK and BAS fields simultaneously are
6328      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6329      * thus generating a watchpoint for every byte in the masked region.
6330      */
6331     mask = extract64(wcr, 24, 4);
6332     if (mask == 1 || mask == 2) {
6333         /* Reserved values of MASK; we must act as if the mask value was
6334          * some non-reserved value, or as if the watchpoint were disabled.
6335          * We choose the latter.
6336          */
6337         return;
6338     } else if (mask) {
6339         /* Watchpoint covers an aligned area up to 2GB in size */
6340         len = 1ULL << mask;
6341         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6342          * whether the watchpoint fires when the unmasked bits match; we opt
6343          * to generate the exceptions.
6344          */
6345         wvr &= ~(len - 1);
6346     } else {
6347         /* Watchpoint covers bytes defined by the byte address select bits */
6348         int bas = extract64(wcr, 5, 8);
6349         int basstart;
6350 
6351         if (extract64(wvr, 2, 1)) {
6352             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6353              * ignored, and BAS[3:0] define which bytes to watch.
6354              */
6355             bas &= 0xf;
6356         }
6357 
6358         if (bas == 0) {
6359             /* This must act as if the watchpoint is disabled */
6360             return;
6361         }
6362 
6363         /* The BAS bits are supposed to be programmed to indicate a contiguous
6364          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6365          * we fire for each byte in the word/doubleword addressed by the WVR.
6366          * We choose to ignore any non-zero bits after the first range of 1s.
6367          */
6368         basstart = ctz32(bas);
6369         len = cto32(bas >> basstart);
6370         wvr += basstart;
6371     }
6372 
6373     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6374                           &env->cpu_watchpoint[n]);
6375 }
6376 
6377 void hw_watchpoint_update_all(ARMCPU *cpu)
6378 {
6379     int i;
6380     CPUARMState *env = &cpu->env;
6381 
6382     /* Completely clear out existing QEMU watchpoints and our array, to
6383      * avoid possible stale entries following migration load.
6384      */
6385     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6386     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6387 
6388     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6389         hw_watchpoint_update(cpu, i);
6390     }
6391 }
6392 
6393 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6394                          uint64_t value)
6395 {
6396     ARMCPU *cpu = env_archcpu(env);
6397     int i = ri->crm;
6398 
6399     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6400      * register reads and behaves as if values written are sign extended.
6401      * Bits [1:0] are RES0.
6402      */
6403     value = sextract64(value, 0, 49) & ~3ULL;
6404 
6405     raw_write(env, ri, value);
6406     hw_watchpoint_update(cpu, i);
6407 }
6408 
6409 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6410                          uint64_t value)
6411 {
6412     ARMCPU *cpu = env_archcpu(env);
6413     int i = ri->crm;
6414 
6415     raw_write(env, ri, value);
6416     hw_watchpoint_update(cpu, i);
6417 }
6418 
6419 void hw_breakpoint_update(ARMCPU *cpu, int n)
6420 {
6421     CPUARMState *env = &cpu->env;
6422     uint64_t bvr = env->cp15.dbgbvr[n];
6423     uint64_t bcr = env->cp15.dbgbcr[n];
6424     vaddr addr;
6425     int bt;
6426     int flags = BP_CPU;
6427 
6428     if (env->cpu_breakpoint[n]) {
6429         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6430         env->cpu_breakpoint[n] = NULL;
6431     }
6432 
6433     if (!extract64(bcr, 0, 1)) {
6434         /* E bit clear : watchpoint disabled */
6435         return;
6436     }
6437 
6438     bt = extract64(bcr, 20, 4);
6439 
6440     switch (bt) {
6441     case 4: /* unlinked address mismatch (reserved if AArch64) */
6442     case 5: /* linked address mismatch (reserved if AArch64) */
6443         qemu_log_mask(LOG_UNIMP,
6444                       "arm: address mismatch breakpoint types not implemented\n");
6445         return;
6446     case 0: /* unlinked address match */
6447     case 1: /* linked address match */
6448     {
6449         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6450          * we behave as if the register was sign extended. Bits [1:0] are
6451          * RES0. The BAS field is used to allow setting breakpoints on 16
6452          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6453          * a bp will fire if the addresses covered by the bp and the addresses
6454          * covered by the insn overlap but the insn doesn't start at the
6455          * start of the bp address range. We choose to require the insn and
6456          * the bp to have the same address. The constraints on writing to
6457          * BAS enforced in dbgbcr_write mean we have only four cases:
6458          *  0b0000  => no breakpoint
6459          *  0b0011  => breakpoint on addr
6460          *  0b1100  => breakpoint on addr + 2
6461          *  0b1111  => breakpoint on addr
6462          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6463          */
6464         int bas = extract64(bcr, 5, 4);
6465         addr = sextract64(bvr, 0, 49) & ~3ULL;
6466         if (bas == 0) {
6467             return;
6468         }
6469         if (bas == 0xc) {
6470             addr += 2;
6471         }
6472         break;
6473     }
6474     case 2: /* unlinked context ID match */
6475     case 8: /* unlinked VMID match (reserved if no EL2) */
6476     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6477         qemu_log_mask(LOG_UNIMP,
6478                       "arm: unlinked context breakpoint types not implemented\n");
6479         return;
6480     case 9: /* linked VMID match (reserved if no EL2) */
6481     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6482     case 3: /* linked context ID match */
6483     default:
6484         /* We must generate no events for Linked context matches (unless
6485          * they are linked to by some other bp/wp, which is handled in
6486          * updates for the linking bp/wp). We choose to also generate no events
6487          * for reserved values.
6488          */
6489         return;
6490     }
6491 
6492     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6493 }
6494 
6495 void hw_breakpoint_update_all(ARMCPU *cpu)
6496 {
6497     int i;
6498     CPUARMState *env = &cpu->env;
6499 
6500     /* Completely clear out existing QEMU breakpoints and our array, to
6501      * avoid possible stale entries following migration load.
6502      */
6503     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6504     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6505 
6506     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6507         hw_breakpoint_update(cpu, i);
6508     }
6509 }
6510 
6511 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6512                          uint64_t value)
6513 {
6514     ARMCPU *cpu = env_archcpu(env);
6515     int i = ri->crm;
6516 
6517     raw_write(env, ri, value);
6518     hw_breakpoint_update(cpu, i);
6519 }
6520 
6521 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6522                          uint64_t value)
6523 {
6524     ARMCPU *cpu = env_archcpu(env);
6525     int i = ri->crm;
6526 
6527     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6528      * copy of BAS[0].
6529      */
6530     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6531     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6532 
6533     raw_write(env, ri, value);
6534     hw_breakpoint_update(cpu, i);
6535 }
6536 
6537 static void define_debug_regs(ARMCPU *cpu)
6538 {
6539     /* Define v7 and v8 architectural debug registers.
6540      * These are just dummy implementations for now.
6541      */
6542     int i;
6543     int wrps, brps, ctx_cmps;
6544 
6545     /*
6546      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6547      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6548      * the register must not exist for this cpu.
6549      */
6550     if (cpu->isar.dbgdidr != 0) {
6551         ARMCPRegInfo dbgdidr = {
6552             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6553             .opc1 = 0, .opc2 = 0,
6554             .access = PL0_R, .accessfn = access_tda,
6555             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6556         };
6557         define_one_arm_cp_reg(cpu, &dbgdidr);
6558     }
6559 
6560     /* Note that all these register fields hold "number of Xs minus 1". */
6561     brps = arm_num_brps(cpu);
6562     wrps = arm_num_wrps(cpu);
6563     ctx_cmps = arm_num_ctx_cmps(cpu);
6564 
6565     assert(ctx_cmps <= brps);
6566 
6567     define_arm_cp_regs(cpu, debug_cp_reginfo);
6568 
6569     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6570         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6571     }
6572 
6573     for (i = 0; i < brps; i++) {
6574         ARMCPRegInfo dbgregs[] = {
6575             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6576               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6577               .access = PL1_RW, .accessfn = access_tda,
6578               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6579               .writefn = dbgbvr_write, .raw_writefn = raw_write
6580             },
6581             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6582               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6583               .access = PL1_RW, .accessfn = access_tda,
6584               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6585               .writefn = dbgbcr_write, .raw_writefn = raw_write
6586             },
6587             REGINFO_SENTINEL
6588         };
6589         define_arm_cp_regs(cpu, dbgregs);
6590     }
6591 
6592     for (i = 0; i < wrps; i++) {
6593         ARMCPRegInfo dbgregs[] = {
6594             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6595               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6596               .access = PL1_RW, .accessfn = access_tda,
6597               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6598               .writefn = dbgwvr_write, .raw_writefn = raw_write
6599             },
6600             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6601               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6602               .access = PL1_RW, .accessfn = access_tda,
6603               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6604               .writefn = dbgwcr_write, .raw_writefn = raw_write
6605             },
6606             REGINFO_SENTINEL
6607         };
6608         define_arm_cp_regs(cpu, dbgregs);
6609     }
6610 }
6611 
6612 static void define_pmu_regs(ARMCPU *cpu)
6613 {
6614     /*
6615      * v7 performance monitor control register: same implementor
6616      * field as main ID register, and we implement four counters in
6617      * addition to the cycle count register.
6618      */
6619     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6620     ARMCPRegInfo pmcr = {
6621         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6622         .access = PL0_RW,
6623         .type = ARM_CP_IO | ARM_CP_ALIAS,
6624         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6625         .accessfn = pmreg_access, .writefn = pmcr_write,
6626         .raw_writefn = raw_write,
6627     };
6628     ARMCPRegInfo pmcr64 = {
6629         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6630         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6631         .access = PL0_RW, .accessfn = pmreg_access,
6632         .type = ARM_CP_IO,
6633         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6634         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6635                       PMCRLC,
6636         .writefn = pmcr_write, .raw_writefn = raw_write,
6637     };
6638     define_one_arm_cp_reg(cpu, &pmcr);
6639     define_one_arm_cp_reg(cpu, &pmcr64);
6640     for (i = 0; i < pmcrn; i++) {
6641         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6642         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6643         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6644         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6645         ARMCPRegInfo pmev_regs[] = {
6646             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6647               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6648               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6649               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6650               .accessfn = pmreg_access },
6651             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6652               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6653               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6654               .type = ARM_CP_IO,
6655               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6656               .raw_readfn = pmevcntr_rawread,
6657               .raw_writefn = pmevcntr_rawwrite },
6658             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6659               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6660               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6661               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6662               .accessfn = pmreg_access },
6663             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6664               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6665               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6666               .type = ARM_CP_IO,
6667               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6668               .raw_writefn = pmevtyper_rawwrite },
6669             REGINFO_SENTINEL
6670         };
6671         define_arm_cp_regs(cpu, pmev_regs);
6672         g_free(pmevcntr_name);
6673         g_free(pmevcntr_el0_name);
6674         g_free(pmevtyper_name);
6675         g_free(pmevtyper_el0_name);
6676     }
6677     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6678         ARMCPRegInfo v81_pmu_regs[] = {
6679             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6680               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6681               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6682               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6683             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6684               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6685               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6686               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6687             REGINFO_SENTINEL
6688         };
6689         define_arm_cp_regs(cpu, v81_pmu_regs);
6690     }
6691     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6692         static const ARMCPRegInfo v84_pmmir = {
6693             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6694             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6695             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6696             .resetvalue = 0
6697         };
6698         define_one_arm_cp_reg(cpu, &v84_pmmir);
6699     }
6700 }
6701 
6702 /* We don't know until after realize whether there's a GICv3
6703  * attached, and that is what registers the gicv3 sysregs.
6704  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6705  * at runtime.
6706  */
6707 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6708 {
6709     ARMCPU *cpu = env_archcpu(env);
6710     uint64_t pfr1 = cpu->isar.id_pfr1;
6711 
6712     if (env->gicv3state) {
6713         pfr1 |= 1 << 28;
6714     }
6715     return pfr1;
6716 }
6717 
6718 #ifndef CONFIG_USER_ONLY
6719 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6720 {
6721     ARMCPU *cpu = env_archcpu(env);
6722     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6723 
6724     if (env->gicv3state) {
6725         pfr0 |= 1 << 24;
6726     }
6727     return pfr0;
6728 }
6729 #endif
6730 
6731 /* Shared logic between LORID and the rest of the LOR* registers.
6732  * Secure state exclusion has already been dealt with.
6733  */
6734 static CPAccessResult access_lor_ns(CPUARMState *env,
6735                                     const ARMCPRegInfo *ri, bool isread)
6736 {
6737     int el = arm_current_el(env);
6738 
6739     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6740         return CP_ACCESS_TRAP_EL2;
6741     }
6742     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6743         return CP_ACCESS_TRAP_EL3;
6744     }
6745     return CP_ACCESS_OK;
6746 }
6747 
6748 static CPAccessResult access_lor_other(CPUARMState *env,
6749                                        const ARMCPRegInfo *ri, bool isread)
6750 {
6751     if (arm_is_secure_below_el3(env)) {
6752         /* Access denied in secure mode.  */
6753         return CP_ACCESS_TRAP;
6754     }
6755     return access_lor_ns(env, ri, isread);
6756 }
6757 
6758 /*
6759  * A trivial implementation of ARMv8.1-LOR leaves all of these
6760  * registers fixed at 0, which indicates that there are zero
6761  * supported Limited Ordering regions.
6762  */
6763 static const ARMCPRegInfo lor_reginfo[] = {
6764     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6765       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6766       .access = PL1_RW, .accessfn = access_lor_other,
6767       .type = ARM_CP_CONST, .resetvalue = 0 },
6768     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6769       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6770       .access = PL1_RW, .accessfn = access_lor_other,
6771       .type = ARM_CP_CONST, .resetvalue = 0 },
6772     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6773       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6774       .access = PL1_RW, .accessfn = access_lor_other,
6775       .type = ARM_CP_CONST, .resetvalue = 0 },
6776     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6777       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6778       .access = PL1_RW, .accessfn = access_lor_other,
6779       .type = ARM_CP_CONST, .resetvalue = 0 },
6780     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6781       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6782       .access = PL1_R, .accessfn = access_lor_ns,
6783       .type = ARM_CP_CONST, .resetvalue = 0 },
6784     REGINFO_SENTINEL
6785 };
6786 
6787 #ifdef TARGET_AARCH64
6788 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6789                                    bool isread)
6790 {
6791     int el = arm_current_el(env);
6792 
6793     if (el < 2 &&
6794         arm_feature(env, ARM_FEATURE_EL2) &&
6795         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6796         return CP_ACCESS_TRAP_EL2;
6797     }
6798     if (el < 3 &&
6799         arm_feature(env, ARM_FEATURE_EL3) &&
6800         !(env->cp15.scr_el3 & SCR_APK)) {
6801         return CP_ACCESS_TRAP_EL3;
6802     }
6803     return CP_ACCESS_OK;
6804 }
6805 
6806 static const ARMCPRegInfo pauth_reginfo[] = {
6807     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6808       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6809       .access = PL1_RW, .accessfn = access_pauth,
6810       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6811     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6812       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6813       .access = PL1_RW, .accessfn = access_pauth,
6814       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6815     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6816       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6817       .access = PL1_RW, .accessfn = access_pauth,
6818       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6819     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6820       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6821       .access = PL1_RW, .accessfn = access_pauth,
6822       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6823     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6824       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6825       .access = PL1_RW, .accessfn = access_pauth,
6826       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6827     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6828       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6829       .access = PL1_RW, .accessfn = access_pauth,
6830       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6831     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6832       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6833       .access = PL1_RW, .accessfn = access_pauth,
6834       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6835     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6836       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6837       .access = PL1_RW, .accessfn = access_pauth,
6838       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6839     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6840       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6841       .access = PL1_RW, .accessfn = access_pauth,
6842       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6843     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6844       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6845       .access = PL1_RW, .accessfn = access_pauth,
6846       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6847     REGINFO_SENTINEL
6848 };
6849 
6850 static const ARMCPRegInfo tlbirange_reginfo[] = {
6851     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6852       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6853       .access = PL1_W, .type = ARM_CP_NO_RAW,
6854       .writefn = tlbi_aa64_rvae1is_write },
6855     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6856       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6857       .access = PL1_W, .type = ARM_CP_NO_RAW,
6858       .writefn = tlbi_aa64_rvae1is_write },
6859    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6860       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6861       .access = PL1_W, .type = ARM_CP_NO_RAW,
6862       .writefn = tlbi_aa64_rvae1is_write },
6863     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6864       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6865       .access = PL1_W, .type = ARM_CP_NO_RAW,
6866       .writefn = tlbi_aa64_rvae1is_write },
6867     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6868       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6869       .access = PL1_W, .type = ARM_CP_NO_RAW,
6870       .writefn = tlbi_aa64_rvae1is_write },
6871     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6872       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6873       .access = PL1_W, .type = ARM_CP_NO_RAW,
6874       .writefn = tlbi_aa64_rvae1is_write },
6875    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6876       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6877       .access = PL1_W, .type = ARM_CP_NO_RAW,
6878       .writefn = tlbi_aa64_rvae1is_write },
6879     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6880       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6881       .access = PL1_W, .type = ARM_CP_NO_RAW,
6882       .writefn = tlbi_aa64_rvae1is_write },
6883     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6884       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6885       .access = PL1_W, .type = ARM_CP_NO_RAW,
6886       .writefn = tlbi_aa64_rvae1_write },
6887     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6888       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6889       .access = PL1_W, .type = ARM_CP_NO_RAW,
6890       .writefn = tlbi_aa64_rvae1_write },
6891    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6892       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6893       .access = PL1_W, .type = ARM_CP_NO_RAW,
6894       .writefn = tlbi_aa64_rvae1_write },
6895     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6896       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6897       .access = PL1_W, .type = ARM_CP_NO_RAW,
6898       .writefn = tlbi_aa64_rvae1_write },
6899     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6900       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6901       .access = PL2_W, .type = ARM_CP_NOP },
6902     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6904       .access = PL2_W, .type = ARM_CP_NOP },
6905     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6907       .access = PL2_W, .type = ARM_CP_NO_RAW,
6908       .writefn = tlbi_aa64_rvae2is_write },
6909    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6911       .access = PL2_W, .type = ARM_CP_NO_RAW,
6912       .writefn = tlbi_aa64_rvae2is_write },
6913     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6915       .access = PL2_W, .type = ARM_CP_NOP },
6916    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6917       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6918       .access = PL2_W, .type = ARM_CP_NOP },
6919    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6920       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6921       .access = PL2_W, .type = ARM_CP_NO_RAW,
6922       .writefn = tlbi_aa64_rvae2is_write },
6923    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6924       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6925       .access = PL2_W, .type = ARM_CP_NO_RAW,
6926       .writefn = tlbi_aa64_rvae2is_write },
6927     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6929       .access = PL2_W, .type = ARM_CP_NO_RAW,
6930       .writefn = tlbi_aa64_rvae2_write },
6931    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6933       .access = PL2_W, .type = ARM_CP_NO_RAW,
6934       .writefn = tlbi_aa64_rvae2_write },
6935    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6936       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6937       .access = PL3_W, .type = ARM_CP_NO_RAW,
6938       .writefn = tlbi_aa64_rvae3is_write },
6939    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6940       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6941       .access = PL3_W, .type = ARM_CP_NO_RAW,
6942       .writefn = tlbi_aa64_rvae3is_write },
6943    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6944       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6945       .access = PL3_W, .type = ARM_CP_NO_RAW,
6946       .writefn = tlbi_aa64_rvae3is_write },
6947    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6948       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6949       .access = PL3_W, .type = ARM_CP_NO_RAW,
6950       .writefn = tlbi_aa64_rvae3is_write },
6951    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6952       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6953       .access = PL3_W, .type = ARM_CP_NO_RAW,
6954       .writefn = tlbi_aa64_rvae3_write },
6955    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6956       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6957       .access = PL3_W, .type = ARM_CP_NO_RAW,
6958       .writefn = tlbi_aa64_rvae3_write },
6959     REGINFO_SENTINEL
6960 };
6961 
6962 static const ARMCPRegInfo tlbios_reginfo[] = {
6963     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6964       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6965       .access = PL1_W, .type = ARM_CP_NO_RAW,
6966       .writefn = tlbi_aa64_vmalle1is_write },
6967     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6968       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6969       .access = PL1_W, .type = ARM_CP_NO_RAW,
6970       .writefn = tlbi_aa64_vmalle1is_write },
6971     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6972       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6973       .access = PL2_W, .type = ARM_CP_NO_RAW,
6974       .writefn = tlbi_aa64_alle2is_write },
6975    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6976       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6977       .access = PL2_W, .type = ARM_CP_NO_RAW,
6978       .writefn = tlbi_aa64_alle1is_write },
6979     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
6980       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
6981       .access = PL2_W, .type = ARM_CP_NO_RAW,
6982       .writefn = tlbi_aa64_alle1is_write },
6983     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
6984       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
6985       .access = PL2_W, .type = ARM_CP_NOP },
6986     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
6987       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
6988       .access = PL2_W, .type = ARM_CP_NOP },
6989     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6990       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
6991       .access = PL2_W, .type = ARM_CP_NOP },
6992     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
6993       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
6994       .access = PL2_W, .type = ARM_CP_NOP },
6995     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
6996       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
6997       .access = PL3_W, .type = ARM_CP_NO_RAW,
6998       .writefn = tlbi_aa64_alle3is_write },
6999     REGINFO_SENTINEL
7000 };
7001 
7002 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7003 {
7004     Error *err = NULL;
7005     uint64_t ret;
7006 
7007     /* Success sets NZCV = 0000.  */
7008     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7009 
7010     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7011         /*
7012          * ??? Failed, for unknown reasons in the crypto subsystem.
7013          * The best we can do is log the reason and return the
7014          * timed-out indication to the guest.  There is no reason
7015          * we know to expect this failure to be transitory, so the
7016          * guest may well hang retrying the operation.
7017          */
7018         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7019                       ri->name, error_get_pretty(err));
7020         error_free(err);
7021 
7022         env->ZF = 0; /* NZCF = 0100 */
7023         return 0;
7024     }
7025     return ret;
7026 }
7027 
7028 /* We do not support re-seeding, so the two registers operate the same.  */
7029 static const ARMCPRegInfo rndr_reginfo[] = {
7030     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7031       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7032       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7033       .access = PL0_R, .readfn = rndr_readfn },
7034     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7035       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7036       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7037       .access = PL0_R, .readfn = rndr_readfn },
7038     REGINFO_SENTINEL
7039 };
7040 
7041 #ifndef CONFIG_USER_ONLY
7042 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7043                           uint64_t value)
7044 {
7045     ARMCPU *cpu = env_archcpu(env);
7046     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7047     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7048     uint64_t vaddr_in = (uint64_t) value;
7049     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7050     void *haddr;
7051     int mem_idx = cpu_mmu_index(env, false);
7052 
7053     /* This won't be crossing page boundaries */
7054     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7055     if (haddr) {
7056 
7057         ram_addr_t offset;
7058         MemoryRegion *mr;
7059 
7060         /* RCU lock is already being held */
7061         mr = memory_region_from_host(haddr, &offset);
7062 
7063         if (mr) {
7064             memory_region_writeback(mr, offset, dline_size);
7065         }
7066     }
7067 }
7068 
7069 static const ARMCPRegInfo dcpop_reg[] = {
7070     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7071       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7072       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7073       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7074     REGINFO_SENTINEL
7075 };
7076 
7077 static const ARMCPRegInfo dcpodp_reg[] = {
7078     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7079       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7080       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7081       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7082     REGINFO_SENTINEL
7083 };
7084 #endif /*CONFIG_USER_ONLY*/
7085 
7086 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7087                                        bool isread)
7088 {
7089     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7090         return CP_ACCESS_TRAP_EL2;
7091     }
7092 
7093     return CP_ACCESS_OK;
7094 }
7095 
7096 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7097                                  bool isread)
7098 {
7099     int el = arm_current_el(env);
7100 
7101     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7102         uint64_t hcr = arm_hcr_el2_eff(env);
7103         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7104             return CP_ACCESS_TRAP_EL2;
7105         }
7106     }
7107     if (el < 3 &&
7108         arm_feature(env, ARM_FEATURE_EL3) &&
7109         !(env->cp15.scr_el3 & SCR_ATA)) {
7110         return CP_ACCESS_TRAP_EL3;
7111     }
7112     return CP_ACCESS_OK;
7113 }
7114 
7115 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7116 {
7117     return env->pstate & PSTATE_TCO;
7118 }
7119 
7120 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7121 {
7122     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7123 }
7124 
7125 static const ARMCPRegInfo mte_reginfo[] = {
7126     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7127       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7128       .access = PL1_RW, .accessfn = access_mte,
7129       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7130     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7131       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7132       .access = PL1_RW, .accessfn = access_mte,
7133       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7134     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7135       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7136       .access = PL2_RW, .accessfn = access_mte,
7137       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7138     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7139       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7140       .access = PL3_RW,
7141       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7142     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7143       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7144       .access = PL1_RW, .accessfn = access_mte,
7145       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7146     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7147       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7148       .access = PL1_RW, .accessfn = access_mte,
7149       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7150     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7151       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7152       .access = PL1_R, .accessfn = access_aa64_tid5,
7153       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7154     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7155       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7156       .type = ARM_CP_NO_RAW,
7157       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7158     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7160       .type = ARM_CP_NOP, .access = PL1_W,
7161       .accessfn = aa64_cacheop_poc_access },
7162     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7163       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7164       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7165     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7166       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7167       .type = ARM_CP_NOP, .access = PL1_W,
7168       .accessfn = aa64_cacheop_poc_access },
7169     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7170       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7171       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7172     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7173       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7174       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7175     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7176       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7177       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7178     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7179       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7180       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7181     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7182       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7183       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7184     REGINFO_SENTINEL
7185 };
7186 
7187 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7188     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7189       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7190       .type = ARM_CP_CONST, .access = PL0_RW, },
7191     REGINFO_SENTINEL
7192 };
7193 
7194 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7195     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7196       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7197       .type = ARM_CP_NOP, .access = PL0_W,
7198       .accessfn = aa64_cacheop_poc_access },
7199     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7201       .type = ARM_CP_NOP, .access = PL0_W,
7202       .accessfn = aa64_cacheop_poc_access },
7203     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7204       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7205       .type = ARM_CP_NOP, .access = PL0_W,
7206       .accessfn = aa64_cacheop_poc_access },
7207     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7209       .type = ARM_CP_NOP, .access = PL0_W,
7210       .accessfn = aa64_cacheop_poc_access },
7211     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7212       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7213       .type = ARM_CP_NOP, .access = PL0_W,
7214       .accessfn = aa64_cacheop_poc_access },
7215     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7216       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7217       .type = ARM_CP_NOP, .access = PL0_W,
7218       .accessfn = aa64_cacheop_poc_access },
7219     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7220       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7221       .type = ARM_CP_NOP, .access = PL0_W,
7222       .accessfn = aa64_cacheop_poc_access },
7223     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7224       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7225       .type = ARM_CP_NOP, .access = PL0_W,
7226       .accessfn = aa64_cacheop_poc_access },
7227     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7229       .access = PL0_W, .type = ARM_CP_DC_GVA,
7230 #ifndef CONFIG_USER_ONLY
7231       /* Avoid overhead of an access check that always passes in user-mode */
7232       .accessfn = aa64_zva_access,
7233 #endif
7234     },
7235     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7237       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7238 #ifndef CONFIG_USER_ONLY
7239       /* Avoid overhead of an access check that always passes in user-mode */
7240       .accessfn = aa64_zva_access,
7241 #endif
7242     },
7243     REGINFO_SENTINEL
7244 };
7245 
7246 #endif
7247 
7248 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7249                                      bool isread)
7250 {
7251     int el = arm_current_el(env);
7252 
7253     if (el == 0) {
7254         uint64_t sctlr = arm_sctlr(env, el);
7255         if (!(sctlr & SCTLR_EnRCTX)) {
7256             return CP_ACCESS_TRAP;
7257         }
7258     } else if (el == 1) {
7259         uint64_t hcr = arm_hcr_el2_eff(env);
7260         if (hcr & HCR_NV) {
7261             return CP_ACCESS_TRAP_EL2;
7262         }
7263     }
7264     return CP_ACCESS_OK;
7265 }
7266 
7267 static const ARMCPRegInfo predinv_reginfo[] = {
7268     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7270       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7271     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7272       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7273       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7274     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7275       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7276       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7277     /*
7278      * Note the AArch32 opcodes have a different OPC1.
