xref: /qemu/target/arm/helper.c (revision c3bef3b4)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/qapi-commands-machine-target.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35 
36 static void switch_mode(CPUARMState *env, int mode);
37 
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     assert(ri->fieldoffset);
41     if (cpreg_field_is_64bit(ri)) {
42         return CPREG_FIELD64(env, ri);
43     } else {
44         return CPREG_FIELD32(env, ri);
45     }
46 }
47 
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50     assert(ri->fieldoffset);
51     if (cpreg_field_is_64bit(ri)) {
52         CPREG_FIELD64(env, ri) = value;
53     } else {
54         CPREG_FIELD32(env, ri) = value;
55     }
56 }
57 
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     return (char *)env + ri->fieldoffset;
61 }
62 
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65     /* Raw read of a coprocessor register (as needed for migration, etc). */
66     if (ri->type & ARM_CP_CONST) {
67         return ri->resetvalue;
68     } else if (ri->raw_readfn) {
69         return ri->raw_readfn(env, ri);
70     } else if (ri->readfn) {
71         return ri->readfn(env, ri);
72     } else {
73         return raw_read(env, ri);
74     }
75 }
76 
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78                              uint64_t v)
79 {
80     /*
81      * Raw write of a coprocessor register (as needed for migration, etc).
82      * Note that constant registers are treated as write-ignored; the
83      * caller should check for success by whether a readback gives the
84      * value written.
85      */
86     if (ri->type & ARM_CP_CONST) {
87         return;
88     } else if (ri->raw_writefn) {
89         ri->raw_writefn(env, ri, v);
90     } else if (ri->writefn) {
91         ri->writefn(env, ri, v);
92     } else {
93         raw_write(env, ri, v);
94     }
95 }
96 
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99    /*
100     * Return true if the regdef would cause an assertion if you called
101     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102     * program bug for it not to have the NO_RAW flag).
103     * NB that returning false here doesn't necessarily mean that calling
104     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105     * read/write access functions which are safe for raw use" from "has
106     * read/write access functions which have side effects but has forgotten
107     * to provide raw access functions".
108     * The tests here line up with the conditions in read/write_raw_cp_reg()
109     * and assertions in raw_read()/raw_write().
110     */
111     if ((ri->type & ARM_CP_CONST) ||
112         ri->fieldoffset ||
113         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114         return false;
115     }
116     return true;
117 }
118 
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121     /* Write the coprocessor state from cpu->env to the (index,value) list. */
122     int i;
123     bool ok = true;
124 
125     for (i = 0; i < cpu->cpreg_array_len; i++) {
126         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127         const ARMCPRegInfo *ri;
128         uint64_t newval;
129 
130         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131         if (!ri) {
132             ok = false;
133             continue;
134         }
135         if (ri->type & ARM_CP_NO_RAW) {
136             continue;
137         }
138 
139         newval = read_raw_cp_reg(&cpu->env, ri);
140         if (kvm_sync) {
141             /*
142              * Only sync if the previous list->cpustate sync succeeded.
143              * Rather than tracking the success/failure state for every
144              * item in the list, we just recheck "does the raw write we must
145              * have made in write_list_to_cpustate() read back OK" here.
146              */
147             uint64_t oldval = cpu->cpreg_values[i];
148 
149             if (oldval == newval) {
150                 continue;
151             }
152 
153             write_raw_cp_reg(&cpu->env, ri, oldval);
154             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155                 continue;
156             }
157 
158             write_raw_cp_reg(&cpu->env, ri, newval);
159         }
160         cpu->cpreg_values[i] = newval;
161     }
162     return ok;
163 }
164 
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167     int i;
168     bool ok = true;
169 
170     for (i = 0; i < cpu->cpreg_array_len; i++) {
171         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172         uint64_t v = cpu->cpreg_values[i];
173         const ARMCPRegInfo *ri;
174 
175         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176         if (!ri) {
177             ok = false;
178             continue;
179         }
180         if (ri->type & ARM_CP_NO_RAW) {
181             continue;
182         }
183         /*
184          * Write value and confirm it reads back as written
185          * (to catch read-only registers and partially read-only
186          * registers where the incoming migration value doesn't match)
187          */
188         write_raw_cp_reg(&cpu->env, ri, v);
189         if (read_raw_cp_reg(&cpu->env, ri) != v) {
190             ok = false;
191         }
192     }
193     return ok;
194 }
195 
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198     ARMCPU *cpu = opaque;
199     uint32_t regidx = (uintptr_t)key;
200     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201 
202     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204         /* The value array need not be initialized at this point */
205         cpu->cpreg_array_len++;
206     }
207 }
208 
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211     ARMCPU *cpu = opaque;
212     const ARMCPRegInfo *ri;
213 
214     ri = g_hash_table_lookup(cpu->cp_regs, key);
215 
216     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217         cpu->cpreg_array_len++;
218     }
219 }
220 
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225 
226     if (aidx > bidx) {
227         return 1;
228     }
229     if (aidx < bidx) {
230         return -1;
231     }
232     return 0;
233 }
234 
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237     /*
238      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239      * Note that we require cpreg_tuples[] to be sorted by key ID.
240      */
241     GList *keys;
242     int arraylen;
243 
244     keys = g_hash_table_get_keys(cpu->cp_regs);
245     keys = g_list_sort(keys, cpreg_key_compare);
246 
247     cpu->cpreg_array_len = 0;
248 
249     g_list_foreach(keys, count_cpreg, cpu);
250 
251     arraylen = cpu->cpreg_array_len;
252     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253     cpu->cpreg_values = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257     cpu->cpreg_array_len = 0;
258 
259     g_list_foreach(keys, add_cpreg_to_list, cpu);
260 
261     assert(cpu->cpreg_array_len == arraylen);
262 
263     g_list_free(keys);
264 }
265 
266 /*
267  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268  */
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270                                         const ARMCPRegInfo *ri,
271                                         bool isread)
272 {
273     if (!is_a64(env) && arm_current_el(env) == 3 &&
274         arm_is_secure_below_el3(env)) {
275         return CP_ACCESS_TRAP_UNCATEGORIZED;
276     }
277     return CP_ACCESS_OK;
278 }
279 
280 /*
281  * Some secure-only AArch32 registers trap to EL3 if used from
282  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284  * We assume that the .access field is set to PL1_RW.
285  */
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287                                             const ARMCPRegInfo *ri,
288                                             bool isread)
289 {
290     if (arm_current_el(env) == 3) {
291         return CP_ACCESS_OK;
292     }
293     if (arm_is_secure_below_el3(env)) {
294         if (env->cp15.scr_el3 & SCR_EEL2) {
295             return CP_ACCESS_TRAP_EL2;
296         }
297         return CP_ACCESS_TRAP_EL3;
298     }
299     /* This will be EL1 NS and EL2 NS, which just UNDEF */
300     return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302 
303 /*
304  * Check for traps to performance monitor registers, which are controlled
305  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306  */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308                                  bool isread)
309 {
310     int el = arm_current_el(env);
311     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312 
313     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314         return CP_ACCESS_TRAP_EL2;
315     }
316     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317         return CP_ACCESS_TRAP_EL3;
318     }
319     return CP_ACCESS_OK;
320 }
321 
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324                                       bool isread)
325 {
326     if (arm_current_el(env) == 1) {
327         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328         if (arm_hcr_el2_eff(env) & trap) {
329             return CP_ACCESS_TRAP_EL2;
330         }
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337                                  bool isread)
338 {
339     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340         return CP_ACCESS_TRAP_EL2;
341     }
342     return CP_ACCESS_OK;
343 }
344 
345 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347                                   bool isread)
348 {
349     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350         return CP_ACCESS_TRAP_EL2;
351     }
352     return CP_ACCESS_OK;
353 }
354 
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357                                   bool isread)
358 {
359     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360         return CP_ACCESS_TRAP_EL2;
361     }
362     return CP_ACCESS_OK;
363 }
364 
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367                                     bool isread)
368 {
369     if (arm_current_el(env) == 1 &&
370         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371         return CP_ACCESS_TRAP_EL2;
372     }
373     return CP_ACCESS_OK;
374 }
375 
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379                                     bool isread)
380 {
381     if (arm_current_el(env) == 1 &&
382         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383         return CP_ACCESS_TRAP_EL2;
384     }
385     return CP_ACCESS_OK;
386 }
387 #endif
388 
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391     ARMCPU *cpu = env_archcpu(env);
392 
393     raw_write(env, ri, value);
394     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396 
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399     ARMCPU *cpu = env_archcpu(env);
400 
401     if (raw_read(env, ri) != value) {
402         /*
403          * Unlike real hardware the qemu TLB uses virtual addresses,
404          * not modified virtual addresses, so this causes a TLB flush.
405          */
406         tlb_flush(CPU(cpu));
407         raw_write(env, ri, value);
408     }
409 }
410 
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412                              uint64_t value)
413 {
414     ARMCPU *cpu = env_archcpu(env);
415 
416     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417         && !extended_addresses_enabled(env)) {
418         /*
419          * For VMSA (when not using the LPAE long descriptor page table
420          * format) this register includes the ASID, so do a TLB flush.
421          * For PMSA it is purely a process ID and no action is needed.
422          */
423         tlb_flush(CPU(cpu));
424     }
425     raw_write(env, ri, value);
426 }
427 
428 static int alle1_tlbmask(CPUARMState *env)
429 {
430     /*
431      * Note that the 'ALL' scope must invalidate both stage 1 and
432      * stage 2 translations, whereas most other scopes only invalidate
433      * stage 1 translations.
434      */
435     return (ARMMMUIdxBit_E10_1 |
436             ARMMMUIdxBit_E10_1_PAN |
437             ARMMMUIdxBit_E10_0 |
438             ARMMMUIdxBit_Stage2 |
439             ARMMMUIdxBit_Stage2_S);
440 }
441 
442 
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445                              uint64_t value)
446 {
447     CPUState *cs = env_cpu(env);
448 
449     tlb_flush_all_cpus_synced(cs);
450 }
451 
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453                              uint64_t value)
454 {
455     CPUState *cs = env_cpu(env);
456 
457     tlb_flush_all_cpus_synced(cs);
458 }
459 
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461                              uint64_t value)
462 {
463     CPUState *cs = env_cpu(env);
464 
465     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467 
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469                              uint64_t value)
470 {
471     CPUState *cs = env_cpu(env);
472 
473     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475 
476 /*
477  * Non-IS variants of TLB operations are upgraded to
478  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479  * force broadcast of these operations.
480  */
481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485 
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487                           uint64_t value)
488 {
489     /* Invalidate all (TLBIALL) */
490     CPUState *cs = env_cpu(env);
491 
492     if (tlb_force_broadcast(env)) {
493         tlb_flush_all_cpus_synced(cs);
494     } else {
495         tlb_flush(cs);
496     }
497 }
498 
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503     CPUState *cs = env_cpu(env);
504 
505     value &= TARGET_PAGE_MASK;
506     if (tlb_force_broadcast(env)) {
507         tlb_flush_page_all_cpus_synced(cs, value);
508     } else {
509         tlb_flush_page(cs, value);
510     }
511 }
512 
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514                            uint64_t value)
515 {
516     /* Invalidate by ASID (TLBIASID) */
517     CPUState *cs = env_cpu(env);
518 
519     if (tlb_force_broadcast(env)) {
520         tlb_flush_all_cpus_synced(cs);
521     } else {
522         tlb_flush(cs);
523     }
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     CPUState *cs = env_cpu(env);
531 
532     value &= TARGET_PAGE_MASK;
533     if (tlb_force_broadcast(env)) {
534         tlb_flush_page_all_cpus_synced(cs, value);
535     } else {
536         tlb_flush_page(cs, value);
537     }
538 }
539 
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541                                uint64_t value)
542 {
543     CPUState *cs = env_cpu(env);
544 
545     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547 
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549                                   uint64_t value)
550 {
551     CPUState *cs = env_cpu(env);
552 
553     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555 
556 
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                               uint64_t value)
559 {
560     CPUState *cs = env_cpu(env);
561 
562     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564 
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566                                  uint64_t value)
567 {
568     CPUState *cs = env_cpu(env);
569 
570     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572 
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                               uint64_t value)
575 {
576     CPUState *cs = env_cpu(env);
577     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578 
579     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581 
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                  uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587 
588     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589                                              ARMMMUIdxBit_E2);
590 }
591 
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                                 uint64_t value)
594 {
595     CPUState *cs = env_cpu(env);
596     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597 
598     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600 
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602                                 uint64_t value)
603 {
604     CPUState *cs = env_cpu(env);
605     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606 
607     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609 
610 static const ARMCPRegInfo cp_reginfo[] = {
611     /*
612      * Define the secure and non-secure FCSE identifier CP registers
613      * separately because there is no secure bank in V8 (no _EL3).  This allows
614      * the secure register to be properly reset and migrated. There is also no
615      * v8 EL1 version of the register so the non-secure instance stands alone.
616      */
617     { .name = "FCSEIDR",
618       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622     { .name = "FCSEIDR_S",
623       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627     /*
628      * Define the secure and non-secure context identifier CP registers
629      * separately because there is no secure bank in V8 (no _EL3).  This allows
630      * the secure register to be properly reset and migrated.  In the
631      * non-secure case, the 32-bit register will have reset and migration
632      * disabled during registration as it is handled by the 64-bit instance.
633      */
634     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636       .access = PL1_RW, .accessfn = access_tvm_trvm,
637       .fgt = FGT_CONTEXTIDR_EL1,
638       .secure = ARM_CP_SECSTATE_NS,
639       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643       .access = PL1_RW, .accessfn = access_tvm_trvm,
644       .secure = ARM_CP_SECSTATE_S,
645       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648 
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650     /*
651      * NB: Some of these registers exist in v8 but with more precise
652      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653      */
654     /* MMU Domain access control / MPU write buffer control */
655     { .name = "DACR",
656       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658       .writefn = dacr_write, .raw_writefn = raw_write,
659       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661     /*
662      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663      * For v6 and v5, these mappings are overly broad.
664      */
665     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673     /* Cache maintenance ops; some of this space may be overridden later. */
674     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678 
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680     /*
681      * Not all pre-v6 cores implemented this WFI, so this is slightly
682      * over-broad.
683      */
684     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685       .access = PL1_W, .type = ARM_CP_WFI },
686 };
687 
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689     /*
690      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691      * is UNPREDICTABLE; we choose to NOP as most implementations do).
692      */
693     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694       .access = PL1_W, .type = ARM_CP_WFI },
695     /*
696      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698      * OMAPCP will override this space.
699      */
700     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702       .resetvalue = 0 },
703     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705       .resetvalue = 0 },
706     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709       .resetvalue = 0 },
710     /*
711      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712      * implementing it as RAZ means the "debug architecture version" bits
713      * will read as a reserved value, which should cause Linux to not try
714      * to use the debug hardware.
715      */
716     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718     /*
719      * MMU TLB control. Note that the wildcarding means we cover not just
720      * the unified TLB ops but also the dside/iside/inner-shareable variants.
721      */
722     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724       .type = ARM_CP_NO_RAW },
725     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727       .type = ARM_CP_NO_RAW },
728     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730       .type = ARM_CP_NO_RAW },
731     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733       .type = ARM_CP_NO_RAW },
734     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739 
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741                         uint64_t value)
742 {
743     uint32_t mask = 0;
744 
745     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746     if (!arm_feature(env, ARM_FEATURE_V8)) {
747         /*
748          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751          */
752         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753             /* VFP coprocessor: cp10 & cp11 [23:20] */
754             mask |= R_CPACR_ASEDIS_MASK |
755                     R_CPACR_D32DIS_MASK |
756                     R_CPACR_CP11_MASK |
757                     R_CPACR_CP10_MASK;
758 
759             if (!arm_feature(env, ARM_FEATURE_NEON)) {
760                 /* ASEDIS [31] bit is RAO/WI */
761                 value |= R_CPACR_ASEDIS_MASK;
762             }
763 
764             /*
765              * VFPv3 and upwards with NEON implement 32 double precision
766              * registers (D0-D31).
767              */
768             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770                 value |= R_CPACR_D32DIS_MASK;
771             }
772         }
773         value &= mask;
774     }
775 
776     /*
777      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779      */
780     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784     }
785 
786     env->cp15.cpacr_el1 = value;
787 }
788 
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791     /*
792      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794      */
795     uint64_t value = env->cp15.cpacr_el1;
796 
797     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800     }
801     return value;
802 }
803 
804 
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807     /*
808      * Call cpacr_write() so that we reset with the correct RAO bits set
809      * for our CPU features.
810      */
811     cpacr_write(env, ri, 0);
812 }
813 
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815                                    bool isread)
816 {
817     if (arm_feature(env, ARM_FEATURE_V8)) {
818         /* Check if CPACR accesses are to be trapped to EL2 */
819         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821             return CP_ACCESS_TRAP_EL2;
822         /* Check if CPACR accesses are to be trapped to EL3 */
823         } else if (arm_current_el(env) < 3 &&
824                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825             return CP_ACCESS_TRAP_EL3;
826         }
827     }
828 
829     return CP_ACCESS_OK;
830 }
831 
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                   bool isread)
834 {
835     /* Check if CPTR accesses are set to trap to EL3 */
836     if (arm_current_el(env) == 2 &&
837         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838         return CP_ACCESS_TRAP_EL3;
839     }
840 
841     return CP_ACCESS_OK;
842 }
843 
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845     /* prefetch by MVA in v6, NOP in v7 */
846     { .name = "MVA_prefetch",
847       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848       .access = PL1_W, .type = ARM_CP_NOP },
849     /*
850      * We need to break the TB after ISB to execute self-modifying code
851      * correctly and also to take any pending interrupts immediately.
852      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853      */
854     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NOP },
858     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861       .access = PL1_RW, .accessfn = access_tvm_trvm,
862       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863                              offsetof(CPUARMState, cp15.ifar_ns) },
864       .resetvalue = 0, },
865     /*
866      * Watchpoint Fault Address Register : should actually only be present
867      * for 1136, 1176, 11MPCore.
868      */
869     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873       .fgt = FGT_CPACR_EL1,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877 
878 typedef struct pm_event {
879     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881     bool (*supported)(CPUARMState *);
882     /*
883      * Retrieve the current count of the underlying event. The programmed
884      * counters hold a difference from the return value from this function
885      */
886     uint64_t (*get_count)(CPUARMState *);
887     /*
888      * Return how many nanoseconds it will take (at a minimum) for count events
889      * to occur. A negative value indicates the counter will never overflow, or
890      * that the counter has otherwise arranged for the overflow bit to be set
891      * and the PMU interrupt to be raised on overflow.
892      */
893     int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895 
896 static bool event_always_supported(CPUARMState *env)
897 {
898     return true;
899 }
900 
901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903     /*
904      * SW_INCR events are written directly to the pmevcntr's by writes to
905      * PMSWINC, so there is no underlying count maintained by the PMU itself
906      */
907     return 0;
908 }
909 
910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912     return -1;
913 }
914 
915 /*
916  * Return the underlying cycle count for the PMU cycle counters. If we're in
917  * usermode, simply return 0.
918  */
919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925     return cpu_get_host_ticks();
926 #endif
927 }
928 
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934 
935 static bool instructions_supported(CPUARMState *env)
936 {
937     return icount_enabled() == 1; /* Precise instruction counting */
938 }
939 
940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942     return (uint64_t)icount_get_raw();
943 }
944 
945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947     return icount_to_ns((int64_t)icount);
948 }
949 #endif
950 
951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953     /* For events which are supported in any v8.1 PMU */
954     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956 
957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959     /* For events which are supported in any v8.1 PMU */
960     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962 
963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965     /* For events which on QEMU never fire, so their count is always zero */
966     return 0;
967 }
968 
969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971     /* An event which never fires can never overflow */
972     return -1;
973 }
974 
975 static const pm_event pm_events[] = {
976     { .number = 0x000, /* SW_INCR */
977       .supported = event_always_supported,
978       .get_count = swinc_get_count,
979       .ns_per_count = swinc_ns_per,
980     },
981 #ifndef CONFIG_USER_ONLY
982     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983       .supported = instructions_supported,
984       .get_count = instructions_get_count,
985       .ns_per_count = instructions_ns_per,
986     },
987     { .number = 0x011, /* CPU_CYCLES, Cycle */
988       .supported = event_always_supported,
989       .get_count = cycles_get_count,
990       .ns_per_count = cycles_ns_per,
991     },
992 #endif
993     { .number = 0x023, /* STALL_FRONTEND */
994       .supported = pmuv3p1_events_supported,
995       .get_count = zero_event_get_count,
996       .ns_per_count = zero_event_ns_per,
997     },
998     { .number = 0x024, /* STALL_BACKEND */
999       .supported = pmuv3p1_events_supported,
1000       .get_count = zero_event_get_count,
1001       .ns_per_count = zero_event_ns_per,
1002     },
1003     { .number = 0x03c, /* STALL */
1004       .supported = pmuv3p4_events_supported,
1005       .get_count = zero_event_get_count,
1006       .ns_per_count = zero_event_ns_per,
1007     },
1008 };
1009 
1010 /*
1011  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012  * events (i.e. the statistical profiling extension), this implementation
1013  * should first be updated to something sparse instead of the current
1014  * supported_event_map[] array.
1015  */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019 
1020 /*
1021  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022  * of ARM event numbers to indices in our pm_events array.
1023  *
1024  * Note: Events in the 0x40XX range are not currently supported.
1025  */
1026 void pmu_init(ARMCPU *cpu)
1027 {
1028     unsigned int i;
1029 
1030     /*
1031      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032      * events to them
1033      */
1034     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035         supported_event_map[i] = UNSUPPORTED_EVENT;
1036     }
1037     cpu->pmceid0 = 0;
1038     cpu->pmceid1 = 0;
1039 
1040     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041         const pm_event *cnt = &pm_events[i];
1042         assert(cnt->number <= MAX_EVENT_ID);
1043         /* We do not currently support events in the 0x40xx range */
1044         assert(cnt->number <= 0x3f);
1045 
1046         if (cnt->supported(&cpu->env)) {
1047             supported_event_map[cnt->number] = i;
1048             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049             if (cnt->number & 0x20) {
1050                 cpu->pmceid1 |= event_mask;
1051             } else {
1052                 cpu->pmceid0 |= event_mask;
1053             }
1054         }
1055     }
1056 }
1057 
1058 /*
1059  * Check at runtime whether a PMU event is supported for the current machine
1060  */
1061 static bool event_supported(uint16_t number)
1062 {
1063     if (number > MAX_EVENT_ID) {
1064         return false;
1065     }
1066     return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068 
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070                                    bool isread)
1071 {
1072     /*
1073      * Performance monitor registers user accessibility is controlled
1074      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075      * trapping to EL2 or EL3 for other accesses.
1076      */
1077     int el = arm_current_el(env);
1078     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079 
1080     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081         return CP_ACCESS_TRAP;
1082     }
1083     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084         return CP_ACCESS_TRAP_EL2;
1085     }
1086     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087         return CP_ACCESS_TRAP_EL3;
1088     }
1089 
1090     return CP_ACCESS_OK;
1091 }
1092 
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094                                            const ARMCPRegInfo *ri,
1095                                            bool isread)
1096 {
1097     /* ER: event counter read trap control */
1098     if (arm_feature(env, ARM_FEATURE_V8)
1099         && arm_current_el(env) == 0
1100         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101         && isread) {
1102         return CP_ACCESS_OK;
1103     }
1104 
1105     return pmreg_access(env, ri, isread);
1106 }
1107 
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109                                          const ARMCPRegInfo *ri,
1110                                          bool isread)
1111 {
1112     /* SW: software increment write trap control */
1113     if (arm_feature(env, ARM_FEATURE_V8)
1114         && arm_current_el(env) == 0
1115         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116         && !isread) {
1117         return CP_ACCESS_OK;
1118     }
1119 
1120     return pmreg_access(env, ri, isread);
1121 }
1122 
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124                                         const ARMCPRegInfo *ri,
1125                                         bool isread)
1126 {
1127     /* ER: event counter read trap control */
1128     if (arm_feature(env, ARM_FEATURE_V8)
1129         && arm_current_el(env) == 0
1130         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138                                          const ARMCPRegInfo *ri,
1139                                          bool isread)
1140 {
1141     /* CR: cycle counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145         && isread) {
1146         return CP_ACCESS_OK;
1147     }
1148 
1149     return pmreg_access(env, ri, isread);
1150 }
1151 
1152 /*
1153  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154  * We use these to decide whether we need to wrap a write to MDCR_EL2
1155  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156  */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160 
1161 /*
1162  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163  * the current EL, security state, and register configuration.
1164  */
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167     uint64_t filter;
1168     bool e, p, u, nsk, nsu, nsh, m;
1169     bool enabled, prohibited = false, filtered;
1170     bool secure = arm_is_secure(env);
1171     int el = arm_current_el(env);
1172     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174 
1175     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176         return false;
1177     }
1178 
1179     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180             (counter < hpmn || counter == 31)) {
1181         e = env->cp15.c9_pmcr & PMCRE;
1182     } else {
1183         e = mdcr_el2 & MDCR_HPME;
1184     }
1185     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186 
1187     /* Is event counting prohibited? */
1188     if (el == 2 && (counter < hpmn || counter == 31)) {
1189         prohibited = mdcr_el2 & MDCR_HPMD;
1190     }
1191     if (secure) {
1192         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1193     }
1194 
1195     if (counter == 31) {
1196         /*
1197          * The cycle counter defaults to running. PMCR.DP says "disable
1198          * the cycle counter when event counting is prohibited".
1199          * Some MDCR bits disable the cycle counter specifically.
1200          */
1201         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203             if (secure) {
1204                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205             }
1206             if (el == 2) {
1207                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208             }
1209         }
1210     }
1211 
1212     if (counter == 31) {
1213         filter = env->cp15.pmccfiltr_el0;
1214     } else {
1215         filter = env->cp15.c14_pmevtyper[counter];
1216     }
1217 
1218     p   = filter & PMXEVTYPER_P;
1219     u   = filter & PMXEVTYPER_U;
1220     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223     m   = arm_el_is_aa64(env, 1) &&
1224               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225 
1226     if (el == 0) {
1227         filtered = secure ? u : u != nsu;
1228     } else if (el == 1) {
1229         filtered = secure ? p : p != nsk;
1230     } else if (el == 2) {
1231         filtered = !nsh;
1232     } else { /* EL3 */
1233         filtered = m != p;
1234     }
1235 
1236     if (counter != 31) {
1237         /*
1238          * If not checking PMCCNTR, ensure the counter is setup to an event we
1239          * support
1240          */
1241         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242         if (!event_supported(event)) {
1243             return false;
1244         }
1245     }
1246 
1247     return enabled && !prohibited && !filtered;
1248 }
1249 
1250 static void pmu_update_irq(CPUARMState *env)
1251 {
1252     ARMCPU *cpu = env_archcpu(env);
1253     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255 }
1256 
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258 {
1259     /*
1260      * Return true if the clock divider is enabled and the cycle counter
1261      * is supposed to tick only once every 64 clock cycles. This is
1262      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263      * (64-bit) cycle counter PMCR.D has no effect.
1264      */
1265     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266 }
1267 
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269 {
1270     /* Return true if the specified event counter is configured to be 64 bit */
1271 
1272     /* This isn't intended to be used with the cycle counter */
1273     assert(counter < 31);
1274 
1275     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276         return false;
1277     }
1278 
1279     if (arm_feature(env, ARM_FEATURE_EL2)) {
1280         /*
1281          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282          * current security state, so we don't use arm_mdcr_el2_eff() here.
1283          */
1284         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286 
1287         if (hpmn != 0 && counter >= hpmn) {
1288             return hlp;
1289         }
1290     }
1291     return env->cp15.c9_pmcr & PMCRLP;
1292 }
1293 
1294 /*
1295  * Ensure c15_ccnt is the guest-visible count so that operations such as
1296  * enabling/disabling the counter or filtering, modifying the count itself,
1297  * etc. can be done logically. This is essentially a no-op if the counter is
1298  * not enabled at the time of the call.
1299  */
1300 static void pmccntr_op_start(CPUARMState *env)
1301 {
1302     uint64_t cycles = cycles_get_count(env);
1303 
1304     if (pmu_counter_enabled(env, 31)) {
1305         uint64_t eff_cycles = cycles;
1306         if (pmccntr_clockdiv_enabled(env)) {
1307             eff_cycles /= 64;
1308         }
1309 
1310         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311 
1312         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313                                  1ull << 63 : 1ull << 31;
1314         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315             env->cp15.c9_pmovsr |= (1ULL << 31);
1316             pmu_update_irq(env);
1317         }
1318 
1319         env->cp15.c15_ccnt = new_pmccntr;
1320     }
1321     env->cp15.c15_ccnt_delta = cycles;
1322 }
1323 
1324 /*
1325  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327  * pmccntr_op_start.
1328  */
1329 static void pmccntr_op_finish(CPUARMState *env)
1330 {
1331     if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333         /* Calculate when the counter will next overflow */
1334         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336             remaining_cycles = (uint32_t)remaining_cycles;
1337         }
1338         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339 
1340         if (overflow_in > 0) {
1341             int64_t overflow_at;
1342 
1343             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344                                  overflow_in, &overflow_at)) {
1345                 ARMCPU *cpu = env_archcpu(env);
1346                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347             }
1348         }
1349 #endif
1350 
1351         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352         if (pmccntr_clockdiv_enabled(env)) {
1353             prev_cycles /= 64;
1354         }
1355         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1356     }
1357 }
1358 
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360 {
1361 
1362     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363     uint64_t count = 0;
1364     if (event_supported(event)) {
1365         uint16_t event_idx = supported_event_map[event];
1366         count = pm_events[event_idx].get_count(env);
1367     }
1368 
1369     if (pmu_counter_enabled(env, counter)) {
1370         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372             1ULL << 63 : 1ULL << 31;
1373 
1374         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375             env->cp15.c9_pmovsr |= (1 << counter);
1376             pmu_update_irq(env);
1377         }
1378         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1379     }
1380     env->cp15.c14_pmevcntr_delta[counter] = count;
1381 }
1382 
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384 {
1385     if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388         uint16_t event_idx = supported_event_map[event];
1389         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390         int64_t overflow_in;
1391 
1392         if (!pmevcntr_is_64_bit(env, counter)) {
1393             delta = (uint32_t)delta;
1394         }
1395         overflow_in = pm_events[event_idx].ns_per_count(delta);
1396 
1397         if (overflow_in > 0) {
1398             int64_t overflow_at;
1399 
1400             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401                                  overflow_in, &overflow_at)) {
1402                 ARMCPU *cpu = env_archcpu(env);
1403                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404             }
1405         }
1406 #endif
1407 
1408         env->cp15.c14_pmevcntr_delta[counter] -=
1409             env->cp15.c14_pmevcntr[counter];
1410     }
1411 }
1412 
1413 void pmu_op_start(CPUARMState *env)
1414 {
1415     unsigned int i;
1416     pmccntr_op_start(env);
1417     for (i = 0; i < pmu_num_counters(env); i++) {
1418         pmevcntr_op_start(env, i);
1419     }
1420 }
1421 
1422 void pmu_op_finish(CPUARMState *env)
1423 {
1424     unsigned int i;
1425     pmccntr_op_finish(env);
1426     for (i = 0; i < pmu_num_counters(env); i++) {
1427         pmevcntr_op_finish(env, i);
1428     }
1429 }
1430 
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432 {
1433     pmu_op_start(&cpu->env);
1434 }
1435 
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437 {
1438     pmu_op_finish(&cpu->env);
1439 }
1440 
1441 void arm_pmu_timer_cb(void *opaque)
1442 {
1443     ARMCPU *cpu = opaque;
1444 
1445     /*
1446      * Update all the counter values based on the current underlying counts,
1447      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449      * counter may expire.
1450      */
1451     pmu_op_start(&cpu->env);
1452     pmu_op_finish(&cpu->env);
1453 }
1454 
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456                        uint64_t value)
1457 {
1458     pmu_op_start(env);
1459 
1460     if (value & PMCRC) {
1461         /* The counter has been reset */
1462         env->cp15.c15_ccnt = 0;
1463     }
1464 
1465     if (value & PMCRP) {
1466         unsigned int i;
1467         for (i = 0; i < pmu_num_counters(env); i++) {
1468             env->cp15.c14_pmevcntr[i] = 0;
1469         }
1470     }
1471 
1472     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1474 
1475     pmu_op_finish(env);
1476 }
1477 
1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479                           uint64_t value)
1480 {
1481     unsigned int i;
1482     uint64_t overflow_mask, new_pmswinc;
1483 
1484     for (i = 0; i < pmu_num_counters(env); i++) {
1485         /* Increment a counter's count iff: */
1486         if ((value & (1 << i)) && /* counter's bit is set */
1487                 /* counter is enabled and not filtered */
1488                 pmu_counter_enabled(env, i) &&
1489                 /* counter is SW_INCR */
1490                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491             pmevcntr_op_start(env, i);
1492 
1493             /*
1494              * Detect if this write causes an overflow since we can't predict
1495              * PMSWINC overflows like we can for other events
1496              */
1497             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1498 
1499             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500                 1ULL << 63 : 1ULL << 31;
1501 
1502             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1503                 env->cp15.c9_pmovsr |= (1 << i);
1504                 pmu_update_irq(env);
1505             }
1506 
1507             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1508 
1509             pmevcntr_op_finish(env, i);
1510         }
1511     }
1512 }
1513 
1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1515 {
1516     uint64_t ret;
1517     pmccntr_op_start(env);
1518     ret = env->cp15.c15_ccnt;
1519     pmccntr_op_finish(env);
1520     return ret;
1521 }
1522 
1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                          uint64_t value)
1525 {
1526     /*
1527      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1528      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530      * accessed.
1531      */
1532     env->cp15.c9_pmselr = value & 0x1f;
1533 }
1534 
1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536                         uint64_t value)
1537 {
1538     pmccntr_op_start(env);
1539     env->cp15.c15_ccnt = value;
1540     pmccntr_op_finish(env);
1541 }
1542 
1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544                             uint64_t value)
1545 {
1546     uint64_t cur_val = pmccntr_read(env, NULL);
1547 
1548     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1549 }
1550 
1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552                             uint64_t value)
1553 {
1554     pmccntr_op_start(env);
1555     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556     pmccntr_op_finish(env);
1557 }
1558 
1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560                             uint64_t value)
1561 {
1562     pmccntr_op_start(env);
1563     /* M is not accessible from AArch32 */
1564     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565         (value & PMCCFILTR);
1566     pmccntr_op_finish(env);
1567 }
1568 
1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1570 {
1571     /* M is not visible in AArch32 */
1572     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1573 }
1574 
1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576                             uint64_t value)
1577 {
1578     pmu_op_start(env);
1579     value &= pmu_counter_mask(env);
1580     env->cp15.c9_pmcnten |= value;
1581     pmu_op_finish(env);
1582 }
1583 
1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585                              uint64_t value)
1586 {
1587     pmu_op_start(env);
1588     value &= pmu_counter_mask(env);
1589     env->cp15.c9_pmcnten &= ~value;
1590     pmu_op_finish(env);
1591 }
1592 
1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                          uint64_t value)
1595 {
1596     value &= pmu_counter_mask(env);
1597     env->cp15.c9_pmovsr &= ~value;
1598     pmu_update_irq(env);
1599 }
1600 
1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602                          uint64_t value)
1603 {
1604     value &= pmu_counter_mask(env);
1605     env->cp15.c9_pmovsr |= value;
1606     pmu_update_irq(env);
1607 }
1608 
1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                              uint64_t value, const uint8_t counter)
1611 {
1612     if (counter == 31) {
1613         pmccfiltr_write(env, ri, value);
1614     } else if (counter < pmu_num_counters(env)) {
1615         pmevcntr_op_start(env, counter);
1616 
1617         /*
1618          * If this counter's event type is changing, store the current
1619          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620          * pmevcntr_op_finish has the correct baseline when it converts back to
1621          * a delta.
1622          */
1623         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624             PMXEVTYPER_EVTCOUNT;
1625         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626         if (old_event != new_event) {
1627             uint64_t count = 0;
1628             if (event_supported(new_event)) {
1629                 uint16_t event_idx = supported_event_map[new_event];
1630                 count = pm_events[event_idx].get_count(env);
1631             }
1632             env->cp15.c14_pmevcntr_delta[counter] = count;
1633         }
1634 
1635         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636         pmevcntr_op_finish(env, counter);
1637     }
1638     /*
1639      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1640      * PMSELR value is equal to or greater than the number of implemented
1641      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1642      */
1643 }
1644 
1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646                                const uint8_t counter)
1647 {
1648     if (counter == 31) {
1649         return env->cp15.pmccfiltr_el0;
1650     } else if (counter < pmu_num_counters(env)) {
1651         return env->cp15.c14_pmevtyper[counter];
1652     } else {
1653       /*
1654        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1656        */
1657         return 0;
1658     }
1659 }
1660 
1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662                               uint64_t value)
1663 {
1664     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665     pmevtyper_write(env, ri, value, counter);
1666 }
1667 
1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669                                uint64_t value)
1670 {
1671     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672     env->cp15.c14_pmevtyper[counter] = value;
1673 
1674     /*
1675      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676      * pmu_op_finish calls when loading saved state for a migration. Because
1677      * we're potentially updating the type of event here, the value written to
1678      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1679      * different counter type. Therefore, we need to set this value to the
1680      * current count for the counter type we're writing so that pmu_op_finish
1681      * has the correct count for its calculation.
1682      */
1683     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684     if (event_supported(event)) {
1685         uint16_t event_idx = supported_event_map[event];
1686         env->cp15.c14_pmevcntr_delta[counter] =
1687             pm_events[event_idx].get_count(env);
1688     }
1689 }
1690 
1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1692 {
1693     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694     return pmevtyper_read(env, ri, counter);
1695 }
1696 
1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698                              uint64_t value)
1699 {
1700     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1701 }
1702 
1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1704 {
1705     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1706 }
1707 
1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709                              uint64_t value, uint8_t counter)
1710 {
1711     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713         value &= MAKE_64BIT_MASK(0, 32);
1714     }
1715     if (counter < pmu_num_counters(env)) {
1716         pmevcntr_op_start(env, counter);
1717         env->cp15.c14_pmevcntr[counter] = value;
1718         pmevcntr_op_finish(env, counter);
1719     }
1720     /*
1721      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722      * are CONSTRAINED UNPREDICTABLE.
1723      */
1724 }
1725 
1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727                               uint8_t counter)
1728 {
1729     if (counter < pmu_num_counters(env)) {
1730         uint64_t ret;
1731         pmevcntr_op_start(env, counter);
1732         ret = env->cp15.c14_pmevcntr[counter];
1733         pmevcntr_op_finish(env, counter);
1734         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736             ret &= MAKE_64BIT_MASK(0, 32);
1737         }
1738         return ret;
1739     } else {
1740       /*
1741        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742        * are CONSTRAINED UNPREDICTABLE.
1743        */
1744         return 0;
1745     }
1746 }
1747 
1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749                              uint64_t value)
1750 {
1751     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752     pmevcntr_write(env, ri, value, counter);
1753 }
1754 
1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1756 {
1757     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758     return pmevcntr_read(env, ri, counter);
1759 }
1760 
1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762                              uint64_t value)
1763 {
1764     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765     assert(counter < pmu_num_counters(env));
1766     env->cp15.c14_pmevcntr[counter] = value;
1767     pmevcntr_write(env, ri, value, counter);
1768 }
1769 
1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1771 {
1772     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773     assert(counter < pmu_num_counters(env));
1774     return env->cp15.c14_pmevcntr[counter];
1775 }
1776 
1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778                              uint64_t value)
1779 {
1780     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1781 }
1782 
1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1786 }
1787 
1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                             uint64_t value)
1790 {
1791     if (arm_feature(env, ARM_FEATURE_V8)) {
1792         env->cp15.c9_pmuserenr = value & 0xf;
1793     } else {
1794         env->cp15.c9_pmuserenr = value & 1;
1795     }
1796 }
1797 
1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                              uint64_t value)
1800 {
1801     /* We have no event counters so only the C bit can be changed */
1802     value &= pmu_counter_mask(env);
1803     env->cp15.c9_pminten |= value;
1804     pmu_update_irq(env);
1805 }
1806 
1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808                              uint64_t value)
1809 {
1810     value &= pmu_counter_mask(env);
1811     env->cp15.c9_pminten &= ~value;
1812     pmu_update_irq(env);
1813 }
1814 
1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816                        uint64_t value)
1817 {
1818     /*
1819      * Note that even though the AArch64 view of this register has bits
1820      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821      * architectural requirements for bits which are RES0 only in some
1822      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1824      */
1825     raw_write(env, ri, value & ~0x1FULL);
1826 }
1827 
1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1829 {
1830     /* Begin with base v8.0 state.  */
1831     uint64_t valid_mask = 0x3fff;
1832     ARMCPU *cpu = env_archcpu(env);
1833     uint64_t changed;
1834 
1835     /*
1836      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838      * Instead, choose the format based on the mode of EL3.
1839      */
1840     if (arm_el_is_aa64(env, 3)) {
1841         value |= SCR_FW | SCR_AW;      /* RES1 */
1842         valid_mask &= ~SCR_NET;        /* RES0 */
1843 
1844         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846             value |= SCR_RW;           /* RAO/WI */
1847         }
1848         if (cpu_isar_feature(aa64_ras, cpu)) {
1849             valid_mask |= SCR_TERR;
1850         }
1851         if (cpu_isar_feature(aa64_lor, cpu)) {
1852             valid_mask |= SCR_TLOR;
1853         }
1854         if (cpu_isar_feature(aa64_pauth, cpu)) {
1855             valid_mask |= SCR_API | SCR_APK;
1856         }
1857         if (cpu_isar_feature(aa64_sel2, cpu)) {
1858             valid_mask |= SCR_EEL2;
1859         }
1860         if (cpu_isar_feature(aa64_mte, cpu)) {
1861             valid_mask |= SCR_ATA;
1862         }
1863         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1864             valid_mask |= SCR_ENSCXT;
1865         }
1866         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1867             valid_mask |= SCR_EASE | SCR_NMEA;
1868         }
1869         if (cpu_isar_feature(aa64_sme, cpu)) {
1870             valid_mask |= SCR_ENTP2;
1871         }
1872         if (cpu_isar_feature(aa64_hcx, cpu)) {
1873             valid_mask |= SCR_HXEN;
1874         }
1875         if (cpu_isar_feature(aa64_fgt, cpu)) {
1876             valid_mask |= SCR_FGTEN;
1877         }
1878     } else {
1879         valid_mask &= ~(SCR_RW | SCR_ST);
1880         if (cpu_isar_feature(aa32_ras, cpu)) {
1881             valid_mask |= SCR_TERR;
1882         }
1883     }
1884 
1885     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1886         valid_mask &= ~SCR_HCE;
1887 
1888         /*
1889          * On ARMv7, SMD (or SCD as it is called in v7) is only
1890          * supported if EL2 exists. The bit is UNK/SBZP when
1891          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1892          * when EL2 is unavailable.
