xref: /qemu/target/arm/helper.c (revision cc44a160)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "qemu/log.h"
12 #include "target/arm/idau.h"
13 #include "trace.h"
14 #include "cpu.h"
15 #include "internals.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/bitops.h"
21 #include "qemu/crc32c.h"
22 #include "qemu/qemu-print.h"
23 #include "exec/exec-all.h"
24 #include <zlib.h> /* For crc32 */
25 #include "hw/irq.h"
26 #include "semihosting/semihost.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/cpu-timers.h"
29 #include "sysemu/kvm.h"
30 #include "sysemu/tcg.h"
31 #include "qemu/range.h"
32 #include "qapi/qapi-commands-machine-target.h"
33 #include "qapi/error.h"
34 #include "qemu/guest-random.h"
35 #ifdef CONFIG_TCG
36 #include "arm_ldst.h"
37 #include "exec/cpu_ldst.h"
38 #include "semihosting/common-semi.h"
39 #endif
40 
41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
43 
44 #ifndef CONFIG_USER_ONLY
45 
46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
47                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
48                                bool s1_is_el0,
49                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
50                                target_ulong *page_size_ptr,
51                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
52     __attribute__((nonnull));
53 #endif
54 
55 static void switch_mode(CPUARMState *env, int mode);
56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
57 
58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     assert(ri->fieldoffset);
61     if (cpreg_field_is_64bit(ri)) {
62         return CPREG_FIELD64(env, ri);
63     } else {
64         return CPREG_FIELD32(env, ri);
65     }
66 }
67 
68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
69                       uint64_t value)
70 {
71     assert(ri->fieldoffset);
72     if (cpreg_field_is_64bit(ri)) {
73         CPREG_FIELD64(env, ri) = value;
74     } else {
75         CPREG_FIELD32(env, ri) = value;
76     }
77 }
78 
79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
80 {
81     return (char *)env + ri->fieldoffset;
82 }
83 
84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
85 {
86     /* Raw read of a coprocessor register (as needed for migration, etc). */
87     if (ri->type & ARM_CP_CONST) {
88         return ri->resetvalue;
89     } else if (ri->raw_readfn) {
90         return ri->raw_readfn(env, ri);
91     } else if (ri->readfn) {
92         return ri->readfn(env, ri);
93     } else {
94         return raw_read(env, ri);
95     }
96 }
97 
98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
99                              uint64_t v)
100 {
101     /* Raw write of a coprocessor register (as needed for migration, etc).
102      * Note that constant registers are treated as write-ignored; the
103      * caller should check for success by whether a readback gives the
104      * value written.
105      */
106     if (ri->type & ARM_CP_CONST) {
107         return;
108     } else if (ri->raw_writefn) {
109         ri->raw_writefn(env, ri, v);
110     } else if (ri->writefn) {
111         ri->writefn(env, ri, v);
112     } else {
113         raw_write(env, ri, v);
114     }
115 }
116 
117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
118 {
119    /* Return true if the regdef would cause an assertion if you called
120     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
121     * program bug for it not to have the NO_RAW flag).
122     * NB that returning false here doesn't necessarily mean that calling
123     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
124     * read/write access functions which are safe for raw use" from "has
125     * read/write access functions which have side effects but has forgotten
126     * to provide raw access functions".
127     * The tests here line up with the conditions in read/write_raw_cp_reg()
128     * and assertions in raw_read()/raw_write().
129     */
130     if ((ri->type & ARM_CP_CONST) ||
131         ri->fieldoffset ||
132         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
133         return false;
134     }
135     return true;
136 }
137 
138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
139 {
140     /* Write the coprocessor state from cpu->env to the (index,value) list. */
141     int i;
142     bool ok = true;
143 
144     for (i = 0; i < cpu->cpreg_array_len; i++) {
145         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
146         const ARMCPRegInfo *ri;
147         uint64_t newval;
148 
149         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
150         if (!ri) {
151             ok = false;
152             continue;
153         }
154         if (ri->type & ARM_CP_NO_RAW) {
155             continue;
156         }
157 
158         newval = read_raw_cp_reg(&cpu->env, ri);
159         if (kvm_sync) {
160             /*
161              * Only sync if the previous list->cpustate sync succeeded.
162              * Rather than tracking the success/failure state for every
163              * item in the list, we just recheck "does the raw write we must
164              * have made in write_list_to_cpustate() read back OK" here.
165              */
166             uint64_t oldval = cpu->cpreg_values[i];
167 
168             if (oldval == newval) {
169                 continue;
170             }
171 
172             write_raw_cp_reg(&cpu->env, ri, oldval);
173             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
174                 continue;
175             }
176 
177             write_raw_cp_reg(&cpu->env, ri, newval);
178         }
179         cpu->cpreg_values[i] = newval;
180     }
181     return ok;
182 }
183 
184 bool write_list_to_cpustate(ARMCPU *cpu)
185 {
186     int i;
187     bool ok = true;
188 
189     for (i = 0; i < cpu->cpreg_array_len; i++) {
190         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
191         uint64_t v = cpu->cpreg_values[i];
192         const ARMCPRegInfo *ri;
193 
194         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
195         if (!ri) {
196             ok = false;
197             continue;
198         }
199         if (ri->type & ARM_CP_NO_RAW) {
200             continue;
201         }
202         /* Write value and confirm it reads back as written
203          * (to catch read-only registers and partially read-only
204          * registers where the incoming migration value doesn't match)
205          */
206         write_raw_cp_reg(&cpu->env, ri, v);
207         if (read_raw_cp_reg(&cpu->env, ri) != v) {
208             ok = false;
209         }
210     }
211     return ok;
212 }
213 
214 static void add_cpreg_to_list(gpointer key, gpointer opaque)
215 {
216     ARMCPU *cpu = opaque;
217     uint64_t regidx;
218     const ARMCPRegInfo *ri;
219 
220     regidx = *(uint32_t *)key;
221     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
222 
223     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
224         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
225         /* The value array need not be initialized at this point */
226         cpu->cpreg_array_len++;
227     }
228 }
229 
230 static void count_cpreg(gpointer key, gpointer opaque)
231 {
232     ARMCPU *cpu = opaque;
233     uint64_t regidx;
234     const ARMCPRegInfo *ri;
235 
236     regidx = *(uint32_t *)key;
237     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
238 
239     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
240         cpu->cpreg_array_len++;
241     }
242 }
243 
244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
245 {
246     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
247     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
248 
249     if (aidx > bidx) {
250         return 1;
251     }
252     if (aidx < bidx) {
253         return -1;
254     }
255     return 0;
256 }
257 
258 void init_cpreg_list(ARMCPU *cpu)
259 {
260     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
261      * Note that we require cpreg_tuples[] to be sorted by key ID.
262      */
263     GList *keys;
264     int arraylen;
265 
266     keys = g_hash_table_get_keys(cpu->cp_regs);
267     keys = g_list_sort(keys, cpreg_key_compare);
268 
269     cpu->cpreg_array_len = 0;
270 
271     g_list_foreach(keys, count_cpreg, cpu);
272 
273     arraylen = cpu->cpreg_array_len;
274     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
275     cpu->cpreg_values = g_new(uint64_t, arraylen);
276     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
277     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
278     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
279     cpu->cpreg_array_len = 0;
280 
281     g_list_foreach(keys, add_cpreg_to_list, cpu);
282 
283     assert(cpu->cpreg_array_len == arraylen);
284 
285     g_list_free(keys);
286 }
287 
288 /*
289  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
290  */
291 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
292                                         const ARMCPRegInfo *ri,
293                                         bool isread)
294 {
295     if (!is_a64(env) && arm_current_el(env) == 3 &&
296         arm_is_secure_below_el3(env)) {
297         return CP_ACCESS_TRAP_UNCATEGORIZED;
298     }
299     return CP_ACCESS_OK;
300 }
301 
302 /* Some secure-only AArch32 registers trap to EL3 if used from
303  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
304  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
305  * We assume that the .access field is set to PL1_RW.
306  */
307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
308                                             const ARMCPRegInfo *ri,
309                                             bool isread)
310 {
311     if (arm_current_el(env) == 3) {
312         return CP_ACCESS_OK;
313     }
314     if (arm_is_secure_below_el3(env)) {
315         if (env->cp15.scr_el3 & SCR_EEL2) {
316             return CP_ACCESS_TRAP_EL2;
317         }
318         return CP_ACCESS_TRAP_EL3;
319     }
320     /* This will be EL1 NS and EL2 NS, which just UNDEF */
321     return CP_ACCESS_TRAP_UNCATEGORIZED;
322 }
323 
324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
325 {
326     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
327 }
328 
329 /* Check for traps to "powerdown debug" registers, which are controlled
330  * by MDCR.TDOSA
331  */
332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
333                                    bool isread)
334 {
335     int el = arm_current_el(env);
336     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
337     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
338         (arm_hcr_el2_eff(env) & HCR_TGE);
339 
340     if (el < 2 && mdcr_el2_tdosa) {
341         return CP_ACCESS_TRAP_EL2;
342     }
343     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
344         return CP_ACCESS_TRAP_EL3;
345     }
346     return CP_ACCESS_OK;
347 }
348 
349 /* Check for traps to "debug ROM" registers, which are controlled
350  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
351  */
352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
353                                   bool isread)
354 {
355     int el = arm_current_el(env);
356     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
357     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
358         (arm_hcr_el2_eff(env) & HCR_TGE);
359 
360     if (el < 2 && mdcr_el2_tdra) {
361         return CP_ACCESS_TRAP_EL2;
362     }
363     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
364         return CP_ACCESS_TRAP_EL3;
365     }
366     return CP_ACCESS_OK;
367 }
368 
369 /* Check for traps to general debug registers, which are controlled
370  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
371  */
372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
373                                   bool isread)
374 {
375     int el = arm_current_el(env);
376     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
377     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
378         (arm_hcr_el2_eff(env) & HCR_TGE);
379 
380     if (el < 2 && mdcr_el2_tda) {
381         return CP_ACCESS_TRAP_EL2;
382     }
383     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     return CP_ACCESS_OK;
387 }
388 
389 /* Check for traps to performance monitor registers, which are controlled
390  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
391  */
392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
393                                  bool isread)
394 {
395     int el = arm_current_el(env);
396     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
397 
398     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
399         return CP_ACCESS_TRAP_EL2;
400     }
401     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
402         return CP_ACCESS_TRAP_EL3;
403     }
404     return CP_ACCESS_OK;
405 }
406 
407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
409                                       bool isread)
410 {
411     if (arm_current_el(env) == 1) {
412         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
413         if (arm_hcr_el2_eff(env) & trap) {
414             return CP_ACCESS_TRAP_EL2;
415         }
416     }
417     return CP_ACCESS_OK;
418 }
419 
420 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
422                                  bool isread)
423 {
424     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
425         return CP_ACCESS_TRAP_EL2;
426     }
427     return CP_ACCESS_OK;
428 }
429 
430 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
435         return CP_ACCESS_TRAP_EL2;
436     }
437     return CP_ACCESS_OK;
438 }
439 
440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
442                                   bool isread)
443 {
444     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
445         return CP_ACCESS_TRAP_EL2;
446     }
447     return CP_ACCESS_OK;
448 }
449 
450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
451 {
452     ARMCPU *cpu = env_archcpu(env);
453 
454     raw_write(env, ri, value);
455     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
456 }
457 
458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
459 {
460     ARMCPU *cpu = env_archcpu(env);
461 
462     if (raw_read(env, ri) != value) {
463         /* Unlike real hardware the qemu TLB uses virtual addresses,
464          * not modified virtual addresses, so this causes a TLB flush.
465          */
466         tlb_flush(CPU(cpu));
467         raw_write(env, ri, value);
468     }
469 }
470 
471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
472                              uint64_t value)
473 {
474     ARMCPU *cpu = env_archcpu(env);
475 
476     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
477         && !extended_addresses_enabled(env)) {
478         /* For VMSA (when not using the LPAE long descriptor page table
479          * format) this register includes the ASID, so do a TLB flush.
480          * For PMSA it is purely a process ID and no action is needed.
481          */
482         tlb_flush(CPU(cpu));
483     }
484     raw_write(env, ri, value);
485 }
486 
487 /* IS variants of TLB operations must affect all cores */
488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
489                              uint64_t value)
490 {
491     CPUState *cs = env_cpu(env);
492 
493     tlb_flush_all_cpus_synced(cs);
494 }
495 
496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
497                              uint64_t value)
498 {
499     CPUState *cs = env_cpu(env);
500 
501     tlb_flush_all_cpus_synced(cs);
502 }
503 
504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
505                              uint64_t value)
506 {
507     CPUState *cs = env_cpu(env);
508 
509     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
510 }
511 
512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                              uint64_t value)
514 {
515     CPUState *cs = env_cpu(env);
516 
517     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
518 }
519 
520 /*
521  * Non-IS variants of TLB operations are upgraded to
522  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
523  * force broadcast of these operations.
524  */
525 static bool tlb_force_broadcast(CPUARMState *env)
526 {
527     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
528 }
529 
530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
531                           uint64_t value)
532 {
533     /* Invalidate all (TLBIALL) */
534     CPUState *cs = env_cpu(env);
535 
536     if (tlb_force_broadcast(env)) {
537         tlb_flush_all_cpus_synced(cs);
538     } else {
539         tlb_flush(cs);
540     }
541 }
542 
543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
544                           uint64_t value)
545 {
546     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
547     CPUState *cs = env_cpu(env);
548 
549     value &= TARGET_PAGE_MASK;
550     if (tlb_force_broadcast(env)) {
551         tlb_flush_page_all_cpus_synced(cs, value);
552     } else {
553         tlb_flush_page(cs, value);
554     }
555 }
556 
557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                            uint64_t value)
559 {
560     /* Invalidate by ASID (TLBIASID) */
561     CPUState *cs = env_cpu(env);
562 
563     if (tlb_force_broadcast(env)) {
564         tlb_flush_all_cpus_synced(cs);
565     } else {
566         tlb_flush(cs);
567     }
568 }
569 
570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                            uint64_t value)
572 {
573     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
574     CPUState *cs = env_cpu(env);
575 
576     value &= TARGET_PAGE_MASK;
577     if (tlb_force_broadcast(env)) {
578         tlb_flush_page_all_cpus_synced(cs, value);
579     } else {
580         tlb_flush_page(cs, value);
581     }
582 }
583 
584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
585                                uint64_t value)
586 {
587     CPUState *cs = env_cpu(env);
588 
589     tlb_flush_by_mmuidx(cs,
590                         ARMMMUIdxBit_E10_1 |
591                         ARMMMUIdxBit_E10_1_PAN |
592                         ARMMMUIdxBit_E10_0);
593 }
594 
595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                                   uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599 
600     tlb_flush_by_mmuidx_all_cpus_synced(cs,
601                                         ARMMMUIdxBit_E10_1 |
602                                         ARMMMUIdxBit_E10_1_PAN |
603                                         ARMMMUIdxBit_E10_0);
604 }
605 
606 
607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
608                               uint64_t value)
609 {
610     CPUState *cs = env_cpu(env);
611 
612     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
613 }
614 
615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
616                                  uint64_t value)
617 {
618     CPUState *cs = env_cpu(env);
619 
620     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
621 }
622 
623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
624                               uint64_t value)
625 {
626     CPUState *cs = env_cpu(env);
627     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
628 
629     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
630 }
631 
632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
633                                  uint64_t value)
634 {
635     CPUState *cs = env_cpu(env);
636     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
637 
638     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
639                                              ARMMMUIdxBit_E2);
640 }
641 
642 static const ARMCPRegInfo cp_reginfo[] = {
643     /* Define the secure and non-secure FCSE identifier CP registers
644      * separately because there is no secure bank in V8 (no _EL3).  This allows
645      * the secure register to be properly reset and migrated. There is also no
646      * v8 EL1 version of the register so the non-secure instance stands alone.
647      */
648     { .name = "FCSEIDR",
649       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
650       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
651       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
652       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
653     { .name = "FCSEIDR_S",
654       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
655       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
656       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
657       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
658     /* Define the secure and non-secure context identifier CP registers
659      * separately because there is no secure bank in V8 (no _EL3).  This allows
660      * the secure register to be properly reset and migrated.  In the
661      * non-secure case, the 32-bit register will have reset and migration
662      * disabled during registration as it is handled by the 64-bit instance.
663      */
664     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
665       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
666       .access = PL1_RW, .accessfn = access_tvm_trvm,
667       .secure = ARM_CP_SECSTATE_NS,
668       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
669       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
670     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
671       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
672       .access = PL1_RW, .accessfn = access_tvm_trvm,
673       .secure = ARM_CP_SECSTATE_S,
674       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
675       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
676     REGINFO_SENTINEL
677 };
678 
679 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
680     /* NB: Some of these registers exist in v8 but with more precise
681      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
682      */
683     /* MMU Domain access control / MPU write buffer control */
684     { .name = "DACR",
685       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
686       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
687       .writefn = dacr_write, .raw_writefn = raw_write,
688       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
689                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
690     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
691      * For v6 and v5, these mappings are overly broad.
692      */
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
696       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
697     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
699     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
700       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
701     /* Cache maintenance ops; some of this space may be overridden later. */
702     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
703       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
704       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
705     REGINFO_SENTINEL
706 };
707 
708 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
709     /* Not all pre-v6 cores implemented this WFI, so this is slightly
710      * over-broad.
711      */
712     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
713       .access = PL1_W, .type = ARM_CP_WFI },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
718     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
719      * is UNPREDICTABLE; we choose to NOP as most implementations do).
720      */
721     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
722       .access = PL1_W, .type = ARM_CP_WFI },
723     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
724      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
725      * OMAPCP will override this space.
726      */
727     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
728       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
729       .resetvalue = 0 },
730     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
731       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
732       .resetvalue = 0 },
733     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
734     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
735       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
736       .resetvalue = 0 },
737     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
738      * implementing it as RAZ means the "debug architecture version" bits
739      * will read as a reserved value, which should cause Linux to not try
740      * to use the debug hardware.
741      */
742     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
743       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
744     /* MMU TLB control. Note that the wildcarding means we cover not just
745      * the unified TLB ops but also the dside/iside/inner-shareable variants.
746      */
747     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
748       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
749       .type = ARM_CP_NO_RAW },
750     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
751       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
752       .type = ARM_CP_NO_RAW },
753     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
754       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
755       .type = ARM_CP_NO_RAW },
756     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
757       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
758       .type = ARM_CP_NO_RAW },
759     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
760       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
761     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
762       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
763     REGINFO_SENTINEL
764 };
765 
766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
767                         uint64_t value)
768 {
769     uint32_t mask = 0;
770 
771     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
772     if (!arm_feature(env, ARM_FEATURE_V8)) {
773         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
774          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
775          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
776          */
777         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
778             /* VFP coprocessor: cp10 & cp11 [23:20] */
779             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
780 
781             if (!arm_feature(env, ARM_FEATURE_NEON)) {
782                 /* ASEDIS [31] bit is RAO/WI */
783                 value |= (1 << 31);
784             }
785 
786             /* VFPv3 and upwards with NEON implement 32 double precision
787              * registers (D0-D31).
788              */
789             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
790                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
791                 value |= (1 << 30);
792             }
793         }
794         value &= mask;
795     }
796 
797     /*
798      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
799      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
800      */
801     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
802         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
803         value &= ~(0xf << 20);
804         value |= env->cp15.cpacr_el1 & (0xf << 20);
805     }
806 
807     env->cp15.cpacr_el1 = value;
808 }
809 
810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
811 {
812     /*
813      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
814      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
815      */
816     uint64_t value = env->cp15.cpacr_el1;
817 
818     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
819         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
820         value &= ~(0xf << 20);
821     }
822     return value;
823 }
824 
825 
826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
827 {
828     /* Call cpacr_write() so that we reset with the correct RAO bits set
829      * for our CPU features.
830      */
831     cpacr_write(env, ri, 0);
832 }
833 
834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
835                                    bool isread)
836 {
837     if (arm_feature(env, ARM_FEATURE_V8)) {
838         /* Check if CPACR accesses are to be trapped to EL2 */
839         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
840             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
841             return CP_ACCESS_TRAP_EL2;
842         /* Check if CPACR accesses are to be trapped to EL3 */
843         } else if (arm_current_el(env) < 3 &&
844                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
845             return CP_ACCESS_TRAP_EL3;
846         }
847     }
848 
849     return CP_ACCESS_OK;
850 }
851 
852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
853                                   bool isread)
854 {
855     /* Check if CPTR accesses are set to trap to EL3 */
856     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
857         return CP_ACCESS_TRAP_EL3;
858     }
859 
860     return CP_ACCESS_OK;
861 }
862 
863 static const ARMCPRegInfo v6_cp_reginfo[] = {
864     /* prefetch by MVA in v6, NOP in v7 */
865     { .name = "MVA_prefetch",
866       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
867       .access = PL1_W, .type = ARM_CP_NOP },
868     /* We need to break the TB after ISB to execute self-modifying code
869      * correctly and also to take any pending interrupts immediately.
870      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
871      */
872     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
874     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
877       .access = PL0_W, .type = ARM_CP_NOP },
878     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
879       .access = PL1_RW, .accessfn = access_tvm_trvm,
880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
881                              offsetof(CPUARMState, cp15.ifar_ns) },
882       .resetvalue = 0, },
883     /* Watchpoint Fault Address Register : should actually only be present
884      * for 1136, 1176, 11MPCore.
885      */
886     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
887       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
888     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
889       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
890       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
891       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
892     REGINFO_SENTINEL
893 };
894 
895 typedef struct pm_event {
896     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
897     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
898     bool (*supported)(CPUARMState *);
899     /*
900      * Retrieve the current count of the underlying event. The programmed
901      * counters hold a difference from the return value from this function
902      */
903     uint64_t (*get_count)(CPUARMState *);
904     /*
905      * Return how many nanoseconds it will take (at a minimum) for count events
906      * to occur. A negative value indicates the counter will never overflow, or
907      * that the counter has otherwise arranged for the overflow bit to be set
908      * and the PMU interrupt to be raised on overflow.
909      */
910     int64_t (*ns_per_count)(uint64_t);
911 } pm_event;
912 
913 static bool event_always_supported(CPUARMState *env)
914 {
915     return true;
916 }
917 
918 static uint64_t swinc_get_count(CPUARMState *env)
919 {
920     /*
921      * SW_INCR events are written directly to the pmevcntr's by writes to
922      * PMSWINC, so there is no underlying count maintained by the PMU itself
923      */
924     return 0;
925 }
926 
927 static int64_t swinc_ns_per(uint64_t ignored)
928 {
929     return -1;
930 }
931 
932 /*
933  * Return the underlying cycle count for the PMU cycle counters. If we're in
934  * usermode, simply return 0.
935  */
936 static uint64_t cycles_get_count(CPUARMState *env)
937 {
938 #ifndef CONFIG_USER_ONLY
939     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
940                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
941 #else
942     return cpu_get_host_ticks();
943 #endif
944 }
945 
946 #ifndef CONFIG_USER_ONLY
947 static int64_t cycles_ns_per(uint64_t cycles)
948 {
949     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
950 }
951 
952 static bool instructions_supported(CPUARMState *env)
953 {
954     return icount_enabled() == 1; /* Precise instruction counting */
955 }
956 
957 static uint64_t instructions_get_count(CPUARMState *env)
958 {
959     return (uint64_t)icount_get_raw();
960 }
961 
962 static int64_t instructions_ns_per(uint64_t icount)
963 {
964     return icount_to_ns((int64_t)icount);
965 }
966 #endif
967 
968 static bool pmu_8_1_events_supported(CPUARMState *env)
969 {
970     /* For events which are supported in any v8.1 PMU */
971     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
972 }
973 
974 static bool pmu_8_4_events_supported(CPUARMState *env)
975 {
976     /* For events which are supported in any v8.1 PMU */
977     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
978 }
979 
980 static uint64_t zero_event_get_count(CPUARMState *env)
981 {
982     /* For events which on QEMU never fire, so their count is always zero */
983     return 0;
984 }
985 
986 static int64_t zero_event_ns_per(uint64_t cycles)
987 {
988     /* An event which never fires can never overflow */
989     return -1;
990 }
991 
992 static const pm_event pm_events[] = {
993     { .number = 0x000, /* SW_INCR */
994       .supported = event_always_supported,
995       .get_count = swinc_get_count,
996       .ns_per_count = swinc_ns_per,
997     },
998 #ifndef CONFIG_USER_ONLY
999     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1000       .supported = instructions_supported,
1001       .get_count = instructions_get_count,
1002       .ns_per_count = instructions_ns_per,
1003     },
1004     { .number = 0x011, /* CPU_CYCLES, Cycle */
1005       .supported = event_always_supported,
1006       .get_count = cycles_get_count,
1007       .ns_per_count = cycles_ns_per,
1008     },
1009 #endif
1010     { .number = 0x023, /* STALL_FRONTEND */
1011       .supported = pmu_8_1_events_supported,
1012       .get_count = zero_event_get_count,
1013       .ns_per_count = zero_event_ns_per,
1014     },
1015     { .number = 0x024, /* STALL_BACKEND */
1016       .supported = pmu_8_1_events_supported,
1017       .get_count = zero_event_get_count,
1018       .ns_per_count = zero_event_ns_per,
1019     },
1020     { .number = 0x03c, /* STALL */
1021       .supported = pmu_8_4_events_supported,
1022       .get_count = zero_event_get_count,
1023       .ns_per_count = zero_event_ns_per,
1024     },
1025 };
1026 
1027 /*
1028  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1029  * events (i.e. the statistical profiling extension), this implementation
1030  * should first be updated to something sparse instead of the current
1031  * supported_event_map[] array.
1032  */
1033 #define MAX_EVENT_ID 0x3c
1034 #define UNSUPPORTED_EVENT UINT16_MAX
1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1036 
1037 /*
1038  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1039  * of ARM event numbers to indices in our pm_events array.
1040  *
1041  * Note: Events in the 0x40XX range are not currently supported.
1042  */
1043 void pmu_init(ARMCPU *cpu)
1044 {
1045     unsigned int i;
1046 
1047     /*
1048      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1049      * events to them
1050      */
1051     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1052         supported_event_map[i] = UNSUPPORTED_EVENT;
1053     }
1054     cpu->pmceid0 = 0;
1055     cpu->pmceid1 = 0;
1056 
1057     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1058         const pm_event *cnt = &pm_events[i];
1059         assert(cnt->number <= MAX_EVENT_ID);
1060         /* We do not currently support events in the 0x40xx range */
1061         assert(cnt->number <= 0x3f);
1062 
1063         if (cnt->supported(&cpu->env)) {
1064             supported_event_map[cnt->number] = i;
1065             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1066             if (cnt->number & 0x20) {
1067                 cpu->pmceid1 |= event_mask;
1068             } else {
1069                 cpu->pmceid0 |= event_mask;
1070             }
1071         }
1072     }
1073 }
1074 
1075 /*
1076  * Check at runtime whether a PMU event is supported for the current machine
1077  */
1078 static bool event_supported(uint16_t number)
1079 {
1080     if (number > MAX_EVENT_ID) {
1081         return false;
1082     }
1083     return supported_event_map[number] != UNSUPPORTED_EVENT;
1084 }
1085 
1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1087                                    bool isread)
1088 {
1089     /* Performance monitor registers user accessibility is controlled
1090      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1091      * trapping to EL2 or EL3 for other accesses.
1092      */
1093     int el = arm_current_el(env);
1094     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1095 
1096     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1097         return CP_ACCESS_TRAP;
1098     }
1099     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1100         return CP_ACCESS_TRAP_EL2;
1101     }
1102     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1103         return CP_ACCESS_TRAP_EL3;
1104     }
1105 
1106     return CP_ACCESS_OK;
1107 }
1108 
1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1110                                            const ARMCPRegInfo *ri,
1111                                            bool isread)
1112 {
1113     /* ER: event counter read trap control */
1114     if (arm_feature(env, ARM_FEATURE_V8)
1115         && arm_current_el(env) == 0
1116         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1117         && isread) {
1118         return CP_ACCESS_OK;
1119     }
1120 
1121     return pmreg_access(env, ri, isread);
1122 }
1123 
1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1125                                          const ARMCPRegInfo *ri,
1126                                          bool isread)
1127 {
1128     /* SW: software increment write trap control */
1129     if (arm_feature(env, ARM_FEATURE_V8)
1130         && arm_current_el(env) == 0
1131         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1132         && !isread) {
1133         return CP_ACCESS_OK;
1134     }
1135 
1136     return pmreg_access(env, ri, isread);
1137 }
1138 
1139 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1140                                         const ARMCPRegInfo *ri,
1141                                         bool isread)
1142 {
1143     /* ER: event counter read trap control */
1144     if (arm_feature(env, ARM_FEATURE_V8)
1145         && arm_current_el(env) == 0
1146         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1147         return CP_ACCESS_OK;
1148     }
1149 
1150     return pmreg_access(env, ri, isread);
1151 }
1152 
1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1154                                          const ARMCPRegInfo *ri,
1155                                          bool isread)
1156 {
1157     /* CR: cycle counter read trap control */
1158     if (arm_feature(env, ARM_FEATURE_V8)
1159         && arm_current_el(env) == 0
1160         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1161         && isread) {
1162         return CP_ACCESS_OK;
1163     }
1164 
1165     return pmreg_access(env, ri, isread);
1166 }
1167 
1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1169  * the current EL, security state, and register configuration.