7279      */
7280     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7281       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7282       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7283     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7284       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7285       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7286     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7287       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7288       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7289     REGINFO_SENTINEL
7290 };
7291 
7292 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7293 {
7294     /* Read the high 32 bits of the current CCSIDR */
7295     return extract64(ccsidr_read(env, ri), 32, 32);
7296 }
7297 
7298 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7299     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7300       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7301       .access = PL1_R,
7302       .accessfn = access_aa64_tid2,
7303       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7304     REGINFO_SENTINEL
7305 };
7306 
7307 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7308                                        bool isread)
7309 {
7310     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7311         return CP_ACCESS_TRAP_EL2;
7312     }
7313 
7314     return CP_ACCESS_OK;
7315 }
7316 
7317 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7318                                        bool isread)
7319 {
7320     if (arm_feature(env, ARM_FEATURE_V8)) {
7321         return access_aa64_tid3(env, ri, isread);
7322     }
7323 
7324     return CP_ACCESS_OK;
7325 }
7326 
7327 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7328                                      bool isread)
7329 {
7330     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7331         return CP_ACCESS_TRAP_EL2;
7332     }
7333 
7334     return CP_ACCESS_OK;
7335 }
7336 
7337 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7338                                         const ARMCPRegInfo *ri, bool isread)
7339 {
7340     /*
7341      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7342      * in v7A, not in v8A.
7343      */
7344     if (!arm_feature(env, ARM_FEATURE_V8) &&
7345         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7346         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7347         return CP_ACCESS_TRAP_EL2;
7348     }
7349     return CP_ACCESS_OK;
7350 }
7351 
7352 static const ARMCPRegInfo jazelle_regs[] = {
7353     { .name = "JIDR",
7354       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7355       .access = PL1_R, .accessfn = access_jazelle,
7356       .type = ARM_CP_CONST, .resetvalue = 0 },
7357     { .name = "JOSCR",
7358       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7359       .accessfn = access_joscr_jmcr,
7360       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7361     { .name = "JMCR",
7362       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7363       .accessfn = access_joscr_jmcr,
7364       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7365     REGINFO_SENTINEL
7366 };
7367 
7368 static const ARMCPRegInfo vhe_reginfo[] = {
7369     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7371       .access = PL2_RW,
7372       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7373     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7374       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7375       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7376       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7377 #ifndef CONFIG_USER_ONLY
7378     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7379       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7380       .fieldoffset =
7381         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7382       .type = ARM_CP_IO, .access = PL2_RW,
7383       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7384     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7385       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7386       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7387       .resetfn = gt_hv_timer_reset,
7388       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7389     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7390       .type = ARM_CP_IO,
7391       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7392       .access = PL2_RW,
7393       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7394       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7395     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7396       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7397       .type = ARM_CP_IO | ARM_CP_ALIAS,
7398       .access = PL2_RW, .accessfn = e2h_access,
7399       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7400       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7401     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7402       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7403       .type = ARM_CP_IO | ARM_CP_ALIAS,
7404       .access = PL2_RW, .accessfn = e2h_access,
7405       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7406       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7407     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7408       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7409       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7410       .access = PL2_RW, .accessfn = e2h_access,
7411       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7412     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7414       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7415       .access = PL2_RW, .accessfn = e2h_access,
7416       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7417     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7418       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7419       .type = ARM_CP_IO | ARM_CP_ALIAS,
7420       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7421       .access = PL2_RW, .accessfn = e2h_access,
7422       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7423     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7424       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7425       .type = ARM_CP_IO | ARM_CP_ALIAS,
7426       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7427       .access = PL2_RW, .accessfn = e2h_access,
7428       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7429 #endif
7430     REGINFO_SENTINEL
7431 };
7432 
7433 #ifndef CONFIG_USER_ONLY
7434 static const ARMCPRegInfo ats1e1_reginfo[] = {
7435     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7436       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7437       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7438       .writefn = ats_write64 },
7439     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7440       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7441       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7442       .writefn = ats_write64 },
7443     REGINFO_SENTINEL
7444 };
7445 
7446 static const ARMCPRegInfo ats1cp_reginfo[] = {
7447     { .name = "ATS1CPRP",
7448       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7449       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7450       .writefn = ats_write },
7451     { .name = "ATS1CPWP",
7452       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7453       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7454       .writefn = ats_write },
7455     REGINFO_SENTINEL
7456 };
7457 #endif
7458 
7459 /*
7460  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7461  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7462  * is non-zero, which is never for ARMv7, optionally in ARMv8
7463  * and mandatorily for ARMv8.2 and up.
7464  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7465  * implementation is RAZ/WI we can ignore this detail, as we
7466  * do for ACTLR.
7467  */
7468 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7469     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7470       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7471       .access = PL1_RW, .accessfn = access_tacr,
7472       .type = ARM_CP_CONST, .resetvalue = 0 },
7473     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7474       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7475       .access = PL2_RW, .type = ARM_CP_CONST,
7476       .resetvalue = 0 },
7477     REGINFO_SENTINEL
7478 };
7479 
7480 void register_cp_regs_for_features(ARMCPU *cpu)
7481 {
7482     /* Register all the coprocessor registers based on feature bits */
7483     CPUARMState *env = &cpu->env;
7484     if (arm_feature(env, ARM_FEATURE_M)) {
7485         /* M profile has no coprocessor registers */
7486         return;
7487     }
7488 
7489     define_arm_cp_regs(cpu, cp_reginfo);
7490     if (!arm_feature(env, ARM_FEATURE_V8)) {
7491         /* Must go early as it is full of wildcards that may be
7492          * overridden by later definitions.
7493          */
7494         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7495     }
7496 
7497     if (arm_feature(env, ARM_FEATURE_V6)) {
7498         /* The ID registers all have impdef reset values */
7499         ARMCPRegInfo v6_idregs[] = {
7500             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7501               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7502               .access = PL1_R, .type = ARM_CP_CONST,
7503               .accessfn = access_aa32_tid3,
7504               .resetvalue = cpu->isar.id_pfr0 },
7505             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7506              * the value of the GIC field until after we define these regs.
7507              */
7508             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7509               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7510               .access = PL1_R, .type = ARM_CP_NO_RAW,
7511               .accessfn = access_aa32_tid3,
7512               .readfn = id_pfr1_read,
7513               .writefn = arm_cp_write_ignore },
7514             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7515               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7516               .access = PL1_R, .type = ARM_CP_CONST,
7517               .accessfn = access_aa32_tid3,
7518               .resetvalue = cpu->isar.id_dfr0 },
7519             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7520               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7521               .access = PL1_R, .type = ARM_CP_CONST,
7522               .accessfn = access_aa32_tid3,
7523               .resetvalue = cpu->id_afr0 },
7524             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7525               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7526               .access = PL1_R, .type = ARM_CP_CONST,
7527               .accessfn = access_aa32_tid3,
7528               .resetvalue = cpu->isar.id_mmfr0 },
7529             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7530               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7531               .access = PL1_R, .type = ARM_CP_CONST,
7532               .accessfn = access_aa32_tid3,
7533               .resetvalue = cpu->isar.id_mmfr1 },
7534             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7535               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7536               .access = PL1_R, .type = ARM_CP_CONST,
7537               .accessfn = access_aa32_tid3,
7538               .resetvalue = cpu->isar.id_mmfr2 },
7539             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7540               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7541               .access = PL1_R, .type = ARM_CP_CONST,
7542               .accessfn = access_aa32_tid3,
7543               .resetvalue = cpu->isar.id_mmfr3 },
7544             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7545               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7546               .access = PL1_R, .type = ARM_CP_CONST,
7547               .accessfn = access_aa32_tid3,
7548               .resetvalue = cpu->isar.id_isar0 },
7549             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7550               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7551               .access = PL1_R, .type = ARM_CP_CONST,
7552               .accessfn = access_aa32_tid3,
7553               .resetvalue = cpu->isar.id_isar1 },
7554             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7555               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7556               .access = PL1_R, .type = ARM_CP_CONST,
7557               .accessfn = access_aa32_tid3,
7558               .resetvalue = cpu->isar.id_isar2 },
7559             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7561               .access = PL1_R, .type = ARM_CP_CONST,
7562               .accessfn = access_aa32_tid3,
7563               .resetvalue = cpu->isar.id_isar3 },
7564             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7565               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7566               .access = PL1_R, .type = ARM_CP_CONST,
7567               .accessfn = access_aa32_tid3,
7568               .resetvalue = cpu->isar.id_isar4 },
7569             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7570               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7571               .access = PL1_R, .type = ARM_CP_CONST,
7572               .accessfn = access_aa32_tid3,
7573               .resetvalue = cpu->isar.id_isar5 },
7574             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7575               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7576               .access = PL1_R, .type = ARM_CP_CONST,
7577               .accessfn = access_aa32_tid3,
7578               .resetvalue = cpu->isar.id_mmfr4 },
7579             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7580               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7581               .access = PL1_R, .type = ARM_CP_CONST,
7582               .accessfn = access_aa32_tid3,
7583               .resetvalue = cpu->isar.id_isar6 },
7584             REGINFO_SENTINEL
7585         };
7586         define_arm_cp_regs(cpu, v6_idregs);
7587         define_arm_cp_regs(cpu, v6_cp_reginfo);
7588     } else {
7589         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7590     }
7591     if (arm_feature(env, ARM_FEATURE_V6K)) {
7592         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7593     }
7594     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7595         !arm_feature(env, ARM_FEATURE_PMSA)) {
7596         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7597     }
7598     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7599         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7600     }
7601     if (arm_feature(env, ARM_FEATURE_V7)) {
7602         ARMCPRegInfo clidr = {
7603             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7604             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7605             .access = PL1_R, .type = ARM_CP_CONST,
7606             .accessfn = access_aa64_tid2,
7607             .resetvalue = cpu->clidr
7608         };
7609         define_one_arm_cp_reg(cpu, &clidr);
7610         define_arm_cp_regs(cpu, v7_cp_reginfo);
7611         define_debug_regs(cpu);
7612         define_pmu_regs(cpu);
7613     } else {
7614         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7615     }
7616     if (arm_feature(env, ARM_FEATURE_V8)) {
7617         /* AArch64 ID registers, which all have impdef reset values.
7618          * Note that within the ID register ranges the unused slots
7619          * must all RAZ, not UNDEF; future architecture versions may
7620          * define new registers here.
7621          */
7622         ARMCPRegInfo v8_idregs[] = {
7623             /*
7624              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7625              * emulation because we don't know the right value for the
7626              * GIC field until after we define these regs.
7627              */
7628             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7629               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7630               .access = PL1_R,
7631 #ifdef CONFIG_USER_ONLY
7632               .type = ARM_CP_CONST,
7633               .resetvalue = cpu->isar.id_aa64pfr0
7634 #else
7635               .type = ARM_CP_NO_RAW,
7636               .accessfn = access_aa64_tid3,
7637               .readfn = id_aa64pfr0_read,
7638               .writefn = arm_cp_write_ignore
7639 #endif
7640             },
7641             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7642               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7643               .access = PL1_R, .type = ARM_CP_CONST,
7644               .accessfn = access_aa64_tid3,
7645               .resetvalue = cpu->isar.id_aa64pfr1},
7646             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7647               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7648               .access = PL1_R, .type = ARM_CP_CONST,
7649               .accessfn = access_aa64_tid3,
7650               .resetvalue = 0 },
7651             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7652               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7653               .access = PL1_R, .type = ARM_CP_CONST,
7654               .accessfn = access_aa64_tid3,
7655               .resetvalue = 0 },
7656             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7657               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7658               .access = PL1_R, .type = ARM_CP_CONST,
7659               .accessfn = access_aa64_tid3,
7660               .resetvalue = cpu->isar.id_aa64zfr0 },
7661             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7662               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7663               .access = PL1_R, .type = ARM_CP_CONST,
7664               .accessfn = access_aa64_tid3,
7665               .resetvalue = 0 },
7666             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7667               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7668               .access = PL1_R, .type = ARM_CP_CONST,
7669               .accessfn = access_aa64_tid3,
7670               .resetvalue = 0 },
7671             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7672               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7673               .access = PL1_R, .type = ARM_CP_CONST,
7674               .accessfn = access_aa64_tid3,
7675               .resetvalue = 0 },
7676             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7677               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7678               .access = PL1_R, .type = ARM_CP_CONST,
7679               .accessfn = access_aa64_tid3,
7680               .resetvalue = cpu->isar.id_aa64dfr0 },
7681             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7682               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7683               .access = PL1_R, .type = ARM_CP_CONST,
7684               .accessfn = access_aa64_tid3,
7685               .resetvalue = cpu->isar.id_aa64dfr1 },
7686             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7688               .access = PL1_R, .type = ARM_CP_CONST,
7689               .accessfn = access_aa64_tid3,
7690               .resetvalue = 0 },
7691             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7692               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7693               .access = PL1_R, .type = ARM_CP_CONST,
7694               .accessfn = access_aa64_tid3,
7695               .resetvalue = 0 },
7696             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7697               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7698               .access = PL1_R, .type = ARM_CP_CONST,
7699               .accessfn = access_aa64_tid3,
7700               .resetvalue = cpu->id_aa64afr0 },
7701             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7702               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7703               .access = PL1_R, .type = ARM_CP_CONST,
7704               .accessfn = access_aa64_tid3,
7705               .resetvalue = cpu->id_aa64afr1 },
7706             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7708               .access = PL1_R, .type = ARM_CP_CONST,
7709               .accessfn = access_aa64_tid3,
7710               .resetvalue = 0 },
7711             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7712               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7713               .access = PL1_R, .type = ARM_CP_CONST,
7714               .accessfn = access_aa64_tid3,
7715               .resetvalue = 0 },
7716             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7717               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7718               .access = PL1_R, .type = ARM_CP_CONST,
7719               .accessfn = access_aa64_tid3,
7720               .resetvalue = cpu->isar.id_aa64isar0 },
7721             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7722               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7723               .access = PL1_R, .type = ARM_CP_CONST,
7724               .accessfn = access_aa64_tid3,
7725               .resetvalue = cpu->isar.id_aa64isar1 },
7726             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7728               .access = PL1_R, .type = ARM_CP_CONST,
7729               .accessfn = access_aa64_tid3,
7730               .resetvalue = 0 },
7731             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7732               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7733               .access = PL1_R, .type = ARM_CP_CONST,
7734               .accessfn = access_aa64_tid3,
7735               .resetvalue = 0 },
7736             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7737               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7738               .access = PL1_R, .type = ARM_CP_CONST,
7739               .accessfn = access_aa64_tid3,
7740               .resetvalue = 0 },
7741             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7742               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7743               .access = PL1_R, .type = ARM_CP_CONST,
7744               .accessfn = access_aa64_tid3,
7745               .resetvalue = 0 },
7746             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7748               .access = PL1_R, .type = ARM_CP_CONST,
7749               .accessfn = access_aa64_tid3,
7750               .resetvalue = 0 },
7751             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7753               .access = PL1_R, .type = ARM_CP_CONST,
7754               .accessfn = access_aa64_tid3,
7755               .resetvalue = 0 },
7756             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7757               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7758               .access = PL1_R, .type = ARM_CP_CONST,
7759               .accessfn = access_aa64_tid3,
7760               .resetvalue = cpu->isar.id_aa64mmfr0 },
7761             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7762               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7763               .access = PL1_R, .type = ARM_CP_CONST,
7764               .accessfn = access_aa64_tid3,
7765               .resetvalue = cpu->isar.id_aa64mmfr1 },
7766             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7768               .access = PL1_R, .type = ARM_CP_CONST,
7769               .accessfn = access_aa64_tid3,
7770               .resetvalue = cpu->isar.id_aa64mmfr2 },
7771             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7773               .access = PL1_R, .type = ARM_CP_CONST,
7774               .accessfn = access_aa64_tid3,
7775               .resetvalue = 0 },
7776             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7777               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7778               .access = PL1_R, .type = ARM_CP_CONST,
7779               .accessfn = access_aa64_tid3,
7780               .resetvalue = 0 },
7781             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7783               .access = PL1_R, .type = ARM_CP_CONST,
7784               .accessfn = access_aa64_tid3,
7785               .resetvalue = 0 },
7786             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7788               .access = PL1_R, .type = ARM_CP_CONST,
7789               .accessfn = access_aa64_tid3,
7790               .resetvalue = 0 },
7791             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7793               .access = PL1_R, .type = ARM_CP_CONST,
7794               .accessfn = access_aa64_tid3,
7795               .resetvalue = 0 },
7796             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7798               .access = PL1_R, .type = ARM_CP_CONST,
7799               .accessfn = access_aa64_tid3,
7800               .resetvalue = cpu->isar.mvfr0 },
7801             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7803               .access = PL1_R, .type = ARM_CP_CONST,
7804               .accessfn = access_aa64_tid3,
7805               .resetvalue = cpu->isar.mvfr1 },
7806             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7808               .access = PL1_R, .type = ARM_CP_CONST,
7809               .accessfn = access_aa64_tid3,
7810               .resetvalue = cpu->isar.mvfr2 },
7811             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7813               .access = PL1_R, .type = ARM_CP_CONST,
7814               .accessfn = access_aa64_tid3,
7815               .resetvalue = 0 },
7816             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7817               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7818               .access = PL1_R, .type = ARM_CP_CONST,
7819               .accessfn = access_aa64_tid3,
7820               .resetvalue = cpu->isar.id_pfr2 },
7821             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7823               .access = PL1_R, .type = ARM_CP_CONST,
7824               .accessfn = access_aa64_tid3,
7825               .resetvalue = 0 },
7826             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7827               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7828               .access = PL1_R, .type = ARM_CP_CONST,
7829               .accessfn = access_aa64_tid3,
7830               .resetvalue = 0 },
7831             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7833               .access = PL1_R, .type = ARM_CP_CONST,
7834               .accessfn = access_aa64_tid3,
7835               .resetvalue = 0 },
7836             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7837               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7838               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7839               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7840             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7841               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7842               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7843               .resetvalue = cpu->pmceid0 },
7844             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7845               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7846               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7847               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7848             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7849               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7850               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7851               .resetvalue = cpu->pmceid1 },
7852             REGINFO_SENTINEL
7853         };
7854 #ifdef CONFIG_USER_ONLY
7855         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7856             { .name = "ID_AA64PFR0_EL1",
7857               .exported_bits = 0x000f000f00ff0000,
7858               .fixed_bits    = 0x0000000000000011 },
7859             { .name = "ID_AA64PFR1_EL1",
7860               .exported_bits = 0x00000000000000f0 },
7861             { .name = "ID_AA64PFR*_EL1_RESERVED",
7862               .is_glob = true                     },
7863             { .name = "ID_AA64ZFR0_EL1"           },
7864             { .name = "ID_AA64MMFR0_EL1",
7865               .fixed_bits    = 0x00000000ff000000 },
7866             { .name = "ID_AA64MMFR1_EL1"          },
7867             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7868               .is_glob = true                     },
7869             { .name = "ID_AA64DFR0_EL1",
7870               .fixed_bits    = 0x0000000000000006 },
7871             { .name = "ID_AA64DFR1_EL1"           },
7872             { .name = "ID_AA64DFR*_EL1_RESERVED",
7873               .is_glob = true                     },
7874             { .name = "ID_AA64AFR*",
7875               .is_glob = true                     },
7876             { .name = "ID_AA64ISAR0_EL1",
7877               .exported_bits = 0x00fffffff0fffff0 },
7878             { .name = "ID_AA64ISAR1_EL1",
7879               .exported_bits = 0x000000f0ffffffff },
7880             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7881               .is_glob = true                     },
7882             REGUSERINFO_SENTINEL
7883         };
7884         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7885 #endif
7886         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7887         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7888             !arm_feature(env, ARM_FEATURE_EL2)) {
7889             ARMCPRegInfo rvbar = {
7890                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7891                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7892                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7893             };
7894             define_one_arm_cp_reg(cpu, &rvbar);
7895         }
7896         define_arm_cp_regs(cpu, v8_idregs);
7897         define_arm_cp_regs(cpu, v8_cp_reginfo);
7898     }
7899     if (arm_feature(env, ARM_FEATURE_EL2)) {
7900         uint64_t vmpidr_def = mpidr_read_val(env);
7901         ARMCPRegInfo vpidr_regs[] = {
7902             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7903               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7904               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7905               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7906               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7907             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7908               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7909               .access = PL2_RW, .resetvalue = cpu->midr,
7910               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7911             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7912               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7913               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7914               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7915               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7916             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7917               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7918               .access = PL2_RW,
7919               .resetvalue = vmpidr_def,
7920               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7921             REGINFO_SENTINEL
7922         };
7923         define_arm_cp_regs(cpu, vpidr_regs);
7924         define_arm_cp_regs(cpu, el2_cp_reginfo);
7925         if (arm_feature(env, ARM_FEATURE_V8)) {
7926             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7927         }
7928         if (cpu_isar_feature(aa64_sel2, cpu)) {
7929             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7930         }
7931         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7932         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7933             ARMCPRegInfo rvbar = {
7934                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7935                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7936                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7937             };
7938             define_one_arm_cp_reg(cpu, &rvbar);
7939         }
7940     } else {
7941         /* If EL2 is missing but higher ELs are enabled, we need to
7942          * register the no_el2 reginfos.
7943          */
7944         if (arm_feature(env, ARM_FEATURE_EL3)) {
7945             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7946              * of MIDR_EL1 and MPIDR_EL1.
7947              */
7948             ARMCPRegInfo vpidr_regs[] = {
7949                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7950                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7951                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7952                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7953                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7954                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7955                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7956                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7957                   .type = ARM_CP_NO_RAW,
7958                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7959                 REGINFO_SENTINEL
7960             };
7961             define_arm_cp_regs(cpu, vpidr_regs);
7962             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7963             if (arm_feature(env, ARM_FEATURE_V8)) {
7964                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7965             }
7966         }
7967     }
7968     if (arm_feature(env, ARM_FEATURE_EL3)) {
7969         define_arm_cp_regs(cpu, el3_cp_reginfo);
7970         ARMCPRegInfo el3_regs[] = {
7971             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7972               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7973               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7974             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7975               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7976               .access = PL3_RW,
7977               .raw_writefn = raw_write, .writefn = sctlr_write,
7978               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7979               .resetvalue = cpu->reset_sctlr },
7980             REGINFO_SENTINEL
7981         };
7982 
7983         define_arm_cp_regs(cpu, el3_regs);
7984     }
7985     /* The behaviour of NSACR is sufficiently various that we don't
7986      * try to describe it in a single reginfo:
7987      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7988      *     reads as constant 0xc00 from NS EL1 and NS EL2
7989      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7990      *  if v7 without EL3, register doesn't exist
7991      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7992      */
7993     if (arm_feature(env, ARM_FEATURE_EL3)) {
7994         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7995             ARMCPRegInfo nsacr = {
7996                 .name = "NSACR", .type = ARM_CP_CONST,
7997                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7998                 .access = PL1_RW, .accessfn = nsacr_access,
7999                 .resetvalue = 0xc00
8000             };
8001             define_one_arm_cp_reg(cpu, &nsacr);
8002         } else {
8003             ARMCPRegInfo nsacr = {
8004                 .name = "NSACR",
8005                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8006                 .access = PL3_RW | PL1_R,
8007                 .resetvalue = 0,
8008                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8009             };
8010             define_one_arm_cp_reg(cpu, &nsacr);
8011         }
8012     } else {
8013         if (arm_feature(env, ARM_FEATURE_V8)) {
8014             ARMCPRegInfo nsacr = {
8015                 .name = "NSACR", .type = ARM_CP_CONST,
8016                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8017                 .access = PL1_R,
8018                 .resetvalue = 0xc00
8019             };
8020             define_one_arm_cp_reg(cpu, &nsacr);
8021         }
8022     }
8023 
8024     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8025         if (arm_feature(env, ARM_FEATURE_V6)) {
8026             /* PMSAv6 not implemented */
8027             assert(arm_feature(env, ARM_FEATURE_V7));
8028             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8029             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8030         } else {
8031             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8032         }
8033     } else {
8034         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8035         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8036         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8037         if (cpu_isar_feature(aa32_hpd, cpu)) {
8038             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8039         }
8040     }
8041     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8042         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8043     }
8044     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8045         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8046     }
8047     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8048         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8049     }
8050     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8051         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8052     }
8053     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8054         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8055     }
8056     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8057         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8058     }
8059     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8060         define_arm_cp_regs(cpu, omap_cp_reginfo);
8061     }
8062     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8063         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8064     }
8065     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8066         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8067     }
8068     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8069         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8070     }
8071     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8072         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8073     }
8074     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8075         define_arm_cp_regs(cpu, jazelle_regs);
8076     }
8077     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8078      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8079      * be read-only (ie write causes UNDEF exception).
8080      */
8081     {
8082         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8083             /* Pre-v8 MIDR space.
8084              * Note that the MIDR isn't a simple constant register because
8085              * of the TI925 behaviour where writes to another register can
8086              * cause the MIDR value to change.
8087              *
8088              * Unimplemented registers in the c15 0 0 0 space default to
8089              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8090              * and friends override accordingly.