1893          * On ARMv8, this bit is always available.
1894          */
1895         if (arm_feature(env, ARM_FEATURE_V7) &&
1896             !arm_feature(env, ARM_FEATURE_V8)) {
1897             valid_mask &= ~SCR_SMD;
1898         }
1899     }
1900 
1901     /* Clear all-context RES0 bits.  */
1902     value &= valid_mask;
1903     changed = env->cp15.scr_el3 ^ value;
1904     env->cp15.scr_el3 = value;
1905 
1906     /*
1907      * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then
1908      * we must invalidate all TLBs below EL3.
1909      */
1910     if (changed & SCR_NS) {
1911         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1912                                            ARMMMUIdxBit_E20_0 |
1913                                            ARMMMUIdxBit_E10_1 |
1914                                            ARMMMUIdxBit_E20_2 |
1915                                            ARMMMUIdxBit_E10_1_PAN |
1916                                            ARMMMUIdxBit_E20_2_PAN |
1917                                            ARMMMUIdxBit_E2));
1918     }
1919 }
1920 
1921 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1922 {
1923     /*
1924      * scr_write will set the RES1 bits on an AArch64-only CPU.
1925      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1926      */
1927     scr_write(env, ri, 0);
1928 }
1929 
1930 static CPAccessResult access_tid4(CPUARMState *env,
1931                                   const ARMCPRegInfo *ri,
1932                                   bool isread)
1933 {
1934     if (arm_current_el(env) == 1 &&
1935         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1936         return CP_ACCESS_TRAP_EL2;
1937     }
1938 
1939     return CP_ACCESS_OK;
1940 }
1941 
1942 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1943 {
1944     ARMCPU *cpu = env_archcpu(env);
1945 
1946     /*
1947      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1948      * bank
1949      */
1950     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1951                                         ri->secure & ARM_CP_SECSTATE_S);
1952 
1953     return cpu->ccsidr[index];
1954 }
1955 
1956 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1957                          uint64_t value)
1958 {
1959     raw_write(env, ri, value & 0xf);
1960 }
1961 
1962 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1963 {
1964     CPUState *cs = env_cpu(env);
1965     bool el1 = arm_current_el(env) == 1;
1966     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1967     uint64_t ret = 0;
1968 
1969     if (hcr_el2 & HCR_IMO) {
1970         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1971             ret |= CPSR_I;
1972         }
1973     } else {
1974         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1975             ret |= CPSR_I;
1976         }
1977     }
1978 
1979     if (hcr_el2 & HCR_FMO) {
1980         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1981             ret |= CPSR_F;
1982         }
1983     } else {
1984         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1985             ret |= CPSR_F;
1986         }
1987     }
1988 
1989     if (hcr_el2 & HCR_AMO) {
1990         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1991             ret |= CPSR_A;
1992         }
1993     }
1994 
1995     return ret;
1996 }
1997 
1998 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1999                                        bool isread)
2000 {
2001     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2002         return CP_ACCESS_TRAP_EL2;
2003     }
2004 
2005     return CP_ACCESS_OK;
2006 }
2007 
2008 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2009                                        bool isread)
2010 {
2011     if (arm_feature(env, ARM_FEATURE_V8)) {
2012         return access_aa64_tid1(env, ri, isread);
2013     }
2014 
2015     return CP_ACCESS_OK;
2016 }
2017 
2018 static const ARMCPRegInfo v7_cp_reginfo[] = {
2019     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2020     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2021       .access = PL1_W, .type = ARM_CP_NOP },
2022     /*
2023      * Performance monitors are implementation defined in v7,
2024      * but with an ARM recommended set of registers, which we
2025      * follow.
2026      *
2027      * Performance registers fall into three categories:
2028      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2029      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2030      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2031      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2032      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2033      */
2034     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2035       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2036       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2037       .writefn = pmcntenset_write,
2038       .accessfn = pmreg_access,
2039       .fgt = FGT_PMCNTEN,
2040       .raw_writefn = raw_write },
2041     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2042       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2043       .access = PL0_RW, .accessfn = pmreg_access,
2044       .fgt = FGT_PMCNTEN,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2046       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2047     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2048       .access = PL0_RW,
2049       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2050       .accessfn = pmreg_access,
2051       .fgt = FGT_PMCNTEN,
2052       .writefn = pmcntenclr_write,
2053       .type = ARM_CP_ALIAS | ARM_CP_IO },
2054     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2055       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2056       .access = PL0_RW, .accessfn = pmreg_access,
2057       .fgt = FGT_PMCNTEN,
2058       .type = ARM_CP_ALIAS | ARM_CP_IO,
2059       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2060       .writefn = pmcntenclr_write },
2061     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2062       .access = PL0_RW, .type = ARM_CP_IO,
2063       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2064       .accessfn = pmreg_access,
2065       .fgt = FGT_PMOVS,
2066       .writefn = pmovsr_write,
2067       .raw_writefn = raw_write },
2068     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2069       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2070       .access = PL0_RW, .accessfn = pmreg_access,
2071       .fgt = FGT_PMOVS,
2072       .type = ARM_CP_ALIAS | ARM_CP_IO,
2073       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2074       .writefn = pmovsr_write,
2075       .raw_writefn = raw_write },
2076     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2077       .access = PL0_W, .accessfn = pmreg_access_swinc,
2078       .fgt = FGT_PMSWINC_EL0,
2079       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2080       .writefn = pmswinc_write },
2081     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2082       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2083       .access = PL0_W, .accessfn = pmreg_access_swinc,
2084       .fgt = FGT_PMSWINC_EL0,
2085       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2086       .writefn = pmswinc_write },
2087     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2088       .access = PL0_RW, .type = ARM_CP_ALIAS,
2089       .fgt = FGT_PMSELR_EL0,
2090       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2091       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2092       .raw_writefn = raw_write},
2093     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2094       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2095       .access = PL0_RW, .accessfn = pmreg_access_selr,
2096       .fgt = FGT_PMSELR_EL0,
2097       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2098       .writefn = pmselr_write, .raw_writefn = raw_write, },
2099     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2100       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2101       .fgt = FGT_PMCCNTR_EL0,
2102       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2103       .accessfn = pmreg_access_ccntr },
2104     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2105       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2106       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2107       .fgt = FGT_PMCCNTR_EL0,
2108       .type = ARM_CP_IO,
2109       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2110       .readfn = pmccntr_read, .writefn = pmccntr_write,
2111       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2112     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2113       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2114       .access = PL0_RW, .accessfn = pmreg_access,
2115       .fgt = FGT_PMCCFILTR_EL0,
2116       .type = ARM_CP_ALIAS | ARM_CP_IO,
2117       .resetvalue = 0, },
2118     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2119       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2120       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2121       .access = PL0_RW, .accessfn = pmreg_access,
2122       .fgt = FGT_PMCCFILTR_EL0,
2123       .type = ARM_CP_IO,
2124       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2125       .resetvalue = 0, },
2126     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2127       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2128       .accessfn = pmreg_access,
2129       .fgt = FGT_PMEVTYPERN_EL0,
2130       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2131     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2132       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2133       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134       .accessfn = pmreg_access,
2135       .fgt = FGT_PMEVTYPERN_EL0,
2136       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2138       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = pmreg_access_xevcntr,
2140       .fgt = FGT_PMEVCNTRN_EL0,
2141       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2142     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2143       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2144       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145       .accessfn = pmreg_access_xevcntr,
2146       .fgt = FGT_PMEVCNTRN_EL0,
2147       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2149       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2150       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2151       .resetvalue = 0,
2152       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2153     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2154       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2155       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2156       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2157       .resetvalue = 0,
2158       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2159     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2160       .access = PL1_RW, .accessfn = access_tpm,
2161       .fgt = FGT_PMINTEN,
2162       .type = ARM_CP_ALIAS | ARM_CP_IO,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2164       .resetvalue = 0,
2165       .writefn = pmintenset_write, .raw_writefn = raw_write },
2166     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2168       .access = PL1_RW, .accessfn = access_tpm,
2169       .fgt = FGT_PMINTEN,
2170       .type = ARM_CP_IO,
2171       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2172       .writefn = pmintenset_write, .raw_writefn = raw_write,
2173       .resetvalue = 0x0 },
2174     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2175       .access = PL1_RW, .accessfn = access_tpm,
2176       .fgt = FGT_PMINTEN,
2177       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2178       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2179       .writefn = pmintenclr_write, },
2180     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2181       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2182       .access = PL1_RW, .accessfn = access_tpm,
2183       .fgt = FGT_PMINTEN,
2184       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2185       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2186       .writefn = pmintenclr_write },
2187     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2188       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2189       .access = PL1_R,
2190       .accessfn = access_tid4,
2191       .fgt = FGT_CCSIDR_EL1,
2192       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2193     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2194       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2195       .access = PL1_RW,
2196       .accessfn = access_tid4,
2197       .fgt = FGT_CSSELR_EL1,
2198       .writefn = csselr_write, .resetvalue = 0,
2199       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2200                              offsetof(CPUARMState, cp15.csselr_ns) } },
2201     /*
2202      * Auxiliary ID register: this actually has an IMPDEF value but for now
2203      * just RAZ for all cores:
2204      */
2205     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2206       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2207       .access = PL1_R, .type = ARM_CP_CONST,
2208       .accessfn = access_aa64_tid1,
2209       .fgt = FGT_AIDR_EL1,
2210       .resetvalue = 0 },
2211     /*
2212      * Auxiliary fault status registers: these also are IMPDEF, and we
2213      * choose to RAZ/WI for all cores.
2214      */
2215     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2216       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2217       .access = PL1_RW, .accessfn = access_tvm_trvm,
2218       .fgt = FGT_AFSR0_EL1,
2219       .type = ARM_CP_CONST, .resetvalue = 0 },
2220     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2222       .access = PL1_RW, .accessfn = access_tvm_trvm,
2223       .fgt = FGT_AFSR1_EL1,
2224       .type = ARM_CP_CONST, .resetvalue = 0 },
2225     /*
2226      * MAIR can just read-as-written because we don't implement caches
2227      * and so don't need to care about memory attributes.
2228      */
2229     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2230       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2231       .access = PL1_RW, .accessfn = access_tvm_trvm,
2232       .fgt = FGT_MAIR_EL1,
2233       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2234       .resetvalue = 0 },
2235     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2236       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2237       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2238       .resetvalue = 0 },
2239     /*
2240      * For non-long-descriptor page tables these are PRRR and NMRR;
2241      * regardless they still act as reads-as-written for QEMU.
2242      */
2243      /*
2244       * MAIR0/1 are defined separately from their 64-bit counterpart which
2245       * allows them to assign the correct fieldoffset based on the endianness
2246       * handled in the field definitions.
2247       */
2248     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2249       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2250       .access = PL1_RW, .accessfn = access_tvm_trvm,
2251       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2252                              offsetof(CPUARMState, cp15.mair0_ns) },
2253       .resetfn = arm_cp_reset_ignore },
2254     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2255       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2256       .access = PL1_RW, .accessfn = access_tvm_trvm,
2257       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2258                              offsetof(CPUARMState, cp15.mair1_ns) },
2259       .resetfn = arm_cp_reset_ignore },
2260     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2261       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2262       .fgt = FGT_ISR_EL1,
2263       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2264     /* 32 bit ITLB invalidates */
2265     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2266       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2267       .writefn = tlbiall_write },
2268     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2269       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2270       .writefn = tlbimva_write },
2271     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2272       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273       .writefn = tlbiasid_write },
2274     /* 32 bit DTLB invalidates */
2275     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2276       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2277       .writefn = tlbiall_write },
2278     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2279       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2280       .writefn = tlbimva_write },
2281     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2282       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283       .writefn = tlbiasid_write },
2284     /* 32 bit TLB invalidates */
2285     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2286       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2287       .writefn = tlbiall_write },
2288     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2289       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2290       .writefn = tlbimva_write },
2291     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2292       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293       .writefn = tlbiasid_write },
2294     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2295       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296       .writefn = tlbimvaa_write },
2297 };
2298 
2299 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2300     /* 32 bit TLB invalidates, Inner Shareable */
2301     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2302       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2303       .writefn = tlbiall_is_write },
2304     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2305       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2306       .writefn = tlbimva_is_write },
2307     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2308       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2309       .writefn = tlbiasid_is_write },
2310     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2311       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2312       .writefn = tlbimvaa_is_write },
2313 };
2314 
2315 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2316     /* PMOVSSET is not implemented in v7 before v7ve */
2317     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2318       .access = PL0_RW, .accessfn = pmreg_access,
2319       .fgt = FGT_PMOVS,
2320       .type = ARM_CP_ALIAS | ARM_CP_IO,
2321       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2322       .writefn = pmovsset_write,
2323       .raw_writefn = raw_write },
2324     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2325       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2326       .access = PL0_RW, .accessfn = pmreg_access,
2327       .fgt = FGT_PMOVS,
2328       .type = ARM_CP_ALIAS | ARM_CP_IO,
2329       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2330       .writefn = pmovsset_write,
2331       .raw_writefn = raw_write },
2332 };
2333 
2334 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2335                         uint64_t value)
2336 {
2337     value &= 1;
2338     env->teecr = value;
2339 }
2340 
2341 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2342                                    bool isread)
2343 {
2344     /*
2345      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2346      * at all, so we don't need to check whether we're v8A.
2347      */
2348     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2349         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2350         return CP_ACCESS_TRAP_EL2;
2351     }
2352     return CP_ACCESS_OK;
2353 }
2354 
2355 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2356                                     bool isread)
2357 {
2358     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2359         return CP_ACCESS_TRAP;
2360     }
2361     return teecr_access(env, ri, isread);
2362 }
2363 
2364 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2365     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2366       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2367       .resetvalue = 0,
2368       .writefn = teecr_write, .accessfn = teecr_access },
2369     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2370       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2371       .accessfn = teehbr_access, .resetvalue = 0 },
2372 };
2373 
2374 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2375     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2376       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2377       .access = PL0_RW,
2378       .fgt = FGT_TPIDR_EL0,
2379       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2380     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2381       .access = PL0_RW,
2382       .fgt = FGT_TPIDR_EL0,
2383       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2384                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2385       .resetfn = arm_cp_reset_ignore },
2386     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2387       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2388       .access = PL0_R | PL1_W,
2389       .fgt = FGT_TPIDRRO_EL0,
2390       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2391       .resetvalue = 0},
2392     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2393       .access = PL0_R | PL1_W,
2394       .fgt = FGT_TPIDRRO_EL0,
2395       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2396                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2397       .resetfn = arm_cp_reset_ignore },
2398     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2399       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2400       .access = PL1_RW,
2401       .fgt = FGT_TPIDR_EL1,
2402       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2403     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2404       .access = PL1_RW,
2405       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2406                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2407       .resetvalue = 0 },
2408 };
2409 
2410 #ifndef CONFIG_USER_ONLY
2411 
2412 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2413                                        bool isread)
2414 {
2415     /*
2416      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2417      * Writable only at the highest implemented exception level.
2418      */
2419     int el = arm_current_el(env);
2420     uint64_t hcr;
2421     uint32_t cntkctl;
2422 
2423     switch (el) {
2424     case 0:
2425         hcr = arm_hcr_el2_eff(env);
2426         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2427             cntkctl = env->cp15.cnthctl_el2;
2428         } else {
2429             cntkctl = env->cp15.c14_cntkctl;
2430         }
2431         if (!extract32(cntkctl, 0, 2)) {
2432             return CP_ACCESS_TRAP;
2433         }
2434         break;
2435     case 1:
2436         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2437             arm_is_secure_below_el3(env)) {
2438             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2439             return CP_ACCESS_TRAP_UNCATEGORIZED;
2440         }
2441         break;
2442     case 2:
2443     case 3:
2444         break;
2445     }
2446 
2447     if (!isread && el < arm_highest_el(env)) {
2448         return CP_ACCESS_TRAP_UNCATEGORIZED;
2449     }
2450 
2451     return CP_ACCESS_OK;
2452 }
2453 
2454 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2455                                         bool isread)
2456 {
2457     unsigned int cur_el = arm_current_el(env);
2458     bool has_el2 = arm_is_el2_enabled(env);
2459     uint64_t hcr = arm_hcr_el2_eff(env);
2460 
2461     switch (cur_el) {
2462     case 0:
2463         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2464         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2465             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2466                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2467         }
2468 
2469         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2470         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2471             return CP_ACCESS_TRAP;
2472         }
2473 
2474         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2475         if (hcr & HCR_E2H) {
2476             if (timeridx == GTIMER_PHYS &&
2477                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2478                 return CP_ACCESS_TRAP_EL2;
2479             }
2480         } else {
2481             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2482             if (has_el2 && timeridx == GTIMER_PHYS &&
2483                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2484                 return CP_ACCESS_TRAP_EL2;
2485             }
2486         }
2487         break;
2488 
2489     case 1:
2490         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2491         if (has_el2 && timeridx == GTIMER_PHYS &&
2492             (hcr & HCR_E2H
2493              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2494              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2495             return CP_ACCESS_TRAP_EL2;
2496         }
2497         break;
2498     }
2499     return CP_ACCESS_OK;
2500 }
2501 
2502 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2503                                       bool isread)
2504 {
2505     unsigned int cur_el = arm_current_el(env);
2506     bool has_el2 = arm_is_el2_enabled(env);
2507     uint64_t hcr = arm_hcr_el2_eff(env);
2508 
2509     switch (cur_el) {
2510     case 0:
2511         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2512             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2513             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2514                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2515         }
2516 
2517         /*
2518          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2519          * EL0 if EL0[PV]TEN is zero.
2520          */
2521         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2522             return CP_ACCESS_TRAP;
2523         }
2524         /* fall through */
2525 
2526     case 1:
2527         if (has_el2 && timeridx == GTIMER_PHYS) {
2528             if (hcr & HCR_E2H) {
2529                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2530                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2531                     return CP_ACCESS_TRAP_EL2;
2532                 }
2533             } else {
2534                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2535                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2536                     return CP_ACCESS_TRAP_EL2;
2537                 }
2538             }
2539         }
2540         break;
2541     }
2542     return CP_ACCESS_OK;
2543 }
2544 
2545 static CPAccessResult gt_pct_access(CPUARMState *env,
2546                                     const ARMCPRegInfo *ri,
2547                                     bool isread)
2548 {
2549     return gt_counter_access(env, GTIMER_PHYS, isread);
2550 }
2551 
2552 static CPAccessResult gt_vct_access(CPUARMState *env,
2553                                     const ARMCPRegInfo *ri,
2554                                     bool isread)
2555 {
2556     return gt_counter_access(env, GTIMER_VIRT, isread);
2557 }
2558 
2559 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2560                                        bool isread)
2561 {
2562     return gt_timer_access(env, GTIMER_PHYS, isread);
2563 }
2564 
2565 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2566                                        bool isread)
2567 {
2568     return gt_timer_access(env, GTIMER_VIRT, isread);
2569 }
2570 
2571 static CPAccessResult gt_stimer_access(CPUARMState *env,
2572                                        const ARMCPRegInfo *ri,
2573                                        bool isread)
2574 {
2575     /*
2576      * The AArch64 register view of the secure physical timer is
2577      * always accessible from EL3, and configurably accessible from
2578      * Secure EL1.
2579      */
2580     switch (arm_current_el(env)) {
2581     case 1:
2582         if (!arm_is_secure(env)) {
2583             return CP_ACCESS_TRAP;
2584         }
2585         if (!(env->cp15.scr_el3 & SCR_ST)) {
2586             return CP_ACCESS_TRAP_EL3;
2587         }
2588         return CP_ACCESS_OK;
2589     case 0:
2590     case 2:
2591         return CP_ACCESS_TRAP;
2592     case 3:
2593         return CP_ACCESS_OK;
2594     default:
2595         g_assert_not_reached();
2596     }
2597 }
2598 
2599 static uint64_t gt_get_countervalue(CPUARMState *env)
2600 {
2601     ARMCPU *cpu = env_archcpu(env);
2602 
2603     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2604 }
2605 
2606 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2607 {
2608     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2609 
2610     if (gt->ctl & 1) {
2611         /*
2612          * Timer enabled: calculate and set current ISTATUS, irq, and
2613          * reset timer to when ISTATUS next has to change
2614          */
2615         uint64_t offset = timeridx == GTIMER_VIRT ?
2616                                       cpu->env.cp15.cntvoff_el2 : 0;
2617         uint64_t count = gt_get_countervalue(&cpu->env);
2618         /* Note that this must be unsigned 64 bit arithmetic: */
2619         int istatus = count - offset >= gt->cval;
2620         uint64_t nexttick;
2621         int irqstate;
2622 
2623         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2624 
2625         irqstate = (istatus && !(gt->ctl & 2));
2626         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2627 
2628         if (istatus) {
2629             /* Next transition is when count rolls back over to zero */
2630             nexttick = UINT64_MAX;
2631         } else {
2632             /* Next transition is when we hit cval */
2633             nexttick = gt->cval + offset;
2634         }
2635         /*
2636          * Note that the desired next expiry time might be beyond the
2637          * signed-64-bit range of a QEMUTimer -- in this case we just
2638          * set the timer for as far in the future as possible. When the
2639          * timer expires we will reset the timer for any remaining period.
2640          */
2641         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2642             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2643         } else {
2644             timer_mod(cpu->gt_timer[timeridx], nexttick);
2645         }
2646         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2647     } else {
2648         /* Timer disabled: ISTATUS and timer output always clear */
2649         gt->ctl &= ~4;
2650         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2651         timer_del(cpu->gt_timer[timeridx]);
2652         trace_arm_gt_recalc_disabled(timeridx);
2653     }
2654 }
2655 
2656 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2657                            int timeridx)
2658 {
2659     ARMCPU *cpu = env_archcpu(env);
2660 
2661     timer_del(cpu->gt_timer[timeridx]);
2662 }
2663 
2664 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2665 {
2666     return gt_get_countervalue(env);
2667 }
2668 
2669 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2670 {
2671     uint64_t hcr;
2672 
2673     switch (arm_current_el(env)) {
2674     case 2:
2675         hcr = arm_hcr_el2_eff(env);
2676         if (hcr & HCR_E2H) {
2677             return 0;
2678         }
2679         break;
2680     case 0:
2681         hcr = arm_hcr_el2_eff(env);
2682         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2683             return 0;
2684         }
2685         break;
2686     }
2687 
2688     return env->cp15.cntvoff_el2;
2689 }
2690 
2691 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2692 {
2693     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2694 }
2695 
2696 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2697                           int timeridx,
2698                           uint64_t value)
2699 {
2700     trace_arm_gt_cval_write(timeridx, value);
2701     env->cp15.c14_timer[timeridx].cval = value;
2702     gt_recalc_timer(env_archcpu(env), timeridx);
2703 }
2704 
2705 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2706                              int timeridx)
2707 {
2708     uint64_t offset = 0;
2709 
2710     switch (timeridx) {
2711     case GTIMER_VIRT:
2712     case GTIMER_HYPVIRT:
2713         offset = gt_virt_cnt_offset(env);
2714         break;
2715     }
2716 
2717     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2718                       (gt_get_countervalue(env) - offset));
2719 }
2720 
2721 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2722                           int timeridx,
2723                           uint64_t value)
2724 {
2725     uint64_t offset = 0;
2726 
2727     switch (timeridx) {
2728     case GTIMER_VIRT:
2729     case GTIMER_HYPVIRT:
2730         offset = gt_virt_cnt_offset(env);
2731         break;
2732     }
2733 
2734     trace_arm_gt_tval_write(timeridx, value);
2735     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2736                                          sextract64(value, 0, 32);
2737     gt_recalc_timer(env_archcpu(env), timeridx);
2738 }
2739 
2740 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2741                          int timeridx,
2742                          uint64_t value)
2743 {
2744     ARMCPU *cpu = env_archcpu(env);
2745     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2746 
2747     trace_arm_gt_ctl_write(timeridx, value);
2748     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2749     if ((oldval ^ value) & 1) {
2750         /* Enable toggled */
2751         gt_recalc_timer(cpu, timeridx);
2752     } else if ((oldval ^ value) & 2) {
2753         /*
2754          * IMASK toggled: don't need to recalculate,
2755          * just set the interrupt line based on ISTATUS
2756          */
2757         int irqstate = (oldval & 4) && !(value & 2);
2758 
2759         trace_arm_gt_imask_toggle(timeridx, irqstate);
2760         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2761     }
2762 }
2763 
2764 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2765 {
2766     gt_timer_reset(env, ri, GTIMER_PHYS);
2767 }
2768 
2769 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770                                uint64_t value)
2771 {
2772     gt_cval_write(env, ri, GTIMER_PHYS, value);
2773 }
2774 
2775 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2776 {
2777     return gt_tval_read(env, ri, GTIMER_PHYS);
2778 }
2779 
2780 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2781                                uint64_t value)
2782 {
2783     gt_tval_write(env, ri, GTIMER_PHYS, value);
2784 }
2785 
2786 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787                               uint64_t value)
2788 {
2789     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2790 }
2791 
2792 static int gt_phys_redir_timeridx(CPUARMState *env)
2793 {
2794     switch (arm_mmu_idx(env)) {
2795     case ARMMMUIdx_E20_0:
2796     case ARMMMUIdx_E20_2:
2797     case ARMMMUIdx_E20_2_PAN:
2798         return GTIMER_HYP;
2799     default:
2800         return GTIMER_PHYS;
2801     }
2802 }
2803 
2804 static int gt_virt_redir_timeridx(CPUARMState *env)
2805 {
2806     switch (arm_mmu_idx(env)) {
2807     case ARMMMUIdx_E20_0:
2808     case ARMMMUIdx_E20_2:
2809     case ARMMMUIdx_E20_2_PAN:
2810         return GTIMER_HYPVIRT;
2811     default:
2812         return GTIMER_VIRT;
2813     }
2814 }
2815 
2816 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2817                                         const ARMCPRegInfo *ri)
2818 {
2819     int timeridx = gt_phys_redir_timeridx(env);
2820     return env->cp15.c14_timer[timeridx].cval;
2821 }
2822 
2823 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2824                                      uint64_t value)
2825 {
2826     int timeridx = gt_phys_redir_timeridx(env);
2827     gt_cval_write(env, ri, timeridx, value);
2828 }
2829 
2830 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2831                                         const ARMCPRegInfo *ri)
2832 {
2833     int timeridx = gt_phys_redir_timeridx(env);
2834     return gt_tval_read(env, ri, timeridx);
2835 }
2836 
2837 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                                      uint64_t value)
2839 {
2840     int timeridx = gt_phys_redir_timeridx(env);
2841     gt_tval_write(env, ri, timeridx, value);
2842 }
2843 
2844 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2845                                        const ARMCPRegInfo *ri)
2846 {
2847     int timeridx = gt_phys_redir_timeridx(env);
2848     return env->cp15.c14_timer[timeridx].ctl;
2849 }
2850 
2851 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852                                     uint64_t value)
2853 {
2854     int timeridx = gt_phys_redir_timeridx(env);
2855     gt_ctl_write(env, ri, timeridx, value);
2856 }
2857 
2858 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2859 {
2860     gt_timer_reset(env, ri, GTIMER_VIRT);
2861 }
2862 
2863 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2864                                uint64_t value)
2865 {
2866     gt_cval_write(env, ri, GTIMER_VIRT, value);
2867 }
2868 
2869 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2870 {
2871     return gt_tval_read(env, ri, GTIMER_VIRT);
2872 }
2873 
2874 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2875                                uint64_t value)
2876 {
2877     gt_tval_write(env, ri, GTIMER_VIRT, value);
2878 }
2879 
2880 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2881                               uint64_t value)
2882 {
2883     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2884 }
2885 
2886 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2887                               uint64_t value)
2888 {
2889     ARMCPU *cpu = env_archcpu(env);
2890 
2891     trace_arm_gt_cntvoff_write(value);
2892     raw_write(env, ri, value);
2893     gt_recalc_timer(cpu, GTIMER_VIRT);
2894 }
2895 
2896 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2897                                         const ARMCPRegInfo *ri)
2898 {
2899     int timeridx = gt_virt_redir_timeridx(env);
2900     return env->cp15.c14_timer[timeridx].cval;
2901 }
2902 
2903 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2904                                      uint64_t value)
2905 {
2906     int timeridx = gt_virt_redir_timeridx(env);
2907     gt_cval_write(env, ri, timeridx, value);
2908 }
2909 
2910 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2911                                         const ARMCPRegInfo *ri)
2912 {
2913     int timeridx = gt_virt_redir_timeridx(env);
2914     return gt_tval_read(env, ri, timeridx);
2915 }
2916 
2917 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                      uint64_t value)
2919 {
2920     int timeridx = gt_virt_redir_timeridx(env);
2921     gt_tval_write(env, ri, timeridx, value);
2922 }
2923 
2924 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2925                                        const ARMCPRegInfo *ri)
2926 {
2927     int timeridx = gt_virt_redir_timeridx(env);
2928     return env->cp15.c14_timer[timeridx].ctl;
2929 }
2930 
2931 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2932                                     uint64_t value)
2933 {
2934     int timeridx = gt_virt_redir_timeridx(env);
2935     gt_ctl_write(env, ri, timeridx, value);
2936 }
2937 
2938 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2939 {
2940     gt_timer_reset(env, ri, GTIMER_HYP);
2941 }
2942 
2943 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2944                               uint64_t value)
2945 {
2946     gt_cval_write(env, ri, GTIMER_HYP, value);
2947 }
2948 
2949 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2950 {
2951     return gt_tval_read(env, ri, GTIMER_HYP);
2952 }
2953 
2954 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2955                               uint64_t value)
2956 {
2957     gt_tval_write(env, ri, GTIMER_HYP, value);
2958 }
2959 
2960 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2961                               uint64_t value)
2962 {
2963     gt_ctl_write(env, ri, GTIMER_HYP, value);
2964 }
2965 
2966 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2967 {
2968     gt_timer_reset(env, ri, GTIMER_SEC);
2969 }
2970 
2971 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972                               uint64_t value)
2973 {
2974     gt_cval_write(env, ri, GTIMER_SEC, value);
2975 }
2976 
2977 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2978 {
2979     return gt_tval_read(env, ri, GTIMER_SEC);
2980 }
2981 
2982 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                               uint64_t value)
2984 {
2985     gt_tval_write(env, ri, GTIMER_SEC, value);
2986 }
2987 
2988 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2989                               uint64_t value)
2990 {
2991     gt_ctl_write(env, ri, GTIMER_SEC, value);
2992 }
2993 
2994 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2995 {
2996     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2997 }
2998 
2999 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3000                              uint64_t value)
3001 {
3002     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3003 }
3004 
3005 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3006 {
3007     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3008 }
3009 
3010 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011                              uint64_t value)
3012 {
3013     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3014 }
3015 
3016 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3017                             uint64_t value)
3018 {
3019     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3020 }
3021 
3022 void arm_gt_ptimer_cb(void *opaque)
3023 {
3024     ARMCPU *cpu = opaque;
3025 
3026     gt_recalc_timer(cpu, GTIMER_PHYS);
3027 }
3028 
3029 void arm_gt_vtimer_cb(void *opaque)
3030 {
3031     ARMCPU *cpu = opaque;
3032 
3033     gt_recalc_timer(cpu, GTIMER_VIRT);
3034 }
3035 
3036 void arm_gt_htimer_cb(void *opaque)
3037 {
3038     ARMCPU *cpu = opaque;
3039 
3040     gt_recalc_timer(cpu, GTIMER_HYP);
3041 }
3042 
3043 void arm_gt_stimer_cb(void *opaque)
3044 {
3045     ARMCPU *cpu = opaque;
3046 
3047     gt_recalc_timer(cpu, GTIMER_SEC);
3048 }
3049 
3050 void arm_gt_hvtimer_cb(void *opaque)
3051 {
3052     ARMCPU *cpu = opaque;
3053 
3054     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3055 }
3056 
3057 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3058 {
3059     ARMCPU *cpu = env_archcpu(env);
3060 
3061     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3062 }
3063 
3064 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3065     /*
3066      * Note that CNTFRQ is purely reads-as-written for the benefit
3067      * of software; writing it doesn't actually change the timer frequency.
3068      * Our reset value matches the fixed frequency we implement the timer at.
3069      */
3070     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3071       .type = ARM_CP_ALIAS,
3072       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3073       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3074     },
3075     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3076       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3077       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3079       .resetfn = arm_gt_cntfrq_reset,
3080     },
3081     /* overall control: mostly access permissions */
3082     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3083       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3084       .access = PL1_RW,
3085       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3086       .resetvalue = 0,
3087     },
3088     /* per-timer control */
3089     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3090       .secure = ARM_CP_SECSTATE_NS,
3091       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3092       .accessfn = gt_ptimer_access,
3093       .fieldoffset = offsetoflow32(CPUARMState,
3094                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3095       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3096       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3097     },
3098     { .name = "CNTP_CTL_S",
3099       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3100       .secure = ARM_CP_SECSTATE_S,
3101       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3102       .accessfn = gt_ptimer_access,
3103       .fieldoffset = offsetoflow32(CPUARMState,
3104                                    cp15.c14_timer[GTIMER_SEC].ctl),
3105       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3106     },
3107     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3108       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3109       .type = ARM_CP_IO, .access = PL0_RW,
3110       .accessfn = gt_ptimer_access,
3111       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3112       .resetvalue = 0,
3113       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3114       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3115     },
3116     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3117       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3118       .accessfn = gt_vtimer_access,
3119       .fieldoffset = offsetoflow32(CPUARMState,
3120                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3121       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3122       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3123     },
3124     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3126       .type = ARM_CP_IO, .access = PL0_RW,
3127       .accessfn = gt_vtimer_access,
3128       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3129       .resetvalue = 0,
3130       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3131       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3132     },
3133     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3134     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3135       .secure = ARM_CP_SECSTATE_NS,
3136       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3137       .accessfn = gt_ptimer_access,
3138       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3139     },
3140     { .name = "CNTP_TVAL_S",
3141       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3142       .secure = ARM_CP_SECSTATE_S,
3143       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3144       .accessfn = gt_ptimer_access,
3145       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3146     },
3147     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3148       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3149       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3150       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3151       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3152     },
3153     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3154       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155       .accessfn = gt_vtimer_access,
3156       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3157     },
3158     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3159       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3160       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3161       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3162       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3163     },
3164     /* The counter itself */
3165     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3166       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3167       .accessfn = gt_pct_access,
3168       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3169     },
3170     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3171       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3172       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3173       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3174     },
3175     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3176       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3177       .accessfn = gt_vct_access,
3178       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3179     },
3180     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3181       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3182       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3183       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3184     },
3185     /* Comparison value, indicating when the timer goes off */
3186     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3187       .secure = ARM_CP_SECSTATE_NS,
3188       .access = PL0_RW,
3189       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3190       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3191       .accessfn = gt_ptimer_access,
3192       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3193       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3194     },
3195     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3196       .secure = ARM_CP_SECSTATE_S,
3197       .access = PL0_RW,
3198       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3199       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3200       .accessfn = gt_ptimer_access,
3201       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3202     },
3203     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3204       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3205       .access = PL0_RW,
3206       .type = ARM_CP_IO,
3207       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3208       .resetvalue = 0, .accessfn = gt_ptimer_access,
3209       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3210       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3211     },
3212     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3213       .access = PL0_RW,
3214       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3215       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3216       .accessfn = gt_vtimer_access,
3217       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3218       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3219     },
3220     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3221       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3222       .access = PL0_RW,
3223       .type = ARM_CP_IO,
3224       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3225       .resetvalue = 0, .accessfn = gt_vtimer_access,
3226       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3227       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3228     },
3229     /*
3230      * Secure timer -- this is actually restricted to only EL3
3231      * and configurably Secure-EL1 via the accessfn.
3232      */
3233     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3234       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3235       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3236       .accessfn = gt_stimer_access,
3237       .readfn = gt_sec_tval_read,
3238       .writefn = gt_sec_tval_write,
3239       .resetfn = gt_sec_timer_reset,
3240     },
3241     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3242       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3243       .type = ARM_CP_IO, .access = PL1_RW,
3244       .accessfn = gt_stimer_access,
3245       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3246       .resetvalue = 0,
3247       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3248     },
3249     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3250       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3251       .type = ARM_CP_IO, .access = PL1_RW,
3252       .accessfn = gt_stimer_access,
3253       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3254       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3255     },
3256 };
3257 
3258 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3259                                  bool isread)
3260 {
3261     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3262         return CP_ACCESS_TRAP;
3263     }
3264     return CP_ACCESS_OK;
3265 }
3266 
3267 #else
3268 
3269 /*
3270  * In user-mode most of the generic timer registers are inaccessible
3271  * however modern kernels (4.12+) allow access to cntvct_el0
3272  */
3273 
3274 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3275 {
3276     ARMCPU *cpu = env_archcpu(env);
3277 
3278     /*
3279      * Currently we have no support for QEMUTimer in linux-user so we
3280      * can't call gt_get_countervalue(env), instead we directly
3281      * call the lower level functions.
3282      */
3283     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3284 }
3285 
3286 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3287     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3288       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3289       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3290       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3291       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3292     },
3293     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3294       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3295       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3296       .readfn = gt_virt_cnt_read,
3297     },
3298 };
3299 
3300 #endif
3301 
3302 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3303 {
3304     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3305         raw_write(env, ri, value);
3306     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3307         raw_write(env, ri, value & 0xfffff6ff);
3308     } else {
3309         raw_write(env, ri, value & 0xfffff1ff);
3310     }
3311 }
3312 
3313 #ifndef CONFIG_USER_ONLY
3314 /* get_phys_addr() isn't present for user-mode-only targets */
3315 
3316 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3317                                  bool isread)
3318 {
3319     if (ri->opc2 & 4) {
3320         /*
3321          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3322          * Secure EL1 (which can only happen if EL3 is AArch64).
3323          * They are simply UNDEF if executed from NS EL1.
3324          * They function normally from EL2 or EL3.
3325          */
3326         if (arm_current_el(env) == 1) {
3327             if (arm_is_secure_below_el3(env)) {
3328                 if (env->cp15.scr_el3 & SCR_EEL2) {
3329                     return CP_ACCESS_TRAP_EL2;
3330                 }
3331                 return CP_ACCESS_TRAP_EL3;
3332             }
3333             return CP_ACCESS_TRAP_UNCATEGORIZED;
3334         }
3335     }
3336     return CP_ACCESS_OK;
3337 }
3338 
3339 #ifdef CONFIG_TCG
3340 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3341                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3342                              bool is_secure)
3343 {
3344     bool ret;
3345     uint64_t par64;
3346     bool format64 = false;
3347     ARMMMUFaultInfo fi = {};
3348     GetPhysAddrResult res = {};
3349 
3350     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3351                                     is_secure, &res, &fi);
3352 
3353     /*
3354      * ATS operations only do S1 or S1+S2 translations, so we never
3355      * have to deal with the ARMCacheAttrs format for S2 only.
3356      */
3357     assert(!res.cacheattrs.is_s2_format);
3358 
3359     if (ret) {
3360         /*
3361          * Some kinds of translation fault must cause exceptions rather
3362          * than being reported in the PAR.
3363          */
3364         int current_el = arm_current_el(env);
3365         int target_el;
3366         uint32_t syn, fsr, fsc;
3367         bool take_exc = false;
3368 
3369         if (fi.s1ptw && current_el == 1
3370             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3371             /*
3372              * Synchronous stage 2 fault on an access made as part of the
3373              * translation table walk for AT S1E0* or AT S1E1* insn
3374              * executed from NS EL1. If this is a synchronous external abort
3375              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3376              * to EL3. Otherwise the fault is taken as an exception to EL2,
3377              * and HPFAR_EL2 holds the faulting IPA.
3378              */
3379             if (fi.type == ARMFault_SyncExternalOnWalk &&
3380                 (env->cp15.scr_el3 & SCR_EA)) {
3381                 target_el = 3;
3382             } else {
3383                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3384                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3385                     env->cp15.hpfar_el2 |= HPFAR_NS;
3386                 }
3387                 target_el = 2;
3388             }
3389             take_exc = true;
3390         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3391             /*
3392              * Synchronous external aborts during a translation table walk
3393              * are taken as Data Abort exceptions.
3394              */
3395             if (fi.stage2) {
3396                 if (current_el == 3) {
3397                     target_el = 3;
3398                 } else {
3399                     target_el = 2;
3400                 }
3401             } else {
3402                 target_el = exception_target_el(env);
3403             }
3404             take_exc = true;
3405         }
3406 
3407         if (take_exc) {
3408             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3409             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3410                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3411                 fsr = arm_fi_to_lfsc(&fi);
3412                 fsc = extract32(fsr, 0, 6);
3413             } else {
3414                 fsr = arm_fi_to_sfsc(&fi);
3415                 fsc = 0x3f;
3416             }
3417             /*
3418              * Report exception with ESR indicating a fault due to a
3419              * translation table walk for a cache maintenance instruction.
3420              */
3421             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3422                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3423             env->exception.vaddress = value;
3424             env->exception.fsr = fsr;
3425             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3426         }
3427     }
3428 
3429     if (is_a64(env)) {
3430         format64 = true;
3431     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3432         /*
3433          * ATS1Cxx:
3434          * * TTBCR.EAE determines whether the result is returned using the
3435          *   32-bit or the 64-bit PAR format
3436          * * Instructions executed in Hyp mode always use the 64bit format
3437          *
3438          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3439          * * The Non-secure TTBCR.EAE bit is set to 1
3440          * * The implementation includes EL2, and the value of HCR.VM is 1
3441          *
3442          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3443          *
3444          * ATS1Hx always uses the 64bit format.