1170  */
1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1172 {
1173     uint64_t filter;
1174     bool e, p, u, nsk, nsu, nsh, m;
1175     bool enabled, prohibited, filtered;
1176     bool secure = arm_is_secure(env);
1177     int el = arm_current_el(env);
1178     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1179     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1180 
1181     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1182         return false;
1183     }
1184 
1185     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1186             (counter < hpmn || counter == 31)) {
1187         e = env->cp15.c9_pmcr & PMCRE;
1188     } else {
1189         e = mdcr_el2 & MDCR_HPME;
1190     }
1191     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1192 
1193     if (!secure) {
1194         if (el == 2 && (counter < hpmn || counter == 31)) {
1195             prohibited = mdcr_el2 & MDCR_HPMD;
1196         } else {
1197             prohibited = false;
1198         }
1199     } else {
1200         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1201            !(env->cp15.mdcr_el3 & MDCR_SPME);
1202     }
1203 
1204     if (prohibited && counter == 31) {
1205         prohibited = env->cp15.c9_pmcr & PMCRDP;
1206     }
1207 
1208     if (counter == 31) {
1209         filter = env->cp15.pmccfiltr_el0;
1210     } else {
1211         filter = env->cp15.c14_pmevtyper[counter];
1212     }
1213 
1214     p   = filter & PMXEVTYPER_P;
1215     u   = filter & PMXEVTYPER_U;
1216     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1217     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1218     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1219     m   = arm_el_is_aa64(env, 1) &&
1220               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1221 
1222     if (el == 0) {
1223         filtered = secure ? u : u != nsu;
1224     } else if (el == 1) {
1225         filtered = secure ? p : p != nsk;
1226     } else if (el == 2) {
1227         filtered = !nsh;
1228     } else { /* EL3 */
1229         filtered = m != p;
1230     }
1231 
1232     if (counter != 31) {
1233         /*
1234          * If not checking PMCCNTR, ensure the counter is setup to an event we
1235          * support
1236          */
1237         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1238         if (!event_supported(event)) {
1239             return false;
1240         }
1241     }
1242 
1243     return enabled && !prohibited && !filtered;
1244 }
1245 
1246 static void pmu_update_irq(CPUARMState *env)
1247 {
1248     ARMCPU *cpu = env_archcpu(env);
1249     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1250             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1251 }
1252 
1253 /*
1254  * Ensure c15_ccnt is the guest-visible count so that operations such as
1255  * enabling/disabling the counter or filtering, modifying the count itself,
1256  * etc. can be done logically. This is essentially a no-op if the counter is
1257  * not enabled at the time of the call.
1258  */
1259 static void pmccntr_op_start(CPUARMState *env)
1260 {
1261     uint64_t cycles = cycles_get_count(env);
1262 
1263     if (pmu_counter_enabled(env, 31)) {
1264         uint64_t eff_cycles = cycles;
1265         if (env->cp15.c9_pmcr & PMCRD) {
1266             /* Increment once every 64 processor clock cycles */
1267             eff_cycles /= 64;
1268         }
1269 
1270         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1271 
1272         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1273                                  1ull << 63 : 1ull << 31;
1274         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1275             env->cp15.c9_pmovsr |= (1 << 31);
1276             pmu_update_irq(env);
1277         }
1278 
1279         env->cp15.c15_ccnt = new_pmccntr;
1280     }
1281     env->cp15.c15_ccnt_delta = cycles;
1282 }
1283 
1284 /*
1285  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1286  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1287  * pmccntr_op_start.
1288  */
1289 static void pmccntr_op_finish(CPUARMState *env)
1290 {
1291     if (pmu_counter_enabled(env, 31)) {
1292 #ifndef CONFIG_USER_ONLY
1293         /* Calculate when the counter will next overflow */
1294         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1295         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1296             remaining_cycles = (uint32_t)remaining_cycles;
1297         }
1298         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1299 
1300         if (overflow_in > 0) {
1301             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1302                 overflow_in;
1303             ARMCPU *cpu = env_archcpu(env);
1304             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1305         }
1306 #endif
1307 
1308         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1309         if (env->cp15.c9_pmcr & PMCRD) {
1310             /* Increment once every 64 processor clock cycles */
1311             prev_cycles /= 64;
1312         }
1313         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1314     }
1315 }
1316 
1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1318 {
1319 
1320     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1321     uint64_t count = 0;
1322     if (event_supported(event)) {
1323         uint16_t event_idx = supported_event_map[event];
1324         count = pm_events[event_idx].get_count(env);
1325     }
1326 
1327     if (pmu_counter_enabled(env, counter)) {
1328         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1329 
1330         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1331             env->cp15.c9_pmovsr |= (1 << counter);
1332             pmu_update_irq(env);
1333         }
1334         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1335     }
1336     env->cp15.c14_pmevcntr_delta[counter] = count;
1337 }
1338 
1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1340 {
1341     if (pmu_counter_enabled(env, counter)) {
1342 #ifndef CONFIG_USER_ONLY
1343         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1344         uint16_t event_idx = supported_event_map[event];
1345         uint64_t delta = UINT32_MAX -
1346             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1347         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1348 
1349         if (overflow_in > 0) {
1350             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1351                 overflow_in;
1352             ARMCPU *cpu = env_archcpu(env);
1353             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1354         }
1355 #endif
1356 
1357         env->cp15.c14_pmevcntr_delta[counter] -=
1358             env->cp15.c14_pmevcntr[counter];
1359     }
1360 }
1361 
1362 void pmu_op_start(CPUARMState *env)
1363 {
1364     unsigned int i;
1365     pmccntr_op_start(env);
1366     for (i = 0; i < pmu_num_counters(env); i++) {
1367         pmevcntr_op_start(env, i);
1368     }
1369 }
1370 
1371 void pmu_op_finish(CPUARMState *env)
1372 {
1373     unsigned int i;
1374     pmccntr_op_finish(env);
1375     for (i = 0; i < pmu_num_counters(env); i++) {
1376         pmevcntr_op_finish(env, i);
1377     }
1378 }
1379 
1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1381 {
1382     pmu_op_start(&cpu->env);
1383 }
1384 
1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1386 {
1387     pmu_op_finish(&cpu->env);
1388 }
1389 
1390 void arm_pmu_timer_cb(void *opaque)
1391 {
1392     ARMCPU *cpu = opaque;
1393 
1394     /*
1395      * Update all the counter values based on the current underlying counts,
1396      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1397      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1398      * counter may expire.
1399      */
1400     pmu_op_start(&cpu->env);
1401     pmu_op_finish(&cpu->env);
1402 }
1403 
1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1405                        uint64_t value)
1406 {
1407     pmu_op_start(env);
1408 
1409     if (value & PMCRC) {
1410         /* The counter has been reset */
1411         env->cp15.c15_ccnt = 0;
1412     }
1413 
1414     if (value & PMCRP) {
1415         unsigned int i;
1416         for (i = 0; i < pmu_num_counters(env); i++) {
1417             env->cp15.c14_pmevcntr[i] = 0;
1418         }
1419     }
1420 
1421     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1422     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1423 
1424     pmu_op_finish(env);
1425 }
1426 
1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1428                           uint64_t value)
1429 {
1430     unsigned int i;
1431     for (i = 0; i < pmu_num_counters(env); i++) {
1432         /* Increment a counter's count iff: */
1433         if ((value & (1 << i)) && /* counter's bit is set */
1434                 /* counter is enabled and not filtered */
1435                 pmu_counter_enabled(env, i) &&
1436                 /* counter is SW_INCR */
1437                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1438             pmevcntr_op_start(env, i);
1439 
1440             /*
1441              * Detect if this write causes an overflow since we can't predict
1442              * PMSWINC overflows like we can for other events
1443              */
1444             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1445 
1446             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1447                 env->cp15.c9_pmovsr |= (1 << i);
1448                 pmu_update_irq(env);
1449             }
1450 
1451             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1452 
1453             pmevcntr_op_finish(env, i);
1454         }
1455     }
1456 }
1457 
1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1459 {
1460     uint64_t ret;
1461     pmccntr_op_start(env);
1462     ret = env->cp15.c15_ccnt;
1463     pmccntr_op_finish(env);
1464     return ret;
1465 }
1466 
1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1468                          uint64_t value)
1469 {
1470     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1471      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1472      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1473      * accessed.
1474      */
1475     env->cp15.c9_pmselr = value & 0x1f;
1476 }
1477 
1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479                         uint64_t value)
1480 {
1481     pmccntr_op_start(env);
1482     env->cp15.c15_ccnt = value;
1483     pmccntr_op_finish(env);
1484 }
1485 
1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1487                             uint64_t value)
1488 {
1489     uint64_t cur_val = pmccntr_read(env, NULL);
1490 
1491     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1492 }
1493 
1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1495                             uint64_t value)
1496 {
1497     pmccntr_op_start(env);
1498     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1499     pmccntr_op_finish(env);
1500 }
1501 
1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1503                             uint64_t value)
1504 {
1505     pmccntr_op_start(env);
1506     /* M is not accessible from AArch32 */
1507     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1508         (value & PMCCFILTR);
1509     pmccntr_op_finish(env);
1510 }
1511 
1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1513 {
1514     /* M is not visible in AArch32 */
1515     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1516 }
1517 
1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1519                             uint64_t value)
1520 {
1521     value &= pmu_counter_mask(env);
1522     env->cp15.c9_pmcnten |= value;
1523 }
1524 
1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1526                              uint64_t value)
1527 {
1528     value &= pmu_counter_mask(env);
1529     env->cp15.c9_pmcnten &= ~value;
1530 }
1531 
1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1533                          uint64_t value)
1534 {
1535     value &= pmu_counter_mask(env);
1536     env->cp15.c9_pmovsr &= ~value;
1537     pmu_update_irq(env);
1538 }
1539 
1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1541                          uint64_t value)
1542 {
1543     value &= pmu_counter_mask(env);
1544     env->cp15.c9_pmovsr |= value;
1545     pmu_update_irq(env);
1546 }
1547 
1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1549                              uint64_t value, const uint8_t counter)
1550 {
1551     if (counter == 31) {
1552         pmccfiltr_write(env, ri, value);
1553     } else if (counter < pmu_num_counters(env)) {
1554         pmevcntr_op_start(env, counter);
1555 
1556         /*
1557          * If this counter's event type is changing, store the current
1558          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1559          * pmevcntr_op_finish has the correct baseline when it converts back to
1560          * a delta.
1561          */
1562         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1563             PMXEVTYPER_EVTCOUNT;
1564         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1565         if (old_event != new_event) {
1566             uint64_t count = 0;
1567             if (event_supported(new_event)) {
1568                 uint16_t event_idx = supported_event_map[new_event];
1569                 count = pm_events[event_idx].get_count(env);
1570             }
1571             env->cp15.c14_pmevcntr_delta[counter] = count;
1572         }
1573 
1574         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1575         pmevcntr_op_finish(env, counter);
1576     }
1577     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1578      * PMSELR value is equal to or greater than the number of implemented
1579      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1580      */
1581 }
1582 
1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1584                                const uint8_t counter)
1585 {
1586     if (counter == 31) {
1587         return env->cp15.pmccfiltr_el0;
1588     } else if (counter < pmu_num_counters(env)) {
1589         return env->cp15.c14_pmevtyper[counter];
1590     } else {
1591       /*
1592        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1593        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1594        */
1595         return 0;
1596     }
1597 }
1598 
1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1600                               uint64_t value)
1601 {
1602     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1603     pmevtyper_write(env, ri, value, counter);
1604 }
1605 
1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1607                                uint64_t value)
1608 {
1609     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1610     env->cp15.c14_pmevtyper[counter] = value;
1611 
1612     /*
1613      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1614      * pmu_op_finish calls when loading saved state for a migration. Because
1615      * we're potentially updating the type of event here, the value written to
1616      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1617      * different counter type. Therefore, we need to set this value to the
1618      * current count for the counter type we're writing so that pmu_op_finish
1619      * has the correct count for its calculation.
1620      */
1621     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1622     if (event_supported(event)) {
1623         uint16_t event_idx = supported_event_map[event];
1624         env->cp15.c14_pmevcntr_delta[counter] =
1625             pm_events[event_idx].get_count(env);
1626     }
1627 }
1628 
1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1630 {
1631     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1632     return pmevtyper_read(env, ri, counter);
1633 }
1634 
1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1636                              uint64_t value)
1637 {
1638     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1639 }
1640 
1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1642 {
1643     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1644 }
1645 
1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1647                              uint64_t value, uint8_t counter)
1648 {
1649     if (counter < pmu_num_counters(env)) {
1650         pmevcntr_op_start(env, counter);
1651         env->cp15.c14_pmevcntr[counter] = value;
1652         pmevcntr_op_finish(env, counter);
1653     }
1654     /*
1655      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1656      * are CONSTRAINED UNPREDICTABLE.
1657      */
1658 }
1659 
1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint8_t counter)
1662 {
1663     if (counter < pmu_num_counters(env)) {
1664         uint64_t ret;
1665         pmevcntr_op_start(env, counter);
1666         ret = env->cp15.c14_pmevcntr[counter];
1667         pmevcntr_op_finish(env, counter);
1668         return ret;
1669     } else {
1670       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1671        * are CONSTRAINED UNPREDICTABLE. */
1672         return 0;
1673     }
1674 }
1675 
1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1677                              uint64_t value)
1678 {
1679     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1680     pmevcntr_write(env, ri, value, counter);
1681 }
1682 
1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1684 {
1685     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1686     return pmevcntr_read(env, ri, counter);
1687 }
1688 
1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1690                              uint64_t value)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     assert(counter < pmu_num_counters(env));
1694     env->cp15.c14_pmevcntr[counter] = value;
1695     pmevcntr_write(env, ri, value, counter);
1696 }
1697 
1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1699 {
1700     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1701     assert(counter < pmu_num_counters(env));
1702     return env->cp15.c14_pmevcntr[counter];
1703 }
1704 
1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                              uint64_t value)
1707 {
1708     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1709 }
1710 
1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1712 {
1713     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1714 }
1715 
1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717                             uint64_t value)
1718 {
1719     if (arm_feature(env, ARM_FEATURE_V8)) {
1720         env->cp15.c9_pmuserenr = value & 0xf;
1721     } else {
1722         env->cp15.c9_pmuserenr = value & 1;
1723     }
1724 }
1725 
1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1727                              uint64_t value)
1728 {
1729     /* We have no event counters so only the C bit can be changed */
1730     value &= pmu_counter_mask(env);
1731     env->cp15.c9_pminten |= value;
1732     pmu_update_irq(env);
1733 }
1734 
1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                              uint64_t value)
1737 {
1738     value &= pmu_counter_mask(env);
1739     env->cp15.c9_pminten &= ~value;
1740     pmu_update_irq(env);
1741 }
1742 
1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                        uint64_t value)
1745 {
1746     /* Note that even though the AArch64 view of this register has bits
1747      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1748      * architectural requirements for bits which are RES0 only in some
1749      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1750      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1751      */
1752     raw_write(env, ri, value & ~0x1FULL);
1753 }
1754 
1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1756 {
1757     /* Begin with base v8.0 state.  */
1758     uint32_t valid_mask = 0x3fff;
1759     ARMCPU *cpu = env_archcpu(env);
1760 
1761     if (ri->state == ARM_CP_STATE_AA64) {
1762         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1763             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1764                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1765         }
1766         valid_mask &= ~SCR_NET;
1767 
1768         if (cpu_isar_feature(aa64_lor, cpu)) {
1769             valid_mask |= SCR_TLOR;
1770         }
1771         if (cpu_isar_feature(aa64_pauth, cpu)) {
1772             valid_mask |= SCR_API | SCR_APK;
1773         }
1774         if (cpu_isar_feature(aa64_sel2, cpu)) {
1775             valid_mask |= SCR_EEL2;
1776         }
1777         if (cpu_isar_feature(aa64_mte, cpu)) {
1778             valid_mask |= SCR_ATA;
1779         }
1780     } else {
1781         valid_mask &= ~(SCR_RW | SCR_ST);
1782     }
1783 
1784     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1785         valid_mask &= ~SCR_HCE;
1786 
1787         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1788          * supported if EL2 exists. The bit is UNK/SBZP when
1789          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1790          * when EL2 is unavailable.
1791          * On ARMv8, this bit is always available.
1792          */
1793         if (arm_feature(env, ARM_FEATURE_V7) &&
1794             !arm_feature(env, ARM_FEATURE_V8)) {
1795             valid_mask &= ~SCR_SMD;
1796         }
1797     }
1798 
1799     /* Clear all-context RES0 bits.  */
1800     value &= valid_mask;
1801     raw_write(env, ri, value);
1802 }
1803 
1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806     /*
1807      * scr_write will set the RES1 bits on an AArch64-only CPU.
1808      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1809      */
1810     scr_write(env, ri, 0);
1811 }
1812 
1813 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1814                                        const ARMCPRegInfo *ri,
1815                                        bool isread)
1816 {
1817     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1818         return CP_ACCESS_TRAP_EL2;
1819     }
1820 
1821     return CP_ACCESS_OK;
1822 }
1823 
1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     ARMCPU *cpu = env_archcpu(env);
1827 
1828     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1829      * bank
1830      */
1831     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1832                                         ri->secure & ARM_CP_SECSTATE_S);
1833 
1834     return cpu->ccsidr[index];
1835 }
1836 
1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1838                          uint64_t value)
1839 {
1840     raw_write(env, ri, value & 0xf);
1841 }
1842 
1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1844 {
1845     CPUState *cs = env_cpu(env);
1846     bool el1 = arm_current_el(env) == 1;
1847     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1848     uint64_t ret = 0;
1849 
1850     if (hcr_el2 & HCR_IMO) {
1851         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1852             ret |= CPSR_I;
1853         }
1854     } else {
1855         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1856             ret |= CPSR_I;
1857         }
1858     }
1859 
1860     if (hcr_el2 & HCR_FMO) {
1861         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1862             ret |= CPSR_F;
1863         }
1864     } else {
1865         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1866             ret |= CPSR_F;
1867         }
1868     }
1869 
1870     /* External aborts are not possible in QEMU so A bit is always clear */
1871     return ret;
1872 }
1873 
1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                        bool isread)
1876 {
1877     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1878         return CP_ACCESS_TRAP_EL2;
1879     }
1880 
1881     return CP_ACCESS_OK;
1882 }
1883 
1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1885                                        bool isread)
1886 {
1887     if (arm_feature(env, ARM_FEATURE_V8)) {
1888         return access_aa64_tid1(env, ri, isread);
1889     }
1890 
1891     return CP_ACCESS_OK;
1892 }
1893 
1894 static const ARMCPRegInfo v7_cp_reginfo[] = {
1895     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1896     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1897       .access = PL1_W, .type = ARM_CP_NOP },
1898     /* Performance monitors are implementation defined in v7,
1899      * but with an ARM recommended set of registers, which we
1900      * follow.
1901      *
1902      * Performance registers fall into three categories:
1903      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1904      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1905      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1906      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1907      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1908      */
1909     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1910       .access = PL0_RW, .type = ARM_CP_ALIAS,
1911       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1912       .writefn = pmcntenset_write,
1913       .accessfn = pmreg_access,
1914       .raw_writefn = raw_write },
1915     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1916       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1917       .access = PL0_RW, .accessfn = pmreg_access,
1918       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1919       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1920     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1921       .access = PL0_RW,
1922       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1923       .accessfn = pmreg_access,
1924       .writefn = pmcntenclr_write,
1925       .type = ARM_CP_ALIAS },
1926     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1927       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1928       .access = PL0_RW, .accessfn = pmreg_access,
1929       .type = ARM_CP_ALIAS,
1930       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1931       .writefn = pmcntenclr_write },
1932     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1933       .access = PL0_RW, .type = ARM_CP_IO,
1934       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1935       .accessfn = pmreg_access,
1936       .writefn = pmovsr_write,
1937       .raw_writefn = raw_write },
1938     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1940       .access = PL0_RW, .accessfn = pmreg_access,
1941       .type = ARM_CP_ALIAS | ARM_CP_IO,
1942       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1943       .writefn = pmovsr_write,
1944       .raw_writefn = raw_write },
1945     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1946       .access = PL0_W, .accessfn = pmreg_access_swinc,
1947       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1948       .writefn = pmswinc_write },
1949     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1951       .access = PL0_W, .accessfn = pmreg_access_swinc,
1952       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1953       .writefn = pmswinc_write },
1954     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1955       .access = PL0_RW, .type = ARM_CP_ALIAS,
1956       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1957       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1958       .raw_writefn = raw_write},
1959     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1960       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1961       .access = PL0_RW, .accessfn = pmreg_access_selr,
1962       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1963       .writefn = pmselr_write, .raw_writefn = raw_write, },
1964     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1965       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1966       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1967       .accessfn = pmreg_access_ccntr },
1968     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1969       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1970       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1971       .type = ARM_CP_IO,
1972       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1973       .readfn = pmccntr_read, .writefn = pmccntr_write,
1974       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1975     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1976       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1977       .access = PL0_RW, .accessfn = pmreg_access,
1978       .type = ARM_CP_ALIAS | ARM_CP_IO,
1979       .resetvalue = 0, },
1980     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1981       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1982       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1983       .access = PL0_RW, .accessfn = pmreg_access,
1984       .type = ARM_CP_IO,
1985       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1986       .resetvalue = 0, },
1987     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1988       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1989       .accessfn = pmreg_access,
1990       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1991     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1992       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1993       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1994       .accessfn = pmreg_access,
1995       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1996     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1997       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998       .accessfn = pmreg_access_xevcntr,
1999       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2000     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2001       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2002       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2003       .accessfn = pmreg_access_xevcntr,
2004       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2005     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2006       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2007       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2008       .resetvalue = 0,
2009       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2010     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2011       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2012       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2013       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2014       .resetvalue = 0,
2015       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2016     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2017       .access = PL1_RW, .accessfn = access_tpm,
2018       .type = ARM_CP_ALIAS | ARM_CP_IO,
2019       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2020       .resetvalue = 0,
2021       .writefn = pmintenset_write, .raw_writefn = raw_write },
2022     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2023       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2024       .access = PL1_RW, .accessfn = access_tpm,
2025       .type = ARM_CP_IO,
2026       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2027       .writefn = pmintenset_write, .raw_writefn = raw_write,
2028       .resetvalue = 0x0 },
2029     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2030       .access = PL1_RW, .accessfn = access_tpm,
2031       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2032       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2033       .writefn = pmintenclr_write, },
2034     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2035       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2036       .access = PL1_RW, .accessfn = access_tpm,
2037       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2038       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2039       .writefn = pmintenclr_write },
2040     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2041       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2042       .access = PL1_R,
2043       .accessfn = access_aa64_tid2,
2044       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2045     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2046       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2047       .access = PL1_RW,
2048       .accessfn = access_aa64_tid2,
2049       .writefn = csselr_write, .resetvalue = 0,
2050       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2051                              offsetof(CPUARMState, cp15.csselr_ns) } },
2052     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2053      * just RAZ for all cores:
2054      */
2055     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2056       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2057       .access = PL1_R, .type = ARM_CP_CONST,
2058       .accessfn = access_aa64_tid1,
2059       .resetvalue = 0 },
2060     /* Auxiliary fault status registers: these also are IMPDEF, and we
2061      * choose to RAZ/WI for all cores.
2062      */
2063     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2064       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2065       .access = PL1_RW, .accessfn = access_tvm_trvm,
2066       .type = ARM_CP_CONST, .resetvalue = 0 },
2067     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2068       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2069       .access = PL1_RW, .accessfn = access_tvm_trvm,
2070       .type = ARM_CP_CONST, .resetvalue = 0 },
2071     /* MAIR can just read-as-written because we don't implement caches
2072      * and so don't need to care about memory attributes.
2073      */
2074     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2076       .access = PL1_RW, .accessfn = access_tvm_trvm,
2077       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2078       .resetvalue = 0 },
2079     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2080       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2081       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2082       .resetvalue = 0 },
2083     /* For non-long-descriptor page tables these are PRRR and NMRR;
2084      * regardless they still act as reads-as-written for QEMU.
2085      */
2086      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2087       * allows them to assign the correct fieldoffset based on the endianness
2088       * handled in the field definitions.
2089       */
2090     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2091       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2092       .access = PL1_RW, .accessfn = access_tvm_trvm,
2093       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2094                              offsetof(CPUARMState, cp15.mair0_ns) },
2095       .resetfn = arm_cp_reset_ignore },
2096     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2097       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2098       .access = PL1_RW, .accessfn = access_tvm_trvm,
2099       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2100                              offsetof(CPUARMState, cp15.mair1_ns) },
2101       .resetfn = arm_cp_reset_ignore },
2102     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2103       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2104       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2105     /* 32 bit ITLB invalidates */
2106     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2107       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2108       .writefn = tlbiall_write },
2109     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2110       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2111       .writefn = tlbimva_write },
2112     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2113       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2114       .writefn = tlbiasid_write },
2115     /* 32 bit DTLB invalidates */
2116     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2117       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2118       .writefn = tlbiall_write },
2119     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2120       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2121       .writefn = tlbimva_write },
2122     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2123       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2124       .writefn = tlbiasid_write },
2125     /* 32 bit TLB invalidates */
2126     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2127       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2128       .writefn = tlbiall_write },
2129     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2130       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2131       .writefn = tlbimva_write },
2132     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2133       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2134       .writefn = tlbiasid_write },
2135     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2136       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2137       .writefn = tlbimvaa_write },
2138     REGINFO_SENTINEL
2139 };
2140 
2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2142     /* 32 bit TLB invalidates, Inner Shareable */
2143     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2144       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2145       .writefn = tlbiall_is_write },
2146     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2147       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2148       .writefn = tlbimva_is_write },
2149     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2151       .writefn = tlbiasid_is_write },
2152     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2154       .writefn = tlbimvaa_is_write },
2155     REGINFO_SENTINEL
2156 };
2157 
2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2159     /* PMOVSSET is not implemented in v7 before v7ve */
2160     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2161       .access = PL0_RW, .accessfn = pmreg_access,
2162       .type = ARM_CP_ALIAS | ARM_CP_IO,
2163       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2164       .writefn = pmovsset_write,
2165       .raw_writefn = raw_write },
2166     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2168       .access = PL0_RW, .accessfn = pmreg_access,
2169       .type = ARM_CP_ALIAS | ARM_CP_IO,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2171       .writefn = pmovsset_write,
2172       .raw_writefn = raw_write },
2173     REGINFO_SENTINEL
2174 };
2175 
2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2177                         uint64_t value)
2178 {
2179     value &= 1;
2180     env->teecr = value;
2181 }
2182 
2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2184                                    bool isread)
2185 {
2186     /*
2187      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2188      * at all, so we don't need to check whether we're v8A.
2189      */
2190     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2191         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2192         return CP_ACCESS_TRAP_EL2;
2193     }
2194     return CP_ACCESS_OK;
2195 }
2196 
2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2198                                     bool isread)
2199 {
2200     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2201         return CP_ACCESS_TRAP;
2202     }
2203     return teecr_access(env, ri, isread);
2204 }
2205 
2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2207     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2208       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2209       .resetvalue = 0,
2210       .writefn = teecr_write, .accessfn = teecr_access },
2211     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2212       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2213       .accessfn = teehbr_access, .resetvalue = 0 },
2214     REGINFO_SENTINEL
2215 };
2216 
2217 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2218     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2219       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2220       .access = PL0_RW,
2221       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2222     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2223       .access = PL0_RW,
2224       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2225                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2226       .resetfn = arm_cp_reset_ignore },
2227     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2228       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2229       .access = PL0_R|PL1_W,
2230       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2231       .resetvalue = 0},
2232     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2233       .access = PL0_R|PL1_W,
2234       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2235                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2236       .resetfn = arm_cp_reset_ignore },
2237     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2238       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2239       .access = PL1_RW,
2240       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2241     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2242       .access = PL1_RW,
2243       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2244                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2245       .resetvalue = 0 },
2246     REGINFO_SENTINEL
2247 };
2248 
2249 #ifndef CONFIG_USER_ONLY
2250 
2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2252                                        bool isread)
2253 {
2254     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2255      * Writable only at the highest implemented exception level.
2256      */
2257     int el = arm_current_el(env);
2258     uint64_t hcr;
2259     uint32_t cntkctl;
2260 
2261     switch (el) {
2262     case 0:
2263         hcr = arm_hcr_el2_eff(env);
2264         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2265             cntkctl = env->cp15.cnthctl_el2;
2266         } else {
2267             cntkctl = env->cp15.c14_cntkctl;
2268         }
2269         if (!extract32(cntkctl, 0, 2)) {
2270             return CP_ACCESS_TRAP;
2271         }
2272         break;
2273     case 1:
2274         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2275             arm_is_secure_below_el3(env)) {
2276             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2277             return CP_ACCESS_TRAP_UNCATEGORIZED;
2278         }
2279         break;
2280     case 2:
2281     case 3:
2282         break;
2283     }
2284 
2285     if (!isread && el < arm_highest_el(env)) {
2286         return CP_ACCESS_TRAP_UNCATEGORIZED;
2287     }
2288 
2289     return CP_ACCESS_OK;
2290 }
2291 
2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2293                                         bool isread)
2294 {
2295     unsigned int cur_el = arm_current_el(env);
2296     bool has_el2 = arm_is_el2_enabled(env);
2297     uint64_t hcr = arm_hcr_el2_eff(env);
2298 
2299     switch (cur_el) {
2300     case 0:
2301         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2302         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2303             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2304                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2305         }
2306 
2307         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2308         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2309             return CP_ACCESS_TRAP;
2310         }
2311 
2312         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2313         if (hcr & HCR_E2H) {
2314             if (timeridx == GTIMER_PHYS &&
2315                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2316                 return CP_ACCESS_TRAP_EL2;
2317             }
2318         } else {
2319             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2320             if (has_el2 && timeridx == GTIMER_PHYS &&
2321                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2322                 return CP_ACCESS_TRAP_EL2;
2323             }
2324         }
2325         break;
2326 
2327     case 1:
2328         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2329         if (has_el2 && timeridx == GTIMER_PHYS &&
2330             (hcr & HCR_E2H
2331              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2332              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2333             return CP_ACCESS_TRAP_EL2;
2334         }
2335         break;
2336     }
2337     return CP_ACCESS_OK;
2338 }
2339 
2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2341                                       bool isread)
2342 {
2343     unsigned int cur_el = arm_current_el(env);
2344     bool has_el2 = arm_is_el2_enabled(env);
2345     uint64_t hcr = arm_hcr_el2_eff(env);
2346 
2347     switch (cur_el) {
2348     case 0:
2349         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2350             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2351             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2352                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2353         }
2354 
2355         /*
2356          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2357          * EL0 if EL0[PV]TEN is zero.