8091              */
8092             { .name = "MIDR",
8093               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8094               .access = PL1_R, .resetvalue = cpu->midr,
8095               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8096               .readfn = midr_read,
8097               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8098               .type = ARM_CP_OVERRIDE },
8099             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8100             { .name = "DUMMY",
8101               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8102               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8103             { .name = "DUMMY",
8104               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8105               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8106             { .name = "DUMMY",
8107               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8108               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8109             { .name = "DUMMY",
8110               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8111               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8112             { .name = "DUMMY",
8113               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8114               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8115             REGINFO_SENTINEL
8116         };
8117         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8118             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8119               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8120               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8121               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8122               .readfn = midr_read },
8123             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8124             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8125               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8126               .access = PL1_R, .resetvalue = cpu->midr },
8127             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8128               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8129               .access = PL1_R, .resetvalue = cpu->midr },
8130             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8131               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8132               .access = PL1_R,
8133               .accessfn = access_aa64_tid1,
8134               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8135             REGINFO_SENTINEL
8136         };
8137         ARMCPRegInfo id_cp_reginfo[] = {
8138             /* These are common to v8 and pre-v8 */
8139             { .name = "CTR",
8140               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8141               .access = PL1_R, .accessfn = ctr_el0_access,
8142               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8143             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8144               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8145               .access = PL0_R, .accessfn = ctr_el0_access,
8146               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8147             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8148             { .name = "TCMTR",
8149               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8150               .access = PL1_R,
8151               .accessfn = access_aa32_tid1,
8152               .type = ARM_CP_CONST, .resetvalue = 0 },
8153             REGINFO_SENTINEL
8154         };
8155         /* TLBTR is specific to VMSA */
8156         ARMCPRegInfo id_tlbtr_reginfo = {
8157               .name = "TLBTR",
8158               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8159               .access = PL1_R,
8160               .accessfn = access_aa32_tid1,
8161               .type = ARM_CP_CONST, .resetvalue = 0,
8162         };
8163         /* MPUIR is specific to PMSA V6+ */
8164         ARMCPRegInfo id_mpuir_reginfo = {
8165               .name = "MPUIR",
8166               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8167               .access = PL1_R, .type = ARM_CP_CONST,
8168               .resetvalue = cpu->pmsav7_dregion << 8
8169         };
8170         ARMCPRegInfo crn0_wi_reginfo = {
8171             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8172             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8173             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8174         };
8175 #ifdef CONFIG_USER_ONLY
8176         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8177             { .name = "MIDR_EL1",
8178               .exported_bits = 0x00000000ffffffff },
8179             { .name = "REVIDR_EL1"                },
8180             REGUSERINFO_SENTINEL
8181         };
8182         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8183 #endif
8184         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8185             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8186             ARMCPRegInfo *r;
8187             /* Register the blanket "writes ignored" value first to cover the
8188              * whole space. Then update the specific ID registers to allow write
8189              * access, so that they ignore writes rather than causing them to
8190              * UNDEF.
8191              */
8192             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8193             for (r = id_pre_v8_midr_cp_reginfo;
8194                  r->type != ARM_CP_SENTINEL; r++) {
8195                 r->access = PL1_RW;
8196             }
8197             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8198                 r->access = PL1_RW;
8199             }
8200             id_mpuir_reginfo.access = PL1_RW;
8201             id_tlbtr_reginfo.access = PL1_RW;
8202         }
8203         if (arm_feature(env, ARM_FEATURE_V8)) {
8204             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8205         } else {
8206             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8207         }
8208         define_arm_cp_regs(cpu, id_cp_reginfo);
8209         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8210             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8211         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8212             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8213         }
8214     }
8215 
8216     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8217         ARMCPRegInfo mpidr_cp_reginfo[] = {
8218             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8219               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8220               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8221             REGINFO_SENTINEL
8222         };
8223 #ifdef CONFIG_USER_ONLY
8224         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8225             { .name = "MPIDR_EL1",
8226               .fixed_bits = 0x0000000080000000 },
8227             REGUSERINFO_SENTINEL
8228         };
8229         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8230 #endif
8231         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8232     }
8233 
8234     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8235         ARMCPRegInfo auxcr_reginfo[] = {
8236             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8237               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8238               .access = PL1_RW, .accessfn = access_tacr,
8239               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8240             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8241               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8242               .access = PL2_RW, .type = ARM_CP_CONST,
8243               .resetvalue = 0 },
8244             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8245               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8246               .access = PL3_RW, .type = ARM_CP_CONST,
8247               .resetvalue = 0 },
8248             REGINFO_SENTINEL
8249         };
8250         define_arm_cp_regs(cpu, auxcr_reginfo);
8251         if (cpu_isar_feature(aa32_ac2, cpu)) {
8252             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8253         }
8254     }
8255 
8256     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8257         /*
8258          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8259          * There are two flavours:
8260          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8261          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8262          *      32-bit register visible to AArch32 at a different encoding
8263          *      to the "flavour 1" register and with the bits rearranged to
8264          *      be able to squash a 64-bit address into the 32-bit view.
8265          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8266          * in future if we support AArch32-only configs of some of the
8267          * AArch64 cores we might need to add a specific feature flag
8268          * to indicate cores with "flavour 2" CBAR.
8269          */
8270         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8271             /* 32 bit view is [31:18] 0...0 [43:32]. */
8272             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8273                 | extract64(cpu->reset_cbar, 32, 12);
8274             ARMCPRegInfo cbar_reginfo[] = {
8275                 { .name = "CBAR",
8276                   .type = ARM_CP_CONST,
8277                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8278                   .access = PL1_R, .resetvalue = cbar32 },
8279                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8280                   .type = ARM_CP_CONST,
8281                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8282                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8283                 REGINFO_SENTINEL
8284             };
8285             /* We don't implement a r/w 64 bit CBAR currently */
8286             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8287             define_arm_cp_regs(cpu, cbar_reginfo);
8288         } else {
8289             ARMCPRegInfo cbar = {
8290                 .name = "CBAR",
8291                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8292                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8293                 .fieldoffset = offsetof(CPUARMState,
8294                                         cp15.c15_config_base_address)
8295             };
8296             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8297                 cbar.access = PL1_R;
8298                 cbar.fieldoffset = 0;
8299                 cbar.type = ARM_CP_CONST;
8300             }
8301             define_one_arm_cp_reg(cpu, &cbar);
8302         }
8303     }
8304 
8305     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8306         ARMCPRegInfo vbar_cp_reginfo[] = {
8307             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8308               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8309               .access = PL1_RW, .writefn = vbar_write,
8310               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8311                                      offsetof(CPUARMState, cp15.vbar_ns) },
8312               .resetvalue = 0 },
8313             REGINFO_SENTINEL
8314         };
8315         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8316     }
8317 
8318     /* Generic registers whose values depend on the implementation */
8319     {
8320         ARMCPRegInfo sctlr = {
8321             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8322             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8323             .access = PL1_RW, .accessfn = access_tvm_trvm,
8324             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8325                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8326             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8327             .raw_writefn = raw_write,
8328         };
8329         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8330             /* Normally we would always end the TB on an SCTLR write, but Linux
8331              * arch/arm/mach-pxa/sleep.S expects two instructions following
8332              * an MMU enable to execute from cache.  Imitate this behaviour.
8333              */
8334             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8335         }
8336         define_one_arm_cp_reg(cpu, &sctlr);
8337     }
8338 
8339     if (cpu_isar_feature(aa64_lor, cpu)) {
8340         define_arm_cp_regs(cpu, lor_reginfo);
8341     }
8342     if (cpu_isar_feature(aa64_pan, cpu)) {
8343         define_one_arm_cp_reg(cpu, &pan_reginfo);
8344     }
8345 #ifndef CONFIG_USER_ONLY
8346     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8347         define_arm_cp_regs(cpu, ats1e1_reginfo);
8348     }
8349     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8350         define_arm_cp_regs(cpu, ats1cp_reginfo);
8351     }
8352 #endif
8353     if (cpu_isar_feature(aa64_uao, cpu)) {
8354         define_one_arm_cp_reg(cpu, &uao_reginfo);
8355     }
8356 
8357     if (cpu_isar_feature(aa64_dit, cpu)) {
8358         define_one_arm_cp_reg(cpu, &dit_reginfo);
8359     }
8360     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8361         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8362     }
8363 
8364     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8365         define_arm_cp_regs(cpu, vhe_reginfo);
8366     }
8367 
8368     if (cpu_isar_feature(aa64_sve, cpu)) {
8369         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8370         if (arm_feature(env, ARM_FEATURE_EL2)) {
8371             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8372         } else {
8373             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8374         }
8375         if (arm_feature(env, ARM_FEATURE_EL3)) {
8376             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8377         }
8378     }
8379 
8380 #ifdef TARGET_AARCH64
8381     if (cpu_isar_feature(aa64_pauth, cpu)) {
8382         define_arm_cp_regs(cpu, pauth_reginfo);
8383     }
8384     if (cpu_isar_feature(aa64_rndr, cpu)) {
8385         define_arm_cp_regs(cpu, rndr_reginfo);
8386     }
8387     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8388         define_arm_cp_regs(cpu, tlbirange_reginfo);
8389     }
8390     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8391         define_arm_cp_regs(cpu, tlbios_reginfo);
8392     }
8393 #ifndef CONFIG_USER_ONLY
8394     /* Data Cache clean instructions up to PoP */
8395     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8396         define_one_arm_cp_reg(cpu, dcpop_reg);
8397 
8398         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8399             define_one_arm_cp_reg(cpu, dcpodp_reg);
8400         }
8401     }
8402 #endif /*CONFIG_USER_ONLY*/
8403 
8404     /*
8405      * If full MTE is enabled, add all of the system registers.
8406      * If only "instructions available at EL0" are enabled,
8407      * then define only a RAZ/WI version of PSTATE.TCO.
8408      */
8409     if (cpu_isar_feature(aa64_mte, cpu)) {
8410         define_arm_cp_regs(cpu, mte_reginfo);
8411         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8412     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8413         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8414         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8415     }
8416 #endif
8417 
8418     if (cpu_isar_feature(any_predinv, cpu)) {
8419         define_arm_cp_regs(cpu, predinv_reginfo);
8420     }
8421 
8422     if (cpu_isar_feature(any_ccidx, cpu)) {
8423         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8424     }
8425 
8426 #ifndef CONFIG_USER_ONLY
8427     /*
8428      * Register redirections and aliases must be done last,
8429      * after the registers from the other extensions have been defined.
8430      */
8431     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8432         define_arm_vh_e2h_redirects_aliases(cpu);
8433     }
8434 #endif
8435 }
8436 
8437 /* Sort alphabetically by type name, except for "any". */
8438 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8439 {
8440     ObjectClass *class_a = (ObjectClass *)a;
8441     ObjectClass *class_b = (ObjectClass *)b;
8442     const char *name_a, *name_b;
8443 
8444     name_a = object_class_get_name(class_a);
8445     name_b = object_class_get_name(class_b);
8446     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8447         return 1;
8448     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8449         return -1;
8450     } else {
8451         return strcmp(name_a, name_b);
8452     }
8453 }
8454 
8455 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8456 {
8457     ObjectClass *oc = data;
8458     const char *typename;
8459     char *name;
8460 
8461     typename = object_class_get_name(oc);
8462     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8463     qemu_printf("  %s\n", name);
8464     g_free(name);
8465 }
8466 
8467 void arm_cpu_list(void)
8468 {
8469     GSList *list;
8470 
8471     list = object_class_get_list(TYPE_ARM_CPU, false);
8472     list = g_slist_sort(list, arm_cpu_list_compare);
8473     qemu_printf("Available CPUs:\n");
8474     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8475     g_slist_free(list);
8476 }
8477 
8478 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8479 {
8480     ObjectClass *oc = data;
8481     CpuDefinitionInfoList **cpu_list = user_data;
8482     CpuDefinitionInfo *info;
8483     const char *typename;
8484 
8485     typename = object_class_get_name(oc);
8486     info = g_malloc0(sizeof(*info));
8487     info->name = g_strndup(typename,
8488                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8489     info->q_typename = g_strdup(typename);
8490 
8491     QAPI_LIST_PREPEND(*cpu_list, info);
8492 }
8493 
8494 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8495 {
8496     CpuDefinitionInfoList *cpu_list = NULL;
8497     GSList *list;
8498 
8499     list = object_class_get_list(TYPE_ARM_CPU, false);
8500     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8501     g_slist_free(list);
8502 
8503     return cpu_list;
8504 }
8505 
8506 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8507                                    void *opaque, int state, int secstate,
8508                                    int crm, int opc1, int opc2,
8509                                    const char *name)
8510 {
8511     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8512      * add a single reginfo struct to the hash table.
8513      */
8514     uint32_t *key = g_new(uint32_t, 1);
8515     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8516     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8517     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8518 
8519     r2->name = g_strdup(name);
8520     /* Reset the secure state to the specific incoming state.  This is
8521      * necessary as the register may have been defined with both states.
8522      */
8523     r2->secure = secstate;
8524 
8525     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8526         /* Register is banked (using both entries in array).
8527          * Overwriting fieldoffset as the array is only used to define
8528          * banked registers but later only fieldoffset is used.
8529          */
8530         r2->fieldoffset = r->bank_fieldoffsets[ns];
8531     }
8532 
8533     if (state == ARM_CP_STATE_AA32) {
8534         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8535             /* If the register is banked then we don't need to migrate or
8536              * reset the 32-bit instance in certain cases:
8537              *
8538              * 1) If the register has both 32-bit and 64-bit instances then we
8539              *    can count on the 64-bit instance taking care of the
8540              *    non-secure bank.
8541              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8542              *    taking care of the secure bank.  This requires that separate
8543              *    32 and 64-bit definitions are provided.
8544              */
8545             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8546                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8547                 r2->type |= ARM_CP_ALIAS;
8548             }
8549         } else if ((secstate != r->secure) && !ns) {
8550             /* The register is not banked so we only want to allow migration of
8551              * the non-secure instance.
8552              */
8553             r2->type |= ARM_CP_ALIAS;
8554         }
8555 
8556         if (r->state == ARM_CP_STATE_BOTH) {
8557             /* We assume it is a cp15 register if the .cp field is left unset.
8558              */
8559             if (r2->cp == 0) {
8560                 r2->cp = 15;
8561             }
8562 
8563 #ifdef HOST_WORDS_BIGENDIAN
8564             if (r2->fieldoffset) {
8565                 r2->fieldoffset += sizeof(uint32_t);
8566             }
8567 #endif
8568         }
8569     }
8570     if (state == ARM_CP_STATE_AA64) {
8571         /* To allow abbreviation of ARMCPRegInfo
8572          * definitions, we treat cp == 0 as equivalent to
8573          * the value for "standard guest-visible sysreg".
8574          * STATE_BOTH definitions are also always "standard
8575          * sysreg" in their AArch64 view (the .cp value may
8576          * be non-zero for the benefit of the AArch32 view).
8577          */
8578         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8579             r2->cp = CP_REG_ARM64_SYSREG_CP;
8580         }
8581         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8582                                   r2->opc0, opc1, opc2);
8583     } else {
8584         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8585     }
8586     if (opaque) {
8587         r2->opaque = opaque;
8588     }
8589     /* reginfo passed to helpers is correct for the actual access,
8590      * and is never ARM_CP_STATE_BOTH:
8591      */
8592     r2->state = state;
8593     /* Make sure reginfo passed to helpers for wildcarded regs
8594      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8595      */
8596     r2->crm = crm;
8597     r2->opc1 = opc1;
8598     r2->opc2 = opc2;
8599     /* By convention, for wildcarded registers only the first
8600      * entry is used for migration; the others are marked as
8601      * ALIAS so we don't try to transfer the register
8602      * multiple times. Special registers (ie NOP/WFI) are
8603      * never migratable and not even raw-accessible.
8604      */
8605     if ((r->type & ARM_CP_SPECIAL)) {
8606         r2->type |= ARM_CP_NO_RAW;
8607     }
8608     if (((r->crm == CP_ANY) && crm != 0) ||
8609         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8610         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8611         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8612     }
8613 
8614     /* Check that raw accesses are either forbidden or handled. Note that
8615      * we can't assert this earlier because the setup of fieldoffset for
8616      * banked registers has to be done first.
8617      */
8618     if (!(r2->type & ARM_CP_NO_RAW)) {
8619         assert(!raw_accessors_invalid(r2));
8620     }
8621 
8622     /* Overriding of an existing definition must be explicitly
8623      * requested.
8624      */
8625     if (!(r->type & ARM_CP_OVERRIDE)) {
8626         ARMCPRegInfo *oldreg;
8627         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8628         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8629             fprintf(stderr, "Register redefined: cp=%d %d bit "
8630                     "crn=%d crm=%d opc1=%d opc2=%d, "
8631                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8632                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8633                     oldreg->name, r2->name);
8634             g_assert_not_reached();
8635         }
8636     }
8637     g_hash_table_insert(cpu->cp_regs, key, r2);
8638 }
8639 
8640 
8641 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8642                                        const ARMCPRegInfo *r, void *opaque)
8643 {
8644     /* Define implementations of coprocessor registers.
8645      * We store these in a hashtable because typically
8646      * there are less than 150 registers in a space which
8647      * is 16*16*16*8*8 = 262144 in size.
8648      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8649      * If a register is defined twice then the second definition is
8650      * used, so this can be used to define some generic registers and
8651      * then override them with implementation specific variations.
8652      * At least one of the original and the second definition should
8653      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8654      * against accidental use.
8655      *
8656      * The state field defines whether the register is to be
8657      * visible in the AArch32 or AArch64 execution state. If the
8658      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8659      * reginfo structure for the AArch32 view, which sees the lower
8660      * 32 bits of the 64 bit register.
8661      *
8662      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8663      * be wildcarded. AArch64 registers are always considered to be 64
8664      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8665      * the register, if any.
8666      */
8667     int crm, opc1, opc2, state;
8668     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8669     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8670     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8671     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8672     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8673     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8674     /* 64 bit registers have only CRm and Opc1 fields */
8675     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8676     /* op0 only exists in the AArch64 encodings */
8677     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8678     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8679     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8680     /*
8681      * This API is only for Arm's system coprocessors (14 and 15) or
8682      * (M-profile or v7A-and-earlier only) for implementation defined
8683      * coprocessors in the range 0..7.  Our decode assumes this, since
8684      * 8..13 can be used for other insns including VFP and Neon. See
8685      * valid_cp() in translate.c.  Assert here that we haven't tried
8686      * to use an invalid coprocessor number.
8687      */
8688     switch (r->state) {
8689     case ARM_CP_STATE_BOTH:
8690         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8691         if (r->cp == 0) {
8692             break;
8693         }
8694         /* fall through */
8695     case ARM_CP_STATE_AA32:
8696         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8697             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8698             assert(r->cp >= 14 && r->cp <= 15);
8699         } else {
8700             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8701         }
8702         break;
8703     case ARM_CP_STATE_AA64:
8704         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8705         break;
8706     default:
8707         g_assert_not_reached();
8708     }
8709     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8710      * encodes a minimum access level for the register. We roll this
8711      * runtime check into our general permission check code, so check
8712      * here that the reginfo's specified permissions are strict enough
8713      * to encompass the generic architectural permission check.
8714      */
8715     if (r->state != ARM_CP_STATE_AA32) {
8716         int mask = 0;
8717         switch (r->opc1) {
8718         case 0:
8719             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8720             mask = PL0U_R | PL1_RW;
8721             break;
8722         case 1: case 2:
8723             /* min_EL EL1 */
8724             mask = PL1_RW;
8725             break;
8726         case 3:
8727             /* min_EL EL0 */
8728             mask = PL0_RW;
8729             break;
8730         case 4:
8731         case 5:
8732             /* min_EL EL2 */
8733             mask = PL2_RW;
8734             break;
8735         case 6:
8736             /* min_EL EL3 */
8737             mask = PL3_RW;
8738             break;
8739         case 7:
8740             /* min_EL EL1, secure mode only (we don't check the latter) */
8741             mask = PL1_RW;
8742             break;
8743         default:
8744             /* broken reginfo with out-of-range opc1 */
8745             assert(false);
8746             break;
8747         }
8748         /* assert our permissions are not too lax (stricter is fine) */
8749         assert((r->access & ~mask) == 0);
8750     }
8751 
8752     /* Check that the register definition has enough info to handle
8753      * reads and writes if they are permitted.
8754      */
8755     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8756         if (r->access & PL3_R) {
8757             assert((r->fieldoffset ||
8758                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8759                    r->readfn);
8760         }
8761         if (r->access & PL3_W) {
8762             assert((r->fieldoffset ||
8763                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8764                    r->writefn);
8765         }
8766     }
8767     /* Bad type field probably means missing sentinel at end of reg list */
8768     assert(cptype_valid(r->type));
8769     for (crm = crmmin; crm <= crmmax; crm++) {
8770         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8771             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8772                 for (state = ARM_CP_STATE_AA32;
8773                      state <= ARM_CP_STATE_AA64; state++) {
8774                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8775                         continue;
8776                     }
8777                     if (state == ARM_CP_STATE_AA32) {
8778                         /* Under AArch32 CP registers can be common
8779                          * (same for secure and non-secure world) or banked.
8780                          */
8781                         char *name;
8782 
8783                         switch (r->secure) {
8784                         case ARM_CP_SECSTATE_S:
8785                         case ARM_CP_SECSTATE_NS:
8786                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8787                                                    r->secure, crm, opc1, opc2,
8788                                                    r->name);
8789                             break;
8790                         default:
8791                             name = g_strdup_printf("%s_S", r->name);
8792                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8793                                                    ARM_CP_SECSTATE_S,
8794                                                    crm, opc1, opc2, name);
8795                             g_free(name);
8796                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8797                                                    ARM_CP_SECSTATE_NS,
8798                                                    crm, opc1, opc2, r->name);
8799                             break;
8800                         }
8801                     } else {
8802                         /* AArch64 registers get mapped to non-secure instance
8803                          * of AArch32 */
8804                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8805                                                ARM_CP_SECSTATE_NS,
8806                                                crm, opc1, opc2, r->name);
8807                     }
8808                 }
8809             }
8810         }
8811     }
8812 }
8813 
8814 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8815                                     const ARMCPRegInfo *regs, void *opaque)
8816 {
8817     /* Define a whole list of registers */
8818     const ARMCPRegInfo *r;
8819     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8820         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8821     }
8822 }
8823 
8824 /*
8825  * Modify ARMCPRegInfo for access from userspace.
8826  *
8827  * This is a data driven modification directed by
8828  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8829  * user-space cannot alter any values and dynamic values pertaining to
8830  * execution state are hidden from user space view anyway.
8831  */
8832 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8833 {
8834     const ARMCPRegUserSpaceInfo *m;
8835     ARMCPRegInfo *r;
8836 
8837     for (m = mods; m->name; m++) {
8838         GPatternSpec *pat = NULL;
8839         if (m->is_glob) {
8840             pat = g_pattern_spec_new(m->name);
8841         }
8842         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8843             if (pat && g_pattern_match_string(pat, r->name)) {
8844                 r->type = ARM_CP_CONST;
8845                 r->access = PL0U_R;
8846                 r->resetvalue = 0;
8847                 /* continue */
8848             } else if (strcmp(r->name, m->name) == 0) {
8849                 r->type = ARM_CP_CONST;
8850                 r->access = PL0U_R;
8851                 r->resetvalue &= m->exported_bits;
8852                 r->resetvalue |= m->fixed_bits;
8853                 break;
8854             }
8855         }
8856         if (pat) {
8857             g_pattern_spec_free(pat);
8858         }
8859     }
8860 }
8861 
8862 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8863 {
8864     return g_hash_table_lookup(cpregs, &encoded_cp);
8865 }
8866 
8867 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8868                          uint64_t value)
8869 {
8870     /* Helper coprocessor write function for write-ignore registers */
8871 }
8872 
8873 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8874 {
8875     /* Helper coprocessor write function for read-as-zero registers */
8876     return 0;
8877 }
8878 
8879 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8880 {
8881     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8882 }
8883 
8884 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8885 {
8886     /* Return true if it is not valid for us to switch to
8887      * this CPU mode (ie all the UNPREDICTABLE cases in
8888      * the ARM ARM CPSRWriteByInstr pseudocode).
8889      */
8890 
8891     /* Changes to or from Hyp via MSR and CPS are illegal. */
8892     if (write_type == CPSRWriteByInstr &&
8893         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8894          mode == ARM_CPU_MODE_HYP)) {
8895         return 1;
8896     }
8897 
8898     switch (mode) {
8899     case ARM_CPU_MODE_USR:
8900         return 0;
8901     case ARM_CPU_MODE_SYS:
8902     case ARM_CPU_MODE_SVC:
8903     case ARM_CPU_MODE_ABT:
8904     case ARM_CPU_MODE_UND:
8905     case ARM_CPU_MODE_IRQ:
8906     case ARM_CPU_MODE_FIQ:
8907         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8908          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8909          */
8910         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8911          * and CPS are treated as illegal mode changes.
8912          */
8913         if (write_type == CPSRWriteByInstr &&
8914             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8915             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8916             return 1;
8917         }
8918         return 0;
8919     case ARM_CPU_MODE_HYP:
8920         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8921     case ARM_CPU_MODE_MON:
8922         return arm_current_el(env) < 3;
8923     default:
8924         return 1;
8925     }
8926 }
8927 
8928 uint32_t cpsr_read(CPUARMState *env)
8929 {
8930     int ZF;
8931     ZF = (env->ZF == 0);
8932     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8933         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8934         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8935         | ((env->condexec_bits & 0xfc) << 8)
8936         | (env->GE << 16) | (env->daif & CPSR_AIF);
8937 }
8938 
8939 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8940                 CPSRWriteType write_type)
8941 {
8942     uint32_t changed_daif;
8943     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8944         (mask & (CPSR_M | CPSR_E | CPSR_IL));
8945 
8946     if (mask & CPSR_NZCV) {
8947         env->ZF = (~val) & CPSR_Z;
8948         env->NF = val;
8949         env->CF = (val >> 29) & 1;
8950         env->VF = (val << 3) & 0x80000000;
8951     }
8952     if (mask & CPSR_Q)
8953         env->QF = ((val & CPSR_Q) != 0);
8954     if (mask & CPSR_T)
8955         env->thumb = ((val & CPSR_T) != 0);
8956     if (mask & CPSR_IT_0_1) {
8957         env->condexec_bits &= ~3;
8958         env->condexec_bits |= (val >> 25) & 3;
8959     }
8960     if (mask & CPSR_IT_2_7) {
8961         env->condexec_bits &= 3;
8962         env->condexec_bits |= (val >> 8) & 0xfc;
8963     }
8964     if (mask & CPSR_GE) {
8965         env->GE = (val >> 16) & 0xf;
8966     }
8967 
8968     /* In a V7 implementation that includes the security extensions but does
8969      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8970      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8971      * bits respectively.
8972      *
8973      * In a V8 implementation, it is permitted for privileged software to
8974      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8975      */
8976     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8977         arm_feature(env, ARM_FEATURE_EL3) &&
8978         !arm_feature(env, ARM_FEATURE_EL2) &&
8979         !arm_is_secure(env)) {
8980 
8981         changed_daif = (env->daif ^ val) & mask;
8982 
8983         if (changed_daif & CPSR_A) {
8984             /* Check to see if we are allowed to change the masking of async
8985              * abort exceptions from a non-secure state.
8986              */
8987             if (!(env->cp15.scr_el3 & SCR_AW)) {
8988                 qemu_log_mask(LOG_GUEST_ERROR,
8989                               "Ignoring attempt to switch CPSR_A flag from "
8990                               "non-secure world with SCR.AW bit clear\n");
8991                 mask &= ~CPSR_A;
8992             }
8993         }
8994 
8995         if (changed_daif & CPSR_F) {
8996             /* Check to see if we are allowed to change the masking of FIQ
8997              * exceptions from a non-secure state.