3445          */
3446         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3447 
3448         if (arm_feature(env, ARM_FEATURE_EL2)) {
3449             if (mmu_idx == ARMMMUIdx_E10_0 ||
3450                 mmu_idx == ARMMMUIdx_E10_1 ||
3451                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3452                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3453             } else {
3454                 format64 |= arm_current_el(env) == 2;
3455             }
3456         }
3457     }
3458 
3459     if (format64) {
3460         /* Create a 64-bit PAR */
3461         par64 = (1 << 11); /* LPAE bit always set */
3462         if (!ret) {
3463             par64 |= res.f.phys_addr & ~0xfffULL;
3464             if (!res.f.attrs.secure) {
3465                 par64 |= (1 << 9); /* NS */
3466             }
3467             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3468             par64 |= res.cacheattrs.shareability << 7; /* SH */
3469         } else {
3470             uint32_t fsr = arm_fi_to_lfsc(&fi);
3471 
3472             par64 |= 1; /* F */
3473             par64 |= (fsr & 0x3f) << 1; /* FS */
3474             if (fi.stage2) {
3475                 par64 |= (1 << 9); /* S */
3476             }
3477             if (fi.s1ptw) {
3478                 par64 |= (1 << 8); /* PTW */
3479             }
3480         }
3481     } else {
3482         /*
3483          * fsr is a DFSR/IFSR value for the short descriptor
3484          * translation table format (with WnR always clear).
3485          * Convert it to a 32-bit PAR.
3486          */
3487         if (!ret) {
3488             /* We do not set any attribute bits in the PAR */
3489             if (res.f.lg_page_size == 24
3490                 && arm_feature(env, ARM_FEATURE_V7)) {
3491                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3492             } else {
3493                 par64 = res.f.phys_addr & 0xfffff000;
3494             }
3495             if (!res.f.attrs.secure) {
3496                 par64 |= (1 << 9); /* NS */
3497             }
3498         } else {
3499             uint32_t fsr = arm_fi_to_sfsc(&fi);
3500 
3501             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3502                     ((fsr & 0xf) << 1) | 1;
3503         }
3504     }
3505     return par64;
3506 }
3507 #endif /* CONFIG_TCG */
3508 
3509 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3510 {
3511 #ifdef CONFIG_TCG
3512     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3513     uint64_t par64;
3514     ARMMMUIdx mmu_idx;
3515     int el = arm_current_el(env);
3516     bool secure = arm_is_secure_below_el3(env);
3517 
3518     switch (ri->opc2 & 6) {
3519     case 0:
3520         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3521         switch (el) {
3522         case 3:
3523             mmu_idx = ARMMMUIdx_E3;
3524             secure = true;
3525             break;
3526         case 2:
3527             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3528             /* fall through */
3529         case 1:
3530             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3531                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3532             } else {
3533                 mmu_idx = ARMMMUIdx_Stage1_E1;
3534             }
3535             break;
3536         default:
3537             g_assert_not_reached();
3538         }
3539         break;
3540     case 2:
3541         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3542         switch (el) {
3543         case 3:
3544             mmu_idx = ARMMMUIdx_E10_0;
3545             secure = true;
3546             break;
3547         case 2:
3548             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3549             mmu_idx = ARMMMUIdx_Stage1_E0;
3550             break;
3551         case 1:
3552             mmu_idx = ARMMMUIdx_Stage1_E0;
3553             break;
3554         default:
3555             g_assert_not_reached();
3556         }
3557         break;
3558     case 4:
3559         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3560         mmu_idx = ARMMMUIdx_E10_1;
3561         secure = false;
3562         break;
3563     case 6:
3564         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3565         mmu_idx = ARMMMUIdx_E10_0;
3566         secure = false;
3567         break;
3568     default:
3569         g_assert_not_reached();
3570     }
3571 
3572     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3573 
3574     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3575 #else
3576     /* Handled by hardware accelerator. */
3577     g_assert_not_reached();
3578 #endif /* CONFIG_TCG */
3579 }
3580 
3581 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3582                         uint64_t value)
3583 {
3584 #ifdef CONFIG_TCG
3585     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3586     uint64_t par64;
3587 
3588     /* There is no SecureEL2 for AArch32. */
3589     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3590 
3591     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3592 #else
3593     /* Handled by hardware accelerator. */
3594     g_assert_not_reached();
3595 #endif /* CONFIG_TCG */
3596 }
3597 
3598 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3599                                      bool isread)
3600 {
3601     if (arm_current_el(env) == 3 &&
3602         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3603         return CP_ACCESS_TRAP;
3604     }
3605     return CP_ACCESS_OK;
3606 }
3607 
3608 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3609                         uint64_t value)
3610 {
3611 #ifdef CONFIG_TCG
3612     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3613     ARMMMUIdx mmu_idx;
3614     int secure = arm_is_secure_below_el3(env);
3615     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3616     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3617 
3618     switch (ri->opc2 & 6) {
3619     case 0:
3620         switch (ri->opc1) {
3621         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3622             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3623                 mmu_idx = regime_e20 ?
3624                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3625             } else {
3626                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3627             }
3628             break;
3629         case 4: /* AT S1E2R, AT S1E2W */
3630             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3631             break;
3632         case 6: /* AT S1E3R, AT S1E3W */
3633             mmu_idx = ARMMMUIdx_E3;
3634             secure = true;
3635             break;
3636         default:
3637             g_assert_not_reached();
3638         }
3639         break;
3640     case 2: /* AT S1E0R, AT S1E0W */
3641         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3642         break;
3643     case 4: /* AT S12E1R, AT S12E1W */
3644         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3645         break;
3646     case 6: /* AT S12E0R, AT S12E0W */
3647         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3648         break;
3649     default:
3650         g_assert_not_reached();
3651     }
3652 
3653     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3654                                        mmu_idx, secure);
3655 #else
3656     /* Handled by hardware accelerator. */
3657     g_assert_not_reached();
3658 #endif /* CONFIG_TCG */
3659 }
3660 #endif
3661 
3662 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3663     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3664       .access = PL1_RW, .resetvalue = 0,
3665       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3666                              offsetoflow32(CPUARMState, cp15.par_ns) },
3667       .writefn = par_write },
3668 #ifndef CONFIG_USER_ONLY
3669     /* This underdecoding is safe because the reginfo is NO_RAW. */
3670     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3671       .access = PL1_W, .accessfn = ats_access,
3672       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3673 #endif
3674 };
3675 
3676 /* Return basic MPU access permission bits.  */
3677 static uint32_t simple_mpu_ap_bits(uint32_t val)
3678 {
3679     uint32_t ret;
3680     uint32_t mask;
3681     int i;
3682     ret = 0;
3683     mask = 3;
3684     for (i = 0; i < 16; i += 2) {
3685         ret |= (val >> i) & mask;
3686         mask <<= 2;
3687     }
3688     return ret;
3689 }
3690 
3691 /* Pad basic MPU access permission bits to extended format.  */
3692 static uint32_t extended_mpu_ap_bits(uint32_t val)
3693 {
3694     uint32_t ret;
3695     uint32_t mask;
3696     int i;
3697     ret = 0;
3698     mask = 3;
3699     for (i = 0; i < 16; i += 2) {
3700         ret |= (val & mask) << i;
3701         mask <<= 2;
3702     }
3703     return ret;
3704 }
3705 
3706 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3707                                  uint64_t value)
3708 {
3709     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3710 }
3711 
3712 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3713 {
3714     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3715 }
3716 
3717 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3718                                  uint64_t value)
3719 {
3720     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3721 }
3722 
3723 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3724 {
3725     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3726 }
3727 
3728 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3731 
3732     if (!u32p) {
3733         return 0;
3734     }
3735 
3736     u32p += env->pmsav7.rnr[M_REG_NS];
3737     return *u32p;
3738 }
3739 
3740 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3741                          uint64_t value)
3742 {
3743     ARMCPU *cpu = env_archcpu(env);
3744     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3745 
3746     if (!u32p) {
3747         return;
3748     }
3749 
3750     u32p += env->pmsav7.rnr[M_REG_NS];
3751     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3752     *u32p = value;
3753 }
3754 
3755 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3756                               uint64_t value)
3757 {
3758     ARMCPU *cpu = env_archcpu(env);
3759     uint32_t nrgs = cpu->pmsav7_dregion;
3760 
3761     if (value >= nrgs) {
3762         qemu_log_mask(LOG_GUEST_ERROR,
3763                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3764                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3765         return;
3766     }
3767 
3768     raw_write(env, ri, value);
3769 }
3770 
3771 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3772                           uint64_t value)
3773 {
3774     ARMCPU *cpu = env_archcpu(env);
3775 
3776     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3777     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3778 }
3779 
3780 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3781 {
3782     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3783 }
3784 
3785 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                           uint64_t value)
3787 {
3788     ARMCPU *cpu = env_archcpu(env);
3789 
3790     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3791     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3792 }
3793 
3794 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3795 {
3796     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3797 }
3798 
3799 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3800                            uint64_t value)
3801 {
3802     ARMCPU *cpu = env_archcpu(env);
3803 
3804     /*
3805      * Ignore writes that would select not implemented region.
3806      * This is architecturally UNPREDICTABLE.
3807      */
3808     if (value >= cpu->pmsav7_dregion) {
3809         return;
3810     }
3811 
3812     env->pmsav7.rnr[M_REG_NS] = value;
3813 }
3814 
3815 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3816                           uint64_t value)
3817 {
3818     ARMCPU *cpu = env_archcpu(env);
3819 
3820     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3821     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3822 }
3823 
3824 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3825 {
3826     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3827 }
3828 
3829 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3830                           uint64_t value)
3831 {
3832     ARMCPU *cpu = env_archcpu(env);
3833 
3834     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3835     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3836 }
3837 
3838 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3839 {
3840     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3841 }
3842 
3843 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3844                           uint64_t value)
3845 {
3846     uint32_t n;
3847     uint32_t bit;
3848     ARMCPU *cpu = env_archcpu(env);
3849 
3850     /* Ignore writes to unimplemented regions */
3851     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3852     value &= MAKE_64BIT_MASK(0, rmax);
3853 
3854     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3855 
3856     /* Register alias is only valid for first 32 indexes */
3857     for (n = 0; n < rmax; ++n) {
3858         bit = extract32(value, n, 1);
3859         env->pmsav8.hprlar[n] = deposit32(
3860                     env->pmsav8.hprlar[n], 0, 1, bit);
3861     }
3862 }
3863 
3864 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3865 {
3866     uint32_t n;
3867     uint32_t result = 0x0;
3868     ARMCPU *cpu = env_archcpu(env);
3869 
3870     /* Register alias is only valid for first 32 indexes */
3871     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3872         if (env->pmsav8.hprlar[n] & 0x1) {
3873             result |= (0x1 << n);
3874         }
3875     }
3876     return result;
3877 }
3878 
3879 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3880                            uint64_t value)
3881 {
3882     ARMCPU *cpu = env_archcpu(env);
3883 
3884     /*
3885      * Ignore writes that would select not implemented region.
3886      * This is architecturally UNPREDICTABLE.
3887      */
3888     if (value >= cpu->pmsav8r_hdregion) {
3889         return;
3890     }
3891 
3892     env->pmsav8.hprselr = value;
3893 }
3894 
3895 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3896                           uint64_t value)
3897 {
3898     ARMCPU *cpu = env_archcpu(env);
3899     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3900                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3901 
3902     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3903 
3904     if (ri->opc1 & 4) {
3905         if (index >= cpu->pmsav8r_hdregion) {
3906             return;
3907         }
3908         if (ri->opc2 & 0x1) {
3909             env->pmsav8.hprlar[index] = value;
3910         } else {
3911             env->pmsav8.hprbar[index] = value;
3912         }
3913     } else {
3914         if (index >= cpu->pmsav7_dregion) {
3915             return;
3916         }
3917         if (ri->opc2 & 0x1) {
3918             env->pmsav8.rlar[M_REG_NS][index] = value;
3919         } else {
3920             env->pmsav8.rbar[M_REG_NS][index] = value;
3921         }
3922     }
3923 }
3924 
3925 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3926 {
3927     ARMCPU *cpu = env_archcpu(env);
3928     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3929                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3930 
3931     if (ri->opc1 & 4) {
3932         if (index >= cpu->pmsav8r_hdregion) {
3933             return 0x0;
3934         }
3935         if (ri->opc2 & 0x1) {
3936             return env->pmsav8.hprlar[index];
3937         } else {
3938             return env->pmsav8.hprbar[index];
3939         }
3940     } else {
3941         if (index >= cpu->pmsav7_dregion) {
3942             return 0x0;
3943         }
3944         if (ri->opc2 & 0x1) {
3945             return env->pmsav8.rlar[M_REG_NS][index];
3946         } else {
3947             return env->pmsav8.rbar[M_REG_NS][index];
3948         }
3949     }
3950 }
3951 
3952 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3953     { .name = "PRBAR",
3954       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3955       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3956       .accessfn = access_tvm_trvm,
3957       .readfn = prbar_read, .writefn = prbar_write },
3958     { .name = "PRLAR",
3959       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3960       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3961       .accessfn = access_tvm_trvm,
3962       .readfn = prlar_read, .writefn = prlar_write },
3963     { .name = "PRSELR", .resetvalue = 0,
3964       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3965       .access = PL1_RW, .accessfn = access_tvm_trvm,
3966       .writefn = prselr_write,
3967       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3968     { .name = "HPRBAR", .resetvalue = 0,
3969       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3970       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3971       .readfn = hprbar_read, .writefn = hprbar_write },
3972     { .name = "HPRLAR",
3973       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3974       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3975       .readfn = hprlar_read, .writefn = hprlar_write },
3976     { .name = "HPRSELR", .resetvalue = 0,
3977       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3978       .access = PL2_RW,
3979       .writefn = hprselr_write,
3980       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3981     { .name = "HPRENR",
3982       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3983       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3984       .readfn = hprenr_read, .writefn = hprenr_write },
3985 };
3986 
3987 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3988     /*
3989      * Reset for all these registers is handled in arm_cpu_reset(),
3990      * because the PMSAv7 is also used by M-profile CPUs, which do
3991      * not register cpregs but still need the state to be reset.
3992      */
3993     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3994       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3995       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3996       .readfn = pmsav7_read, .writefn = pmsav7_write,
3997       .resetfn = arm_cp_reset_ignore },
3998     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3999       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4000       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4001       .readfn = pmsav7_read, .writefn = pmsav7_write,
4002       .resetfn = arm_cp_reset_ignore },
4003     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4004       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4006       .readfn = pmsav7_read, .writefn = pmsav7_write,
4007       .resetfn = arm_cp_reset_ignore },
4008     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4009       .access = PL1_RW,
4010       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4011       .writefn = pmsav7_rgnr_write,
4012       .resetfn = arm_cp_reset_ignore },
4013 };
4014 
4015 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4016     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4017       .access = PL1_RW, .type = ARM_CP_ALIAS,
4018       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4019       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4020     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4021       .access = PL1_RW, .type = ARM_CP_ALIAS,
4022       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4023       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4024     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4025       .access = PL1_RW,
4026       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4027       .resetvalue = 0, },
4028     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4029       .access = PL1_RW,
4030       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4031       .resetvalue = 0, },
4032     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4033       .access = PL1_RW,
4034       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4035     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4036       .access = PL1_RW,
4037       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4038     /* Protection region base and size registers */
4039     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4040       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4041       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4042     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4043       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4044       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4045     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4046       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4047       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4048     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4049       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4050       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4051     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4052       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4053       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4054     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4055       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4056       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4057     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4058       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4059       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4060     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4061       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4062       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4063 };
4064 
4065 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4066                              uint64_t value)
4067 {
4068     ARMCPU *cpu = env_archcpu(env);
4069 
4070     if (!arm_feature(env, ARM_FEATURE_V8)) {
4071         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4072             /*
4073              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4074              * using Long-descriptor translation table format
4075              */
4076             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4077         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4078             /*
4079              * In an implementation that includes the Security Extensions
4080              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4081              * Short-descriptor translation table format.
4082              */
4083             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4084         } else {
4085             value &= TTBCR_N;
4086         }
4087     }
4088 
4089     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4090         /*
4091          * With LPAE the TTBCR could result in a change of ASID
4092          * via the TTBCR.A1 bit, so do a TLB flush.
4093          */
4094         tlb_flush(CPU(cpu));
4095     }
4096     raw_write(env, ri, value);
4097 }
4098 
4099 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4100                                uint64_t value)
4101 {
4102     ARMCPU *cpu = env_archcpu(env);
4103 
4104     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4105     tlb_flush(CPU(cpu));
4106     raw_write(env, ri, value);
4107 }
4108 
4109 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4110                             uint64_t value)
4111 {
4112     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4113     if (cpreg_field_is_64bit(ri) &&
4114         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4115         ARMCPU *cpu = env_archcpu(env);
4116         tlb_flush(CPU(cpu));
4117     }
4118     raw_write(env, ri, value);
4119 }
4120 
4121 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4122                                     uint64_t value)
4123 {
4124     /*
4125      * If we are running with E2&0 regime, then an ASID is active.
4126      * Flush if that might be changing.  Note we're not checking
4127      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4128      * holds the active ASID, only checking the field that might.
4129      */
4130     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4131         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4132         uint16_t mask = ARMMMUIdxBit_E20_2 |
4133                         ARMMMUIdxBit_E20_2_PAN |
4134                         ARMMMUIdxBit_E20_0;
4135         tlb_flush_by_mmuidx(env_cpu(env), mask);
4136     }
4137     raw_write(env, ri, value);
4138 }
4139 
4140 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4141                         uint64_t value)
4142 {
4143     ARMCPU *cpu = env_archcpu(env);
4144     CPUState *cs = CPU(cpu);
4145 
4146     /*
4147      * A change in VMID to the stage2 page table (Stage2) invalidates
4148      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4149      */
4150     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4151         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4152     }
4153     raw_write(env, ri, value);
4154 }
4155 
4156 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4157     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4158       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4159       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4160                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4161     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4162       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4163       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4164                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4165     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4166       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4167       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4168                              offsetof(CPUARMState, cp15.dfar_ns) } },
4169     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4170       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4171       .access = PL1_RW, .accessfn = access_tvm_trvm,
4172       .fgt = FGT_FAR_EL1,
4173       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4174       .resetvalue = 0, },
4175 };
4176 
4177 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4178     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4179       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4180       .access = PL1_RW, .accessfn = access_tvm_trvm,
4181       .fgt = FGT_ESR_EL1,
4182       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4183     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4184       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4185       .access = PL1_RW, .accessfn = access_tvm_trvm,
4186       .fgt = FGT_TTBR0_EL1,
4187       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4188       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4189                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4190     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4191       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4192       .access = PL1_RW, .accessfn = access_tvm_trvm,
4193       .fgt = FGT_TTBR1_EL1,
4194       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4195       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4196                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4197     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4198       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4199       .access = PL1_RW, .accessfn = access_tvm_trvm,
4200       .fgt = FGT_TCR_EL1,
4201       .writefn = vmsa_tcr_el12_write,
4202       .raw_writefn = raw_write,
4203       .resetvalue = 0,
4204       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4205     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4206       .access = PL1_RW, .accessfn = access_tvm_trvm,
4207       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4208       .raw_writefn = raw_write,
4209       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4210                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4211 };
4212 
4213 /*
4214  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4215  * qemu tlbs nor adjusting cached masks.
4216  */
4217 static const ARMCPRegInfo ttbcr2_reginfo = {
4218     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4219     .access = PL1_RW, .accessfn = access_tvm_trvm,
4220     .type = ARM_CP_ALIAS,
4221     .bank_fieldoffsets = {
4222         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4223         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4224     },
4225 };
4226 
4227 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4228                                 uint64_t value)
4229 {
4230     env->cp15.c15_ticonfig = value & 0xe7;
4231     /* The OS_TYPE bit in this register changes the reported CPUID! */
4232     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4233         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4234 }
4235 
4236 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4237                                 uint64_t value)
4238 {
4239     env->cp15.c15_threadid = value & 0xffff;
4240 }
4241 
4242 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4243                            uint64_t value)
4244 {
4245     /* Wait-for-interrupt (deprecated) */
4246     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4247 }
4248 
4249 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4250                                   uint64_t value)
4251 {
4252     /*
4253      * On OMAP there are registers indicating the max/min index of dcache lines
4254      * containing a dirty line; cache flush operations have to reset these.
4255      */
4256     env->cp15.c15_i_max = 0x000;
4257     env->cp15.c15_i_min = 0xff0;
4258 }
4259 
4260 static const ARMCPRegInfo omap_cp_reginfo[] = {
4261     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4262       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4263       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4264       .resetvalue = 0, },
4265     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4266       .access = PL1_RW, .type = ARM_CP_NOP },
4267     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4268       .access = PL1_RW,
4269       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4270       .writefn = omap_ticonfig_write },
4271     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4272       .access = PL1_RW,
4273       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4274     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4275       .access = PL1_RW, .resetvalue = 0xff0,
4276       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4277     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4278       .access = PL1_RW,
4279       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4280       .writefn = omap_threadid_write },
4281     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4282       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4283       .type = ARM_CP_NO_RAW,
4284       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4285     /*
4286      * TODO: Peripheral port remap register:
4287      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4288      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4289      * when MMU is off.
4290      */
4291     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4292       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4293       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4294       .writefn = omap_cachemaint_write },
4295     { .name = "C9", .cp = 15, .crn = 9,
4296       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4297       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4298 };
4299 
4300 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4301                               uint64_t value)
4302 {
4303     env->cp15.c15_cpar = value & 0x3fff;
4304 }
4305 
4306 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4307     { .name = "XSCALE_CPAR",
4308       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4309       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4310       .writefn = xscale_cpar_write, },
4311     { .name = "XSCALE_AUXCR",
4312       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4313       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4314       .resetvalue = 0, },
4315     /*
4316      * XScale specific cache-lockdown: since we have no cache we NOP these
4317      * and hope the guest does not really rely on cache behaviour.
4318      */
4319     { .name = "XSCALE_LOCK_ICACHE_LINE",
4320       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4321       .access = PL1_W, .type = ARM_CP_NOP },
4322     { .name = "XSCALE_UNLOCK_ICACHE",
4323       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4324       .access = PL1_W, .type = ARM_CP_NOP },
4325     { .name = "XSCALE_DCACHE_LOCK",
4326       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4327       .access = PL1_RW, .type = ARM_CP_NOP },
4328     { .name = "XSCALE_UNLOCK_DCACHE",
4329       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4330       .access = PL1_W, .type = ARM_CP_NOP },
4331 };
4332 
4333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4334     /*
4335      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4336      * implementation of this implementation-defined space.
4337      * Ideally this should eventually disappear in favour of actually
4338      * implementing the correct behaviour for all cores.
4339      */
4340     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4341       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4342       .access = PL1_RW,
4343       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4344       .resetvalue = 0 },
4345 };
4346 
4347 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4348     /* Cache status: RAZ because we have no cache so it's always clean */
4349     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4350       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4351       .resetvalue = 0 },
4352 };
4353 
4354 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4355     /* We never have a block transfer operation in progress */
4356     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4357       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4358       .resetvalue = 0 },
4359     /* The cache ops themselves: these all NOP for QEMU */
4360     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4361       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4362     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4363       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4364     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4365       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4366     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4367       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4368     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4369       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4370     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4371       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4372 };
4373 
4374 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4375     /*
4376      * The cache test-and-clean instructions always return (1 << 30)
4377      * to indicate that there are no dirty cache lines.
4378      */
4379     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4380       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4381       .resetvalue = (1 << 30) },
4382     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4383       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4384       .resetvalue = (1 << 30) },
4385 };
4386 
4387 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4388     /* Ignore ReadBuffer accesses */
4389     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4390       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4391       .access = PL1_RW, .resetvalue = 0,
4392       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4393 };
4394 
4395 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4396 {
4397     unsigned int cur_el = arm_current_el(env);
4398 
4399     if (arm_is_el2_enabled(env) && cur_el == 1) {
4400         return env->cp15.vpidr_el2;
4401     }
4402     return raw_read(env, ri);
4403 }
4404 
4405 static uint64_t mpidr_read_val(CPUARMState *env)
4406 {
4407     ARMCPU *cpu = env_archcpu(env);
4408     uint64_t mpidr = cpu->mp_affinity;
4409 
4410     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4411         mpidr |= (1U << 31);
4412         /*
4413          * Cores which are uniprocessor (non-coherent)
4414          * but still implement the MP extensions set
4415          * bit 30. (For instance, Cortex-R5).
4416          */
4417         if (cpu->mp_is_up) {
4418             mpidr |= (1u << 30);
4419         }
4420     }
4421     return mpidr;
4422 }
4423 
4424 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4425 {
4426     unsigned int cur_el = arm_current_el(env);
4427 
4428     if (arm_is_el2_enabled(env) && cur_el == 1) {
4429         return env->cp15.vmpidr_el2;
4430     }
4431     return mpidr_read_val(env);
4432 }
4433 
4434 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4435     /* NOP AMAIR0/1 */
4436     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4437       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4438       .access = PL1_RW, .accessfn = access_tvm_trvm,
4439       .fgt = FGT_AMAIR_EL1,
4440       .type = ARM_CP_CONST, .resetvalue = 0 },
4441     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4442     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4443       .access = PL1_RW, .accessfn = access_tvm_trvm,
4444       .type = ARM_CP_CONST, .resetvalue = 0 },
4445     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4446       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4447       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4448                              offsetof(CPUARMState, cp15.par_ns)} },
4449     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4450       .access = PL1_RW, .accessfn = access_tvm_trvm,
4451       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4452       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4453                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4454       .writefn = vmsa_ttbr_write, },
4455     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4456       .access = PL1_RW, .accessfn = access_tvm_trvm,
4457       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4458       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4459                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4460       .writefn = vmsa_ttbr_write, },
4461 };
4462 
4463 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4464 {
4465     return vfp_get_fpcr(env);
4466 }
4467 
4468 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4469                             uint64_t value)
4470 {
4471     vfp_set_fpcr(env, value);
4472 }
4473 
4474 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4475 {
4476     return vfp_get_fpsr(env);
4477 }
4478 
4479 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4480                             uint64_t value)
4481 {
4482     vfp_set_fpsr(env, value);
4483 }
4484 
4485 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4486                                        bool isread)
4487 {
4488     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4489         return CP_ACCESS_TRAP;
4490     }
4491     return CP_ACCESS_OK;
4492 }
4493 
4494 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4495                             uint64_t value)
4496 {
4497     env->daif = value & PSTATE_DAIF;
4498 }
4499 
4500 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4501 {
4502     return env->pstate & PSTATE_PAN;
4503 }
4504 
4505 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4506                            uint64_t value)
4507 {
4508     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4509 }
4510 
4511 static const ARMCPRegInfo pan_reginfo = {
4512     .name = "PAN", .state = ARM_CP_STATE_AA64,
4513     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4514     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4515     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4516 };
4517 
4518 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4519 {
4520     return env->pstate & PSTATE_UAO;
4521 }
4522 
4523 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4524                            uint64_t value)
4525 {
4526     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4527 }
4528 
4529 static const ARMCPRegInfo uao_reginfo = {
4530     .name = "UAO", .state = ARM_CP_STATE_AA64,
4531     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4532     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4533     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4534 };
4535 
4536 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4537 {
4538     return env->pstate & PSTATE_DIT;
4539 }
4540 
4541 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4542                            uint64_t value)
4543 {
4544     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4545 }
4546 
4547 static const ARMCPRegInfo dit_reginfo = {
4548     .name = "DIT", .state = ARM_CP_STATE_AA64,
4549     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4550     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4551     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4552 };
4553 
4554 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4555 {
4556     return env->pstate & PSTATE_SSBS;
4557 }
4558 
4559 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4560                            uint64_t value)
4561 {
4562     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4563 }
4564 
4565 static const ARMCPRegInfo ssbs_reginfo = {
4566     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4567     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4568     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4569     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4570 };
4571 
4572 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4573                                               const ARMCPRegInfo *ri,
4574                                               bool isread)
4575 {
4576     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4577     switch (arm_current_el(env)) {
4578     case 0:
4579         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4580         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4581             return CP_ACCESS_TRAP;
4582         }
4583         /* fall through */
4584     case 1:
4585         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4586         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4587             return CP_ACCESS_TRAP_EL2;
4588         }
4589         break;
4590     }
4591     return CP_ACCESS_OK;
4592 }
4593 
4594 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4595 {
4596     /* Cache invalidate/clean to Point of Unification... */
4597     switch (arm_current_el(env)) {
4598     case 0:
4599         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4600         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4601             return CP_ACCESS_TRAP;
4602         }
4603         /* fall through */
4604     case 1:
4605         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4606         if (arm_hcr_el2_eff(env) & hcrflags) {
4607             return CP_ACCESS_TRAP_EL2;
4608         }
4609         break;
4610     }
4611     return CP_ACCESS_OK;
4612 }
4613 
4614 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4615                                    bool isread)
4616 {
4617     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4618 }
4619 
4620 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4621                                   bool isread)
4622 {
4623     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4624 }
4625 
4626 /*
4627  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4628  * Page D4-1736 (DDI0487A.b)
4629  */
4630 
4631 static int vae1_tlbmask(CPUARMState *env)
4632 {
4633     uint64_t hcr = arm_hcr_el2_eff(env);
4634     uint16_t mask;
4635 
4636     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4637         mask = ARMMMUIdxBit_E20_2 |
4638                ARMMMUIdxBit_E20_2_PAN |
4639                ARMMMUIdxBit_E20_0;
4640     } else {
4641         mask = ARMMMUIdxBit_E10_1 |
4642                ARMMMUIdxBit_E10_1_PAN |
4643                ARMMMUIdxBit_E10_0;
4644     }
4645     return mask;
4646 }
4647 
4648 /* Return 56 if TBI is enabled, 64 otherwise. */
4649 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4650                               uint64_t addr)
4651 {
4652     uint64_t tcr = regime_tcr(env, mmu_idx);
4653     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4654     int select = extract64(addr, 55, 1);
4655 
4656     return (tbi >> select) & 1 ? 56 : 64;
4657 }
4658 
4659 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4660 {
4661     uint64_t hcr = arm_hcr_el2_eff(env);
4662     ARMMMUIdx mmu_idx;
4663 
4664     /* Only the regime of the mmu_idx below is significant. */
4665     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4666         mmu_idx = ARMMMUIdx_E20_0;
4667     } else {
4668         mmu_idx = ARMMMUIdx_E10_0;
4669     }
4670 
4671     return tlbbits_for_regime(env, mmu_idx, addr);
4672 }
4673 
4674 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4675                                       uint64_t value)
4676 {
4677     CPUState *cs = env_cpu(env);
4678     int mask = vae1_tlbmask(env);
4679 
4680     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4681 }
4682 
4683 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4684                                     uint64_t value)
4685 {
4686     CPUState *cs = env_cpu(env);
4687     int mask = vae1_tlbmask(env);
4688 
4689     if (tlb_force_broadcast(env)) {
4690         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4691     } else {
4692         tlb_flush_by_mmuidx(cs, mask);
4693     }
4694 }
4695 
4696 static int e2_tlbmask(CPUARMState *env)
4697 {
4698     return (ARMMMUIdxBit_E20_0 |
4699             ARMMMUIdxBit_E20_2 |
4700             ARMMMUIdxBit_E20_2_PAN |
4701             ARMMMUIdxBit_E2);
4702 }
4703 
4704 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4705                                   uint64_t value)
4706 {
4707     CPUState *cs = env_cpu(env);
4708     int mask = alle1_tlbmask(env);
4709 
4710     tlb_flush_by_mmuidx(cs, mask);
4711 }
4712 
4713 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4714                                   uint64_t value)
4715 {
4716     CPUState *cs = env_cpu(env);
4717     int mask = e2_tlbmask(env);
4718 
4719     tlb_flush_by_mmuidx(cs, mask);
4720 }
4721 
4722 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4723                                   uint64_t value)
4724 {
4725     ARMCPU *cpu = env_archcpu(env);
4726     CPUState *cs = CPU(cpu);
4727 
4728     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4729 }
4730 
4731 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4732                                     uint64_t value)
4733 {
4734     CPUState *cs = env_cpu(env);
4735     int mask = alle1_tlbmask(env);
4736 
4737     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4738 }
4739 
4740 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4741                                     uint64_t value)
4742 {
4743     CPUState *cs = env_cpu(env);
4744     int mask = e2_tlbmask(env);
4745 
4746     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4747 }
4748 
4749 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4750                                     uint64_t value)
4751 {
4752     CPUState *cs = env_cpu(env);
4753 
4754     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4755 }
4756 
4757 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4758                                  uint64_t value)
4759 {
4760     /*
4761      * Invalidate by VA, EL2
4762      * Currently handles both VAE2 and VALE2, since we don't support
4763      * flush-last-level-only.
4764      */
4765     CPUState *cs = env_cpu(env);
4766     int mask = e2_tlbmask(env);
4767     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4768 
4769     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4770 }
4771 
4772 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4773                                  uint64_t value)
4774 {
4775     /*
4776      * Invalidate by VA, EL3
4777      * Currently handles both VAE3 and VALE3, since we don't support
4778      * flush-last-level-only.
4779      */
4780     ARMCPU *cpu = env_archcpu(env);
4781     CPUState *cs = CPU(cpu);
4782     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4783 
4784     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4785 }
4786 
4787 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788                                    uint64_t value)
4789 {
4790     CPUState *cs = env_cpu(env);
4791     int mask = vae1_tlbmask(env);
4792     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4793     int bits = vae1_tlbbits(env, pageaddr);
4794 
4795     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4796 }
4797 
4798 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4799                                  uint64_t value)
4800 {
4801     /*
4802      * Invalidate by VA, EL1&0 (AArch64 version).
4803      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4804      * since we don't support flush-for-specific-ASID-only or
4805      * flush-last-level-only.
4806      */
4807     CPUState *cs = env_cpu(env);
4808     int mask = vae1_tlbmask(env);
4809     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4810     int bits = vae1_tlbbits(env, pageaddr);
4811 
4812     if (tlb_force_broadcast(env)) {
4813         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4814     } else {
4815         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4816     }
4817 }
4818 
4819 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4820                                    uint64_t value)
4821 {
4822     CPUState *cs = env_cpu(env);
4823     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4824     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4825 
4826     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4827                                                   ARMMMUIdxBit_E2, bits);
4828 }
4829 
4830 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4831                                    uint64_t value)
4832 {
4833     CPUState *cs = env_cpu(env);
4834     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4835     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4836 
4837     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4838                                                   ARMMMUIdxBit_E3, bits);
4839 }
4840 
4841 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4842 {
4843     /*
4844      * The MSB of value is the NS field, which only applies if SEL2
4845      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4846      */
4847     return (value >= 0
4848             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4849             && arm_is_secure_below_el3(env)
4850             ? ARMMMUIdxBit_Stage2_S
4851             : ARMMMUIdxBit_Stage2);
4852 }
4853 
4854 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4855                                     uint64_t value)
4856 {
4857     CPUState *cs = env_cpu(env);
4858     int mask = ipas2e1_tlbmask(env, value);
4859     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4860 
4861     if (tlb_force_broadcast(env)) {
4862         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4863     } else {
4864         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4865     }
4866 }
4867 
4868 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4869                                       uint64_t value)
4870 {
4871     CPUState *cs = env_cpu(env);
4872     int mask = ipas2e1_tlbmask(env, value);
4873     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4874 
4875     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4876 }
4877 
4878 #ifdef TARGET_AARCH64
4879 typedef struct {
4880     uint64_t base;
4881     uint64_t length;
4882 } TLBIRange;
4883 
4884 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4885 {
4886     /*
4887      * Note that the TLBI range TG field encoding differs from both
4888      * TG0 and TG1 encodings.
4889      */
4890     switch (tg) {
4891     case 1:
4892         return Gran4K;
4893     case 2:
4894         return Gran16K;
4895     case 3:
4896         return Gran64K;
4897     default:
4898         return GranInvalid;
4899     }
4900 }
4901 
4902 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4903                                      uint64_t value)
4904 {
4905     unsigned int page_size_granule, page_shift, num, scale, exponent;
4906     /* Extract one bit to represent the va selector in use. */
4907     uint64_t select = sextract64(value, 36, 1);
4908     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true);
4909     TLBIRange ret = { };
4910     ARMGranuleSize gran;
4911 
4912     page_size_granule = extract64(value, 46, 2);
4913     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4914 
4915     /* The granule encoded in value must match the granule in use. */
4916     if (gran != param.gran) {
4917         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4918                       page_size_granule);
4919         return ret;
4920     }
4921 
4922     page_shift = arm_granule_bits(gran);
4923     num = extract64(value, 39, 5);
4924     scale = extract64(value, 44, 2);
4925     exponent = (5 * scale) + 1;
4926 
4927     ret.length = (num + 1) << (exponent + page_shift);
4928 
4929     if (param.select) {
4930         ret.base = sextract64(value, 0, 37);
4931     } else {
4932         ret.base = extract64(value, 0, 37);
4933     }
4934     if (param.ds) {
4935         /*
4936          * With DS=1, BaseADDR is always shifted 16 so that it is able
4937          * to address all 52 va bits.  The input address is perforce
4938          * aligned on a 64k boundary regardless of translation granule.
4939          */
4940         page_shift = 16;
4941     }
4942     ret.base <<= page_shift;
4943 
4944     return ret;
4945 }
4946 
4947 static void do_rvae_write(CPUARMState *env, uint64_t value,
4948                           int idxmap, bool synced)
4949 {
4950     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4951     TLBIRange range;
4952     int bits;
4953 
4954     range = tlbi_aa64_get_range(env, one_idx, value);
4955     bits = tlbbits_for_regime(env, one_idx, range.base);
4956 
4957     if (synced) {
4958         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4959                                                   range.base,
4960                                                   range.length,
4961                                                   idxmap,
4962                                                   bits);
4963     } else {
4964         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4965                                   range.length, idxmap, bits);
4966     }
4967 }
4968 
4969 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4970                                   const ARMCPRegInfo *ri,
4971                                   uint64_t value)
4972 {
4973     /*
4974      * Invalidate by VA range, EL1&0.
4975      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4976      * since we don't support flush-for-specific-ASID-only or
4977      * flush-last-level-only.
4978      */
4979 
4980     do_rvae_write(env, value, vae1_tlbmask(env),
4981                   tlb_force_broadcast(env));
4982 }
4983 
4984 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4985                                     const ARMCPRegInfo *ri,
4986                                     uint64_t value)
4987 {
4988     /*
4989      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4990      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4991      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4992      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4993      * shareable specific flushes.
4994      */
4995 
4996     do_rvae_write(env, value, vae1_tlbmask(env), true);
4997 }
4998 
4999 static int vae2_tlbmask(CPUARMState *env)
5000 {
5001     return ARMMMUIdxBit_E2;
5002 }
5003 
5004 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5005                                   const ARMCPRegInfo *ri,
5006                                   uint64_t value)
5007 {
5008     /*
5009      * Invalidate by VA range, EL2.
5010      * Currently handles all of RVAE2 and RVALE2,
5011      * since we don't support flush-for-specific-ASID-only or
5012      * flush-last-level-only.
5013      */
5014 
5015     do_rvae_write(env, value, vae2_tlbmask(env),
5016                   tlb_force_broadcast(env));
5017 
5018 
5019 }
5020 
5021 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5022                                     const ARMCPRegInfo *ri,
5023                                     uint64_t value)
5024 {
5025     /*
5026      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5027      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5028      * since we don't support flush-for-specific-ASID-only,
5029      * flush-last-level-only or inner/outer shareable specific flushes.
5030      */
5031 
5032     do_rvae_write(env, value, vae2_tlbmask(env), true);
5033 
5034 }
5035 
5036 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5037                                   const ARMCPRegInfo *ri,
5038                                   uint64_t value)
5039 {
5040     /*
5041      * Invalidate by VA range, EL3.
5042      * Currently handles all of RVAE3 and RVALE3,
5043      * since we don't support flush-for-specific-ASID-only or
5044      * flush-last-level-only.
5045      */
5046 
5047     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5048 }
5049 
5050 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5051                                     const ARMCPRegInfo *ri,
5052                                     uint64_t value)
5053 {
5054     /*
5055      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5056      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5057      * since we don't support flush-for-specific-ASID-only,
5058      * flush-last-level-only or inner/outer specific flushes.
5059      */
5060 
5061     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5062 }
5063 
5064 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5065                                      uint64_t value)
5066 {
5067     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5068                   tlb_force_broadcast(env));
5069 }
5070 
5071 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5072                                        const ARMCPRegInfo *ri,
5073                                        uint64_t value)
5074 {
5075     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5076 }
5077 #endif
5078 
5079 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5080                                       bool isread)
5081 {
5082     int cur_el = arm_current_el(env);
5083 
5084     if (cur_el < 2) {
5085         uint64_t hcr = arm_hcr_el2_eff(env);
5086 
5087         if (cur_el == 0) {
5088             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5089                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5090                     return CP_ACCESS_TRAP_EL2;
5091                 }
5092             } else {
5093                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5094                     return CP_ACCESS_TRAP;
5095                 }
5096                 if (hcr & HCR_TDZ) {
5097                     return CP_ACCESS_TRAP_EL2;
5098                 }
5099             }
5100         } else if (hcr & HCR_TDZ) {
5101             return CP_ACCESS_TRAP_EL2;
5102         }
5103     }
5104     return CP_ACCESS_OK;
5105 }
5106 
5107 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5108 {
5109     ARMCPU *cpu = env_archcpu(env);
5110     int dzp_bit = 1 << 4;
5111 
5112     /* DZP indicates whether DC ZVA access is allowed */
5113     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5114         dzp_bit = 0;
5115     }
5116     return cpu->dcz_blocksize | dzp_bit;
5117 }
5118 
5119 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5120                                     bool isread)
5121 {
5122     if (!(env->pstate & PSTATE_SP)) {
5123         /*
5124          * Access to SP_EL0 is undefined if it's being used as
5125          * the stack pointer.