2358          */
2359         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2360             return CP_ACCESS_TRAP;
2361         }
2362         /* fall through */
2363 
2364     case 1:
2365         if (has_el2 && timeridx == GTIMER_PHYS) {
2366             if (hcr & HCR_E2H) {
2367                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2368                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2369                     return CP_ACCESS_TRAP_EL2;
2370                 }
2371             } else {
2372                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2373                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2374                     return CP_ACCESS_TRAP_EL2;
2375                 }
2376             }
2377         }
2378         break;
2379     }
2380     return CP_ACCESS_OK;
2381 }
2382 
2383 static CPAccessResult gt_pct_access(CPUARMState *env,
2384                                     const ARMCPRegInfo *ri,
2385                                     bool isread)
2386 {
2387     return gt_counter_access(env, GTIMER_PHYS, isread);
2388 }
2389 
2390 static CPAccessResult gt_vct_access(CPUARMState *env,
2391                                     const ARMCPRegInfo *ri,
2392                                     bool isread)
2393 {
2394     return gt_counter_access(env, GTIMER_VIRT, isread);
2395 }
2396 
2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2398                                        bool isread)
2399 {
2400     return gt_timer_access(env, GTIMER_PHYS, isread);
2401 }
2402 
2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2404                                        bool isread)
2405 {
2406     return gt_timer_access(env, GTIMER_VIRT, isread);
2407 }
2408 
2409 static CPAccessResult gt_stimer_access(CPUARMState *env,
2410                                        const ARMCPRegInfo *ri,
2411                                        bool isread)
2412 {
2413     /* The AArch64 register view of the secure physical timer is
2414      * always accessible from EL3, and configurably accessible from
2415      * Secure EL1.
2416      */
2417     switch (arm_current_el(env)) {
2418     case 1:
2419         if (!arm_is_secure(env)) {
2420             return CP_ACCESS_TRAP;
2421         }
2422         if (!(env->cp15.scr_el3 & SCR_ST)) {
2423             return CP_ACCESS_TRAP_EL3;
2424         }
2425         return CP_ACCESS_OK;
2426     case 0:
2427     case 2:
2428         return CP_ACCESS_TRAP;
2429     case 3:
2430         return CP_ACCESS_OK;
2431     default:
2432         g_assert_not_reached();
2433     }
2434 }
2435 
2436 static uint64_t gt_get_countervalue(CPUARMState *env)
2437 {
2438     ARMCPU *cpu = env_archcpu(env);
2439 
2440     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2441 }
2442 
2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2444 {
2445     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2446 
2447     if (gt->ctl & 1) {
2448         /* Timer enabled: calculate and set current ISTATUS, irq, and
2449          * reset timer to when ISTATUS next has to change
2450          */
2451         uint64_t offset = timeridx == GTIMER_VIRT ?
2452                                       cpu->env.cp15.cntvoff_el2 : 0;
2453         uint64_t count = gt_get_countervalue(&cpu->env);
2454         /* Note that this must be unsigned 64 bit arithmetic: */
2455         int istatus = count - offset >= gt->cval;
2456         uint64_t nexttick;
2457         int irqstate;
2458 
2459         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2460 
2461         irqstate = (istatus && !(gt->ctl & 2));
2462         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2463 
2464         if (istatus) {
2465             /* Next transition is when count rolls back over to zero */
2466             nexttick = UINT64_MAX;
2467         } else {
2468             /* Next transition is when we hit cval */
2469             nexttick = gt->cval + offset;
2470         }
2471         /* Note that the desired next expiry time might be beyond the
2472          * signed-64-bit range of a QEMUTimer -- in this case we just
2473          * set the timer for as far in the future as possible. When the
2474          * timer expires we will reset the timer for any remaining period.
2475          */
2476         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2477             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2478         } else {
2479             timer_mod(cpu->gt_timer[timeridx], nexttick);
2480         }
2481         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2482     } else {
2483         /* Timer disabled: ISTATUS and timer output always clear */
2484         gt->ctl &= ~4;
2485         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2486         timer_del(cpu->gt_timer[timeridx]);
2487         trace_arm_gt_recalc_disabled(timeridx);
2488     }
2489 }
2490 
2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2492                            int timeridx)
2493 {
2494     ARMCPU *cpu = env_archcpu(env);
2495 
2496     timer_del(cpu->gt_timer[timeridx]);
2497 }
2498 
2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 {
2501     return gt_get_countervalue(env);
2502 }
2503 
2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2505 {
2506     uint64_t hcr;
2507 
2508     switch (arm_current_el(env)) {
2509     case 2:
2510         hcr = arm_hcr_el2_eff(env);
2511         if (hcr & HCR_E2H) {
2512             return 0;
2513         }
2514         break;
2515     case 0:
2516         hcr = arm_hcr_el2_eff(env);
2517         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2518             return 0;
2519         }
2520         break;
2521     }
2522 
2523     return env->cp15.cntvoff_el2;
2524 }
2525 
2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 {
2528     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2529 }
2530 
2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2532                           int timeridx,
2533                           uint64_t value)
2534 {
2535     trace_arm_gt_cval_write(timeridx, value);
2536     env->cp15.c14_timer[timeridx].cval = value;
2537     gt_recalc_timer(env_archcpu(env), timeridx);
2538 }
2539 
2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2541                              int timeridx)
2542 {
2543     uint64_t offset = 0;
2544 
2545     switch (timeridx) {
2546     case GTIMER_VIRT:
2547     case GTIMER_HYPVIRT:
2548         offset = gt_virt_cnt_offset(env);
2549         break;
2550     }
2551 
2552     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2553                       (gt_get_countervalue(env) - offset));
2554 }
2555 
2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2557                           int timeridx,
2558                           uint64_t value)
2559 {
2560     uint64_t offset = 0;
2561 
2562     switch (timeridx) {
2563     case GTIMER_VIRT:
2564     case GTIMER_HYPVIRT:
2565         offset = gt_virt_cnt_offset(env);
2566         break;
2567     }
2568 
2569     trace_arm_gt_tval_write(timeridx, value);
2570     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2571                                          sextract64(value, 0, 32);
2572     gt_recalc_timer(env_archcpu(env), timeridx);
2573 }
2574 
2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2576                          int timeridx,
2577                          uint64_t value)
2578 {
2579     ARMCPU *cpu = env_archcpu(env);
2580     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2581 
2582     trace_arm_gt_ctl_write(timeridx, value);
2583     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2584     if ((oldval ^ value) & 1) {
2585         /* Enable toggled */
2586         gt_recalc_timer(cpu, timeridx);
2587     } else if ((oldval ^ value) & 2) {
2588         /* IMASK toggled: don't need to recalculate,
2589          * just set the interrupt line based on ISTATUS
2590          */
2591         int irqstate = (oldval & 4) && !(value & 2);
2592 
2593         trace_arm_gt_imask_toggle(timeridx, irqstate);
2594         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2595     }
2596 }
2597 
2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2599 {
2600     gt_timer_reset(env, ri, GTIMER_PHYS);
2601 }
2602 
2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604                                uint64_t value)
2605 {
2606     gt_cval_write(env, ri, GTIMER_PHYS, value);
2607 }
2608 
2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2610 {
2611     return gt_tval_read(env, ri, GTIMER_PHYS);
2612 }
2613 
2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615                                uint64_t value)
2616 {
2617     gt_tval_write(env, ri, GTIMER_PHYS, value);
2618 }
2619 
2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2621                               uint64_t value)
2622 {
2623     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2624 }
2625 
2626 static int gt_phys_redir_timeridx(CPUARMState *env)
2627 {
2628     switch (arm_mmu_idx(env)) {
2629     case ARMMMUIdx_E20_0:
2630     case ARMMMUIdx_E20_2:
2631     case ARMMMUIdx_E20_2_PAN:
2632     case ARMMMUIdx_SE20_0:
2633     case ARMMMUIdx_SE20_2:
2634     case ARMMMUIdx_SE20_2_PAN:
2635         return GTIMER_HYP;
2636     default:
2637         return GTIMER_PHYS;
2638     }
2639 }
2640 
2641 static int gt_virt_redir_timeridx(CPUARMState *env)
2642 {
2643     switch (arm_mmu_idx(env)) {
2644     case ARMMMUIdx_E20_0:
2645     case ARMMMUIdx_E20_2:
2646     case ARMMMUIdx_E20_2_PAN:
2647     case ARMMMUIdx_SE20_0:
2648     case ARMMMUIdx_SE20_2:
2649     case ARMMMUIdx_SE20_2_PAN:
2650         return GTIMER_HYPVIRT;
2651     default:
2652         return GTIMER_VIRT;
2653     }
2654 }
2655 
2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2657                                         const ARMCPRegInfo *ri)
2658 {
2659     int timeridx = gt_phys_redir_timeridx(env);
2660     return env->cp15.c14_timer[timeridx].cval;
2661 }
2662 
2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2664                                      uint64_t value)
2665 {
2666     int timeridx = gt_phys_redir_timeridx(env);
2667     gt_cval_write(env, ri, timeridx, value);
2668 }
2669 
2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2671                                         const ARMCPRegInfo *ri)
2672 {
2673     int timeridx = gt_phys_redir_timeridx(env);
2674     return gt_tval_read(env, ri, timeridx);
2675 }
2676 
2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678                                      uint64_t value)
2679 {
2680     int timeridx = gt_phys_redir_timeridx(env);
2681     gt_tval_write(env, ri, timeridx, value);
2682 }
2683 
2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2685                                        const ARMCPRegInfo *ri)
2686 {
2687     int timeridx = gt_phys_redir_timeridx(env);
2688     return env->cp15.c14_timer[timeridx].ctl;
2689 }
2690 
2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692                                     uint64_t value)
2693 {
2694     int timeridx = gt_phys_redir_timeridx(env);
2695     gt_ctl_write(env, ri, timeridx, value);
2696 }
2697 
2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2699 {
2700     gt_timer_reset(env, ri, GTIMER_VIRT);
2701 }
2702 
2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2704                                uint64_t value)
2705 {
2706     gt_cval_write(env, ri, GTIMER_VIRT, value);
2707 }
2708 
2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2710 {
2711     return gt_tval_read(env, ri, GTIMER_VIRT);
2712 }
2713 
2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2715                                uint64_t value)
2716 {
2717     gt_tval_write(env, ri, GTIMER_VIRT, value);
2718 }
2719 
2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                               uint64_t value)
2722 {
2723     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2724 }
2725 
2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                               uint64_t value)
2728 {
2729     ARMCPU *cpu = env_archcpu(env);
2730 
2731     trace_arm_gt_cntvoff_write(value);
2732     raw_write(env, ri, value);
2733     gt_recalc_timer(cpu, GTIMER_VIRT);
2734 }
2735 
2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2737                                         const ARMCPRegInfo *ri)
2738 {
2739     int timeridx = gt_virt_redir_timeridx(env);
2740     return env->cp15.c14_timer[timeridx].cval;
2741 }
2742 
2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2744                                      uint64_t value)
2745 {
2746     int timeridx = gt_virt_redir_timeridx(env);
2747     gt_cval_write(env, ri, timeridx, value);
2748 }
2749 
2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2751                                         const ARMCPRegInfo *ri)
2752 {
2753     int timeridx = gt_virt_redir_timeridx(env);
2754     return gt_tval_read(env, ri, timeridx);
2755 }
2756 
2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2758                                      uint64_t value)
2759 {
2760     int timeridx = gt_virt_redir_timeridx(env);
2761     gt_tval_write(env, ri, timeridx, value);
2762 }
2763 
2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2765                                        const ARMCPRegInfo *ri)
2766 {
2767     int timeridx = gt_virt_redir_timeridx(env);
2768     return env->cp15.c14_timer[timeridx].ctl;
2769 }
2770 
2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2772                                     uint64_t value)
2773 {
2774     int timeridx = gt_virt_redir_timeridx(env);
2775     gt_ctl_write(env, ri, timeridx, value);
2776 }
2777 
2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2779 {
2780     gt_timer_reset(env, ri, GTIMER_HYP);
2781 }
2782 
2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2784                               uint64_t value)
2785 {
2786     gt_cval_write(env, ri, GTIMER_HYP, value);
2787 }
2788 
2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2790 {
2791     return gt_tval_read(env, ri, GTIMER_HYP);
2792 }
2793 
2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2795                               uint64_t value)
2796 {
2797     gt_tval_write(env, ri, GTIMER_HYP, value);
2798 }
2799 
2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801                               uint64_t value)
2802 {
2803     gt_ctl_write(env, ri, GTIMER_HYP, value);
2804 }
2805 
2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2807 {
2808     gt_timer_reset(env, ri, GTIMER_SEC);
2809 }
2810 
2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812                               uint64_t value)
2813 {
2814     gt_cval_write(env, ri, GTIMER_SEC, value);
2815 }
2816 
2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2818 {
2819     return gt_tval_read(env, ri, GTIMER_SEC);
2820 }
2821 
2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2823                               uint64_t value)
2824 {
2825     gt_tval_write(env, ri, GTIMER_SEC, value);
2826 }
2827 
2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                               uint64_t value)
2830 {
2831     gt_ctl_write(env, ri, GTIMER_SEC, value);
2832 }
2833 
2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2835 {
2836     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2837 }
2838 
2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2840                              uint64_t value)
2841 {
2842     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2843 }
2844 
2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2846 {
2847     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2848 }
2849 
2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851                              uint64_t value)
2852 {
2853     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2854 }
2855 
2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                             uint64_t value)
2858 {
2859     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2860 }
2861 
2862 void arm_gt_ptimer_cb(void *opaque)
2863 {
2864     ARMCPU *cpu = opaque;
2865 
2866     gt_recalc_timer(cpu, GTIMER_PHYS);
2867 }
2868 
2869 void arm_gt_vtimer_cb(void *opaque)
2870 {
2871     ARMCPU *cpu = opaque;
2872 
2873     gt_recalc_timer(cpu, GTIMER_VIRT);
2874 }
2875 
2876 void arm_gt_htimer_cb(void *opaque)
2877 {
2878     ARMCPU *cpu = opaque;
2879 
2880     gt_recalc_timer(cpu, GTIMER_HYP);
2881 }
2882 
2883 void arm_gt_stimer_cb(void *opaque)
2884 {
2885     ARMCPU *cpu = opaque;
2886 
2887     gt_recalc_timer(cpu, GTIMER_SEC);
2888 }
2889 
2890 void arm_gt_hvtimer_cb(void *opaque)
2891 {
2892     ARMCPU *cpu = opaque;
2893 
2894     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2895 }
2896 
2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2898 {
2899     ARMCPU *cpu = env_archcpu(env);
2900 
2901     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2902 }
2903 
2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2905     /* Note that CNTFRQ is purely reads-as-written for the benefit
2906      * of software; writing it doesn't actually change the timer frequency.
2907      * Our reset value matches the fixed frequency we implement the timer at.
2908      */
2909     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2910       .type = ARM_CP_ALIAS,
2911       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2912       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2913     },
2914     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2915       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2916       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2917       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2918       .resetfn = arm_gt_cntfrq_reset,
2919     },
2920     /* overall control: mostly access permissions */
2921     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2922       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2923       .access = PL1_RW,
2924       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2925       .resetvalue = 0,
2926     },
2927     /* per-timer control */
2928     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2929       .secure = ARM_CP_SECSTATE_NS,
2930       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2931       .accessfn = gt_ptimer_access,
2932       .fieldoffset = offsetoflow32(CPUARMState,
2933                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2934       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2935       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2936     },
2937     { .name = "CNTP_CTL_S",
2938       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2939       .secure = ARM_CP_SECSTATE_S,
2940       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2941       .accessfn = gt_ptimer_access,
2942       .fieldoffset = offsetoflow32(CPUARMState,
2943                                    cp15.c14_timer[GTIMER_SEC].ctl),
2944       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2945     },
2946     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2947       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2948       .type = ARM_CP_IO, .access = PL0_RW,
2949       .accessfn = gt_ptimer_access,
2950       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2951       .resetvalue = 0,
2952       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2953       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2954     },
2955     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2956       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2957       .accessfn = gt_vtimer_access,
2958       .fieldoffset = offsetoflow32(CPUARMState,
2959                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2960       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2961       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2962     },
2963     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2964       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2965       .type = ARM_CP_IO, .access = PL0_RW,
2966       .accessfn = gt_vtimer_access,
2967       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2968       .resetvalue = 0,
2969       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2970       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2971     },
2972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2974       .secure = ARM_CP_SECSTATE_NS,
2975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2976       .accessfn = gt_ptimer_access,
2977       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2978     },
2979     { .name = "CNTP_TVAL_S",
2980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2981       .secure = ARM_CP_SECSTATE_S,
2982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2983       .accessfn = gt_ptimer_access,
2984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2985     },
2986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2990       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2991     },
2992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2994       .accessfn = gt_vtimer_access,
2995       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2996     },
2997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3001       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3002     },
3003     /* The counter itself */
3004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3006       .accessfn = gt_pct_access,
3007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3008     },
3009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3013     },
3014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3016       .accessfn = gt_vct_access,
3017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3018     },
3019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3023     },
3024     /* Comparison value, indicating when the timer goes off */
3025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3026       .secure = ARM_CP_SECSTATE_NS,
3027       .access = PL0_RW,
3028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3030       .accessfn = gt_ptimer_access,
3031       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3032       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3033     },
3034     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3035       .secure = ARM_CP_SECSTATE_S,
3036       .access = PL0_RW,
3037       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3038       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3039       .accessfn = gt_ptimer_access,
3040       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3041     },
3042     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3043       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3044       .access = PL0_RW,
3045       .type = ARM_CP_IO,
3046       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3047       .resetvalue = 0, .accessfn = gt_ptimer_access,
3048       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3049       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3050     },
3051     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3052       .access = PL0_RW,
3053       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3054       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3055       .accessfn = gt_vtimer_access,
3056       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3057       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3058     },
3059     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3060       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3061       .access = PL0_RW,
3062       .type = ARM_CP_IO,
3063       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3064       .resetvalue = 0, .accessfn = gt_vtimer_access,
3065       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3066       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3067     },
3068     /* Secure timer -- this is actually restricted to only EL3
3069      * and configurably Secure-EL1 via the accessfn.
3070      */
3071     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3072       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3073       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3074       .accessfn = gt_stimer_access,
3075       .readfn = gt_sec_tval_read,
3076       .writefn = gt_sec_tval_write,
3077       .resetfn = gt_sec_timer_reset,
3078     },
3079     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3080       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3081       .type = ARM_CP_IO, .access = PL1_RW,
3082       .accessfn = gt_stimer_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3084       .resetvalue = 0,
3085       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3086     },
3087     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3089       .type = ARM_CP_IO, .access = PL1_RW,
3090       .accessfn = gt_stimer_access,
3091       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3092       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3093     },
3094     REGINFO_SENTINEL
3095 };
3096 
3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3098                                  bool isread)
3099 {
3100     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3101         return CP_ACCESS_TRAP;
3102     }
3103     return CP_ACCESS_OK;
3104 }
3105 
3106 #else
3107 
3108 /* In user-mode most of the generic timer registers are inaccessible
3109  * however modern kernels (4.12+) allow access to cntvct_el0
3110  */
3111 
3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3113 {
3114     ARMCPU *cpu = env_archcpu(env);
3115 
3116     /* Currently we have no support for QEMUTimer in linux-user so we
3117      * can't call gt_get_countervalue(env), instead we directly
3118      * call the lower level functions.
3119      */
3120     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3121 }
3122 
3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3124     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3126       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3127       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3128       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3129     },
3130     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3131       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3132       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3133       .readfn = gt_virt_cnt_read,
3134     },
3135     REGINFO_SENTINEL
3136 };
3137 
3138 #endif
3139 
3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3141 {
3142     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3143         raw_write(env, ri, value);
3144     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3145         raw_write(env, ri, value & 0xfffff6ff);
3146     } else {
3147         raw_write(env, ri, value & 0xfffff1ff);
3148     }
3149 }
3150 
3151 #ifndef CONFIG_USER_ONLY
3152 /* get_phys_addr() isn't present for user-mode-only targets */
3153 
3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3155                                  bool isread)
3156 {
3157     if (ri->opc2 & 4) {
3158         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3159          * Secure EL1 (which can only happen if EL3 is AArch64).
3160          * They are simply UNDEF if executed from NS EL1.
3161          * They function normally from EL2 or EL3.
3162          */
3163         if (arm_current_el(env) == 1) {
3164             if (arm_is_secure_below_el3(env)) {
3165                 if (env->cp15.scr_el3 & SCR_EEL2) {
3166                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3167                 }
3168                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3169             }
3170             return CP_ACCESS_TRAP_UNCATEGORIZED;
3171         }
3172     }
3173     return CP_ACCESS_OK;
3174 }
3175 
3176 #ifdef CONFIG_TCG
3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3178                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3179 {
3180     hwaddr phys_addr;
3181     target_ulong page_size;
3182     int prot;
3183     bool ret;
3184     uint64_t par64;
3185     bool format64 = false;
3186     MemTxAttrs attrs = {};
3187     ARMMMUFaultInfo fi = {};
3188     ARMCacheAttrs cacheattrs = {};
3189 
3190     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3191                         &prot, &page_size, &fi, &cacheattrs);
3192 
3193     if (ret) {
3194         /*
3195          * Some kinds of translation fault must cause exceptions rather
3196          * than being reported in the PAR.
3197          */
3198         int current_el = arm_current_el(env);
3199         int target_el;
3200         uint32_t syn, fsr, fsc;
3201         bool take_exc = false;
3202 
3203         if (fi.s1ptw && current_el == 1
3204             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3205             /*
3206              * Synchronous stage 2 fault on an access made as part of the
3207              * translation table walk for AT S1E0* or AT S1E1* insn
3208              * executed from NS EL1. If this is a synchronous external abort
3209              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3210              * to EL3. Otherwise the fault is taken as an exception to EL2,
3211              * and HPFAR_EL2 holds the faulting IPA.
3212              */
3213             if (fi.type == ARMFault_SyncExternalOnWalk &&
3214                 (env->cp15.scr_el3 & SCR_EA)) {
3215                 target_el = 3;
3216             } else {
3217                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3218                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3219                     env->cp15.hpfar_el2 |= HPFAR_NS;
3220                 }
3221                 target_el = 2;
3222             }
3223             take_exc = true;
3224         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3225             /*
3226              * Synchronous external aborts during a translation table walk
3227              * are taken as Data Abort exceptions.
3228              */
3229             if (fi.stage2) {
3230                 if (current_el == 3) {
3231                     target_el = 3;
3232                 } else {
3233                     target_el = 2;
3234                 }
3235             } else {
3236                 target_el = exception_target_el(env);
3237             }
3238             take_exc = true;
3239         }
3240 
3241         if (take_exc) {
3242             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3243             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3244                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3245                 fsr = arm_fi_to_lfsc(&fi);
3246                 fsc = extract32(fsr, 0, 6);
3247             } else {
3248                 fsr = arm_fi_to_sfsc(&fi);
3249                 fsc = 0x3f;
3250             }
3251             /*
3252              * Report exception with ESR indicating a fault due to a
3253              * translation table walk for a cache maintenance instruction.
3254              */
3255             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3256                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3257             env->exception.vaddress = value;
3258             env->exception.fsr = fsr;
3259             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3260         }
3261     }
3262 
3263     if (is_a64(env)) {
3264         format64 = true;
3265     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3266         /*
3267          * ATS1Cxx:
3268          * * TTBCR.EAE determines whether the result is returned using the
3269          *   32-bit or the 64-bit PAR format
3270          * * Instructions executed in Hyp mode always use the 64bit format
3271          *
3272          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3273          * * The Non-secure TTBCR.EAE bit is set to 1
3274          * * The implementation includes EL2, and the value of HCR.VM is 1
3275          *
3276          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3277          *
3278          * ATS1Hx always uses the 64bit format.
3279          */
3280         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3281 
3282         if (arm_feature(env, ARM_FEATURE_EL2)) {
3283             if (mmu_idx == ARMMMUIdx_E10_0 ||
3284                 mmu_idx == ARMMMUIdx_E10_1 ||
3285                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3286                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3287             } else {
3288                 format64 |= arm_current_el(env) == 2;
3289             }
3290         }
3291     }
3292 
3293     if (format64) {
3294         /* Create a 64-bit PAR */
3295         par64 = (1 << 11); /* LPAE bit always set */
3296         if (!ret) {
3297             par64 |= phys_addr & ~0xfffULL;
3298             if (!attrs.secure) {
3299                 par64 |= (1 << 9); /* NS */
3300             }
3301             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3302             par64 |= cacheattrs.shareability << 7; /* SH */
3303         } else {
3304             uint32_t fsr = arm_fi_to_lfsc(&fi);
3305 
3306             par64 |= 1; /* F */
3307             par64 |= (fsr & 0x3f) << 1; /* FS */
3308             if (fi.stage2) {
3309                 par64 |= (1 << 9); /* S */
3310             }
3311             if (fi.s1ptw) {
3312                 par64 |= (1 << 8); /* PTW */
3313             }
3314         }
3315     } else {
3316         /* fsr is a DFSR/IFSR value for the short descriptor
3317          * translation table format (with WnR always clear).
3318          * Convert it to a 32-bit PAR.
3319          */
3320         if (!ret) {
3321             /* We do not set any attribute bits in the PAR */
3322             if (page_size == (1 << 24)
3323                 && arm_feature(env, ARM_FEATURE_V7)) {
3324                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3325             } else {
3326                 par64 = phys_addr & 0xfffff000;
3327             }
3328             if (!attrs.secure) {
3329                 par64 |= (1 << 9); /* NS */
3330             }
3331         } else {
3332             uint32_t fsr = arm_fi_to_sfsc(&fi);
3333 
3334             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3335                     ((fsr & 0xf) << 1) | 1;
3336         }
3337     }
3338     return par64;
3339 }
3340 #endif /* CONFIG_TCG */
3341 
3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3343 {
3344 #ifdef CONFIG_TCG
3345     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3346     uint64_t par64;
3347     ARMMMUIdx mmu_idx;
3348     int el = arm_current_el(env);
3349     bool secure = arm_is_secure_below_el3(env);
3350 
3351     switch (ri->opc2 & 6) {
3352     case 0:
3353         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3354         switch (el) {
3355         case 3:
3356             mmu_idx = ARMMMUIdx_SE3;
3357             break;
3358         case 2:
3359             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3360             /* fall through */
3361         case 1:
3362             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3363                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3364                            : ARMMMUIdx_Stage1_E1_PAN);
3365             } else {
3366                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3367             }
3368             break;
3369         default:
3370             g_assert_not_reached();
3371         }
3372         break;
3373     case 2:
3374         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3375         switch (el) {
3376         case 3:
3377             mmu_idx = ARMMMUIdx_SE10_0;
3378             break;
3379         case 2:
3380             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3381             mmu_idx = ARMMMUIdx_Stage1_E0;
3382             break;
3383         case 1:
3384             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3385             break;
3386         default:
3387             g_assert_not_reached();
3388         }
3389         break;
3390     case 4:
3391         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3392         mmu_idx = ARMMMUIdx_E10_1;
3393         break;
3394     case 6:
3395         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3396         mmu_idx = ARMMMUIdx_E10_0;
3397         break;
3398     default:
3399         g_assert_not_reached();
3400     }
3401 
3402     par64 = do_ats_write(env, value, access_type, mmu_idx);
3403 
3404     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3405 #else
3406     /* Handled by hardware accelerator. */
3407     g_assert_not_reached();
3408 #endif /* CONFIG_TCG */
3409 }
3410 
3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3412                         uint64_t value)
3413 {
3414 #ifdef CONFIG_TCG
3415     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3416     uint64_t par64;
3417 
3418     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3419 
3420     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3421 #else
3422     /* Handled by hardware accelerator. */
3423     g_assert_not_reached();
3424 #endif /* CONFIG_TCG */
3425 }
3426 
3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3428                                      bool isread)
3429 {
3430     if (arm_current_el(env) == 3 &&
3431         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3432         return CP_ACCESS_TRAP;
3433     }
3434     return CP_ACCESS_OK;
3435 }
3436 
3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3438                         uint64_t value)
3439 {
3440 #ifdef CONFIG_TCG
3441     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3442     ARMMMUIdx mmu_idx;
3443     int secure = arm_is_secure_below_el3(env);
3444 
3445     switch (ri->opc2 & 6) {
3446     case 0:
3447         switch (ri->opc1) {
3448         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3449             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3450                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3451                            : ARMMMUIdx_Stage1_E1_PAN);
3452             } else {
3453                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3454             }
3455             break;
3456         case 4: /* AT S1E2R, AT S1E2W */
3457             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3458             break;
3459         case 6: /* AT S1E3R, AT S1E3W */
3460             mmu_idx = ARMMMUIdx_SE3;
3461             break;
3462         default:
3463             g_assert_not_reached();
3464         }
3465         break;
3466     case 2: /* AT S1E0R, AT S1E0W */
3467         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3468         break;
3469     case 4: /* AT S12E1R, AT S12E1W */
3470         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3471         break;
3472     case 6: /* AT S12E0R, AT S12E0W */
3473         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3474         break;
3475     default:
3476         g_assert_not_reached();
3477     }
3478 
3479     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3480 #else
3481     /* Handled by hardware accelerator. */
3482     g_assert_not_reached();
3483 #endif /* CONFIG_TCG */
3484 }
3485 #endif
3486 
3487 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3488     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3489       .access = PL1_RW, .resetvalue = 0,
3490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3491                              offsetoflow32(CPUARMState, cp15.par_ns) },
3492       .writefn = par_write },
3493 #ifndef CONFIG_USER_ONLY
3494     /* This underdecoding is safe because the reginfo is NO_RAW. */
3495     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3496       .access = PL1_W, .accessfn = ats_access,
3497       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3498 #endif
3499     REGINFO_SENTINEL
3500 };
3501 
3502 /* Return basic MPU access permission bits.  */
3503 static uint32_t simple_mpu_ap_bits(uint32_t val)
3504 {
3505     uint32_t ret;
3506     uint32_t mask;
3507     int i;
3508     ret = 0;
3509     mask = 3;
3510     for (i = 0; i < 16; i += 2) {
3511         ret |= (val >> i) & mask;
3512         mask <<= 2;
3513     }
3514     return ret;
3515 }
3516 
3517 /* Pad basic MPU access permission bits to extended format.  */
3518 static uint32_t extended_mpu_ap_bits(uint32_t val)
3519 {
3520     uint32_t ret;
3521     uint32_t mask;
3522     int i;
3523     ret = 0;
3524     mask = 3;
3525     for (i = 0; i < 16; i += 2) {
3526         ret |= (val & mask) << i;
3527         mask <<= 2;
3528     }
3529     return ret;
3530 }
3531 
3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3533                                  uint64_t value)
3534 {
3535     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3536 }
3537 
3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3539 {
3540     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3541 }
3542 
3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3544                                  uint64_t value)
3545 {
3546     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3547 }
3548 
3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3550 {
3551     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3552 }
3553 
3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3555 {
3556     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3557 
3558     if (!u32p) {
3559         return 0;
3560     }
3561 
3562     u32p += env->pmsav7.rnr[M_REG_NS];
3563     return *u32p;
3564 }
3565 
3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3567                          uint64_t value)
3568 {
3569     ARMCPU *cpu = env_archcpu(env);
3570     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3571 
3572     if (!u32p) {
3573         return;
3574     }
3575 
3576     u32p += env->pmsav7.rnr[M_REG_NS];
3577     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3578     *u32p = value;
3579 }
3580 
3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3582                               uint64_t value)
3583 {
3584     ARMCPU *cpu = env_archcpu(env);
3585     uint32_t nrgs = cpu->pmsav7_dregion;
3586 
3587     if (value >= nrgs) {
3588         qemu_log_mask(LOG_GUEST_ERROR,
3589                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3590                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3591         return;
3592     }
3593 
3594     raw_write(env, ri, value);
3595 }
3596 
3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3598     /* Reset for all these registers is handled in arm_cpu_reset(),
3599      * because the PMSAv7 is also used by M-profile CPUs, which do
3600      * not register cpregs but still need the state to be reset.