8998              */
8999             if (!(env->cp15.scr_el3 & SCR_FW)) {
9000                 qemu_log_mask(LOG_GUEST_ERROR,
9001                               "Ignoring attempt to switch CPSR_F flag from "
9002                               "non-secure world with SCR.FW bit clear\n");
9003                 mask &= ~CPSR_F;
9004             }
9005 
9006             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9007              * If this bit is set software is not allowed to mask
9008              * FIQs, but is allowed to set CPSR_F to 0.
9009              */
9010             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9011                 (val & CPSR_F)) {
9012                 qemu_log_mask(LOG_GUEST_ERROR,
9013                               "Ignoring attempt to enable CPSR_F flag "
9014                               "(non-maskable FIQ [NMFI] support enabled)\n");
9015                 mask &= ~CPSR_F;
9016             }
9017         }
9018     }
9019 
9020     env->daif &= ~(CPSR_AIF & mask);
9021     env->daif |= val & CPSR_AIF & mask;
9022 
9023     if (write_type != CPSRWriteRaw &&
9024         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9025         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9026             /* Note that we can only get here in USR mode if this is a
9027              * gdb stub write; for this case we follow the architectural
9028              * behaviour for guest writes in USR mode of ignoring an attempt
9029              * to switch mode. (Those are caught by translate.c for writes
9030              * triggered by guest instructions.)
9031              */
9032             mask &= ~CPSR_M;
9033         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9034             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9035              * v7, and has defined behaviour in v8:
9036              *  + leave CPSR.M untouched
9037              *  + allow changes to the other CPSR fields
9038              *  + set PSTATE.IL
9039              * For user changes via the GDB stub, we don't set PSTATE.IL,
9040              * as this would be unnecessarily harsh for a user error.
9041              */
9042             mask &= ~CPSR_M;
9043             if (write_type != CPSRWriteByGDBStub &&
9044                 arm_feature(env, ARM_FEATURE_V8)) {
9045                 mask |= CPSR_IL;
9046                 val |= CPSR_IL;
9047             }
9048             qemu_log_mask(LOG_GUEST_ERROR,
9049                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9050                           aarch32_mode_name(env->uncached_cpsr),
9051                           aarch32_mode_name(val));
9052         } else {
9053             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9054                           write_type == CPSRWriteExceptionReturn ?
9055                           "Exception return from AArch32" :
9056                           "AArch32 mode switch from",
9057                           aarch32_mode_name(env->uncached_cpsr),
9058                           aarch32_mode_name(val), env->regs[15]);
9059             switch_mode(env, val & CPSR_M);
9060         }
9061     }
9062     mask &= ~CACHED_CPSR_BITS;
9063     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9064     if (rebuild_hflags) {
9065         arm_rebuild_hflags(env);
9066     }
9067 }
9068 
9069 /* Sign/zero extend */
9070 uint32_t HELPER(sxtb16)(uint32_t x)
9071 {
9072     uint32_t res;
9073     res = (uint16_t)(int8_t)x;
9074     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9075     return res;
9076 }
9077 
9078 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9079 {
9080     /*
9081      * Take a division-by-zero exception if necessary; otherwise return
9082      * to get the usual non-trapping division behaviour (result of 0)
9083      */
9084     if (arm_feature(env, ARM_FEATURE_M)
9085         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9086         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9087     }
9088 }
9089 
9090 uint32_t HELPER(uxtb16)(uint32_t x)
9091 {
9092     uint32_t res;
9093     res = (uint16_t)(uint8_t)x;
9094     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9095     return res;
9096 }
9097 
9098 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9099 {
9100     if (den == 0) {
9101         handle_possible_div0_trap(env, GETPC());
9102         return 0;
9103     }
9104     if (num == INT_MIN && den == -1) {
9105         return INT_MIN;
9106     }
9107     return num / den;
9108 }
9109 
9110 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9111 {
9112     if (den == 0) {
9113         handle_possible_div0_trap(env, GETPC());
9114         return 0;
9115     }
9116     return num / den;
9117 }
9118 
9119 uint32_t HELPER(rbit)(uint32_t x)
9120 {
9121     return revbit32(x);
9122 }
9123 
9124 #ifdef CONFIG_USER_ONLY
9125 
9126 static void switch_mode(CPUARMState *env, int mode)
9127 {
9128     ARMCPU *cpu = env_archcpu(env);
9129 
9130     if (mode != ARM_CPU_MODE_USR) {
9131         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9132     }
9133 }
9134 
9135 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9136                                  uint32_t cur_el, bool secure)
9137 {
9138     return 1;
9139 }
9140 
9141 void aarch64_sync_64_to_32(CPUARMState *env)
9142 {
9143     g_assert_not_reached();
9144 }
9145 
9146 #else
9147 
9148 static void switch_mode(CPUARMState *env, int mode)
9149 {
9150     int old_mode;
9151     int i;
9152 
9153     old_mode = env->uncached_cpsr & CPSR_M;
9154     if (mode == old_mode)
9155         return;
9156 
9157     if (old_mode == ARM_CPU_MODE_FIQ) {
9158         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9159         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9160     } else if (mode == ARM_CPU_MODE_FIQ) {
9161         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9162         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9163     }
9164 
9165     i = bank_number(old_mode);
9166     env->banked_r13[i] = env->regs[13];
9167     env->banked_spsr[i] = env->spsr;
9168 
9169     i = bank_number(mode);
9170     env->regs[13] = env->banked_r13[i];
9171     env->spsr = env->banked_spsr[i];
9172 
9173     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9174     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9175 }
9176 
9177 /* Physical Interrupt Target EL Lookup Table
9178  *
9179  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9180  *
9181  * The below multi-dimensional table is used for looking up the target
9182  * exception level given numerous condition criteria.  Specifically, the
9183  * target EL is based on SCR and HCR routing controls as well as the
9184  * currently executing EL and secure state.
9185  *
9186  *    Dimensions:
9187  *    target_el_table[2][2][2][2][2][4]
9188  *                    |  |  |  |  |  +--- Current EL
9189  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9190  *                    |  |  |  +--------- HCR mask override
9191  *                    |  |  +------------ SCR exec state control
9192  *                    |  +--------------- SCR mask override
9193  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9194  *
9195  *    The table values are as such:
9196  *    0-3 = EL0-EL3
9197  *     -1 = Cannot occur
9198  *
9199  * The ARM ARM target EL table includes entries indicating that an "exception
9200  * is not taken".  The two cases where this is applicable are:
9201  *    1) An exception is taken from EL3 but the SCR does not have the exception
9202  *    routed to EL3.
9203  *    2) An exception is taken from EL2 but the HCR does not have the exception
9204  *    routed to EL2.
9205  * In these two cases, the below table contain a target of EL1.  This value is
9206  * returned as it is expected that the consumer of the table data will check
9207  * for "target EL >= current EL" to ensure the exception is not taken.
9208  *
9209  *            SCR     HCR
9210  *         64  EA     AMO                 From
9211  *        BIT IRQ     IMO      Non-secure         Secure
9212  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9213  */
9214 static const int8_t target_el_table[2][2][2][2][2][4] = {
9215     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9216        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9217       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9218        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9219      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9220        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9221       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9222        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9223     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9224        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9225       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9226        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9227      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9228        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9229       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9230        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9231 };
9232 
9233 /*
9234  * Determine the target EL for physical exceptions
9235  */
9236 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9237                                  uint32_t cur_el, bool secure)
9238 {
9239     CPUARMState *env = cs->env_ptr;
9240     bool rw;
9241     bool scr;
9242     bool hcr;
9243     int target_el;
9244     /* Is the highest EL AArch64? */
9245     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9246     uint64_t hcr_el2;
9247 
9248     if (arm_feature(env, ARM_FEATURE_EL3)) {
9249         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9250     } else {
9251         /* Either EL2 is the highest EL (and so the EL2 register width
9252          * is given by is64); or there is no EL2 or EL3, in which case
9253          * the value of 'rw' does not affect the table lookup anyway.
9254          */
9255         rw = is64;
9256     }
9257 
9258     hcr_el2 = arm_hcr_el2_eff(env);
9259     switch (excp_idx) {
9260     case EXCP_IRQ:
9261         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9262         hcr = hcr_el2 & HCR_IMO;
9263         break;
9264     case EXCP_FIQ:
9265         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9266         hcr = hcr_el2 & HCR_FMO;
9267         break;
9268     default:
9269         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9270         hcr = hcr_el2 & HCR_AMO;
9271         break;
9272     };
9273 
9274     /*
9275      * For these purposes, TGE and AMO/IMO/FMO both force the
9276      * interrupt to EL2.  Fold TGE into the bit extracted above.
9277      */
9278     hcr |= (hcr_el2 & HCR_TGE) != 0;
9279 
9280     /* Perform a table-lookup for the target EL given the current state */
9281     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9282 
9283     assert(target_el > 0);
9284 
9285     return target_el;
9286 }
9287 
9288 void arm_log_exception(int idx)
9289 {
9290     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9291         const char *exc = NULL;
9292         static const char * const excnames[] = {
9293             [EXCP_UDEF] = "Undefined Instruction",
9294             [EXCP_SWI] = "SVC",
9295             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9296             [EXCP_DATA_ABORT] = "Data Abort",
9297             [EXCP_IRQ] = "IRQ",
9298             [EXCP_FIQ] = "FIQ",
9299             [EXCP_BKPT] = "Breakpoint",
9300             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9301             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9302             [EXCP_HVC] = "Hypervisor Call",
9303             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9304             [EXCP_SMC] = "Secure Monitor Call",
9305             [EXCP_VIRQ] = "Virtual IRQ",
9306             [EXCP_VFIQ] = "Virtual FIQ",
9307             [EXCP_SEMIHOST] = "Semihosting call",
9308             [EXCP_NOCP] = "v7M NOCP UsageFault",
9309             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9310             [EXCP_STKOF] = "v8M STKOF UsageFault",
9311             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9312             [EXCP_LSERR] = "v8M LSERR UsageFault",
9313             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9314             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9315         };
9316 
9317         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9318             exc = excnames[idx];
9319         }
9320         if (!exc) {
9321             exc = "unknown";
9322         }
9323         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9324     }
9325 }
9326 
9327 /*
9328  * Function used to synchronize QEMU's AArch64 register set with AArch32
9329  * register set.  This is necessary when switching between AArch32 and AArch64
9330  * execution state.
9331  */
9332 void aarch64_sync_32_to_64(CPUARMState *env)
9333 {
9334     int i;
9335     uint32_t mode = env->uncached_cpsr & CPSR_M;
9336 
9337     /* We can blanket copy R[0:7] to X[0:7] */
9338     for (i = 0; i < 8; i++) {
9339         env->xregs[i] = env->regs[i];
9340     }
9341 
9342     /*
9343      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9344      * Otherwise, they come from the banked user regs.
9345      */
9346     if (mode == ARM_CPU_MODE_FIQ) {
9347         for (i = 8; i < 13; i++) {
9348             env->xregs[i] = env->usr_regs[i - 8];
9349         }
9350     } else {
9351         for (i = 8; i < 13; i++) {
9352             env->xregs[i] = env->regs[i];
9353         }
9354     }
9355 
9356     /*
9357      * Registers x13-x23 are the various mode SP and FP registers. Registers
9358      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9359      * from the mode banked register.
9360      */
9361     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9362         env->xregs[13] = env->regs[13];
9363         env->xregs[14] = env->regs[14];
9364     } else {
9365         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9366         /* HYP is an exception in that it is copied from r14 */
9367         if (mode == ARM_CPU_MODE_HYP) {
9368             env->xregs[14] = env->regs[14];
9369         } else {
9370             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9371         }
9372     }
9373 
9374     if (mode == ARM_CPU_MODE_HYP) {
9375         env->xregs[15] = env->regs[13];
9376     } else {
9377         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9378     }
9379 
9380     if (mode == ARM_CPU_MODE_IRQ) {
9381         env->xregs[16] = env->regs[14];
9382         env->xregs[17] = env->regs[13];
9383     } else {
9384         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9385         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9386     }
9387 
9388     if (mode == ARM_CPU_MODE_SVC) {
9389         env->xregs[18] = env->regs[14];
9390         env->xregs[19] = env->regs[13];
9391     } else {
9392         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9393         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9394     }
9395 
9396     if (mode == ARM_CPU_MODE_ABT) {
9397         env->xregs[20] = env->regs[14];
9398         env->xregs[21] = env->regs[13];
9399     } else {
9400         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9401         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9402     }
9403 
9404     if (mode == ARM_CPU_MODE_UND) {
9405         env->xregs[22] = env->regs[14];
9406         env->xregs[23] = env->regs[13];
9407     } else {
9408         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9409         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9410     }
9411 
9412     /*
9413      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9414      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9415      * FIQ bank for r8-r14.
9416      */
9417     if (mode == ARM_CPU_MODE_FIQ) {
9418         for (i = 24; i < 31; i++) {
9419             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9420         }
9421     } else {
9422         for (i = 24; i < 29; i++) {
9423             env->xregs[i] = env->fiq_regs[i - 24];
9424         }
9425         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9426         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9427     }
9428 
9429     env->pc = env->regs[15];
9430 }
9431 
9432 /*
9433  * Function used to synchronize QEMU's AArch32 register set with AArch64
9434  * register set.  This is necessary when switching between AArch32 and AArch64
9435  * execution state.
9436  */
9437 void aarch64_sync_64_to_32(CPUARMState *env)
9438 {
9439     int i;
9440     uint32_t mode = env->uncached_cpsr & CPSR_M;
9441 
9442     /* We can blanket copy X[0:7] to R[0:7] */
9443     for (i = 0; i < 8; i++) {
9444         env->regs[i] = env->xregs[i];
9445     }
9446 
9447     /*
9448      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9449      * Otherwise, we copy x8-x12 into the banked user regs.
9450      */
9451     if (mode == ARM_CPU_MODE_FIQ) {
9452         for (i = 8; i < 13; i++) {
9453             env->usr_regs[i - 8] = env->xregs[i];
9454         }
9455     } else {
9456         for (i = 8; i < 13; i++) {
9457             env->regs[i] = env->xregs[i];
9458         }
9459     }
9460 
9461     /*
9462      * Registers r13 & r14 depend on the current mode.
9463      * If we are in a given mode, we copy the corresponding x registers to r13
9464      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9465      * for the mode.
9466      */
9467     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9468         env->regs[13] = env->xregs[13];
9469         env->regs[14] = env->xregs[14];
9470     } else {
9471         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9472 
9473         /*
9474          * HYP is an exception in that it does not have its own banked r14 but
9475          * shares the USR r14
9476          */
9477         if (mode == ARM_CPU_MODE_HYP) {
9478             env->regs[14] = env->xregs[14];
9479         } else {
9480             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9481         }
9482     }
9483 
9484     if (mode == ARM_CPU_MODE_HYP) {
9485         env->regs[13] = env->xregs[15];
9486     } else {
9487         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9488     }
9489 
9490     if (mode == ARM_CPU_MODE_IRQ) {
9491         env->regs[14] = env->xregs[16];
9492         env->regs[13] = env->xregs[17];
9493     } else {
9494         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9495         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9496     }
9497 
9498     if (mode == ARM_CPU_MODE_SVC) {
9499         env->regs[14] = env->xregs[18];
9500         env->regs[13] = env->xregs[19];
9501     } else {
9502         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9503         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9504     }
9505 
9506     if (mode == ARM_CPU_MODE_ABT) {
9507         env->regs[14] = env->xregs[20];
9508         env->regs[13] = env->xregs[21];
9509     } else {
9510         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9511         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9512     }
9513 
9514     if (mode == ARM_CPU_MODE_UND) {
9515         env->regs[14] = env->xregs[22];
9516         env->regs[13] = env->xregs[23];
9517     } else {
9518         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9519         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9520     }
9521 
9522     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9523      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9524      * FIQ bank for r8-r14.
9525      */
9526     if (mode == ARM_CPU_MODE_FIQ) {
9527         for (i = 24; i < 31; i++) {
9528             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9529         }
9530     } else {
9531         for (i = 24; i < 29; i++) {
9532             env->fiq_regs[i - 24] = env->xregs[i];
9533         }
9534         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9535         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9536     }
9537 
9538     env->regs[15] = env->pc;
9539 }
9540 
9541 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9542                                    uint32_t mask, uint32_t offset,
9543                                    uint32_t newpc)
9544 {
9545     int new_el;
9546 
9547     /* Change the CPU state so as to actually take the exception. */
9548     switch_mode(env, new_mode);
9549 
9550     /*
9551      * For exceptions taken to AArch32 we must clear the SS bit in both
9552      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9553      */
9554     env->pstate &= ~PSTATE_SS;
9555     env->spsr = cpsr_read(env);
9556     /* Clear IT bits.  */
9557     env->condexec_bits = 0;
9558     /* Switch to the new mode, and to the correct instruction set.  */
9559     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9560 
9561     /* This must be after mode switching. */
9562     new_el = arm_current_el(env);
9563 
9564     /* Set new mode endianness */
9565     env->uncached_cpsr &= ~CPSR_E;
9566     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9567         env->uncached_cpsr |= CPSR_E;
9568     }
9569     /* J and IL must always be cleared for exception entry */
9570     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9571     env->daif |= mask;
9572 
9573     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9574         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9575             env->uncached_cpsr |= CPSR_SSBS;
9576         } else {
9577             env->uncached_cpsr &= ~CPSR_SSBS;
9578         }
9579     }
9580 
9581     if (new_mode == ARM_CPU_MODE_HYP) {
9582         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9583         env->elr_el[2] = env->regs[15];
9584     } else {
9585         /* CPSR.PAN is normally preserved preserved unless...  */
9586         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9587             switch (new_el) {
9588             case 3:
9589                 if (!arm_is_secure_below_el3(env)) {
9590                     /* ... the target is EL3, from non-secure state.  */
9591                     env->uncached_cpsr &= ~CPSR_PAN;
9592                     break;
9593                 }
9594                 /* ... the target is EL3, from secure state ... */
9595                 /* fall through */
9596             case 1:
9597                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9598                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9599                     env->uncached_cpsr |= CPSR_PAN;
9600                 }
9601                 break;
9602             }
9603         }
9604         /*
9605          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9606          * and we should just guard the thumb mode on V4
9607          */
9608         if (arm_feature(env, ARM_FEATURE_V4T)) {
9609             env->thumb =
9610                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9611         }
9612         env->regs[14] = env->regs[15] + offset;
9613     }
9614     env->regs[15] = newpc;
9615     arm_rebuild_hflags(env);
9616 }
9617 
9618 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9619 {
9620     /*
9621      * Handle exception entry to Hyp mode; this is sufficiently
9622      * different to entry to other AArch32 modes that we handle it
9623      * separately here.
9624      *
9625      * The vector table entry used is always the 0x14 Hyp mode entry point,
9626      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9627      * The offset applied to the preferred return address is always zero
9628      * (see DDI0487C.a section G1.12.3).
9629      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9630      */
9631     uint32_t addr, mask;
9632     ARMCPU *cpu = ARM_CPU(cs);
9633     CPUARMState *env = &cpu->env;
9634 
9635     switch (cs->exception_index) {
9636     case EXCP_UDEF:
9637         addr = 0x04;
9638         break;
9639     case EXCP_SWI:
9640         addr = 0x14;
9641         break;
9642     case EXCP_BKPT:
9643         /* Fall through to prefetch abort.  */
9644     case EXCP_PREFETCH_ABORT:
9645         env->cp15.ifar_s = env->exception.vaddress;
9646         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9647                       (uint32_t)env->exception.vaddress);
9648         addr = 0x0c;
9649         break;
9650     case EXCP_DATA_ABORT:
9651         env->cp15.dfar_s = env->exception.vaddress;
9652         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9653                       (uint32_t)env->exception.vaddress);
9654         addr = 0x10;
9655         break;
9656     case EXCP_IRQ:
9657         addr = 0x18;
9658         break;
9659     case EXCP_FIQ:
9660         addr = 0x1c;
9661         break;
9662     case EXCP_HVC:
9663         addr = 0x08;
9664         break;
9665     case EXCP_HYP_TRAP:
9666         addr = 0x14;
9667         break;
9668     default:
9669         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9670     }
9671 
9672     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9673         if (!arm_feature(env, ARM_FEATURE_V8)) {
9674             /*
9675              * QEMU syndrome values are v8-style. v7 has the IL bit
9676              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9677              * If this is a v7 CPU, squash the IL bit in those cases.
9678              */
9679             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9680                 (cs->exception_index == EXCP_DATA_ABORT &&
9681                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9682                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9683                 env->exception.syndrome &= ~ARM_EL_IL;
9684             }
9685         }
9686         env->cp15.esr_el[2] = env->exception.syndrome;
9687     }
9688 
9689     if (arm_current_el(env) != 2 && addr < 0x14) {
9690         addr = 0x14;
9691     }
9692 
9693     mask = 0;
9694     if (!(env->cp15.scr_el3 & SCR_EA)) {
9695         mask |= CPSR_A;
9696     }
9697     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9698         mask |= CPSR_I;
9699     }
9700     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9701         mask |= CPSR_F;
9702     }
9703 
9704     addr += env->cp15.hvbar;
9705 
9706     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9707 }
9708 
9709 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9710 {
9711     ARMCPU *cpu = ARM_CPU(cs);
9712     CPUARMState *env = &cpu->env;
9713     uint32_t addr;
9714     uint32_t mask;
9715     int new_mode;
9716     uint32_t offset;
9717     uint32_t moe;
9718 
9719     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9720     switch (syn_get_ec(env->exception.syndrome)) {
9721     case EC_BREAKPOINT:
9722     case EC_BREAKPOINT_SAME_EL:
9723         moe = 1;
9724         break;
9725     case EC_WATCHPOINT:
9726     case EC_WATCHPOINT_SAME_EL:
9727         moe = 10;
9728         break;
9729     case EC_AA32_BKPT:
9730         moe = 3;
9731         break;
9732     case EC_VECTORCATCH:
9733         moe = 5;
9734         break;
9735     default:
9736         moe = 0;
9737         break;
9738     }
9739 
9740     if (moe) {
9741         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9742     }
9743 
9744     if (env->exception.target_el == 2) {
9745         arm_cpu_do_interrupt_aarch32_hyp(cs);
9746         return;
9747     }
9748 
9749     switch (cs->exception_index) {
9750     case EXCP_UDEF:
9751         new_mode = ARM_CPU_MODE_UND;
9752         addr = 0x04;
9753         mask = CPSR_I;
9754         if (env->thumb)
9755             offset = 2;
9756         else
9757             offset = 4;
9758         break;
9759     case EXCP_SWI:
9760         new_mode = ARM_CPU_MODE_SVC;
9761         addr = 0x08;
9762         mask = CPSR_I;
9763         /* The PC already points to the next instruction.  */
9764         offset = 0;
9765         break;
9766     case EXCP_BKPT:
9767         /* Fall through to prefetch abort.  */
9768     case EXCP_PREFETCH_ABORT:
9769         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9770         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9771         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9772                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9773         new_mode = ARM_CPU_MODE_ABT;
9774         addr = 0x0c;
9775         mask = CPSR_A | CPSR_I;
9776         offset = 4;
9777         break;
9778     case EXCP_DATA_ABORT:
9779         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9780         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9781         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9782                       env->exception.fsr,
9783                       (uint32_t)env->exception.vaddress);
9784         new_mode = ARM_CPU_MODE_ABT;
9785         addr = 0x10;
9786         mask = CPSR_A | CPSR_I;
9787         offset = 8;
9788         break;
9789     case EXCP_IRQ:
9790         new_mode = ARM_CPU_MODE_IRQ;
9791         addr = 0x18;
9792         /* Disable IRQ and imprecise data aborts.  */
9793         mask = CPSR_A | CPSR_I;
9794         offset = 4;
9795         if (env->cp15.scr_el3 & SCR_IRQ) {
9796             /* IRQ routed to monitor mode */
9797             new_mode = ARM_CPU_MODE_MON;
9798             mask |= CPSR_F;
9799         }
9800         break;
9801     case EXCP_FIQ:
9802         new_mode = ARM_CPU_MODE_FIQ;
9803         addr = 0x1c;
9804         /* Disable FIQ, IRQ and imprecise data aborts.  */
9805         mask = CPSR_A | CPSR_I | CPSR_F;
9806         if (env->cp15.scr_el3 & SCR_FIQ) {
9807             /* FIQ routed to monitor mode */
9808             new_mode = ARM_CPU_MODE_MON;
9809         }
9810         offset = 4;
9811         break;
9812     case EXCP_VIRQ:
9813         new_mode = ARM_CPU_MODE_IRQ;
9814         addr = 0x18;
9815         /* Disable IRQ and imprecise data aborts.  */
9816         mask = CPSR_A | CPSR_I;
9817         offset = 4;
9818         break;
9819     case EXCP_VFIQ:
9820         new_mode = ARM_CPU_MODE_FIQ;
9821         addr = 0x1c;
9822         /* Disable FIQ, IRQ and imprecise data aborts.  */
9823         mask = CPSR_A | CPSR_I | CPSR_F;
9824         offset = 4;
9825         break;
9826     case EXCP_SMC:
9827         new_mode = ARM_CPU_MODE_MON;
9828         addr = 0x08;
9829         mask = CPSR_A | CPSR_I | CPSR_F;
9830         offset = 0;
9831         break;
9832     default:
9833         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9834         return; /* Never happens.  Keep compiler happy.  */
9835     }
9836 
9837     if (new_mode == ARM_CPU_MODE_MON) {
9838         addr += env->cp15.mvbar;
9839     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9840         /* High vectors. When enabled, base address cannot be remapped. */
9841         addr += 0xffff0000;
9842     } else {
9843         /* ARM v7 architectures provide a vector base address register to remap
9844          * the interrupt vector table.
9845          * This register is only followed in non-monitor mode, and is banked.
9846          * Note: only bits 31:5 are valid.
9847          */
9848         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9849     }
9850 
9851     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9852         env->cp15.scr_el3 &= ~SCR_NS;
9853     }
9854 
9855     take_aarch32_exception(env, new_mode, mask, offset, addr);
9856 }
9857 
9858 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9859 {
9860     /*
9861      * Return the register number of the AArch64 view of the AArch32
9862      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9863      * be that of the AArch32 mode the exception came from.