5126          */
5127         return CP_ACCESS_TRAP_UNCATEGORIZED;
5128     }
5129     return CP_ACCESS_OK;
5130 }
5131 
5132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5133 {
5134     return env->pstate & PSTATE_SP;
5135 }
5136 
5137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5138 {
5139     update_spsel(env, val);
5140 }
5141 
5142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5143                         uint64_t value)
5144 {
5145     ARMCPU *cpu = env_archcpu(env);
5146 
5147     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5148         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5149         value &= ~SCTLR_M;
5150     }
5151 
5152     /* ??? Lots of these bits are not implemented.  */
5153 
5154     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5155         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5156             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5157         } else {
5158             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5159                        SCTLR_ATA0 | SCTLR_ATA);
5160         }
5161     }
5162 
5163     if (raw_read(env, ri) == value) {
5164         /*
5165          * Skip the TLB flush if nothing actually changed; Linux likes
5166          * to do a lot of pointless SCTLR writes.
5167          */
5168         return;
5169     }
5170 
5171     raw_write(env, ri, value);
5172 
5173     /* This may enable/disable the MMU, so do a TLB flush.  */
5174     tlb_flush(CPU(cpu));
5175 
5176     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
5177         /*
5178          * Normally we would always end the TB on an SCTLR write; see the
5179          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5180          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5181          * of hflags from the translator, so do it here.
5182          */
5183         arm_rebuild_hflags(env);
5184     }
5185 }
5186 
5187 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5188                            uint64_t value)
5189 {
5190     /*
5191      * Some MDCR_EL3 bits affect whether PMU counters are running:
5192      * if we are trying to change any of those then we must
5193      * bracket this update with PMU start/finish calls.
5194      */
5195     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5196 
5197     if (pmu_op) {
5198         pmu_op_start(env);
5199     }
5200     env->cp15.mdcr_el3 = value;
5201     if (pmu_op) {
5202         pmu_op_finish(env);
5203     }
5204 }
5205 
5206 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5207                        uint64_t value)
5208 {
5209     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5210     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5211 }
5212 
5213 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5214                            uint64_t value)
5215 {
5216     /*
5217      * Some MDCR_EL2 bits affect whether PMU counters are running:
5218      * if we are trying to change any of those then we must
5219      * bracket this update with PMU start/finish calls.
5220      */
5221     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5222 
5223     if (pmu_op) {
5224         pmu_op_start(env);
5225     }
5226     env->cp15.mdcr_el2 = value;
5227     if (pmu_op) {
5228         pmu_op_finish(env);
5229     }
5230 }
5231 
5232 static const ARMCPRegInfo v8_cp_reginfo[] = {
5233     /*
5234      * Minimal set of EL0-visible registers. This will need to be expanded
5235      * significantly for system emulation of AArch64 CPUs.
5236      */
5237     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5238       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5239       .access = PL0_RW, .type = ARM_CP_NZCV },
5240     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5241       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5242       .type = ARM_CP_NO_RAW,
5243       .access = PL0_RW, .accessfn = aa64_daif_access,
5244       .fieldoffset = offsetof(CPUARMState, daif),
5245       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5246     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5247       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5248       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5249       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5250     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5251       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5252       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5253       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5254     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5255       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5256       .access = PL0_R, .type = ARM_CP_NO_RAW,
5257       .fgt = FGT_DCZID_EL0,
5258       .readfn = aa64_dczid_read },
5259     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5260       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5261       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5262 #ifndef CONFIG_USER_ONLY
5263       /* Avoid overhead of an access check that always passes in user-mode */
5264       .accessfn = aa64_zva_access,
5265       .fgt = FGT_DCZVA,
5266 #endif
5267     },
5268     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5269       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5270       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5271     /* Cache ops: all NOPs since we don't emulate caches */
5272     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5273       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5274       .access = PL1_W, .type = ARM_CP_NOP,
5275       .fgt = FGT_ICIALLUIS,
5276       .accessfn = access_ticab },
5277     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5278       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5279       .access = PL1_W, .type = ARM_CP_NOP,
5280       .fgt = FGT_ICIALLU,
5281       .accessfn = access_tocu },
5282     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5283       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5284       .access = PL0_W, .type = ARM_CP_NOP,
5285       .fgt = FGT_ICIVAU,
5286       .accessfn = access_tocu },
5287     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5288       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5289       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5290       .fgt = FGT_DCIVAC,
5291       .type = ARM_CP_NOP },
5292     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5293       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5294       .fgt = FGT_DCISW,
5295       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5296     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5297       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5298       .access = PL0_W, .type = ARM_CP_NOP,
5299       .fgt = FGT_DCCVAC,
5300       .accessfn = aa64_cacheop_poc_access },
5301     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5302       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5303       .fgt = FGT_DCCSW,
5304       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5305     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5306       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5307       .access = PL0_W, .type = ARM_CP_NOP,
5308       .fgt = FGT_DCCVAU,
5309       .accessfn = access_tocu },
5310     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5311       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5312       .access = PL0_W, .type = ARM_CP_NOP,
5313       .fgt = FGT_DCCIVAC,
5314       .accessfn = aa64_cacheop_poc_access },
5315     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5316       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5317       .fgt = FGT_DCCISW,
5318       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5319     /* TLBI operations */
5320     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5321       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5322       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5323       .fgt = FGT_TLBIVMALLE1IS,
5324       .writefn = tlbi_aa64_vmalle1is_write },
5325     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5326       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5327       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5328       .fgt = FGT_TLBIVAE1IS,
5329       .writefn = tlbi_aa64_vae1is_write },
5330     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5331       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5332       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5333       .fgt = FGT_TLBIASIDE1IS,
5334       .writefn = tlbi_aa64_vmalle1is_write },
5335     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5336       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5337       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5338       .fgt = FGT_TLBIVAAE1IS,
5339       .writefn = tlbi_aa64_vae1is_write },
5340     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5341       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5342       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5343       .fgt = FGT_TLBIVALE1IS,
5344       .writefn = tlbi_aa64_vae1is_write },
5345     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5346       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5347       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5348       .fgt = FGT_TLBIVAALE1IS,
5349       .writefn = tlbi_aa64_vae1is_write },
5350     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5351       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5352       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5353       .fgt = FGT_TLBIVMALLE1,
5354       .writefn = tlbi_aa64_vmalle1_write },
5355     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5357       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5358       .fgt = FGT_TLBIVAE1,
5359       .writefn = tlbi_aa64_vae1_write },
5360     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5362       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5363       .fgt = FGT_TLBIASIDE1,
5364       .writefn = tlbi_aa64_vmalle1_write },
5365     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5366       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5367       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5368       .fgt = FGT_TLBIVAAE1,
5369       .writefn = tlbi_aa64_vae1_write },
5370     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5371       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5372       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5373       .fgt = FGT_TLBIVALE1,
5374       .writefn = tlbi_aa64_vae1_write },
5375     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5376       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5377       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5378       .fgt = FGT_TLBIVAALE1,
5379       .writefn = tlbi_aa64_vae1_write },
5380     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5381       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5382       .access = PL2_W, .type = ARM_CP_NO_RAW,
5383       .writefn = tlbi_aa64_ipas2e1is_write },
5384     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5385       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5386       .access = PL2_W, .type = ARM_CP_NO_RAW,
5387       .writefn = tlbi_aa64_ipas2e1is_write },
5388     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5389       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5390       .access = PL2_W, .type = ARM_CP_NO_RAW,
5391       .writefn = tlbi_aa64_alle1is_write },
5392     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5393       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5394       .access = PL2_W, .type = ARM_CP_NO_RAW,
5395       .writefn = tlbi_aa64_alle1is_write },
5396     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5397       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5398       .access = PL2_W, .type = ARM_CP_NO_RAW,
5399       .writefn = tlbi_aa64_ipas2e1_write },
5400     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5401       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5402       .access = PL2_W, .type = ARM_CP_NO_RAW,
5403       .writefn = tlbi_aa64_ipas2e1_write },
5404     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5405       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5406       .access = PL2_W, .type = ARM_CP_NO_RAW,
5407       .writefn = tlbi_aa64_alle1_write },
5408     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5409       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5410       .access = PL2_W, .type = ARM_CP_NO_RAW,
5411       .writefn = tlbi_aa64_alle1is_write },
5412 #ifndef CONFIG_USER_ONLY
5413     /* 64 bit address translation operations */
5414     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5415       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5416       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5417       .fgt = FGT_ATS1E1R,
5418       .writefn = ats_write64 },
5419     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5420       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5421       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5422       .fgt = FGT_ATS1E1W,
5423       .writefn = ats_write64 },
5424     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5425       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5426       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5427       .fgt = FGT_ATS1E0R,
5428       .writefn = ats_write64 },
5429     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5430       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5431       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5432       .fgt = FGT_ATS1E0W,
5433       .writefn = ats_write64 },
5434     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5435       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5436       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5437       .writefn = ats_write64 },
5438     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5439       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5440       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5441       .writefn = ats_write64 },
5442     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5443       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5444       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5445       .writefn = ats_write64 },
5446     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5447       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5448       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5449       .writefn = ats_write64 },
5450     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5451     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5452       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5453       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5454       .writefn = ats_write64 },
5455     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5456       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5457       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5458       .writefn = ats_write64 },
5459     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5460       .type = ARM_CP_ALIAS,
5461       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5462       .access = PL1_RW, .resetvalue = 0,
5463       .fgt = FGT_PAR_EL1,
5464       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5465       .writefn = par_write },
5466 #endif
5467     /* TLB invalidate last level of translation table walk */
5468     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5469       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5470       .writefn = tlbimva_is_write },
5471     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5472       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5473       .writefn = tlbimvaa_is_write },
5474     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5475       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5476       .writefn = tlbimva_write },
5477     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5478       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5479       .writefn = tlbimvaa_write },
5480     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5481       .type = ARM_CP_NO_RAW, .access = PL2_W,
5482       .writefn = tlbimva_hyp_write },
5483     { .name = "TLBIMVALHIS",
5484       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5485       .type = ARM_CP_NO_RAW, .access = PL2_W,
5486       .writefn = tlbimva_hyp_is_write },
5487     { .name = "TLBIIPAS2",
5488       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5489       .type = ARM_CP_NO_RAW, .access = PL2_W,
5490       .writefn = tlbiipas2_hyp_write },
5491     { .name = "TLBIIPAS2IS",
5492       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5493       .type = ARM_CP_NO_RAW, .access = PL2_W,
5494       .writefn = tlbiipas2is_hyp_write },
5495     { .name = "TLBIIPAS2L",
5496       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5497       .type = ARM_CP_NO_RAW, .access = PL2_W,
5498       .writefn = tlbiipas2_hyp_write },
5499     { .name = "TLBIIPAS2LIS",
5500       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5501       .type = ARM_CP_NO_RAW, .access = PL2_W,
5502       .writefn = tlbiipas2is_hyp_write },
5503     /* 32 bit cache operations */
5504     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5505       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5506     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5507       .type = ARM_CP_NOP, .access = PL1_W },
5508     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5509       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5510     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5511       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5512     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5513       .type = ARM_CP_NOP, .access = PL1_W },
5514     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5515       .type = ARM_CP_NOP, .access = PL1_W },
5516     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5517       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5518     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5519       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5520     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5521       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5522     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5523       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5524     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5525       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5526     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5527       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5528     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5529       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5530     /* MMU Domain access control / MPU write buffer control */
5531     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5532       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5533       .writefn = dacr_write, .raw_writefn = raw_write,
5534       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5535                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5536     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5537       .type = ARM_CP_ALIAS,
5538       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5539       .access = PL1_RW,
5540       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5541     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5542       .type = ARM_CP_ALIAS,
5543       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5544       .access = PL1_RW,
5545       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5546     /*
5547      * We rely on the access checks not allowing the guest to write to the
5548      * state field when SPSel indicates that it's being used as the stack
5549      * pointer.
5550      */
5551     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5552       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5553       .access = PL1_RW, .accessfn = sp_el0_access,
5554       .type = ARM_CP_ALIAS,
5555       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5556     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5557       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5558       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5559       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5560     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5561       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5562       .type = ARM_CP_NO_RAW,
5563       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5564     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5565       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5566       .access = PL2_RW,
5567       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5568       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5569     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5570       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5571       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5572       .writefn = dacr_write, .raw_writefn = raw_write,
5573       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5574     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5576       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5577       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5578     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5579       .type = ARM_CP_ALIAS,
5580       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5581       .access = PL2_RW,
5582       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5583     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5584       .type = ARM_CP_ALIAS,
5585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5586       .access = PL2_RW,
5587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5588     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5589       .type = ARM_CP_ALIAS,
5590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5591       .access = PL2_RW,
5592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5593     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5594       .type = ARM_CP_ALIAS,
5595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5596       .access = PL2_RW,
5597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5598     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5599       .type = ARM_CP_IO,
5600       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5601       .resetvalue = 0,
5602       .access = PL3_RW,
5603       .writefn = mdcr_el3_write,
5604       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5605     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5606       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5607       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5608       .writefn = sdcr_write,
5609       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5610 };
5611 
5612 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5613 {
5614     ARMCPU *cpu = env_archcpu(env);
5615 
5616     if (arm_feature(env, ARM_FEATURE_V8)) {
5617         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5618     } else {
5619         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5620     }
5621 
5622     if (arm_feature(env, ARM_FEATURE_EL3)) {
5623         valid_mask &= ~HCR_HCD;
5624     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5625         /*
5626          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5627          * However, if we're using the SMC PSCI conduit then QEMU is
5628          * effectively acting like EL3 firmware and so the guest at
5629          * EL2 should retain the ability to prevent EL1 from being
5630          * able to make SMC calls into the ersatz firmware, so in
5631          * that case HCR.TSC should be read/write.
5632          */
5633         valid_mask &= ~HCR_TSC;
5634     }
5635 
5636     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5637         if (cpu_isar_feature(aa64_vh, cpu)) {
5638             valid_mask |= HCR_E2H;
5639         }
5640         if (cpu_isar_feature(aa64_ras, cpu)) {
5641             valid_mask |= HCR_TERR | HCR_TEA;
5642         }
5643         if (cpu_isar_feature(aa64_lor, cpu)) {
5644             valid_mask |= HCR_TLOR;
5645         }
5646         if (cpu_isar_feature(aa64_pauth, cpu)) {
5647             valid_mask |= HCR_API | HCR_APK;
5648         }
5649         if (cpu_isar_feature(aa64_mte, cpu)) {
5650             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5651         }
5652         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5653             valid_mask |= HCR_ENSCXT;
5654         }
5655         if (cpu_isar_feature(aa64_fwb, cpu)) {
5656             valid_mask |= HCR_FWB;
5657         }
5658     }
5659 
5660     if (cpu_isar_feature(any_evt, cpu)) {
5661         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5662     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5663         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5664     }
5665 
5666     /* Clear RES0 bits.  */
5667     value &= valid_mask;
5668 
5669     /*
5670      * These bits change the MMU setup:
5671      * HCR_VM enables stage 2 translation
5672      * HCR_PTW forbids certain page-table setups
5673      * HCR_DC disables stage1 and enables stage2 translation
5674      * HCR_DCT enables tagging on (disabled) stage1 translation
5675      * HCR_FWB changes the interpretation of stage2 descriptor bits
5676      */
5677     if ((env->cp15.hcr_el2 ^ value) &
5678         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5679         tlb_flush(CPU(cpu));
5680     }
5681     env->cp15.hcr_el2 = value;
5682 
5683     /*
5684      * Updates to VI and VF require us to update the status of
5685      * virtual interrupts, which are the logical OR of these bits
5686      * and the state of the input lines from the GIC. (This requires
5687      * that we have the iothread lock, which is done by marking the
5688      * reginfo structs as ARM_CP_IO.)
5689      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5690      * possible for it to be taken immediately, because VIRQ and
5691      * VFIQ are masked unless running at EL0 or EL1, and HCR
5692      * can only be written at EL2.
5693      */
5694     g_assert(qemu_mutex_iothread_locked());
5695     arm_cpu_update_virq(cpu);
5696     arm_cpu_update_vfiq(cpu);
5697     arm_cpu_update_vserr(cpu);
5698 }
5699 
5700 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5701 {
5702     do_hcr_write(env, value, 0);
5703 }
5704 
5705 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5706                           uint64_t value)
5707 {
5708     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5709     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5710     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5711 }
5712 
5713 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5714                          uint64_t value)
5715 {
5716     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5717     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5718     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5719 }
5720 
5721 /*
5722  * Return the effective value of HCR_EL2, at the given security state.
5723  * Bits that are not included here:
5724  * RW       (read from SCR_EL3.RW as needed)
5725  */
5726 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5727 {
5728     uint64_t ret = env->cp15.hcr_el2;
5729 
5730     if (!arm_is_el2_enabled_secstate(env, secure)) {
5731         /*
5732          * "This register has no effect if EL2 is not enabled in the
5733          * current Security state".  This is ARMv8.4-SecEL2 speak for
5734          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5735          *
5736          * Prior to that, the language was "In an implementation that
5737          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5738          * as if this field is 0 for all purposes other than a direct
5739          * read or write access of HCR_EL2".  With lots of enumeration
5740          * on a per-field basis.  In current QEMU, this is condition
5741          * is arm_is_secure_below_el3.
5742          *
5743          * Since the v8.4 language applies to the entire register, and
5744          * appears to be backward compatible, use that.
5745          */
5746         return 0;
5747     }
5748 
5749     /*
5750      * For a cpu that supports both aarch64 and aarch32, we can set bits
5751      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5752      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5753      */
5754     if (!arm_el_is_aa64(env, 2)) {
5755         uint64_t aa32_valid;
5756 
5757         /*
5758          * These bits are up-to-date as of ARMv8.6.
5759          * For HCR, it's easiest to list just the 2 bits that are invalid.
5760          * For HCR2, list those that are valid.
5761          */
5762         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5763         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5764                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5765         ret &= aa32_valid;
5766     }
5767 
5768     if (ret & HCR_TGE) {
5769         /* These bits are up-to-date as of ARMv8.6.  */
5770         if (ret & HCR_E2H) {
5771             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5772                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5773                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5774                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5775                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5776                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5777         } else {
5778             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5779         }
5780         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5781                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5782                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5783                  HCR_TLOR);
5784     }
5785 
5786     return ret;
5787 }
5788 
5789 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5790 {
5791     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5792 }
5793 
5794 /*
5795  * Corresponds to ARM pseudocode function ELIsInHost().
5796  */
5797 bool el_is_in_host(CPUARMState *env, int el)
5798 {
5799     uint64_t mask;
5800 
5801     /*
5802      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5803      * Perform the simplest bit tests first, and validate EL2 afterward.
5804      */
5805     if (el & 1) {
5806         return false; /* EL1 or EL3 */
5807     }
5808 
5809     /*
5810      * Note that hcr_write() checks isar_feature_aa64_vh(),
5811      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5812      */
5813     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5814     if ((env->cp15.hcr_el2 & mask) != mask) {
5815         return false;
5816     }
5817 
5818     /* TGE and/or E2H set: double check those bits are currently legal. */
5819     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5820 }
5821 
5822 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5823                        uint64_t value)
5824 {
5825     uint64_t valid_mask = 0;
5826 
5827     /* No features adding bits to HCRX are implemented. */
5828 
5829     /* Clear RES0 bits.  */
5830     env->cp15.hcrx_el2 = value & valid_mask;
5831 }
5832 
5833 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5834                                   bool isread)
5835 {
5836     if (arm_current_el(env) < 3
5837         && arm_feature(env, ARM_FEATURE_EL3)
5838         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5839         return CP_ACCESS_TRAP_EL3;
5840     }
5841     return CP_ACCESS_OK;
5842 }
5843 
5844 static const ARMCPRegInfo hcrx_el2_reginfo = {
5845     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5846     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5847     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5848     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5849 };
5850 
5851 /* Return the effective value of HCRX_EL2.  */
5852 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5853 {
5854     /*
5855      * The bits in this register behave as 0 for all purposes other than
5856      * direct reads of the register if:
5857      *   - EL2 is not enabled in the current security state,
5858      *   - SCR_EL3.HXEn is 0.
5859      */
5860     if (!arm_is_el2_enabled(env)
5861         || (arm_feature(env, ARM_FEATURE_EL3)
5862             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5863         return 0;
5864     }
5865     return env->cp15.hcrx_el2;
5866 }
5867 
5868 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5869                            uint64_t value)
5870 {
5871     /*
5872      * For A-profile AArch32 EL3, if NSACR.CP10
5873      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5874      */
5875     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5876         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5877         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5878         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5879     }
5880     env->cp15.cptr_el[2] = value;
5881 }
5882 
5883 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5884 {
5885     /*
5886      * For A-profile AArch32 EL3, if NSACR.CP10
5887      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5888      */
5889     uint64_t value = env->cp15.cptr_el[2];
5890 
5891     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5892         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5893         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5894     }
5895     return value;
5896 }
5897 
5898 static const ARMCPRegInfo el2_cp_reginfo[] = {
5899     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5900       .type = ARM_CP_IO,
5901       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5902       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5903       .writefn = hcr_write },
5904     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5905       .type = ARM_CP_ALIAS | ARM_CP_IO,
5906       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5907       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5908       .writefn = hcr_writelow },
5909     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5910       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5911       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5912     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5913       .type = ARM_CP_ALIAS,
5914       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5915       .access = PL2_RW,
5916       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5917     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5918       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5919       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5920     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5921       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5922       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5923     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5924       .type = ARM_CP_ALIAS,
5925       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5926       .access = PL2_RW,
5927       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5928     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5929       .type = ARM_CP_ALIAS,
5930       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5931       .access = PL2_RW,
5932       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5933     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5934       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5935       .access = PL2_RW, .writefn = vbar_write,
5936       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5937       .resetvalue = 0 },
5938     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5939       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5940       .access = PL3_RW, .type = ARM_CP_ALIAS,
5941       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5942     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5943       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5944       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5945       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5946       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5947     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5948       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5949       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5950       .resetvalue = 0 },
5951     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5952       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5953       .access = PL2_RW, .type = ARM_CP_ALIAS,
5954       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5955     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5956       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5957       .access = PL2_RW, .type = ARM_CP_CONST,
5958       .resetvalue = 0 },
5959     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5960     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5961       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5962       .access = PL2_RW, .type = ARM_CP_CONST,
5963       .resetvalue = 0 },
5964     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5965       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5966       .access = PL2_RW, .type = ARM_CP_CONST,
5967       .resetvalue = 0 },
5968     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5969       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5970       .access = PL2_RW, .type = ARM_CP_CONST,
5971       .resetvalue = 0 },
5972     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5973       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5974       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5975       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5976     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5977       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5978       .type = ARM_CP_ALIAS,
5979       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5980       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
5981     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5982       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5983       .access = PL2_RW,
5984       /* no .writefn needed as this can't cause an ASID change */
5985       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5986     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5987       .cp = 15, .opc1 = 6, .crm = 2,
5988       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5989       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5990       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5991       .writefn = vttbr_write },
5992     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5993       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5994       .access = PL2_RW, .writefn = vttbr_write,
5995       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5996     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5997       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5998       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5999       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6000     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6001       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6002       .access = PL2_RW, .resetvalue = 0,
6003       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6004     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6005       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6006       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
6007       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6008     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6009       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6010       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6011     { .name = "TLBIALLNSNH",
6012       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6013       .type = ARM_CP_NO_RAW, .access = PL2_W,
6014       .writefn = tlbiall_nsnh_write },
6015     { .name = "TLBIALLNSNHIS",
6016       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6017       .type = ARM_CP_NO_RAW, .access = PL2_W,
6018       .writefn = tlbiall_nsnh_is_write },
6019     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6020       .type = ARM_CP_NO_RAW, .access = PL2_W,
6021       .writefn = tlbiall_hyp_write },
6022     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6023       .type = ARM_CP_NO_RAW, .access = PL2_W,
6024       .writefn = tlbiall_hyp_is_write },
6025     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6026       .type = ARM_CP_NO_RAW, .access = PL2_W,
6027       .writefn = tlbimva_hyp_write },
6028     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6029       .type = ARM_CP_NO_RAW, .access = PL2_W,
6030       .writefn = tlbimva_hyp_is_write },
6031     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6032       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6033       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6034       .writefn = tlbi_aa64_alle2_write },
6035     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6036       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6037       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6038       .writefn = tlbi_aa64_vae2_write },
6039     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6040       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6041       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6042       .writefn = tlbi_aa64_vae2_write },
6043     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6044       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6045       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6046       .writefn = tlbi_aa64_alle2is_write },
6047     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6048       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6049       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6050       .writefn = tlbi_aa64_vae2is_write },
6051     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6052       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6053       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6054       .writefn = tlbi_aa64_vae2is_write },
6055 #ifndef CONFIG_USER_ONLY
6056     /*
6057      * Unlike the other EL2-related AT operations, these must
6058      * UNDEF from EL3 if EL2 is not implemented, which is why we
6059      * define them here rather than with the rest of the AT ops.
6060      */
6061     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6062       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6063       .access = PL2_W, .accessfn = at_s1e2_access,
6064       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6065       .writefn = ats_write64 },
6066     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6067       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6068       .access = PL2_W, .accessfn = at_s1e2_access,
6069       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6070       .writefn = ats_write64 },
6071     /*
6072      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6073      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6074      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6075      * to behave as if SCR.NS was 1.
6076      */
6077     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6078       .access = PL2_W,
6079       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6080     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6081       .access = PL2_W,
6082       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6083     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6084       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6085       /*
6086        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6087        * reset values as IMPDEF. We choose to reset to 3 to comply with
6088        * both ARMv7 and ARMv8.
6089        */
6090       .access = PL2_RW, .resetvalue = 3,
6091       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6092     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6093       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6094       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6095       .writefn = gt_cntvoff_write,
6096       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6097     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6098       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6099       .writefn = gt_cntvoff_write,
6100       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6101     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6102       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6103       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6104       .type = ARM_CP_IO, .access = PL2_RW,
6105       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6106     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6107       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6108       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6109       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6110     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6111       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6112       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6113       .resetfn = gt_hyp_timer_reset,
6114       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6115     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6116       .type = ARM_CP_IO,
6117       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6118       .access = PL2_RW,
6119       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6120       .resetvalue = 0,
6121       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6122 #endif
6123     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6124       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6125       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6126       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6127     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6128       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6129       .access = PL2_RW,
6130       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6131     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6132       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6133       .access = PL2_RW,
6134       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6135 };
6136 
6137 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6138     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6139       .type = ARM_CP_ALIAS | ARM_CP_IO,
6140       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6141       .access = PL2_RW,
6142       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6143       .writefn = hcr_writehigh },
6144 };
6145 
6146 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6147                                   bool isread)
6148 {
6149     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6150         return CP_ACCESS_OK;
6151     }
6152     return CP_ACCESS_TRAP_UNCATEGORIZED;
6153 }
6154 
6155 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6156     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6157       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6158       .access = PL2_RW, .accessfn = sel2_access,
6159       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6160     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6161       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6162       .access = PL2_RW, .accessfn = sel2_access,
6163       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6164 };
6165 
6166 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6167                                    bool isread)
6168 {
6169     /*
6170      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6171      * At Secure EL1 it traps to EL3 or EL2.
6172      */
6173     if (arm_current_el(env) == 3) {
6174         return CP_ACCESS_OK;
6175     }
6176     if (arm_is_secure_below_el3(env)) {
6177         if (env->cp15.scr_el3 & SCR_EEL2) {
6178             return CP_ACCESS_TRAP_EL2;
6179         }
6180         return CP_ACCESS_TRAP_EL3;
6181     }
6182     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6183     if (isread) {
6184         return CP_ACCESS_OK;
6185     }
6186     return CP_ACCESS_TRAP_UNCATEGORIZED;
6187 }
6188 
6189 static const ARMCPRegInfo el3_cp_reginfo[] = {
6190     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6191       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6192       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6193       .resetfn = scr_reset, .writefn = scr_write },
6194     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6195       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6196       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6197       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6198       .writefn = scr_write },
6199     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6200       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6201       .access = PL3_RW, .resetvalue = 0,
6202       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6203     { .name = "SDER",
6204       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6205       .access = PL3_RW, .resetvalue = 0,
6206       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6207     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6208       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6209       .writefn = vbar_write, .resetvalue = 0,
6210       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6211     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6212       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6213       .access = PL3_RW, .resetvalue = 0,
6214       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6215     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6216       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6217       .access = PL3_RW,
6218       /* no .writefn needed as this can't cause an ASID change */
6219       .resetvalue = 0,
6220       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6221     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6222       .type = ARM_CP_ALIAS,
6223       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6224       .access = PL3_RW,
6225       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6226     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6227       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6228       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6229     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6230       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6231       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6232     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6233       .type = ARM_CP_ALIAS,
6234       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6235       .access = PL3_RW,
6236       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6237     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6238       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6239       .access = PL3_RW, .writefn = vbar_write,
6240       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6241       .resetvalue = 0 },
6242     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6243       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6244       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6245       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6246     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6247       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6248       .access = PL3_RW, .resetvalue = 0,
6249       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6250     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6251       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6252       .access = PL3_RW, .type = ARM_CP_CONST,
6253       .resetvalue = 0 },
6254     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6255       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6256       .access = PL3_RW, .type = ARM_CP_CONST,
6257       .resetvalue = 0 },
6258     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6259       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6260       .access = PL3_RW, .type = ARM_CP_CONST,
6261       .resetvalue = 0 },
6262     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6263       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6264       .access = PL3_W, .type = ARM_CP_NO_RAW,
6265       .writefn = tlbi_aa64_alle3is_write },
6266     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6267       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6268       .access = PL3_W, .type = ARM_CP_NO_RAW,
6269       .writefn = tlbi_aa64_vae3is_write },
6270     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6271       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6272       .access = PL3_W, .type = ARM_CP_NO_RAW,
6273       .writefn = tlbi_aa64_vae3is_write },
6274     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6275       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6276       .access = PL3_W, .type = ARM_CP_NO_RAW,
6277       .writefn = tlbi_aa64_alle3_write },
6278     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6279       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6280       .access = PL3_W, .type = ARM_CP_NO_RAW,
6281       .writefn = tlbi_aa64_vae3_write },
6282     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6283       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6284       .access = PL3_W, .type = ARM_CP_NO_RAW,
6285       .writefn = tlbi_aa64_vae3_write },
6286 };
6287 
6288 #ifndef CONFIG_USER_ONLY
6289 /* Test if system register redirection is to occur in the current state.  */
6290 static bool redirect_for_e2h(CPUARMState *env)
6291 {
6292     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6293 }
6294 
6295 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6296 {
6297     CPReadFn *readfn;
6298 
6299     if (redirect_for_e2h(env)) {
6300         /* Switch to the saved EL2 version of the register.  */
6301         ri = ri->opaque;
6302         readfn = ri->readfn;
6303     } else {
6304         readfn = ri->orig_readfn;
6305     }
6306     if (readfn == NULL) {
6307         readfn = raw_read;
6308     }
6309     return readfn(env, ri);
6310 }
6311 
6312 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6313                           uint64_t value)
6314 {
6315     CPWriteFn *writefn;
6316 
6317     if (redirect_for_e2h(env)) {
6318         /* Switch to the saved EL2 version of the register.  */
6319         ri = ri->opaque;
6320         writefn = ri->writefn;
6321     } else {
6322         writefn = ri->orig_writefn;
6323     }
6324     if (writefn == NULL) {
6325         writefn = raw_write;
6326     }
6327     writefn(env, ri, value);
6328 }
6329 
6330 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6331 {
6332     struct E2HAlias {
6333         uint32_t src_key, dst_key, new_key;
6334         const char *src_name, *dst_name, *new_name;
6335         bool (*feature)(const ARMISARegisters *id);
6336     };
6337 
6338 #define K(op0, op1, crn, crm, op2) \
6339     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6340 
6341     static const struct E2HAlias aliases[] = {
6342         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6343           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6344         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6345           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6346         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6347           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6348         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6349           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6350         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6351           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6352         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6353           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6354         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6355           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6356         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6357           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6358         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6359           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6360         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6361           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6362         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6363           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6364         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6365           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6366         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6367           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6368         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6369           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6370         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6371           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6372         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6373           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6374 
6375         /*
6376          * Note that redirection of ZCR is mentioned in the description
6377          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6378          * not in the summary table.
6379          */
6380         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6381           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6382         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6383           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6384 
6385         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6386           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6387 
6388         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6389           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6390           isar_feature_aa64_scxtnum },
6391 
6392         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6393         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6394     };
6395 #undef K
6396 
6397     size_t i;
6398 
6399     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6400         const struct E2HAlias *a = &aliases[i];
6401         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6402         bool ok;
6403 
6404         if (a->feature && !a->feature(&cpu->isar)) {
6405             continue;
6406         }
6407 
6408         src_reg = g_hash_table_lookup(cpu->cp_regs,
6409                                       (gpointer)(uintptr_t)a->src_key);
6410         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6411                                       (gpointer)(uintptr_t)a->dst_key);
6412         g_assert(src_reg != NULL);
6413         g_assert(dst_reg != NULL);
6414 
6415         /* Cross-compare names to detect typos in the keys.  */
6416         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6417         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6418 
6419         /* None of the core system registers use opaque; we will.  */
6420         g_assert(src_reg->opaque == NULL);
6421 
6422         /* Create alias before redirection so we dup the right data. */
6423         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6424 
6425         new_reg->name = a->new_name;
6426         new_reg->type |= ARM_CP_ALIAS;
6427         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6428         new_reg->access &= PL2_RW | PL3_RW;
6429 
6430         ok = g_hash_table_insert(cpu->cp_regs,
6431                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6432         g_assert(ok);
6433 
6434         src_reg->opaque = dst_reg;
6435         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6436         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6437         if (!src_reg->raw_readfn) {
6438             src_reg->raw_readfn = raw_read;
6439         }
6440         if (!src_reg->raw_writefn) {
6441             src_reg->raw_writefn = raw_write;
6442         }
6443         src_reg->readfn = el2_e2h_read;
6444         src_reg->writefn = el2_e2h_write;
6445     }
6446 }
6447 #endif
6448 
6449 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6450                                      bool isread)
6451 {
6452     int cur_el = arm_current_el(env);
6453 
6454     if (cur_el < 2) {
6455         uint64_t hcr = arm_hcr_el2_eff(env);
6456 
6457         if (cur_el == 0) {
6458             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6459                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6460                     return CP_ACCESS_TRAP_EL2;
6461                 }
6462             } else {
6463                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6464                     return CP_ACCESS_TRAP;
6465                 }
6466                 if (hcr & HCR_TID2) {
6467                     return CP_ACCESS_TRAP_EL2;
6468                 }
6469             }
6470         } else if (hcr & HCR_TID2) {
6471             return CP_ACCESS_TRAP_EL2;
6472         }
6473     }
6474 
6475     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6476         return CP_ACCESS_TRAP_EL2;
6477     }
6478 
6479     return CP_ACCESS_OK;
6480 }
6481 
6482 /*
6483  * Check for traps to RAS registers, which are controlled
6484  * by HCR_EL2.TERR and SCR_EL3.TERR.
6485  */
6486 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6487                                   bool isread)
6488 {
6489     int el = arm_current_el(env);
6490 
6491     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6492         return CP_ACCESS_TRAP_EL2;
6493     }
6494     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6495         return CP_ACCESS_TRAP_EL3;
6496     }
6497     return CP_ACCESS_OK;
6498 }
6499 
6500 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6501 {
6502     int el = arm_current_el(env);
6503 
6504     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6505         return env->cp15.vdisr_el2;
6506     }
6507     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6508         return 0; /* RAZ/WI */
6509     }
6510     return env->cp15.disr_el1;
6511 }
6512 
6513 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6514 {
6515     int el = arm_current_el(env);
6516 
6517     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6518         env->cp15.vdisr_el2 = val;
6519         return;
6520     }
6521     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6522         return; /* RAZ/WI */
6523     }
6524     env->cp15.disr_el1 = val;
6525 }
6526 
6527 /*
6528  * Minimal RAS implementation with no Error Records.
6529  * Which means that all of the Error Record registers:
6530  *   ERXADDR_EL1
6531  *   ERXCTLR_EL1
6532  *   ERXFR_EL1
6533  *   ERXMISC0_EL1
6534  *   ERXMISC1_EL1
6535  *   ERXMISC2_EL1
6536  *   ERXMISC3_EL1
6537  *   ERXPFGCDN_EL1  (RASv1p1)
6538  *   ERXPFGCTL_EL1  (RASv1p1)
6539  *   ERXPFGF_EL1    (RASv1p1)
6540  *   ERXSTATUS_EL1
6541  * and
6542  *   ERRSELR_EL1
6543  * may generate UNDEFINED, which is the effect we get by not
6544  * listing them at all.
6545  *
6546  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6547  * is higher priority than FGT-to-EL2 so we do not need to list them
6548  * in order to check for an FGT.
6549  */
6550 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6551     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6552       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6553       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6554       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6555     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6556       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6557       .access = PL1_R, .accessfn = access_terr,
6558       .fgt = FGT_ERRIDR_EL1,
6559       .type = ARM_CP_CONST, .resetvalue = 0 },
6560     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6561       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6562       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6563     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6564       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6565       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6566 };
6567 
6568 /*
6569  * Return the exception level to which exceptions should be taken
6570  * via SVEAccessTrap.  This excludes the check for whether the exception
6571  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6572  * be found by testing 0 < fp_exception_el < sve_exception_el.
6573  *
6574  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6575  * pseudocode does *not* separate out the FP trap checks, but has them
6576  * all in one function.
6577  */
6578 int sve_exception_el(CPUARMState *env, int el)
6579 {
6580 #ifndef CONFIG_USER_ONLY
6581     if (el <= 1 && !el_is_in_host(env, el)) {
6582         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6583         case 1:
6584             if (el != 0) {
6585                 break;
6586             }
6587             /* fall through */
6588         case 0:
6589         case 2:
6590             return 1;
6591         }
6592     }
6593 
6594     if (el <= 2 && arm_is_el2_enabled(env)) {
6595         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6596         if (env->cp15.hcr_el2 & HCR_E2H) {
6597             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6598             case 1:
6599                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6600                     break;
6601                 }
6602                 /* fall through */
6603             case 0:
6604             case 2:
6605                 return 2;
6606             }
6607         } else {
6608             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6609                 return 2;
6610             }
6611         }
6612     }
6613 
6614     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6615     if (arm_feature(env, ARM_FEATURE_EL3)
6616         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6617         return 3;
6618     }
6619 #endif
6620     return 0;
6621 }
6622 
6623 /*
6624  * Return the exception level to which exceptions should be taken for SME.
6625  * C.f. the ARM pseudocode function CheckSMEAccess.
6626  */
6627 int sme_exception_el(CPUARMState *env, int el)
6628 {
6629 #ifndef CONFIG_USER_ONLY
6630     if (el <= 1 && !el_is_in_host(env, el)) {
6631         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6632         case 1:
6633             if (el != 0) {
6634                 break;
6635             }
6636             /* fall through */
6637         case 0:
6638         case 2:
6639             return 1;
6640         }
6641     }
6642 
6643     if (el <= 2 && arm_is_el2_enabled(env)) {
6644         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6645         if (env->cp15.hcr_el2 & HCR_E2H) {
6646             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6647             case 1:
6648                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6649                     break;
6650                 }
6651                 /* fall through */
6652             case 0:
6653             case 2:
6654                 return 2;
6655             }
6656         } else {
6657             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6658                 return 2;
6659             }
6660         }
6661     }
6662 
6663     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6664     if (arm_feature(env, ARM_FEATURE_EL3)
6665         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6666         return 3;
6667     }
6668 #endif
6669     return 0;
6670 }
6671 
6672 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
6673 static bool sme_fa64(CPUARMState *env, int el)
6674 {
6675     if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
6676         return false;
6677     }
6678 
6679     if (el <= 1 && !el_is_in_host(env, el)) {
6680         if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
6681             return false;
6682         }
6683     }
6684     if (el <= 2 && arm_is_el2_enabled(env)) {
6685         if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
6686             return false;
6687         }
6688     }
6689     if (arm_feature(env, ARM_FEATURE_EL3)) {
6690         if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
6691             return false;
6692         }
6693     }
6694 
6695     return true;
6696 }
6697 
6698 /*
6699  * Given that SVE is enabled, return the vector length for EL.
6700  */
6701 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6702 {
6703     ARMCPU *cpu = env_archcpu(env);
6704     uint64_t *cr = env->vfp.zcr_el;
6705     uint32_t map = cpu->sve_vq.map;
6706     uint32_t len = ARM_MAX_VQ - 1;
6707 
6708     if (sm) {
6709         cr = env->vfp.smcr_el;
6710         map = cpu->sme_vq.map;
6711     }
6712 
6713     if (el <= 1 && !el_is_in_host(env, el)) {
6714         len = MIN(len, 0xf & (uint32_t)cr[1]);
6715     }
6716     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6717         len = MIN(len, 0xf & (uint32_t)cr[2]);
6718     }
6719     if (arm_feature(env, ARM_FEATURE_EL3)) {
6720         len = MIN(len, 0xf & (uint32_t)cr[3]);
6721     }
6722 
6723     map &= MAKE_64BIT_MASK(0, len + 1);
6724     if (map != 0) {
6725         return 31 - clz32(map);
6726     }
6727 
6728     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6729     assert(sm);
6730     return ctz32(cpu->sme_vq.map);
6731 }
6732 
6733 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6734 {
6735     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6736 }
6737 
6738 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6739                       uint64_t value)
6740 {
6741     int cur_el = arm_current_el(env);
6742     int old_len = sve_vqm1_for_el(env, cur_el);
6743     int new_len;
6744 
6745     /* Bits other than [3:0] are RAZ/WI.  */
6746     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6747     raw_write(env, ri, value & 0xf);
6748 
6749     /*
6750      * Because we arrived here, we know both FP and SVE are enabled;
6751      * otherwise we would have trapped access to the ZCR_ELn register.