3601      */
3602     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3603       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3604       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3605       .readfn = pmsav7_read, .writefn = pmsav7_write,
3606       .resetfn = arm_cp_reset_ignore },
3607     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3608       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3609       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3610       .readfn = pmsav7_read, .writefn = pmsav7_write,
3611       .resetfn = arm_cp_reset_ignore },
3612     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3613       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3614       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3615       .readfn = pmsav7_read, .writefn = pmsav7_write,
3616       .resetfn = arm_cp_reset_ignore },
3617     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3618       .access = PL1_RW,
3619       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3620       .writefn = pmsav7_rgnr_write,
3621       .resetfn = arm_cp_reset_ignore },
3622     REGINFO_SENTINEL
3623 };
3624 
3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3626     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3627       .access = PL1_RW, .type = ARM_CP_ALIAS,
3628       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3629       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3630     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3631       .access = PL1_RW, .type = ARM_CP_ALIAS,
3632       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3633       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3634     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3635       .access = PL1_RW,
3636       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3637       .resetvalue = 0, },
3638     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3639       .access = PL1_RW,
3640       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3641       .resetvalue = 0, },
3642     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3643       .access = PL1_RW,
3644       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3645     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3646       .access = PL1_RW,
3647       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3648     /* Protection region base and size registers */
3649     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3650       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3651       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3652     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3653       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3654       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3655     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3656       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3657       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3658     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3659       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3660       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3661     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3662       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3663       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3664     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3665       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3666       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3667     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3668       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3669       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3670     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3671       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3672       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3673     REGINFO_SENTINEL
3674 };
3675 
3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3677                                  uint64_t value)
3678 {
3679     TCR *tcr = raw_ptr(env, ri);
3680     int maskshift = extract32(value, 0, 3);
3681 
3682     if (!arm_feature(env, ARM_FEATURE_V8)) {
3683         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3684             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3685              * using Long-desciptor translation table format */
3686             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3687         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3688             /* In an implementation that includes the Security Extensions
3689              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3690              * Short-descriptor translation table format.
3691              */
3692             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3693         } else {
3694             value &= TTBCR_N;
3695         }
3696     }
3697 
3698     /* Update the masks corresponding to the TCR bank being written
3699      * Note that we always calculate mask and base_mask, but
3700      * they are only used for short-descriptor tables (ie if EAE is 0);
3701      * for long-descriptor tables the TCR fields are used differently
3702      * and the mask and base_mask values are meaningless.
3703      */
3704     tcr->raw_tcr = value;
3705     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3706     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3707 }
3708 
3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3710                              uint64_t value)
3711 {
3712     ARMCPU *cpu = env_archcpu(env);
3713     TCR *tcr = raw_ptr(env, ri);
3714 
3715     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3716         /* With LPAE the TTBCR could result in a change of ASID
3717          * via the TTBCR.A1 bit, so do a TLB flush.
3718          */
3719         tlb_flush(CPU(cpu));
3720     }
3721     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3722     value = deposit64(tcr->raw_tcr, 0, 32, value);
3723     vmsa_ttbcr_raw_write(env, ri, value);
3724 }
3725 
3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3727 {
3728     TCR *tcr = raw_ptr(env, ri);
3729 
3730     /* Reset both the TCR as well as the masks corresponding to the bank of
3731      * the TCR being reset.
3732      */
3733     tcr->raw_tcr = 0;
3734     tcr->mask = 0;
3735     tcr->base_mask = 0xffffc000u;
3736 }
3737 
3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3739                                uint64_t value)
3740 {
3741     ARMCPU *cpu = env_archcpu(env);
3742     TCR *tcr = raw_ptr(env, ri);
3743 
3744     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3745     tlb_flush(CPU(cpu));
3746     tcr->raw_tcr = value;
3747 }
3748 
3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3750                             uint64_t value)
3751 {
3752     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3753     if (cpreg_field_is_64bit(ri) &&
3754         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3755         ARMCPU *cpu = env_archcpu(env);
3756         tlb_flush(CPU(cpu));
3757     }
3758     raw_write(env, ri, value);
3759 }
3760 
3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3762                                     uint64_t value)
3763 {
3764     /*
3765      * If we are running with E2&0 regime, then an ASID is active.
3766      * Flush if that might be changing.  Note we're not checking
3767      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3768      * holds the active ASID, only checking the field that might.
3769      */
3770     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3771         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3772         uint16_t mask = ARMMMUIdxBit_E20_2 |
3773                         ARMMMUIdxBit_E20_2_PAN |
3774                         ARMMMUIdxBit_E20_0;
3775 
3776         if (arm_is_secure_below_el3(env)) {
3777             mask >>= ARM_MMU_IDX_A_NS;
3778         }
3779 
3780         tlb_flush_by_mmuidx(env_cpu(env), mask);
3781     }
3782     raw_write(env, ri, value);
3783 }
3784 
3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3786                         uint64_t value)
3787 {
3788     ARMCPU *cpu = env_archcpu(env);
3789     CPUState *cs = CPU(cpu);
3790 
3791     /*
3792      * A change in VMID to the stage2 page table (Stage2) invalidates
3793      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3794      */
3795     if (raw_read(env, ri) != value) {
3796         uint16_t mask = ARMMMUIdxBit_E10_1 |
3797                         ARMMMUIdxBit_E10_1_PAN |
3798                         ARMMMUIdxBit_E10_0;
3799 
3800         if (arm_is_secure_below_el3(env)) {
3801             mask >>= ARM_MMU_IDX_A_NS;
3802         }
3803 
3804         tlb_flush_by_mmuidx(cs, mask);
3805         raw_write(env, ri, value);
3806     }
3807 }
3808 
3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3810     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3811       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3812       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3813                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3814     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3815       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3816       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3817                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3818     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3819       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3820       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3821                              offsetof(CPUARMState, cp15.dfar_ns) } },
3822     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3823       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3824       .access = PL1_RW, .accessfn = access_tvm_trvm,
3825       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3826       .resetvalue = 0, },
3827     REGINFO_SENTINEL
3828 };
3829 
3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3831     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3832       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3833       .access = PL1_RW, .accessfn = access_tvm_trvm,
3834       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3835     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3836       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3837       .access = PL1_RW, .accessfn = access_tvm_trvm,
3838       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3839       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3840                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3841     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3842       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3843       .access = PL1_RW, .accessfn = access_tvm_trvm,
3844       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3845       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3846                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3847     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3848       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3849       .access = PL1_RW, .accessfn = access_tvm_trvm,
3850       .writefn = vmsa_tcr_el12_write,
3851       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3852       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3853     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3854       .access = PL1_RW, .accessfn = access_tvm_trvm,
3855       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3856       .raw_writefn = vmsa_ttbcr_raw_write,
3857       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3858       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3859                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3860     REGINFO_SENTINEL
3861 };
3862 
3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3864  * qemu tlbs nor adjusting cached masks.
3865  */
3866 static const ARMCPRegInfo ttbcr2_reginfo = {
3867     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3868     .access = PL1_RW, .accessfn = access_tvm_trvm,
3869     .type = ARM_CP_ALIAS,
3870     .bank_fieldoffsets = {
3871         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3872         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3873     },
3874 };
3875 
3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877                                 uint64_t value)
3878 {
3879     env->cp15.c15_ticonfig = value & 0xe7;
3880     /* The OS_TYPE bit in this register changes the reported CPUID! */
3881     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3882         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3883 }
3884 
3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3886                                 uint64_t value)
3887 {
3888     env->cp15.c15_threadid = value & 0xffff;
3889 }
3890 
3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3892                            uint64_t value)
3893 {
3894     /* Wait-for-interrupt (deprecated) */
3895     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3896 }
3897 
3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3899                                   uint64_t value)
3900 {
3901     /* On OMAP there are registers indicating the max/min index of dcache lines
3902      * containing a dirty line; cache flush operations have to reset these.
3903      */
3904     env->cp15.c15_i_max = 0x000;
3905     env->cp15.c15_i_min = 0xff0;
3906 }
3907 
3908 static const ARMCPRegInfo omap_cp_reginfo[] = {
3909     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3910       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3911       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3912       .resetvalue = 0, },
3913     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3914       .access = PL1_RW, .type = ARM_CP_NOP },
3915     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3916       .access = PL1_RW,
3917       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3918       .writefn = omap_ticonfig_write },
3919     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3920       .access = PL1_RW,
3921       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3922     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3923       .access = PL1_RW, .resetvalue = 0xff0,
3924       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3925     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3926       .access = PL1_RW,
3927       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3928       .writefn = omap_threadid_write },
3929     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3930       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3931       .type = ARM_CP_NO_RAW,
3932       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3933     /* TODO: Peripheral port remap register:
3934      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3935      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3936      * when MMU is off.
3937      */
3938     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3939       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3940       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3941       .writefn = omap_cachemaint_write },
3942     { .name = "C9", .cp = 15, .crn = 9,
3943       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3944       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3945     REGINFO_SENTINEL
3946 };
3947 
3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3949                               uint64_t value)
3950 {
3951     env->cp15.c15_cpar = value & 0x3fff;
3952 }
3953 
3954 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3955     { .name = "XSCALE_CPAR",
3956       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3957       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3958       .writefn = xscale_cpar_write, },
3959     { .name = "XSCALE_AUXCR",
3960       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3961       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3962       .resetvalue = 0, },
3963     /* XScale specific cache-lockdown: since we have no cache we NOP these
3964      * and hope the guest does not really rely on cache behaviour.
3965      */
3966     { .name = "XSCALE_LOCK_ICACHE_LINE",
3967       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3968       .access = PL1_W, .type = ARM_CP_NOP },
3969     { .name = "XSCALE_UNLOCK_ICACHE",
3970       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3971       .access = PL1_W, .type = ARM_CP_NOP },
3972     { .name = "XSCALE_DCACHE_LOCK",
3973       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3974       .access = PL1_RW, .type = ARM_CP_NOP },
3975     { .name = "XSCALE_UNLOCK_DCACHE",
3976       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3977       .access = PL1_W, .type = ARM_CP_NOP },
3978     REGINFO_SENTINEL
3979 };
3980 
3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3982     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3983      * implementation of this implementation-defined space.
3984      * Ideally this should eventually disappear in favour of actually
3985      * implementing the correct behaviour for all cores.
3986      */
3987     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3988       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3989       .access = PL1_RW,
3990       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3991       .resetvalue = 0 },
3992     REGINFO_SENTINEL
3993 };
3994 
3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3996     /* Cache status: RAZ because we have no cache so it's always clean */
3997     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3998       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3999       .resetvalue = 0 },
4000     REGINFO_SENTINEL
4001 };
4002 
4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4004     /* We never have a a block transfer operation in progress */
4005     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4006       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4007       .resetvalue = 0 },
4008     /* The cache ops themselves: these all NOP for QEMU */
4009     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4010       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4012       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4014       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4016       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4018       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4020       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4021     REGINFO_SENTINEL
4022 };
4023 
4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4025     /* The cache test-and-clean instructions always return (1 << 30)
4026      * to indicate that there are no dirty cache lines.
4027      */
4028     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4029       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4030       .resetvalue = (1 << 30) },
4031     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4032       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4033       .resetvalue = (1 << 30) },
4034     REGINFO_SENTINEL
4035 };
4036 
4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4038     /* Ignore ReadBuffer accesses */
4039     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4040       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4041       .access = PL1_RW, .resetvalue = 0,
4042       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4043     REGINFO_SENTINEL
4044 };
4045 
4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4047 {
4048     unsigned int cur_el = arm_current_el(env);
4049 
4050     if (arm_is_el2_enabled(env) && cur_el == 1) {
4051         return env->cp15.vpidr_el2;
4052     }
4053     return raw_read(env, ri);
4054 }
4055 
4056 static uint64_t mpidr_read_val(CPUARMState *env)
4057 {
4058     ARMCPU *cpu = env_archcpu(env);
4059     uint64_t mpidr = cpu->mp_affinity;
4060 
4061     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4062         mpidr |= (1U << 31);
4063         /* Cores which are uniprocessor (non-coherent)
4064          * but still implement the MP extensions set
4065          * bit 30. (For instance, Cortex-R5).
4066          */
4067         if (cpu->mp_is_up) {
4068             mpidr |= (1u << 30);
4069         }
4070     }
4071     return mpidr;
4072 }
4073 
4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4075 {
4076     unsigned int cur_el = arm_current_el(env);
4077 
4078     if (arm_is_el2_enabled(env) && cur_el == 1) {
4079         return env->cp15.vmpidr_el2;
4080     }
4081     return mpidr_read_val(env);
4082 }
4083 
4084 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4085     /* NOP AMAIR0/1 */
4086     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4087       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4088       .access = PL1_RW, .accessfn = access_tvm_trvm,
4089       .type = ARM_CP_CONST, .resetvalue = 0 },
4090     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4091     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4092       .access = PL1_RW, .accessfn = access_tvm_trvm,
4093       .type = ARM_CP_CONST, .resetvalue = 0 },
4094     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4095       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4096       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4097                              offsetof(CPUARMState, cp15.par_ns)} },
4098     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4099       .access = PL1_RW, .accessfn = access_tvm_trvm,
4100       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4101       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4102                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4103       .writefn = vmsa_ttbr_write, },
4104     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4105       .access = PL1_RW, .accessfn = access_tvm_trvm,
4106       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4107       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4108                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4109       .writefn = vmsa_ttbr_write, },
4110     REGINFO_SENTINEL
4111 };
4112 
4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4114 {
4115     return vfp_get_fpcr(env);
4116 }
4117 
4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4119                             uint64_t value)
4120 {
4121     vfp_set_fpcr(env, value);
4122 }
4123 
4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4125 {
4126     return vfp_get_fpsr(env);
4127 }
4128 
4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4130                             uint64_t value)
4131 {
4132     vfp_set_fpsr(env, value);
4133 }
4134 
4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4136                                        bool isread)
4137 {
4138     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4139         return CP_ACCESS_TRAP;
4140     }
4141     return CP_ACCESS_OK;
4142 }
4143 
4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4145                             uint64_t value)
4146 {
4147     env->daif = value & PSTATE_DAIF;
4148 }
4149 
4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4151 {
4152     return env->pstate & PSTATE_PAN;
4153 }
4154 
4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4156                            uint64_t value)
4157 {
4158     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4159 }
4160 
4161 static const ARMCPRegInfo pan_reginfo = {
4162     .name = "PAN", .state = ARM_CP_STATE_AA64,
4163     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4164     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4165     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4166 };
4167 
4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4169 {
4170     return env->pstate & PSTATE_UAO;
4171 }
4172 
4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4174                            uint64_t value)
4175 {
4176     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4177 }
4178 
4179 static const ARMCPRegInfo uao_reginfo = {
4180     .name = "UAO", .state = ARM_CP_STATE_AA64,
4181     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4182     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4183     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4184 };
4185 
4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4187 {
4188     return env->pstate & PSTATE_DIT;
4189 }
4190 
4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4192                            uint64_t value)
4193 {
4194     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4195 }
4196 
4197 static const ARMCPRegInfo dit_reginfo = {
4198     .name = "DIT", .state = ARM_CP_STATE_AA64,
4199     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4200     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4201     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4202 };
4203 
4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4205 {
4206     return env->pstate & PSTATE_SSBS;
4207 }
4208 
4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4210                            uint64_t value)
4211 {
4212     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4213 }
4214 
4215 static const ARMCPRegInfo ssbs_reginfo = {
4216     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4217     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4218     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4219     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4220 };
4221 
4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4223                                               const ARMCPRegInfo *ri,
4224                                               bool isread)
4225 {
4226     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4227     switch (arm_current_el(env)) {
4228     case 0:
4229         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4230         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4231             return CP_ACCESS_TRAP;
4232         }
4233         /* fall through */
4234     case 1:
4235         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4236         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4237             return CP_ACCESS_TRAP_EL2;
4238         }
4239         break;
4240     }
4241     return CP_ACCESS_OK;
4242 }
4243 
4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4245                                               const ARMCPRegInfo *ri,
4246                                               bool isread)
4247 {
4248     /* Cache invalidate/clean to Point of Unification... */
4249     switch (arm_current_el(env)) {
4250     case 0:
4251         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4252         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4253             return CP_ACCESS_TRAP;
4254         }
4255         /* fall through */
4256     case 1:
4257         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4258         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4259             return CP_ACCESS_TRAP_EL2;
4260         }
4261         break;
4262     }
4263     return CP_ACCESS_OK;
4264 }
4265 
4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4267  * Page D4-1736 (DDI0487A.b)
4268  */
4269 
4270 static int vae1_tlbmask(CPUARMState *env)
4271 {
4272     uint64_t hcr = arm_hcr_el2_eff(env);
4273     uint16_t mask;
4274 
4275     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4276         mask = ARMMMUIdxBit_E20_2 |
4277                ARMMMUIdxBit_E20_2_PAN |
4278                ARMMMUIdxBit_E20_0;
4279     } else {
4280         mask = ARMMMUIdxBit_E10_1 |
4281                ARMMMUIdxBit_E10_1_PAN |
4282                ARMMMUIdxBit_E10_0;
4283     }
4284 
4285     if (arm_is_secure_below_el3(env)) {
4286         mask >>= ARM_MMU_IDX_A_NS;
4287     }
4288 
4289     return mask;
4290 }
4291 
4292 /* Return 56 if TBI is enabled, 64 otherwise. */
4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4294                               uint64_t addr)
4295 {
4296     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4297     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4298     int select = extract64(addr, 55, 1);
4299 
4300     return (tbi >> select) & 1 ? 56 : 64;
4301 }
4302 
4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4304 {
4305     uint64_t hcr = arm_hcr_el2_eff(env);
4306     ARMMMUIdx mmu_idx;
4307 
4308     /* Only the regime of the mmu_idx below is significant. */
4309     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4310         mmu_idx = ARMMMUIdx_E20_0;
4311     } else {
4312         mmu_idx = ARMMMUIdx_E10_0;
4313     }
4314 
4315     if (arm_is_secure_below_el3(env)) {
4316         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4317     }
4318 
4319     return tlbbits_for_regime(env, mmu_idx, addr);
4320 }
4321 
4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4323                                       uint64_t value)
4324 {
4325     CPUState *cs = env_cpu(env);
4326     int mask = vae1_tlbmask(env);
4327 
4328     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4329 }
4330 
4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4332                                     uint64_t value)
4333 {
4334     CPUState *cs = env_cpu(env);
4335     int mask = vae1_tlbmask(env);
4336 
4337     if (tlb_force_broadcast(env)) {
4338         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4339     } else {
4340         tlb_flush_by_mmuidx(cs, mask);
4341     }
4342 }
4343 
4344 static int alle1_tlbmask(CPUARMState *env)
4345 {
4346     /*
4347      * Note that the 'ALL' scope must invalidate both stage 1 and
4348      * stage 2 translations, whereas most other scopes only invalidate
4349      * stage 1 translations.
4350      */
4351     if (arm_is_secure_below_el3(env)) {
4352         return ARMMMUIdxBit_SE10_1 |
4353                ARMMMUIdxBit_SE10_1_PAN |
4354                ARMMMUIdxBit_SE10_0;
4355     } else {
4356         return ARMMMUIdxBit_E10_1 |
4357                ARMMMUIdxBit_E10_1_PAN |
4358                ARMMMUIdxBit_E10_0;
4359     }
4360 }
4361 
4362 static int e2_tlbmask(CPUARMState *env)
4363 {
4364     if (arm_is_secure_below_el3(env)) {
4365         return ARMMMUIdxBit_SE20_0 |
4366                ARMMMUIdxBit_SE20_2 |
4367                ARMMMUIdxBit_SE20_2_PAN |
4368                ARMMMUIdxBit_SE2;
4369     } else {
4370         return ARMMMUIdxBit_E20_0 |
4371                ARMMMUIdxBit_E20_2 |
4372                ARMMMUIdxBit_E20_2_PAN |
4373                ARMMMUIdxBit_E2;
4374     }
4375 }
4376 
4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4378                                   uint64_t value)
4379 {
4380     CPUState *cs = env_cpu(env);
4381     int mask = alle1_tlbmask(env);
4382 
4383     tlb_flush_by_mmuidx(cs, mask);
4384 }
4385 
4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4387                                   uint64_t value)
4388 {
4389     CPUState *cs = env_cpu(env);
4390     int mask = e2_tlbmask(env);
4391 
4392     tlb_flush_by_mmuidx(cs, mask);
4393 }
4394 
4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4396                                   uint64_t value)
4397 {
4398     ARMCPU *cpu = env_archcpu(env);
4399     CPUState *cs = CPU(cpu);
4400 
4401     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4402 }
4403 
4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4405                                     uint64_t value)
4406 {
4407     CPUState *cs = env_cpu(env);
4408     int mask = alle1_tlbmask(env);
4409 
4410     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4411 }
4412 
4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4414                                     uint64_t value)
4415 {
4416     CPUState *cs = env_cpu(env);
4417     int mask = e2_tlbmask(env);
4418 
4419     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4420 }
4421 
4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4423                                     uint64_t value)
4424 {
4425     CPUState *cs = env_cpu(env);
4426 
4427     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4428 }
4429 
4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4431                                  uint64_t value)
4432 {
4433     /* Invalidate by VA, EL2
4434      * Currently handles both VAE2 and VALE2, since we don't support
4435      * flush-last-level-only.
4436      */
4437     CPUState *cs = env_cpu(env);
4438     int mask = e2_tlbmask(env);
4439     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4440 
4441     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4442 }
4443 
4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4445                                  uint64_t value)
4446 {
4447     /* Invalidate by VA, EL3
4448      * Currently handles both VAE3 and VALE3, since we don't support
4449      * flush-last-level-only.
4450      */
4451     ARMCPU *cpu = env_archcpu(env);
4452     CPUState *cs = CPU(cpu);
4453     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4454 
4455     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4456 }
4457 
4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4459                                    uint64_t value)
4460 {
4461     CPUState *cs = env_cpu(env);
4462     int mask = vae1_tlbmask(env);
4463     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4464     int bits = vae1_tlbbits(env, pageaddr);
4465 
4466     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4467 }
4468 
4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4470                                  uint64_t value)
4471 {
4472     /* Invalidate by VA, EL1&0 (AArch64 version).
4473      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4474      * since we don't support flush-for-specific-ASID-only or
4475      * flush-last-level-only.
4476      */
4477     CPUState *cs = env_cpu(env);
4478     int mask = vae1_tlbmask(env);
4479     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4480     int bits = vae1_tlbbits(env, pageaddr);
4481 
4482     if (tlb_force_broadcast(env)) {
4483         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4484     } else {
4485         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4486     }
4487 }
4488 
4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4490                                    uint64_t value)
4491 {
4492     CPUState *cs = env_cpu(env);
4493     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4494     bool secure = arm_is_secure_below_el3(env);
4495     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4496     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4497                                   pageaddr);
4498 
4499     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4500 }
4501 
4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4503                                    uint64_t value)
4504 {
4505     CPUState *cs = env_cpu(env);
4506     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4507     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4508 
4509     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4510                                                   ARMMMUIdxBit_SE3, bits);
4511 }
4512 
4513 #ifdef TARGET_AARCH64
4514 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4515                                            uint64_t value)
4516 {
4517     unsigned int page_shift;
4518     unsigned int page_size_granule;
4519     uint64_t num;
4520     uint64_t scale;
4521     uint64_t exponent;
4522     uint64_t length;
4523 
4524     num = extract64(value, 39, 5);
4525     scale = extract64(value, 44, 2);
4526     page_size_granule = extract64(value, 46, 2);
4527 
4528     if (page_size_granule == 0) {
4529         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4530                       page_size_granule);
4531         return 0;
4532     }
4533 
4534     page_shift = (page_size_granule - 1) * 2 + 12;
4535 
4536     exponent = (5 * scale) + 1;
4537     length = (num + 1) << (exponent + page_shift);
4538 
4539     return length;
4540 }
4541 
4542 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4543                                         bool two_ranges)
4544 {
4545     /* TODO: ARMv8.7 FEAT_LPA2 */
4546     uint64_t pageaddr;
4547 
4548     if (two_ranges) {
4549         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4550     } else {
4551         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4552     }
4553 
4554     return pageaddr;
4555 }
4556 
4557 static void do_rvae_write(CPUARMState *env, uint64_t value,
4558                           int idxmap, bool synced)
4559 {
4560     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4561     bool two_ranges = regime_has_2_ranges(one_idx);
4562     uint64_t baseaddr, length;
4563     int bits;
4564 
4565     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4566     length = tlbi_aa64_range_get_length(env, value);
4567     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4568 
4569     if (synced) {
4570         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4571                                                   baseaddr,
4572                                                   length,
4573                                                   idxmap,
4574                                                   bits);
4575     } else {
4576         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4577                                   length, idxmap, bits);
4578     }
4579 }
4580 
4581 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4582                                   const ARMCPRegInfo *ri,
4583                                   uint64_t value)
4584 {
4585     /*
4586      * Invalidate by VA range, EL1&0.
4587      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4588      * since we don't support flush-for-specific-ASID-only or
4589      * flush-last-level-only.
4590      */
4591 
4592     do_rvae_write(env, value, vae1_tlbmask(env),
4593                   tlb_force_broadcast(env));
4594 }
4595 
4596 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4597                                     const ARMCPRegInfo *ri,
4598                                     uint64_t value)
4599 {
4600     /*
4601      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4602      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4603      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4604      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4605      * shareable specific flushes.
4606      */
4607 
4608     do_rvae_write(env, value, vae1_tlbmask(env), true);
4609 }
4610 
4611 static int vae2_tlbmask(CPUARMState *env)
4612 {
4613     return (arm_is_secure_below_el3(env)
4614             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4615 }
4616 
4617 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4618                                   const ARMCPRegInfo *ri,
4619                                   uint64_t value)
4620 {
4621     /*
4622      * Invalidate by VA range, EL2.
4623      * Currently handles all of RVAE2 and RVALE2,
4624      * since we don't support flush-for-specific-ASID-only or
4625      * flush-last-level-only.
4626      */
4627 
4628     do_rvae_write(env, value, vae2_tlbmask(env),
4629                   tlb_force_broadcast(env));
4630 
4631 
4632 }
4633 
4634 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4635                                     const ARMCPRegInfo *ri,
4636                                     uint64_t value)
4637 {
4638     /*
4639      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4640      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4641      * since we don't support flush-for-specific-ASID-only,
4642      * flush-last-level-only or inner/outer shareable specific flushes.
4643      */
4644 
4645     do_rvae_write(env, value, vae2_tlbmask(env), true);
4646 
4647 }
4648 
4649 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4650                                   const ARMCPRegInfo *ri,
4651                                   uint64_t value)
4652 {
4653     /*
4654      * Invalidate by VA range, EL3.
4655      * Currently handles all of RVAE3 and RVALE3,
4656      * since we don't support flush-for-specific-ASID-only or
4657      * flush-last-level-only.
4658      */
4659 
4660     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4661                   tlb_force_broadcast(env));
4662 }
4663 
4664 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4665                                     const ARMCPRegInfo *ri,
4666                                     uint64_t value)
4667 {
4668     /*
4669      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4670      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4671      * since we don't support flush-for-specific-ASID-only,
4672      * flush-last-level-only or inner/outer specific flushes.
4673      */
4674 
4675     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4676 }
4677 #endif
4678 
4679 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                       bool isread)
4681 {
4682     int cur_el = arm_current_el(env);
4683 
4684     if (cur_el < 2) {
4685         uint64_t hcr = arm_hcr_el2_eff(env);
4686 
4687         if (cur_el == 0) {
4688             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4689                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4690                     return CP_ACCESS_TRAP_EL2;
4691                 }
4692             } else {
4693                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4694                     return CP_ACCESS_TRAP;
4695                 }
4696                 if (hcr & HCR_TDZ) {
4697                     return CP_ACCESS_TRAP_EL2;
4698                 }
4699             }
4700         } else if (hcr & HCR_TDZ) {
4701             return CP_ACCESS_TRAP_EL2;
4702         }
4703     }
4704     return CP_ACCESS_OK;
4705 }
4706 
4707 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4708 {
4709     ARMCPU *cpu = env_archcpu(env);
4710     int dzp_bit = 1 << 4;
4711 
4712     /* DZP indicates whether DC ZVA access is allowed */
4713     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4714         dzp_bit = 0;
4715     }
4716     return cpu->dcz_blocksize | dzp_bit;
4717 }
4718 
4719 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4720                                     bool isread)
4721 {
4722     if (!(env->pstate & PSTATE_SP)) {
4723         /* Access to SP_EL0 is undefined if it's being used as
4724          * the stack pointer.