9864      */
9865     int mode = env->uncached_cpsr & CPSR_M;
9866 
9867     switch (aarch32_reg) {
9868     case 0 ... 7:
9869         return aarch32_reg;
9870     case 8 ... 12:
9871         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9872     case 13:
9873         switch (mode) {
9874         case ARM_CPU_MODE_USR:
9875         case ARM_CPU_MODE_SYS:
9876             return 13;
9877         case ARM_CPU_MODE_HYP:
9878             return 15;
9879         case ARM_CPU_MODE_IRQ:
9880             return 17;
9881         case ARM_CPU_MODE_SVC:
9882             return 19;
9883         case ARM_CPU_MODE_ABT:
9884             return 21;
9885         case ARM_CPU_MODE_UND:
9886             return 23;
9887         case ARM_CPU_MODE_FIQ:
9888             return 29;
9889         default:
9890             g_assert_not_reached();
9891         }
9892     case 14:
9893         switch (mode) {
9894         case ARM_CPU_MODE_USR:
9895         case ARM_CPU_MODE_SYS:
9896         case ARM_CPU_MODE_HYP:
9897             return 14;
9898         case ARM_CPU_MODE_IRQ:
9899             return 16;
9900         case ARM_CPU_MODE_SVC:
9901             return 18;
9902         case ARM_CPU_MODE_ABT:
9903             return 20;
9904         case ARM_CPU_MODE_UND:
9905             return 22;
9906         case ARM_CPU_MODE_FIQ:
9907             return 30;
9908         default:
9909             g_assert_not_reached();
9910         }
9911     case 15:
9912         return 31;
9913     default:
9914         g_assert_not_reached();
9915     }
9916 }
9917 
9918 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9919 {
9920     uint32_t ret = cpsr_read(env);
9921 
9922     /* Move DIT to the correct location for SPSR_ELx */
9923     if (ret & CPSR_DIT) {
9924         ret &= ~CPSR_DIT;
9925         ret |= PSTATE_DIT;
9926     }
9927     /* Merge PSTATE.SS into SPSR_ELx */
9928     ret |= env->pstate & PSTATE_SS;
9929 
9930     return ret;
9931 }
9932 
9933 /* Handle exception entry to a target EL which is using AArch64 */
9934 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9935 {
9936     ARMCPU *cpu = ARM_CPU(cs);
9937     CPUARMState *env = &cpu->env;
9938     unsigned int new_el = env->exception.target_el;
9939     target_ulong addr = env->cp15.vbar_el[new_el];
9940     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9941     unsigned int old_mode;
9942     unsigned int cur_el = arm_current_el(env);
9943     int rt;
9944 
9945     /*
9946      * Note that new_el can never be 0.  If cur_el is 0, then
9947      * el0_a64 is is_a64(), else el0_a64 is ignored.
9948      */
9949     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9950 
9951     if (cur_el < new_el) {
9952         /* Entry vector offset depends on whether the implemented EL
9953          * immediately lower than the target level is using AArch32 or AArch64
9954          */
9955         bool is_aa64;
9956         uint64_t hcr;
9957 
9958         switch (new_el) {
9959         case 3:
9960             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9961             break;
9962         case 2:
9963             hcr = arm_hcr_el2_eff(env);
9964             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9965                 is_aa64 = (hcr & HCR_RW) != 0;
9966                 break;
9967             }
9968             /* fall through */
9969         case 1:
9970             is_aa64 = is_a64(env);
9971             break;
9972         default:
9973             g_assert_not_reached();
9974         }
9975 
9976         if (is_aa64) {
9977             addr += 0x400;
9978         } else {
9979             addr += 0x600;
9980         }
9981     } else if (pstate_read(env) & PSTATE_SP) {
9982         addr += 0x200;
9983     }
9984 
9985     switch (cs->exception_index) {
9986     case EXCP_PREFETCH_ABORT:
9987     case EXCP_DATA_ABORT:
9988         env->cp15.far_el[new_el] = env->exception.vaddress;
9989         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9990                       env->cp15.far_el[new_el]);
9991         /* fall through */
9992     case EXCP_BKPT:
9993     case EXCP_UDEF:
9994     case EXCP_SWI:
9995     case EXCP_HVC:
9996     case EXCP_HYP_TRAP:
9997     case EXCP_SMC:
9998         switch (syn_get_ec(env->exception.syndrome)) {
9999         case EC_ADVSIMDFPACCESSTRAP:
10000             /*
10001              * QEMU internal FP/SIMD syndromes from AArch32 include the
10002              * TA and coproc fields which are only exposed if the exception
10003              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10004              * AArch64 format syndrome.
10005              */
10006             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10007             break;
10008         case EC_CP14RTTRAP:
10009         case EC_CP15RTTRAP:
10010         case EC_CP14DTTRAP:
10011             /*
10012              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10013              * the raw register field from the insn; when taking this to
10014              * AArch64 we must convert it to the AArch64 view of the register
10015              * number. Notice that we read a 4-bit AArch32 register number and
10016              * write back a 5-bit AArch64 one.
10017              */
10018             rt = extract32(env->exception.syndrome, 5, 4);
10019             rt = aarch64_regnum(env, rt);
10020             env->exception.syndrome = deposit32(env->exception.syndrome,
10021                                                 5, 5, rt);
10022             break;
10023         case EC_CP15RRTTRAP:
10024         case EC_CP14RRTTRAP:
10025             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10026             rt = extract32(env->exception.syndrome, 5, 4);
10027             rt = aarch64_regnum(env, rt);
10028             env->exception.syndrome = deposit32(env->exception.syndrome,
10029                                                 5, 5, rt);
10030             rt = extract32(env->exception.syndrome, 10, 4);
10031             rt = aarch64_regnum(env, rt);
10032             env->exception.syndrome = deposit32(env->exception.syndrome,
10033                                                 10, 5, rt);
10034             break;
10035         }
10036         env->cp15.esr_el[new_el] = env->exception.syndrome;
10037         break;
10038     case EXCP_IRQ:
10039     case EXCP_VIRQ:
10040         addr += 0x80;
10041         break;
10042     case EXCP_FIQ:
10043     case EXCP_VFIQ:
10044         addr += 0x100;
10045         break;
10046     default:
10047         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10048     }
10049 
10050     if (is_a64(env)) {
10051         old_mode = pstate_read(env);
10052         aarch64_save_sp(env, arm_current_el(env));
10053         env->elr_el[new_el] = env->pc;
10054     } else {
10055         old_mode = cpsr_read_for_spsr_elx(env);
10056         env->elr_el[new_el] = env->regs[15];
10057 
10058         aarch64_sync_32_to_64(env);
10059 
10060         env->condexec_bits = 0;
10061     }
10062     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10063 
10064     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10065                   env->elr_el[new_el]);
10066 
10067     if (cpu_isar_feature(aa64_pan, cpu)) {
10068         /* The value of PSTATE.PAN is normally preserved, except when ... */
10069         new_mode |= old_mode & PSTATE_PAN;
10070         switch (new_el) {
10071         case 2:
10072             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10073             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10074                 != (HCR_E2H | HCR_TGE)) {
10075                 break;
10076             }
10077             /* fall through */
10078         case 1:
10079             /* ... the target is EL1 ... */
10080             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10081             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10082                 new_mode |= PSTATE_PAN;
10083             }
10084             break;
10085         }
10086     }
10087     if (cpu_isar_feature(aa64_mte, cpu)) {
10088         new_mode |= PSTATE_TCO;
10089     }
10090 
10091     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10092         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10093             new_mode |= PSTATE_SSBS;
10094         } else {
10095             new_mode &= ~PSTATE_SSBS;
10096         }
10097     }
10098 
10099     pstate_write(env, PSTATE_DAIF | new_mode);
10100     env->aarch64 = 1;
10101     aarch64_restore_sp(env, new_el);
10102     helper_rebuild_hflags_a64(env, new_el);
10103 
10104     env->pc = addr;
10105 
10106     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10107                   new_el, env->pc, pstate_read(env));
10108 }
10109 
10110 /*
10111  * Do semihosting call and set the appropriate return value. All the
10112  * permission and validity checks have been done at translate time.
10113  *
10114  * We only see semihosting exceptions in TCG only as they are not
10115  * trapped to the hypervisor in KVM.
10116  */
10117 #ifdef CONFIG_TCG
10118 static void handle_semihosting(CPUState *cs)
10119 {
10120     ARMCPU *cpu = ARM_CPU(cs);
10121     CPUARMState *env = &cpu->env;
10122 
10123     if (is_a64(env)) {
10124         qemu_log_mask(CPU_LOG_INT,
10125                       "...handling as semihosting call 0x%" PRIx64 "\n",
10126                       env->xregs[0]);
10127         env->xregs[0] = do_common_semihosting(cs);
10128         env->pc += 4;
10129     } else {
10130         qemu_log_mask(CPU_LOG_INT,
10131                       "...handling as semihosting call 0x%x\n",
10132                       env->regs[0]);
10133         env->regs[0] = do_common_semihosting(cs);
10134         env->regs[15] += env->thumb ? 2 : 4;
10135     }
10136 }
10137 #endif
10138 
10139 /* Handle a CPU exception for A and R profile CPUs.
10140  * Do any appropriate logging, handle PSCI calls, and then hand off
10141  * to the AArch64-entry or AArch32-entry function depending on the
10142  * target exception level's register width.
10143  *
10144  * Note: this is used for both TCG (as the do_interrupt tcg op),
10145  *       and KVM to re-inject guest debug exceptions, and to
10146  *       inject a Synchronous-External-Abort.
10147  */
10148 void arm_cpu_do_interrupt(CPUState *cs)
10149 {
10150     ARMCPU *cpu = ARM_CPU(cs);
10151     CPUARMState *env = &cpu->env;
10152     unsigned int new_el = env->exception.target_el;
10153 
10154     assert(!arm_feature(env, ARM_FEATURE_M));
10155 
10156     arm_log_exception(cs->exception_index);
10157     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10158                   new_el);
10159     if (qemu_loglevel_mask(CPU_LOG_INT)
10160         && !excp_is_internal(cs->exception_index)) {
10161         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10162                       syn_get_ec(env->exception.syndrome),
10163                       env->exception.syndrome);
10164     }
10165 
10166     if (arm_is_psci_call(cpu, cs->exception_index)) {
10167         arm_handle_psci_call(cpu);
10168         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10169         return;
10170     }
10171 
10172     /*
10173      * Semihosting semantics depend on the register width of the code
10174      * that caused the exception, not the target exception level, so
10175      * must be handled here.
10176      */
10177 #ifdef CONFIG_TCG
10178     if (cs->exception_index == EXCP_SEMIHOST) {
10179         handle_semihosting(cs);
10180         return;
10181     }
10182 #endif
10183 
10184     /* Hooks may change global state so BQL should be held, also the
10185      * BQL needs to be held for any modification of
10186      * cs->interrupt_request.
10187      */
10188     g_assert(qemu_mutex_iothread_locked());
10189 
10190     arm_call_pre_el_change_hook(cpu);
10191 
10192     assert(!excp_is_internal(cs->exception_index));
10193     if (arm_el_is_aa64(env, new_el)) {
10194         arm_cpu_do_interrupt_aarch64(cs);
10195     } else {
10196         arm_cpu_do_interrupt_aarch32(cs);
10197     }
10198 
10199     arm_call_el_change_hook(cpu);
10200 
10201     if (!kvm_enabled()) {
10202         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10203     }
10204 }
10205 #endif /* !CONFIG_USER_ONLY */
10206 
10207 uint64_t arm_sctlr(CPUARMState *env, int el)
10208 {
10209     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10210     if (el == 0) {
10211         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10212         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10213              ? 2 : 1;
10214     }
10215     return env->cp15.sctlr_el[el];
10216 }
10217 
10218 /* Return the SCTLR value which controls this address translation regime */
10219 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10220 {
10221     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10222 }
10223 
10224 #ifndef CONFIG_USER_ONLY
10225 
10226 /* Return true if the specified stage of address translation is disabled */
10227 static inline bool regime_translation_disabled(CPUARMState *env,
10228                                                ARMMMUIdx mmu_idx)
10229 {
10230     uint64_t hcr_el2;
10231 
10232     if (arm_feature(env, ARM_FEATURE_M)) {
10233         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10234                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10235         case R_V7M_MPU_CTRL_ENABLE_MASK:
10236             /* Enabled, but not for HardFault and NMI */
10237             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10238         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10239             /* Enabled for all cases */
10240             return false;
10241         case 0:
10242         default:
10243             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10244              * we warned about that in armv7m_nvic.c when the guest set it.
10245              */
10246             return true;
10247         }
10248     }
10249 
10250     hcr_el2 = arm_hcr_el2_eff(env);
10251 
10252     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10253         /* HCR.DC means HCR.VM behaves as 1 */
10254         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10255     }
10256 
10257     if (hcr_el2 & HCR_TGE) {
10258         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10259         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10260             return true;
10261         }
10262     }
10263 
10264     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10265         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10266         return true;
10267     }
10268 
10269     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10270 }
10271 
10272 static inline bool regime_translation_big_endian(CPUARMState *env,
10273                                                  ARMMMUIdx mmu_idx)
10274 {
10275     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10276 }
10277 
10278 /* Return the TTBR associated with this translation regime */
10279 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10280                                    int ttbrn)
10281 {
10282     if (mmu_idx == ARMMMUIdx_Stage2) {
10283         return env->cp15.vttbr_el2;
10284     }
10285     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10286         return env->cp15.vsttbr_el2;
10287     }
10288     if (ttbrn == 0) {
10289         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10290     } else {
10291         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10292     }
10293 }
10294 
10295 #endif /* !CONFIG_USER_ONLY */
10296 
10297 /* Convert a possible stage1+2 MMU index into the appropriate
10298  * stage 1 MMU index
10299  */
10300 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10301 {
10302     switch (mmu_idx) {
10303     case ARMMMUIdx_SE10_0:
10304         return ARMMMUIdx_Stage1_SE0;
10305     case ARMMMUIdx_SE10_1:
10306         return ARMMMUIdx_Stage1_SE1;
10307     case ARMMMUIdx_SE10_1_PAN:
10308         return ARMMMUIdx_Stage1_SE1_PAN;
10309     case ARMMMUIdx_E10_0:
10310         return ARMMMUIdx_Stage1_E0;
10311     case ARMMMUIdx_E10_1:
10312         return ARMMMUIdx_Stage1_E1;
10313     case ARMMMUIdx_E10_1_PAN:
10314         return ARMMMUIdx_Stage1_E1_PAN;
10315     default:
10316         return mmu_idx;
10317     }
10318 }
10319 
10320 /* Return true if the translation regime is using LPAE format page tables */
10321 static inline bool regime_using_lpae_format(CPUARMState *env,
10322                                             ARMMMUIdx mmu_idx)
10323 {
10324     int el = regime_el(env, mmu_idx);
10325     if (el == 2 || arm_el_is_aa64(env, el)) {
10326         return true;
10327     }
10328     if (arm_feature(env, ARM_FEATURE_LPAE)
10329         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10330         return true;
10331     }
10332     return false;
10333 }
10334 
10335 /* Returns true if the stage 1 translation regime is using LPAE format page
10336  * tables. Used when raising alignment exceptions, whose FSR changes depending
10337  * on whether the long or short descriptor format is in use. */
10338 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10339 {
10340     mmu_idx = stage_1_mmu_idx(mmu_idx);
10341 
10342     return regime_using_lpae_format(env, mmu_idx);
10343 }
10344 
10345 #ifndef CONFIG_USER_ONLY
10346 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10347 {
10348     switch (mmu_idx) {
10349     case ARMMMUIdx_SE10_0:
10350     case ARMMMUIdx_E20_0:
10351     case ARMMMUIdx_SE20_0:
10352     case ARMMMUIdx_Stage1_E0:
10353     case ARMMMUIdx_Stage1_SE0:
10354     case ARMMMUIdx_MUser:
10355     case ARMMMUIdx_MSUser:
10356     case ARMMMUIdx_MUserNegPri:
10357     case ARMMMUIdx_MSUserNegPri:
10358         return true;
10359     default:
10360         return false;
10361     case ARMMMUIdx_E10_0:
10362     case ARMMMUIdx_E10_1:
10363     case ARMMMUIdx_E10_1_PAN:
10364         g_assert_not_reached();
10365     }
10366 }
10367 
10368 /* Translate section/page access permissions to page
10369  * R/W protection flags
10370  *
10371  * @env:         CPUARMState
10372  * @mmu_idx:     MMU index indicating required translation regime
10373  * @ap:          The 3-bit access permissions (AP[2:0])
10374  * @domain_prot: The 2-bit domain access permissions
10375  */
10376 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10377                                 int ap, int domain_prot)
10378 {
10379     bool is_user = regime_is_user(env, mmu_idx);
10380 
10381     if (domain_prot == 3) {
10382         return PAGE_READ | PAGE_WRITE;
10383     }
10384 
10385     switch (ap) {
10386     case 0:
10387         if (arm_feature(env, ARM_FEATURE_V7)) {
10388             return 0;
10389         }
10390         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10391         case SCTLR_S:
10392             return is_user ? 0 : PAGE_READ;
10393         case SCTLR_R:
10394             return PAGE_READ;
10395         default:
10396             return 0;
10397         }
10398     case 1:
10399         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10400     case 2:
10401         if (is_user) {
10402             return PAGE_READ;
10403         } else {
10404             return PAGE_READ | PAGE_WRITE;
10405         }
10406     case 3:
10407         return PAGE_READ | PAGE_WRITE;
10408     case 4: /* Reserved.  */
10409         return 0;
10410     case 5:
10411         return is_user ? 0 : PAGE_READ;
10412     case 6:
10413         return PAGE_READ;
10414     case 7:
10415         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10416             return 0;
10417         }
10418         return PAGE_READ;
10419     default:
10420         g_assert_not_reached();
10421     }
10422 }
10423 
10424 /* Translate section/page access permissions to page
10425  * R/W protection flags.
10426  *
10427  * @ap:      The 2-bit simple AP (AP[2:1])
10428  * @is_user: TRUE if accessing from PL0
10429  */
10430 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10431 {
10432     switch (ap) {
10433     case 0:
10434         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10435     case 1:
10436         return PAGE_READ | PAGE_WRITE;
10437     case 2:
10438         return is_user ? 0 : PAGE_READ;
10439     case 3:
10440         return PAGE_READ;
10441     default:
10442         g_assert_not_reached();
10443     }
10444 }
10445 
10446 static inline int
10447 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10448 {
10449     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10450 }
10451 
10452 /* Translate S2 section/page access permissions to protection flags
10453  *
10454  * @env:     CPUARMState
10455  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10456  * @xn:      XN (execute-never) bits
10457  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10458  */
10459 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10460 {
10461     int prot = 0;
10462 
10463     if (s2ap & 1) {
10464         prot |= PAGE_READ;
10465     }
10466     if (s2ap & 2) {
10467         prot |= PAGE_WRITE;
10468     }
10469 
10470     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10471         switch (xn) {
10472         case 0:
10473             prot |= PAGE_EXEC;
10474             break;
10475         case 1:
10476             if (s1_is_el0) {
10477                 prot |= PAGE_EXEC;
10478             }
10479             break;
10480         case 2:
10481             break;
10482         case 3:
10483             if (!s1_is_el0) {
10484                 prot |= PAGE_EXEC;
10485             }
10486             break;
10487         default:
10488             g_assert_not_reached();
10489         }
10490     } else {
10491         if (!extract32(xn, 1, 1)) {
10492             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10493                 prot |= PAGE_EXEC;
10494             }
10495         }
10496     }
10497     return prot;
10498 }
10499 
10500 /* Translate section/page access permissions to protection flags
10501  *
10502  * @env:     CPUARMState
10503  * @mmu_idx: MMU index indicating required translation regime
10504  * @is_aa64: TRUE if AArch64
10505  * @ap:      The 2-bit simple AP (AP[2:1])
10506  * @ns:      NS (non-secure) bit
10507  * @xn:      XN (execute-never) bit
10508  * @pxn:     PXN (privileged execute-never) bit
10509  */
10510 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10511                       int ap, int ns, int xn, int pxn)
10512 {
10513     bool is_user = regime_is_user(env, mmu_idx);
10514     int prot_rw, user_rw;
10515     bool have_wxn;
10516     int wxn = 0;
10517 
10518     assert(mmu_idx != ARMMMUIdx_Stage2);
10519     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10520 
10521     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10522     if (is_user) {
10523         prot_rw = user_rw;
10524     } else {
10525         if (user_rw && regime_is_pan(env, mmu_idx)) {
10526             /* PAN forbids data accesses but doesn't affect insn fetch */
10527             prot_rw = 0;
10528         } else {
10529             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10530         }
10531     }
10532 
10533     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10534         return prot_rw;
10535     }
10536 
10537     /* TODO have_wxn should be replaced with
10538      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10539      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10540      * compatible processors have EL2, which is required for [U]WXN.
10541      */
10542     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10543 
10544     if (have_wxn) {
10545         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10546     }
10547 
10548     if (is_aa64) {
10549         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10550             xn = pxn || (user_rw & PAGE_WRITE);
10551         }
10552     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10553         switch (regime_el(env, mmu_idx)) {
10554         case 1:
10555         case 3:
10556             if (is_user) {
10557                 xn = xn || !(user_rw & PAGE_READ);
10558             } else {
10559                 int uwxn = 0;
10560                 if (have_wxn) {
10561                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10562                 }
10563                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10564                      (uwxn && (user_rw & PAGE_WRITE));
10565             }
10566             break;
10567         case 2:
10568             break;
10569         }
10570     } else {
10571         xn = wxn = 0;
10572     }
10573 
10574     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10575         return prot_rw;
10576     }
10577     return prot_rw | PAGE_EXEC;
10578 }
10579 
10580 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10581                                      uint32_t *table, uint32_t address)
10582 {
10583     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10584     TCR *tcr = regime_tcr(env, mmu_idx);
10585 
10586     if (address & tcr->mask) {
10587         if (tcr->raw_tcr & TTBCR_PD1) {
10588             /* Translation table walk disabled for TTBR1 */
10589             return false;
10590         }
10591         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10592     } else {
10593         if (tcr->raw_tcr & TTBCR_PD0) {
10594             /* Translation table walk disabled for TTBR0 */
10595             return false;
10596         }
10597         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10598     }
10599     *table |= (address >> 18) & 0x3ffc;
10600     return true;
10601 }
10602 
10603 /* Translate a S1 pagetable walk through S2 if needed.  */
10604 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10605                                hwaddr addr, bool *is_secure,
10606                                ARMMMUFaultInfo *fi)
10607 {
10608     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10609         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10610         target_ulong s2size;
10611         hwaddr s2pa;
10612         int s2prot;
10613         int ret;
10614         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10615                                           : ARMMMUIdx_Stage2;
10616         ARMCacheAttrs cacheattrs = {};
10617         MemTxAttrs txattrs = {};
10618 
10619         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10620                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10621                                  &cacheattrs);
10622         if (ret) {
10623             assert(fi->type != ARMFault_None);
10624             fi->s2addr = addr;
10625             fi->stage2 = true;
10626             fi->s1ptw = true;
10627             fi->s1ns = !*is_secure;
10628             return ~0;
10629         }
10630         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10631             (cacheattrs.attrs & 0xf0) == 0) {
10632             /*
10633              * PTW set and S1 walk touched S2 Device memory:
10634              * generate Permission fault.
10635              */
10636             fi->type = ARMFault_Permission;
10637             fi->s2addr = addr;
10638             fi->stage2 = true;
10639             fi->s1ptw = true;
10640             fi->s1ns = !*is_secure;
10641             return ~0;
10642         }
10643 
10644         if (arm_is_secure_below_el3(env)) {
10645             /* Check if page table walk is to secure or non-secure PA space. */
10646             if (*is_secure) {
10647                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10648             } else {
10649                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10650             }
10651         } else {
10652             assert(!*is_secure);
10653         }
10654 
10655         addr = s2pa;
10656     }
10657     return addr;
10658 }
10659 
10660 /* All loads done in the course of a page table walk go through here. */
10661 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10662                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10663 {
10664     ARMCPU *cpu = ARM_CPU(cs);
10665     CPUARMState *env = &cpu->env;
10666     MemTxAttrs attrs = {};
10667     MemTxResult result = MEMTX_OK;
10668     AddressSpace *as;
10669     uint32_t data;
10670 
10671     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10672     attrs.secure = is_secure;
10673     as = arm_addressspace(cs, attrs);
10674     if (fi->s1ptw) {
10675         return 0;
10676     }
10677     if (regime_translation_big_endian(env, mmu_idx)) {
10678         data = address_space_ldl_be(as, addr, attrs, &result);
10679     } else {
10680         data = address_space_ldl_le(as, addr, attrs, &result);
10681     }
10682     if (result == MEMTX_OK) {
10683         return data;
10684     }
10685     fi->type = ARMFault_SyncExternalOnWalk;
10686     fi->ea = arm_extabort_type(result);
10687     return 0;
10688 }
10689 
10690 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10691                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10692 {
10693     ARMCPU *cpu = ARM_CPU(cs);
10694     CPUARMState *env = &cpu->env;
10695     MemTxAttrs attrs = {};
10696     MemTxResult result = MEMTX_OK;
10697     AddressSpace *as;
10698     uint64_t data;
10699 
10700     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10701     attrs.secure = is_secure;
10702     as = arm_addressspace(cs, attrs);
10703     if (fi->s1ptw) {
10704         return 0;
10705     }
10706     if (regime_translation_big_endian(env, mmu_idx)) {
10707         data = address_space_ldq_be(as, addr, attrs, &result);
10708     } else {
10709         data = address_space_ldq_le(as, addr, attrs, &result);
10710     }
10711     if (result == MEMTX_OK) {
10712         return data;
10713     }
10714     fi->type = ARMFault_SyncExternalOnWalk;
10715     fi->ea = arm_extabort_type(result);
10716     return 0;
10717 }
10718 
10719 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10720                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10721                              hwaddr *phys_ptr, int *prot,
10722                              target_ulong *page_size,
10723                              ARMMMUFaultInfo *fi)
10724 {
10725     CPUState *cs = env_cpu(env);
10726     int level = 1;
10727     uint32_t table;
10728     uint32_t desc;
10729     int type;
10730     int ap;
10731     int domain = 0;
10732     int domain_prot;
10733     hwaddr phys_addr;
10734     uint32_t dacr;
10735 
10736     /* Pagetable walk.  */
10737     /* Lookup l1 descriptor.  */
10738     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10739         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10740         fi->type = ARMFault_Translation;
10741         goto do_fault;
10742     }
10743     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10744                        mmu_idx, fi);
10745     if (fi->type != ARMFault_None) {
10746         goto do_fault;
10747     }
10748     type = (desc & 3);
10749     domain = (desc >> 5) & 0x0f;
10750     if (regime_el(env, mmu_idx) == 1) {
10751         dacr = env->cp15.dacr_ns;
10752     } else {
10753         dacr = env->cp15.dacr_s;
10754     }
10755     domain_prot = (dacr >> (domain * 2)) & 3;
10756     if (type == 0) {
10757         /* Section translation fault.  */
10758         fi->type = ARMFault_Translation;
10759         goto do_fault;
10760     }
10761     if (type != 2) {
10762         level = 2;
10763     }
10764     if (domain_prot == 0 || domain_prot == 2) {
10765         fi->type = ARMFault_Domain;
10766         goto do_fault;
10767     }
10768     if (type == 2) {
10769         /* 1Mb section.  */
10770         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10771         ap = (desc >> 10) & 3;
10772         *page_size = 1024 * 1024;
10773     } else {
10774         /* Lookup l2 entry.  */
10775         if (type == 1) {
10776             /* Coarse pagetable.  */
10777             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10778         } else {
10779             /* Fine pagetable.  */
10780             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10781         }
10782         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10783                            mmu_idx, fi);
10784         if (fi->type != ARMFault_None) {
10785             goto do_fault;
10786         }
10787         switch (desc & 3) {
10788         case 0: /* Page translation fault.  */
10789             fi->type = ARMFault_Translation;
10790             goto do_fault;
10791         case 1: /* 64k page.  */
10792             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10793             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10794             *page_size = 0x10000;
10795             break;
10796         case 2: /* 4k page.  */
10797             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10798             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10799             *page_size = 0x1000;
10800             break;
10801         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10802             if (type == 1) {
10803                 /* ARMv6/XScale extended small page format */
10804                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10805                     || arm_feature(env, ARM_FEATURE_V6)) {
10806                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10807                     *page_size = 0x1000;
10808                 } else {
10809                     /* UNPREDICTABLE in ARMv5; we choose to take a
10810                      * page translation fault.