6752      */
6753     new_len = sve_vqm1_for_el(env, cur_el);
6754     if (new_len < old_len) {
6755         aarch64_sve_narrow_vq(env, new_len + 1);
6756     }
6757 }
6758 
6759 static const ARMCPRegInfo zcr_reginfo[] = {
6760     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6761       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6762       .access = PL1_RW, .type = ARM_CP_SVE,
6763       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6764       .writefn = zcr_write, .raw_writefn = raw_write },
6765     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6766       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6767       .access = PL2_RW, .type = ARM_CP_SVE,
6768       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6769       .writefn = zcr_write, .raw_writefn = raw_write },
6770     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6771       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6772       .access = PL3_RW, .type = ARM_CP_SVE,
6773       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6774       .writefn = zcr_write, .raw_writefn = raw_write },
6775 };
6776 
6777 #ifdef TARGET_AARCH64
6778 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6779                                     bool isread)
6780 {
6781     int el = arm_current_el(env);
6782 
6783     if (el == 0) {
6784         uint64_t sctlr = arm_sctlr(env, el);
6785         if (!(sctlr & SCTLR_EnTP2)) {
6786             return CP_ACCESS_TRAP;
6787         }
6788     }
6789     /* TODO: FEAT_FGT */
6790     if (el < 3
6791         && arm_feature(env, ARM_FEATURE_EL3)
6792         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6793         return CP_ACCESS_TRAP_EL3;
6794     }
6795     return CP_ACCESS_OK;
6796 }
6797 
6798 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6799                                  bool isread)
6800 {
6801     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6802     if (arm_current_el(env) < 3
6803         && arm_feature(env, ARM_FEATURE_EL3)
6804         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6805         return CP_ACCESS_TRAP_EL3;
6806     }
6807     return CP_ACCESS_OK;
6808 }
6809 
6810 /* ResetSVEState */
6811 static void arm_reset_sve_state(CPUARMState *env)
6812 {
6813     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6814     /* Recall that FFR is stored as pregs[16]. */
6815     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6816     vfp_set_fpcr(env, 0x0800009f);
6817 }
6818 
6819 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6820 {
6821     uint64_t change = (env->svcr ^ new) & mask;
6822 
6823     if (change == 0) {
6824         return;
6825     }
6826     env->svcr ^= change;
6827 
6828     if (change & R_SVCR_SM_MASK) {
6829         arm_reset_sve_state(env);
6830     }
6831 
6832     /*
6833      * ResetSMEState.
6834      *
6835      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6836      * on enable: while disabled, the storage is inaccessible and the
6837      * value does not matter.  We're not saving the storage in vmstate
6838      * when disabled either.
6839      */
6840     if (change & new & R_SVCR_ZA_MASK) {
6841         memset(env->zarray, 0, sizeof(env->zarray));
6842     }
6843 
6844     arm_rebuild_hflags(env);
6845 }
6846 
6847 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6848                        uint64_t value)
6849 {
6850     aarch64_set_svcr(env, value, -1);
6851 }
6852 
6853 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6854                        uint64_t value)
6855 {
6856     int cur_el = arm_current_el(env);
6857     int old_len = sve_vqm1_for_el(env, cur_el);
6858     int new_len;
6859 
6860     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6861     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6862     raw_write(env, ri, value);
6863 
6864     /*
6865      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6866      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6867      * current values for simplicity.  But for QEMU internals, we must still
6868      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6869      * above aarch64_sve_narrow_vq.
6870      */
6871     new_len = sve_vqm1_for_el(env, cur_el);
6872     if (new_len < old_len) {
6873         aarch64_sve_narrow_vq(env, new_len + 1);
6874     }
6875 }
6876 
6877 static const ARMCPRegInfo sme_reginfo[] = {
6878     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6879       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6880       .access = PL0_RW, .accessfn = access_tpidr2,
6881       .fgt = FGT_NTPIDR2_EL0,
6882       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6883     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6884       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6885       .access = PL0_RW, .type = ARM_CP_SME,
6886       .fieldoffset = offsetof(CPUARMState, svcr),
6887       .writefn = svcr_write, .raw_writefn = raw_write },
6888     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6889       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6890       .access = PL1_RW, .type = ARM_CP_SME,
6891       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6892       .writefn = smcr_write, .raw_writefn = raw_write },
6893     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6894       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6895       .access = PL2_RW, .type = ARM_CP_SME,
6896       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6897       .writefn = smcr_write, .raw_writefn = raw_write },
6898     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6899       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6900       .access = PL3_RW, .type = ARM_CP_SME,
6901       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6902       .writefn = smcr_write, .raw_writefn = raw_write },
6903     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6904       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6905       .access = PL1_R, .accessfn = access_aa64_tid1,
6906       /*
6907        * IMPLEMENTOR = 0 (software)
6908        * REVISION    = 0 (implementation defined)
6909        * SMPS        = 0 (no streaming execution priority in QEMU)
6910        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6911        */
6912       .type = ARM_CP_CONST, .resetvalue = 0, },
6913     /*
6914      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6915      */
6916     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6917       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6918       .access = PL1_RW, .accessfn = access_esm,
6919       .fgt = FGT_NSMPRI_EL1,
6920       .type = ARM_CP_CONST, .resetvalue = 0 },
6921     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6922       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6923       .access = PL2_RW, .accessfn = access_esm,
6924       .type = ARM_CP_CONST, .resetvalue = 0 },
6925 };
6926 #endif /* TARGET_AARCH64 */
6927 
6928 static void define_pmu_regs(ARMCPU *cpu)
6929 {
6930     /*
6931      * v7 performance monitor control register: same implementor
6932      * field as main ID register, and we implement four counters in
6933      * addition to the cycle count register.
6934      */
6935     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
6936     ARMCPRegInfo pmcr = {
6937         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6938         .access = PL0_RW,
6939         .fgt = FGT_PMCR_EL0,
6940         .type = ARM_CP_IO | ARM_CP_ALIAS,
6941         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6942         .accessfn = pmreg_access, .writefn = pmcr_write,
6943         .raw_writefn = raw_write,
6944     };
6945     ARMCPRegInfo pmcr64 = {
6946         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6947         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6948         .access = PL0_RW, .accessfn = pmreg_access,
6949         .fgt = FGT_PMCR_EL0,
6950         .type = ARM_CP_IO,
6951         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6952         .resetvalue = cpu->isar.reset_pmcr_el0,
6953         .writefn = pmcr_write, .raw_writefn = raw_write,
6954     };
6955 
6956     define_one_arm_cp_reg(cpu, &pmcr);
6957     define_one_arm_cp_reg(cpu, &pmcr64);
6958     for (i = 0; i < pmcrn; i++) {
6959         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6960         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6961         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6962         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6963         ARMCPRegInfo pmev_regs[] = {
6964             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6965               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6966               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6967               .fgt = FGT_PMEVCNTRN_EL0,
6968               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6969               .accessfn = pmreg_access_xevcntr },
6970             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6971               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6972               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
6973               .type = ARM_CP_IO,
6974               .fgt = FGT_PMEVCNTRN_EL0,
6975               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6976               .raw_readfn = pmevcntr_rawread,
6977               .raw_writefn = pmevcntr_rawwrite },
6978             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6979               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6980               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6981               .fgt = FGT_PMEVTYPERN_EL0,
6982               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6983               .accessfn = pmreg_access },
6984             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6985               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6986               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6987               .fgt = FGT_PMEVTYPERN_EL0,
6988               .type = ARM_CP_IO,
6989               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6990               .raw_writefn = pmevtyper_rawwrite },
6991         };
6992         define_arm_cp_regs(cpu, pmev_regs);
6993         g_free(pmevcntr_name);
6994         g_free(pmevcntr_el0_name);
6995         g_free(pmevtyper_name);
6996         g_free(pmevtyper_el0_name);
6997     }
6998     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
6999         ARMCPRegInfo v81_pmu_regs[] = {
7000             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7001               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7002               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7003               .fgt = FGT_PMCEIDN_EL0,
7004               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7005             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7006               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7007               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7008               .fgt = FGT_PMCEIDN_EL0,
7009               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7010         };
7011         define_arm_cp_regs(cpu, v81_pmu_regs);
7012     }
7013     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7014         static const ARMCPRegInfo v84_pmmir = {
7015             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7016             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7017             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7018             .fgt = FGT_PMMIR_EL1,
7019             .resetvalue = 0
7020         };
7021         define_one_arm_cp_reg(cpu, &v84_pmmir);
7022     }
7023 }
7024 
7025 #ifndef CONFIG_USER_ONLY
7026 /*
7027  * We don't know until after realize whether there's a GICv3
7028  * attached, and that is what registers the gicv3 sysregs.
7029  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7030  * at runtime.
7031  */
7032 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7033 {
7034     ARMCPU *cpu = env_archcpu(env);
7035     uint64_t pfr1 = cpu->isar.id_pfr1;
7036 
7037     if (env->gicv3state) {
7038         pfr1 |= 1 << 28;
7039     }
7040     return pfr1;
7041 }
7042 
7043 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7044 {
7045     ARMCPU *cpu = env_archcpu(env);
7046     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7047 
7048     if (env->gicv3state) {
7049         pfr0 |= 1 << 24;
7050     }
7051     return pfr0;
7052 }
7053 #endif
7054 
7055 /*
7056  * Shared logic between LORID and the rest of the LOR* registers.
7057  * Secure state exclusion has already been dealt with.
7058  */
7059 static CPAccessResult access_lor_ns(CPUARMState *env,
7060                                     const ARMCPRegInfo *ri, bool isread)
7061 {
7062     int el = arm_current_el(env);
7063 
7064     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7065         return CP_ACCESS_TRAP_EL2;
7066     }
7067     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7068         return CP_ACCESS_TRAP_EL3;
7069     }
7070     return CP_ACCESS_OK;
7071 }
7072 
7073 static CPAccessResult access_lor_other(CPUARMState *env,
7074                                        const ARMCPRegInfo *ri, bool isread)
7075 {
7076     if (arm_is_secure_below_el3(env)) {
7077         /* Access denied in secure mode.  */
7078         return CP_ACCESS_TRAP;
7079     }
7080     return access_lor_ns(env, ri, isread);
7081 }
7082 
7083 /*
7084  * A trivial implementation of ARMv8.1-LOR leaves all of these
7085  * registers fixed at 0, which indicates that there are zero
7086  * supported Limited Ordering regions.
7087  */
7088 static const ARMCPRegInfo lor_reginfo[] = {
7089     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7090       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7091       .access = PL1_RW, .accessfn = access_lor_other,
7092       .fgt = FGT_LORSA_EL1,
7093       .type = ARM_CP_CONST, .resetvalue = 0 },
7094     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7095       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7096       .access = PL1_RW, .accessfn = access_lor_other,
7097       .fgt = FGT_LOREA_EL1,
7098       .type = ARM_CP_CONST, .resetvalue = 0 },
7099     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7100       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7101       .access = PL1_RW, .accessfn = access_lor_other,
7102       .fgt = FGT_LORN_EL1,
7103       .type = ARM_CP_CONST, .resetvalue = 0 },
7104     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7105       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7106       .access = PL1_RW, .accessfn = access_lor_other,
7107       .fgt = FGT_LORC_EL1,
7108       .type = ARM_CP_CONST, .resetvalue = 0 },
7109     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7110       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7111       .access = PL1_R, .accessfn = access_lor_ns,
7112       .fgt = FGT_LORID_EL1,
7113       .type = ARM_CP_CONST, .resetvalue = 0 },
7114 };
7115 
7116 #ifdef TARGET_AARCH64
7117 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7118                                    bool isread)
7119 {
7120     int el = arm_current_el(env);
7121 
7122     if (el < 2 &&
7123         arm_is_el2_enabled(env) &&
7124         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7125         return CP_ACCESS_TRAP_EL2;
7126     }
7127     if (el < 3 &&
7128         arm_feature(env, ARM_FEATURE_EL3) &&
7129         !(env->cp15.scr_el3 & SCR_APK)) {
7130         return CP_ACCESS_TRAP_EL3;
7131     }
7132     return CP_ACCESS_OK;
7133 }
7134 
7135 static const ARMCPRegInfo pauth_reginfo[] = {
7136     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7137       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7138       .access = PL1_RW, .accessfn = access_pauth,
7139       .fgt = FGT_APDAKEY,
7140       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7141     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7142       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7143       .access = PL1_RW, .accessfn = access_pauth,
7144       .fgt = FGT_APDAKEY,
7145       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7146     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7147       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7148       .access = PL1_RW, .accessfn = access_pauth,
7149       .fgt = FGT_APDBKEY,
7150       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7151     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7152       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7153       .access = PL1_RW, .accessfn = access_pauth,
7154       .fgt = FGT_APDBKEY,
7155       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7156     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7157       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7158       .access = PL1_RW, .accessfn = access_pauth,
7159       .fgt = FGT_APGAKEY,
7160       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7161     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7162       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7163       .access = PL1_RW, .accessfn = access_pauth,
7164       .fgt = FGT_APGAKEY,
7165       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7166     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7167       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7168       .access = PL1_RW, .accessfn = access_pauth,
7169       .fgt = FGT_APIAKEY,
7170       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7171     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7172       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7173       .access = PL1_RW, .accessfn = access_pauth,
7174       .fgt = FGT_APIAKEY,
7175       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7176     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7177       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7178       .access = PL1_RW, .accessfn = access_pauth,
7179       .fgt = FGT_APIBKEY,
7180       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7181     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7182       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7183       .access = PL1_RW, .accessfn = access_pauth,
7184       .fgt = FGT_APIBKEY,
7185       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7186 };
7187 
7188 static const ARMCPRegInfo tlbirange_reginfo[] = {
7189     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7190       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7191       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7192       .fgt = FGT_TLBIRVAE1IS,
7193       .writefn = tlbi_aa64_rvae1is_write },
7194     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7196       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7197       .fgt = FGT_TLBIRVAAE1IS,
7198       .writefn = tlbi_aa64_rvae1is_write },
7199    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7200       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7201       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7202       .fgt = FGT_TLBIRVALE1IS,
7203       .writefn = tlbi_aa64_rvae1is_write },
7204     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7205       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7206       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7207       .fgt = FGT_TLBIRVAALE1IS,
7208       .writefn = tlbi_aa64_rvae1is_write },
7209     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7210       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7211       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7212       .fgt = FGT_TLBIRVAE1OS,
7213       .writefn = tlbi_aa64_rvae1is_write },
7214     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7215       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7216       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7217       .fgt = FGT_TLBIRVAAE1OS,
7218       .writefn = tlbi_aa64_rvae1is_write },
7219    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7220       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7221       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7222       .fgt = FGT_TLBIRVALE1OS,
7223       .writefn = tlbi_aa64_rvae1is_write },
7224     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7225       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7226       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7227       .fgt = FGT_TLBIRVAALE1OS,
7228       .writefn = tlbi_aa64_rvae1is_write },
7229     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7230       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7231       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7232       .fgt = FGT_TLBIRVAE1,
7233       .writefn = tlbi_aa64_rvae1_write },
7234     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7235       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7236       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7237       .fgt = FGT_TLBIRVAAE1,
7238       .writefn = tlbi_aa64_rvae1_write },
7239    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7240       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7241       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7242       .fgt = FGT_TLBIRVALE1,
7243       .writefn = tlbi_aa64_rvae1_write },
7244     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7245       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7246       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7247       .fgt = FGT_TLBIRVAALE1,
7248       .writefn = tlbi_aa64_rvae1_write },
7249     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7250       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7251       .access = PL2_W, .type = ARM_CP_NO_RAW,
7252       .writefn = tlbi_aa64_ripas2e1is_write },
7253     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7254       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7255       .access = PL2_W, .type = ARM_CP_NO_RAW,
7256       .writefn = tlbi_aa64_ripas2e1is_write },
7257     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7258       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7259       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7260       .writefn = tlbi_aa64_rvae2is_write },
7261    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7262       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7263       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7264       .writefn = tlbi_aa64_rvae2is_write },
7265     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7266       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7267       .access = PL2_W, .type = ARM_CP_NO_RAW,
7268       .writefn = tlbi_aa64_ripas2e1_write },
7269     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7270       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7271       .access = PL2_W, .type = ARM_CP_NO_RAW,
7272       .writefn = tlbi_aa64_ripas2e1_write },
7273    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7274       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7275       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7276       .writefn = tlbi_aa64_rvae2is_write },
7277    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7278       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7279       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7280       .writefn = tlbi_aa64_rvae2is_write },
7281     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7282       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7283       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7284       .writefn = tlbi_aa64_rvae2_write },
7285    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7286       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7287       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7288       .writefn = tlbi_aa64_rvae2_write },
7289    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7290       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7291       .access = PL3_W, .type = ARM_CP_NO_RAW,
7292       .writefn = tlbi_aa64_rvae3is_write },
7293    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7294       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7295       .access = PL3_W, .type = ARM_CP_NO_RAW,
7296       .writefn = tlbi_aa64_rvae3is_write },
7297    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7298       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7299       .access = PL3_W, .type = ARM_CP_NO_RAW,
7300       .writefn = tlbi_aa64_rvae3is_write },
7301    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7302       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7303       .access = PL3_W, .type = ARM_CP_NO_RAW,
7304       .writefn = tlbi_aa64_rvae3is_write },
7305    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7306       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7307       .access = PL3_W, .type = ARM_CP_NO_RAW,
7308       .writefn = tlbi_aa64_rvae3_write },
7309    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7310       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7311       .access = PL3_W, .type = ARM_CP_NO_RAW,
7312       .writefn = tlbi_aa64_rvae3_write },
7313 };
7314 
7315 static const ARMCPRegInfo tlbios_reginfo[] = {
7316     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7317       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7318       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7319       .fgt = FGT_TLBIVMALLE1OS,
7320       .writefn = tlbi_aa64_vmalle1is_write },
7321     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7322       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7323       .fgt = FGT_TLBIVAE1OS,
7324       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7325       .writefn = tlbi_aa64_vae1is_write },
7326     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7327       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7328       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7329       .fgt = FGT_TLBIASIDE1OS,
7330       .writefn = tlbi_aa64_vmalle1is_write },
7331     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7332       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7333       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7334       .fgt = FGT_TLBIVAAE1OS,
7335       .writefn = tlbi_aa64_vae1is_write },
7336     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7337       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7338       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7339       .fgt = FGT_TLBIVALE1OS,
7340       .writefn = tlbi_aa64_vae1is_write },
7341     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7342       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7343       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7344       .fgt = FGT_TLBIVAALE1OS,
7345       .writefn = tlbi_aa64_vae1is_write },
7346     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7347       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7348       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7349       .writefn = tlbi_aa64_alle2is_write },
7350     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7351       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7352       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7353       .writefn = tlbi_aa64_vae2is_write },
7354    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7355       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7356       .access = PL2_W, .type = ARM_CP_NO_RAW,
7357       .writefn = tlbi_aa64_alle1is_write },
7358     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7359       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7360       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7361       .writefn = tlbi_aa64_vae2is_write },
7362     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7363       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7364       .access = PL2_W, .type = ARM_CP_NO_RAW,
7365       .writefn = tlbi_aa64_alle1is_write },
7366     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7367       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7368       .access = PL2_W, .type = ARM_CP_NOP },
7369     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7371       .access = PL2_W, .type = ARM_CP_NOP },
7372     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7373       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7374       .access = PL2_W, .type = ARM_CP_NOP },
7375     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7376       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7377       .access = PL2_W, .type = ARM_CP_NOP },
7378     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7379       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7380       .access = PL3_W, .type = ARM_CP_NO_RAW,
7381       .writefn = tlbi_aa64_alle3is_write },
7382     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7383       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7384       .access = PL3_W, .type = ARM_CP_NO_RAW,
7385       .writefn = tlbi_aa64_vae3is_write },
7386     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7387       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7388       .access = PL3_W, .type = ARM_CP_NO_RAW,
7389       .writefn = tlbi_aa64_vae3is_write },
7390 };
7391 
7392 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7393 {
7394     Error *err = NULL;
7395     uint64_t ret;
7396 
7397     /* Success sets NZCV = 0000.  */
7398     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7399 
7400     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7401         /*
7402          * ??? Failed, for unknown reasons in the crypto subsystem.
7403          * The best we can do is log the reason and return the
7404          * timed-out indication to the guest.  There is no reason
7405          * we know to expect this failure to be transitory, so the
7406          * guest may well hang retrying the operation.
7407          */
7408         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7409                       ri->name, error_get_pretty(err));
7410         error_free(err);
7411 
7412         env->ZF = 0; /* NZCF = 0100 */
7413         return 0;
7414     }
7415     return ret;
7416 }
7417 
7418 /* We do not support re-seeding, so the two registers operate the same.  */
7419 static const ARMCPRegInfo rndr_reginfo[] = {
7420     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7421       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7422       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7423       .access = PL0_R, .readfn = rndr_readfn },
7424     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7425       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7426       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7427       .access = PL0_R, .readfn = rndr_readfn },
7428 };
7429 
7430 #ifndef CONFIG_USER_ONLY
7431 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7432                           uint64_t value)
7433 {
7434     ARMCPU *cpu = env_archcpu(env);
7435     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7436     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7437     uint64_t vaddr_in = (uint64_t) value;
7438     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7439     void *haddr;
7440     int mem_idx = cpu_mmu_index(env, false);
7441 
7442     /* This won't be crossing page boundaries */
7443     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7444     if (haddr) {
7445 
7446         ram_addr_t offset;
7447         MemoryRegion *mr;
7448 
7449         /* RCU lock is already being held */
7450         mr = memory_region_from_host(haddr, &offset);
7451 
7452         if (mr) {
7453             memory_region_writeback(mr, offset, dline_size);
7454         }
7455     }
7456 }
7457 
7458 static const ARMCPRegInfo dcpop_reg[] = {
7459     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7460       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7461       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7462       .fgt = FGT_DCCVAP,
7463       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7464 };
7465 
7466 static const ARMCPRegInfo dcpodp_reg[] = {
7467     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7469       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7470       .fgt = FGT_DCCVADP,
7471       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7472 };
7473 #endif /*CONFIG_USER_ONLY*/
7474 
7475 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7476                                        bool isread)
7477 {
7478     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7479         return CP_ACCESS_TRAP_EL2;
7480     }
7481 
7482     return CP_ACCESS_OK;
7483 }
7484 
7485 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7486                                  bool isread)
7487 {
7488     int el = arm_current_el(env);
7489 
7490     if (el < 2 && arm_is_el2_enabled(env)) {
7491         uint64_t hcr = arm_hcr_el2_eff(env);
7492         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7493             return CP_ACCESS_TRAP_EL2;
7494         }
7495     }
7496     if (el < 3 &&
7497         arm_feature(env, ARM_FEATURE_EL3) &&
7498         !(env->cp15.scr_el3 & SCR_ATA)) {
7499         return CP_ACCESS_TRAP_EL3;
7500     }
7501     return CP_ACCESS_OK;
7502 }
7503 
7504 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7505 {
7506     return env->pstate & PSTATE_TCO;
7507 }
7508 
7509 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7510 {
7511     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7512 }
7513 
7514 static const ARMCPRegInfo mte_reginfo[] = {
7515     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7516       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7517       .access = PL1_RW, .accessfn = access_mte,
7518       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7519     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7520       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7521       .access = PL1_RW, .accessfn = access_mte,
7522       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7523     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7524       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7525       .access = PL2_RW, .accessfn = access_mte,
7526       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7527     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7528       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7529       .access = PL3_RW,
7530       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7531     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7532       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7533       .access = PL1_RW, .accessfn = access_mte,
7534       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7535     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7536       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7537       .access = PL1_RW, .accessfn = access_mte,
7538       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7539     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7541       .access = PL1_R, .accessfn = access_aa64_tid5,
7542       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7543     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7544       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7545       .type = ARM_CP_NO_RAW,
7546       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7547     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7548       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7549       .type = ARM_CP_NOP, .access = PL1_W,
7550       .fgt = FGT_DCIVAC,
7551       .accessfn = aa64_cacheop_poc_access },
7552     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7553       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7554       .fgt = FGT_DCISW,
7555       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7556     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7557       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7558       .type = ARM_CP_NOP, .access = PL1_W,
7559       .fgt = FGT_DCIVAC,
7560       .accessfn = aa64_cacheop_poc_access },
7561     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7562       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7563       .fgt = FGT_DCISW,
7564       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7565     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7566       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7567       .fgt = FGT_DCCSW,
7568       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7569     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7570       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7571       .fgt = FGT_DCCSW,
7572       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7573     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7574       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7575       .fgt = FGT_DCCISW,
7576       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7577     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7578       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7579       .fgt = FGT_DCCISW,
7580       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7581 };
7582 
7583 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7584     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7585       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7586       .type = ARM_CP_CONST, .access = PL0_RW, },
7587 };
7588 
7589 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7590     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7591       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7592       .type = ARM_CP_NOP, .access = PL0_W,
7593       .fgt = FGT_DCCVAC,
7594       .accessfn = aa64_cacheop_poc_access },
7595     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7596       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7597       .type = ARM_CP_NOP, .access = PL0_W,
7598       .fgt = FGT_DCCVAC,
7599       .accessfn = aa64_cacheop_poc_access },
7600     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7601       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7602       .type = ARM_CP_NOP, .access = PL0_W,
7603       .fgt = FGT_DCCVAP,
7604       .accessfn = aa64_cacheop_poc_access },
7605     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7606       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7607       .type = ARM_CP_NOP, .access = PL0_W,
7608       .fgt = FGT_DCCVAP,
7609       .accessfn = aa64_cacheop_poc_access },
7610     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7611       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7612       .type = ARM_CP_NOP, .access = PL0_W,
7613       .fgt = FGT_DCCVADP,
7614       .accessfn = aa64_cacheop_poc_access },
7615     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7616       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7617       .type = ARM_CP_NOP, .access = PL0_W,
7618       .fgt = FGT_DCCVADP,
7619       .accessfn = aa64_cacheop_poc_access },
7620     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7621       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7622       .type = ARM_CP_NOP, .access = PL0_W,
7623       .fgt = FGT_DCCIVAC,
7624       .accessfn = aa64_cacheop_poc_access },
7625     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7626       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7627       .type = ARM_CP_NOP, .access = PL0_W,
7628       .fgt = FGT_DCCIVAC,
7629       .accessfn = aa64_cacheop_poc_access },
7630     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7631       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7632       .access = PL0_W, .type = ARM_CP_DC_GVA,
7633 #ifndef CONFIG_USER_ONLY
7634       /* Avoid overhead of an access check that always passes in user-mode */
7635       .accessfn = aa64_zva_access,
7636       .fgt = FGT_DCZVA,
7637 #endif
7638     },
7639     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7640       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7641       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7642 #ifndef CONFIG_USER_ONLY
7643       /* Avoid overhead of an access check that always passes in user-mode */
7644       .accessfn = aa64_zva_access,
7645       .fgt = FGT_DCZVA,
7646 #endif
7647     },
7648 };
7649 
7650 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7651                                      bool isread)
7652 {
7653     uint64_t hcr = arm_hcr_el2_eff(env);
7654     int el = arm_current_el(env);
7655 
7656     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7657         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7658             if (hcr & HCR_TGE) {
7659                 return CP_ACCESS_TRAP_EL2;
7660             }
7661             return CP_ACCESS_TRAP;
7662         }
7663     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7664         return CP_ACCESS_TRAP_EL2;
7665     }
7666     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7667         return CP_ACCESS_TRAP_EL2;
7668     }
7669     if (el < 3
7670         && arm_feature(env, ARM_FEATURE_EL3)
7671         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7672         return CP_ACCESS_TRAP_EL3;
7673     }
7674     return CP_ACCESS_OK;
7675 }
7676 
7677 static const ARMCPRegInfo scxtnum_reginfo[] = {
7678     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7679       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7680       .access = PL0_RW, .accessfn = access_scxtnum,
7681       .fgt = FGT_SCXTNUM_EL0,
7682       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7683     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7684       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7685       .access = PL1_RW, .accessfn = access_scxtnum,
7686       .fgt = FGT_SCXTNUM_EL1,
7687       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7688     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7689       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7690       .access = PL2_RW, .accessfn = access_scxtnum,
7691       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7692     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7693       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7694       .access = PL3_RW,
7695       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7696 };
7697 
7698 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7699                                  bool isread)
7700 {
7701     if (arm_current_el(env) == 2 &&
7702         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7703         return CP_ACCESS_TRAP_EL3;
7704     }
7705     return CP_ACCESS_OK;
7706 }
7707 
7708 static const ARMCPRegInfo fgt_reginfo[] = {
7709     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7710       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7711       .access = PL2_RW, .accessfn = access_fgt,
7712       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7713     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7714       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7715       .access = PL2_RW, .accessfn = access_fgt,
7716       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7717     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7718       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7719       .access = PL2_RW, .accessfn = access_fgt,
7720       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7721     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7722       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7723       .access = PL2_RW, .accessfn = access_fgt,
7724       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7725     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7726       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7727       .access = PL2_RW, .accessfn = access_fgt,
7728       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7729 };
7730 #endif /* TARGET_AARCH64 */
7731 
7732 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7733                                      bool isread)
7734 {
7735     int el = arm_current_el(env);
7736 
7737     if (el == 0) {
7738         uint64_t sctlr = arm_sctlr(env, el);
7739         if (!(sctlr & SCTLR_EnRCTX)) {
7740             return CP_ACCESS_TRAP;
7741         }
7742     } else if (el == 1) {
7743         uint64_t hcr = arm_hcr_el2_eff(env);
7744         if (hcr & HCR_NV) {
7745             return CP_ACCESS_TRAP_EL2;
7746         }
7747     }
7748     return CP_ACCESS_OK;
7749 }
7750 
7751 static const ARMCPRegInfo predinv_reginfo[] = {
7752     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7753       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7754       .fgt = FGT_CFPRCTX,
7755       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7756     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7757       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7758       .fgt = FGT_DVPRCTX,
7759       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7760     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7761       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7762       .fgt = FGT_CPPRCTX,
7763       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7764     /*
7765      * Note the AArch32 opcodes have a different OPC1.
7766      */
7767     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7768       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7769       .fgt = FGT_CFPRCTX,
7770       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7771     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7772       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7773       .fgt = FGT_DVPRCTX,
7774       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7775     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7776       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7777       .fgt = FGT_CPPRCTX,
7778       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7779 };
7780 
7781 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7782 {
7783     /* Read the high 32 bits of the current CCSIDR */
7784     return extract64(ccsidr_read(env, ri), 32, 32);
7785 }
7786 
7787 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7788     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7789       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7790       .access = PL1_R,
7791       .accessfn = access_tid4,
7792       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7793 };
7794 
7795 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7796                                        bool isread)
7797 {
7798     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7799         return CP_ACCESS_TRAP_EL2;
7800     }
7801 
7802     return CP_ACCESS_OK;
7803 }
7804 
7805 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7806                                        bool isread)
7807 {
7808     if (arm_feature(env, ARM_FEATURE_V8)) {
7809         return access_aa64_tid3(env, ri, isread);
7810     }
7811 
7812     return CP_ACCESS_OK;
7813 }
7814 
7815 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7816                                      bool isread)
7817 {
7818     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7819         return CP_ACCESS_TRAP_EL2;
7820     }
7821 
7822     return CP_ACCESS_OK;
7823 }
7824 
7825 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7826                                         const ARMCPRegInfo *ri, bool isread)
7827 {
7828     /*
7829      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7830      * in v7A, not in v8A.
7831      */
7832     if (!arm_feature(env, ARM_FEATURE_V8) &&
7833         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7834         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7835         return CP_ACCESS_TRAP_EL2;
7836     }
7837     return CP_ACCESS_OK;
7838 }
7839 
7840 static const ARMCPRegInfo jazelle_regs[] = {
7841     { .name = "JIDR",
7842       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7843       .access = PL1_R, .accessfn = access_jazelle,
7844       .type = ARM_CP_CONST, .resetvalue = 0 },
7845     { .name = "JOSCR",
7846       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7847       .accessfn = access_joscr_jmcr,
7848       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7849     { .name = "JMCR",
7850       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7851       .accessfn = access_joscr_jmcr,
7852       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7853 };
7854 
7855 static const ARMCPRegInfo contextidr_el2 = {
7856     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7857     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7858     .access = PL2_RW,
7859     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7860 };
7861 
7862 static const ARMCPRegInfo vhe_reginfo[] = {
7863     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7864       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7865       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7866       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7867 #ifndef CONFIG_USER_ONLY
7868     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7869       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7870       .fieldoffset =
7871         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7872       .type = ARM_CP_IO, .access = PL2_RW,
7873       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7874     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7875       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7876       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7877       .resetfn = gt_hv_timer_reset,
7878       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7879     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7880       .type = ARM_CP_IO,
7881       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7882       .access = PL2_RW,
7883       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7884       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7885     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7886       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7887       .type = ARM_CP_IO | ARM_CP_ALIAS,
7888       .access = PL2_RW, .accessfn = e2h_access,
7889       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7890       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7891     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7892       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7893       .type = ARM_CP_IO | ARM_CP_ALIAS,
7894       .access = PL2_RW, .accessfn = e2h_access,
7895       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7896       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7897     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7898       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7899       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7900       .access = PL2_RW, .accessfn = e2h_access,
7901       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7902     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7903       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7904       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7905       .access = PL2_RW, .accessfn = e2h_access,
7906       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7907     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7908       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7909       .type = ARM_CP_IO | ARM_CP_ALIAS,
7910       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7911       .access = PL2_RW, .accessfn = e2h_access,
7912       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7913     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7914       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7915       .type = ARM_CP_IO | ARM_CP_ALIAS,
7916       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7917       .access = PL2_RW, .accessfn = e2h_access,
7918       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7919 #endif
7920 };
7921 
7922 #ifndef CONFIG_USER_ONLY
7923 static const ARMCPRegInfo ats1e1_reginfo[] = {
7924     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
7925       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7926       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7927       .fgt = FGT_ATS1E1RP,
7928       .writefn = ats_write64 },
7929     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
7930       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7931       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7932       .fgt = FGT_ATS1E1WP,
7933       .writefn = ats_write64 },
7934 };
7935 
7936 static const ARMCPRegInfo ats1cp_reginfo[] = {
7937     { .name = "ATS1CPRP",
7938       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7939       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7940       .writefn = ats_write },
7941     { .name = "ATS1CPWP",
7942       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7943       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7944       .writefn = ats_write },
7945 };
7946 #endif
7947 
7948 /*
7949  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7950  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7951  * is non-zero, which is never for ARMv7, optionally in ARMv8
7952  * and mandatorily for ARMv8.2 and up.
7953  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7954  * implementation is RAZ/WI we can ignore this detail, as we
7955  * do for ACTLR.
7956  */
7957 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7958     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7959       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7960       .access = PL1_RW, .accessfn = access_tacr,
7961       .type = ARM_CP_CONST, .resetvalue = 0 },
7962     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7963       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7964       .access = PL2_RW, .type = ARM_CP_CONST,
7965       .resetvalue = 0 },
7966 };
7967 
7968 void register_cp_regs_for_features(ARMCPU *cpu)
7969 {
7970     /* Register all the coprocessor registers based on feature bits */
7971     CPUARMState *env = &cpu->env;
7972     if (arm_feature(env, ARM_FEATURE_M)) {
7973         /* M profile has no coprocessor registers */
7974         return;
7975     }
7976 
7977     define_arm_cp_regs(cpu, cp_reginfo);
7978     if (!arm_feature(env, ARM_FEATURE_V8)) {
7979         /*
7980          * Must go early as it is full of wildcards that may be
7981          * overridden by later definitions.
7982          */
7983         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7984     }
7985 
7986     if (arm_feature(env, ARM_FEATURE_V6)) {
7987         /* The ID registers all have impdef reset values */
7988         ARMCPRegInfo v6_idregs[] = {
7989             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7991               .access = PL1_R, .type = ARM_CP_CONST,
7992               .accessfn = access_aa32_tid3,
7993               .resetvalue = cpu->isar.id_pfr0 },
7994             /*
7995              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7996              * the value of the GIC field until after we define these regs.
7997              */
7998             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7999               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8000               .access = PL1_R, .type = ARM_CP_NO_RAW,
8001               .accessfn = access_aa32_tid3,
8002 #ifdef CONFIG_USER_ONLY
8003               .type = ARM_CP_CONST,
8004               .resetvalue = cpu->isar.id_pfr1,
8005 #else
8006               .type = ARM_CP_NO_RAW,
8007               .accessfn = access_aa32_tid3,
8008               .readfn = id_pfr1_read,
8009               .writefn = arm_cp_write_ignore
8010 #endif
8011             },
8012             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8013               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8014               .access = PL1_R, .type = ARM_CP_CONST,
8015               .accessfn = access_aa32_tid3,
8016               .resetvalue = cpu->isar.id_dfr0 },
8017             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8019               .access = PL1_R, .type = ARM_CP_CONST,
8020               .accessfn = access_aa32_tid3,
8021               .resetvalue = cpu->id_afr0 },
8022             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8023               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8024               .access = PL1_R, .type = ARM_CP_CONST,
8025               .accessfn = access_aa32_tid3,
8026               .resetvalue = cpu->isar.id_mmfr0 },
8027             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8028               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8029               .access = PL1_R, .type = ARM_CP_CONST,
8030               .accessfn = access_aa32_tid3,
8031               .resetvalue = cpu->isar.id_mmfr1 },
8032             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8034               .access = PL1_R, .type = ARM_CP_CONST,
8035               .accessfn = access_aa32_tid3,
8036               .resetvalue = cpu->isar.id_mmfr2 },
8037             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8039               .access = PL1_R, .type = ARM_CP_CONST,
8040               .accessfn = access_aa32_tid3,
8041               .resetvalue = cpu->isar.id_mmfr3 },
8042             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8043               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8044               .access = PL1_R, .type = ARM_CP_CONST,
8045               .accessfn = access_aa32_tid3,
8046               .resetvalue = cpu->isar.id_isar0 },
8047             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8048               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8049               .access = PL1_R, .type = ARM_CP_CONST,
8050               .accessfn = access_aa32_tid3,
8051               .resetvalue = cpu->isar.id_isar1 },
8052             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8053               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8054               .access = PL1_R, .type = ARM_CP_CONST,
8055               .accessfn = access_aa32_tid3,
8056               .resetvalue = cpu->isar.id_isar2 },
8057             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8059               .access = PL1_R, .type = ARM_CP_CONST,
8060               .accessfn = access_aa32_tid3,
8061               .resetvalue = cpu->isar.id_isar3 },
8062             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8063               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8064               .access = PL1_R, .type = ARM_CP_CONST,
8065               .accessfn = access_aa32_tid3,
8066               .resetvalue = cpu->isar.id_isar4 },
8067             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8068               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8069               .access = PL1_R, .type = ARM_CP_CONST,
8070               .accessfn = access_aa32_tid3,
8071               .resetvalue = cpu->isar.id_isar5 },
8072             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8073               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8074               .access = PL1_R, .type = ARM_CP_CONST,
8075               .accessfn = access_aa32_tid3,
8076               .resetvalue = cpu->isar.id_mmfr4 },
8077             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8079               .access = PL1_R, .type = ARM_CP_CONST,
8080               .accessfn = access_aa32_tid3,
8081               .resetvalue = cpu->isar.id_isar6 },
8082         };
8083         define_arm_cp_regs(cpu, v6_idregs);
8084         define_arm_cp_regs(cpu, v6_cp_reginfo);
8085     } else {
8086         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8087     }
8088     if (arm_feature(env, ARM_FEATURE_V6K)) {
8089         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8090     }
8091     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8092         !arm_feature(env, ARM_FEATURE_PMSA)) {
8093         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8094     }
8095     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8096         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8097     }
8098     if (arm_feature(env, ARM_FEATURE_V7)) {
8099         ARMCPRegInfo clidr = {
8100             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8101             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8102             .access = PL1_R, .type = ARM_CP_CONST,
8103             .accessfn = access_tid4,
8104             .fgt = FGT_CLIDR_EL1,
8105             .resetvalue = cpu->clidr
8106         };
8107         define_one_arm_cp_reg(cpu, &clidr);
8108         define_arm_cp_regs(cpu, v7_cp_reginfo);
8109         define_debug_regs(cpu);
8110         define_pmu_regs(cpu);
8111     } else {
8112         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8113     }
8114     if (arm_feature(env, ARM_FEATURE_V8)) {
8115         /*
8116          * v8 ID registers, which all have impdef reset values.
8117          * Note that within the ID register ranges the unused slots
8118          * must all RAZ, not UNDEF; future architecture versions may
8119          * define new registers here.
8120          * ID registers which are AArch64 views of the AArch32 ID registers
8121          * which already existed in v6 and v7 are handled elsewhere,
8122          * in v6_idregs[].
8123          */
8124         int i;
8125         ARMCPRegInfo v8_idregs[] = {
8126             /*
8127              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8128              * emulation because we don't know the right value for the
8129              * GIC field until after we define these regs.