4725          */
4726         return CP_ACCESS_TRAP_UNCATEGORIZED;
4727     }
4728     return CP_ACCESS_OK;
4729 }
4730 
4731 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4732 {
4733     return env->pstate & PSTATE_SP;
4734 }
4735 
4736 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4737 {
4738     update_spsel(env, val);
4739 }
4740 
4741 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4742                         uint64_t value)
4743 {
4744     ARMCPU *cpu = env_archcpu(env);
4745 
4746     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4747         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4748         value &= ~SCTLR_M;
4749     }
4750 
4751     /* ??? Lots of these bits are not implemented.  */
4752 
4753     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4754         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4755             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4756         } else {
4757             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4758                        SCTLR_ATA0 | SCTLR_ATA);
4759         }
4760     }
4761 
4762     if (raw_read(env, ri) == value) {
4763         /* Skip the TLB flush if nothing actually changed; Linux likes
4764          * to do a lot of pointless SCTLR writes.
4765          */
4766         return;
4767     }
4768 
4769     raw_write(env, ri, value);
4770 
4771     /* This may enable/disable the MMU, so do a TLB flush.  */
4772     tlb_flush(CPU(cpu));
4773 
4774     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4775         /*
4776          * Normally we would always end the TB on an SCTLR write; see the
4777          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4778          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4779          * of hflags from the translator, so do it here.
4780          */
4781         arm_rebuild_hflags(env);
4782     }
4783 }
4784 
4785 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4786                                      bool isread)
4787 {
4788     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4789         return CP_ACCESS_TRAP_FP_EL2;
4790     }
4791     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4792         return CP_ACCESS_TRAP_FP_EL3;
4793     }
4794     return CP_ACCESS_OK;
4795 }
4796 
4797 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4798                        uint64_t value)
4799 {
4800     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4801 }
4802 
4803 static const ARMCPRegInfo v8_cp_reginfo[] = {
4804     /* Minimal set of EL0-visible registers. This will need to be expanded
4805      * significantly for system emulation of AArch64 CPUs.
4806      */
4807     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4808       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4809       .access = PL0_RW, .type = ARM_CP_NZCV },
4810     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4811       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4812       .type = ARM_CP_NO_RAW,
4813       .access = PL0_RW, .accessfn = aa64_daif_access,
4814       .fieldoffset = offsetof(CPUARMState, daif),
4815       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4816     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4817       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4818       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4819       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4820     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4821       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4822       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4823       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4824     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4825       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4826       .access = PL0_R, .type = ARM_CP_NO_RAW,
4827       .readfn = aa64_dczid_read },
4828     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4829       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4830       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4831 #ifndef CONFIG_USER_ONLY
4832       /* Avoid overhead of an access check that always passes in user-mode */
4833       .accessfn = aa64_zva_access,
4834 #endif
4835     },
4836     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4837       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4838       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4839     /* Cache ops: all NOPs since we don't emulate caches */
4840     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4841       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4842       .access = PL1_W, .type = ARM_CP_NOP,
4843       .accessfn = aa64_cacheop_pou_access },
4844     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4845       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4846       .access = PL1_W, .type = ARM_CP_NOP,
4847       .accessfn = aa64_cacheop_pou_access },
4848     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4849       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4850       .access = PL0_W, .type = ARM_CP_NOP,
4851       .accessfn = aa64_cacheop_pou_access },
4852     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4853       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4854       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4855       .type = ARM_CP_NOP },
4856     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4857       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4858       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4859     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4860       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4861       .access = PL0_W, .type = ARM_CP_NOP,
4862       .accessfn = aa64_cacheop_poc_access },
4863     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4864       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4865       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4866     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4867       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4868       .access = PL0_W, .type = ARM_CP_NOP,
4869       .accessfn = aa64_cacheop_pou_access },
4870     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4871       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4872       .access = PL0_W, .type = ARM_CP_NOP,
4873       .accessfn = aa64_cacheop_poc_access },
4874     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4875       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4876       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4877     /* TLBI operations */
4878     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4879       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4880       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4881       .writefn = tlbi_aa64_vmalle1is_write },
4882     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4883       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4884       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885       .writefn = tlbi_aa64_vae1is_write },
4886     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4887       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4888       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4889       .writefn = tlbi_aa64_vmalle1is_write },
4890     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4891       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4892       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4893       .writefn = tlbi_aa64_vae1is_write },
4894     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4895       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4896       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4897       .writefn = tlbi_aa64_vae1is_write },
4898     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4899       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4900       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4901       .writefn = tlbi_aa64_vae1is_write },
4902     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4903       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4904       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4905       .writefn = tlbi_aa64_vmalle1_write },
4906     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4907       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4908       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4909       .writefn = tlbi_aa64_vae1_write },
4910     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4911       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4912       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4913       .writefn = tlbi_aa64_vmalle1_write },
4914     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4915       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4916       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4917       .writefn = tlbi_aa64_vae1_write },
4918     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4919       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4920       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4921       .writefn = tlbi_aa64_vae1_write },
4922     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4923       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4924       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4925       .writefn = tlbi_aa64_vae1_write },
4926     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4928       .access = PL2_W, .type = ARM_CP_NOP },
4929     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4930       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4931       .access = PL2_W, .type = ARM_CP_NOP },
4932     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4933       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4934       .access = PL2_W, .type = ARM_CP_NO_RAW,
4935       .writefn = tlbi_aa64_alle1is_write },
4936     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4937       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4938       .access = PL2_W, .type = ARM_CP_NO_RAW,
4939       .writefn = tlbi_aa64_alle1is_write },
4940     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4941       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4942       .access = PL2_W, .type = ARM_CP_NOP },
4943     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4944       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4945       .access = PL2_W, .type = ARM_CP_NOP },
4946     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4948       .access = PL2_W, .type = ARM_CP_NO_RAW,
4949       .writefn = tlbi_aa64_alle1_write },
4950     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4951       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4952       .access = PL2_W, .type = ARM_CP_NO_RAW,
4953       .writefn = tlbi_aa64_alle1is_write },
4954 #ifndef CONFIG_USER_ONLY
4955     /* 64 bit address translation operations */
4956     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4957       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4958       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4959       .writefn = ats_write64 },
4960     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4961       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4962       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4963       .writefn = ats_write64 },
4964     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4965       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4966       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4967       .writefn = ats_write64 },
4968     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4969       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4970       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4971       .writefn = ats_write64 },
4972     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4973       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4974       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4975       .writefn = ats_write64 },
4976     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4977       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4978       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4979       .writefn = ats_write64 },
4980     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4981       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4982       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4983       .writefn = ats_write64 },
4984     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4985       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4986       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4987       .writefn = ats_write64 },
4988     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4989     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4990       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4991       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4992       .writefn = ats_write64 },
4993     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4994       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4995       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4996       .writefn = ats_write64 },
4997     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4998       .type = ARM_CP_ALIAS,
4999       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5000       .access = PL1_RW, .resetvalue = 0,
5001       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5002       .writefn = par_write },
5003 #endif
5004     /* TLB invalidate last level of translation table walk */
5005     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5006       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5007       .writefn = tlbimva_is_write },
5008     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5009       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5010       .writefn = tlbimvaa_is_write },
5011     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5012       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5013       .writefn = tlbimva_write },
5014     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5015       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5016       .writefn = tlbimvaa_write },
5017     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5018       .type = ARM_CP_NO_RAW, .access = PL2_W,
5019       .writefn = tlbimva_hyp_write },
5020     { .name = "TLBIMVALHIS",
5021       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5022       .type = ARM_CP_NO_RAW, .access = PL2_W,
5023       .writefn = tlbimva_hyp_is_write },
5024     { .name = "TLBIIPAS2",
5025       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5026       .type = ARM_CP_NOP, .access = PL2_W },
5027     { .name = "TLBIIPAS2IS",
5028       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5029       .type = ARM_CP_NOP, .access = PL2_W },
5030     { .name = "TLBIIPAS2L",
5031       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5032       .type = ARM_CP_NOP, .access = PL2_W },
5033     { .name = "TLBIIPAS2LIS",
5034       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5035       .type = ARM_CP_NOP, .access = PL2_W },
5036     /* 32 bit cache operations */
5037     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5038       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5039     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5040       .type = ARM_CP_NOP, .access = PL1_W },
5041     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5042       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5043     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5044       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5045     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5046       .type = ARM_CP_NOP, .access = PL1_W },
5047     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5048       .type = ARM_CP_NOP, .access = PL1_W },
5049     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5050       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5051     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5052       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5053     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5054       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5055     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5056       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5057     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5058       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5059     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5060       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5061     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5062       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5063     /* MMU Domain access control / MPU write buffer control */
5064     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5065       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5066       .writefn = dacr_write, .raw_writefn = raw_write,
5067       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5068                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5069     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5070       .type = ARM_CP_ALIAS,
5071       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5072       .access = PL1_RW,
5073       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5074     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5075       .type = ARM_CP_ALIAS,
5076       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5077       .access = PL1_RW,
5078       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5079     /* We rely on the access checks not allowing the guest to write to the
5080      * state field when SPSel indicates that it's being used as the stack
5081      * pointer.
5082      */
5083     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5084       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5085       .access = PL1_RW, .accessfn = sp_el0_access,
5086       .type = ARM_CP_ALIAS,
5087       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5088     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5089       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5090       .access = PL2_RW, .type = ARM_CP_ALIAS,
5091       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5092     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5093       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5094       .type = ARM_CP_NO_RAW,
5095       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5096     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5097       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5098       .type = ARM_CP_ALIAS,
5099       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5100       .access = PL2_RW, .accessfn = fpexc32_access },
5101     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5102       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5103       .access = PL2_RW, .resetvalue = 0,
5104       .writefn = dacr_write, .raw_writefn = raw_write,
5105       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5106     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5107       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5108       .access = PL2_RW, .resetvalue = 0,
5109       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5110     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5111       .type = ARM_CP_ALIAS,
5112       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5113       .access = PL2_RW,
5114       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5115     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5116       .type = ARM_CP_ALIAS,
5117       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5118       .access = PL2_RW,
5119       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5120     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5121       .type = ARM_CP_ALIAS,
5122       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5123       .access = PL2_RW,
5124       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5125     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5126       .type = ARM_CP_ALIAS,
5127       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5128       .access = PL2_RW,
5129       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5130     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5131       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5132       .resetvalue = 0,
5133       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5134     { .name = "SDCR", .type = ARM_CP_ALIAS,
5135       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5136       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5137       .writefn = sdcr_write,
5138       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5139     REGINFO_SENTINEL
5140 };
5141 
5142 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5143 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5144     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5145       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5146       .access = PL2_RW,
5147       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5148     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5149       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5150       .access = PL2_RW,
5151       .type = ARM_CP_CONST, .resetvalue = 0 },
5152     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5153       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5154       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5155     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5156       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5157       .access = PL2_RW,
5158       .type = ARM_CP_CONST, .resetvalue = 0 },
5159     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5160       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5161       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5162     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5163       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5164       .access = PL2_RW, .type = ARM_CP_CONST,
5165       .resetvalue = 0 },
5166     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5167       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5168       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5169     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5170       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5171       .access = PL2_RW, .type = ARM_CP_CONST,
5172       .resetvalue = 0 },
5173     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5174       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5175       .access = PL2_RW, .type = ARM_CP_CONST,
5176       .resetvalue = 0 },
5177     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5178       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5179       .access = PL2_RW, .type = ARM_CP_CONST,
5180       .resetvalue = 0 },
5181     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5182       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5183       .access = PL2_RW, .type = ARM_CP_CONST,
5184       .resetvalue = 0 },
5185     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5186       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5187       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5188     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5189       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5190       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5191       .type = ARM_CP_CONST, .resetvalue = 0 },
5192     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5193       .cp = 15, .opc1 = 6, .crm = 2,
5194       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5195       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5196     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5197       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5198       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5199     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5200       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5201       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5202     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5203       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5204       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5205     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5206       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5207       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5208     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5209       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5210       .resetvalue = 0 },
5211     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5212       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5213       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5214     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5215       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5216       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5217     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5218       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5219       .resetvalue = 0 },
5220     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5221       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5222       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5223     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5224       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5225       .resetvalue = 0 },
5226     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5227       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5228       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5229     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5230       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5231       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5232     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5233       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5234       .access = PL2_RW, .accessfn = access_tda,
5235       .type = ARM_CP_CONST, .resetvalue = 0 },
5236     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5237       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5238       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5239       .type = ARM_CP_CONST, .resetvalue = 0 },
5240     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5241       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5242       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5243     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5244       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5245       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5246     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5247       .type = ARM_CP_CONST,
5248       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5249       .access = PL2_RW, .resetvalue = 0 },
5250     REGINFO_SENTINEL
5251 };
5252 
5253 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5254 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5255     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5256       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5257       .access = PL2_RW,
5258       .type = ARM_CP_CONST, .resetvalue = 0 },
5259     REGINFO_SENTINEL
5260 };
5261 
5262 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5263 {
5264     ARMCPU *cpu = env_archcpu(env);
5265 
5266     if (arm_feature(env, ARM_FEATURE_V8)) {
5267         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5268     } else {
5269         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5270     }
5271 
5272     if (arm_feature(env, ARM_FEATURE_EL3)) {
5273         valid_mask &= ~HCR_HCD;
5274     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5275         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5276          * However, if we're using the SMC PSCI conduit then QEMU is
5277          * effectively acting like EL3 firmware and so the guest at
5278          * EL2 should retain the ability to prevent EL1 from being
5279          * able to make SMC calls into the ersatz firmware, so in
5280          * that case HCR.TSC should be read/write.
5281          */
5282         valid_mask &= ~HCR_TSC;
5283     }
5284 
5285     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5286         if (cpu_isar_feature(aa64_vh, cpu)) {
5287             valid_mask |= HCR_E2H;
5288         }
5289         if (cpu_isar_feature(aa64_lor, cpu)) {
5290             valid_mask |= HCR_TLOR;
5291         }
5292         if (cpu_isar_feature(aa64_pauth, cpu)) {
5293             valid_mask |= HCR_API | HCR_APK;
5294         }
5295         if (cpu_isar_feature(aa64_mte, cpu)) {
5296             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5297         }
5298     }
5299 
5300     /* Clear RES0 bits.  */
5301     value &= valid_mask;
5302 
5303     /*
5304      * These bits change the MMU setup:
5305      * HCR_VM enables stage 2 translation
5306      * HCR_PTW forbids certain page-table setups
5307      * HCR_DC disables stage1 and enables stage2 translation
5308      * HCR_DCT enables tagging on (disabled) stage1 translation
5309      */
5310     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5311         tlb_flush(CPU(cpu));
5312     }
5313     env->cp15.hcr_el2 = value;
5314 
5315     /*
5316      * Updates to VI and VF require us to update the status of
5317      * virtual interrupts, which are the logical OR of these bits
5318      * and the state of the input lines from the GIC. (This requires
5319      * that we have the iothread lock, which is done by marking the
5320      * reginfo structs as ARM_CP_IO.)
5321      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5322      * possible for it to be taken immediately, because VIRQ and
5323      * VFIQ are masked unless running at EL0 or EL1, and HCR
5324      * can only be written at EL2.
5325      */
5326     g_assert(qemu_mutex_iothread_locked());
5327     arm_cpu_update_virq(cpu);
5328     arm_cpu_update_vfiq(cpu);
5329 }
5330 
5331 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5332 {
5333     do_hcr_write(env, value, 0);
5334 }
5335 
5336 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5337                           uint64_t value)
5338 {
5339     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5340     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5341     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5342 }
5343 
5344 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5345                          uint64_t value)
5346 {
5347     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5348     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5349     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5350 }
5351 
5352 /*
5353  * Return the effective value of HCR_EL2.
5354  * Bits that are not included here:
5355  * RW       (read from SCR_EL3.RW as needed)
5356  */
5357 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5358 {
5359     uint64_t ret = env->cp15.hcr_el2;
5360 
5361     if (!arm_is_el2_enabled(env)) {
5362         /*
5363          * "This register has no effect if EL2 is not enabled in the
5364          * current Security state".  This is ARMv8.4-SecEL2 speak for
5365          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5366          *
5367          * Prior to that, the language was "In an implementation that
5368          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5369          * as if this field is 0 for all purposes other than a direct
5370          * read or write access of HCR_EL2".  With lots of enumeration
5371          * on a per-field basis.  In current QEMU, this is condition
5372          * is arm_is_secure_below_el3.
5373          *
5374          * Since the v8.4 language applies to the entire register, and
5375          * appears to be backward compatible, use that.
5376          */
5377         return 0;
5378     }
5379 
5380     /*
5381      * For a cpu that supports both aarch64 and aarch32, we can set bits
5382      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5383      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5384      */
5385     if (!arm_el_is_aa64(env, 2)) {
5386         uint64_t aa32_valid;
5387 
5388         /*
5389          * These bits are up-to-date as of ARMv8.6.
5390          * For HCR, it's easiest to list just the 2 bits that are invalid.
5391          * For HCR2, list those that are valid.
5392          */
5393         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5394         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5395                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5396         ret &= aa32_valid;
5397     }
5398 
5399     if (ret & HCR_TGE) {
5400         /* These bits are up-to-date as of ARMv8.6.  */
5401         if (ret & HCR_E2H) {
5402             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5403                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5404                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5405                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5406                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5407                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5408         } else {
5409             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5410         }
5411         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5412                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5413                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5414                  HCR_TLOR);
5415     }
5416 
5417     return ret;
5418 }
5419 
5420 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5421                            uint64_t value)
5422 {
5423     /*
5424      * For A-profile AArch32 EL3, if NSACR.CP10
5425      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5426      */
5427     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5428         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5429         value &= ~(0x3 << 10);
5430         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5431     }
5432     env->cp15.cptr_el[2] = value;
5433 }
5434 
5435 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5436 {
5437     /*
5438      * For A-profile AArch32 EL3, if NSACR.CP10
5439      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5440      */
5441     uint64_t value = env->cp15.cptr_el[2];
5442 
5443     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5444         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5445         value |= 0x3 << 10;
5446     }
5447     return value;
5448 }
5449 
5450 static const ARMCPRegInfo el2_cp_reginfo[] = {
5451     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5452       .type = ARM_CP_IO,
5453       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5454       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5455       .writefn = hcr_write },
5456     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5457       .type = ARM_CP_ALIAS | ARM_CP_IO,
5458       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5459       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5460       .writefn = hcr_writelow },
5461     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5462       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5463       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5464     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5465       .type = ARM_CP_ALIAS,
5466       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5467       .access = PL2_RW,
5468       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5469     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5470       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5471       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5472     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5473       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5474       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5475     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5476       .type = ARM_CP_ALIAS,
5477       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5478       .access = PL2_RW,
5479       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5480     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5481       .type = ARM_CP_ALIAS,
5482       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5483       .access = PL2_RW,
5484       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5485     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5486       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5487       .access = PL2_RW, .writefn = vbar_write,
5488       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5489       .resetvalue = 0 },
5490     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5491       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5492       .access = PL3_RW, .type = ARM_CP_ALIAS,
5493       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5494     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5495       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5496       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5497       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5498       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5499     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5500       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5501       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5502       .resetvalue = 0 },
5503     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5504       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5505       .access = PL2_RW, .type = ARM_CP_ALIAS,
5506       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5507     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5508       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5509       .access = PL2_RW, .type = ARM_CP_CONST,
5510       .resetvalue = 0 },
5511     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5512     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5513       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5514       .access = PL2_RW, .type = ARM_CP_CONST,
5515       .resetvalue = 0 },
5516     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5517       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5518       .access = PL2_RW, .type = ARM_CP_CONST,
5519       .resetvalue = 0 },
5520     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5521       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5522       .access = PL2_RW, .type = ARM_CP_CONST,
5523       .resetvalue = 0 },
5524     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5525       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5526       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5527       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5528       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5529     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5530       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5531       .type = ARM_CP_ALIAS,
5532       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5533       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5534     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5535       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5536       .access = PL2_RW,
5537       /* no .writefn needed as this can't cause an ASID change;
5538        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5539        */
5540       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5541     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5542       .cp = 15, .opc1 = 6, .crm = 2,
5543       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5544       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5545       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5546       .writefn = vttbr_write },
5547     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5548       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5549       .access = PL2_RW, .writefn = vttbr_write,
5550       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5551     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5552       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5553       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5554       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5555     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5556       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5557       .access = PL2_RW, .resetvalue = 0,
5558       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5559     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5560       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5561       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5562       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5563     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5564       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5565       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5566     { .name = "TLBIALLNSNH",
5567       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5568       .type = ARM_CP_NO_RAW, .access = PL2_W,
5569       .writefn = tlbiall_nsnh_write },
5570     { .name = "TLBIALLNSNHIS",
5571       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5572       .type = ARM_CP_NO_RAW, .access = PL2_W,
5573       .writefn = tlbiall_nsnh_is_write },
5574     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5575       .type = ARM_CP_NO_RAW, .access = PL2_W,
5576       .writefn = tlbiall_hyp_write },
5577     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5578       .type = ARM_CP_NO_RAW, .access = PL2_W,
5579       .writefn = tlbiall_hyp_is_write },
5580     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5581       .type = ARM_CP_NO_RAW, .access = PL2_W,
5582       .writefn = tlbimva_hyp_write },
5583     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5584       .type = ARM_CP_NO_RAW, .access = PL2_W,
5585       .writefn = tlbimva_hyp_is_write },
5586     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5587       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5588       .type = ARM_CP_NO_RAW, .access = PL2_W,
5589       .writefn = tlbi_aa64_alle2_write },
5590     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5591       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5592       .type = ARM_CP_NO_RAW, .access = PL2_W,
5593       .writefn = tlbi_aa64_vae2_write },
5594     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5596       .access = PL2_W, .type = ARM_CP_NO_RAW,
5597       .writefn = tlbi_aa64_vae2_write },
5598     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5599       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5600       .access = PL2_W, .type = ARM_CP_NO_RAW,
5601       .writefn = tlbi_aa64_alle2is_write },
5602     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5603       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5604       .type = ARM_CP_NO_RAW, .access = PL2_W,
5605       .writefn = tlbi_aa64_vae2is_write },
5606     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5608       .access = PL2_W, .type = ARM_CP_NO_RAW,
5609       .writefn = tlbi_aa64_vae2is_write },
5610 #ifndef CONFIG_USER_ONLY
5611     /* Unlike the other EL2-related AT operations, these must
5612      * UNDEF from EL3 if EL2 is not implemented, which is why we
5613      * define them here rather than with the rest of the AT ops.
5614      */
5615     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5616       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5617       .access = PL2_W, .accessfn = at_s1e2_access,
5618       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5619     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5620       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5621       .access = PL2_W, .accessfn = at_s1e2_access,
5622       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5623     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5624      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5625      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5626      * to behave as if SCR.NS was 1.
5627      */
5628     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5629       .access = PL2_W,
5630       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5631     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5632       .access = PL2_W,
5633       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5634     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5635       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5636       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5637        * reset values as IMPDEF. We choose to reset to 3 to comply with
5638        * both ARMv7 and ARMv8.
5639        */
5640       .access = PL2_RW, .resetvalue = 3,
5641       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5642     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5643       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5644       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5645       .writefn = gt_cntvoff_write,
5646       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5647     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5648       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5649       .writefn = gt_cntvoff_write,
5650       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5651     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5652       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5653       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5654       .type = ARM_CP_IO, .access = PL2_RW,
5655       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5656     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5657       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5658       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5659       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5660     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5661       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5662       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5663       .resetfn = gt_hyp_timer_reset,
5664       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5665     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5666       .type = ARM_CP_IO,
5667       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5668       .access = PL2_RW,
5669       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5670       .resetvalue = 0,
5671       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5672 #endif
5673     /* The only field of MDCR_EL2 that has a defined architectural reset value
5674      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5675      */
5676     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5677       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5678       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5679       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5680     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5681       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5682       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5683       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5684     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5685       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5686       .access = PL2_RW,
5687       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5688     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5689       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5690       .access = PL2_RW,
5691       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5692     REGINFO_SENTINEL
5693 };
5694 
5695 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5696     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5697       .type = ARM_CP_ALIAS | ARM_CP_IO,
5698       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5699       .access = PL2_RW,
5700       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5701       .writefn = hcr_writehigh },
5702     REGINFO_SENTINEL
5703 };
5704 
5705 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5706                                   bool isread)
5707 {
5708     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5709         return CP_ACCESS_OK;
5710     }
5711     return CP_ACCESS_TRAP_UNCATEGORIZED;
5712 }
5713 
5714 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5715     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5716       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5717       .access = PL2_RW, .accessfn = sel2_access,
5718       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5719     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5720       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5721       .access = PL2_RW, .accessfn = sel2_access,
5722       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5723     REGINFO_SENTINEL
5724 };
5725 
5726 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5727                                    bool isread)
5728 {
5729     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5730      * At Secure EL1 it traps to EL3 or EL2.
5731      */
5732     if (arm_current_el(env) == 3) {
5733         return CP_ACCESS_OK;
5734     }
5735     if (arm_is_secure_below_el3(env)) {
5736         if (env->cp15.scr_el3 & SCR_EEL2) {
5737             return CP_ACCESS_TRAP_EL2;
5738         }
5739         return CP_ACCESS_TRAP_EL3;
5740     }
5741     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5742     if (isread) {
5743         return CP_ACCESS_OK;
5744     }
5745     return CP_ACCESS_TRAP_UNCATEGORIZED;
5746 }
5747 
5748 static const ARMCPRegInfo el3_cp_reginfo[] = {
5749     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5750       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5751       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5752       .resetfn = scr_reset, .writefn = scr_write },
5753     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5754       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5755       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5756       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5757       .writefn = scr_write },
5758     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5759       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5760       .access = PL3_RW, .resetvalue = 0,
5761       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5762     { .name = "SDER",
5763       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5764       .access = PL3_RW, .resetvalue = 0,
5765       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5766     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5767       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5768       .writefn = vbar_write, .resetvalue = 0,
5769       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5770     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5771       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5772       .access = PL3_RW, .resetvalue = 0,
5773       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5774     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5776       .access = PL3_RW,
5777       /* no .writefn needed as this can't cause an ASID change;
5778        * we must provide a .raw_writefn and .resetfn because we handle
5779        * reset and migration for the AArch32 TTBCR(S), which might be
5780        * using mask and base_mask.
5781        */
5782       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5783       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5784     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5785       .type = ARM_CP_ALIAS,
5786       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5787       .access = PL3_RW,
5788       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5789     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5790       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5791       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5792     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5793       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5794       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5795     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5796       .type = ARM_CP_ALIAS,
5797       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5798       .access = PL3_RW,
5799       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5800     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5801       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5802       .access = PL3_RW, .writefn = vbar_write,
5803       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5804       .resetvalue = 0 },
5805     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5806       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5807       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5808       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5809     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5810       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5811       .access = PL3_RW, .resetvalue = 0,
5812       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5813     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5814       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5815       .access = PL3_RW, .type = ARM_CP_CONST,
5816       .resetvalue = 0 },
5817     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5818       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5819       .access = PL3_RW, .type = ARM_CP_CONST,
5820       .resetvalue = 0 },
5821     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5822       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5823       .access = PL3_RW, .type = ARM_CP_CONST,
5824       .resetvalue = 0 },
5825     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5826       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5827       .access = PL3_W, .type = ARM_CP_NO_RAW,
5828       .writefn = tlbi_aa64_alle3is_write },
5829     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5830       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5831       .access = PL3_W, .type = ARM_CP_NO_RAW,
5832       .writefn = tlbi_aa64_vae3is_write },
5833     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5834       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5835       .access = PL3_W, .type = ARM_CP_NO_RAW,
5836       .writefn = tlbi_aa64_vae3is_write },
5837     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5838       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5839       .access = PL3_W, .type = ARM_CP_NO_RAW,
5840       .writefn = tlbi_aa64_alle3_write },
5841     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5842       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5843       .access = PL3_W, .type = ARM_CP_NO_RAW,
5844       .writefn = tlbi_aa64_vae3_write },
5845     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5846       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5847       .access = PL3_W, .type = ARM_CP_NO_RAW,
5848       .writefn = tlbi_aa64_vae3_write },
5849     REGINFO_SENTINEL
5850 };
5851 
5852 #ifndef CONFIG_USER_ONLY
5853 /* Test if system register redirection is to occur in the current state.  */
5854 static bool redirect_for_e2h(CPUARMState *env)
5855 {
5856     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5857 }
5858 
5859 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5860 {
5861     CPReadFn *readfn;
5862 
5863     if (redirect_for_e2h(env)) {
5864         /* Switch to the saved EL2 version of the register.  */
5865         ri = ri->opaque;
5866         readfn = ri->readfn;
5867     } else {
5868         readfn = ri->orig_readfn;
5869     }
5870     if (readfn == NULL) {
5871         readfn = raw_read;
5872     }
5873     return readfn(env, ri);
5874 }
5875 
5876 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5877                           uint64_t value)
5878 {
5879     CPWriteFn *writefn;
5880 
5881     if (redirect_for_e2h(env)) {
5882         /* Switch to the saved EL2 version of the register.  */
5883         ri = ri->opaque;
5884         writefn = ri->writefn;
5885     } else {
5886         writefn = ri->orig_writefn;
5887     }
5888     if (writefn == NULL) {
5889         writefn = raw_write;
5890     }
5891     writefn(env, ri, value);
5892 }
5893 
5894 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5895 {
5896     struct E2HAlias {
5897         uint32_t src_key, dst_key, new_key;
5898         const char *src_name, *dst_name, *new_name;
5899         bool (*feature)(const ARMISARegisters *id);
5900     };
5901 
5902 #define K(op0, op1, crn, crm, op2) \
5903     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5904 
5905     static const struct E2HAlias aliases[] = {
5906         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5907           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5908         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5909           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5910         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5911           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5912         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5913           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5914         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5915           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5916         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5917           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5918         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5919           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5920         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5921           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5922         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5923           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5924         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5925           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5926         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5927           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5928         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5929           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5930         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5931           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5932         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5933           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5934         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5935           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5936         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5937           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5938 
5939         /*
5940          * Note that redirection of ZCR is mentioned in the description
5941          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5942          * not in the summary table.