10811                      */
10812                     fi->type = ARMFault_Translation;
10813                     goto do_fault;
10814                 }
10815             } else {
10816                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10817                 *page_size = 0x400;
10818             }
10819             ap = (desc >> 4) & 3;
10820             break;
10821         default:
10822             /* Never happens, but compiler isn't smart enough to tell.  */
10823             abort();
10824         }
10825     }
10826     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10827     *prot |= *prot ? PAGE_EXEC : 0;
10828     if (!(*prot & (1 << access_type))) {
10829         /* Access permission fault.  */
10830         fi->type = ARMFault_Permission;
10831         goto do_fault;
10832     }
10833     *phys_ptr = phys_addr;
10834     return false;
10835 do_fault:
10836     fi->domain = domain;
10837     fi->level = level;
10838     return true;
10839 }
10840 
10841 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10842                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10843                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10844                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10845 {
10846     CPUState *cs = env_cpu(env);
10847     ARMCPU *cpu = env_archcpu(env);
10848     int level = 1;
10849     uint32_t table;
10850     uint32_t desc;
10851     uint32_t xn;
10852     uint32_t pxn = 0;
10853     int type;
10854     int ap;
10855     int domain = 0;
10856     int domain_prot;
10857     hwaddr phys_addr;
10858     uint32_t dacr;
10859     bool ns;
10860 
10861     /* Pagetable walk.  */
10862     /* Lookup l1 descriptor.  */
10863     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10864         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10865         fi->type = ARMFault_Translation;
10866         goto do_fault;
10867     }
10868     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10869                        mmu_idx, fi);
10870     if (fi->type != ARMFault_None) {
10871         goto do_fault;
10872     }
10873     type = (desc & 3);
10874     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10875         /* Section translation fault, or attempt to use the encoding
10876          * which is Reserved on implementations without PXN.
10877          */
10878         fi->type = ARMFault_Translation;
10879         goto do_fault;
10880     }
10881     if ((type == 1) || !(desc & (1 << 18))) {
10882         /* Page or Section.  */
10883         domain = (desc >> 5) & 0x0f;
10884     }
10885     if (regime_el(env, mmu_idx) == 1) {
10886         dacr = env->cp15.dacr_ns;
10887     } else {
10888         dacr = env->cp15.dacr_s;
10889     }
10890     if (type == 1) {
10891         level = 2;
10892     }
10893     domain_prot = (dacr >> (domain * 2)) & 3;
10894     if (domain_prot == 0 || domain_prot == 2) {
10895         /* Section or Page domain fault */
10896         fi->type = ARMFault_Domain;
10897         goto do_fault;
10898     }
10899     if (type != 1) {
10900         if (desc & (1 << 18)) {
10901             /* Supersection.  */
10902             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10903             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10904             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10905             *page_size = 0x1000000;
10906         } else {
10907             /* Section.  */
10908             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10909             *page_size = 0x100000;
10910         }
10911         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10912         xn = desc & (1 << 4);
10913         pxn = desc & 1;
10914         ns = extract32(desc, 19, 1);
10915     } else {
10916         if (cpu_isar_feature(aa32_pxn, cpu)) {
10917             pxn = (desc >> 2) & 1;
10918         }
10919         ns = extract32(desc, 3, 1);
10920         /* Lookup l2 entry.  */
10921         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10922         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10923                            mmu_idx, fi);
10924         if (fi->type != ARMFault_None) {
10925             goto do_fault;
10926         }
10927         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10928         switch (desc & 3) {
10929         case 0: /* Page translation fault.  */
10930             fi->type = ARMFault_Translation;
10931             goto do_fault;
10932         case 1: /* 64k page.  */
10933             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10934             xn = desc & (1 << 15);
10935             *page_size = 0x10000;
10936             break;
10937         case 2: case 3: /* 4k page.  */
10938             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10939             xn = desc & 1;
10940             *page_size = 0x1000;
10941             break;
10942         default:
10943             /* Never happens, but compiler isn't smart enough to tell.  */
10944             abort();
10945         }
10946     }
10947     if (domain_prot == 3) {
10948         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10949     } else {
10950         if (pxn && !regime_is_user(env, mmu_idx)) {
10951             xn = 1;
10952         }
10953         if (xn && access_type == MMU_INST_FETCH) {
10954             fi->type = ARMFault_Permission;
10955             goto do_fault;
10956         }
10957 
10958         if (arm_feature(env, ARM_FEATURE_V6K) &&
10959                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10960             /* The simplified model uses AP[0] as an access control bit.  */
10961             if ((ap & 1) == 0) {
10962                 /* Access flag fault.  */
10963                 fi->type = ARMFault_AccessFlag;
10964                 goto do_fault;
10965             }
10966             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10967         } else {
10968             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10969         }
10970         if (*prot && !xn) {
10971             *prot |= PAGE_EXEC;
10972         }
10973         if (!(*prot & (1 << access_type))) {
10974             /* Access permission fault.  */
10975             fi->type = ARMFault_Permission;
10976             goto do_fault;
10977         }
10978     }
10979     if (ns) {
10980         /* The NS bit will (as required by the architecture) have no effect if
10981          * the CPU doesn't support TZ or this is a non-secure translation
10982          * regime, because the attribute will already be non-secure.
10983          */
10984         attrs->secure = false;
10985     }
10986     *phys_ptr = phys_addr;
10987     return false;
10988 do_fault:
10989     fi->domain = domain;
10990     fi->level = level;
10991     return true;
10992 }
10993 
10994 /*
10995  * check_s2_mmu_setup
10996  * @cpu:        ARMCPU
10997  * @is_aa64:    True if the translation regime is in AArch64 state
10998  * @startlevel: Suggested starting level
10999  * @inputsize:  Bitsize of IPAs
11000  * @stride:     Page-table stride (See the ARM ARM)
11001  *
11002  * Returns true if the suggested S2 translation parameters are OK and
11003  * false otherwise.
11004  */
11005 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11006                                int inputsize, int stride)
11007 {
11008     const int grainsize = stride + 3;
11009     int startsizecheck;
11010 
11011     /* Negative levels are never allowed.  */
11012     if (level < 0) {
11013         return false;
11014     }
11015 
11016     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11017     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11018         return false;
11019     }
11020 
11021     if (is_aa64) {
11022         CPUARMState *env = &cpu->env;
11023         unsigned int pamax = arm_pamax(cpu);
11024 
11025         switch (stride) {
11026         case 13: /* 64KB Pages.  */
11027             if (level == 0 || (level == 1 && pamax <= 42)) {
11028                 return false;
11029             }
11030             break;
11031         case 11: /* 16KB Pages.  */
11032             if (level == 0 || (level == 1 && pamax <= 40)) {
11033                 return false;
11034             }
11035             break;
11036         case 9: /* 4KB Pages.  */
11037             if (level == 0 && pamax <= 42) {
11038                 return false;
11039             }
11040             break;
11041         default:
11042             g_assert_not_reached();
11043         }
11044 
11045         /* Inputsize checks.  */
11046         if (inputsize > pamax &&
11047             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11048             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11049             return false;
11050         }
11051     } else {
11052         /* AArch32 only supports 4KB pages. Assert on that.  */
11053         assert(stride == 9);
11054 
11055         if (level == 0) {
11056             return false;
11057         }
11058     }
11059     return true;
11060 }
11061 
11062 /* Translate from the 4-bit stage 2 representation of
11063  * memory attributes (without cache-allocation hints) to
11064  * the 8-bit representation of the stage 1 MAIR registers
11065  * (which includes allocation hints).
11066  *
11067  * ref: shared/translation/attrs/S2AttrDecode()
11068  *      .../S2ConvertAttrsHints()
11069  */
11070 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11071 {
11072     uint8_t hiattr = extract32(s2attrs, 2, 2);
11073     uint8_t loattr = extract32(s2attrs, 0, 2);
11074     uint8_t hihint = 0, lohint = 0;
11075 
11076     if (hiattr != 0) { /* normal memory */
11077         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11078             hiattr = loattr = 1; /* non-cacheable */
11079         } else {
11080             if (hiattr != 1) { /* Write-through or write-back */
11081                 hihint = 3; /* RW allocate */
11082             }
11083             if (loattr != 1) { /* Write-through or write-back */
11084                 lohint = 3; /* RW allocate */
11085             }
11086         }
11087     }
11088 
11089     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11090 }
11091 #endif /* !CONFIG_USER_ONLY */
11092 
11093 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11094 {
11095     if (regime_has_2_ranges(mmu_idx)) {
11096         return extract64(tcr, 37, 2);
11097     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11098         return 0; /* VTCR_EL2 */
11099     } else {
11100         /* Replicate the single TBI bit so we always have 2 bits.  */
11101         return extract32(tcr, 20, 1) * 3;
11102     }
11103 }
11104 
11105 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11106 {
11107     if (regime_has_2_ranges(mmu_idx)) {
11108         return extract64(tcr, 51, 2);
11109     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11110         return 0; /* VTCR_EL2 */
11111     } else {
11112         /* Replicate the single TBID bit so we always have 2 bits.  */
11113         return extract32(tcr, 29, 1) * 3;
11114     }
11115 }
11116 
11117 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11118 {
11119     if (regime_has_2_ranges(mmu_idx)) {
11120         return extract64(tcr, 57, 2);
11121     } else {
11122         /* Replicate the single TCMA bit so we always have 2 bits.  */
11123         return extract32(tcr, 30, 1) * 3;
11124     }
11125 }
11126 
11127 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11128                                    ARMMMUIdx mmu_idx, bool data)
11129 {
11130     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11131     bool epd, hpd, using16k, using64k;
11132     int select, tsz, tbi, max_tsz;
11133 
11134     if (!regime_has_2_ranges(mmu_idx)) {
11135         select = 0;
11136         tsz = extract32(tcr, 0, 6);
11137         using64k = extract32(tcr, 14, 1);
11138         using16k = extract32(tcr, 15, 1);
11139         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11140             /* VTCR_EL2 */
11141             hpd = false;
11142         } else {
11143             hpd = extract32(tcr, 24, 1);
11144         }
11145         epd = false;
11146     } else {
11147         /*
11148          * Bit 55 is always between the two regions, and is canonical for
11149          * determining if address tagging is enabled.
11150          */
11151         select = extract64(va, 55, 1);
11152         if (!select) {
11153             tsz = extract32(tcr, 0, 6);
11154             epd = extract32(tcr, 7, 1);
11155             using64k = extract32(tcr, 14, 1);
11156             using16k = extract32(tcr, 15, 1);
11157             hpd = extract64(tcr, 41, 1);
11158         } else {
11159             int tg = extract32(tcr, 30, 2);
11160             using16k = tg == 1;
11161             using64k = tg == 3;
11162             tsz = extract32(tcr, 16, 6);
11163             epd = extract32(tcr, 23, 1);
11164             hpd = extract64(tcr, 42, 1);
11165         }
11166     }
11167 
11168     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11169         max_tsz = 48 - using64k;
11170     } else {
11171         max_tsz = 39;
11172     }
11173 
11174     tsz = MIN(tsz, max_tsz);
11175     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11176 
11177     /* Present TBI as a composite with TBID.  */
11178     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11179     if (!data) {
11180         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11181     }
11182     tbi = (tbi >> select) & 1;
11183 
11184     return (ARMVAParameters) {
11185         .tsz = tsz,
11186         .select = select,
11187         .tbi = tbi,
11188         .epd = epd,
11189         .hpd = hpd,
11190         .using16k = using16k,
11191         .using64k = using64k,
11192     };
11193 }
11194 
11195 #ifndef CONFIG_USER_ONLY
11196 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11197                                           ARMMMUIdx mmu_idx)
11198 {
11199     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11200     uint32_t el = regime_el(env, mmu_idx);
11201     int select, tsz;
11202     bool epd, hpd;
11203 
11204     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11205 
11206     if (mmu_idx == ARMMMUIdx_Stage2) {
11207         /* VTCR */
11208         bool sext = extract32(tcr, 4, 1);
11209         bool sign = extract32(tcr, 3, 1);
11210 
11211         /*
11212          * If the sign-extend bit is not the same as t0sz[3], the result
11213          * is unpredictable. Flag this as a guest error.
11214          */
11215         if (sign != sext) {
11216             qemu_log_mask(LOG_GUEST_ERROR,
11217                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11218         }
11219         tsz = sextract32(tcr, 0, 4) + 8;
11220         select = 0;
11221         hpd = false;
11222         epd = false;
11223     } else if (el == 2) {
11224         /* HTCR */
11225         tsz = extract32(tcr, 0, 3);
11226         select = 0;
11227         hpd = extract64(tcr, 24, 1);
11228         epd = false;
11229     } else {
11230         int t0sz = extract32(tcr, 0, 3);
11231         int t1sz = extract32(tcr, 16, 3);
11232 
11233         if (t1sz == 0) {
11234             select = va > (0xffffffffu >> t0sz);
11235         } else {
11236             /* Note that we will detect errors later.  */
11237             select = va >= ~(0xffffffffu >> t1sz);
11238         }
11239         if (!select) {
11240             tsz = t0sz;
11241             epd = extract32(tcr, 7, 1);
11242             hpd = extract64(tcr, 41, 1);
11243         } else {
11244             tsz = t1sz;
11245             epd = extract32(tcr, 23, 1);
11246             hpd = extract64(tcr, 42, 1);
11247         }
11248         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11249         hpd &= extract32(tcr, 6, 1);
11250     }
11251 
11252     return (ARMVAParameters) {
11253         .tsz = tsz,
11254         .select = select,
11255         .epd = epd,
11256         .hpd = hpd,
11257     };
11258 }
11259 
11260 /**
11261  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11262  *
11263  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11264  * prot and page_size may not be filled in, and the populated fsr value provides
11265  * information on why the translation aborted, in the format of a long-format
11266  * DFSR/IFSR fault register, with the following caveats:
11267  *  * the WnR bit is never set (the caller must do this).
11268  *
11269  * @env: CPUARMState
11270  * @address: virtual address to get physical address for
11271  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11272  * @mmu_idx: MMU index indicating required translation regime
11273  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11274  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11275  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11276  * @phys_ptr: set to the physical address corresponding to the virtual address
11277  * @attrs: set to the memory transaction attributes to use
11278  * @prot: set to the permissions for the page containing phys_ptr
11279  * @page_size_ptr: set to the size of the page containing phys_ptr
11280  * @fi: set to fault info if the translation fails
11281  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11282  */
11283 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11284                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11285                                bool s1_is_el0,
11286                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11287                                target_ulong *page_size_ptr,
11288                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11289 {
11290     ARMCPU *cpu = env_archcpu(env);
11291     CPUState *cs = CPU(cpu);
11292     /* Read an LPAE long-descriptor translation table. */
11293     ARMFaultType fault_type = ARMFault_Translation;
11294     uint32_t level;
11295     ARMVAParameters param;
11296     uint64_t ttbr;
11297     hwaddr descaddr, indexmask, indexmask_grainsize;
11298     uint32_t tableattrs;
11299     target_ulong page_size;
11300     uint32_t attrs;
11301     int32_t stride;
11302     int addrsize, inputsize;
11303     TCR *tcr = regime_tcr(env, mmu_idx);
11304     int ap, ns, xn, pxn;
11305     uint32_t el = regime_el(env, mmu_idx);
11306     uint64_t descaddrmask;
11307     bool aarch64 = arm_el_is_aa64(env, el);
11308     bool guarded = false;
11309 
11310     /* TODO: This code does not support shareability levels. */
11311     if (aarch64) {
11312         param = aa64_va_parameters(env, address, mmu_idx,
11313                                    access_type != MMU_INST_FETCH);
11314         level = 0;
11315         addrsize = 64 - 8 * param.tbi;
11316         inputsize = 64 - param.tsz;
11317     } else {
11318         param = aa32_va_parameters(env, address, mmu_idx);
11319         level = 1;
11320         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11321         inputsize = addrsize - param.tsz;
11322     }
11323 
11324     /*
11325      * We determined the region when collecting the parameters, but we
11326      * have not yet validated that the address is valid for the region.
11327      * Extract the top bits and verify that they all match select.
11328      *
11329      * For aa32, if inputsize == addrsize, then we have selected the
11330      * region by exclusion in aa32_va_parameters and there is no more
11331      * validation to do here.
11332      */
11333     if (inputsize < addrsize) {
11334         target_ulong top_bits = sextract64(address, inputsize,
11335                                            addrsize - inputsize);
11336         if (-top_bits != param.select) {
11337             /* The gap between the two regions is a Translation fault */
11338             fault_type = ARMFault_Translation;
11339             goto do_fault;
11340         }
11341     }
11342 
11343     if (param.using64k) {
11344         stride = 13;
11345     } else if (param.using16k) {
11346         stride = 11;
11347     } else {
11348         stride = 9;
11349     }
11350 
11351     /* Note that QEMU ignores shareability and cacheability attributes,
11352      * so we don't need to do anything with the SH, ORGN, IRGN fields
11353      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11354      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11355      * implement any ASID-like capability so we can ignore it (instead
11356      * we will always flush the TLB any time the ASID is changed).
11357      */
11358     ttbr = regime_ttbr(env, mmu_idx, param.select);
11359 
11360     /* Here we should have set up all the parameters for the translation:
11361      * inputsize, ttbr, epd, stride, tbi
11362      */
11363 
11364     if (param.epd) {
11365         /* Translation table walk disabled => Translation fault on TLB miss
11366          * Note: This is always 0 on 64-bit EL2 and EL3.
11367          */
11368         goto do_fault;
11369     }
11370 
11371     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11372         /* The starting level depends on the virtual address size (which can
11373          * be up to 48 bits) and the translation granule size. It indicates
11374          * the number of strides (stride bits at a time) needed to
11375          * consume the bits of the input address. In the pseudocode this is:
11376          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11377          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11378          * our 'stride + 3' and 'stride' is our 'stride'.
11379          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11380          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11381          * = 4 - (inputsize - 4) / stride;
11382          */
11383         level = 4 - (inputsize - 4) / stride;
11384     } else {
11385         /* For stage 2 translations the starting level is specified by the
11386          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11387          */
11388         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11389         uint32_t startlevel;
11390         bool ok;
11391 
11392         if (!aarch64 || stride == 9) {
11393             /* AArch32 or 4KB pages */
11394             startlevel = 2 - sl0;
11395 
11396             if (cpu_isar_feature(aa64_st, cpu)) {
11397                 startlevel &= 3;
11398             }
11399         } else {
11400             /* 16KB or 64KB pages */
11401             startlevel = 3 - sl0;
11402         }
11403 
11404         /* Check that the starting level is valid. */
11405         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11406                                 inputsize, stride);
11407         if (!ok) {
11408             fault_type = ARMFault_Translation;
11409             goto do_fault;
11410         }
11411         level = startlevel;
11412     }
11413 
11414     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11415     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11416 
11417     /* Now we can extract the actual base address from the TTBR */
11418     descaddr = extract64(ttbr, 0, 48);
11419     /*
11420      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11421      * and also to mask out CnP (bit 0) which could validly be non-zero.
11422      */
11423     descaddr &= ~indexmask;
11424 
11425     /* The address field in the descriptor goes up to bit 39 for ARMv7
11426      * but up to bit 47 for ARMv8, but we use the descaddrmask
11427      * up to bit 39 for AArch32, because we don't need other bits in that case
11428      * to construct next descriptor address (anyway they should be all zeroes).
11429      */
11430     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11431                    ~indexmask_grainsize;
11432 
11433     /* Secure accesses start with the page table in secure memory and
11434      * can be downgraded to non-secure at any step. Non-secure accesses
11435      * remain non-secure. We implement this by just ORing in the NSTable/NS
11436      * bits at each step.
11437      */
11438     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11439     for (;;) {
11440         uint64_t descriptor;
11441         bool nstable;
11442 
11443         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11444         descaddr &= ~7ULL;
11445         nstable = extract32(tableattrs, 4, 1);
11446         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11447         if (fi->type != ARMFault_None) {
11448             goto do_fault;
11449         }
11450 
11451         if (!(descriptor & 1) ||
11452             (!(descriptor & 2) && (level == 3))) {
11453             /* Invalid, or the Reserved level 3 encoding */
11454             goto do_fault;
11455         }
11456         descaddr = descriptor & descaddrmask;
11457 
11458         if ((descriptor & 2) && (level < 3)) {
11459             /* Table entry. The top five bits are attributes which may
11460              * propagate down through lower levels of the table (and
11461              * which are all arranged so that 0 means "no effect", so
11462              * we can gather them up by ORing in the bits at each level).
11463              */
11464             tableattrs |= extract64(descriptor, 59, 5);
11465             level++;
11466             indexmask = indexmask_grainsize;
11467             continue;
11468         }
11469         /* Block entry at level 1 or 2, or page entry at level 3.
11470          * These are basically the same thing, although the number
11471          * of bits we pull in from the vaddr varies.
11472          */
11473         page_size = (1ULL << ((stride * (4 - level)) + 3));
11474         descaddr |= (address & (page_size - 1));
11475         /* Extract attributes from the descriptor */
11476         attrs = extract64(descriptor, 2, 10)
11477             | (extract64(descriptor, 52, 12) << 10);
11478 
11479         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11480             /* Stage 2 table descriptors do not include any attribute fields */
11481             break;
11482         }
11483         /* Merge in attributes from table descriptors */
11484         attrs |= nstable << 3; /* NS */
11485         guarded = extract64(descriptor, 50, 1);  /* GP */
11486         if (param.hpd) {
11487             /* HPD disables all the table attributes except NSTable.  */
11488             break;
11489         }
11490         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11491         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11492          * means "force PL1 access only", which means forcing AP[1] to 0.
11493          */
11494         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11495         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11496         break;
11497     }
11498     /* Here descaddr is the final physical address, and attributes
11499      * are all in attrs.
11500      */
11501     fault_type = ARMFault_AccessFlag;
11502     if ((attrs & (1 << 8)) == 0) {
11503         /* Access flag */
11504         goto do_fault;
11505     }
11506 
11507     ap = extract32(attrs, 4, 2);
11508 
11509     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11510         ns = mmu_idx == ARMMMUIdx_Stage2;
11511         xn = extract32(attrs, 11, 2);
11512         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11513     } else {
11514         ns = extract32(attrs, 3, 1);
11515         xn = extract32(attrs, 12, 1);
11516         pxn = extract32(attrs, 11, 1);
11517         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11518     }
11519 
11520     fault_type = ARMFault_Permission;
11521     if (!(*prot & (1 << access_type))) {
11522         goto do_fault;
11523     }
11524 
11525     if (ns) {
11526         /* The NS bit will (as required by the architecture) have no effect if
11527          * the CPU doesn't support TZ or this is a non-secure translation
11528          * regime, because the attribute will already be non-secure.
11529          */
11530         txattrs->secure = false;
11531     }
11532     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11533     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11534         arm_tlb_bti_gp(txattrs) = true;
11535     }
11536 
11537     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11538         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11539     } else {
11540         /* Index into MAIR registers for cache attributes */
11541         uint8_t attrindx = extract32(attrs, 0, 3);
11542         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11543         assert(attrindx <= 7);
11544         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11545     }
11546     cacheattrs->shareability = extract32(attrs, 6, 2);
11547 
11548     *phys_ptr = descaddr;
11549     *page_size_ptr = page_size;
11550     return false;
11551 
11552 do_fault:
11553     fi->type = fault_type;
11554     fi->level = level;
11555     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11556     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11557                                mmu_idx == ARMMMUIdx_Stage2_S);
11558     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11559     return true;
11560 }
11561 
11562 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11563                                                 ARMMMUIdx mmu_idx,
11564                                                 int32_t address, int *prot)
11565 {
11566     if (!arm_feature(env, ARM_FEATURE_M)) {
11567         *prot = PAGE_READ | PAGE_WRITE;
11568         switch (address) {
11569         case 0xF0000000 ... 0xFFFFFFFF:
11570             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11571                 /* hivecs execing is ok */
11572                 *prot |= PAGE_EXEC;
11573             }
11574             break;
11575         case 0x00000000 ... 0x7FFFFFFF:
11576             *prot |= PAGE_EXEC;
11577             break;
11578         }
11579     } else {
11580         /* Default system address map for M profile cores.
11581          * The architecture specifies which regions are execute-never;
11582          * at the MPU level no other checks are defined.
11583          */
11584         switch (address) {
11585         case 0x00000000 ... 0x1fffffff: /* ROM */
11586         case 0x20000000 ... 0x3fffffff: /* SRAM */
11587         case 0x60000000 ... 0x7fffffff: /* RAM */
11588         case 0x80000000 ... 0x9fffffff: /* RAM */
11589             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11590             break;
11591         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11592         case 0xa0000000 ... 0xbfffffff: /* Device */
11593         case 0xc0000000 ... 0xdfffffff: /* Device */
11594         case 0xe0000000 ... 0xffffffff: /* System */
11595             *prot = PAGE_READ | PAGE_WRITE;
11596             break;
11597         default:
11598             g_assert_not_reached();
11599         }
11600     }
11601 }
11602 
11603 static bool pmsav7_use_background_region(ARMCPU *cpu,
11604                                          ARMMMUIdx mmu_idx, bool is_user)
11605 {
11606     /* Return true if we should use the default memory map as a
11607      * "background" region if there are no hits against any MPU regions.
11608      */
11609     CPUARMState *env = &cpu->env;
11610 
11611     if (is_user) {
11612         return false;
11613     }
11614 
11615     if (arm_feature(env, ARM_FEATURE_M)) {
11616         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11617             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11618     } else {
11619         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11620     }
11621 }
11622 
11623 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11624 {
11625     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11626     return arm_feature(env, ARM_FEATURE_M) &&
11627         extract32(address, 20, 12) == 0xe00;
11628 }
11629 
11630 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11631 {
11632     /* True if address is in the M profile system region
11633      * 0xe0000000 - 0xffffffff
11634      */
11635     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11636 }
11637 
11638 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11639                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11640                                  hwaddr *phys_ptr, int *prot,
11641                                  target_ulong *page_size,
11642                                  ARMMMUFaultInfo *fi)
11643 {
11644     ARMCPU *cpu = env_archcpu(env);
11645     int n;
11646     bool is_user = regime_is_user(env, mmu_idx);
11647 
11648     *phys_ptr = address;
11649     *page_size = TARGET_PAGE_SIZE;
11650     *prot = 0;
11651 
11652     if (regime_translation_disabled(env, mmu_idx) ||
11653         m_is_ppb_region(env, address)) {
11654         /* MPU disabled or M profile PPB access: use default memory map.
11655          * The other case which uses the default memory map in the
11656          * v7M ARM ARM pseudocode is exception vector reads from the vector
11657          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11658          * which always does a direct read using address_space_ldl(), rather
11659          * than going via this function, so we don't need to check that here.