8130              */
8131             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8132               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8133               .access = PL1_R,
8134 #ifdef CONFIG_USER_ONLY
8135               .type = ARM_CP_CONST,
8136               .resetvalue = cpu->isar.id_aa64pfr0
8137 #else
8138               .type = ARM_CP_NO_RAW,
8139               .accessfn = access_aa64_tid3,
8140               .readfn = id_aa64pfr0_read,
8141               .writefn = arm_cp_write_ignore
8142 #endif
8143             },
8144             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8145               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8146               .access = PL1_R, .type = ARM_CP_CONST,
8147               .accessfn = access_aa64_tid3,
8148               .resetvalue = cpu->isar.id_aa64pfr1},
8149             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8150               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8151               .access = PL1_R, .type = ARM_CP_CONST,
8152               .accessfn = access_aa64_tid3,
8153               .resetvalue = 0 },
8154             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8155               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8156               .access = PL1_R, .type = ARM_CP_CONST,
8157               .accessfn = access_aa64_tid3,
8158               .resetvalue = 0 },
8159             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8160               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8161               .access = PL1_R, .type = ARM_CP_CONST,
8162               .accessfn = access_aa64_tid3,
8163               .resetvalue = cpu->isar.id_aa64zfr0 },
8164             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8165               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8166               .access = PL1_R, .type = ARM_CP_CONST,
8167               .accessfn = access_aa64_tid3,
8168               .resetvalue = cpu->isar.id_aa64smfr0 },
8169             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8170               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8171               .access = PL1_R, .type = ARM_CP_CONST,
8172               .accessfn = access_aa64_tid3,
8173               .resetvalue = 0 },
8174             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8175               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8176               .access = PL1_R, .type = ARM_CP_CONST,
8177               .accessfn = access_aa64_tid3,
8178               .resetvalue = 0 },
8179             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8180               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8181               .access = PL1_R, .type = ARM_CP_CONST,
8182               .accessfn = access_aa64_tid3,
8183               .resetvalue = cpu->isar.id_aa64dfr0 },
8184             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8186               .access = PL1_R, .type = ARM_CP_CONST,
8187               .accessfn = access_aa64_tid3,
8188               .resetvalue = cpu->isar.id_aa64dfr1 },
8189             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8191               .access = PL1_R, .type = ARM_CP_CONST,
8192               .accessfn = access_aa64_tid3,
8193               .resetvalue = 0 },
8194             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8195               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8196               .access = PL1_R, .type = ARM_CP_CONST,
8197               .accessfn = access_aa64_tid3,
8198               .resetvalue = 0 },
8199             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8200               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8201               .access = PL1_R, .type = ARM_CP_CONST,
8202               .accessfn = access_aa64_tid3,
8203               .resetvalue = cpu->id_aa64afr0 },
8204             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8205               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8206               .access = PL1_R, .type = ARM_CP_CONST,
8207               .accessfn = access_aa64_tid3,
8208               .resetvalue = cpu->id_aa64afr1 },
8209             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8210               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8211               .access = PL1_R, .type = ARM_CP_CONST,
8212               .accessfn = access_aa64_tid3,
8213               .resetvalue = 0 },
8214             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8215               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8216               .access = PL1_R, .type = ARM_CP_CONST,
8217               .accessfn = access_aa64_tid3,
8218               .resetvalue = 0 },
8219             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8220               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8221               .access = PL1_R, .type = ARM_CP_CONST,
8222               .accessfn = access_aa64_tid3,
8223               .resetvalue = cpu->isar.id_aa64isar0 },
8224             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8225               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8226               .access = PL1_R, .type = ARM_CP_CONST,
8227               .accessfn = access_aa64_tid3,
8228               .resetvalue = cpu->isar.id_aa64isar1 },
8229             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8230               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8231               .access = PL1_R, .type = ARM_CP_CONST,
8232               .accessfn = access_aa64_tid3,
8233               .resetvalue = 0 },
8234             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8235               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8236               .access = PL1_R, .type = ARM_CP_CONST,
8237               .accessfn = access_aa64_tid3,
8238               .resetvalue = 0 },
8239             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8240               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8241               .access = PL1_R, .type = ARM_CP_CONST,
8242               .accessfn = access_aa64_tid3,
8243               .resetvalue = 0 },
8244             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8245               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8246               .access = PL1_R, .type = ARM_CP_CONST,
8247               .accessfn = access_aa64_tid3,
8248               .resetvalue = 0 },
8249             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8250               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8251               .access = PL1_R, .type = ARM_CP_CONST,
8252               .accessfn = access_aa64_tid3,
8253               .resetvalue = 0 },
8254             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8255               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8256               .access = PL1_R, .type = ARM_CP_CONST,
8257               .accessfn = access_aa64_tid3,
8258               .resetvalue = 0 },
8259             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8260               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8261               .access = PL1_R, .type = ARM_CP_CONST,
8262               .accessfn = access_aa64_tid3,
8263               .resetvalue = cpu->isar.id_aa64mmfr0 },
8264             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8265               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8266               .access = PL1_R, .type = ARM_CP_CONST,
8267               .accessfn = access_aa64_tid3,
8268               .resetvalue = cpu->isar.id_aa64mmfr1 },
8269             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8270               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8271               .access = PL1_R, .type = ARM_CP_CONST,
8272               .accessfn = access_aa64_tid3,
8273               .resetvalue = cpu->isar.id_aa64mmfr2 },
8274             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8275               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8276               .access = PL1_R, .type = ARM_CP_CONST,
8277               .accessfn = access_aa64_tid3,
8278               .resetvalue = 0 },
8279             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8280               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8281               .access = PL1_R, .type = ARM_CP_CONST,
8282               .accessfn = access_aa64_tid3,
8283               .resetvalue = 0 },
8284             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8285               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8286               .access = PL1_R, .type = ARM_CP_CONST,
8287               .accessfn = access_aa64_tid3,
8288               .resetvalue = 0 },
8289             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8290               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8291               .access = PL1_R, .type = ARM_CP_CONST,
8292               .accessfn = access_aa64_tid3,
8293               .resetvalue = 0 },
8294             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8295               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8296               .access = PL1_R, .type = ARM_CP_CONST,
8297               .accessfn = access_aa64_tid3,
8298               .resetvalue = 0 },
8299             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8300               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8301               .access = PL1_R, .type = ARM_CP_CONST,
8302               .accessfn = access_aa64_tid3,
8303               .resetvalue = cpu->isar.mvfr0 },
8304             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8305               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8306               .access = PL1_R, .type = ARM_CP_CONST,
8307               .accessfn = access_aa64_tid3,
8308               .resetvalue = cpu->isar.mvfr1 },
8309             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8310               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8311               .access = PL1_R, .type = ARM_CP_CONST,
8312               .accessfn = access_aa64_tid3,
8313               .resetvalue = cpu->isar.mvfr2 },
8314             /*
8315              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8316              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8317              * as RAZ, since it is in the "reserved for future ID
8318              * registers, RAZ" part of the AArch32 encoding space.
8319              */
8320             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8321               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8322               .access = PL1_R, .type = ARM_CP_CONST,
8323               .accessfn = access_aa64_tid3,
8324               .resetvalue = 0 },
8325             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8326               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8327               .access = PL1_R, .type = ARM_CP_CONST,
8328               .accessfn = access_aa64_tid3,
8329               .resetvalue = 0 },
8330             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8331               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8332               .access = PL1_R, .type = ARM_CP_CONST,
8333               .accessfn = access_aa64_tid3,
8334               .resetvalue = 0 },
8335             /*
8336              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8337              * they're also RAZ for AArch64, and in v8 are gradually
8338              * being filled with AArch64-view-of-AArch32-ID-register
8339              * for new ID registers.
8340              */
8341             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8342               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8343               .access = PL1_R, .type = ARM_CP_CONST,
8344               .accessfn = access_aa64_tid3,
8345               .resetvalue = 0 },
8346             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8347               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8348               .access = PL1_R, .type = ARM_CP_CONST,
8349               .accessfn = access_aa64_tid3,
8350               .resetvalue = cpu->isar.id_pfr2 },
8351             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8352               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8353               .access = PL1_R, .type = ARM_CP_CONST,
8354               .accessfn = access_aa64_tid3,
8355               .resetvalue = cpu->isar.id_dfr1 },
8356             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8357               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8358               .access = PL1_R, .type = ARM_CP_CONST,
8359               .accessfn = access_aa64_tid3,
8360               .resetvalue = cpu->isar.id_mmfr5 },
8361             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8362               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8363               .access = PL1_R, .type = ARM_CP_CONST,
8364               .accessfn = access_aa64_tid3,
8365               .resetvalue = 0 },
8366             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8367               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8368               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8369               .fgt = FGT_PMCEIDN_EL0,
8370               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8371             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8372               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8373               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8374               .fgt = FGT_PMCEIDN_EL0,
8375               .resetvalue = cpu->pmceid0 },
8376             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8377               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8378               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8379               .fgt = FGT_PMCEIDN_EL0,
8380               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8381             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8382               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8383               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8384               .fgt = FGT_PMCEIDN_EL0,
8385               .resetvalue = cpu->pmceid1 },
8386         };
8387 #ifdef CONFIG_USER_ONLY
8388         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8389             { .name = "ID_AA64PFR0_EL1",
8390               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8391                                R_ID_AA64PFR0_ADVSIMD_MASK |
8392                                R_ID_AA64PFR0_SVE_MASK |
8393                                R_ID_AA64PFR0_DIT_MASK,
8394               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8395                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8396             { .name = "ID_AA64PFR1_EL1",
8397               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8398                                R_ID_AA64PFR1_SSBS_MASK |
8399                                R_ID_AA64PFR1_MTE_MASK |
8400                                R_ID_AA64PFR1_SME_MASK },
8401             { .name = "ID_AA64PFR*_EL1_RESERVED",
8402               .is_glob = true },
8403             { .name = "ID_AA64ZFR0_EL1",
8404               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8405                                R_ID_AA64ZFR0_AES_MASK |
8406                                R_ID_AA64ZFR0_BITPERM_MASK |
8407                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8408                                R_ID_AA64ZFR0_SHA3_MASK |
8409                                R_ID_AA64ZFR0_SM4_MASK |
8410                                R_ID_AA64ZFR0_I8MM_MASK |
8411                                R_ID_AA64ZFR0_F32MM_MASK |
8412                                R_ID_AA64ZFR0_F64MM_MASK },
8413             { .name = "ID_AA64SMFR0_EL1",
8414               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8415                                R_ID_AA64SMFR0_B16F32_MASK |
8416                                R_ID_AA64SMFR0_F16F32_MASK |
8417                                R_ID_AA64SMFR0_I8I32_MASK |
8418                                R_ID_AA64SMFR0_F64F64_MASK |
8419                                R_ID_AA64SMFR0_I16I64_MASK |
8420                                R_ID_AA64SMFR0_FA64_MASK },
8421             { .name = "ID_AA64MMFR0_EL1",
8422               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8423               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8424                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8425             { .name = "ID_AA64MMFR1_EL1",
8426               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8427             { .name = "ID_AA64MMFR2_EL1",
8428               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8429             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8430               .is_glob = true },
8431             { .name = "ID_AA64DFR0_EL1",
8432               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8433             { .name = "ID_AA64DFR1_EL1" },
8434             { .name = "ID_AA64DFR*_EL1_RESERVED",
8435               .is_glob = true },
8436             { .name = "ID_AA64AFR*",
8437               .is_glob = true },
8438             { .name = "ID_AA64ISAR0_EL1",
8439               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8440                                R_ID_AA64ISAR0_SHA1_MASK |
8441                                R_ID_AA64ISAR0_SHA2_MASK |
8442                                R_ID_AA64ISAR0_CRC32_MASK |
8443                                R_ID_AA64ISAR0_ATOMIC_MASK |
8444                                R_ID_AA64ISAR0_RDM_MASK |
8445                                R_ID_AA64ISAR0_SHA3_MASK |
8446                                R_ID_AA64ISAR0_SM3_MASK |
8447                                R_ID_AA64ISAR0_SM4_MASK |
8448                                R_ID_AA64ISAR0_DP_MASK |
8449                                R_ID_AA64ISAR0_FHM_MASK |
8450                                R_ID_AA64ISAR0_TS_MASK |
8451                                R_ID_AA64ISAR0_RNDR_MASK },
8452             { .name = "ID_AA64ISAR1_EL1",
8453               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8454                                R_ID_AA64ISAR1_APA_MASK |
8455                                R_ID_AA64ISAR1_API_MASK |
8456                                R_ID_AA64ISAR1_JSCVT_MASK |
8457                                R_ID_AA64ISAR1_FCMA_MASK |
8458                                R_ID_AA64ISAR1_LRCPC_MASK |
8459                                R_ID_AA64ISAR1_GPA_MASK |
8460                                R_ID_AA64ISAR1_GPI_MASK |
8461                                R_ID_AA64ISAR1_FRINTTS_MASK |
8462                                R_ID_AA64ISAR1_SB_MASK |
8463                                R_ID_AA64ISAR1_BF16_MASK |
8464                                R_ID_AA64ISAR1_DGH_MASK |
8465                                R_ID_AA64ISAR1_I8MM_MASK },
8466             { .name = "ID_AA64ISAR2_EL1",
8467               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8468                                R_ID_AA64ISAR2_RPRES_MASK |
8469                                R_ID_AA64ISAR2_GPA3_MASK |
8470                                R_ID_AA64ISAR2_APA3_MASK },
8471             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8472               .is_glob = true },
8473         };
8474         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8475 #endif
8476         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8477         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8478             !arm_feature(env, ARM_FEATURE_EL2)) {
8479             ARMCPRegInfo rvbar = {
8480                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8481                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8482                 .access = PL1_R,
8483                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8484             };
8485             define_one_arm_cp_reg(cpu, &rvbar);
8486         }
8487         define_arm_cp_regs(cpu, v8_idregs);
8488         define_arm_cp_regs(cpu, v8_cp_reginfo);
8489 
8490         for (i = 4; i < 16; i++) {
8491             /*
8492              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8493              * For pre-v8 cores there are RAZ patterns for these in
8494              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8495              * v8 extends the "must RAZ" part of the ID register space
8496              * to also cover c0, 0, c{8-15}, {0-7}.
8497              * These are STATE_AA32 because in the AArch64 sysreg space
8498              * c4-c7 is where the AArch64 ID registers live (and we've
8499              * already defined those in v8_idregs[]), and c8-c15 are not
8500              * "must RAZ" for AArch64.
8501              */
8502             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8503             ARMCPRegInfo v8_aa32_raz_idregs = {
8504                 .name = name,
8505                 .state = ARM_CP_STATE_AA32,
8506                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8507                 .access = PL1_R, .type = ARM_CP_CONST,
8508                 .accessfn = access_aa64_tid3,
8509                 .resetvalue = 0 };
8510             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8511         }
8512     }
8513 
8514     /*
8515      * Register the base EL2 cpregs.
8516      * Pre v8, these registers are implemented only as part of the
8517      * Virtualization Extensions (EL2 present).  Beginning with v8,
8518      * if EL2 is missing but EL3 is enabled, mostly these become
8519      * RES0 from EL3, with some specific exceptions.
8520      */
8521     if (arm_feature(env, ARM_FEATURE_EL2)
8522         || (arm_feature(env, ARM_FEATURE_EL3)
8523             && arm_feature(env, ARM_FEATURE_V8))) {
8524         uint64_t vmpidr_def = mpidr_read_val(env);
8525         ARMCPRegInfo vpidr_regs[] = {
8526             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8527               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8528               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8529               .resetvalue = cpu->midr,
8530               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8531               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8532             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8533               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8534               .access = PL2_RW, .resetvalue = cpu->midr,
8535               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8536               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8537             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8538               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8539               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8540               .resetvalue = vmpidr_def,
8541               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8542               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8543             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8544               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8545               .access = PL2_RW, .resetvalue = vmpidr_def,
8546               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8547               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8548         };
8549         /*
8550          * The only field of MDCR_EL2 that has a defined architectural reset
8551          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8552          */
8553         ARMCPRegInfo mdcr_el2 = {
8554             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8555             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8556             .writefn = mdcr_el2_write,
8557             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8558             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8559         };
8560         define_one_arm_cp_reg(cpu, &mdcr_el2);
8561         define_arm_cp_regs(cpu, vpidr_regs);
8562         define_arm_cp_regs(cpu, el2_cp_reginfo);
8563         if (arm_feature(env, ARM_FEATURE_V8)) {
8564             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8565         }
8566         if (cpu_isar_feature(aa64_sel2, cpu)) {
8567             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8568         }
8569         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8570         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8571             ARMCPRegInfo rvbar[] = {
8572                 {
8573                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8574                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8575                     .access = PL2_R,
8576                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8577                 },
8578                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8579                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8580                     .access = PL2_R,
8581                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8582                 },
8583             };
8584             define_arm_cp_regs(cpu, rvbar);
8585         }
8586     }
8587 
8588     /* Register the base EL3 cpregs. */
8589     if (arm_feature(env, ARM_FEATURE_EL3)) {
8590         define_arm_cp_regs(cpu, el3_cp_reginfo);
8591         ARMCPRegInfo el3_regs[] = {
8592             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8593               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8594               .access = PL3_R,
8595               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8596             },
8597             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8598               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8599               .access = PL3_RW,
8600               .raw_writefn = raw_write, .writefn = sctlr_write,
8601               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8602               .resetvalue = cpu->reset_sctlr },
8603         };
8604 
8605         define_arm_cp_regs(cpu, el3_regs);
8606     }
8607     /*
8608      * The behaviour of NSACR is sufficiently various that we don't
8609      * try to describe it in a single reginfo:
8610      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8611      *     reads as constant 0xc00 from NS EL1 and NS EL2
8612      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8613      *  if v7 without EL3, register doesn't exist
8614      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8615      */
8616     if (arm_feature(env, ARM_FEATURE_EL3)) {
8617         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8618             static const ARMCPRegInfo nsacr = {
8619                 .name = "NSACR", .type = ARM_CP_CONST,
8620                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8621                 .access = PL1_RW, .accessfn = nsacr_access,
8622                 .resetvalue = 0xc00
8623             };
8624             define_one_arm_cp_reg(cpu, &nsacr);
8625         } else {
8626             static const ARMCPRegInfo nsacr = {
8627                 .name = "NSACR",
8628                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8629                 .access = PL3_RW | PL1_R,
8630                 .resetvalue = 0,
8631                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8632             };
8633             define_one_arm_cp_reg(cpu, &nsacr);
8634         }
8635     } else {
8636         if (arm_feature(env, ARM_FEATURE_V8)) {
8637             static const ARMCPRegInfo nsacr = {
8638                 .name = "NSACR", .type = ARM_CP_CONST,
8639                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8640                 .access = PL1_R,
8641                 .resetvalue = 0xc00
8642             };
8643             define_one_arm_cp_reg(cpu, &nsacr);
8644         }
8645     }
8646 
8647     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8648         if (arm_feature(env, ARM_FEATURE_V6)) {
8649             /* PMSAv6 not implemented */
8650             assert(arm_feature(env, ARM_FEATURE_V7));
8651             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8652             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8653         } else {
8654             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8655         }
8656     } else {
8657         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8658         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8659         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8660         if (cpu_isar_feature(aa32_hpd, cpu)) {
8661             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8662         }
8663     }
8664     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8665         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8666     }
8667     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8668         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8669     }
8670     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8671         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8672     }
8673     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8674         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8675     }
8676     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8677         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8678     }
8679     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8680         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8681     }
8682     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8683         define_arm_cp_regs(cpu, omap_cp_reginfo);
8684     }
8685     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8686         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8687     }
8688     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8689         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8690     }
8691     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8692         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8693     }
8694     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8695         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8696     }
8697     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8698         define_arm_cp_regs(cpu, jazelle_regs);
8699     }
8700     /*
8701      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8702      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8703      * be read-only (ie write causes UNDEF exception).
8704      */
8705     {
8706         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8707             /*
8708              * Pre-v8 MIDR space.
8709              * Note that the MIDR isn't a simple constant register because
8710              * of the TI925 behaviour where writes to another register can
8711              * cause the MIDR value to change.
8712              *
8713              * Unimplemented registers in the c15 0 0 0 space default to
8714              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8715              * and friends override accordingly.
8716              */
8717             { .name = "MIDR",
8718               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8719               .access = PL1_R, .resetvalue = cpu->midr,
8720               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8721               .readfn = midr_read,
8722               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8723               .type = ARM_CP_OVERRIDE },
8724             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8725             { .name = "DUMMY",
8726               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8727               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8728             { .name = "DUMMY",
8729               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8730               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8731             { .name = "DUMMY",
8732               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8733               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8734             { .name = "DUMMY",
8735               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8736               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8737             { .name = "DUMMY",
8738               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8739               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8740         };
8741         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8742             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8743               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8744               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8745               .fgt = FGT_MIDR_EL1,
8746               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8747               .readfn = midr_read },
8748             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8749             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8750               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8751               .access = PL1_R, .resetvalue = cpu->midr },
8752             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8753               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8754               .access = PL1_R,
8755               .accessfn = access_aa64_tid1,
8756               .fgt = FGT_REVIDR_EL1,
8757               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8758         };
8759         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8760             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8761             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8762             .access = PL1_R, .resetvalue = cpu->midr
8763         };
8764         ARMCPRegInfo id_cp_reginfo[] = {
8765             /* These are common to v8 and pre-v8 */
8766             { .name = "CTR",
8767               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8768               .access = PL1_R, .accessfn = ctr_el0_access,
8769               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8770             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8771               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8772               .access = PL0_R, .accessfn = ctr_el0_access,
8773               .fgt = FGT_CTR_EL0,
8774               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8775             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8776             { .name = "TCMTR",
8777               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8778               .access = PL1_R,
8779               .accessfn = access_aa32_tid1,
8780               .type = ARM_CP_CONST, .resetvalue = 0 },
8781         };
8782         /* TLBTR is specific to VMSA */
8783         ARMCPRegInfo id_tlbtr_reginfo = {
8784               .name = "TLBTR",
8785               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8786               .access = PL1_R,
8787               .accessfn = access_aa32_tid1,
8788               .type = ARM_CP_CONST, .resetvalue = 0,
8789         };
8790         /* MPUIR is specific to PMSA V6+ */
8791         ARMCPRegInfo id_mpuir_reginfo = {
8792               .name = "MPUIR",
8793               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8794               .access = PL1_R, .type = ARM_CP_CONST,
8795               .resetvalue = cpu->pmsav7_dregion << 8
8796         };
8797         /* HMPUIR is specific to PMSA V8 */
8798         ARMCPRegInfo id_hmpuir_reginfo = {
8799             .name = "HMPUIR",
8800             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8801             .access = PL2_R, .type = ARM_CP_CONST,
8802             .resetvalue = cpu->pmsav8r_hdregion
8803         };
8804         static const ARMCPRegInfo crn0_wi_reginfo = {
8805             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8806             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8807             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8808         };
8809 #ifdef CONFIG_USER_ONLY
8810         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8811             { .name = "MIDR_EL1",
8812               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8813                                R_MIDR_EL1_PARTNUM_MASK |
8814                                R_MIDR_EL1_ARCHITECTURE_MASK |
8815                                R_MIDR_EL1_VARIANT_MASK |
8816                                R_MIDR_EL1_IMPLEMENTER_MASK },
8817             { .name = "REVIDR_EL1" },
8818         };
8819         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8820 #endif
8821         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8822             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8823             size_t i;
8824             /*
8825              * Register the blanket "writes ignored" value first to cover the
8826              * whole space. Then update the specific ID registers to allow write
8827              * access, so that they ignore writes rather than causing them to
8828              * UNDEF.
8829              */
8830             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8831             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8832                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8833             }
8834             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8835                 id_cp_reginfo[i].access = PL1_RW;
8836             }
8837             id_mpuir_reginfo.access = PL1_RW;
8838             id_tlbtr_reginfo.access = PL1_RW;
8839         }
8840         if (arm_feature(env, ARM_FEATURE_V8)) {
8841             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8842             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8843                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8844             }
8845         } else {
8846             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8847         }
8848         define_arm_cp_regs(cpu, id_cp_reginfo);
8849         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8850             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8851         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8852                    arm_feature(env, ARM_FEATURE_V8)) {
8853             uint32_t i = 0;
8854             char *tmp_string;
8855 
8856             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8857             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8858             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8859 
8860             /* Register alias is only valid for first 32 indexes */
8861             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8862                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8863                 uint8_t opc1 = extract32(i, 4, 1);
8864                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8865 
8866                 tmp_string = g_strdup_printf("PRBAR%u", i);
8867                 ARMCPRegInfo tmp_prbarn_reginfo = {
8868                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8869                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8870                     .access = PL1_RW, .resetvalue = 0,
8871                     .accessfn = access_tvm_trvm,
8872                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8873                 };
8874                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8875                 g_free(tmp_string);
8876 
8877                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8878                 tmp_string = g_strdup_printf("PRLAR%u", i);
8879                 ARMCPRegInfo tmp_prlarn_reginfo = {
8880                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8881                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8882                     .access = PL1_RW, .resetvalue = 0,
8883                     .accessfn = access_tvm_trvm,
8884                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8885                 };
8886                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8887                 g_free(tmp_string);
8888             }
8889 
8890             /* Register alias is only valid for first 32 indexes */
8891             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
8892                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8893                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
8894                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8895 
8896                 tmp_string = g_strdup_printf("HPRBAR%u", i);
8897                 ARMCPRegInfo tmp_hprbarn_reginfo = {
8898                     .name = tmp_string,
8899                     .type = ARM_CP_NO_RAW,
8900                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8901                     .access = PL2_RW, .resetvalue = 0,
8902                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8903                 };
8904                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
8905                 g_free(tmp_string);
8906 
8907                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8908                 tmp_string = g_strdup_printf("HPRLAR%u", i);
8909                 ARMCPRegInfo tmp_hprlarn_reginfo = {
8910                     .name = tmp_string,
8911                     .type = ARM_CP_NO_RAW,
8912                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8913                     .access = PL2_RW, .resetvalue = 0,
8914                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8915                 };
8916                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
8917                 g_free(tmp_string);
8918             }
8919         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8920             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8921         }
8922     }
8923 
8924     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8925         ARMCPRegInfo mpidr_cp_reginfo[] = {
8926             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8927               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8928               .fgt = FGT_MPIDR_EL1,
8929               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8930         };
8931 #ifdef CONFIG_USER_ONLY
8932         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8933             { .name = "MPIDR_EL1",
8934               .fixed_bits = 0x0000000080000000 },
8935         };
8936         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8937 #endif
8938         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8939     }
8940 
8941     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8942         ARMCPRegInfo auxcr_reginfo[] = {
8943             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8944               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8945               .access = PL1_RW, .accessfn = access_tacr,
8946               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8947             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8948               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8949               .access = PL2_RW, .type = ARM_CP_CONST,
8950               .resetvalue = 0 },
8951             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8952               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8953               .access = PL3_RW, .type = ARM_CP_CONST,
8954               .resetvalue = 0 },
8955         };
8956         define_arm_cp_regs(cpu, auxcr_reginfo);
8957         if (cpu_isar_feature(aa32_ac2, cpu)) {
8958             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8959         }
8960     }
8961 
8962     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8963         /*
8964          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8965          * There are two flavours:
8966          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8967          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8968          *      32-bit register visible to AArch32 at a different encoding
8969          *      to the "flavour 1" register and with the bits rearranged to
8970          *      be able to squash a 64-bit address into the 32-bit view.
8971          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8972          * in future if we support AArch32-only configs of some of the
8973          * AArch64 cores we might need to add a specific feature flag
8974          * to indicate cores with "flavour 2" CBAR.
8975          */
8976         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8977             /* 32 bit view is [31:18] 0...0 [43:32]. */
8978             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8979                 | extract64(cpu->reset_cbar, 32, 12);
8980             ARMCPRegInfo cbar_reginfo[] = {
8981                 { .name = "CBAR",
8982                   .type = ARM_CP_CONST,
8983                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8984                   .access = PL1_R, .resetvalue = cbar32 },
8985                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8986                   .type = ARM_CP_CONST,
8987                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8988                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8989             };
8990             /* We don't implement a r/w 64 bit CBAR currently */
8991             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8992             define_arm_cp_regs(cpu, cbar_reginfo);
8993         } else {
8994             ARMCPRegInfo cbar = {
8995                 .name = "CBAR",
8996                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8997                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
8998                 .fieldoffset = offsetof(CPUARMState,
8999                                         cp15.c15_config_base_address)
9000             };
9001             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9002                 cbar.access = PL1_R;
9003                 cbar.fieldoffset = 0;
9004                 cbar.type = ARM_CP_CONST;
9005             }
9006             define_one_arm_cp_reg(cpu, &cbar);
9007         }
9008     }
9009 
9010     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9011         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9012             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9013               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9014               .access = PL1_RW, .writefn = vbar_write,
9015               .fgt = FGT_VBAR_EL1,
9016               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9017                                      offsetof(CPUARMState, cp15.vbar_ns) },
9018               .resetvalue = 0 },
9019         };
9020         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9021     }
9022 
9023     /* Generic registers whose values depend on the implementation */
9024     {
9025         ARMCPRegInfo sctlr = {
9026             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9027             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9028             .access = PL1_RW, .accessfn = access_tvm_trvm,
9029             .fgt = FGT_SCTLR_EL1,
9030             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9031                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9032             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9033             .raw_writefn = raw_write,
9034         };
9035         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9036             /*
9037              * Normally we would always end the TB on an SCTLR write, but Linux
9038              * arch/arm/mach-pxa/sleep.S expects two instructions following
9039              * an MMU enable to execute from cache.  Imitate this behaviour.
9040              */
9041             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9042         }
9043         define_one_arm_cp_reg(cpu, &sctlr);
9044 
9045         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9046             arm_feature(env, ARM_FEATURE_V8)) {
9047             ARMCPRegInfo vsctlr = {
9048                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9049                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9050                 .access = PL2_RW, .resetvalue = 0x0,
9051                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9052             };
9053             define_one_arm_cp_reg(cpu, &vsctlr);
9054         }
9055     }
9056 
9057     if (cpu_isar_feature(aa64_lor, cpu)) {
9058         define_arm_cp_regs(cpu, lor_reginfo);
9059     }
9060     if (cpu_isar_feature(aa64_pan, cpu)) {
9061         define_one_arm_cp_reg(cpu, &pan_reginfo);
9062     }
9063 #ifndef CONFIG_USER_ONLY
9064     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9065         define_arm_cp_regs(cpu, ats1e1_reginfo);
9066     }
9067     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9068         define_arm_cp_regs(cpu, ats1cp_reginfo);
9069     }
9070 #endif
9071     if (cpu_isar_feature(aa64_uao, cpu)) {
9072         define_one_arm_cp_reg(cpu, &uao_reginfo);
9073     }
9074 
9075     if (cpu_isar_feature(aa64_dit, cpu)) {
9076         define_one_arm_cp_reg(cpu, &dit_reginfo);
9077     }
9078     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9079         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9080     }
9081     if (cpu_isar_feature(any_ras, cpu)) {
9082         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9083     }
9084 
9085     if (cpu_isar_feature(aa64_vh, cpu) ||
9086         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9087         define_one_arm_cp_reg(cpu, &contextidr_el2);
9088     }
9089     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9090         define_arm_cp_regs(cpu, vhe_reginfo);
9091     }
9092 
9093     if (cpu_isar_feature(aa64_sve, cpu)) {
9094         define_arm_cp_regs(cpu, zcr_reginfo);
9095     }
9096 
9097     if (cpu_isar_feature(aa64_hcx, cpu)) {
9098         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9099     }
9100 
9101 #ifdef TARGET_AARCH64
9102     if (cpu_isar_feature(aa64_sme, cpu)) {
9103         define_arm_cp_regs(cpu, sme_reginfo);
9104     }
9105     if (cpu_isar_feature(aa64_pauth, cpu)) {
9106         define_arm_cp_regs(cpu, pauth_reginfo);
9107     }
9108     if (cpu_isar_feature(aa64_rndr, cpu)) {
9109         define_arm_cp_regs(cpu, rndr_reginfo);
9110     }
9111     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9112         define_arm_cp_regs(cpu, tlbirange_reginfo);
9113     }
9114     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9115         define_arm_cp_regs(cpu, tlbios_reginfo);
9116     }
9117 #ifndef CONFIG_USER_ONLY
9118     /* Data Cache clean instructions up to PoP */
9119     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9120         define_one_arm_cp_reg(cpu, dcpop_reg);
9121 
9122         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9123             define_one_arm_cp_reg(cpu, dcpodp_reg);
9124         }
9125     }
9126 #endif /*CONFIG_USER_ONLY*/
9127 
9128     /*
9129      * If full MTE is enabled, add all of the system registers.
9130      * If only "instructions available at EL0" are enabled,
9131      * then define only a RAZ/WI version of PSTATE.TCO.
9132      */
9133     if (cpu_isar_feature(aa64_mte, cpu)) {
9134         define_arm_cp_regs(cpu, mte_reginfo);
9135         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9136     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9137         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9138         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9139     }
9140 
9141     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9142         define_arm_cp_regs(cpu, scxtnum_reginfo);
9143     }
9144 
9145     if (cpu_isar_feature(aa64_fgt, cpu)) {
9146         define_arm_cp_regs(cpu, fgt_reginfo);
9147     }
9148 #endif
9149 
9150     if (cpu_isar_feature(any_predinv, cpu)) {
9151         define_arm_cp_regs(cpu, predinv_reginfo);
9152     }
9153 
9154     if (cpu_isar_feature(any_ccidx, cpu)) {
9155         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9156     }
9157 
9158 #ifndef CONFIG_USER_ONLY
9159     /*
9160      * Register redirections and aliases must be done last,
9161      * after the registers from the other extensions have been defined.
9162      */
9163     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9164         define_arm_vh_e2h_redirects_aliases(cpu);
9165     }
9166 #endif
9167 }
9168 
9169 /* Sort alphabetically by type name, except for "any". */
9170 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9171 {
9172     ObjectClass *class_a = (ObjectClass *)a;
9173     ObjectClass *class_b = (ObjectClass *)b;
9174     const char *name_a, *name_b;
9175 
9176     name_a = object_class_get_name(class_a);
9177     name_b = object_class_get_name(class_b);
9178     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9179         return 1;
9180     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9181         return -1;
9182     } else {
9183         return strcmp(name_a, name_b);
9184     }
9185 }
9186 
9187 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9188 {
9189     ObjectClass *oc = data;
9190     CPUClass *cc = CPU_CLASS(oc);
9191     const char *typename;
9192     char *name;
9193 
9194     typename = object_class_get_name(oc);
9195     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9196     if (cc->deprecation_note) {
9197         qemu_printf("  %s (deprecated)\n", name);
9198     } else {
9199         qemu_printf("  %s\n", name);
9200     }
9201     g_free(name);
9202 }
9203 
9204 void arm_cpu_list(void)
9205 {
9206     GSList *list;
9207 
9208     list = object_class_get_list(TYPE_ARM_CPU, false);
9209     list = g_slist_sort(list, arm_cpu_list_compare);
9210     qemu_printf("Available CPUs:\n");
9211     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9212     g_slist_free(list);
9213 }
9214 
9215 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
9216 {
9217     ObjectClass *oc = data;
9218     CpuDefinitionInfoList **cpu_list = user_data;
9219     CpuDefinitionInfo *info;
9220     const char *typename;
9221 
9222     typename = object_class_get_name(oc);
9223     info = g_malloc0(sizeof(*info));
9224     info->name = g_strndup(typename,
9225                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
9226     info->q_typename = g_strdup(typename);
9227 
9228     QAPI_LIST_PREPEND(*cpu_list, info);
9229 }
9230 
9231 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
9232 {
9233     CpuDefinitionInfoList *cpu_list = NULL;
9234     GSList *list;
9235 
9236     list = object_class_get_list(TYPE_ARM_CPU, false);
9237     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
9238     g_slist_free(list);
9239 
9240     return cpu_list;
9241 }
9242 
9243 /*
9244  * Private utility function for define_one_arm_cp_reg_with_opaque():
9245  * add a single reginfo struct to the hash table.
9246  */
9247 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9248                                    void *opaque, CPState state,
9249                                    CPSecureState secstate,
9250                                    int crm, int opc1, int opc2,
9251                                    const char *name)
9252 {
9253     CPUARMState *env = &cpu->env;
9254     uint32_t key;
9255     ARMCPRegInfo *r2;
9256     bool is64 = r->type & ARM_CP_64BIT;
9257     bool ns = secstate & ARM_CP_SECSTATE_NS;
9258     int cp = r->cp;
9259     size_t name_len;
9260     bool make_const;
9261 
9262     switch (state) {
9263     case ARM_CP_STATE_AA32:
9264         /* We assume it is a cp15 register if the .cp field is left unset. */
9265         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9266             cp = 15;
9267         }
9268         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9269         break;
9270     case ARM_CP_STATE_AA64:
9271         /*
9272          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9273          * cp == 0 as equivalent to the value for "standard guest-visible
9274          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9275          * in their AArch64 view (the .cp value may be non-zero for the
9276          * benefit of the AArch32 view).
9277          */
9278         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9279             cp = CP_REG_ARM64_SYSREG_CP;
9280         }
9281         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9282         break;
9283     default:
9284         g_assert_not_reached();
9285     }
9286 
9287     /* Overriding of an existing definition must be explicitly requested. */
9288     if (!(r->type & ARM_CP_OVERRIDE)) {
9289         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9290         if (oldreg) {
9291             assert(oldreg->type & ARM_CP_OVERRIDE);
9292         }
9293     }
9294 
9295     /*
9296      * Eliminate registers that are not present because the EL is missing.
9297      * Doing this here makes it easier to put all registers for a given
9298      * feature into the same ARMCPRegInfo array and define them all at once.
9299      */
9300     make_const = false;
9301     if (arm_feature(env, ARM_FEATURE_EL3)) {
9302         /*
9303          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9304          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9305          */
9306         int min_el = ctz32(r->access) / 2;
9307         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9308             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9309                 return;
9310             }
9311             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9312         }
9313     } else {
9314         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9315                                  ? PL2_RW : PL1_RW);
9316         if ((r->access & max_el) == 0) {
9317             return;
9318         }
9319     }
9320 
9321     /* Combine cpreg and name into one allocation. */
9322     name_len = strlen(name) + 1;
9323     r2 = g_malloc(sizeof(*r2) + name_len);
9324     *r2 = *r;
9325     r2->name = memcpy(r2 + 1, name, name_len);
9326 
9327     /*
9328      * Update fields to match the instantiation, overwiting wildcards
9329      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9330      */
9331     r2->cp = cp;
9332     r2->crm = crm;
9333     r2->opc1 = opc1;
9334     r2->opc2 = opc2;
9335     r2->state = state;
9336     r2->secure = secstate;
9337     if (opaque) {
9338         r2->opaque = opaque;
9339     }
9340 
9341     if (make_const) {
9342         /* This should not have been a very special register to begin. */
9343         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9344         assert(old_special == 0 || old_special == ARM_CP_NOP);
9345         /*
9346          * Set the special function to CONST, retaining the other flags.
9347          * This is important for e.g. ARM_CP_SVE so that we still
9348          * take the SVE trap if CPTR_EL3.EZ == 0.
9349          */
9350         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9351         /*
9352          * Usually, these registers become RES0, but there are a few
9353          * special cases like VPIDR_EL2 which have a constant non-zero
9354          * value with writes ignored.
9355          */
9356         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9357             r2->resetvalue = 0;
9358         }
9359         /*
9360          * ARM_CP_CONST has precedence, so removing the callbacks and
9361          * offsets are not strictly necessary, but it is potentially
9362          * less confusing to debug later.
9363          */
9364         r2->readfn = NULL;
9365         r2->writefn = NULL;
9366         r2->raw_readfn = NULL;
9367         r2->raw_writefn = NULL;
9368         r2->resetfn = NULL;
9369         r2->fieldoffset = 0;
9370         r2->bank_fieldoffsets[0] = 0;
9371         r2->bank_fieldoffsets[1] = 0;
9372     } else {
9373         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9374 
9375         if (isbanked) {
9376             /*
9377              * Register is banked (using both entries in array).
9378              * Overwriting fieldoffset as the array is only used to define
9379              * banked registers but later only fieldoffset is used.
9380              */
9381             r2->fieldoffset = r->bank_fieldoffsets[ns];
9382         }
9383         if (state == ARM_CP_STATE_AA32) {
9384             if (isbanked) {
9385                 /*
9386                  * If the register is banked then we don't need to migrate or
9387                  * reset the 32-bit instance in certain cases:
9388                  *
9389                  * 1) If the register has both 32-bit and 64-bit instances
9390                  *    then we can count on the 64-bit instance taking care
9391                  *    of the non-secure bank.
9392                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9393                  *    version taking care of the secure bank.  This requires
9394                  *    that separate 32 and 64-bit definitions are provided.
9395                  */
9396                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9397                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9398                     r2->type |= ARM_CP_ALIAS;
9399                 }
9400             } else if ((secstate != r->secure) && !ns) {
9401                 /*
9402                  * The register is not banked so we only want to allow
9403                  * migration of the non-secure instance.
9404                  */
9405                 r2->type |= ARM_CP_ALIAS;
9406             }
9407 
9408             if (HOST_BIG_ENDIAN &&
9409                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9410                 r2->fieldoffset += sizeof(uint32_t);
9411             }
9412         }
9413     }
9414 
9415     /*
9416      * By convention, for wildcarded registers only the first
9417      * entry is used for migration; the others are marked as
9418      * ALIAS so we don't try to transfer the register
9419      * multiple times. Special registers (ie NOP/WFI) are
9420      * never migratable and not even raw-accessible.
9421      */
9422     if (r2->type & ARM_CP_SPECIAL_MASK) {
9423         r2->type |= ARM_CP_NO_RAW;
9424     }
9425     if (((r->crm == CP_ANY) && crm != 0) ||
9426         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9427         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9428         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9429     }
9430 
9431     /*
9432      * Check that raw accesses are either forbidden or handled. Note that
9433      * we can't assert this earlier because the setup of fieldoffset for
9434      * banked registers has to be done first.
9435      */
9436     if (!(r2->type & ARM_CP_NO_RAW)) {
9437         assert(!raw_accessors_invalid(r2));
9438     }
9439 
9440     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9441 }
9442 
9443 
9444 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9445                                        const ARMCPRegInfo *r, void *opaque)
9446 {
9447     /*
9448      * Define implementations of coprocessor registers.
9449      * We store these in a hashtable because typically
9450      * there are less than 150 registers in a space which
9451      * is 16*16*16*8*8 = 262144 in size.
9452      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9453      * If a register is defined twice then the second definition is
9454      * used, so this can be used to define some generic registers and
9455      * then override them with implementation specific variations.
9456      * At least one of the original and the second definition should
9457      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9458      * against accidental use.
9459      *
9460      * The state field defines whether the register is to be
9461      * visible in the AArch32 or AArch64 execution state. If the
9462      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9463      * reginfo structure for the AArch32 view, which sees the lower
9464      * 32 bits of the 64 bit register.
9465      *
9466      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9467      * be wildcarded. AArch64 registers are always considered to be 64
9468      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9469      * the register, if any.
9470      */
9471     int crm, opc1, opc2;
9472     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9473     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9474     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9475     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9476     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9477     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9478     CPState state;
9479 
9480     /* 64 bit registers have only CRm and Opc1 fields */
9481     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9482     /* op0 only exists in the AArch64 encodings */
9483     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9484     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9485     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9486     /*
9487      * This API is only for Arm's system coprocessors (14 and 15) or
9488      * (M-profile or v7A-and-earlier only) for implementation defined
9489      * coprocessors in the range 0..7.  Our decode assumes this, since
9490      * 8..13 can be used for other insns including VFP and Neon. See
9491      * valid_cp() in translate.c.  Assert here that we haven't tried
9492      * to use an invalid coprocessor number.