5943          */
5944         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5945           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5946 
5947         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5948           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5949 
5950         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5951         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5952     };
5953 #undef K
5954 
5955     size_t i;
5956 
5957     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5958         const struct E2HAlias *a = &aliases[i];
5959         ARMCPRegInfo *src_reg, *dst_reg;
5960 
5961         if (a->feature && !a->feature(&cpu->isar)) {
5962             continue;
5963         }
5964 
5965         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5966         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5967         g_assert(src_reg != NULL);
5968         g_assert(dst_reg != NULL);
5969 
5970         /* Cross-compare names to detect typos in the keys.  */
5971         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5972         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5973 
5974         /* None of the core system registers use opaque; we will.  */
5975         g_assert(src_reg->opaque == NULL);
5976 
5977         /* Create alias before redirection so we dup the right data. */
5978         if (a->new_key) {
5979             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5980             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5981             bool ok;
5982 
5983             new_reg->name = a->new_name;
5984             new_reg->type |= ARM_CP_ALIAS;
5985             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5986             new_reg->access &= PL2_RW | PL3_RW;
5987 
5988             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5989             g_assert(ok);
5990         }
5991 
5992         src_reg->opaque = dst_reg;
5993         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5994         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5995         if (!src_reg->raw_readfn) {
5996             src_reg->raw_readfn = raw_read;
5997         }
5998         if (!src_reg->raw_writefn) {
5999             src_reg->raw_writefn = raw_write;
6000         }
6001         src_reg->readfn = el2_e2h_read;
6002         src_reg->writefn = el2_e2h_write;
6003     }
6004 }
6005 #endif
6006 
6007 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6008                                      bool isread)
6009 {
6010     int cur_el = arm_current_el(env);
6011 
6012     if (cur_el < 2) {
6013         uint64_t hcr = arm_hcr_el2_eff(env);
6014 
6015         if (cur_el == 0) {
6016             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6017                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6018                     return CP_ACCESS_TRAP_EL2;
6019                 }
6020             } else {
6021                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6022                     return CP_ACCESS_TRAP;
6023                 }
6024                 if (hcr & HCR_TID2) {
6025                     return CP_ACCESS_TRAP_EL2;
6026                 }
6027             }
6028         } else if (hcr & HCR_TID2) {
6029             return CP_ACCESS_TRAP_EL2;
6030         }
6031     }
6032 
6033     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6034         return CP_ACCESS_TRAP_EL2;
6035     }
6036 
6037     return CP_ACCESS_OK;
6038 }
6039 
6040 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6041                         uint64_t value)
6042 {
6043     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6044      * read via a bit in OSLSR_EL1.
6045      */
6046     int oslock;
6047 
6048     if (ri->state == ARM_CP_STATE_AA32) {
6049         oslock = (value == 0xC5ACCE55);
6050     } else {
6051         oslock = value & 1;
6052     }
6053 
6054     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6055 }
6056 
6057 static const ARMCPRegInfo debug_cp_reginfo[] = {
6058     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6059      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6060      * unlike DBGDRAR it is never accessible from EL0.
6061      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6062      * accessor.
6063      */
6064     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6065       .access = PL0_R, .accessfn = access_tdra,
6066       .type = ARM_CP_CONST, .resetvalue = 0 },
6067     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6068       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6069       .access = PL1_R, .accessfn = access_tdra,
6070       .type = ARM_CP_CONST, .resetvalue = 0 },
6071     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6072       .access = PL0_R, .accessfn = access_tdra,
6073       .type = ARM_CP_CONST, .resetvalue = 0 },
6074     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6075     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6076       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6077       .access = PL1_RW, .accessfn = access_tda,
6078       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6079       .resetvalue = 0 },
6080     /*
6081      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6082      * Debug Communication Channel is not implemented.
6083      */
6084     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6085       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6086       .access = PL0_R, .accessfn = access_tda,
6087       .type = ARM_CP_CONST, .resetvalue = 0 },
6088     /*
6089      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6090      * it is unlikely a guest will care.
6091      * We don't implement the configurable EL0 access.
6092      */
6093     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6094       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6095       .type = ARM_CP_ALIAS,
6096       .access = PL1_R, .accessfn = access_tda,
6097       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6098     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6099       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6100       .access = PL1_W, .type = ARM_CP_NO_RAW,
6101       .accessfn = access_tdosa,
6102       .writefn = oslar_write },
6103     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6104       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6105       .access = PL1_R, .resetvalue = 10,
6106       .accessfn = access_tdosa,
6107       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6108     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6109     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6110       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6111       .access = PL1_RW, .accessfn = access_tdosa,
6112       .type = ARM_CP_NOP },
6113     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6114      * implement vector catch debug events yet.
6115      */
6116     { .name = "DBGVCR",
6117       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6118       .access = PL1_RW, .accessfn = access_tda,
6119       .type = ARM_CP_NOP },
6120     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6121      * to save and restore a 32-bit guest's DBGVCR)
6122      */
6123     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6124       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6125       .access = PL2_RW, .accessfn = access_tda,
6126       .type = ARM_CP_NOP },
6127     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6128      * Channel but Linux may try to access this register. The 32-bit
6129      * alias is DBGDCCINT.
6130      */
6131     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6132       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6133       .access = PL1_RW, .accessfn = access_tda,
6134       .type = ARM_CP_NOP },
6135     REGINFO_SENTINEL
6136 };
6137 
6138 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6139     /* 64 bit access versions of the (dummy) debug registers */
6140     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6141       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6142     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6143       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6144     REGINFO_SENTINEL
6145 };
6146 
6147 /* Return the exception level to which exceptions should be taken
6148  * via SVEAccessTrap.  If an exception should be routed through
6149  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6150  * take care of raising that exception.
6151  * C.f. the ARM pseudocode function CheckSVEEnabled.
6152  */
6153 int sve_exception_el(CPUARMState *env, int el)
6154 {
6155 #ifndef CONFIG_USER_ONLY
6156     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6157 
6158     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6159         /* Check CPACR.ZEN.  */
6160         switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
6161         case 1:
6162             if (el != 0) {
6163                 break;
6164             }
6165             /* fall through */
6166         case 0:
6167         case 2:
6168             /* route_to_el2 */
6169             return hcr_el2 & HCR_TGE ? 2 : 1;
6170         }
6171 
6172         /* Check CPACR.FPEN.  */
6173         switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
6174         case 1:
6175             if (el != 0) {
6176                 break;
6177             }
6178             /* fall through */
6179         case 0:
6180         case 2:
6181             return 0;
6182         }
6183     }
6184 
6185     /*
6186      * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE).
6187      */
6188     if (el <= 2) {
6189         if (hcr_el2 & HCR_E2H) {
6190             /* Check CPTR_EL2.ZEN.  */
6191             switch (extract32(env->cp15.cptr_el[2], 16, 2)) {
6192             case 1:
6193                 if (el != 0 || !(hcr_el2 & HCR_TGE)) {
6194                     break;
6195                 }
6196                 /* fall through */
6197             case 0:
6198             case 2:
6199                 return 2;
6200             }
6201 
6202             /* Check CPTR_EL2.FPEN.  */
6203             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
6204             case 1:
6205                 if (el == 2 || !(hcr_el2 & HCR_TGE)) {
6206                     break;
6207                 }
6208                 /* fall through */
6209             case 0:
6210             case 2:
6211                 return 0;
6212             }
6213         } else if (arm_is_el2_enabled(env)) {
6214             if (env->cp15.cptr_el[2] & CPTR_TZ) {
6215                 return 2;
6216             }
6217             if (env->cp15.cptr_el[2] & CPTR_TFP) {
6218                 return 0;
6219             }
6220         }
6221     }
6222 
6223     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6224     if (arm_feature(env, ARM_FEATURE_EL3)
6225         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6226         return 3;
6227     }
6228 #endif
6229     return 0;
6230 }
6231 
6232 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6233 {
6234     uint32_t end_len;
6235 
6236     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6237     end_len = start_len;
6238 
6239     if (!test_bit(start_len, cpu->sve_vq_map)) {
6240         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6241         assert(end_len < start_len);
6242     }
6243     return end_len;
6244 }
6245 
6246 /*
6247  * Given that SVE is enabled, return the vector length for EL.
6248  */
6249 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6250 {
6251     ARMCPU *cpu = env_archcpu(env);
6252     uint32_t zcr_len = cpu->sve_max_vq - 1;
6253 
6254     if (el <= 1 &&
6255         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6256         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6257     }
6258     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6259         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6260     }
6261     if (arm_feature(env, ARM_FEATURE_EL3)) {
6262         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6263     }
6264 
6265     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6266 }
6267 
6268 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6269                       uint64_t value)
6270 {
6271     int cur_el = arm_current_el(env);
6272     int old_len = sve_zcr_len_for_el(env, cur_el);
6273     int new_len;
6274 
6275     /* Bits other than [3:0] are RAZ/WI.  */
6276     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6277     raw_write(env, ri, value & 0xf);
6278 
6279     /*
6280      * Because we arrived here, we know both FP and SVE are enabled;
6281      * otherwise we would have trapped access to the ZCR_ELn register.
6282      */
6283     new_len = sve_zcr_len_for_el(env, cur_el);
6284     if (new_len < old_len) {
6285         aarch64_sve_narrow_vq(env, new_len + 1);
6286     }
6287 }
6288 
6289 static const ARMCPRegInfo zcr_el1_reginfo = {
6290     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6291     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6292     .access = PL1_RW, .type = ARM_CP_SVE,
6293     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6294     .writefn = zcr_write, .raw_writefn = raw_write
6295 };
6296 
6297 static const ARMCPRegInfo zcr_el2_reginfo = {
6298     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6299     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6300     .access = PL2_RW, .type = ARM_CP_SVE,
6301     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6302     .writefn = zcr_write, .raw_writefn = raw_write
6303 };
6304 
6305 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6306     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6307     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6308     .access = PL2_RW, .type = ARM_CP_SVE,
6309     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6310 };
6311 
6312 static const ARMCPRegInfo zcr_el3_reginfo = {
6313     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6314     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6315     .access = PL3_RW, .type = ARM_CP_SVE,
6316     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6317     .writefn = zcr_write, .raw_writefn = raw_write
6318 };
6319 
6320 void hw_watchpoint_update(ARMCPU *cpu, int n)
6321 {
6322     CPUARMState *env = &cpu->env;
6323     vaddr len = 0;
6324     vaddr wvr = env->cp15.dbgwvr[n];
6325     uint64_t wcr = env->cp15.dbgwcr[n];
6326     int mask;
6327     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6328 
6329     if (env->cpu_watchpoint[n]) {
6330         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6331         env->cpu_watchpoint[n] = NULL;
6332     }
6333 
6334     if (!extract64(wcr, 0, 1)) {
6335         /* E bit clear : watchpoint disabled */
6336         return;
6337     }
6338 
6339     switch (extract64(wcr, 3, 2)) {
6340     case 0:
6341         /* LSC 00 is reserved and must behave as if the wp is disabled */
6342         return;
6343     case 1:
6344         flags |= BP_MEM_READ;
6345         break;
6346     case 2:
6347         flags |= BP_MEM_WRITE;
6348         break;
6349     case 3:
6350         flags |= BP_MEM_ACCESS;
6351         break;
6352     }
6353 
6354     /* Attempts to use both MASK and BAS fields simultaneously are
6355      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6356      * thus generating a watchpoint for every byte in the masked region.
6357      */
6358     mask = extract64(wcr, 24, 4);
6359     if (mask == 1 || mask == 2) {
6360         /* Reserved values of MASK; we must act as if the mask value was
6361          * some non-reserved value, or as if the watchpoint were disabled.
6362          * We choose the latter.
6363          */
6364         return;
6365     } else if (mask) {
6366         /* Watchpoint covers an aligned area up to 2GB in size */
6367         len = 1ULL << mask;
6368         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6369          * whether the watchpoint fires when the unmasked bits match; we opt
6370          * to generate the exceptions.
6371          */
6372         wvr &= ~(len - 1);
6373     } else {
6374         /* Watchpoint covers bytes defined by the byte address select bits */
6375         int bas = extract64(wcr, 5, 8);
6376         int basstart;
6377 
6378         if (extract64(wvr, 2, 1)) {
6379             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6380              * ignored, and BAS[3:0] define which bytes to watch.
6381              */
6382             bas &= 0xf;
6383         }
6384 
6385         if (bas == 0) {
6386             /* This must act as if the watchpoint is disabled */
6387             return;
6388         }
6389 
6390         /* The BAS bits are supposed to be programmed to indicate a contiguous
6391          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6392          * we fire for each byte in the word/doubleword addressed by the WVR.
6393          * We choose to ignore any non-zero bits after the first range of 1s.
6394          */
6395         basstart = ctz32(bas);
6396         len = cto32(bas >> basstart);
6397         wvr += basstart;
6398     }
6399 
6400     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6401                           &env->cpu_watchpoint[n]);
6402 }
6403 
6404 void hw_watchpoint_update_all(ARMCPU *cpu)
6405 {
6406     int i;
6407     CPUARMState *env = &cpu->env;
6408 
6409     /* Completely clear out existing QEMU watchpoints and our array, to
6410      * avoid possible stale entries following migration load.
6411      */
6412     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6413     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6414 
6415     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6416         hw_watchpoint_update(cpu, i);
6417     }
6418 }
6419 
6420 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6421                          uint64_t value)
6422 {
6423     ARMCPU *cpu = env_archcpu(env);
6424     int i = ri->crm;
6425 
6426     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6427      * register reads and behaves as if values written are sign extended.
6428      * Bits [1:0] are RES0.
6429      */
6430     value = sextract64(value, 0, 49) & ~3ULL;
6431 
6432     raw_write(env, ri, value);
6433     hw_watchpoint_update(cpu, i);
6434 }
6435 
6436 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6437                          uint64_t value)
6438 {
6439     ARMCPU *cpu = env_archcpu(env);
6440     int i = ri->crm;
6441 
6442     raw_write(env, ri, value);
6443     hw_watchpoint_update(cpu, i);
6444 }
6445 
6446 void hw_breakpoint_update(ARMCPU *cpu, int n)
6447 {
6448     CPUARMState *env = &cpu->env;
6449     uint64_t bvr = env->cp15.dbgbvr[n];
6450     uint64_t bcr = env->cp15.dbgbcr[n];
6451     vaddr addr;
6452     int bt;
6453     int flags = BP_CPU;
6454 
6455     if (env->cpu_breakpoint[n]) {
6456         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6457         env->cpu_breakpoint[n] = NULL;
6458     }
6459 
6460     if (!extract64(bcr, 0, 1)) {
6461         /* E bit clear : watchpoint disabled */
6462         return;
6463     }
6464 
6465     bt = extract64(bcr, 20, 4);
6466 
6467     switch (bt) {
6468     case 4: /* unlinked address mismatch (reserved if AArch64) */
6469     case 5: /* linked address mismatch (reserved if AArch64) */
6470         qemu_log_mask(LOG_UNIMP,
6471                       "arm: address mismatch breakpoint types not implemented\n");
6472         return;
6473     case 0: /* unlinked address match */
6474     case 1: /* linked address match */
6475     {
6476         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6477          * we behave as if the register was sign extended. Bits [1:0] are
6478          * RES0. The BAS field is used to allow setting breakpoints on 16
6479          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6480          * a bp will fire if the addresses covered by the bp and the addresses
6481          * covered by the insn overlap but the insn doesn't start at the
6482          * start of the bp address range. We choose to require the insn and
6483          * the bp to have the same address. The constraints on writing to
6484          * BAS enforced in dbgbcr_write mean we have only four cases:
6485          *  0b0000  => no breakpoint
6486          *  0b0011  => breakpoint on addr
6487          *  0b1100  => breakpoint on addr + 2
6488          *  0b1111  => breakpoint on addr
6489          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6490          */
6491         int bas = extract64(bcr, 5, 4);
6492         addr = sextract64(bvr, 0, 49) & ~3ULL;
6493         if (bas == 0) {
6494             return;
6495         }
6496         if (bas == 0xc) {
6497             addr += 2;
6498         }
6499         break;
6500     }
6501     case 2: /* unlinked context ID match */
6502     case 8: /* unlinked VMID match (reserved if no EL2) */
6503     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6504         qemu_log_mask(LOG_UNIMP,
6505                       "arm: unlinked context breakpoint types not implemented\n");
6506         return;
6507     case 9: /* linked VMID match (reserved if no EL2) */
6508     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6509     case 3: /* linked context ID match */
6510     default:
6511         /* We must generate no events for Linked context matches (unless
6512          * they are linked to by some other bp/wp, which is handled in
6513          * updates for the linking bp/wp). We choose to also generate no events
6514          * for reserved values.
6515          */
6516         return;
6517     }
6518 
6519     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6520 }
6521 
6522 void hw_breakpoint_update_all(ARMCPU *cpu)
6523 {
6524     int i;
6525     CPUARMState *env = &cpu->env;
6526 
6527     /* Completely clear out existing QEMU breakpoints and our array, to
6528      * avoid possible stale entries following migration load.
6529      */
6530     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6531     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6532 
6533     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6534         hw_breakpoint_update(cpu, i);
6535     }
6536 }
6537 
6538 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6539                          uint64_t value)
6540 {
6541     ARMCPU *cpu = env_archcpu(env);
6542     int i = ri->crm;
6543 
6544     raw_write(env, ri, value);
6545     hw_breakpoint_update(cpu, i);
6546 }
6547 
6548 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6549                          uint64_t value)
6550 {
6551     ARMCPU *cpu = env_archcpu(env);
6552     int i = ri->crm;
6553 
6554     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6555      * copy of BAS[0].
6556      */
6557     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6558     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6559 
6560     raw_write(env, ri, value);
6561     hw_breakpoint_update(cpu, i);
6562 }
6563 
6564 static void define_debug_regs(ARMCPU *cpu)
6565 {
6566     /* Define v7 and v8 architectural debug registers.
6567      * These are just dummy implementations for now.
6568      */
6569     int i;
6570     int wrps, brps, ctx_cmps;
6571 
6572     /*
6573      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6574      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6575      * the register must not exist for this cpu.
6576      */
6577     if (cpu->isar.dbgdidr != 0) {
6578         ARMCPRegInfo dbgdidr = {
6579             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6580             .opc1 = 0, .opc2 = 0,
6581             .access = PL0_R, .accessfn = access_tda,
6582             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6583         };
6584         define_one_arm_cp_reg(cpu, &dbgdidr);
6585     }
6586 
6587     /* Note that all these register fields hold "number of Xs minus 1". */
6588     brps = arm_num_brps(cpu);
6589     wrps = arm_num_wrps(cpu);
6590     ctx_cmps = arm_num_ctx_cmps(cpu);
6591 
6592     assert(ctx_cmps <= brps);
6593 
6594     define_arm_cp_regs(cpu, debug_cp_reginfo);
6595 
6596     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6597         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6598     }
6599 
6600     for (i = 0; i < brps; i++) {
6601         ARMCPRegInfo dbgregs[] = {
6602             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6603               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6604               .access = PL1_RW, .accessfn = access_tda,
6605               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6606               .writefn = dbgbvr_write, .raw_writefn = raw_write
6607             },
6608             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6609               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6610               .access = PL1_RW, .accessfn = access_tda,
6611               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6612               .writefn = dbgbcr_write, .raw_writefn = raw_write
6613             },
6614             REGINFO_SENTINEL
6615         };
6616         define_arm_cp_regs(cpu, dbgregs);
6617     }
6618 
6619     for (i = 0; i < wrps; i++) {
6620         ARMCPRegInfo dbgregs[] = {
6621             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6622               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6623               .access = PL1_RW, .accessfn = access_tda,
6624               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6625               .writefn = dbgwvr_write, .raw_writefn = raw_write
6626             },
6627             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6628               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6629               .access = PL1_RW, .accessfn = access_tda,
6630               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6631               .writefn = dbgwcr_write, .raw_writefn = raw_write
6632             },
6633             REGINFO_SENTINEL
6634         };
6635         define_arm_cp_regs(cpu, dbgregs);
6636     }
6637 }
6638 
6639 static void define_pmu_regs(ARMCPU *cpu)
6640 {
6641     /*
6642      * v7 performance monitor control register: same implementor
6643      * field as main ID register, and we implement four counters in
6644      * addition to the cycle count register.
6645      */
6646     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6647     ARMCPRegInfo pmcr = {
6648         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6649         .access = PL0_RW,
6650         .type = ARM_CP_IO | ARM_CP_ALIAS,
6651         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6652         .accessfn = pmreg_access, .writefn = pmcr_write,
6653         .raw_writefn = raw_write,
6654     };
6655     ARMCPRegInfo pmcr64 = {
6656         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6657         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6658         .access = PL0_RW, .accessfn = pmreg_access,
6659         .type = ARM_CP_IO,
6660         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6661         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6662                       PMCRLC,
6663         .writefn = pmcr_write, .raw_writefn = raw_write,
6664     };
6665     define_one_arm_cp_reg(cpu, &pmcr);
6666     define_one_arm_cp_reg(cpu, &pmcr64);
6667     for (i = 0; i < pmcrn; i++) {
6668         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6669         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6670         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6671         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6672         ARMCPRegInfo pmev_regs[] = {
6673             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6674               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6675               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6676               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6677               .accessfn = pmreg_access },
6678             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6679               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6680               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6681               .type = ARM_CP_IO,
6682               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6683               .raw_readfn = pmevcntr_rawread,
6684               .raw_writefn = pmevcntr_rawwrite },
6685             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6686               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6687               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6688               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6689               .accessfn = pmreg_access },
6690             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6691               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6692               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6693               .type = ARM_CP_IO,
6694               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6695               .raw_writefn = pmevtyper_rawwrite },
6696             REGINFO_SENTINEL
6697         };
6698         define_arm_cp_regs(cpu, pmev_regs);
6699         g_free(pmevcntr_name);
6700         g_free(pmevcntr_el0_name);
6701         g_free(pmevtyper_name);
6702         g_free(pmevtyper_el0_name);
6703     }
6704     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6705         ARMCPRegInfo v81_pmu_regs[] = {
6706             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6707               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6708               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6709               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6710             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6711               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6712               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6713               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6714             REGINFO_SENTINEL
6715         };
6716         define_arm_cp_regs(cpu, v81_pmu_regs);
6717     }
6718     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6719         static const ARMCPRegInfo v84_pmmir = {
6720             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6721             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6722             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6723             .resetvalue = 0
6724         };
6725         define_one_arm_cp_reg(cpu, &v84_pmmir);
6726     }
6727 }
6728 
6729 /* We don't know until after realize whether there's a GICv3
6730  * attached, and that is what registers the gicv3 sysregs.
6731  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6732  * at runtime.
6733  */
6734 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6735 {
6736     ARMCPU *cpu = env_archcpu(env);
6737     uint64_t pfr1 = cpu->isar.id_pfr1;
6738 
6739     if (env->gicv3state) {
6740         pfr1 |= 1 << 28;
6741     }
6742     return pfr1;
6743 }
6744 
6745 #ifndef CONFIG_USER_ONLY
6746 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6747 {
6748     ARMCPU *cpu = env_archcpu(env);
6749     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6750 
6751     if (env->gicv3state) {
6752         pfr0 |= 1 << 24;
6753     }
6754     return pfr0;
6755 }
6756 #endif
6757 
6758 /* Shared logic between LORID and the rest of the LOR* registers.
6759  * Secure state exclusion has already been dealt with.
6760  */
6761 static CPAccessResult access_lor_ns(CPUARMState *env,
6762                                     const ARMCPRegInfo *ri, bool isread)
6763 {
6764     int el = arm_current_el(env);
6765 
6766     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6767         return CP_ACCESS_TRAP_EL2;
6768     }
6769     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6770         return CP_ACCESS_TRAP_EL3;
6771     }
6772     return CP_ACCESS_OK;
6773 }
6774 
6775 static CPAccessResult access_lor_other(CPUARMState *env,
6776                                        const ARMCPRegInfo *ri, bool isread)
6777 {
6778     if (arm_is_secure_below_el3(env)) {
6779         /* Access denied in secure mode.  */
6780         return CP_ACCESS_TRAP;
6781     }
6782     return access_lor_ns(env, ri, isread);
6783 }
6784 
6785 /*
6786  * A trivial implementation of ARMv8.1-LOR leaves all of these
6787  * registers fixed at 0, which indicates that there are zero
6788  * supported Limited Ordering regions.
6789  */
6790 static const ARMCPRegInfo lor_reginfo[] = {
6791     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6792       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6793       .access = PL1_RW, .accessfn = access_lor_other,
6794       .type = ARM_CP_CONST, .resetvalue = 0 },
6795     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6796       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6797       .access = PL1_RW, .accessfn = access_lor_other,
6798       .type = ARM_CP_CONST, .resetvalue = 0 },
6799     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6800       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6801       .access = PL1_RW, .accessfn = access_lor_other,
6802       .type = ARM_CP_CONST, .resetvalue = 0 },
6803     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6804       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6805       .access = PL1_RW, .accessfn = access_lor_other,
6806       .type = ARM_CP_CONST, .resetvalue = 0 },
6807     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6808       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6809       .access = PL1_R, .accessfn = access_lor_ns,
6810       .type = ARM_CP_CONST, .resetvalue = 0 },
6811     REGINFO_SENTINEL
6812 };
6813 
6814 #ifdef TARGET_AARCH64
6815 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6816                                    bool isread)
6817 {
6818     int el = arm_current_el(env);
6819 
6820     if (el < 2 &&
6821         arm_feature(env, ARM_FEATURE_EL2) &&
6822         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6823         return CP_ACCESS_TRAP_EL2;
6824     }
6825     if (el < 3 &&
6826         arm_feature(env, ARM_FEATURE_EL3) &&
6827         !(env->cp15.scr_el3 & SCR_APK)) {
6828         return CP_ACCESS_TRAP_EL3;
6829     }
6830     return CP_ACCESS_OK;
6831 }
6832 
6833 static const ARMCPRegInfo pauth_reginfo[] = {
6834     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6835       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6836       .access = PL1_RW, .accessfn = access_pauth,
6837       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6838     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6839       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6840       .access = PL1_RW, .accessfn = access_pauth,
6841       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6842     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6843       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6844       .access = PL1_RW, .accessfn = access_pauth,
6845       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6846     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6847       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6848       .access = PL1_RW, .accessfn = access_pauth,
6849       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6850     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6851       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6852       .access = PL1_RW, .accessfn = access_pauth,
6853       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6854     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6855       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6856       .access = PL1_RW, .accessfn = access_pauth,
6857       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6858     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6859       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6860       .access = PL1_RW, .accessfn = access_pauth,
6861       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6862     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6863       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6864       .access = PL1_RW, .accessfn = access_pauth,
6865       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6866     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6867       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6868       .access = PL1_RW, .accessfn = access_pauth,
6869       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6870     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6871       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6872       .access = PL1_RW, .accessfn = access_pauth,
6873       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6874     REGINFO_SENTINEL
6875 };
6876 
6877 static const ARMCPRegInfo tlbirange_reginfo[] = {
6878     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6879       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6880       .access = PL1_W, .type = ARM_CP_NO_RAW,
6881       .writefn = tlbi_aa64_rvae1is_write },
6882     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6883       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6884       .access = PL1_W, .type = ARM_CP_NO_RAW,
6885       .writefn = tlbi_aa64_rvae1is_write },
6886    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6887       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6888       .access = PL1_W, .type = ARM_CP_NO_RAW,
6889       .writefn = tlbi_aa64_rvae1is_write },
6890     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6891       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6892       .access = PL1_W, .type = ARM_CP_NO_RAW,
6893       .writefn = tlbi_aa64_rvae1is_write },
6894     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6895       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6896       .access = PL1_W, .type = ARM_CP_NO_RAW,
6897       .writefn = tlbi_aa64_rvae1is_write },
6898     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6899       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6900       .access = PL1_W, .type = ARM_CP_NO_RAW,
6901       .writefn = tlbi_aa64_rvae1is_write },
6902    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6903       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6904       .access = PL1_W, .type = ARM_CP_NO_RAW,
6905       .writefn = tlbi_aa64_rvae1is_write },
6906     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6907       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6908       .access = PL1_W, .type = ARM_CP_NO_RAW,
6909       .writefn = tlbi_aa64_rvae1is_write },
6910     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6911       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6912       .access = PL1_W, .type = ARM_CP_NO_RAW,
6913       .writefn = tlbi_aa64_rvae1_write },
6914     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6915       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6916       .access = PL1_W, .type = ARM_CP_NO_RAW,
6917       .writefn = tlbi_aa64_rvae1_write },
6918    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6919       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6920       .access = PL1_W, .type = ARM_CP_NO_RAW,
6921       .writefn = tlbi_aa64_rvae1_write },
6922     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6923       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6924       .access = PL1_W, .type = ARM_CP_NO_RAW,
6925       .writefn = tlbi_aa64_rvae1_write },
6926     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6927       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6928       .access = PL2_W, .type = ARM_CP_NOP },
6929     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6930       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6931       .access = PL2_W, .type = ARM_CP_NOP },
6932     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6933       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6934       .access = PL2_W, .type = ARM_CP_NO_RAW,
6935       .writefn = tlbi_aa64_rvae2is_write },
6936    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6937       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6938       .access = PL2_W, .type = ARM_CP_NO_RAW,
6939       .writefn = tlbi_aa64_rvae2is_write },
6940     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6941       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6942       .access = PL2_W, .type = ARM_CP_NOP },
6943    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6944       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6945       .access = PL2_W, .type = ARM_CP_NOP },
6946    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6947       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6948       .access = PL2_W, .type = ARM_CP_NO_RAW,
6949       .writefn = tlbi_aa64_rvae2is_write },
6950    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6951       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6952       .access = PL2_W, .type = ARM_CP_NO_RAW,
6953       .writefn = tlbi_aa64_rvae2is_write },
6954     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6955       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6956       .access = PL2_W, .type = ARM_CP_NO_RAW,
6957       .writefn = tlbi_aa64_rvae2_write },
6958    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6959       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6960       .access = PL2_W, .type = ARM_CP_NO_RAW,
6961       .writefn = tlbi_aa64_rvae2_write },
6962    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6963       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6964       .access = PL3_W, .type = ARM_CP_NO_RAW,
6965       .writefn = tlbi_aa64_rvae3is_write },
6966    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6967       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6968       .access = PL3_W, .type = ARM_CP_NO_RAW,
6969       .writefn = tlbi_aa64_rvae3is_write },
6970    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6971       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6972       .access = PL3_W, .type = ARM_CP_NO_RAW,
6973       .writefn = tlbi_aa64_rvae3is_write },
6974    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6975       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6976       .access = PL3_W, .type = ARM_CP_NO_RAW,
6977       .writefn = tlbi_aa64_rvae3is_write },
6978    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6979       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6980       .access = PL3_W, .type = ARM_CP_NO_RAW,
6981       .writefn = tlbi_aa64_rvae3_write },
6982    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6983       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6984       .access = PL3_W, .type = ARM_CP_NO_RAW,
6985       .writefn = tlbi_aa64_rvae3_write },
6986     REGINFO_SENTINEL
6987 };
6988 
6989 static const ARMCPRegInfo tlbios_reginfo[] = {
6990     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6991       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6992       .access = PL1_W, .type = ARM_CP_NO_RAW,
6993       .writefn = tlbi_aa64_vmalle1is_write },
6994     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6995       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6996       .access = PL1_W, .type = ARM_CP_NO_RAW,
6997       .writefn = tlbi_aa64_vae1is_write },
6998     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6999       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7000       .access = PL1_W, .type = ARM_CP_NO_RAW,
7001       .writefn = tlbi_aa64_vmalle1is_write },
7002     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7003       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7004       .access = PL1_W, .type = ARM_CP_NO_RAW,
7005       .writefn = tlbi_aa64_vae1is_write },
7006     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7007       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7008       .access = PL1_W, .type = ARM_CP_NO_RAW,
7009       .writefn = tlbi_aa64_vae1is_write },
7010     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7011       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7012       .access = PL1_W, .type = ARM_CP_NO_RAW,
7013       .writefn = tlbi_aa64_vae1is_write },
7014     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7015       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7016       .access = PL2_W, .type = ARM_CP_NO_RAW,
7017       .writefn = tlbi_aa64_alle2is_write },
7018     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7019       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7020       .access = PL2_W, .type = ARM_CP_NO_RAW,
7021       .writefn = tlbi_aa64_vae2is_write },
7022    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7023       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7024       .access = PL2_W, .type = ARM_CP_NO_RAW,
7025       .writefn = tlbi_aa64_alle1is_write },
7026     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7027       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7028       .access = PL2_W, .type = ARM_CP_NO_RAW,
7029       .writefn = tlbi_aa64_vae2is_write },
7030     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7031       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7032       .access = PL2_W, .type = ARM_CP_NO_RAW,
7033       .writefn = tlbi_aa64_alle1is_write },
7034     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7035       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7036       .access = PL2_W, .type = ARM_CP_NOP },
7037     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7038       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7039       .access = PL2_W, .type = ARM_CP_NOP },
7040     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7041       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7042       .access = PL2_W, .type = ARM_CP_NOP },
7043     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7044       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7045       .access = PL2_W, .type = ARM_CP_NOP },
7046     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7047       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7048       .access = PL3_W, .type = ARM_CP_NO_RAW,
7049       .writefn = tlbi_aa64_alle3is_write },
7050     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7051       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7052       .access = PL3_W, .type = ARM_CP_NO_RAW,
7053       .writefn = tlbi_aa64_vae3is_write },
7054     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7055       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7056       .access = PL3_W, .type = ARM_CP_NO_RAW,
7057       .writefn = tlbi_aa64_vae3is_write },
7058     REGINFO_SENTINEL
7059 };
7060 
7061 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7062 {
7063     Error *err = NULL;
7064     uint64_t ret;
7065 
7066     /* Success sets NZCV = 0000.  */
7067     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7068 
7069     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7070         /*
7071          * ??? Failed, for unknown reasons in the crypto subsystem.