11660          */
11661         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11662     } else { /* MPU enabled */
11663         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11664             /* region search */
11665             uint32_t base = env->pmsav7.drbar[n];
11666             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11667             uint32_t rmask;
11668             bool srdis = false;
11669 
11670             if (!(env->pmsav7.drsr[n] & 0x1)) {
11671                 continue;
11672             }
11673 
11674             if (!rsize) {
11675                 qemu_log_mask(LOG_GUEST_ERROR,
11676                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11677                 continue;
11678             }
11679             rsize++;
11680             rmask = (1ull << rsize) - 1;
11681 
11682             if (base & rmask) {
11683                 qemu_log_mask(LOG_GUEST_ERROR,
11684                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11685                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11686                               n, base, rmask);
11687                 continue;
11688             }
11689 
11690             if (address < base || address > base + rmask) {
11691                 /*
11692                  * Address not in this region. We must check whether the
11693                  * region covers addresses in the same page as our address.
11694                  * In that case we must not report a size that covers the
11695                  * whole page for a subsequent hit against a different MPU
11696                  * region or the background region, because it would result in
11697                  * incorrect TLB hits for subsequent accesses to addresses that
11698                  * are in this MPU region.
11699                  */
11700                 if (ranges_overlap(base, rmask,
11701                                    address & TARGET_PAGE_MASK,
11702                                    TARGET_PAGE_SIZE)) {
11703                     *page_size = 1;
11704                 }
11705                 continue;
11706             }
11707 
11708             /* Region matched */
11709 
11710             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11711                 int i, snd;
11712                 uint32_t srdis_mask;
11713 
11714                 rsize -= 3; /* sub region size (power of 2) */
11715                 snd = ((address - base) >> rsize) & 0x7;
11716                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11717 
11718                 srdis_mask = srdis ? 0x3 : 0x0;
11719                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11720                     /* This will check in groups of 2, 4 and then 8, whether
11721                      * the subregion bits are consistent. rsize is incremented
11722                      * back up to give the region size, considering consistent
11723                      * adjacent subregions as one region. Stop testing if rsize
11724                      * is already big enough for an entire QEMU page.
11725                      */
11726                     int snd_rounded = snd & ~(i - 1);
11727                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11728                                                      snd_rounded + 8, i);
11729                     if (srdis_mask ^ srdis_multi) {
11730                         break;
11731                     }
11732                     srdis_mask = (srdis_mask << i) | srdis_mask;
11733                     rsize++;
11734                 }
11735             }
11736             if (srdis) {
11737                 continue;
11738             }
11739             if (rsize < TARGET_PAGE_BITS) {
11740                 *page_size = 1 << rsize;
11741             }
11742             break;
11743         }
11744 
11745         if (n == -1) { /* no hits */
11746             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11747                 /* background fault */
11748                 fi->type = ARMFault_Background;
11749                 return true;
11750             }
11751             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11752         } else { /* a MPU hit! */
11753             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11754             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11755 
11756             if (m_is_system_region(env, address)) {
11757                 /* System space is always execute never */
11758                 xn = 1;
11759             }
11760 
11761             if (is_user) { /* User mode AP bit decoding */
11762                 switch (ap) {
11763                 case 0:
11764                 case 1:
11765                 case 5:
11766                     break; /* no access */
11767                 case 3:
11768                     *prot |= PAGE_WRITE;
11769                     /* fall through */
11770                 case 2:
11771                 case 6:
11772                     *prot |= PAGE_READ | PAGE_EXEC;
11773                     break;
11774                 case 7:
11775                     /* for v7M, same as 6; for R profile a reserved value */
11776                     if (arm_feature(env, ARM_FEATURE_M)) {
11777                         *prot |= PAGE_READ | PAGE_EXEC;
11778                         break;
11779                     }
11780                     /* fall through */
11781                 default:
11782                     qemu_log_mask(LOG_GUEST_ERROR,
11783                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11784                                   PRIx32 "\n", n, ap);
11785                 }
11786             } else { /* Priv. mode AP bits decoding */
11787                 switch (ap) {
11788                 case 0:
11789                     break; /* no access */
11790                 case 1:
11791                 case 2:
11792                 case 3:
11793                     *prot |= PAGE_WRITE;
11794                     /* fall through */
11795                 case 5:
11796                 case 6:
11797                     *prot |= PAGE_READ | PAGE_EXEC;
11798                     break;
11799                 case 7:
11800                     /* for v7M, same as 6; for R profile a reserved value */
11801                     if (arm_feature(env, ARM_FEATURE_M)) {
11802                         *prot |= PAGE_READ | PAGE_EXEC;
11803                         break;
11804                     }
11805                     /* fall through */
11806                 default:
11807                     qemu_log_mask(LOG_GUEST_ERROR,
11808                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11809                                   PRIx32 "\n", n, ap);
11810                 }
11811             }
11812 
11813             /* execute never */
11814             if (xn) {
11815                 *prot &= ~PAGE_EXEC;
11816             }
11817         }
11818     }
11819 
11820     fi->type = ARMFault_Permission;
11821     fi->level = 1;
11822     return !(*prot & (1 << access_type));
11823 }
11824 
11825 static bool v8m_is_sau_exempt(CPUARMState *env,
11826                               uint32_t address, MMUAccessType access_type)
11827 {
11828     /* The architecture specifies that certain address ranges are
11829      * exempt from v8M SAU/IDAU checks.
11830      */
11831     return
11832         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11833         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11834         (address >= 0xe000e000 && address <= 0xe000efff) ||
11835         (address >= 0xe002e000 && address <= 0xe002efff) ||
11836         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11837         (address >= 0xe00ff000 && address <= 0xe00fffff);
11838 }
11839 
11840 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11841                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11842                                 V8M_SAttributes *sattrs)
11843 {
11844     /* Look up the security attributes for this address. Compare the
11845      * pseudocode SecurityCheck() function.
11846      * We assume the caller has zero-initialized *sattrs.
11847      */
11848     ARMCPU *cpu = env_archcpu(env);
11849     int r;
11850     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11851     int idau_region = IREGION_NOTVALID;
11852     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11853     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11854 
11855     if (cpu->idau) {
11856         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11857         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11858 
11859         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11860                    &idau_nsc);
11861     }
11862 
11863     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11864         /* 0xf0000000..0xffffffff is always S for insn fetches */
11865         return;
11866     }
11867 
11868     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11869         sattrs->ns = !regime_is_secure(env, mmu_idx);
11870         return;
11871     }
11872 
11873     if (idau_region != IREGION_NOTVALID) {
11874         sattrs->irvalid = true;
11875         sattrs->iregion = idau_region;
11876     }
11877 
11878     switch (env->sau.ctrl & 3) {
11879     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11880         break;
11881     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11882         sattrs->ns = true;
11883         break;
11884     default: /* SAU.ENABLE == 1 */
11885         for (r = 0; r < cpu->sau_sregion; r++) {
11886             if (env->sau.rlar[r] & 1) {
11887                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11888                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11889 
11890                 if (base <= address && limit >= address) {
11891                     if (base > addr_page_base || limit < addr_page_limit) {
11892                         sattrs->subpage = true;
11893                     }
11894                     if (sattrs->srvalid) {
11895                         /* If we hit in more than one region then we must report
11896                          * as Secure, not NS-Callable, with no valid region
11897                          * number info.
11898                          */
11899                         sattrs->ns = false;
11900                         sattrs->nsc = false;
11901                         sattrs->sregion = 0;
11902                         sattrs->srvalid = false;
11903                         break;
11904                     } else {
11905                         if (env->sau.rlar[r] & 2) {
11906                             sattrs->nsc = true;
11907                         } else {
11908                             sattrs->ns = true;
11909                         }
11910                         sattrs->srvalid = true;
11911                         sattrs->sregion = r;
11912                     }
11913                 } else {
11914                     /*
11915                      * Address not in this region. We must check whether the
11916                      * region covers addresses in the same page as our address.
11917                      * In that case we must not report a size that covers the
11918                      * whole page for a subsequent hit against a different MPU
11919                      * region or the background region, because it would result
11920                      * in incorrect TLB hits for subsequent accesses to
11921                      * addresses that are in this MPU region.
11922                      */
11923                     if (limit >= base &&
11924                         ranges_overlap(base, limit - base + 1,
11925                                        addr_page_base,
11926                                        TARGET_PAGE_SIZE)) {
11927                         sattrs->subpage = true;
11928                     }
11929                 }
11930             }
11931         }
11932         break;
11933     }
11934 
11935     /*
11936      * The IDAU will override the SAU lookup results if it specifies
11937      * higher security than the SAU does.
11938      */
11939     if (!idau_ns) {
11940         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11941             sattrs->ns = false;
11942             sattrs->nsc = idau_nsc;
11943         }
11944     }
11945 }
11946 
11947 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11948                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11949                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11950                               int *prot, bool *is_subpage,
11951                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11952 {
11953     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11954      * that a full phys-to-virt translation does).
11955      * mregion is (if not NULL) set to the region number which matched,
11956      * or -1 if no region number is returned (MPU off, address did not
11957      * hit a region, address hit in multiple regions).
11958      * We set is_subpage to true if the region hit doesn't cover the
11959      * entire TARGET_PAGE the address is within.
11960      */
11961     ARMCPU *cpu = env_archcpu(env);
11962     bool is_user = regime_is_user(env, mmu_idx);
11963     uint32_t secure = regime_is_secure(env, mmu_idx);
11964     int n;
11965     int matchregion = -1;
11966     bool hit = false;
11967     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11968     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11969 
11970     *is_subpage = false;
11971     *phys_ptr = address;
11972     *prot = 0;
11973     if (mregion) {
11974         *mregion = -1;
11975     }
11976 
11977     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11978      * was an exception vector read from the vector table (which is always
11979      * done using the default system address map), because those accesses
11980      * are done in arm_v7m_load_vector(), which always does a direct
11981      * read using address_space_ldl(), rather than going via this function.
11982      */
11983     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11984         hit = true;
11985     } else if (m_is_ppb_region(env, address)) {
11986         hit = true;
11987     } else {
11988         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11989             hit = true;
11990         }
11991 
11992         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11993             /* region search */
11994             /* Note that the base address is bits [31:5] from the register
11995              * with bits [4:0] all zeroes, but the limit address is bits
11996              * [31:5] from the register with bits [4:0] all ones.
11997              */
11998             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11999             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12000 
12001             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12002                 /* Region disabled */
12003                 continue;
12004             }
12005 
12006             if (address < base || address > limit) {
12007                 /*
12008                  * Address not in this region. We must check whether the
12009                  * region covers addresses in the same page as our address.
12010                  * In that case we must not report a size that covers the
12011                  * whole page for a subsequent hit against a different MPU
12012                  * region or the background region, because it would result in
12013                  * incorrect TLB hits for subsequent accesses to addresses that
12014                  * are in this MPU region.
12015                  */
12016                 if (limit >= base &&
12017                     ranges_overlap(base, limit - base + 1,
12018                                    addr_page_base,
12019                                    TARGET_PAGE_SIZE)) {
12020                     *is_subpage = true;
12021                 }
12022                 continue;
12023             }
12024 
12025             if (base > addr_page_base || limit < addr_page_limit) {
12026                 *is_subpage = true;
12027             }
12028 
12029             if (matchregion != -1) {
12030                 /* Multiple regions match -- always a failure (unlike
12031                  * PMSAv7 where highest-numbered-region wins)
12032                  */
12033                 fi->type = ARMFault_Permission;
12034                 fi->level = 1;
12035                 return true;
12036             }
12037 
12038             matchregion = n;
12039             hit = true;
12040         }
12041     }
12042 
12043     if (!hit) {
12044         /* background fault */
12045         fi->type = ARMFault_Background;
12046         return true;
12047     }
12048 
12049     if (matchregion == -1) {
12050         /* hit using the background region */
12051         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12052     } else {
12053         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12054         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12055         bool pxn = false;
12056 
12057         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12058             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12059         }
12060 
12061         if (m_is_system_region(env, address)) {
12062             /* System space is always execute never */
12063             xn = 1;
12064         }
12065 
12066         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12067         if (*prot && !xn && !(pxn && !is_user)) {
12068             *prot |= PAGE_EXEC;
12069         }
12070         /* We don't need to look the attribute up in the MAIR0/MAIR1
12071          * registers because that only tells us about cacheability.
12072          */
12073         if (mregion) {
12074             *mregion = matchregion;
12075         }
12076     }
12077 
12078     fi->type = ARMFault_Permission;
12079     fi->level = 1;
12080     return !(*prot & (1 << access_type));
12081 }
12082 
12083 
12084 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12085                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12086                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12087                                  int *prot, target_ulong *page_size,
12088                                  ARMMMUFaultInfo *fi)
12089 {
12090     uint32_t secure = regime_is_secure(env, mmu_idx);
12091     V8M_SAttributes sattrs = {};
12092     bool ret;
12093     bool mpu_is_subpage;
12094 
12095     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12096         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12097         if (access_type == MMU_INST_FETCH) {
12098             /* Instruction fetches always use the MMU bank and the
12099              * transaction attribute determined by the fetch address,
12100              * regardless of CPU state. This is painful for QEMU
12101              * to handle, because it would mean we need to encode
12102              * into the mmu_idx not just the (user, negpri) information
12103              * for the current security state but also that for the
12104              * other security state, which would balloon the number
12105              * of mmu_idx values needed alarmingly.
12106              * Fortunately we can avoid this because it's not actually
12107              * possible to arbitrarily execute code from memory with
12108              * the wrong security attribute: it will always generate
12109              * an exception of some kind or another, apart from the
12110              * special case of an NS CPU executing an SG instruction
12111              * in S&NSC memory. So we always just fail the translation
12112              * here and sort things out in the exception handler
12113              * (including possibly emulating an SG instruction).
12114              */
12115             if (sattrs.ns != !secure) {
12116                 if (sattrs.nsc) {
12117                     fi->type = ARMFault_QEMU_NSCExec;
12118                 } else {
12119                     fi->type = ARMFault_QEMU_SFault;
12120                 }
12121                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12122                 *phys_ptr = address;
12123                 *prot = 0;
12124                 return true;
12125             }
12126         } else {
12127             /* For data accesses we always use the MMU bank indicated
12128              * by the current CPU state, but the security attributes
12129              * might downgrade a secure access to nonsecure.
12130              */
12131             if (sattrs.ns) {
12132                 txattrs->secure = false;
12133             } else if (!secure) {
12134                 /* NS access to S memory must fault.
12135                  * Architecturally we should first check whether the
12136                  * MPU information for this address indicates that we
12137                  * are doing an unaligned access to Device memory, which
12138                  * should generate a UsageFault instead. QEMU does not
12139                  * currently check for that kind of unaligned access though.
12140                  * If we added it we would need to do so as a special case
12141                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12142                  */
12143                 fi->type = ARMFault_QEMU_SFault;
12144                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12145                 *phys_ptr = address;
12146                 *prot = 0;
12147                 return true;
12148             }
12149         }
12150     }
12151 
12152     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12153                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12154     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12155     return ret;
12156 }
12157 
12158 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12159                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12160                                  hwaddr *phys_ptr, int *prot,
12161                                  ARMMMUFaultInfo *fi)
12162 {
12163     int n;
12164     uint32_t mask;
12165     uint32_t base;
12166     bool is_user = regime_is_user(env, mmu_idx);
12167 
12168     if (regime_translation_disabled(env, mmu_idx)) {
12169         /* MPU disabled.  */
12170         *phys_ptr = address;
12171         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12172         return false;
12173     }
12174 
12175     *phys_ptr = address;
12176     for (n = 7; n >= 0; n--) {
12177         base = env->cp15.c6_region[n];
12178         if ((base & 1) == 0) {
12179             continue;
12180         }
12181         mask = 1 << ((base >> 1) & 0x1f);
12182         /* Keep this shift separate from the above to avoid an
12183            (undefined) << 32.  */
12184         mask = (mask << 1) - 1;
12185         if (((base ^ address) & ~mask) == 0) {
12186             break;
12187         }
12188     }
12189     if (n < 0) {
12190         fi->type = ARMFault_Background;
12191         return true;
12192     }
12193 
12194     if (access_type == MMU_INST_FETCH) {
12195         mask = env->cp15.pmsav5_insn_ap;
12196     } else {
12197         mask = env->cp15.pmsav5_data_ap;
12198     }
12199     mask = (mask >> (n * 4)) & 0xf;
12200     switch (mask) {
12201     case 0:
12202         fi->type = ARMFault_Permission;
12203         fi->level = 1;
12204         return true;
12205     case 1:
12206         if (is_user) {
12207             fi->type = ARMFault_Permission;
12208             fi->level = 1;
12209             return true;
12210         }
12211         *prot = PAGE_READ | PAGE_WRITE;
12212         break;
12213     case 2:
12214         *prot = PAGE_READ;
12215         if (!is_user) {
12216             *prot |= PAGE_WRITE;
12217         }
12218         break;
12219     case 3:
12220         *prot = PAGE_READ | PAGE_WRITE;
12221         break;
12222     case 5:
12223         if (is_user) {
12224             fi->type = ARMFault_Permission;
12225             fi->level = 1;
12226             return true;
12227         }
12228         *prot = PAGE_READ;
12229         break;
12230     case 6:
12231         *prot = PAGE_READ;
12232         break;
12233     default:
12234         /* Bad permission.  */
12235         fi->type = ARMFault_Permission;
12236         fi->level = 1;
12237         return true;
12238     }
12239     *prot |= PAGE_EXEC;
12240     return false;
12241 }
12242 
12243 /* Combine either inner or outer cacheability attributes for normal
12244  * memory, according to table D4-42 and pseudocode procedure
12245  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12246  *
12247  * NB: only stage 1 includes allocation hints (RW bits), leading to
12248  * some asymmetry.
12249  */
12250 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12251 {
12252     if (s1 == 4 || s2 == 4) {
12253         /* non-cacheable has precedence */
12254         return 4;
12255     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12256         /* stage 1 write-through takes precedence */
12257         return s1;
12258     } else if (extract32(s2, 2, 2) == 2) {
12259         /* stage 2 write-through takes precedence, but the allocation hint
12260          * is still taken from stage 1
12261          */
12262         return (2 << 2) | extract32(s1, 0, 2);
12263     } else { /* write-back */
12264         return s1;
12265     }
12266 }
12267 
12268 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12269  * and CombineS1S2Desc()
12270  *
12271  * @s1:      Attributes from stage 1 walk
12272  * @s2:      Attributes from stage 2 walk
12273  */
12274 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12275 {
12276     uint8_t s1lo, s2lo, s1hi, s2hi;
12277     ARMCacheAttrs ret;
12278     bool tagged = false;
12279 
12280     if (s1.attrs == 0xf0) {
12281         tagged = true;
12282         s1.attrs = 0xff;
12283     }
12284 
12285     s1lo = extract32(s1.attrs, 0, 4);
12286     s2lo = extract32(s2.attrs, 0, 4);
12287     s1hi = extract32(s1.attrs, 4, 4);
12288     s2hi = extract32(s2.attrs, 4, 4);
12289 
12290     /* Combine shareability attributes (table D4-43) */
12291     if (s1.shareability == 2 || s2.shareability == 2) {
12292         /* if either are outer-shareable, the result is outer-shareable */
12293         ret.shareability = 2;
12294     } else if (s1.shareability == 3 || s2.shareability == 3) {
12295         /* if either are inner-shareable, the result is inner-shareable */
12296         ret.shareability = 3;
12297     } else {
12298         /* both non-shareable */
12299         ret.shareability = 0;
12300     }
12301 
12302     /* Combine memory type and cacheability attributes */
12303     if (s1hi == 0 || s2hi == 0) {
12304         /* Device has precedence over normal */
12305         if (s1lo == 0 || s2lo == 0) {
12306             /* nGnRnE has precedence over anything */
12307             ret.attrs = 0;
12308         } else if (s1lo == 4 || s2lo == 4) {
12309             /* non-Reordering has precedence over Reordering */
12310             ret.attrs = 4;  /* nGnRE */
12311         } else if (s1lo == 8 || s2lo == 8) {
12312             /* non-Gathering has precedence over Gathering */
12313             ret.attrs = 8;  /* nGRE */
12314         } else {
12315             ret.attrs = 0xc; /* GRE */
12316         }
12317 
12318         /* Any location for which the resultant memory type is any
12319          * type of Device memory is always treated as Outer Shareable.
12320          */
12321         ret.shareability = 2;
12322     } else { /* Normal memory */
12323         /* Outer/inner cacheability combine independently */
12324         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12325                   | combine_cacheattr_nibble(s1lo, s2lo);
12326 
12327         if (ret.attrs == 0x44) {
12328             /* Any location for which the resultant memory type is Normal
12329              * Inner Non-cacheable, Outer Non-cacheable is always treated
12330              * as Outer Shareable.
12331              */
12332             ret.shareability = 2;
12333         }
12334     }
12335 
12336     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12337     if (tagged && ret.attrs == 0xff) {
12338         ret.attrs = 0xf0;
12339     }
12340 
12341     return ret;
12342 }
12343 
12344 
12345 /* get_phys_addr - get the physical address for this virtual address
12346  *
12347  * Find the physical address corresponding to the given virtual address,
12348  * by doing a translation table walk on MMU based systems or using the
12349  * MPU state on MPU based systems.
12350  *
12351  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12352  * prot and page_size may not be filled in, and the populated fsr value provides
12353  * information on why the translation aborted, in the format of a
12354  * DFSR/IFSR fault register, with the following caveats:
12355  *  * we honour the short vs long DFSR format differences.
12356  *  * the WnR bit is never set (the caller must do this).
12357  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12358  *    value.
12359  *
12360  * @env: CPUARMState
12361  * @address: virtual address to get physical address for
12362  * @access_type: 0 for read, 1 for write, 2 for execute
12363  * @mmu_idx: MMU index indicating required translation regime
12364  * @phys_ptr: set to the physical address corresponding to the virtual address
12365  * @attrs: set to the memory transaction attributes to use
12366  * @prot: set to the permissions for the page containing phys_ptr
12367  * @page_size: set to the size of the page containing phys_ptr
12368  * @fi: set to fault info if the translation fails
12369  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12370  */
12371 bool get_phys_addr(CPUARMState *env, target_ulong address,
12372                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12373                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12374                    target_ulong *page_size,
12375                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12376 {
12377     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12378 
12379     if (mmu_idx != s1_mmu_idx) {
12380         /* Call ourselves recursively to do the stage 1 and then stage 2
12381          * translations if mmu_idx is a two-stage regime.
12382          */
12383         if (arm_feature(env, ARM_FEATURE_EL2)) {
12384             hwaddr ipa;
12385             int s2_prot;
12386             int ret;
12387             ARMCacheAttrs cacheattrs2 = {};
12388             ARMMMUIdx s2_mmu_idx;
12389             bool is_el0;
12390 
12391             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12392                                 attrs, prot, page_size, fi, cacheattrs);
12393 
12394             /* If S1 fails or S2 is disabled, return early.  */
12395             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12396                 *phys_ptr = ipa;
12397                 return ret;
12398             }
12399 
12400             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12401             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12402 
12403             /* S1 is done. Now do S2 translation.  */
12404             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12405                                      phys_ptr, attrs, &s2_prot,
12406                                      page_size, fi, &cacheattrs2);
12407             fi->s2addr = ipa;
12408             /* Combine the S1 and S2 perms.  */
12409             *prot &= s2_prot;
12410 
12411             /* If S2 fails, return early.  */
12412             if (ret) {
12413                 return ret;
12414             }
12415 
12416             /* Combine the S1 and S2 cache attributes. */
12417             if (arm_hcr_el2_eff(env) & HCR_DC) {
12418                 /*
12419                  * HCR.DC forces the first stage attributes to
12420                  *  Normal Non-Shareable,
12421                  *  Inner Write-Back Read-Allocate Write-Allocate,
12422                  *  Outer Write-Back Read-Allocate Write-Allocate.
12423                  * Do not overwrite Tagged within attrs.
12424                  */
12425                 if (cacheattrs->attrs != 0xf0) {
12426                     cacheattrs->attrs = 0xff;
12427                 }
12428                 cacheattrs->shareability = 0;
12429             }
12430             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12431 
12432             /* Check if IPA translates to secure or non-secure PA space. */
12433             if (arm_is_secure_below_el3(env)) {
12434                 if (attrs->secure) {
12435                     attrs->secure =
12436                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12437                 } else {
12438                     attrs->secure =
12439                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12440                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12441                 }
12442             }
12443             return 0;
12444         } else {
12445             /*
12446              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12447              */
12448             mmu_idx = stage_1_mmu_idx(mmu_idx);
12449         }
12450     }
12451 
12452     /* The page table entries may downgrade secure to non-secure, but
12453      * cannot upgrade an non-secure translation regime's attributes
12454      * to secure.
12455      */
12456     attrs->secure = regime_is_secure(env, mmu_idx);
12457     attrs->user = regime_is_user(env, mmu_idx);
12458 
12459     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12460      * In v7 and earlier it affects all stage 1 translations.
12461      */
12462     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12463         && !arm_feature(env, ARM_FEATURE_V8)) {
12464         if (regime_el(env, mmu_idx) == 3) {
12465             address += env->cp15.fcseidr_s;
12466         } else {
12467             address += env->cp15.fcseidr_ns;
12468         }
12469     }
12470 
12471     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12472         bool ret;
12473         *page_size = TARGET_PAGE_SIZE;
12474 
12475         if (arm_feature(env, ARM_FEATURE_V8)) {
12476             /* PMSAv8 */
12477             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12478                                        phys_ptr, attrs, prot, page_size, fi);
12479         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12480             /* PMSAv7 */
12481             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12482                                        phys_ptr, prot, page_size, fi);
12483         } else {
12484             /* Pre-v7 MPU */
12485             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12486                                        phys_ptr, prot, fi);
12487         }
12488         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12489                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12490                       access_type == MMU_DATA_LOAD ? "reading" :
12491                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12492                       (uint32_t)address, mmu_idx,
12493                       ret ? "Miss" : "Hit",
12494                       *prot & PAGE_READ ? 'r' : '-',
12495                       *prot & PAGE_WRITE ? 'w' : '-',
12496                       *prot & PAGE_EXEC ? 'x' : '-');
12497 
12498         return ret;
12499     }
12500 
12501     /* Definitely a real MMU, not an MPU */
12502 
12503     if (regime_translation_disabled(env, mmu_idx)) {
12504         uint64_t hcr;
12505         uint8_t memattr;
12506 
12507         /*
12508          * MMU disabled.  S1 addresses within aa64 translation regimes are
12509          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12510          */
12511         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12512             int r_el = regime_el(env, mmu_idx);
12513             if (arm_el_is_aa64(env, r_el)) {
12514                 int pamax = arm_pamax(env_archcpu(env));
12515                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12516                 int addrtop, tbi;
12517 
12518                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12519                 if (access_type == MMU_INST_FETCH) {
12520                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12521                 }
12522                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12523                 addrtop = (tbi ? 55 : 63);
12524 
12525                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12526                     fi->type = ARMFault_AddressSize;
12527                     fi->level = 0;
12528                     fi->stage2 = false;
12529                     return 1;
12530                 }
12531 
12532                 /*
12533                  * When TBI is disabled, we've just validated that all of the
12534                  * bits above PAMax are zero, so logically we only need to
12535                  * clear the top byte for TBI.  But it's clearer to follow
12536                  * the pseudocode set of addrdesc.paddress.