9493      */
9494     switch (r->state) {
9495     case ARM_CP_STATE_BOTH:
9496         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9497         if (r->cp == 0) {
9498             break;
9499         }
9500         /* fall through */
9501     case ARM_CP_STATE_AA32:
9502         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9503             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9504             assert(r->cp >= 14 && r->cp <= 15);
9505         } else {
9506             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9507         }
9508         break;
9509     case ARM_CP_STATE_AA64:
9510         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9511         break;
9512     default:
9513         g_assert_not_reached();
9514     }
9515     /*
9516      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9517      * encodes a minimum access level for the register. We roll this
9518      * runtime check into our general permission check code, so check
9519      * here that the reginfo's specified permissions are strict enough
9520      * to encompass the generic architectural permission check.
9521      */
9522     if (r->state != ARM_CP_STATE_AA32) {
9523         CPAccessRights mask;
9524         switch (r->opc1) {
9525         case 0:
9526             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9527             mask = PL0U_R | PL1_RW;
9528             break;
9529         case 1: case 2:
9530             /* min_EL EL1 */
9531             mask = PL1_RW;
9532             break;
9533         case 3:
9534             /* min_EL EL0 */
9535             mask = PL0_RW;
9536             break;
9537         case 4:
9538         case 5:
9539             /* min_EL EL2 */
9540             mask = PL2_RW;
9541             break;
9542         case 6:
9543             /* min_EL EL3 */
9544             mask = PL3_RW;
9545             break;
9546         case 7:
9547             /* min_EL EL1, secure mode only (we don't check the latter) */
9548             mask = PL1_RW;
9549             break;
9550         default:
9551             /* broken reginfo with out-of-range opc1 */
9552             g_assert_not_reached();
9553         }
9554         /* assert our permissions are not too lax (stricter is fine) */
9555         assert((r->access & ~mask) == 0);
9556     }
9557 
9558     /*
9559      * Check that the register definition has enough info to handle
9560      * reads and writes if they are permitted.
9561      */
9562     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9563         if (r->access & PL3_R) {
9564             assert((r->fieldoffset ||
9565                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9566                    r->readfn);
9567         }
9568         if (r->access & PL3_W) {
9569             assert((r->fieldoffset ||
9570                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9571                    r->writefn);
9572         }
9573     }
9574 
9575     for (crm = crmmin; crm <= crmmax; crm++) {
9576         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9577             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9578                 for (state = ARM_CP_STATE_AA32;
9579                      state <= ARM_CP_STATE_AA64; state++) {
9580                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9581                         continue;
9582                     }
9583                     if (state == ARM_CP_STATE_AA32) {
9584                         /*
9585                          * Under AArch32 CP registers can be common
9586                          * (same for secure and non-secure world) or banked.
9587                          */
9588                         char *name;
9589 
9590                         switch (r->secure) {
9591                         case ARM_CP_SECSTATE_S:
9592                         case ARM_CP_SECSTATE_NS:
9593                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9594                                                    r->secure, crm, opc1, opc2,
9595                                                    r->name);
9596                             break;
9597                         case ARM_CP_SECSTATE_BOTH:
9598                             name = g_strdup_printf("%s_S", r->name);
9599                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9600                                                    ARM_CP_SECSTATE_S,
9601                                                    crm, opc1, opc2, name);
9602                             g_free(name);
9603                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9604                                                    ARM_CP_SECSTATE_NS,
9605                                                    crm, opc1, opc2, r->name);
9606                             break;
9607                         default:
9608                             g_assert_not_reached();
9609                         }
9610                     } else {
9611                         /*
9612                          * AArch64 registers get mapped to non-secure instance
9613                          * of AArch32
9614                          */
9615                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9616                                                ARM_CP_SECSTATE_NS,
9617                                                crm, opc1, opc2, r->name);
9618                     }
9619                 }
9620             }
9621         }
9622     }
9623 }
9624 
9625 /* Define a whole list of registers */
9626 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9627                                         void *opaque, size_t len)
9628 {
9629     size_t i;
9630     for (i = 0; i < len; ++i) {
9631         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9632     }
9633 }
9634 
9635 /*
9636  * Modify ARMCPRegInfo for access from userspace.
9637  *
9638  * This is a data driven modification directed by
9639  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9640  * user-space cannot alter any values and dynamic values pertaining to
9641  * execution state are hidden from user space view anyway.
9642  */
9643 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9644                                  const ARMCPRegUserSpaceInfo *mods,
9645                                  size_t mods_len)
9646 {
9647     for (size_t mi = 0; mi < mods_len; ++mi) {
9648         const ARMCPRegUserSpaceInfo *m = mods + mi;
9649         GPatternSpec *pat = NULL;
9650 
9651         if (m->is_glob) {
9652             pat = g_pattern_spec_new(m->name);
9653         }
9654         for (size_t ri = 0; ri < regs_len; ++ri) {
9655             ARMCPRegInfo *r = regs + ri;
9656 
9657             if (pat && g_pattern_match_string(pat, r->name)) {
9658                 r->type = ARM_CP_CONST;
9659                 r->access = PL0U_R;
9660                 r->resetvalue = 0;
9661                 /* continue */
9662             } else if (strcmp(r->name, m->name) == 0) {
9663                 r->type = ARM_CP_CONST;
9664                 r->access = PL0U_R;
9665                 r->resetvalue &= m->exported_bits;
9666                 r->resetvalue |= m->fixed_bits;
9667                 break;
9668             }
9669         }
9670         if (pat) {
9671             g_pattern_spec_free(pat);
9672         }
9673     }
9674 }
9675 
9676 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9677 {
9678     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9679 }
9680 
9681 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9682                          uint64_t value)
9683 {
9684     /* Helper coprocessor write function for write-ignore registers */
9685 }
9686 
9687 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9688 {
9689     /* Helper coprocessor write function for read-as-zero registers */
9690     return 0;
9691 }
9692 
9693 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9694 {
9695     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9696 }
9697 
9698 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9699 {
9700     /*
9701      * Return true if it is not valid for us to switch to
9702      * this CPU mode (ie all the UNPREDICTABLE cases in
9703      * the ARM ARM CPSRWriteByInstr pseudocode).
9704      */
9705 
9706     /* Changes to or from Hyp via MSR and CPS are illegal. */
9707     if (write_type == CPSRWriteByInstr &&
9708         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9709          mode == ARM_CPU_MODE_HYP)) {
9710         return 1;
9711     }
9712 
9713     switch (mode) {
9714     case ARM_CPU_MODE_USR:
9715         return 0;
9716     case ARM_CPU_MODE_SYS:
9717     case ARM_CPU_MODE_SVC:
9718     case ARM_CPU_MODE_ABT:
9719     case ARM_CPU_MODE_UND:
9720     case ARM_CPU_MODE_IRQ:
9721     case ARM_CPU_MODE_FIQ:
9722         /*
9723          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9724          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9725          */
9726         /*
9727          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9728          * and CPS are treated as illegal mode changes.
9729          */
9730         if (write_type == CPSRWriteByInstr &&
9731             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9732             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9733             return 1;
9734         }
9735         return 0;
9736     case ARM_CPU_MODE_HYP:
9737         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9738     case ARM_CPU_MODE_MON:
9739         return arm_current_el(env) < 3;
9740     default:
9741         return 1;
9742     }
9743 }
9744 
9745 uint32_t cpsr_read(CPUARMState *env)
9746 {
9747     int ZF;
9748     ZF = (env->ZF == 0);
9749     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9750         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9751         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9752         | ((env->condexec_bits & 0xfc) << 8)
9753         | (env->GE << 16) | (env->daif & CPSR_AIF);
9754 }
9755 
9756 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9757                 CPSRWriteType write_type)
9758 {
9759     uint32_t changed_daif;
9760     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9761         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9762 
9763     if (mask & CPSR_NZCV) {
9764         env->ZF = (~val) & CPSR_Z;
9765         env->NF = val;
9766         env->CF = (val >> 29) & 1;
9767         env->VF = (val << 3) & 0x80000000;
9768     }
9769     if (mask & CPSR_Q) {
9770         env->QF = ((val & CPSR_Q) != 0);
9771     }
9772     if (mask & CPSR_T) {
9773         env->thumb = ((val & CPSR_T) != 0);
9774     }
9775     if (mask & CPSR_IT_0_1) {
9776         env->condexec_bits &= ~3;
9777         env->condexec_bits |= (val >> 25) & 3;
9778     }
9779     if (mask & CPSR_IT_2_7) {
9780         env->condexec_bits &= 3;
9781         env->condexec_bits |= (val >> 8) & 0xfc;
9782     }
9783     if (mask & CPSR_GE) {
9784         env->GE = (val >> 16) & 0xf;
9785     }
9786 
9787     /*
9788      * In a V7 implementation that includes the security extensions but does
9789      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9790      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9791      * bits respectively.
9792      *
9793      * In a V8 implementation, it is permitted for privileged software to
9794      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9795      */
9796     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9797         arm_feature(env, ARM_FEATURE_EL3) &&
9798         !arm_feature(env, ARM_FEATURE_EL2) &&
9799         !arm_is_secure(env)) {
9800 
9801         changed_daif = (env->daif ^ val) & mask;
9802 
9803         if (changed_daif & CPSR_A) {
9804             /*
9805              * Check to see if we are allowed to change the masking of async
9806              * abort exceptions from a non-secure state.
9807              */
9808             if (!(env->cp15.scr_el3 & SCR_AW)) {
9809                 qemu_log_mask(LOG_GUEST_ERROR,
9810                               "Ignoring attempt to switch CPSR_A flag from "
9811                               "non-secure world with SCR.AW bit clear\n");
9812                 mask &= ~CPSR_A;
9813             }
9814         }
9815 
9816         if (changed_daif & CPSR_F) {
9817             /*
9818              * Check to see if we are allowed to change the masking of FIQ
9819              * exceptions from a non-secure state.
9820              */
9821             if (!(env->cp15.scr_el3 & SCR_FW)) {
9822                 qemu_log_mask(LOG_GUEST_ERROR,
9823                               "Ignoring attempt to switch CPSR_F flag from "
9824                               "non-secure world with SCR.FW bit clear\n");
9825                 mask &= ~CPSR_F;
9826             }
9827 
9828             /*
9829              * Check whether non-maskable FIQ (NMFI) support is enabled.
9830              * If this bit is set software is not allowed to mask
9831              * FIQs, but is allowed to set CPSR_F to 0.
9832              */
9833             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9834                 (val & CPSR_F)) {
9835                 qemu_log_mask(LOG_GUEST_ERROR,
9836                               "Ignoring attempt to enable CPSR_F flag "
9837                               "(non-maskable FIQ [NMFI] support enabled)\n");
9838                 mask &= ~CPSR_F;
9839             }
9840         }
9841     }
9842 
9843     env->daif &= ~(CPSR_AIF & mask);
9844     env->daif |= val & CPSR_AIF & mask;
9845 
9846     if (write_type != CPSRWriteRaw &&
9847         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9848         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9849             /*
9850              * Note that we can only get here in USR mode if this is a
9851              * gdb stub write; for this case we follow the architectural
9852              * behaviour for guest writes in USR mode of ignoring an attempt
9853              * to switch mode. (Those are caught by translate.c for writes
9854              * triggered by guest instructions.)
9855              */
9856             mask &= ~CPSR_M;
9857         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9858             /*
9859              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9860              * v7, and has defined behaviour in v8:
9861              *  + leave CPSR.M untouched
9862              *  + allow changes to the other CPSR fields
9863              *  + set PSTATE.IL
9864              * For user changes via the GDB stub, we don't set PSTATE.IL,
9865              * as this would be unnecessarily harsh for a user error.
9866              */
9867             mask &= ~CPSR_M;
9868             if (write_type != CPSRWriteByGDBStub &&
9869                 arm_feature(env, ARM_FEATURE_V8)) {
9870                 mask |= CPSR_IL;
9871                 val |= CPSR_IL;
9872             }
9873             qemu_log_mask(LOG_GUEST_ERROR,
9874                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9875                           aarch32_mode_name(env->uncached_cpsr),
9876                           aarch32_mode_name(val));
9877         } else {
9878             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9879                           write_type == CPSRWriteExceptionReturn ?
9880                           "Exception return from AArch32" :
9881                           "AArch32 mode switch from",
9882                           aarch32_mode_name(env->uncached_cpsr),
9883                           aarch32_mode_name(val), env->regs[15]);
9884             switch_mode(env, val & CPSR_M);
9885         }
9886     }
9887     mask &= ~CACHED_CPSR_BITS;
9888     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9889     if (rebuild_hflags) {
9890         arm_rebuild_hflags(env);
9891     }
9892 }
9893 
9894 /* Sign/zero extend */
9895 uint32_t HELPER(sxtb16)(uint32_t x)
9896 {
9897     uint32_t res;
9898     res = (uint16_t)(int8_t)x;
9899     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9900     return res;
9901 }
9902 
9903 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9904 {
9905     /*
9906      * Take a division-by-zero exception if necessary; otherwise return
9907      * to get the usual non-trapping division behaviour (result of 0)
9908      */
9909     if (arm_feature(env, ARM_FEATURE_M)
9910         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9911         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9912     }
9913 }
9914 
9915 uint32_t HELPER(uxtb16)(uint32_t x)
9916 {
9917     uint32_t res;
9918     res = (uint16_t)(uint8_t)x;
9919     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9920     return res;
9921 }
9922 
9923 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9924 {
9925     if (den == 0) {
9926         handle_possible_div0_trap(env, GETPC());
9927         return 0;
9928     }
9929     if (num == INT_MIN && den == -1) {
9930         return INT_MIN;
9931     }
9932     return num / den;
9933 }
9934 
9935 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9936 {
9937     if (den == 0) {
9938         handle_possible_div0_trap(env, GETPC());
9939         return 0;
9940     }
9941     return num / den;
9942 }
9943 
9944 uint32_t HELPER(rbit)(uint32_t x)
9945 {
9946     return revbit32(x);
9947 }
9948 
9949 #ifdef CONFIG_USER_ONLY
9950 
9951 static void switch_mode(CPUARMState *env, int mode)
9952 {
9953     ARMCPU *cpu = env_archcpu(env);
9954 
9955     if (mode != ARM_CPU_MODE_USR) {
9956         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9957     }
9958 }
9959 
9960 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9961                                  uint32_t cur_el, bool secure)
9962 {
9963     return 1;
9964 }
9965 
9966 void aarch64_sync_64_to_32(CPUARMState *env)
9967 {
9968     g_assert_not_reached();
9969 }
9970 
9971 #else
9972 
9973 static void switch_mode(CPUARMState *env, int mode)
9974 {
9975     int old_mode;
9976     int i;
9977 
9978     old_mode = env->uncached_cpsr & CPSR_M;
9979     if (mode == old_mode) {
9980         return;
9981     }
9982 
9983     if (old_mode == ARM_CPU_MODE_FIQ) {
9984         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9985         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9986     } else if (mode == ARM_CPU_MODE_FIQ) {
9987         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9988         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9989     }
9990 
9991     i = bank_number(old_mode);
9992     env->banked_r13[i] = env->regs[13];
9993     env->banked_spsr[i] = env->spsr;
9994 
9995     i = bank_number(mode);
9996     env->regs[13] = env->banked_r13[i];
9997     env->spsr = env->banked_spsr[i];
9998 
9999     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10000     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10001 }
10002 
10003 /*
10004  * Physical Interrupt Target EL Lookup Table
10005  *
10006  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10007  *
10008  * The below multi-dimensional table is used for looking up the target
10009  * exception level given numerous condition criteria.  Specifically, the
10010  * target EL is based on SCR and HCR routing controls as well as the
10011  * currently executing EL and secure state.
10012  *
10013  *    Dimensions:
10014  *    target_el_table[2][2][2][2][2][4]
10015  *                    |  |  |  |  |  +--- Current EL
10016  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10017  *                    |  |  |  +--------- HCR mask override
10018  *                    |  |  +------------ SCR exec state control
10019  *                    |  +--------------- SCR mask override
10020  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10021  *
10022  *    The table values are as such:
10023  *    0-3 = EL0-EL3
10024  *     -1 = Cannot occur
10025  *
10026  * The ARM ARM target EL table includes entries indicating that an "exception
10027  * is not taken".  The two cases where this is applicable are:
10028  *    1) An exception is taken from EL3 but the SCR does not have the exception
10029  *    routed to EL3.
10030  *    2) An exception is taken from EL2 but the HCR does not have the exception
10031  *    routed to EL2.
10032  * In these two cases, the below table contain a target of EL1.  This value is
10033  * returned as it is expected that the consumer of the table data will check
10034  * for "target EL >= current EL" to ensure the exception is not taken.
10035  *
10036  *            SCR     HCR
10037  *         64  EA     AMO                 From
10038  *        BIT IRQ     IMO      Non-secure         Secure
10039  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10040  */
10041 static const int8_t target_el_table[2][2][2][2][2][4] = {
10042     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10043        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10044       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10045        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10046      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10047        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10048       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10049        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10050     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10051        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10052       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10053        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10054      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10055        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10056       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10057        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10058 };
10059 
10060 /*
10061  * Determine the target EL for physical exceptions
10062  */
10063 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10064                                  uint32_t cur_el, bool secure)
10065 {
10066     CPUARMState *env = cs->env_ptr;
10067     bool rw;
10068     bool scr;
10069     bool hcr;
10070     int target_el;
10071     /* Is the highest EL AArch64? */
10072     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10073     uint64_t hcr_el2;
10074 
10075     if (arm_feature(env, ARM_FEATURE_EL3)) {
10076         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10077     } else {
10078         /*
10079          * Either EL2 is the highest EL (and so the EL2 register width
10080          * is given by is64); or there is no EL2 or EL3, in which case
10081          * the value of 'rw' does not affect the table lookup anyway.
10082          */
10083         rw = is64;
10084     }
10085 
10086     hcr_el2 = arm_hcr_el2_eff(env);
10087     switch (excp_idx) {
10088     case EXCP_IRQ:
10089         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10090         hcr = hcr_el2 & HCR_IMO;
10091         break;
10092     case EXCP_FIQ:
10093         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10094         hcr = hcr_el2 & HCR_FMO;
10095         break;
10096     default:
10097         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10098         hcr = hcr_el2 & HCR_AMO;
10099         break;
10100     };
10101 
10102     /*
10103      * For these purposes, TGE and AMO/IMO/FMO both force the
10104      * interrupt to EL2.  Fold TGE into the bit extracted above.
10105      */
10106     hcr |= (hcr_el2 & HCR_TGE) != 0;
10107 
10108     /* Perform a table-lookup for the target EL given the current state */
10109     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10110 
10111     assert(target_el > 0);
10112 
10113     return target_el;
10114 }
10115 
10116 void arm_log_exception(CPUState *cs)
10117 {
10118     int idx = cs->exception_index;
10119 
10120     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10121         const char *exc = NULL;
10122         static const char * const excnames[] = {
10123             [EXCP_UDEF] = "Undefined Instruction",
10124             [EXCP_SWI] = "SVC",
10125             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10126             [EXCP_DATA_ABORT] = "Data Abort",
10127             [EXCP_IRQ] = "IRQ",
10128             [EXCP_FIQ] = "FIQ",
10129             [EXCP_BKPT] = "Breakpoint",
10130             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10131             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10132             [EXCP_HVC] = "Hypervisor Call",
10133             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10134             [EXCP_SMC] = "Secure Monitor Call",
10135             [EXCP_VIRQ] = "Virtual IRQ",
10136             [EXCP_VFIQ] = "Virtual FIQ",
10137             [EXCP_SEMIHOST] = "Semihosting call",
10138             [EXCP_NOCP] = "v7M NOCP UsageFault",
10139             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10140             [EXCP_STKOF] = "v8M STKOF UsageFault",
10141             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10142             [EXCP_LSERR] = "v8M LSERR UsageFault",
10143             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10144             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10145             [EXCP_VSERR] = "Virtual SERR",
10146         };
10147 
10148         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10149             exc = excnames[idx];
10150         }
10151         if (!exc) {
10152             exc = "unknown";
10153         }
10154         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10155                       idx, exc, cs->cpu_index);
10156     }
10157 }
10158 
10159 /*
10160  * Function used to synchronize QEMU's AArch64 register set with AArch32
10161  * register set.  This is necessary when switching between AArch32 and AArch64
10162  * execution state.
10163  */
10164 void aarch64_sync_32_to_64(CPUARMState *env)
10165 {
10166     int i;
10167     uint32_t mode = env->uncached_cpsr & CPSR_M;
10168 
10169     /* We can blanket copy R[0:7] to X[0:7] */
10170     for (i = 0; i < 8; i++) {
10171         env->xregs[i] = env->regs[i];
10172     }
10173 
10174     /*
10175      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10176      * Otherwise, they come from the banked user regs.
10177      */
10178     if (mode == ARM_CPU_MODE_FIQ) {
10179         for (i = 8; i < 13; i++) {
10180             env->xregs[i] = env->usr_regs[i - 8];
10181         }
10182     } else {
10183         for (i = 8; i < 13; i++) {
10184             env->xregs[i] = env->regs[i];
10185         }
10186     }
10187 
10188     /*
10189      * Registers x13-x23 are the various mode SP and FP registers. Registers
10190      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10191      * from the mode banked register.
10192      */
10193     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10194         env->xregs[13] = env->regs[13];
10195         env->xregs[14] = env->regs[14];
10196     } else {
10197         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10198         /* HYP is an exception in that it is copied from r14 */
10199         if (mode == ARM_CPU_MODE_HYP) {
10200             env->xregs[14] = env->regs[14];
10201         } else {
10202             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10203         }
10204     }
10205 
10206     if (mode == ARM_CPU_MODE_HYP) {
10207         env->xregs[15] = env->regs[13];
10208     } else {
10209         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10210     }
10211 
10212     if (mode == ARM_CPU_MODE_IRQ) {
10213         env->xregs[16] = env->regs[14];
10214         env->xregs[17] = env->regs[13];
10215     } else {
10216         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10217         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10218     }
10219 
10220     if (mode == ARM_CPU_MODE_SVC) {
10221         env->xregs[18] = env->regs[14];
10222         env->xregs[19] = env->regs[13];
10223     } else {
10224         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10225         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10226     }
10227 
10228     if (mode == ARM_CPU_MODE_ABT) {
10229         env->xregs[20] = env->regs[14];
10230         env->xregs[21] = env->regs[13];
10231     } else {
10232         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10233         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10234     }
10235 
10236     if (mode == ARM_CPU_MODE_UND) {
10237         env->xregs[22] = env->regs[14];
10238         env->xregs[23] = env->regs[13];
10239     } else {
10240         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10241         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10242     }
10243 
10244     /*
10245      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10246      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10247      * FIQ bank for r8-r14.
10248      */
10249     if (mode == ARM_CPU_MODE_FIQ) {
10250         for (i = 24; i < 31; i++) {
10251             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10252         }
10253     } else {
10254         for (i = 24; i < 29; i++) {
10255             env->xregs[i] = env->fiq_regs[i - 24];
10256         }
10257         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10258         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10259     }
10260 
10261     env->pc = env->regs[15];
10262 }
10263 
10264 /*
10265  * Function used to synchronize QEMU's AArch32 register set with AArch64
10266  * register set.  This is necessary when switching between AArch32 and AArch64
10267  * execution state.
10268  */
10269 void aarch64_sync_64_to_32(CPUARMState *env)
10270 {
10271     int i;
10272     uint32_t mode = env->uncached_cpsr & CPSR_M;
10273 
10274     /* We can blanket copy X[0:7] to R[0:7] */
10275     for (i = 0; i < 8; i++) {
10276         env->regs[i] = env->xregs[i];
10277     }
10278 
10279     /*
10280      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10281      * Otherwise, we copy x8-x12 into the banked user regs.
10282      */
10283     if (mode == ARM_CPU_MODE_FIQ) {
10284         for (i = 8; i < 13; i++) {
10285             env->usr_regs[i - 8] = env->xregs[i];
10286         }
10287     } else {
10288         for (i = 8; i < 13; i++) {
10289             env->regs[i] = env->xregs[i];
10290         }
10291     }
10292 
10293     /*
10294      * Registers r13 & r14 depend on the current mode.
10295      * If we are in a given mode, we copy the corresponding x registers to r13
10296      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10297      * for the mode.
10298      */
10299     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10300         env->regs[13] = env->xregs[13];
10301         env->regs[14] = env->xregs[14];
10302     } else {
10303         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10304 
10305         /*
10306          * HYP is an exception in that it does not have its own banked r14 but
10307          * shares the USR r14
10308          */
10309         if (mode == ARM_CPU_MODE_HYP) {
10310             env->regs[14] = env->xregs[14];
10311         } else {
10312             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10313         }
10314     }
10315 
10316     if (mode == ARM_CPU_MODE_HYP) {
10317         env->regs[13] = env->xregs[15];
10318     } else {
10319         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10320     }
10321 
10322     if (mode == ARM_CPU_MODE_IRQ) {
10323         env->regs[14] = env->xregs[16];
10324         env->regs[13] = env->xregs[17];
10325     } else {
10326         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10327         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10328     }
10329 
10330     if (mode == ARM_CPU_MODE_SVC) {
10331         env->regs[14] = env->xregs[18];
10332         env->regs[13] = env->xregs[19];
10333     } else {
10334         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10335         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10336     }
10337 
10338     if (mode == ARM_CPU_MODE_ABT) {
10339         env->regs[14] = env->xregs[20];
10340         env->regs[13] = env->xregs[21];
10341     } else {
10342         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10343         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10344     }
10345 
10346     if (mode == ARM_CPU_MODE_UND) {
10347         env->regs[14] = env->xregs[22];
10348         env->regs[13] = env->xregs[23];
10349     } else {
10350         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10351         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10352     }
10353 
10354     /*
10355      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10356      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10357      * FIQ bank for r8-r14.
10358      */
10359     if (mode == ARM_CPU_MODE_FIQ) {
10360         for (i = 24; i < 31; i++) {
10361             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10362         }
10363     } else {
10364         for (i = 24; i < 29; i++) {
10365             env->fiq_regs[i - 24] = env->xregs[i];
10366         }
10367         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10368         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10369     }
10370 
10371     env->regs[15] = env->pc;
10372 }
10373 
10374 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10375                                    uint32_t mask, uint32_t offset,
10376                                    uint32_t newpc)
10377 {
10378     int new_el;
10379 
10380     /* Change the CPU state so as to actually take the exception. */
10381     switch_mode(env, new_mode);
10382 
10383     /*
10384      * For exceptions taken to AArch32 we must clear the SS bit in both
10385      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10386      */
10387     env->pstate &= ~PSTATE_SS;
10388     env->spsr = cpsr_read(env);
10389     /* Clear IT bits.  */
10390     env->condexec_bits = 0;
10391     /* Switch to the new mode, and to the correct instruction set.  */
10392     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10393 
10394     /* This must be after mode switching. */
10395     new_el = arm_current_el(env);
10396 
10397     /* Set new mode endianness */
10398     env->uncached_cpsr &= ~CPSR_E;
10399     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10400         env->uncached_cpsr |= CPSR_E;
10401     }
10402     /* J and IL must always be cleared for exception entry */
10403     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10404     env->daif |= mask;
10405 
10406     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10407         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10408             env->uncached_cpsr |= CPSR_SSBS;
10409         } else {
10410             env->uncached_cpsr &= ~CPSR_SSBS;
10411         }
10412     }
10413 
10414     if (new_mode == ARM_CPU_MODE_HYP) {
10415         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10416         env->elr_el[2] = env->regs[15];
10417     } else {
10418         /* CPSR.PAN is normally preserved preserved unless...  */
10419         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10420             switch (new_el) {
10421             case 3:
10422                 if (!arm_is_secure_below_el3(env)) {
10423                     /* ... the target is EL3, from non-secure state.  */
10424                     env->uncached_cpsr &= ~CPSR_PAN;
10425                     break;
10426                 }
10427                 /* ... the target is EL3, from secure state ... */
10428                 /* fall through */
10429             case 1:
10430                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10431                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10432                     env->uncached_cpsr |= CPSR_PAN;
10433                 }
10434                 break;
10435             }
10436         }
10437         /*
10438          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10439          * and we should just guard the thumb mode on V4
10440          */
10441         if (arm_feature(env, ARM_FEATURE_V4T)) {
10442             env->thumb =
10443                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10444         }
10445         env->regs[14] = env->regs[15] + offset;
10446     }
10447     env->regs[15] = newpc;
10448     arm_rebuild_hflags(env);
10449 }
10450 
10451 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10452 {
10453     /*
10454      * Handle exception entry to Hyp mode; this is sufficiently
10455      * different to entry to other AArch32 modes that we handle it
10456      * separately here.
10457      *
10458      * The vector table entry used is always the 0x14 Hyp mode entry point,
10459      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10460      * The offset applied to the preferred return address is always zero
10461      * (see DDI0487C.a section G1.12.3).
10462      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10463      */
10464     uint32_t addr, mask;
10465     ARMCPU *cpu = ARM_CPU(cs);
10466     CPUARMState *env = &cpu->env;
10467 
10468     switch (cs->exception_index) {
10469     case EXCP_UDEF:
10470         addr = 0x04;
10471         break;
10472     case EXCP_SWI:
10473         addr = 0x08;
10474         break;
10475     case EXCP_BKPT:
10476         /* Fall through to prefetch abort.  */
10477     case EXCP_PREFETCH_ABORT:
10478         env->cp15.ifar_s = env->exception.vaddress;
10479         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10480                       (uint32_t)env->exception.vaddress);
10481         addr = 0x0c;
10482         break;
10483     case EXCP_DATA_ABORT:
10484         env->cp15.dfar_s = env->exception.vaddress;
10485         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10486                       (uint32_t)env->exception.vaddress);
10487         addr = 0x10;
10488         break;
10489     case EXCP_IRQ:
10490         addr = 0x18;
10491         break;
10492     case EXCP_FIQ:
10493         addr = 0x1c;
10494         break;
10495     case EXCP_HVC:
10496         addr = 0x08;
10497         break;
10498     case EXCP_HYP_TRAP:
10499         addr = 0x14;
10500         break;
10501     default:
10502         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10503     }
10504 
10505     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10506         if (!arm_feature(env, ARM_FEATURE_V8)) {
10507             /*
10508              * QEMU syndrome values are v8-style. v7 has the IL bit
10509              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10510              * If this is a v7 CPU, squash the IL bit in those cases.
10511              */
10512             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10513                 (cs->exception_index == EXCP_DATA_ABORT &&
10514                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10515                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10516                 env->exception.syndrome &= ~ARM_EL_IL;
10517             }
10518         }
10519         env->cp15.esr_el[2] = env->exception.syndrome;
10520     }
10521 
10522     if (arm_current_el(env) != 2 && addr < 0x14) {
10523         addr = 0x14;
10524     }
10525 
10526     mask = 0;
10527     if (!(env->cp15.scr_el3 & SCR_EA)) {
10528         mask |= CPSR_A;
10529     }
10530     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10531         mask |= CPSR_I;
10532     }
10533     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10534         mask |= CPSR_F;
10535     }
10536 
10537     addr += env->cp15.hvbar;
10538 
10539     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10540 }
10541 
10542 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10543 {
10544     ARMCPU *cpu = ARM_CPU(cs);
10545     CPUARMState *env = &cpu->env;
10546     uint32_t addr;
10547     uint32_t mask;
10548     int new_mode;
10549     uint32_t offset;
10550     uint32_t moe;
10551 
10552     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10553     switch (syn_get_ec(env->exception.syndrome)) {
10554     case EC_BREAKPOINT:
10555     case EC_BREAKPOINT_SAME_EL:
10556         moe = 1;
10557         break;
10558     case EC_WATCHPOINT:
10559     case EC_WATCHPOINT_SAME_EL:
10560         moe = 10;
10561         break;
10562     case EC_AA32_BKPT:
10563         moe = 3;
10564         break;
10565     case EC_VECTORCATCH:
10566         moe = 5;
10567         break;
10568     default:
10569         moe = 0;
10570         break;
10571     }
10572 
10573     if (moe) {
10574         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10575     }
10576 
10577     if (env->exception.target_el == 2) {
10578         arm_cpu_do_interrupt_aarch32_hyp(cs);
10579         return;
10580     }
10581 
10582     switch (cs->exception_index) {
10583     case EXCP_UDEF:
10584         new_mode = ARM_CPU_MODE_UND;
10585         addr = 0x04;
10586         mask = CPSR_I;
10587         if (env->thumb) {
10588             offset = 2;
10589         } else {
10590             offset = 4;
10591         }
10592         break;
10593     case EXCP_SWI:
10594         new_mode = ARM_CPU_MODE_SVC;
10595         addr = 0x08;
10596         mask = CPSR_I;
10597         /* The PC already points to the next instruction.  */
10598         offset = 0;
10599         break;
10600     case EXCP_BKPT:
10601         /* Fall through to prefetch abort.  */
10602     case EXCP_PREFETCH_ABORT:
10603         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10604         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10605         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10606                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10607         new_mode = ARM_CPU_MODE_ABT;
10608         addr = 0x0c;
10609         mask = CPSR_A | CPSR_I;
10610         offset = 4;
10611         break;
10612     case EXCP_DATA_ABORT:
10613         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10614         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10615         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10616                       env->exception.fsr,
10617                       (uint32_t)env->exception.vaddress);
10618         new_mode = ARM_CPU_MODE_ABT;
10619         addr = 0x10;
10620         mask = CPSR_A | CPSR_I;
10621         offset = 8;
10622         break;
10623     case EXCP_IRQ:
10624         new_mode = ARM_CPU_MODE_IRQ;
10625         addr = 0x18;
10626         /* Disable IRQ and imprecise data aborts.  */
10627         mask = CPSR_A | CPSR_I;
10628         offset = 4;
10629         if (env->cp15.scr_el3 & SCR_IRQ) {
10630             /* IRQ routed to monitor mode */
10631             new_mode = ARM_CPU_MODE_MON;
10632             mask |= CPSR_F;
10633         }
10634         break;
10635     case EXCP_FIQ:
10636         new_mode = ARM_CPU_MODE_FIQ;
10637         addr = 0x1c;
10638         /* Disable FIQ, IRQ and imprecise data aborts.  */
10639         mask = CPSR_A | CPSR_I | CPSR_F;
10640         if (env->cp15.scr_el3 & SCR_FIQ) {
10641             /* FIQ routed to monitor mode */
10642             new_mode = ARM_CPU_MODE_MON;
10643         }
10644         offset = 4;
10645         break;
10646     case EXCP_VIRQ:
10647         new_mode = ARM_CPU_MODE_IRQ;
10648         addr = 0x18;
10649         /* Disable IRQ and imprecise data aborts.  */
10650         mask = CPSR_A | CPSR_I;
10651         offset = 4;
10652         break;
10653     case EXCP_VFIQ:
10654         new_mode = ARM_CPU_MODE_FIQ;
10655         addr = 0x1c;
10656         /* Disable FIQ, IRQ and imprecise data aborts.  */
10657         mask = CPSR_A | CPSR_I | CPSR_F;
10658         offset = 4;
10659         break;
10660     case EXCP_VSERR:
10661         {
10662             /*
10663              * Note that this is reported as a data abort, but the DFAR
10664              * has an UNKNOWN value.  Construct the SError syndrome from
10665              * AET and ExT fields.
10666              */
10667             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10668 
10669             if (extended_addresses_enabled(env)) {
10670                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10671             } else {
10672                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10673             }
10674             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10675             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10676             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10677                           env->exception.fsr);
10678 
10679             new_mode = ARM_CPU_MODE_ABT;
10680             addr = 0x10;
10681             mask = CPSR_A | CPSR_I;
10682             offset = 8;
10683         }
10684         break;
10685     case EXCP_SMC:
10686         new_mode = ARM_CPU_MODE_MON;
10687         addr = 0x08;
10688         mask = CPSR_A | CPSR_I | CPSR_F;
10689         offset = 0;
10690         break;
10691     default:
10692         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10693         return; /* Never happens.  Keep compiler happy.  */
10694     }
10695 
10696     if (new_mode == ARM_CPU_MODE_MON) {
10697         addr += env->cp15.mvbar;
10698     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10699         /* High vectors. When enabled, base address cannot be remapped. */
10700         addr += 0xffff0000;
10701     } else {
10702         /*
10703          * ARM v7 architectures provide a vector base address register to remap
10704          * the interrupt vector table.
10705          * This register is only followed in non-monitor mode, and is banked.
10706          * Note: only bits 31:5 are valid.
10707          */
10708         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10709     }
10710 
10711     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10712         env->cp15.scr_el3 &= ~SCR_NS;
10713     }
10714 
10715     take_aarch32_exception(env, new_mode, mask, offset, addr);
10716 }
10717 
10718 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10719 {
10720     /*
10721      * Return the register number of the AArch64 view of the AArch32
10722      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10723      * be that of the AArch32 mode the exception came from.
10724      */
10725     int mode = env->uncached_cpsr & CPSR_M;
10726 
10727     switch (aarch32_reg) {
10728     case 0 ... 7:
10729         return aarch32_reg;
10730     case 8 ... 12:
10731         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10732     case 13:
10733         switch (mode) {
10734         case ARM_CPU_MODE_USR:
10735         case ARM_CPU_MODE_SYS:
10736             return 13;
10737         case ARM_CPU_MODE_HYP:
10738             return 15;
10739         case ARM_CPU_MODE_IRQ:
10740             return 17;
10741         case ARM_CPU_MODE_SVC:
10742             return 19;
10743         case ARM_CPU_MODE_ABT:
10744             return 21;
10745         case ARM_CPU_MODE_UND:
10746             return 23;
10747         case ARM_CPU_MODE_FIQ:
10748             return 29;
10749         default:
10750             g_assert_not_reached();
10751         }
10752     case 14:
10753         switch (mode) {
10754         case ARM_CPU_MODE_USR:
10755         case ARM_CPU_MODE_SYS:
10756         case ARM_CPU_MODE_HYP:
10757             return 14;
10758         case ARM_CPU_MODE_IRQ:
10759             return 16;
10760         case ARM_CPU_MODE_SVC:
10761             return 18;
10762         case ARM_CPU_MODE_ABT:
10763             return 20;
10764         case ARM_CPU_MODE_UND:
10765             return 22;
10766         case ARM_CPU_MODE_FIQ:
10767             return 30;
10768         default:
10769             g_assert_not_reached();
10770         }
10771     case 15:
10772         return 31;
10773     default:
10774         g_assert_not_reached();
10775     }
10776 }
10777 
10778 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10779 {
10780     uint32_t ret = cpsr_read(env);
10781 
10782     /* Move DIT to the correct location for SPSR_ELx */
10783     if (ret & CPSR_DIT) {
10784         ret &= ~CPSR_DIT;
10785         ret |= PSTATE_DIT;
10786     }
10787     /* Merge PSTATE.SS into SPSR_ELx */
10788     ret |= env->pstate & PSTATE_SS;
10789 
10790     return ret;
10791 }
10792 
10793 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10794 {
10795     /* Return true if this syndrome value is a synchronous external abort */
10796     switch (syn_get_ec(syndrome)) {
10797     case EC_INSNABORT:
10798     case EC_INSNABORT_SAME_EL:
10799     case EC_DATAABORT:
10800     case EC_DATAABORT_SAME_EL:
10801         /* Look at fault status code for all the synchronous ext abort cases */
10802         switch (syndrome & 0x3f) {
10803         case 0x10:
10804         case 0x13:
10805         case 0x14:
10806         case 0x15:
10807         case 0x16:
10808         case 0x17:
10809             return true;
10810         default:
10811             return false;
10812         }
10813     default:
10814         return false;
10815     }
10816 }
10817 
10818 /* Handle exception entry to a target EL which is using AArch64 */
10819 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10820 {
10821     ARMCPU *cpu = ARM_CPU(cs);
10822     CPUARMState *env = &cpu->env;
10823     unsigned int new_el = env->exception.target_el;
10824     target_ulong addr = env->cp15.vbar_el[new_el];
10825     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10826     unsigned int old_mode;
10827     unsigned int cur_el = arm_current_el(env);
10828     int rt;
10829 
10830     if (tcg_enabled()) {
10831         /*
10832          * Note that new_el can never be 0.  If cur_el is 0, then
10833          * el0_a64 is is_a64(), else el0_a64 is ignored.
10834          */
10835         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10836     }
10837 
10838     if (cur_el < new_el) {
10839         /*
10840          * Entry vector offset depends on whether the implemented EL
10841          * immediately lower than the target level is using AArch32 or AArch64
10842          */
10843         bool is_aa64;
10844         uint64_t hcr;
10845 
10846         switch (new_el) {
10847         case 3:
10848             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10849             break;
10850         case 2:
10851             hcr = arm_hcr_el2_eff(env);
10852             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10853                 is_aa64 = (hcr & HCR_RW) != 0;
10854                 break;
10855             }
10856             /* fall through */
10857         case 1:
10858             is_aa64 = is_a64(env);
10859             break;
10860         default:
10861             g_assert_not_reached();
10862         }
10863 
10864         if (is_aa64) {
10865             addr += 0x400;
10866         } else {
10867             addr += 0x600;
10868         }
10869     } else if (pstate_read(env) & PSTATE_SP) {
10870         addr += 0x200;
10871     }
10872 
10873     switch (cs->exception_index) {
10874     case EXCP_PREFETCH_ABORT:
10875     case EXCP_DATA_ABORT:
10876         /*
10877          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10878          * to be taken to the SError vector entrypoint.
10879          */
10880         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10881             syndrome_is_sync_extabt(env->exception.syndrome)) {
10882             addr += 0x180;
10883         }
10884         env->cp15.far_el[new_el] = env->exception.vaddress;
10885         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10886                       env->cp15.far_el[new_el]);
10887         /* fall through */
10888     case EXCP_BKPT:
10889     case EXCP_UDEF:
10890     case EXCP_SWI:
10891     case EXCP_HVC:
10892     case EXCP_HYP_TRAP:
10893     case EXCP_SMC:
10894         switch (syn_get_ec(env->exception.syndrome)) {
10895         case EC_ADVSIMDFPACCESSTRAP:
10896             /*
10897              * QEMU internal FP/SIMD syndromes from AArch32 include the
10898              * TA and coproc fields which are only exposed if the exception
10899              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10900              * AArch64 format syndrome.
10901              */
10902             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10903             break;
10904         case EC_CP14RTTRAP:
10905         case EC_CP15RTTRAP:
10906         case EC_CP14DTTRAP:
10907             /*
10908              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10909              * the raw register field from the insn; when taking this to
10910              * AArch64 we must convert it to the AArch64 view of the register
10911              * number. Notice that we read a 4-bit AArch32 register number and
10912              * write back a 5-bit AArch64 one.