7072          * The best we can do is log the reason and return the
7073          * timed-out indication to the guest.  There is no reason
7074          * we know to expect this failure to be transitory, so the
7075          * guest may well hang retrying the operation.
7076          */
7077         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7078                       ri->name, error_get_pretty(err));
7079         error_free(err);
7080 
7081         env->ZF = 0; /* NZCF = 0100 */
7082         return 0;
7083     }
7084     return ret;
7085 }
7086 
7087 /* We do not support re-seeding, so the two registers operate the same.  */
7088 static const ARMCPRegInfo rndr_reginfo[] = {
7089     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7090       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7091       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7092       .access = PL0_R, .readfn = rndr_readfn },
7093     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7094       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7095       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7096       .access = PL0_R, .readfn = rndr_readfn },
7097     REGINFO_SENTINEL
7098 };
7099 
7100 #ifndef CONFIG_USER_ONLY
7101 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7102                           uint64_t value)
7103 {
7104     ARMCPU *cpu = env_archcpu(env);
7105     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7106     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7107     uint64_t vaddr_in = (uint64_t) value;
7108     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7109     void *haddr;
7110     int mem_idx = cpu_mmu_index(env, false);
7111 
7112     /* This won't be crossing page boundaries */
7113     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7114     if (haddr) {
7115 
7116         ram_addr_t offset;
7117         MemoryRegion *mr;
7118 
7119         /* RCU lock is already being held */
7120         mr = memory_region_from_host(haddr, &offset);
7121 
7122         if (mr) {
7123             memory_region_writeback(mr, offset, dline_size);
7124         }
7125     }
7126 }
7127 
7128 static const ARMCPRegInfo dcpop_reg[] = {
7129     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7130       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7131       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7132       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7133     REGINFO_SENTINEL
7134 };
7135 
7136 static const ARMCPRegInfo dcpodp_reg[] = {
7137     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7138       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7139       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7140       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7141     REGINFO_SENTINEL
7142 };
7143 #endif /*CONFIG_USER_ONLY*/
7144 
7145 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7146                                        bool isread)
7147 {
7148     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7149         return CP_ACCESS_TRAP_EL2;
7150     }
7151 
7152     return CP_ACCESS_OK;
7153 }
7154 
7155 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7156                                  bool isread)
7157 {
7158     int el = arm_current_el(env);
7159 
7160     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7161         uint64_t hcr = arm_hcr_el2_eff(env);
7162         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7163             return CP_ACCESS_TRAP_EL2;
7164         }
7165     }
7166     if (el < 3 &&
7167         arm_feature(env, ARM_FEATURE_EL3) &&
7168         !(env->cp15.scr_el3 & SCR_ATA)) {
7169         return CP_ACCESS_TRAP_EL3;
7170     }
7171     return CP_ACCESS_OK;
7172 }
7173 
7174 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7175 {
7176     return env->pstate & PSTATE_TCO;
7177 }
7178 
7179 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7180 {
7181     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7182 }
7183 
7184 static const ARMCPRegInfo mte_reginfo[] = {
7185     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7186       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7187       .access = PL1_RW, .accessfn = access_mte,
7188       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7189     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7190       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7191       .access = PL1_RW, .accessfn = access_mte,
7192       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7193     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7194       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7195       .access = PL2_RW, .accessfn = access_mte,
7196       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7197     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7198       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7199       .access = PL3_RW,
7200       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7201     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7202       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7203       .access = PL1_RW, .accessfn = access_mte,
7204       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7205     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7206       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7207       .access = PL1_RW, .accessfn = access_mte,
7208       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7209     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7210       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7211       .access = PL1_R, .accessfn = access_aa64_tid5,
7212       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7213     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7214       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7215       .type = ARM_CP_NO_RAW,
7216       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7217     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7218       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7219       .type = ARM_CP_NOP, .access = PL1_W,
7220       .accessfn = aa64_cacheop_poc_access },
7221     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7222       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7223       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7224     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7225       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7226       .type = ARM_CP_NOP, .access = PL1_W,
7227       .accessfn = aa64_cacheop_poc_access },
7228     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7229       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7230       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7231     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7233       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7234     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7235       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7236       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7237     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7238       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7239       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7240     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7241       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7242       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7243     REGINFO_SENTINEL
7244 };
7245 
7246 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7247     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7249       .type = ARM_CP_CONST, .access = PL0_RW, },
7250     REGINFO_SENTINEL
7251 };
7252 
7253 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7254     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7255       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7256       .type = ARM_CP_NOP, .access = PL0_W,
7257       .accessfn = aa64_cacheop_poc_access },
7258     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7259       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7260       .type = ARM_CP_NOP, .access = PL0_W,
7261       .accessfn = aa64_cacheop_poc_access },
7262     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7263       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7264       .type = ARM_CP_NOP, .access = PL0_W,
7265       .accessfn = aa64_cacheop_poc_access },
7266     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7267       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7268       .type = ARM_CP_NOP, .access = PL0_W,
7269       .accessfn = aa64_cacheop_poc_access },
7270     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7271       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7272       .type = ARM_CP_NOP, .access = PL0_W,
7273       .accessfn = aa64_cacheop_poc_access },
7274     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7275       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7276       .type = ARM_CP_NOP, .access = PL0_W,
7277       .accessfn = aa64_cacheop_poc_access },
7278     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7279       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7280       .type = ARM_CP_NOP, .access = PL0_W,
7281       .accessfn = aa64_cacheop_poc_access },
7282     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7283       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7284       .type = ARM_CP_NOP, .access = PL0_W,
7285       .accessfn = aa64_cacheop_poc_access },
7286     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7287       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7288       .access = PL0_W, .type = ARM_CP_DC_GVA,
7289 #ifndef CONFIG_USER_ONLY
7290       /* Avoid overhead of an access check that always passes in user-mode */
7291       .accessfn = aa64_zva_access,
7292 #endif
7293     },
7294     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7295       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7296       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7297 #ifndef CONFIG_USER_ONLY
7298       /* Avoid overhead of an access check that always passes in user-mode */
7299       .accessfn = aa64_zva_access,
7300 #endif
7301     },
7302     REGINFO_SENTINEL
7303 };
7304 
7305 #endif
7306 
7307 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7308                                      bool isread)
7309 {
7310     int el = arm_current_el(env);
7311 
7312     if (el == 0) {
7313         uint64_t sctlr = arm_sctlr(env, el);
7314         if (!(sctlr & SCTLR_EnRCTX)) {
7315             return CP_ACCESS_TRAP;
7316         }
7317     } else if (el == 1) {
7318         uint64_t hcr = arm_hcr_el2_eff(env);
7319         if (hcr & HCR_NV) {
7320             return CP_ACCESS_TRAP_EL2;
7321         }
7322     }
7323     return CP_ACCESS_OK;
7324 }
7325 
7326 static const ARMCPRegInfo predinv_reginfo[] = {
7327     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7328       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7329       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7330     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7331       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7332       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7333     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7334       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7335       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7336     /*
7337      * Note the AArch32 opcodes have a different OPC1.
7338      */
7339     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7340       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7341       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7342     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7343       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7344       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7345     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7346       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7347       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7348     REGINFO_SENTINEL
7349 };
7350 
7351 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7352 {
7353     /* Read the high 32 bits of the current CCSIDR */
7354     return extract64(ccsidr_read(env, ri), 32, 32);
7355 }
7356 
7357 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7358     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7359       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7360       .access = PL1_R,
7361       .accessfn = access_aa64_tid2,
7362       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7363     REGINFO_SENTINEL
7364 };
7365 
7366 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7367                                        bool isread)
7368 {
7369     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7370         return CP_ACCESS_TRAP_EL2;
7371     }
7372 
7373     return CP_ACCESS_OK;
7374 }
7375 
7376 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7377                                        bool isread)
7378 {
7379     if (arm_feature(env, ARM_FEATURE_V8)) {
7380         return access_aa64_tid3(env, ri, isread);
7381     }
7382 
7383     return CP_ACCESS_OK;
7384 }
7385 
7386 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7387                                      bool isread)
7388 {
7389     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7390         return CP_ACCESS_TRAP_EL2;
7391     }
7392 
7393     return CP_ACCESS_OK;
7394 }
7395 
7396 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7397                                         const ARMCPRegInfo *ri, bool isread)
7398 {
7399     /*
7400      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7401      * in v7A, not in v8A.
7402      */
7403     if (!arm_feature(env, ARM_FEATURE_V8) &&
7404         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7405         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7406         return CP_ACCESS_TRAP_EL2;
7407     }
7408     return CP_ACCESS_OK;
7409 }
7410 
7411 static const ARMCPRegInfo jazelle_regs[] = {
7412     { .name = "JIDR",
7413       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7414       .access = PL1_R, .accessfn = access_jazelle,
7415       .type = ARM_CP_CONST, .resetvalue = 0 },
7416     { .name = "JOSCR",
7417       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7418       .accessfn = access_joscr_jmcr,
7419       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7420     { .name = "JMCR",
7421       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7422       .accessfn = access_joscr_jmcr,
7423       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7424     REGINFO_SENTINEL
7425 };
7426 
7427 static const ARMCPRegInfo vhe_reginfo[] = {
7428     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7429       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7430       .access = PL2_RW,
7431       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7432     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7434       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7435       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7436 #ifndef CONFIG_USER_ONLY
7437     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7439       .fieldoffset =
7440         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7441       .type = ARM_CP_IO, .access = PL2_RW,
7442       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7443     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7444       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7445       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7446       .resetfn = gt_hv_timer_reset,
7447       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7448     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7449       .type = ARM_CP_IO,
7450       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7451       .access = PL2_RW,
7452       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7453       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7454     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7455       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7456       .type = ARM_CP_IO | ARM_CP_ALIAS,
7457       .access = PL2_RW, .accessfn = e2h_access,
7458       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7459       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7460     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7461       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7462       .type = ARM_CP_IO | ARM_CP_ALIAS,
7463       .access = PL2_RW, .accessfn = e2h_access,
7464       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7465       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7466     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7467       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7468       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7469       .access = PL2_RW, .accessfn = e2h_access,
7470       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7471     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7472       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7473       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7474       .access = PL2_RW, .accessfn = e2h_access,
7475       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7476     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7477       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7478       .type = ARM_CP_IO | ARM_CP_ALIAS,
7479       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7480       .access = PL2_RW, .accessfn = e2h_access,
7481       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7482     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7483       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7484       .type = ARM_CP_IO | ARM_CP_ALIAS,
7485       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7486       .access = PL2_RW, .accessfn = e2h_access,
7487       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7488 #endif
7489     REGINFO_SENTINEL
7490 };
7491 
7492 #ifndef CONFIG_USER_ONLY
7493 static const ARMCPRegInfo ats1e1_reginfo[] = {
7494     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7495       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7496       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7497       .writefn = ats_write64 },
7498     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7499       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7500       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7501       .writefn = ats_write64 },
7502     REGINFO_SENTINEL
7503 };
7504 
7505 static const ARMCPRegInfo ats1cp_reginfo[] = {
7506     { .name = "ATS1CPRP",
7507       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7508       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7509       .writefn = ats_write },
7510     { .name = "ATS1CPWP",
7511       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7512       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7513       .writefn = ats_write },
7514     REGINFO_SENTINEL
7515 };
7516 #endif
7517 
7518 /*
7519  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7520  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7521  * is non-zero, which is never for ARMv7, optionally in ARMv8
7522  * and mandatorily for ARMv8.2 and up.
7523  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7524  * implementation is RAZ/WI we can ignore this detail, as we
7525  * do for ACTLR.
7526  */
7527 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7528     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7529       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7530       .access = PL1_RW, .accessfn = access_tacr,
7531       .type = ARM_CP_CONST, .resetvalue = 0 },
7532     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7533       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7534       .access = PL2_RW, .type = ARM_CP_CONST,
7535       .resetvalue = 0 },
7536     REGINFO_SENTINEL
7537 };
7538 
7539 void register_cp_regs_for_features(ARMCPU *cpu)
7540 {
7541     /* Register all the coprocessor registers based on feature bits */
7542     CPUARMState *env = &cpu->env;
7543     if (arm_feature(env, ARM_FEATURE_M)) {
7544         /* M profile has no coprocessor registers */
7545         return;
7546     }
7547 
7548     define_arm_cp_regs(cpu, cp_reginfo);
7549     if (!arm_feature(env, ARM_FEATURE_V8)) {
7550         /* Must go early as it is full of wildcards that may be
7551          * overridden by later definitions.
7552          */
7553         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7554     }
7555 
7556     if (arm_feature(env, ARM_FEATURE_V6)) {
7557         /* The ID registers all have impdef reset values */
7558         ARMCPRegInfo v6_idregs[] = {
7559             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7561               .access = PL1_R, .type = ARM_CP_CONST,
7562               .accessfn = access_aa32_tid3,
7563               .resetvalue = cpu->isar.id_pfr0 },
7564             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7565              * the value of the GIC field until after we define these regs.
7566              */
7567             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7568               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7569               .access = PL1_R, .type = ARM_CP_NO_RAW,
7570               .accessfn = access_aa32_tid3,
7571               .readfn = id_pfr1_read,
7572               .writefn = arm_cp_write_ignore },
7573             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7574               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7575               .access = PL1_R, .type = ARM_CP_CONST,
7576               .accessfn = access_aa32_tid3,
7577               .resetvalue = cpu->isar.id_dfr0 },
7578             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7579               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7580               .access = PL1_R, .type = ARM_CP_CONST,
7581               .accessfn = access_aa32_tid3,
7582               .resetvalue = cpu->id_afr0 },
7583             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7584               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7585               .access = PL1_R, .type = ARM_CP_CONST,
7586               .accessfn = access_aa32_tid3,
7587               .resetvalue = cpu->isar.id_mmfr0 },
7588             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7589               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7590               .access = PL1_R, .type = ARM_CP_CONST,
7591               .accessfn = access_aa32_tid3,
7592               .resetvalue = cpu->isar.id_mmfr1 },
7593             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7594               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7595               .access = PL1_R, .type = ARM_CP_CONST,
7596               .accessfn = access_aa32_tid3,
7597               .resetvalue = cpu->isar.id_mmfr2 },
7598             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7599               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7600               .access = PL1_R, .type = ARM_CP_CONST,
7601               .accessfn = access_aa32_tid3,
7602               .resetvalue = cpu->isar.id_mmfr3 },
7603             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7604               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7605               .access = PL1_R, .type = ARM_CP_CONST,
7606               .accessfn = access_aa32_tid3,
7607               .resetvalue = cpu->isar.id_isar0 },
7608             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7609               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7610               .access = PL1_R, .type = ARM_CP_CONST,
7611               .accessfn = access_aa32_tid3,
7612               .resetvalue = cpu->isar.id_isar1 },
7613             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7614               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7615               .access = PL1_R, .type = ARM_CP_CONST,
7616               .accessfn = access_aa32_tid3,
7617               .resetvalue = cpu->isar.id_isar2 },
7618             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7619               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7620               .access = PL1_R, .type = ARM_CP_CONST,
7621               .accessfn = access_aa32_tid3,
7622               .resetvalue = cpu->isar.id_isar3 },
7623             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7624               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7625               .access = PL1_R, .type = ARM_CP_CONST,
7626               .accessfn = access_aa32_tid3,
7627               .resetvalue = cpu->isar.id_isar4 },
7628             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7629               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7630               .access = PL1_R, .type = ARM_CP_CONST,
7631               .accessfn = access_aa32_tid3,
7632               .resetvalue = cpu->isar.id_isar5 },
7633             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7634               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7635               .access = PL1_R, .type = ARM_CP_CONST,
7636               .accessfn = access_aa32_tid3,
7637               .resetvalue = cpu->isar.id_mmfr4 },
7638             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7639               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7640               .access = PL1_R, .type = ARM_CP_CONST,
7641               .accessfn = access_aa32_tid3,
7642               .resetvalue = cpu->isar.id_isar6 },
7643             REGINFO_SENTINEL
7644         };
7645         define_arm_cp_regs(cpu, v6_idregs);
7646         define_arm_cp_regs(cpu, v6_cp_reginfo);
7647     } else {
7648         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7649     }
7650     if (arm_feature(env, ARM_FEATURE_V6K)) {
7651         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7652     }
7653     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7654         !arm_feature(env, ARM_FEATURE_PMSA)) {
7655         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7656     }
7657     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7658         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7659     }
7660     if (arm_feature(env, ARM_FEATURE_V7)) {
7661         ARMCPRegInfo clidr = {
7662             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7663             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7664             .access = PL1_R, .type = ARM_CP_CONST,
7665             .accessfn = access_aa64_tid2,
7666             .resetvalue = cpu->clidr
7667         };
7668         define_one_arm_cp_reg(cpu, &clidr);
7669         define_arm_cp_regs(cpu, v7_cp_reginfo);
7670         define_debug_regs(cpu);
7671         define_pmu_regs(cpu);
7672     } else {
7673         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7674     }
7675     if (arm_feature(env, ARM_FEATURE_V8)) {
7676         /* AArch64 ID registers, which all have impdef reset values.
7677          * Note that within the ID register ranges the unused slots
7678          * must all RAZ, not UNDEF; future architecture versions may
7679          * define new registers here.
7680          */
7681         ARMCPRegInfo v8_idregs[] = {
7682             /*
7683              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7684              * emulation because we don't know the right value for the
7685              * GIC field until after we define these regs.
7686              */
7687             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7688               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7689               .access = PL1_R,
7690 #ifdef CONFIG_USER_ONLY
7691               .type = ARM_CP_CONST,
7692               .resetvalue = cpu->isar.id_aa64pfr0
7693 #else
7694               .type = ARM_CP_NO_RAW,
7695               .accessfn = access_aa64_tid3,
7696               .readfn = id_aa64pfr0_read,
7697               .writefn = arm_cp_write_ignore
7698 #endif
7699             },
7700             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7701               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7702               .access = PL1_R, .type = ARM_CP_CONST,
7703               .accessfn = access_aa64_tid3,
7704               .resetvalue = cpu->isar.id_aa64pfr1},
7705             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7706               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7707               .access = PL1_R, .type = ARM_CP_CONST,
7708               .accessfn = access_aa64_tid3,
7709               .resetvalue = 0 },
7710             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7711               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7712               .access = PL1_R, .type = ARM_CP_CONST,
7713               .accessfn = access_aa64_tid3,
7714               .resetvalue = 0 },
7715             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7716               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7717               .access = PL1_R, .type = ARM_CP_CONST,
7718               .accessfn = access_aa64_tid3,
7719               .resetvalue = cpu->isar.id_aa64zfr0 },
7720             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7721               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7722               .access = PL1_R, .type = ARM_CP_CONST,
7723               .accessfn = access_aa64_tid3,
7724               .resetvalue = 0 },
7725             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7726               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7727               .access = PL1_R, .type = ARM_CP_CONST,
7728               .accessfn = access_aa64_tid3,
7729               .resetvalue = 0 },
7730             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7732               .access = PL1_R, .type = ARM_CP_CONST,
7733               .accessfn = access_aa64_tid3,
7734               .resetvalue = 0 },
7735             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7736               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7737               .access = PL1_R, .type = ARM_CP_CONST,
7738               .accessfn = access_aa64_tid3,
7739               .resetvalue = cpu->isar.id_aa64dfr0 },
7740             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7741               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7742               .access = PL1_R, .type = ARM_CP_CONST,
7743               .accessfn = access_aa64_tid3,
7744               .resetvalue = cpu->isar.id_aa64dfr1 },
7745             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7746               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7747               .access = PL1_R, .type = ARM_CP_CONST,
7748               .accessfn = access_aa64_tid3,
7749               .resetvalue = 0 },
7750             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7751               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7752               .access = PL1_R, .type = ARM_CP_CONST,
7753               .accessfn = access_aa64_tid3,
7754               .resetvalue = 0 },
7755             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7756               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7757               .access = PL1_R, .type = ARM_CP_CONST,
7758               .accessfn = access_aa64_tid3,
7759               .resetvalue = cpu->id_aa64afr0 },
7760             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7761               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7762               .access = PL1_R, .type = ARM_CP_CONST,
7763               .accessfn = access_aa64_tid3,
7764               .resetvalue = cpu->id_aa64afr1 },
7765             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7767               .access = PL1_R, .type = ARM_CP_CONST,
7768               .accessfn = access_aa64_tid3,
7769               .resetvalue = 0 },
7770             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7772               .access = PL1_R, .type = ARM_CP_CONST,
7773               .accessfn = access_aa64_tid3,
7774               .resetvalue = 0 },
7775             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7777               .access = PL1_R, .type = ARM_CP_CONST,
7778               .accessfn = access_aa64_tid3,
7779               .resetvalue = cpu->isar.id_aa64isar0 },
7780             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7781               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7782               .access = PL1_R, .type = ARM_CP_CONST,
7783               .accessfn = access_aa64_tid3,
7784               .resetvalue = cpu->isar.id_aa64isar1 },
7785             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7786               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7787               .access = PL1_R, .type = ARM_CP_CONST,
7788               .accessfn = access_aa64_tid3,
7789               .resetvalue = 0 },
7790             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7792               .access = PL1_R, .type = ARM_CP_CONST,
7793               .accessfn = access_aa64_tid3,
7794               .resetvalue = 0 },
7795             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7797               .access = PL1_R, .type = ARM_CP_CONST,
7798               .accessfn = access_aa64_tid3,
7799               .resetvalue = 0 },
7800             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7801               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7802               .access = PL1_R, .type = ARM_CP_CONST,
7803               .accessfn = access_aa64_tid3,
7804               .resetvalue = 0 },
7805             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7807               .access = PL1_R, .type = ARM_CP_CONST,
7808               .accessfn = access_aa64_tid3,
7809               .resetvalue = 0 },
7810             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7812               .access = PL1_R, .type = ARM_CP_CONST,
7813               .accessfn = access_aa64_tid3,
7814               .resetvalue = 0 },
7815             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7817               .access = PL1_R, .type = ARM_CP_CONST,
7818               .accessfn = access_aa64_tid3,
7819               .resetvalue = cpu->isar.id_aa64mmfr0 },
7820             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7821               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7822               .access = PL1_R, .type = ARM_CP_CONST,
7823               .accessfn = access_aa64_tid3,
7824               .resetvalue = cpu->isar.id_aa64mmfr1 },
7825             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7827               .access = PL1_R, .type = ARM_CP_CONST,
7828               .accessfn = access_aa64_tid3,
7829               .resetvalue = cpu->isar.id_aa64mmfr2 },
7830             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7831               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7832               .access = PL1_R, .type = ARM_CP_CONST,
7833               .accessfn = access_aa64_tid3,
7834               .resetvalue = 0 },
7835             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7837               .access = PL1_R, .type = ARM_CP_CONST,
7838               .accessfn = access_aa64_tid3,
7839               .resetvalue = 0 },
7840             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7841               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7842               .access = PL1_R, .type = ARM_CP_CONST,
7843               .accessfn = access_aa64_tid3,
7844               .resetvalue = 0 },
7845             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7846               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7847               .access = PL1_R, .type = ARM_CP_CONST,
7848               .accessfn = access_aa64_tid3,
7849               .resetvalue = 0 },
7850             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7851               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7852               .access = PL1_R, .type = ARM_CP_CONST,
7853               .accessfn = access_aa64_tid3,
7854               .resetvalue = 0 },
7855             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7856               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7857               .access = PL1_R, .type = ARM_CP_CONST,
7858               .accessfn = access_aa64_tid3,
7859               .resetvalue = cpu->isar.mvfr0 },
7860             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7861               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7862               .access = PL1_R, .type = ARM_CP_CONST,
7863               .accessfn = access_aa64_tid3,
7864               .resetvalue = cpu->isar.mvfr1 },
7865             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7866               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7867               .access = PL1_R, .type = ARM_CP_CONST,
7868               .accessfn = access_aa64_tid3,
7869               .resetvalue = cpu->isar.mvfr2 },
7870             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7871               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7872               .access = PL1_R, .type = ARM_CP_CONST,
7873               .accessfn = access_aa64_tid3,
7874               .resetvalue = 0 },
7875             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7876               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7877               .access = PL1_R, .type = ARM_CP_CONST,
7878               .accessfn = access_aa64_tid3,
7879               .resetvalue = cpu->isar.id_pfr2 },
7880             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7881               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7882               .access = PL1_R, .type = ARM_CP_CONST,
7883               .accessfn = access_aa64_tid3,
7884               .resetvalue = 0 },
7885             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7886               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7887               .access = PL1_R, .type = ARM_CP_CONST,
7888               .accessfn = access_aa64_tid3,
7889               .resetvalue = 0 },
7890             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7891               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7892               .access = PL1_R, .type = ARM_CP_CONST,
7893               .accessfn = access_aa64_tid3,
7894               .resetvalue = 0 },
7895             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7896               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7897               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7898               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7899             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7900               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7901               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7902               .resetvalue = cpu->pmceid0 },
7903             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7904               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7905               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7906               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7907             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7908               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7909               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7910               .resetvalue = cpu->pmceid1 },
7911             REGINFO_SENTINEL
7912         };
7913 #ifdef CONFIG_USER_ONLY
7914         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7915             { .name = "ID_AA64PFR0_EL1",
7916               .exported_bits = 0x000f000f00ff0000,
7917               .fixed_bits    = 0x0000000000000011 },
7918             { .name = "ID_AA64PFR1_EL1",
7919               .exported_bits = 0x00000000000000f0 },
7920             { .name = "ID_AA64PFR*_EL1_RESERVED",
7921               .is_glob = true                     },
7922             { .name = "ID_AA64ZFR0_EL1"           },
7923             { .name = "ID_AA64MMFR0_EL1",
7924               .fixed_bits    = 0x00000000ff000000 },
7925             { .name = "ID_AA64MMFR1_EL1"          },
7926             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7927               .is_glob = true                     },
7928             { .name = "ID_AA64DFR0_EL1",
7929               .fixed_bits    = 0x0000000000000006 },
7930             { .name = "ID_AA64DFR1_EL1"           },
7931             { .name = "ID_AA64DFR*_EL1_RESERVED",
7932               .is_glob = true                     },
7933             { .name = "ID_AA64AFR*",
7934               .is_glob = true                     },
7935             { .name = "ID_AA64ISAR0_EL1",
7936               .exported_bits = 0x00fffffff0fffff0 },
7937             { .name = "ID_AA64ISAR1_EL1",
7938               .exported_bits = 0x000000f0ffffffff },
7939             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7940               .is_glob = true                     },
7941             REGUSERINFO_SENTINEL
7942         };
7943         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7944 #endif
7945         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7946         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7947             !arm_feature(env, ARM_FEATURE_EL2)) {
7948             ARMCPRegInfo rvbar = {
7949                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7950                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7951                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7952             };
7953             define_one_arm_cp_reg(cpu, &rvbar);
7954         }
7955         define_arm_cp_regs(cpu, v8_idregs);
7956         define_arm_cp_regs(cpu, v8_cp_reginfo);
7957     }
7958     if (arm_feature(env, ARM_FEATURE_EL2)) {
7959         uint64_t vmpidr_def = mpidr_read_val(env);
7960         ARMCPRegInfo vpidr_regs[] = {
7961             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7962               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7963               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7964               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7965               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7966             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7967               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7968               .access = PL2_RW, .resetvalue = cpu->midr,
7969               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7970             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7971               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7972               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7973               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7974               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7975             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7976               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7977               .access = PL2_RW,
7978               .resetvalue = vmpidr_def,
7979               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7980             REGINFO_SENTINEL
7981         };
7982         define_arm_cp_regs(cpu, vpidr_regs);
7983         define_arm_cp_regs(cpu, el2_cp_reginfo);
7984         if (arm_feature(env, ARM_FEATURE_V8)) {
7985             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7986         }
7987         if (cpu_isar_feature(aa64_sel2, cpu)) {
7988             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7989         }
7990         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7991         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7992             ARMCPRegInfo rvbar = {
7993                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7994                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7995                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7996             };
7997             define_one_arm_cp_reg(cpu, &rvbar);
7998         }
7999     } else {
8000         /* If EL2 is missing but higher ELs are enabled, we need to
8001          * register the no_el2 reginfos.