12537                  */
12538                 address = extract64(address, 0, 52);
12539             }
12540         }
12541         *phys_ptr = address;
12542         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12543         *page_size = TARGET_PAGE_SIZE;
12544 
12545         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12546         hcr = arm_hcr_el2_eff(env);
12547         cacheattrs->shareability = 0;
12548         if (hcr & HCR_DC) {
12549             if (hcr & HCR_DCT) {
12550                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12551             } else {
12552                 memattr = 0xff;  /* Normal, WB, RWA */
12553             }
12554         } else if (access_type == MMU_INST_FETCH) {
12555             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12556                 memattr = 0xee;  /* Normal, WT, RA, NT */
12557             } else {
12558                 memattr = 0x44;  /* Normal, NC, No */
12559             }
12560             cacheattrs->shareability = 2; /* outer sharable */
12561         } else {
12562             memattr = 0x00;      /* Device, nGnRnE */
12563         }
12564         cacheattrs->attrs = memattr;
12565         return 0;
12566     }
12567 
12568     if (regime_using_lpae_format(env, mmu_idx)) {
12569         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12570                                   phys_ptr, attrs, prot, page_size,
12571                                   fi, cacheattrs);
12572     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12573         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12574                                 phys_ptr, attrs, prot, page_size, fi);
12575     } else {
12576         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12577                                     phys_ptr, prot, page_size, fi);
12578     }
12579 }
12580 
12581 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12582                                          MemTxAttrs *attrs)
12583 {
12584     ARMCPU *cpu = ARM_CPU(cs);
12585     CPUARMState *env = &cpu->env;
12586     hwaddr phys_addr;
12587     target_ulong page_size;
12588     int prot;
12589     bool ret;
12590     ARMMMUFaultInfo fi = {};
12591     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12592     ARMCacheAttrs cacheattrs = {};
12593 
12594     *attrs = (MemTxAttrs) {};
12595 
12596     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12597                         attrs, &prot, &page_size, &fi, &cacheattrs);
12598 
12599     if (ret) {
12600         return -1;
12601     }
12602     return phys_addr;
12603 }
12604 
12605 #endif
12606 
12607 /* Note that signed overflow is undefined in C.  The following routines are
12608    careful to use unsigned types where modulo arithmetic is required.
12609    Failure to do so _will_ break on newer gcc.  */
12610 
12611 /* Signed saturating arithmetic.  */
12612 
12613 /* Perform 16-bit signed saturating addition.  */
12614 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12615 {
12616     uint16_t res;
12617 
12618     res = a + b;
12619     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12620         if (a & 0x8000)
12621             res = 0x8000;
12622         else
12623             res = 0x7fff;
12624     }
12625     return res;
12626 }
12627 
12628 /* Perform 8-bit signed saturating addition.  */
12629 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12630 {
12631     uint8_t res;
12632 
12633     res = a + b;
12634     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12635         if (a & 0x80)
12636             res = 0x80;
12637         else
12638             res = 0x7f;
12639     }
12640     return res;
12641 }
12642 
12643 /* Perform 16-bit signed saturating subtraction.  */
12644 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12645 {
12646     uint16_t res;
12647 
12648     res = a - b;
12649     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12650         if (a & 0x8000)
12651             res = 0x8000;
12652         else
12653             res = 0x7fff;
12654     }
12655     return res;
12656 }
12657 
12658 /* Perform 8-bit signed saturating subtraction.  */
12659 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12660 {
12661     uint8_t res;
12662 
12663     res = a - b;
12664     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12665         if (a & 0x80)
12666             res = 0x80;
12667         else
12668             res = 0x7f;
12669     }
12670     return res;
12671 }
12672 
12673 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12674 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12675 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12676 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12677 #define PFX q
12678 
12679 #include "op_addsub.h"
12680 
12681 /* Unsigned saturating arithmetic.  */
12682 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12683 {
12684     uint16_t res;
12685     res = a + b;
12686     if (res < a)
12687         res = 0xffff;
12688     return res;
12689 }
12690 
12691 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12692 {
12693     if (a > b)
12694         return a - b;
12695     else
12696         return 0;
12697 }
12698 
12699 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12700 {
12701     uint8_t res;
12702     res = a + b;
12703     if (res < a)
12704         res = 0xff;
12705     return res;
12706 }
12707 
12708 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12709 {
12710     if (a > b)
12711         return a - b;
12712     else
12713         return 0;
12714 }
12715 
12716 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12717 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12718 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12719 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12720 #define PFX uq
12721 
12722 #include "op_addsub.h"
12723 
12724 /* Signed modulo arithmetic.  */
12725 #define SARITH16(a, b, n, op) do { \
12726     int32_t sum; \
12727     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12728     RESULT(sum, n, 16); \
12729     if (sum >= 0) \
12730         ge |= 3 << (n * 2); \
12731     } while(0)
12732 
12733 #define SARITH8(a, b, n, op) do { \
12734     int32_t sum; \
12735     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12736     RESULT(sum, n, 8); \
12737     if (sum >= 0) \
12738         ge |= 1 << n; \
12739     } while(0)
12740 
12741 
12742 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12743 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12744 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12745 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12746 #define PFX s
12747 #define ARITH_GE
12748 
12749 #include "op_addsub.h"
12750 
12751 /* Unsigned modulo arithmetic.  */
12752 #define ADD16(a, b, n) do { \
12753     uint32_t sum; \
12754     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12755     RESULT(sum, n, 16); \
12756     if ((sum >> 16) == 1) \
12757         ge |= 3 << (n * 2); \
12758     } while(0)
12759 
12760 #define ADD8(a, b, n) do { \
12761     uint32_t sum; \
12762     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12763     RESULT(sum, n, 8); \
12764     if ((sum >> 8) == 1) \
12765         ge |= 1 << n; \
12766     } while(0)
12767 
12768 #define SUB16(a, b, n) do { \
12769     uint32_t sum; \
12770     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12771     RESULT(sum, n, 16); \
12772     if ((sum >> 16) == 0) \
12773         ge |= 3 << (n * 2); \
12774     } while(0)
12775 
12776 #define SUB8(a, b, n) do { \
12777     uint32_t sum; \
12778     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12779     RESULT(sum, n, 8); \
12780     if ((sum >> 8) == 0) \
12781         ge |= 1 << n; \
12782     } while(0)
12783 
12784 #define PFX u
12785 #define ARITH_GE
12786 
12787 #include "op_addsub.h"
12788 
12789 /* Halved signed arithmetic.  */
12790 #define ADD16(a, b, n) \
12791   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12792 #define SUB16(a, b, n) \
12793   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12794 #define ADD8(a, b, n) \
12795   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12796 #define SUB8(a, b, n) \
12797   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12798 #define PFX sh
12799 
12800 #include "op_addsub.h"
12801 
12802 /* Halved unsigned arithmetic.  */
12803 #define ADD16(a, b, n) \
12804   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12805 #define SUB16(a, b, n) \
12806   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12807 #define ADD8(a, b, n) \
12808   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12809 #define SUB8(a, b, n) \
12810   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12811 #define PFX uh
12812 
12813 #include "op_addsub.h"
12814 
12815 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12816 {
12817     if (a > b)
12818         return a - b;
12819     else
12820         return b - a;
12821 }
12822 
12823 /* Unsigned sum of absolute byte differences.  */
12824 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12825 {
12826     uint32_t sum;
12827     sum = do_usad(a, b);
12828     sum += do_usad(a >> 8, b >> 8);
12829     sum += do_usad(a >> 16, b >> 16);
12830     sum += do_usad(a >> 24, b >> 24);
12831     return sum;
12832 }
12833 
12834 /* For ARMv6 SEL instruction.  */
12835 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12836 {
12837     uint32_t mask;
12838 
12839     mask = 0;
12840     if (flags & 1)
12841         mask |= 0xff;
12842     if (flags & 2)
12843         mask |= 0xff00;
12844     if (flags & 4)
12845         mask |= 0xff0000;
12846     if (flags & 8)
12847         mask |= 0xff000000;
12848     return (a & mask) | (b & ~mask);
12849 }
12850 
12851 /* CRC helpers.
12852  * The upper bytes of val (above the number specified by 'bytes') must have
12853  * been zeroed out by the caller.
12854  */
12855 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12856 {
12857     uint8_t buf[4];
12858 
12859     stl_le_p(buf, val);
12860 
12861     /* zlib crc32 converts the accumulator and output to one's complement.  */
12862     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12863 }
12864 
12865 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12866 {
12867     uint8_t buf[4];
12868 
12869     stl_le_p(buf, val);
12870 
12871     /* Linux crc32c converts the output to one's complement.  */
12872     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12873 }
12874 
12875 /* Return the exception level to which FP-disabled exceptions should
12876  * be taken, or 0 if FP is enabled.
12877  */
12878 int fp_exception_el(CPUARMState *env, int cur_el)
12879 {
12880 #ifndef CONFIG_USER_ONLY
12881     /* CPACR and the CPTR registers don't exist before v6, so FP is
12882      * always accessible
12883      */
12884     if (!arm_feature(env, ARM_FEATURE_V6)) {
12885         return 0;
12886     }
12887 
12888     if (arm_feature(env, ARM_FEATURE_M)) {
12889         /* CPACR can cause a NOCP UsageFault taken to current security state */
12890         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12891             return 1;
12892         }
12893 
12894         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12895             if (!extract32(env->v7m.nsacr, 10, 1)) {
12896                 /* FP insns cause a NOCP UsageFault taken to Secure */
12897                 return 3;
12898             }
12899         }
12900 
12901         return 0;
12902     }
12903 
12904     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12905      * 0, 2 : trap EL0 and EL1/PL1 accesses
12906      * 1    : trap only EL0 accesses
12907      * 3    : trap no accesses
12908      * This register is ignored if E2H+TGE are both set.
12909      */
12910     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12911         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12912 
12913         switch (fpen) {
12914         case 0:
12915         case 2:
12916             if (cur_el == 0 || cur_el == 1) {
12917                 /* Trap to PL1, which might be EL1 or EL3 */
12918                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12919                     return 3;
12920                 }
12921                 return 1;
12922             }
12923             if (cur_el == 3 && !is_a64(env)) {
12924                 /* Secure PL1 running at EL3 */
12925                 return 3;
12926             }
12927             break;
12928         case 1:
12929             if (cur_el == 0) {
12930                 return 1;
12931             }
12932             break;
12933         case 3:
12934             break;
12935         }
12936     }
12937 
12938     /*
12939      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12940      * to control non-secure access to the FPU. It doesn't have any
12941      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12942      */
12943     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12944          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12945         if (!extract32(env->cp15.nsacr, 10, 1)) {
12946             /* FP insns act as UNDEF */
12947             return cur_el == 2 ? 2 : 1;
12948         }
12949     }
12950 
12951     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12952      * check because zero bits in the registers mean "don't trap".
12953      */
12954 
12955     /* CPTR_EL2 : present in v7VE or v8 */
12956     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12957         && arm_is_el2_enabled(env)) {
12958         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12959         return 2;
12960     }
12961 
12962     /* CPTR_EL3 : present in v8 */
12963     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12964         /* Trap all FP ops to EL3 */
12965         return 3;
12966     }
12967 #endif
12968     return 0;
12969 }
12970 
12971 /* Return the exception level we're running at if this is our mmu_idx */
12972 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12973 {
12974     if (mmu_idx & ARM_MMU_IDX_M) {
12975         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12976     }
12977 
12978     switch (mmu_idx) {
12979     case ARMMMUIdx_E10_0:
12980     case ARMMMUIdx_E20_0:
12981     case ARMMMUIdx_SE10_0:
12982     case ARMMMUIdx_SE20_0:
12983         return 0;
12984     case ARMMMUIdx_E10_1:
12985     case ARMMMUIdx_E10_1_PAN:
12986     case ARMMMUIdx_SE10_1:
12987     case ARMMMUIdx_SE10_1_PAN:
12988         return 1;
12989     case ARMMMUIdx_E2:
12990     case ARMMMUIdx_E20_2:
12991     case ARMMMUIdx_E20_2_PAN:
12992     case ARMMMUIdx_SE2:
12993     case ARMMMUIdx_SE20_2:
12994     case ARMMMUIdx_SE20_2_PAN:
12995         return 2;
12996     case ARMMMUIdx_SE3:
12997         return 3;
12998     default:
12999         g_assert_not_reached();
13000     }
13001 }
13002 
13003 #ifndef CONFIG_TCG
13004 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13005 {
13006     g_assert_not_reached();
13007 }
13008 #endif
13009 
13010 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13011 {
13012     ARMMMUIdx idx;
13013     uint64_t hcr;
13014 
13015     if (arm_feature(env, ARM_FEATURE_M)) {
13016         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13017     }
13018 
13019     /* See ARM pseudo-function ELIsInHost.  */
13020     switch (el) {
13021     case 0:
13022         hcr = arm_hcr_el2_eff(env);
13023         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13024             idx = ARMMMUIdx_E20_0;
13025         } else {
13026             idx = ARMMMUIdx_E10_0;
13027         }
13028         break;
13029     case 1:
13030         if (env->pstate & PSTATE_PAN) {
13031             idx = ARMMMUIdx_E10_1_PAN;
13032         } else {
13033             idx = ARMMMUIdx_E10_1;
13034         }
13035         break;
13036     case 2:
13037         /* Note that TGE does not apply at EL2.  */
13038         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13039             if (env->pstate & PSTATE_PAN) {
13040                 idx = ARMMMUIdx_E20_2_PAN;
13041             } else {
13042                 idx = ARMMMUIdx_E20_2;
13043             }
13044         } else {
13045             idx = ARMMMUIdx_E2;
13046         }
13047         break;
13048     case 3:
13049         return ARMMMUIdx_SE3;
13050     default:
13051         g_assert_not_reached();
13052     }
13053 
13054     if (arm_is_secure_below_el3(env)) {
13055         idx &= ~ARM_MMU_IDX_A_NS;
13056     }
13057 
13058     return idx;
13059 }
13060 
13061 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13062 {
13063     return arm_mmu_idx_el(env, arm_current_el(env));
13064 }
13065 
13066 #ifndef CONFIG_USER_ONLY
13067 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13068 {
13069     return stage_1_mmu_idx(arm_mmu_idx(env));
13070 }
13071 #endif
13072 
13073 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13074                                            ARMMMUIdx mmu_idx,
13075                                            CPUARMTBFlags flags)
13076 {
13077     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13078     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13079 
13080     if (arm_singlestep_active(env)) {
13081         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13082     }
13083     return flags;
13084 }
13085 
13086 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13087                                               ARMMMUIdx mmu_idx,
13088                                               CPUARMTBFlags flags)
13089 {
13090     bool sctlr_b = arm_sctlr_b(env);
13091 
13092     if (sctlr_b) {
13093         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13094     }
13095     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13096         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13097     }
13098     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13099 
13100     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13101 }
13102 
13103 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13104                                         ARMMMUIdx mmu_idx)
13105 {
13106     CPUARMTBFlags flags = {};
13107     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13108 
13109     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13110     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13111         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13112     }
13113 
13114     if (arm_v7m_is_handler_mode(env)) {
13115         DP_TBFLAG_M32(flags, HANDLER, 1);
13116     }
13117 
13118     /*
13119      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13120      * is suppressing them because the requested execution priority
13121      * is less than 0.
13122      */
13123     if (arm_feature(env, ARM_FEATURE_V8) &&
13124         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13125           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13126         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13127     }
13128 
13129     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13130 }
13131 
13132 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13133 {
13134     CPUARMTBFlags flags = {};
13135 
13136     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13137     return flags;
13138 }
13139 
13140 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13141                                         ARMMMUIdx mmu_idx)
13142 {
13143     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13144     int el = arm_current_el(env);
13145 
13146     if (arm_sctlr(env, el) & SCTLR_A) {
13147         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13148     }
13149 
13150     if (arm_el_is_aa64(env, 1)) {
13151         DP_TBFLAG_A32(flags, VFPEN, 1);
13152     }
13153 
13154     if (el < 2 && env->cp15.hstr_el2 &&
13155         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13156         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13157     }
13158 
13159     if (env->uncached_cpsr & CPSR_IL) {
13160         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13161     }
13162 
13163     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13164 }
13165 
13166 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13167                                         ARMMMUIdx mmu_idx)
13168 {
13169     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13170     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13171     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13172     uint64_t sctlr;
13173     int tbii, tbid;
13174 
13175     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13176 
13177     /* Get control bits for tagged addresses.  */
13178     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13179     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13180 
13181     DP_TBFLAG_A64(flags, TBII, tbii);
13182     DP_TBFLAG_A64(flags, TBID, tbid);
13183 
13184     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13185         int sve_el = sve_exception_el(env, el);
13186         uint32_t zcr_len;
13187 
13188         /*
13189          * If SVE is disabled, but FP is enabled,
13190          * then the effective len is 0.
13191          */
13192         if (sve_el != 0 && fp_el == 0) {
13193             zcr_len = 0;
13194         } else {
13195             zcr_len = sve_zcr_len_for_el(env, el);
13196         }
13197         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13198         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13199     }
13200 
13201     sctlr = regime_sctlr(env, stage1);
13202 
13203     if (sctlr & SCTLR_A) {
13204         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13205     }
13206 
13207     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13208         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13209     }
13210 
13211     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13212         /*
13213          * In order to save space in flags, we record only whether
13214          * pauth is "inactive", meaning all insns are implemented as
13215          * a nop, or "active" when some action must be performed.
13216          * The decision of which action to take is left to a helper.
13217          */
13218         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13219             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13220         }
13221     }
13222 
13223     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13224         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13225         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13226             DP_TBFLAG_A64(flags, BT, 1);
13227         }
13228     }
13229 
13230     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13231     if (!(env->pstate & PSTATE_UAO)) {
13232         switch (mmu_idx) {
13233         case ARMMMUIdx_E10_1:
13234         case ARMMMUIdx_E10_1_PAN:
13235         case ARMMMUIdx_SE10_1:
13236         case ARMMMUIdx_SE10_1_PAN:
13237             /* TODO: ARMv8.3-NV */
13238             DP_TBFLAG_A64(flags, UNPRIV, 1);
13239             break;
13240         case ARMMMUIdx_E20_2:
13241         case ARMMMUIdx_E20_2_PAN:
13242         case ARMMMUIdx_SE20_2:
13243         case ARMMMUIdx_SE20_2_PAN:
13244             /*
13245              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13246              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13247              */
13248             if (env->cp15.hcr_el2 & HCR_TGE) {
13249                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13250             }
13251             break;
13252         default:
13253             break;
13254         }
13255     }
13256 
13257     if (env->pstate & PSTATE_IL) {
13258         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13259     }
13260 
13261     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13262         /*
13263          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13264          * if all accesses must be Unchecked:
13265          * 1) If no TBI, then there are no tags in the address to check,
13266          * 2) If Tag Check Override, then all accesses are Unchecked,
13267          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13268          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13269          */
13270         if (allocation_tag_access_enabled(env, el, sctlr)) {
13271             DP_TBFLAG_A64(flags, ATA, 1);
13272             if (tbid
13273                 && !(env->pstate & PSTATE_TCO)
13274                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13275                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13276             }
13277         }
13278         /* And again for unprivileged accesses, if required.  */
13279         if (EX_TBFLAG_A64(flags, UNPRIV)
13280             && tbid
13281             && !(env->pstate & PSTATE_TCO)
13282             && (sctlr & SCTLR_TCF0)
13283             && allocation_tag_access_enabled(env, 0, sctlr)) {
13284             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13285         }
13286         /* Cache TCMA as well as TBI. */
13287         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13288     }
13289 
13290     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13291 }
13292 
13293 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13294 {
13295     int el = arm_current_el(env);
13296     int fp_el = fp_exception_el(env, el);
13297     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13298 
13299     if (is_a64(env)) {
13300         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13301     } else if (arm_feature(env, ARM_FEATURE_M)) {
13302         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13303     } else {
13304         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13305     }
13306 }
13307 
13308 void arm_rebuild_hflags(CPUARMState *env)
13309 {
13310     env->hflags = rebuild_hflags_internal(env);
13311 }
13312 
13313 /*
13314  * If we have triggered a EL state change we can't rely on the
13315  * translator having passed it to us, we need to recompute.
13316  */
13317 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13318 {
13319     int el = arm_current_el(env);
13320     int fp_el = fp_exception_el(env, el);
13321     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13322 
13323     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13324 }
13325 
13326 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13327 {
13328     int fp_el = fp_exception_el(env, el);
13329     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13330 
13331     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13332 }
13333 
13334 /*
13335  * If we have triggered a EL state change we can't rely on the
13336  * translator having passed it to us, we need to recompute.
13337  */
13338 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13339 {
13340     int el = arm_current_el(env);
13341     int fp_el = fp_exception_el(env, el);
13342     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13343     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13344 }
13345 
13346 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13347 {
13348     int fp_el = fp_exception_el(env, el);
13349     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13350 
13351     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13352 }
13353 
13354 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13355 {
13356     int fp_el = fp_exception_el(env, el);
13357     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13358 
13359     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13360 }
13361 
13362 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13363 {
13364 #ifdef CONFIG_DEBUG_TCG
13365     CPUARMTBFlags c = env->hflags;
13366     CPUARMTBFlags r = rebuild_hflags_internal(env);
13367 
13368     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13369         fprintf(stderr, "TCG hflags mismatch "
13370                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13371                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13372                 c.flags, c.flags2, r.flags, r.flags2);
13373         abort();
13374     }
13375 #endif
13376 }
13377 
13378 static bool mve_no_pred(CPUARMState *env)
13379 {
13380     /*
13381      * Return true if there is definitely no predication of MVE
13382      * instructions by VPR or LTPSIZE. (Returning false even if there
13383      * isn't any predication is OK; generated code will just be
13384      * a little worse.)
13385      * If the CPU does not implement MVE then this TB flag is always 0.
13386      *
13387      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13388      * logic in gen_update_fp_context() needs to be updated to match.
13389      *
13390      * We do not include the effect of the ECI bits here -- they are
13391      * tracked in other TB flags. This simplifies the logic for
13392      * "when did we emit code that changes the MVE_NO_PRED TB flag
13393      * and thus need to end the TB?".
13394      */
13395     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13396         return false;
13397     }
13398     if (env->v7m.vpr) {
13399         return false;
13400     }
13401     if (env->v7m.ltpsize < 4) {
13402         return false;
13403     }
13404     return true;
13405 }
13406 
13407 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13408                           target_ulong *cs_base, uint32_t *pflags)
13409 {
13410     CPUARMTBFlags flags;
13411 
13412     assert_hflags_rebuild_correctly(env);
13413     flags = env->hflags;
13414 
13415     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13416         *pc = env->pc;
13417         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13418             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13419         }
13420     } else {
13421         *pc = env->regs[15];
13422 
13423         if (arm_feature(env, ARM_FEATURE_M)) {
13424             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13425                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13426                 != env->v7m.secure) {
13427                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13428             }
13429 
13430             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13431                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13432                  (env->v7m.secure &&
13433                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13434                 /*
13435                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13436                  * active FP context; we must create a new FP context before
13437                  * executing any FP insn.
13438                  */
13439                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13440             }
13441 
13442             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13443             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13444                 DP_TBFLAG_M32(flags, LSPACT, 1);
13445             }
13446 
13447             if (mve_no_pred(env)) {
13448                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13449             }
13450         } else {
13451             /*
13452              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13453              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13454              */
13455             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13456                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13457             } else {
13458                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13459                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13460             }
13461             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13462                 DP_TBFLAG_A32(flags, VFPEN, 1);
13463             }
13464         }
13465 
13466         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13467         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13468     }
13469 
13470     /*
13471      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13472      * states defined in the ARM ARM for software singlestep:
13473      *  SS_ACTIVE   PSTATE.SS   State
13474      *     0            x       Inactive (the TB flag for SS is always 0)
13475      *     1            0       Active-pending
13476      *     1            1       Active-not-pending
13477      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13478      */
13479     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13480         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13481     }
13482 
13483     *pflags = flags.flags;
13484     *cs_base = flags.flags2;
13485 }
13486 
13487 #ifdef TARGET_AARCH64
13488 /*
13489  * The manual says that when SVE is enabled and VQ is widened the
13490  * implementation is allowed to zero the previously inaccessible
13491  * portion of the registers.  The corollary to that is that when
13492  * SVE is enabled and VQ is narrowed we are also allowed to zero
13493  * the now inaccessible portion of the registers.
13494  *
13495  * The intent of this is that no predicate bit beyond VQ is ever set.
13496  * Which means that some operations on predicate registers themselves
13497  * may operate on full uint64_t or even unrolled across the maximum
13498  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13499  * may well be cheaper than conditionals to restrict the operation
13500  * to the relevant portion of a uint16_t[16].
13501  */
13502 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13503 {
13504     int i, j;
13505     uint64_t pmask;
13506 
13507     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13508     assert(vq <= env_archcpu(env)->sve_max_vq);
13509 
13510     /* Zap the high bits of the zregs.  */
13511     for (i = 0; i < 32; i++) {
13512         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13513     }
13514 
13515     /* Zap the high bits of the pregs and ffr.  */
13516     pmask = 0;
13517     if (vq & 3) {
13518         pmask = ~(-1ULL << (16 * (vq & 3)));
13519     }
13520     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13521         for (i = 0; i < 17; ++i) {
13522             env->vfp.pregs[i].p[j] &= pmask;
13523         }
13524         pmask = 0;
13525     }
13526 }
13527 
13528 /*
13529  * Notice a change in SVE vector size when changing EL.
13530  */
13531 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13532                            int new_el, bool el0_a64)
13533 {
13534     ARMCPU *cpu = env_archcpu(env);
13535     int old_len, new_len;
13536     bool old_a64, new_a64;
13537 
13538     /* Nothing to do if no SVE.  */
13539     if (!cpu_isar_feature(aa64_sve, cpu)) {
13540         return;
13541     }
13542 
13543     /* Nothing to do if FP is disabled in either EL.  */
13544     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13545         return;
13546     }
13547 
13548     /*
13549      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13550      * at ELx, or not available because the EL is in AArch32 state, then
13551      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13552      * has an effective value of 0".
13553      *
13554      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13555      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13556      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13557      * we already have the correct register contents when encountering the
13558      * vq0->vq0 transition between EL0->EL1.
13559      */
13560     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13561     old_len = (old_a64 && !sve_exception_el(env, old_el)
13562                ? sve_zcr_len_for_el(env, old_el) : 0);
13563     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13564     new_len = (new_a64 && !sve_exception_el(env, new_el)
13565                ? sve_zcr_len_for_el(env, new_el) : 0);
13566 
13567     /* When changing vector length, clear inaccessible state.  */
13568     if (new_len < old_len) {
13569         aarch64_sve_narrow_vq(env, new_len + 1);
13570     }
13571 }
13572 #endif
13573