10913              */
10914             rt = extract32(env->exception.syndrome, 5, 4);
10915             rt = aarch64_regnum(env, rt);
10916             env->exception.syndrome = deposit32(env->exception.syndrome,
10917                                                 5, 5, rt);
10918             break;
10919         case EC_CP15RRTTRAP:
10920         case EC_CP14RRTTRAP:
10921             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10922             rt = extract32(env->exception.syndrome, 5, 4);
10923             rt = aarch64_regnum(env, rt);
10924             env->exception.syndrome = deposit32(env->exception.syndrome,
10925                                                 5, 5, rt);
10926             rt = extract32(env->exception.syndrome, 10, 4);
10927             rt = aarch64_regnum(env, rt);
10928             env->exception.syndrome = deposit32(env->exception.syndrome,
10929                                                 10, 5, rt);
10930             break;
10931         }
10932         env->cp15.esr_el[new_el] = env->exception.syndrome;
10933         break;
10934     case EXCP_IRQ:
10935     case EXCP_VIRQ:
10936         addr += 0x80;
10937         break;
10938     case EXCP_FIQ:
10939     case EXCP_VFIQ:
10940         addr += 0x100;
10941         break;
10942     case EXCP_VSERR:
10943         addr += 0x180;
10944         /* Construct the SError syndrome from IDS and ISS fields. */
10945         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
10946         env->cp15.esr_el[new_el] = env->exception.syndrome;
10947         break;
10948     default:
10949         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10950     }
10951 
10952     if (is_a64(env)) {
10953         old_mode = pstate_read(env);
10954         aarch64_save_sp(env, arm_current_el(env));
10955         env->elr_el[new_el] = env->pc;
10956     } else {
10957         old_mode = cpsr_read_for_spsr_elx(env);
10958         env->elr_el[new_el] = env->regs[15];
10959 
10960         aarch64_sync_32_to_64(env);
10961 
10962         env->condexec_bits = 0;
10963     }
10964     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10965 
10966     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10967                   env->elr_el[new_el]);
10968 
10969     if (cpu_isar_feature(aa64_pan, cpu)) {
10970         /* The value of PSTATE.PAN is normally preserved, except when ... */
10971         new_mode |= old_mode & PSTATE_PAN;
10972         switch (new_el) {
10973         case 2:
10974             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10975             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10976                 != (HCR_E2H | HCR_TGE)) {
10977                 break;
10978             }
10979             /* fall through */
10980         case 1:
10981             /* ... the target is EL1 ... */
10982             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10983             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10984                 new_mode |= PSTATE_PAN;
10985             }
10986             break;
10987         }
10988     }
10989     if (cpu_isar_feature(aa64_mte, cpu)) {
10990         new_mode |= PSTATE_TCO;
10991     }
10992 
10993     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10994         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10995             new_mode |= PSTATE_SSBS;
10996         } else {
10997             new_mode &= ~PSTATE_SSBS;
10998         }
10999     }
11000 
11001     pstate_write(env, PSTATE_DAIF | new_mode);
11002     env->aarch64 = true;
11003     aarch64_restore_sp(env, new_el);
11004     helper_rebuild_hflags_a64(env, new_el);
11005 
11006     env->pc = addr;
11007 
11008     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11009                   new_el, env->pc, pstate_read(env));
11010 }
11011 
11012 /*
11013  * Do semihosting call and set the appropriate return value. All the
11014  * permission and validity checks have been done at translate time.
11015  *
11016  * We only see semihosting exceptions in TCG only as they are not
11017  * trapped to the hypervisor in KVM.
11018  */
11019 #ifdef CONFIG_TCG
11020 static void tcg_handle_semihosting(CPUState *cs)
11021 {
11022     ARMCPU *cpu = ARM_CPU(cs);
11023     CPUARMState *env = &cpu->env;
11024 
11025     if (is_a64(env)) {
11026         qemu_log_mask(CPU_LOG_INT,
11027                       "...handling as semihosting call 0x%" PRIx64 "\n",
11028                       env->xregs[0]);
11029         do_common_semihosting(cs);
11030         env->pc += 4;
11031     } else {
11032         qemu_log_mask(CPU_LOG_INT,
11033                       "...handling as semihosting call 0x%x\n",
11034                       env->regs[0]);
11035         do_common_semihosting(cs);
11036         env->regs[15] += env->thumb ? 2 : 4;
11037     }
11038 }
11039 #endif
11040 
11041 /*
11042  * Handle a CPU exception for A and R profile CPUs.
11043  * Do any appropriate logging, handle PSCI calls, and then hand off
11044  * to the AArch64-entry or AArch32-entry function depending on the
11045  * target exception level's register width.
11046  *
11047  * Note: this is used for both TCG (as the do_interrupt tcg op),
11048  *       and KVM to re-inject guest debug exceptions, and to
11049  *       inject a Synchronous-External-Abort.
11050  */
11051 void arm_cpu_do_interrupt(CPUState *cs)
11052 {
11053     ARMCPU *cpu = ARM_CPU(cs);
11054     CPUARMState *env = &cpu->env;
11055     unsigned int new_el = env->exception.target_el;
11056 
11057     assert(!arm_feature(env, ARM_FEATURE_M));
11058 
11059     arm_log_exception(cs);
11060     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11061                   new_el);
11062     if (qemu_loglevel_mask(CPU_LOG_INT)
11063         && !excp_is_internal(cs->exception_index)) {
11064         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11065                       syn_get_ec(env->exception.syndrome),
11066                       env->exception.syndrome);
11067     }
11068 
11069     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11070         arm_handle_psci_call(cpu);
11071         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11072         return;
11073     }
11074 
11075     /*
11076      * Semihosting semantics depend on the register width of the code
11077      * that caused the exception, not the target exception level, so
11078      * must be handled here.
11079      */
11080 #ifdef CONFIG_TCG
11081     if (cs->exception_index == EXCP_SEMIHOST) {
11082         tcg_handle_semihosting(cs);
11083         return;
11084     }
11085 #endif
11086 
11087     /*
11088      * Hooks may change global state so BQL should be held, also the
11089      * BQL needs to be held for any modification of
11090      * cs->interrupt_request.
11091      */
11092     g_assert(qemu_mutex_iothread_locked());
11093 
11094     arm_call_pre_el_change_hook(cpu);
11095 
11096     assert(!excp_is_internal(cs->exception_index));
11097     if (arm_el_is_aa64(env, new_el)) {
11098         arm_cpu_do_interrupt_aarch64(cs);
11099     } else {
11100         arm_cpu_do_interrupt_aarch32(cs);
11101     }
11102 
11103     arm_call_el_change_hook(cpu);
11104 
11105     if (!kvm_enabled()) {
11106         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11107     }
11108 }
11109 #endif /* !CONFIG_USER_ONLY */
11110 
11111 uint64_t arm_sctlr(CPUARMState *env, int el)
11112 {
11113     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11114     if (el == 0) {
11115         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11116         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11117     }
11118     return env->cp15.sctlr_el[el];
11119 }
11120 
11121 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11122 {
11123     if (regime_has_2_ranges(mmu_idx)) {
11124         return extract64(tcr, 37, 2);
11125     } else if (regime_is_stage2(mmu_idx)) {
11126         return 0; /* VTCR_EL2 */
11127     } else {
11128         /* Replicate the single TBI bit so we always have 2 bits.  */
11129         return extract32(tcr, 20, 1) * 3;
11130     }
11131 }
11132 
11133 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11134 {
11135     if (regime_has_2_ranges(mmu_idx)) {
11136         return extract64(tcr, 51, 2);
11137     } else if (regime_is_stage2(mmu_idx)) {
11138         return 0; /* VTCR_EL2 */
11139     } else {
11140         /* Replicate the single TBID bit so we always have 2 bits.  */
11141         return extract32(tcr, 29, 1) * 3;
11142     }
11143 }
11144 
11145 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11146 {
11147     if (regime_has_2_ranges(mmu_idx)) {
11148         return extract64(tcr, 57, 2);
11149     } else {
11150         /* Replicate the single TCMA bit so we always have 2 bits.  */
11151         return extract32(tcr, 30, 1) * 3;
11152     }
11153 }
11154 
11155 static ARMGranuleSize tg0_to_gran_size(int tg)
11156 {
11157     switch (tg) {
11158     case 0:
11159         return Gran4K;
11160     case 1:
11161         return Gran64K;
11162     case 2:
11163         return Gran16K;
11164     default:
11165         return GranInvalid;
11166     }
11167 }
11168 
11169 static ARMGranuleSize tg1_to_gran_size(int tg)
11170 {
11171     switch (tg) {
11172     case 1:
11173         return Gran16K;
11174     case 2:
11175         return Gran4K;
11176     case 3:
11177         return Gran64K;
11178     default:
11179         return GranInvalid;
11180     }
11181 }
11182 
11183 static inline bool have4k(ARMCPU *cpu, bool stage2)
11184 {
11185     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11186         : cpu_isar_feature(aa64_tgran4, cpu);
11187 }
11188 
11189 static inline bool have16k(ARMCPU *cpu, bool stage2)
11190 {
11191     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11192         : cpu_isar_feature(aa64_tgran16, cpu);
11193 }
11194 
11195 static inline bool have64k(ARMCPU *cpu, bool stage2)
11196 {
11197     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11198         : cpu_isar_feature(aa64_tgran64, cpu);
11199 }
11200 
11201 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11202                                          bool stage2)
11203 {
11204     switch (gran) {
11205     case Gran4K:
11206         if (have4k(cpu, stage2)) {
11207             return gran;
11208         }
11209         break;
11210     case Gran16K:
11211         if (have16k(cpu, stage2)) {
11212             return gran;
11213         }
11214         break;
11215     case Gran64K:
11216         if (have64k(cpu, stage2)) {
11217             return gran;
11218         }
11219         break;
11220     case GranInvalid:
11221         break;
11222     }
11223     /*
11224      * If the guest selects a granule size that isn't implemented,
11225      * the architecture requires that we behave as if it selected one
11226      * that is (with an IMPDEF choice of which one to pick). We choose
11227      * to implement the smallest supported granule size.
11228      */
11229     if (have4k(cpu, stage2)) {
11230         return Gran4K;
11231     }
11232     if (have16k(cpu, stage2)) {
11233         return Gran16K;
11234     }
11235     assert(have64k(cpu, stage2));
11236     return Gran64K;
11237 }
11238 
11239 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11240                                    ARMMMUIdx mmu_idx, bool data)
11241 {
11242     uint64_t tcr = regime_tcr(env, mmu_idx);
11243     bool epd, hpd, tsz_oob, ds, ha, hd;
11244     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11245     ARMGranuleSize gran;
11246     ARMCPU *cpu = env_archcpu(env);
11247     bool stage2 = regime_is_stage2(mmu_idx);
11248 
11249     if (!regime_has_2_ranges(mmu_idx)) {
11250         select = 0;
11251         tsz = extract32(tcr, 0, 6);
11252         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11253         if (stage2) {
11254             /* VTCR_EL2 */
11255             hpd = false;
11256         } else {
11257             hpd = extract32(tcr, 24, 1);
11258         }
11259         epd = false;
11260         sh = extract32(tcr, 12, 2);
11261         ps = extract32(tcr, 16, 3);
11262         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11263         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11264         ds = extract64(tcr, 32, 1);
11265     } else {
11266         bool e0pd;
11267 
11268         /*
11269          * Bit 55 is always between the two regions, and is canonical for
11270          * determining if address tagging is enabled.
11271          */
11272         select = extract64(va, 55, 1);
11273         if (!select) {
11274             tsz = extract32(tcr, 0, 6);
11275             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11276             epd = extract32(tcr, 7, 1);
11277             sh = extract32(tcr, 12, 2);
11278             hpd = extract64(tcr, 41, 1);
11279             e0pd = extract64(tcr, 55, 1);
11280         } else {
11281             tsz = extract32(tcr, 16, 6);
11282             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11283             epd = extract32(tcr, 23, 1);
11284             sh = extract32(tcr, 28, 2);
11285             hpd = extract64(tcr, 42, 1);
11286             e0pd = extract64(tcr, 56, 1);
11287         }
11288         ps = extract64(tcr, 32, 3);
11289         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11290         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11291         ds = extract64(tcr, 59, 1);
11292 
11293         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11294             regime_is_user(env, mmu_idx)) {
11295             epd = true;
11296         }
11297     }
11298 
11299     gran = sanitize_gran_size(cpu, gran, stage2);
11300 
11301     if (cpu_isar_feature(aa64_st, cpu)) {
11302         max_tsz = 48 - (gran == Gran64K);
11303     } else {
11304         max_tsz = 39;
11305     }
11306 
11307     /*
11308      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11309      * adjust the effective value of DS, as documented.
11310      */
11311     min_tsz = 16;
11312     if (gran == Gran64K) {
11313         if (cpu_isar_feature(aa64_lva, cpu)) {
11314             min_tsz = 12;
11315         }
11316         ds = false;
11317     } else if (ds) {
11318         if (regime_is_stage2(mmu_idx)) {
11319             if (gran == Gran16K) {
11320                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11321             } else {
11322                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11323             }
11324         } else {
11325             if (gran == Gran16K) {
11326                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11327             } else {
11328                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11329             }
11330         }
11331         if (ds) {
11332             min_tsz = 12;
11333         }
11334     }
11335 
11336     if (tsz > max_tsz) {
11337         tsz = max_tsz;
11338         tsz_oob = true;
11339     } else if (tsz < min_tsz) {
11340         tsz = min_tsz;
11341         tsz_oob = true;
11342     } else {
11343         tsz_oob = false;
11344     }
11345 
11346     /* Present TBI as a composite with TBID.  */
11347     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11348     if (!data) {
11349         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11350     }
11351     tbi = (tbi >> select) & 1;
11352 
11353     return (ARMVAParameters) {
11354         .tsz = tsz,
11355         .ps = ps,
11356         .sh = sh,
11357         .select = select,
11358         .tbi = tbi,
11359         .epd = epd,
11360         .hpd = hpd,
11361         .tsz_oob = tsz_oob,
11362         .ds = ds,
11363         .ha = ha,
11364         .hd = ha && hd,
11365         .gran = gran,
11366     };
11367 }
11368 
11369 /*
11370  * Note that signed overflow is undefined in C.  The following routines are
11371  * careful to use unsigned types where modulo arithmetic is required.
11372  * Failure to do so _will_ break on newer gcc.
11373  */
11374 
11375 /* Signed saturating arithmetic.  */
11376 
11377 /* Perform 16-bit signed saturating addition.  */
11378 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11379 {
11380     uint16_t res;
11381 
11382     res = a + b;
11383     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11384         if (a & 0x8000) {
11385             res = 0x8000;
11386         } else {
11387             res = 0x7fff;
11388         }
11389     }
11390     return res;
11391 }
11392 
11393 /* Perform 8-bit signed saturating addition.  */
11394 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11395 {
11396     uint8_t res;
11397 
11398     res = a + b;
11399     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11400         if (a & 0x80) {
11401             res = 0x80;
11402         } else {
11403             res = 0x7f;
11404         }
11405     }
11406     return res;
11407 }
11408 
11409 /* Perform 16-bit signed saturating subtraction.  */
11410 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11411 {
11412     uint16_t res;
11413 
11414     res = a - b;
11415     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11416         if (a & 0x8000) {
11417             res = 0x8000;
11418         } else {
11419             res = 0x7fff;
11420         }
11421     }
11422     return res;
11423 }
11424 
11425 /* Perform 8-bit signed saturating subtraction.  */
11426 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11427 {
11428     uint8_t res;
11429 
11430     res = a - b;
11431     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11432         if (a & 0x80) {
11433             res = 0x80;
11434         } else {
11435             res = 0x7f;
11436         }
11437     }
11438     return res;
11439 }
11440 
11441 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11442 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11443 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11444 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11445 #define PFX q
11446 
11447 #include "op_addsub.h"
11448 
11449 /* Unsigned saturating arithmetic.  */
11450 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11451 {
11452     uint16_t res;
11453     res = a + b;
11454     if (res < a) {
11455         res = 0xffff;
11456     }
11457     return res;
11458 }
11459 
11460 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11461 {
11462     if (a > b) {
11463         return a - b;
11464     } else {
11465         return 0;
11466     }
11467 }
11468 
11469 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11470 {
11471     uint8_t res;
11472     res = a + b;
11473     if (res < a) {
11474         res = 0xff;
11475     }
11476     return res;
11477 }
11478 
11479 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11480 {
11481     if (a > b) {
11482         return a - b;
11483     } else {
11484         return 0;
11485     }
11486 }
11487 
11488 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11489 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11490 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11491 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11492 #define PFX uq
11493 
11494 #include "op_addsub.h"
11495 
11496 /* Signed modulo arithmetic.  */
11497 #define SARITH16(a, b, n, op) do { \
11498     int32_t sum; \
11499     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11500     RESULT(sum, n, 16); \
11501     if (sum >= 0) \
11502         ge |= 3 << (n * 2); \
11503     } while (0)
11504 
11505 #define SARITH8(a, b, n, op) do { \
11506     int32_t sum; \
11507     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11508     RESULT(sum, n, 8); \
11509     if (sum >= 0) \
11510         ge |= 1 << n; \
11511     } while (0)
11512 
11513 
11514 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11515 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11516 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11517 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11518 #define PFX s
11519 #define ARITH_GE
11520 
11521 #include "op_addsub.h"
11522 
11523 /* Unsigned modulo arithmetic.  */
11524 #define ADD16(a, b, n) do { \
11525     uint32_t sum; \
11526     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11527     RESULT(sum, n, 16); \
11528     if ((sum >> 16) == 1) \
11529         ge |= 3 << (n * 2); \
11530     } while (0)
11531 
11532 #define ADD8(a, b, n) do { \
11533     uint32_t sum; \
11534     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11535     RESULT(sum, n, 8); \
11536     if ((sum >> 8) == 1) \
11537         ge |= 1 << n; \
11538     } while (0)
11539 
11540 #define SUB16(a, b, n) do { \
11541     uint32_t sum; \
11542     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11543     RESULT(sum, n, 16); \
11544     if ((sum >> 16) == 0) \
11545         ge |= 3 << (n * 2); \
11546     } while (0)
11547 
11548 #define SUB8(a, b, n) do { \
11549     uint32_t sum; \
11550     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11551     RESULT(sum, n, 8); \
11552     if ((sum >> 8) == 0) \
11553         ge |= 1 << n; \
11554     } while (0)
11555 
11556 #define PFX u
11557 #define ARITH_GE
11558 
11559 #include "op_addsub.h"
11560 
11561 /* Halved signed arithmetic.  */
11562 #define ADD16(a, b, n) \
11563   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11564 #define SUB16(a, b, n) \
11565   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11566 #define ADD8(a, b, n) \
11567   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11568 #define SUB8(a, b, n) \
11569   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11570 #define PFX sh
11571 
11572 #include "op_addsub.h"
11573 
11574 /* Halved unsigned arithmetic.  */
11575 #define ADD16(a, b, n) \
11576   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11577 #define SUB16(a, b, n) \
11578   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11579 #define ADD8(a, b, n) \
11580   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11581 #define SUB8(a, b, n) \
11582   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11583 #define PFX uh
11584 
11585 #include "op_addsub.h"
11586 
11587 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11588 {
11589     if (a > b) {
11590         return a - b;
11591     } else {
11592         return b - a;
11593     }
11594 }
11595 
11596 /* Unsigned sum of absolute byte differences.  */
11597 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11598 {
11599     uint32_t sum;
11600     sum = do_usad(a, b);
11601     sum += do_usad(a >> 8, b >> 8);
11602     sum += do_usad(a >> 16, b >> 16);
11603     sum += do_usad(a >> 24, b >> 24);
11604     return sum;
11605 }
11606 
11607 /* For ARMv6 SEL instruction.  */
11608 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11609 {
11610     uint32_t mask;
11611 
11612     mask = 0;
11613     if (flags & 1) {
11614         mask |= 0xff;
11615     }
11616     if (flags & 2) {
11617         mask |= 0xff00;
11618     }
11619     if (flags & 4) {
11620         mask |= 0xff0000;
11621     }
11622     if (flags & 8) {
11623         mask |= 0xff000000;
11624     }
11625     return (a & mask) | (b & ~mask);
11626 }
11627 
11628 /*
11629  * CRC helpers.
11630  * The upper bytes of val (above the number specified by 'bytes') must have
11631  * been zeroed out by the caller.
11632  */
11633 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11634 {
11635     uint8_t buf[4];
11636 
11637     stl_le_p(buf, val);
11638 
11639     /* zlib crc32 converts the accumulator and output to one's complement.  */
11640     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11641 }
11642 
11643 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11644 {
11645     uint8_t buf[4];
11646 
11647     stl_le_p(buf, val);
11648 
11649     /* Linux crc32c converts the output to one's complement.  */
11650     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11651 }
11652 
11653 /*
11654  * Return the exception level to which FP-disabled exceptions should
11655  * be taken, or 0 if FP is enabled.
11656  */
11657 int fp_exception_el(CPUARMState *env, int cur_el)
11658 {
11659 #ifndef CONFIG_USER_ONLY
11660     uint64_t hcr_el2;
11661 
11662     /*
11663      * CPACR and the CPTR registers don't exist before v6, so FP is
11664      * always accessible
11665      */
11666     if (!arm_feature(env, ARM_FEATURE_V6)) {
11667         return 0;
11668     }
11669 
11670     if (arm_feature(env, ARM_FEATURE_M)) {
11671         /* CPACR can cause a NOCP UsageFault taken to current security state */
11672         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11673             return 1;
11674         }
11675 
11676         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11677             if (!extract32(env->v7m.nsacr, 10, 1)) {
11678                 /* FP insns cause a NOCP UsageFault taken to Secure */
11679                 return 3;
11680             }
11681         }
11682 
11683         return 0;
11684     }
11685 
11686     hcr_el2 = arm_hcr_el2_eff(env);
11687 
11688     /*
11689      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11690      * 0, 2 : trap EL0 and EL1/PL1 accesses
11691      * 1    : trap only EL0 accesses
11692      * 3    : trap no accesses
11693      * This register is ignored if E2H+TGE are both set.
11694      */
11695     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11696         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11697 
11698         switch (fpen) {
11699         case 1:
11700             if (cur_el != 0) {
11701                 break;
11702             }
11703             /* fall through */
11704         case 0:
11705         case 2:
11706             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11707             if (!arm_el_is_aa64(env, 3)
11708                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11709                 return 3;
11710             }
11711             if (cur_el <= 1) {
11712                 return 1;
11713             }
11714             break;
11715         }
11716     }
11717 
11718     /*
11719      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11720      * to control non-secure access to the FPU. It doesn't have any
11721      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11722      */
11723     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11724          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11725         if (!extract32(env->cp15.nsacr, 10, 1)) {
11726             /* FP insns act as UNDEF */
11727             return cur_el == 2 ? 2 : 1;
11728         }
11729     }
11730 
11731     /*
11732      * CPTR_EL2 is present in v7VE or v8, and changes format
11733      * with HCR_EL2.E2H (regardless of TGE).
11734      */
11735     if (cur_el <= 2) {
11736         if (hcr_el2 & HCR_E2H) {
11737             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11738             case 1:
11739                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11740                     break;
11741                 }
11742                 /* fall through */
11743             case 0:
11744             case 2:
11745                 return 2;
11746             }
11747         } else if (arm_is_el2_enabled(env)) {
11748             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11749                 return 2;
11750             }
11751         }
11752     }
11753 
11754     /* CPTR_EL3 : present in v8 */
11755     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11756         /* Trap all FP ops to EL3 */
11757         return 3;
11758     }
11759 #endif
11760     return 0;
11761 }
11762 
11763 /* Return the exception level we're running at if this is our mmu_idx */
11764 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11765 {
11766     if (mmu_idx & ARM_MMU_IDX_M) {
11767         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11768     }
11769 
11770     switch (mmu_idx) {
11771     case ARMMMUIdx_E10_0:
11772     case ARMMMUIdx_E20_0:
11773         return 0;
11774     case ARMMMUIdx_E10_1:
11775     case ARMMMUIdx_E10_1_PAN:
11776         return 1;
11777     case ARMMMUIdx_E2:
11778     case ARMMMUIdx_E20_2:
11779     case ARMMMUIdx_E20_2_PAN:
11780         return 2;
11781     case ARMMMUIdx_E3:
11782         return 3;
11783     default:
11784         g_assert_not_reached();
11785     }
11786 }
11787 
11788 #ifndef CONFIG_TCG
11789 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11790 {
11791     g_assert_not_reached();
11792 }
11793 #endif
11794 
11795 static bool arm_pan_enabled(CPUARMState *env)
11796 {
11797     if (is_a64(env)) {
11798         return env->pstate & PSTATE_PAN;
11799     } else {
11800         return env->uncached_cpsr & CPSR_PAN;
11801     }
11802 }
11803 
11804 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11805 {
11806     ARMMMUIdx idx;
11807     uint64_t hcr;
11808 
11809     if (arm_feature(env, ARM_FEATURE_M)) {
11810         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11811     }
11812 
11813     /* See ARM pseudo-function ELIsInHost.  */
11814     switch (el) {
11815     case 0:
11816         hcr = arm_hcr_el2_eff(env);
11817         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11818             idx = ARMMMUIdx_E20_0;
11819         } else {
11820             idx = ARMMMUIdx_E10_0;
11821         }
11822         break;
11823     case 1:
11824         if (arm_pan_enabled(env)) {
11825             idx = ARMMMUIdx_E10_1_PAN;
11826         } else {
11827             idx = ARMMMUIdx_E10_1;
11828         }
11829         break;
11830     case 2:
11831         /* Note that TGE does not apply at EL2.  */
11832         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11833             if (arm_pan_enabled(env)) {
11834                 idx = ARMMMUIdx_E20_2_PAN;
11835             } else {
11836                 idx = ARMMMUIdx_E20_2;
11837             }
11838         } else {
11839             idx = ARMMMUIdx_E2;
11840         }
11841         break;
11842     case 3:
11843         return ARMMMUIdx_E3;
11844     default:
11845         g_assert_not_reached();
11846     }
11847 
11848     return idx;
11849 }
11850 
11851 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11852 {
11853     return arm_mmu_idx_el(env, arm_current_el(env));
11854 }
11855 
11856 static inline bool fgt_svc(CPUARMState *env, int el)
11857 {
11858     /*
11859      * Assuming fine-grained-traps are active, return true if we
11860      * should be trapping on SVC instructions. Only AArch64 can
11861      * trap on an SVC at EL1, but we don't need to special-case this
11862      * because if this is AArch32 EL1 then arm_fgt_active() is false.
11863      * We also know el is 0 or 1.
11864      */
11865     return el == 0 ?
11866         FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
11867         FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
11868 }
11869 
11870 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
11871                                            ARMMMUIdx mmu_idx,
11872                                            CPUARMTBFlags flags)
11873 {
11874     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
11875     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
11876 
11877     if (arm_singlestep_active(env)) {
11878         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
11879     }
11880 
11881     return flags;
11882 }
11883 
11884 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
11885                                               ARMMMUIdx mmu_idx,
11886                                               CPUARMTBFlags flags)
11887 {
11888     bool sctlr_b = arm_sctlr_b(env);
11889 
11890     if (sctlr_b) {
11891         DP_TBFLAG_A32(flags, SCTLR__B, 1);
11892     }
11893     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
11894         DP_TBFLAG_ANY(flags, BE_DATA, 1);
11895     }
11896     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
11897 
11898     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
11899 }
11900 
11901 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
11902                                         ARMMMUIdx mmu_idx)
11903 {
11904     CPUARMTBFlags flags = {};
11905     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
11906 
11907     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
11908     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
11909         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11910     }
11911 
11912     if (arm_v7m_is_handler_mode(env)) {
11913         DP_TBFLAG_M32(flags, HANDLER, 1);
11914     }
11915 
11916     /*
11917      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
11918      * is suppressing them because the requested execution priority
11919      * is less than 0.
11920      */
11921     if (arm_feature(env, ARM_FEATURE_V8) &&
11922         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
11923           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
11924         DP_TBFLAG_M32(flags, STACKCHECK, 1);
11925     }
11926 
11927     if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
11928         DP_TBFLAG_M32(flags, SECURE, 1);
11929     }
11930 
11931     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11932 }
11933 
11934 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
11935                                         ARMMMUIdx mmu_idx)
11936 {
11937     CPUARMTBFlags flags = {};
11938     int el = arm_current_el(env);
11939 
11940     if (arm_sctlr(env, el) & SCTLR_A) {
11941         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
11942     }
11943 
11944     if (arm_el_is_aa64(env, 1)) {
11945         DP_TBFLAG_A32(flags, VFPEN, 1);
11946     }
11947 
11948     if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
11949         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11950         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
11951     }
11952 
11953     if (arm_fgt_active(env, el)) {
11954         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
11955         if (fgt_svc(env, el)) {
11956             DP_TBFLAG_ANY(flags, FGT_SVC, 1);
11957         }
11958     }
11959 
11960     if (env->uncached_cpsr & CPSR_IL) {
11961         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
11962     }
11963 
11964     /*
11965      * The SME exception we are testing for is raised via
11966      * AArch64.CheckFPAdvSIMDEnabled(), as called from
11967      * AArch32.CheckAdvSIMDOrFPEnabled().
11968      */
11969     if (el == 0
11970         && FIELD_EX64(env->svcr, SVCR, SM)
11971         && (!arm_is_el2_enabled(env)
11972             || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
11973         && arm_el_is_aa64(env, 1)
11974         && !sme_fa64(env, el)) {
11975         DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
11976     }
11977 
11978     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
11979 }
11980 
11981 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
11982                                         ARMMMUIdx mmu_idx)
11983 {
11984     CPUARMTBFlags flags = {};
11985     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
11986     uint64_t tcr = regime_tcr(env, mmu_idx);
11987     uint64_t sctlr;
11988     int tbii, tbid;
11989 
11990     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
11991 
11992     /* Get control bits for tagged addresses.  */
11993     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
11994     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
11995 
11996     DP_TBFLAG_A64(flags, TBII, tbii);
11997     DP_TBFLAG_A64(flags, TBID, tbid);
11998 
11999     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12000         int sve_el = sve_exception_el(env, el);
12001 
12002         /*
12003          * If either FP or SVE are disabled, translator does not need len.
12004          * If SVE EL > FP EL, FP exception has precedence, and translator
12005          * does not need SVE EL.  Save potential re-translations by forcing
12006          * the unneeded data to zero.
12007          */
12008         if (fp_el != 0) {
12009             if (sve_el > fp_el) {
12010                 sve_el = 0;
12011             }
12012         } else if (sve_el == 0) {
12013             DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
12014         }
12015         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
12016     }
12017     if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
12018         int sme_el = sme_exception_el(env, el);
12019         bool sm = FIELD_EX64(env->svcr, SVCR, SM);
12020 
12021         DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
12022         if (sme_el == 0) {
12023             /* Similarly, do not compute SVL if SME is disabled. */
12024             int svl = sve_vqm1_for_el_sm(env, el, true);
12025             DP_TBFLAG_A64(flags, SVL, svl);
12026             if (sm) {
12027                 /* If SVE is disabled, we will not have set VL above. */
12028                 DP_TBFLAG_A64(flags, VL, svl);
12029             }
12030         }
12031         if (sm) {
12032             DP_TBFLAG_A64(flags, PSTATE_SM, 1);
12033             DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
12034         }
12035         DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
12036     }
12037 
12038     sctlr = regime_sctlr(env, stage1);
12039 
12040     if (sctlr & SCTLR_A) {
12041         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
12042     }
12043 
12044     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12045         DP_TBFLAG_ANY(flags, BE_DATA, 1);
12046     }
12047 
12048     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12049         /*
12050          * In order to save space in flags, we record only whether
12051          * pauth is "inactive", meaning all insns are implemented as
12052          * a nop, or "active" when some action must be performed.
12053          * The decision of which action to take is left to a helper.
12054          */
12055         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12056             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
12057         }
12058     }
12059 
12060     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12061         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12062         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12063             DP_TBFLAG_A64(flags, BT, 1);
12064         }
12065     }
12066 
12067     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12068     if (!(env->pstate & PSTATE_UAO)) {
12069         switch (mmu_idx) {
12070         case ARMMMUIdx_E10_1:
12071         case ARMMMUIdx_E10_1_PAN:
12072             /* TODO: ARMv8.3-NV */
12073             DP_TBFLAG_A64(flags, UNPRIV, 1);
12074             break;
12075         case ARMMMUIdx_E20_2:
12076         case ARMMMUIdx_E20_2_PAN:
12077             /*
12078              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12079              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12080              */
12081             if (env->cp15.hcr_el2 & HCR_TGE) {
12082                 DP_TBFLAG_A64(flags, UNPRIV, 1);
12083             }
12084             break;
12085         default:
12086             break;
12087         }
12088     }
12089 
12090     if (env->pstate & PSTATE_IL) {
12091         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
12092     }
12093 
12094     if (arm_fgt_active(env, el)) {
12095         DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
12096         if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
12097             DP_TBFLAG_A64(flags, FGT_ERET, 1);
12098         }
12099         if (fgt_svc(env, el)) {
12100             DP_TBFLAG_ANY(flags, FGT_SVC, 1);
12101         }
12102     }
12103 
12104     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12105         /*
12106          * Set MTE_ACTIVE if any access may be Checked, and leave clear
12107          * if all accesses must be Unchecked:
12108          * 1) If no TBI, then there are no tags in the address to check,
12109          * 2) If Tag Check Override, then all accesses are Unchecked,
12110          * 3) If Tag Check Fail == 0, then Checked access have no effect,
12111          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12112          */
12113         if (allocation_tag_access_enabled(env, el, sctlr)) {
12114             DP_TBFLAG_A64(flags, ATA, 1);
12115             if (tbid
12116                 && !(env->pstate & PSTATE_TCO)
12117                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12118                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
12119             }
12120         }
12121         /* And again for unprivileged accesses, if required.  */
12122         if (EX_TBFLAG_A64(flags, UNPRIV)
12123             && tbid
12124             && !(env->pstate & PSTATE_TCO)
12125             && (sctlr & SCTLR_TCF0)
12126             && allocation_tag_access_enabled(env, 0, sctlr)) {
12127             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
12128         }
12129         /* Cache TCMA as well as TBI. */
12130         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
12131     }
12132 
12133     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12134 }
12135 
12136 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
12137 {
12138     int el = arm_current_el(env);
12139     int fp_el = fp_exception_el(env, el);
12140     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12141 
12142     if (is_a64(env)) {
12143         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12144     } else if (arm_feature(env, ARM_FEATURE_M)) {
12145         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12146     } else {
12147         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12148     }
12149 }
12150 
12151 void arm_rebuild_hflags(CPUARMState *env)
12152 {
12153     env->hflags = rebuild_hflags_internal(env);
12154 }
12155 
12156 /*
12157  * If we have triggered a EL state change we can't rely on the
12158  * translator having passed it to us, we need to recompute.
12159  */
12160 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12161 {
12162     int el = arm_current_el(env);
12163     int fp_el = fp_exception_el(env, el);
12164     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12165 
12166     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12167 }
12168 
12169 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12170 {
12171     int fp_el = fp_exception_el(env, el);
12172     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12173 
12174     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12175 }
12176 
12177 /*
12178  * If we have triggered a EL state change we can't rely on the
12179  * translator having passed it to us, we need to recompute.
12180  */
12181 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12182 {
12183     int el = arm_current_el(env);
12184     int fp_el = fp_exception_el(env, el);
12185     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12186     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12187 }
12188 
12189 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12190 {
12191     int fp_el = fp_exception_el(env, el);
12192     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12193 
12194     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12195 }
12196 
12197 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12198 {
12199     int fp_el = fp_exception_el(env, el);
12200     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12201 
12202     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12203 }
12204 
12205 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12206 {
12207 #ifdef CONFIG_DEBUG_TCG
12208     CPUARMTBFlags c = env->hflags;
12209     CPUARMTBFlags r = rebuild_hflags_internal(env);
12210 
12211     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
12212         fprintf(stderr, "TCG hflags mismatch "
12213                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
12214                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
12215                 c.flags, c.flags2, r.flags, r.flags2);
12216         abort();
12217     }
12218 #endif
12219 }
12220 
12221 static bool mve_no_pred(CPUARMState *env)
12222 {
12223     /*
12224      * Return true if there is definitely no predication of MVE
12225      * instructions by VPR or LTPSIZE. (Returning false even if there
12226      * isn't any predication is OK; generated code will just be
12227      * a little worse.)
12228      * If the CPU does not implement MVE then this TB flag is always 0.
12229      *
12230      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12231      * logic in gen_update_fp_context() needs to be updated to match.
12232      *
12233      * We do not include the effect of the ECI bits here -- they are
12234      * tracked in other TB flags. This simplifies the logic for
12235      * "when did we emit code that changes the MVE_NO_PRED TB flag
12236      * and thus need to end the TB?".
12237      */
12238     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12239         return false;
12240     }
12241     if (env->v7m.vpr) {
12242         return false;
12243     }
12244     if (env->v7m.ltpsize < 4) {
12245         return false;
12246     }
12247     return true;
12248 }
12249 
12250 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12251                           target_ulong *cs_base, uint32_t *pflags)
12252 {
12253     CPUARMTBFlags flags;
12254 
12255     assert_hflags_rebuild_correctly(env);
12256     flags = env->hflags;
12257 
12258     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12259         *pc = env->pc;
12260         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12261             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12262         }
12263     } else {
12264         *pc = env->regs[15];
12265 
12266         if (arm_feature(env, ARM_FEATURE_M)) {
12267             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12268                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12269                 != env->v7m.secure) {
12270                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12271             }
12272 
12273             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12274                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12275                  (env->v7m.secure &&
12276                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12277                 /*
12278                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12279                  * active FP context; we must create a new FP context before
12280                  * executing any FP insn.
12281                  */
12282                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12283             }
12284 
12285             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12286             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12287                 DP_TBFLAG_M32(flags, LSPACT, 1);
12288             }
12289 
12290             if (mve_no_pred(env)) {
12291                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12292             }
12293         } else {
12294             /*
12295              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12296              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12297              */
12298             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12299                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12300             } else {
12301                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12302                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12303             }
12304             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12305                 DP_TBFLAG_A32(flags, VFPEN, 1);
12306             }
12307         }
12308 
12309         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12310         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12311     }
12312 
12313     /*
12314      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12315      * states defined in the ARM ARM for software singlestep:
12316      *  SS_ACTIVE   PSTATE.SS   State
12317      *     0            x       Inactive (the TB flag for SS is always 0)
12318      *     1            0       Active-pending
12319      *     1            1       Active-not-pending
12320      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12321      */
12322     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12323         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12324     }
12325 
12326     *pflags = flags.flags;
12327     *cs_base = flags.flags2;
12328 }
12329 
12330 #ifdef TARGET_AARCH64
12331 /*
12332  * The manual says that when SVE is enabled and VQ is widened the
12333  * implementation is allowed to zero the previously inaccessible
12334  * portion of the registers.  The corollary to that is that when
12335  * SVE is enabled and VQ is narrowed we are also allowed to zero
12336  * the now inaccessible portion of the registers.
12337  *
12338  * The intent of this is that no predicate bit beyond VQ is ever set.
12339  * Which means that some operations on predicate registers themselves
12340  * may operate on full uint64_t or even unrolled across the maximum
12341  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12342  * may well be cheaper than conditionals to restrict the operation
12343  * to the relevant portion of a uint16_t[16].
12344  */
12345 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12346 {
12347     int i, j;
12348     uint64_t pmask;
12349 
12350     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12351     assert(vq <= env_archcpu(env)->sve_max_vq);
12352 
12353     /* Zap the high bits of the zregs.  */
12354     for (i = 0; i < 32; i++) {
12355         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12356     }
12357 
12358     /* Zap the high bits of the pregs and ffr.  */
12359     pmask = 0;
12360     if (vq & 3) {
12361         pmask = ~(-1ULL << (16 * (vq & 3)));
12362     }
12363     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12364         for (i = 0; i < 17; ++i) {
12365             env->vfp.pregs[i].p[j] &= pmask;
12366         }
12367         pmask = 0;
12368     }
12369 }
12370 
12371 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12372 {
12373     int exc_el;
12374 
12375     if (sm) {
12376         exc_el = sme_exception_el(env, el);
12377     } else {
12378         exc_el = sve_exception_el(env, el);
12379     }
12380     if (exc_el) {
12381         return 0; /* disabled */
12382     }
12383     return sve_vqm1_for_el_sm(env, el, sm);
12384 }
12385 
12386 /*
12387  * Notice a change in SVE vector size when changing EL.
12388  */
12389 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12390                            int new_el, bool el0_a64)
12391 {
12392     ARMCPU *cpu = env_archcpu(env);
12393     int old_len, new_len;
12394     bool old_a64, new_a64, sm;
12395 
12396     /* Nothing to do if no SVE.  */
12397     if (!cpu_isar_feature(aa64_sve, cpu)) {
12398         return;
12399     }
12400 
12401     /* Nothing to do if FP is disabled in either EL.  */
12402     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12403         return;
12404     }
12405 
12406     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12407     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12408 
12409     /*
12410      * Both AArch64.TakeException and AArch64.ExceptionReturn
12411      * invoke ResetSVEState when taking an exception from, or
12412      * returning to, AArch32 state when PSTATE.SM is enabled.
12413      */
12414     sm = FIELD_EX64(env->svcr, SVCR, SM);
12415     if (old_a64 != new_a64 && sm) {
12416         arm_reset_sve_state(env);
12417         return;
12418     }
12419 
12420     /*
12421      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12422      * at ELx, or not available because the EL is in AArch32 state, then
12423      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12424      * has an effective value of 0".
12425      *
12426      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12427      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12428      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12429      * we already have the correct register contents when encountering the
12430      * vq0->vq0 transition between EL0->EL1.
12431      */
12432     old_len = new_len = 0;
12433     if (old_a64) {
12434         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12435     }
12436     if (new_a64) {
12437         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12438     }
12439 
12440     /* When changing vector length, clear inaccessible state.  */
12441     if (new_len < old_len) {
12442         aarch64_sve_narrow_vq(env, new_len + 1);
12443     }
12444 }
12445 #endif
12446