8002          */
8003         if (arm_feature(env, ARM_FEATURE_EL3)) {
8004             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
8005              * of MIDR_EL1 and MPIDR_EL1.
8006              */
8007             ARMCPRegInfo vpidr_regs[] = {
8008                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8009                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8010                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8011                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
8012                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8013                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
8014                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8015                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
8016                   .type = ARM_CP_NO_RAW,
8017                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
8018                 REGINFO_SENTINEL
8019             };
8020             define_arm_cp_regs(cpu, vpidr_regs);
8021             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
8022             if (arm_feature(env, ARM_FEATURE_V8)) {
8023                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
8024             }
8025         }
8026     }
8027     if (arm_feature(env, ARM_FEATURE_EL3)) {
8028         define_arm_cp_regs(cpu, el3_cp_reginfo);
8029         ARMCPRegInfo el3_regs[] = {
8030             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8031               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8032               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8033             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8034               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8035               .access = PL3_RW,
8036               .raw_writefn = raw_write, .writefn = sctlr_write,
8037               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8038               .resetvalue = cpu->reset_sctlr },
8039             REGINFO_SENTINEL
8040         };
8041 
8042         define_arm_cp_regs(cpu, el3_regs);
8043     }
8044     /* The behaviour of NSACR is sufficiently various that we don't
8045      * try to describe it in a single reginfo:
8046      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8047      *     reads as constant 0xc00 from NS EL1 and NS EL2
8048      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8049      *  if v7 without EL3, register doesn't exist
8050      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8051      */
8052     if (arm_feature(env, ARM_FEATURE_EL3)) {
8053         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8054             ARMCPRegInfo nsacr = {
8055                 .name = "NSACR", .type = ARM_CP_CONST,
8056                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8057                 .access = PL1_RW, .accessfn = nsacr_access,
8058                 .resetvalue = 0xc00
8059             };
8060             define_one_arm_cp_reg(cpu, &nsacr);
8061         } else {
8062             ARMCPRegInfo nsacr = {
8063                 .name = "NSACR",
8064                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8065                 .access = PL3_RW | PL1_R,
8066                 .resetvalue = 0,
8067                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8068             };
8069             define_one_arm_cp_reg(cpu, &nsacr);
8070         }
8071     } else {
8072         if (arm_feature(env, ARM_FEATURE_V8)) {
8073             ARMCPRegInfo nsacr = {
8074                 .name = "NSACR", .type = ARM_CP_CONST,
8075                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8076                 .access = PL1_R,
8077                 .resetvalue = 0xc00
8078             };
8079             define_one_arm_cp_reg(cpu, &nsacr);
8080         }
8081     }
8082 
8083     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8084         if (arm_feature(env, ARM_FEATURE_V6)) {
8085             /* PMSAv6 not implemented */
8086             assert(arm_feature(env, ARM_FEATURE_V7));
8087             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8088             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8089         } else {
8090             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8091         }
8092     } else {
8093         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8094         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8095         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8096         if (cpu_isar_feature(aa32_hpd, cpu)) {
8097             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8098         }
8099     }
8100     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8101         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8102     }
8103     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8104         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8105     }
8106     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8107         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8108     }
8109     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8110         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8111     }
8112     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8113         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8114     }
8115     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8116         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8117     }
8118     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8119         define_arm_cp_regs(cpu, omap_cp_reginfo);
8120     }
8121     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8122         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8123     }
8124     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8125         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8126     }
8127     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8128         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8129     }
8130     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8131         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8132     }
8133     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8134         define_arm_cp_regs(cpu, jazelle_regs);
8135     }
8136     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8137      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8138      * be read-only (ie write causes UNDEF exception).
8139      */
8140     {
8141         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8142             /* Pre-v8 MIDR space.
8143              * Note that the MIDR isn't a simple constant register because
8144              * of the TI925 behaviour where writes to another register can
8145              * cause the MIDR value to change.
8146              *
8147              * Unimplemented registers in the c15 0 0 0 space default to
8148              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8149              * and friends override accordingly.
8150              */
8151             { .name = "MIDR",
8152               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8153               .access = PL1_R, .resetvalue = cpu->midr,
8154               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8155               .readfn = midr_read,
8156               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8157               .type = ARM_CP_OVERRIDE },
8158             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8159             { .name = "DUMMY",
8160               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8161               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8162             { .name = "DUMMY",
8163               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8164               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8165             { .name = "DUMMY",
8166               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8167               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8168             { .name = "DUMMY",
8169               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8170               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8171             { .name = "DUMMY",
8172               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8173               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8174             REGINFO_SENTINEL
8175         };
8176         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8177             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8178               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8179               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8180               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8181               .readfn = midr_read },
8182             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8183             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8184               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8185               .access = PL1_R, .resetvalue = cpu->midr },
8186             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8187               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8188               .access = PL1_R, .resetvalue = cpu->midr },
8189             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8191               .access = PL1_R,
8192               .accessfn = access_aa64_tid1,
8193               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8194             REGINFO_SENTINEL
8195         };
8196         ARMCPRegInfo id_cp_reginfo[] = {
8197             /* These are common to v8 and pre-v8 */
8198             { .name = "CTR",
8199               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8200               .access = PL1_R, .accessfn = ctr_el0_access,
8201               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8202             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8203               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8204               .access = PL0_R, .accessfn = ctr_el0_access,
8205               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8206             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8207             { .name = "TCMTR",
8208               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8209               .access = PL1_R,
8210               .accessfn = access_aa32_tid1,
8211               .type = ARM_CP_CONST, .resetvalue = 0 },
8212             REGINFO_SENTINEL
8213         };
8214         /* TLBTR is specific to VMSA */
8215         ARMCPRegInfo id_tlbtr_reginfo = {
8216               .name = "TLBTR",
8217               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8218               .access = PL1_R,
8219               .accessfn = access_aa32_tid1,
8220               .type = ARM_CP_CONST, .resetvalue = 0,
8221         };
8222         /* MPUIR is specific to PMSA V6+ */
8223         ARMCPRegInfo id_mpuir_reginfo = {
8224               .name = "MPUIR",
8225               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8226               .access = PL1_R, .type = ARM_CP_CONST,
8227               .resetvalue = cpu->pmsav7_dregion << 8
8228         };
8229         ARMCPRegInfo crn0_wi_reginfo = {
8230             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8231             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8232             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8233         };
8234 #ifdef CONFIG_USER_ONLY
8235         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8236             { .name = "MIDR_EL1",
8237               .exported_bits = 0x00000000ffffffff },
8238             { .name = "REVIDR_EL1"                },
8239             REGUSERINFO_SENTINEL
8240         };
8241         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8242 #endif
8243         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8244             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8245             ARMCPRegInfo *r;
8246             /* Register the blanket "writes ignored" value first to cover the
8247              * whole space. Then update the specific ID registers to allow write
8248              * access, so that they ignore writes rather than causing them to
8249              * UNDEF.
8250              */
8251             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8252             for (r = id_pre_v8_midr_cp_reginfo;
8253                  r->type != ARM_CP_SENTINEL; r++) {
8254                 r->access = PL1_RW;
8255             }
8256             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8257                 r->access = PL1_RW;
8258             }
8259             id_mpuir_reginfo.access = PL1_RW;
8260             id_tlbtr_reginfo.access = PL1_RW;
8261         }
8262         if (arm_feature(env, ARM_FEATURE_V8)) {
8263             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8264         } else {
8265             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8266         }
8267         define_arm_cp_regs(cpu, id_cp_reginfo);
8268         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8269             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8270         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8271             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8272         }
8273     }
8274 
8275     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8276         ARMCPRegInfo mpidr_cp_reginfo[] = {
8277             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8278               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8279               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8280             REGINFO_SENTINEL
8281         };
8282 #ifdef CONFIG_USER_ONLY
8283         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8284             { .name = "MPIDR_EL1",
8285               .fixed_bits = 0x0000000080000000 },
8286             REGUSERINFO_SENTINEL
8287         };
8288         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8289 #endif
8290         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8291     }
8292 
8293     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8294         ARMCPRegInfo auxcr_reginfo[] = {
8295             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8296               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8297               .access = PL1_RW, .accessfn = access_tacr,
8298               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8299             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8300               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8301               .access = PL2_RW, .type = ARM_CP_CONST,
8302               .resetvalue = 0 },
8303             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8304               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8305               .access = PL3_RW, .type = ARM_CP_CONST,
8306               .resetvalue = 0 },
8307             REGINFO_SENTINEL
8308         };
8309         define_arm_cp_regs(cpu, auxcr_reginfo);
8310         if (cpu_isar_feature(aa32_ac2, cpu)) {
8311             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8312         }
8313     }
8314 
8315     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8316         /*
8317          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8318          * There are two flavours:
8319          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8320          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8321          *      32-bit register visible to AArch32 at a different encoding
8322          *      to the "flavour 1" register and with the bits rearranged to
8323          *      be able to squash a 64-bit address into the 32-bit view.
8324          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8325          * in future if we support AArch32-only configs of some of the
8326          * AArch64 cores we might need to add a specific feature flag
8327          * to indicate cores with "flavour 2" CBAR.
8328          */
8329         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8330             /* 32 bit view is [31:18] 0...0 [43:32]. */
8331             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8332                 | extract64(cpu->reset_cbar, 32, 12);
8333             ARMCPRegInfo cbar_reginfo[] = {
8334                 { .name = "CBAR",
8335                   .type = ARM_CP_CONST,
8336                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8337                   .access = PL1_R, .resetvalue = cbar32 },
8338                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8339                   .type = ARM_CP_CONST,
8340                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8341                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8342                 REGINFO_SENTINEL
8343             };
8344             /* We don't implement a r/w 64 bit CBAR currently */
8345             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8346             define_arm_cp_regs(cpu, cbar_reginfo);
8347         } else {
8348             ARMCPRegInfo cbar = {
8349                 .name = "CBAR",
8350                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8351                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8352                 .fieldoffset = offsetof(CPUARMState,
8353                                         cp15.c15_config_base_address)
8354             };
8355             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8356                 cbar.access = PL1_R;
8357                 cbar.fieldoffset = 0;
8358                 cbar.type = ARM_CP_CONST;
8359             }
8360             define_one_arm_cp_reg(cpu, &cbar);
8361         }
8362     }
8363 
8364     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8365         ARMCPRegInfo vbar_cp_reginfo[] = {
8366             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8367               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8368               .access = PL1_RW, .writefn = vbar_write,
8369               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8370                                      offsetof(CPUARMState, cp15.vbar_ns) },
8371               .resetvalue = 0 },
8372             REGINFO_SENTINEL
8373         };
8374         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8375     }
8376 
8377     /* Generic registers whose values depend on the implementation */
8378     {
8379         ARMCPRegInfo sctlr = {
8380             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8381             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8382             .access = PL1_RW, .accessfn = access_tvm_trvm,
8383             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8384                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8385             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8386             .raw_writefn = raw_write,
8387         };
8388         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8389             /* Normally we would always end the TB on an SCTLR write, but Linux
8390              * arch/arm/mach-pxa/sleep.S expects two instructions following
8391              * an MMU enable to execute from cache.  Imitate this behaviour.
8392              */
8393             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8394         }
8395         define_one_arm_cp_reg(cpu, &sctlr);
8396     }
8397 
8398     if (cpu_isar_feature(aa64_lor, cpu)) {
8399         define_arm_cp_regs(cpu, lor_reginfo);
8400     }
8401     if (cpu_isar_feature(aa64_pan, cpu)) {
8402         define_one_arm_cp_reg(cpu, &pan_reginfo);
8403     }
8404 #ifndef CONFIG_USER_ONLY
8405     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8406         define_arm_cp_regs(cpu, ats1e1_reginfo);
8407     }
8408     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8409         define_arm_cp_regs(cpu, ats1cp_reginfo);
8410     }
8411 #endif
8412     if (cpu_isar_feature(aa64_uao, cpu)) {
8413         define_one_arm_cp_reg(cpu, &uao_reginfo);
8414     }
8415 
8416     if (cpu_isar_feature(aa64_dit, cpu)) {
8417         define_one_arm_cp_reg(cpu, &dit_reginfo);
8418     }
8419     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8420         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8421     }
8422 
8423     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8424         define_arm_cp_regs(cpu, vhe_reginfo);
8425     }
8426 
8427     if (cpu_isar_feature(aa64_sve, cpu)) {
8428         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8429         if (arm_feature(env, ARM_FEATURE_EL2)) {
8430             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8431         } else {
8432             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8433         }
8434         if (arm_feature(env, ARM_FEATURE_EL3)) {
8435             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8436         }
8437     }
8438 
8439 #ifdef TARGET_AARCH64
8440     if (cpu_isar_feature(aa64_pauth, cpu)) {
8441         define_arm_cp_regs(cpu, pauth_reginfo);
8442     }
8443     if (cpu_isar_feature(aa64_rndr, cpu)) {
8444         define_arm_cp_regs(cpu, rndr_reginfo);
8445     }
8446     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8447         define_arm_cp_regs(cpu, tlbirange_reginfo);
8448     }
8449     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8450         define_arm_cp_regs(cpu, tlbios_reginfo);
8451     }
8452 #ifndef CONFIG_USER_ONLY
8453     /* Data Cache clean instructions up to PoP */
8454     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8455         define_one_arm_cp_reg(cpu, dcpop_reg);
8456 
8457         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8458             define_one_arm_cp_reg(cpu, dcpodp_reg);
8459         }
8460     }
8461 #endif /*CONFIG_USER_ONLY*/
8462 
8463     /*
8464      * If full MTE is enabled, add all of the system registers.
8465      * If only "instructions available at EL0" are enabled,
8466      * then define only a RAZ/WI version of PSTATE.TCO.
8467      */
8468     if (cpu_isar_feature(aa64_mte, cpu)) {
8469         define_arm_cp_regs(cpu, mte_reginfo);
8470         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8471     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8472         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8473         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8474     }
8475 #endif
8476 
8477     if (cpu_isar_feature(any_predinv, cpu)) {
8478         define_arm_cp_regs(cpu, predinv_reginfo);
8479     }
8480 
8481     if (cpu_isar_feature(any_ccidx, cpu)) {
8482         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8483     }
8484 
8485 #ifndef CONFIG_USER_ONLY
8486     /*
8487      * Register redirections and aliases must be done last,
8488      * after the registers from the other extensions have been defined.
8489      */
8490     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8491         define_arm_vh_e2h_redirects_aliases(cpu);
8492     }
8493 #endif
8494 }
8495 
8496 /* Sort alphabetically by type name, except for "any". */
8497 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8498 {
8499     ObjectClass *class_a = (ObjectClass *)a;
8500     ObjectClass *class_b = (ObjectClass *)b;
8501     const char *name_a, *name_b;
8502 
8503     name_a = object_class_get_name(class_a);
8504     name_b = object_class_get_name(class_b);
8505     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8506         return 1;
8507     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8508         return -1;
8509     } else {
8510         return strcmp(name_a, name_b);
8511     }
8512 }
8513 
8514 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8515 {
8516     ObjectClass *oc = data;
8517     const char *typename;
8518     char *name;
8519 
8520     typename = object_class_get_name(oc);
8521     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8522     qemu_printf("  %s\n", name);
8523     g_free(name);
8524 }
8525 
8526 void arm_cpu_list(void)
8527 {
8528     GSList *list;
8529 
8530     list = object_class_get_list(TYPE_ARM_CPU, false);
8531     list = g_slist_sort(list, arm_cpu_list_compare);
8532     qemu_printf("Available CPUs:\n");
8533     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8534     g_slist_free(list);
8535 }
8536 
8537 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8538 {
8539     ObjectClass *oc = data;
8540     CpuDefinitionInfoList **cpu_list = user_data;
8541     CpuDefinitionInfo *info;
8542     const char *typename;
8543 
8544     typename = object_class_get_name(oc);
8545     info = g_malloc0(sizeof(*info));
8546     info->name = g_strndup(typename,
8547                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8548     info->q_typename = g_strdup(typename);
8549 
8550     QAPI_LIST_PREPEND(*cpu_list, info);
8551 }
8552 
8553 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8554 {
8555     CpuDefinitionInfoList *cpu_list = NULL;
8556     GSList *list;
8557 
8558     list = object_class_get_list(TYPE_ARM_CPU, false);
8559     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8560     g_slist_free(list);
8561 
8562     return cpu_list;
8563 }
8564 
8565 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8566                                    void *opaque, int state, int secstate,
8567                                    int crm, int opc1, int opc2,
8568                                    const char *name)
8569 {
8570     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8571      * add a single reginfo struct to the hash table.
8572      */
8573     uint32_t *key = g_new(uint32_t, 1);
8574     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8575     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8576     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8577 
8578     r2->name = g_strdup(name);
8579     /* Reset the secure state to the specific incoming state.  This is
8580      * necessary as the register may have been defined with both states.
8581      */
8582     r2->secure = secstate;
8583 
8584     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8585         /* Register is banked (using both entries in array).
8586          * Overwriting fieldoffset as the array is only used to define
8587          * banked registers but later only fieldoffset is used.
8588          */
8589         r2->fieldoffset = r->bank_fieldoffsets[ns];
8590     }
8591 
8592     if (state == ARM_CP_STATE_AA32) {
8593         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8594             /* If the register is banked then we don't need to migrate or
8595              * reset the 32-bit instance in certain cases:
8596              *
8597              * 1) If the register has both 32-bit and 64-bit instances then we
8598              *    can count on the 64-bit instance taking care of the
8599              *    non-secure bank.
8600              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8601              *    taking care of the secure bank.  This requires that separate
8602              *    32 and 64-bit definitions are provided.
8603              */
8604             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8605                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8606                 r2->type |= ARM_CP_ALIAS;
8607             }
8608         } else if ((secstate != r->secure) && !ns) {
8609             /* The register is not banked so we only want to allow migration of
8610              * the non-secure instance.
8611              */
8612             r2->type |= ARM_CP_ALIAS;
8613         }
8614 
8615         if (r->state == ARM_CP_STATE_BOTH) {
8616             /* We assume it is a cp15 register if the .cp field is left unset.
8617              */
8618             if (r2->cp == 0) {
8619                 r2->cp = 15;
8620             }
8621 
8622 #ifdef HOST_WORDS_BIGENDIAN
8623             if (r2->fieldoffset) {
8624                 r2->fieldoffset += sizeof(uint32_t);
8625             }
8626 #endif
8627         }
8628     }
8629     if (state == ARM_CP_STATE_AA64) {
8630         /* To allow abbreviation of ARMCPRegInfo
8631          * definitions, we treat cp == 0 as equivalent to
8632          * the value for "standard guest-visible sysreg".
8633          * STATE_BOTH definitions are also always "standard
8634          * sysreg" in their AArch64 view (the .cp value may
8635          * be non-zero for the benefit of the AArch32 view).
8636          */
8637         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8638             r2->cp = CP_REG_ARM64_SYSREG_CP;
8639         }
8640         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8641                                   r2->opc0, opc1, opc2);
8642     } else {
8643         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8644     }
8645     if (opaque) {
8646         r2->opaque = opaque;
8647     }
8648     /* reginfo passed to helpers is correct for the actual access,
8649      * and is never ARM_CP_STATE_BOTH:
8650      */
8651     r2->state = state;
8652     /* Make sure reginfo passed to helpers for wildcarded regs
8653      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8654      */
8655     r2->crm = crm;
8656     r2->opc1 = opc1;
8657     r2->opc2 = opc2;
8658     /* By convention, for wildcarded registers only the first
8659      * entry is used for migration; the others are marked as
8660      * ALIAS so we don't try to transfer the register
8661      * multiple times. Special registers (ie NOP/WFI) are
8662      * never migratable and not even raw-accessible.
8663      */
8664     if ((r->type & ARM_CP_SPECIAL)) {
8665         r2->type |= ARM_CP_NO_RAW;
8666     }
8667     if (((r->crm == CP_ANY) && crm != 0) ||
8668         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8669         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8670         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8671     }
8672 
8673     /* Check that raw accesses are either forbidden or handled. Note that
8674      * we can't assert this earlier because the setup of fieldoffset for
8675      * banked registers has to be done first.
8676      */
8677     if (!(r2->type & ARM_CP_NO_RAW)) {
8678         assert(!raw_accessors_invalid(r2));
8679     }
8680 
8681     /* Overriding of an existing definition must be explicitly
8682      * requested.
8683      */
8684     if (!(r->type & ARM_CP_OVERRIDE)) {
8685         ARMCPRegInfo *oldreg;
8686         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8687         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8688             fprintf(stderr, "Register redefined: cp=%d %d bit "
8689                     "crn=%d crm=%d opc1=%d opc2=%d, "
8690                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8691                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8692                     oldreg->name, r2->name);
8693             g_assert_not_reached();
8694         }
8695     }
8696     g_hash_table_insert(cpu->cp_regs, key, r2);
8697 }
8698 
8699 
8700 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8701                                        const ARMCPRegInfo *r, void *opaque)
8702 {
8703     /* Define implementations of coprocessor registers.
8704      * We store these in a hashtable because typically
8705      * there are less than 150 registers in a space which
8706      * is 16*16*16*8*8 = 262144 in size.
8707      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8708      * If a register is defined twice then the second definition is
8709      * used, so this can be used to define some generic registers and
8710      * then override them with implementation specific variations.
8711      * At least one of the original and the second definition should
8712      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8713      * against accidental use.
8714      *
8715      * The state field defines whether the register is to be
8716      * visible in the AArch32 or AArch64 execution state. If the
8717      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8718      * reginfo structure for the AArch32 view, which sees the lower
8719      * 32 bits of the 64 bit register.
8720      *
8721      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8722      * be wildcarded. AArch64 registers are always considered to be 64
8723      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8724      * the register, if any.
8725      */
8726     int crm, opc1, opc2, state;
8727     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8728     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8729     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8730     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8731     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8732     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8733     /* 64 bit registers have only CRm and Opc1 fields */
8734     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8735     /* op0 only exists in the AArch64 encodings */
8736     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8737     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8738     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8739     /*
8740      * This API is only for Arm's system coprocessors (14 and 15) or
8741      * (M-profile or v7A-and-earlier only) for implementation defined
8742      * coprocessors in the range 0..7.  Our decode assumes this, since
8743      * 8..13 can be used for other insns including VFP and Neon. See
8744      * valid_cp() in translate.c.  Assert here that we haven't tried
8745      * to use an invalid coprocessor number.
8746      */
8747     switch (r->state) {
8748     case ARM_CP_STATE_BOTH:
8749         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8750         if (r->cp == 0) {
8751             break;
8752         }
8753         /* fall through */
8754     case ARM_CP_STATE_AA32:
8755         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8756             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8757             assert(r->cp >= 14 && r->cp <= 15);
8758         } else {
8759             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8760         }
8761         break;
8762     case ARM_CP_STATE_AA64:
8763         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8764         break;
8765     default:
8766         g_assert_not_reached();
8767     }
8768     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8769      * encodes a minimum access level for the register. We roll this
8770      * runtime check into our general permission check code, so check
8771      * here that the reginfo's specified permissions are strict enough
8772      * to encompass the generic architectural permission check.
8773      */
8774     if (r->state != ARM_CP_STATE_AA32) {
8775         int mask = 0;
8776         switch (r->opc1) {
8777         case 0:
8778             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8779             mask = PL0U_R | PL1_RW;
8780             break;
8781         case 1: case 2:
8782             /* min_EL EL1 */
8783             mask = PL1_RW;
8784             break;
8785         case 3:
8786             /* min_EL EL0 */
8787             mask = PL0_RW;
8788             break;
8789         case 4:
8790         case 5:
8791             /* min_EL EL2 */
8792             mask = PL2_RW;
8793             break;
8794         case 6:
8795             /* min_EL EL3 */
8796             mask = PL3_RW;
8797             break;
8798         case 7:
8799             /* min_EL EL1, secure mode only (we don't check the latter) */
8800             mask = PL1_RW;
8801             break;
8802         default:
8803             /* broken reginfo with out-of-range opc1 */
8804             assert(false);
8805             break;
8806         }
8807         /* assert our permissions are not too lax (stricter is fine) */
8808         assert((r->access & ~mask) == 0);
8809     }
8810 
8811     /* Check that the register definition has enough info to handle
8812      * reads and writes if they are permitted.
8813      */
8814     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8815         if (r->access & PL3_R) {
8816             assert((r->fieldoffset ||
8817                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8818                    r->readfn);
8819         }
8820         if (r->access & PL3_W) {
8821             assert((r->fieldoffset ||
8822                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8823                    r->writefn);
8824         }
8825     }
8826     /* Bad type field probably means missing sentinel at end of reg list */
8827     assert(cptype_valid(r->type));
8828     for (crm = crmmin; crm <= crmmax; crm++) {
8829         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8830             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8831                 for (state = ARM_CP_STATE_AA32;
8832                      state <= ARM_CP_STATE_AA64; state++) {
8833                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8834                         continue;
8835                     }
8836                     if (state == ARM_CP_STATE_AA32) {
8837                         /* Under AArch32 CP registers can be common
8838                          * (same for secure and non-secure world) or banked.
8839                          */
8840                         char *name;
8841 
8842                         switch (r->secure) {
8843                         case ARM_CP_SECSTATE_S:
8844                         case ARM_CP_SECSTATE_NS:
8845                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8846                                                    r->secure, crm, opc1, opc2,
8847                                                    r->name);
8848                             break;
8849                         default:
8850                             name = g_strdup_printf("%s_S", r->name);
8851                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8852                                                    ARM_CP_SECSTATE_S,
8853                                                    crm, opc1, opc2, name);
8854                             g_free(name);
8855                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8856                                                    ARM_CP_SECSTATE_NS,
8857                                                    crm, opc1, opc2, r->name);
8858                             break;
8859                         }
8860                     } else {
8861                         /* AArch64 registers get mapped to non-secure instance
8862                          * of AArch32 */
8863                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8864                                                ARM_CP_SECSTATE_NS,
8865                                                crm, opc1, opc2, r->name);
8866                     }
8867                 }
8868             }
8869         }
8870     }
8871 }
8872 
8873 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8874                                     const ARMCPRegInfo *regs, void *opaque)
8875 {
8876     /* Define a whole list of registers */
8877     const ARMCPRegInfo *r;
8878     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8879         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8880     }
8881 }
8882 
8883 /*
8884  * Modify ARMCPRegInfo for access from userspace.
8885  *
8886  * This is a data driven modification directed by
8887  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8888  * user-space cannot alter any values and dynamic values pertaining to
8889  * execution state are hidden from user space view anyway.
8890  */
8891 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8892 {
8893     const ARMCPRegUserSpaceInfo *m;
8894     ARMCPRegInfo *r;
8895 
8896     for (m = mods; m->name; m++) {
8897         GPatternSpec *pat = NULL;
8898         if (m->is_glob) {
8899             pat = g_pattern_spec_new(m->name);
8900         }
8901         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8902             if (pat && g_pattern_match_string(pat, r->name)) {
8903                 r->type = ARM_CP_CONST;
8904                 r->access = PL0U_R;
8905                 r->resetvalue = 0;
8906                 /* continue */
8907             } else if (strcmp(r->name, m->name) == 0) {
8908                 r->type = ARM_CP_CONST;
8909                 r->access = PL0U_R;
8910                 r->resetvalue &= m->exported_bits;
8911                 r->resetvalue |= m->fixed_bits;
8912                 break;
8913             }
8914         }
8915         if (pat) {
8916             g_pattern_spec_free(pat);
8917         }
8918     }
8919 }
8920 
8921 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8922 {
8923     return g_hash_table_lookup(cpregs, &encoded_cp);
8924 }
8925 
8926 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8927                          uint64_t value)
8928 {
8929     /* Helper coprocessor write function for write-ignore registers */
8930 }
8931 
8932 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8933 {
8934     /* Helper coprocessor write function for read-as-zero registers */
8935     return 0;
8936 }
8937 
8938 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8939 {
8940     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8941 }
8942 
8943 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8944 {
8945     /* Return true if it is not valid for us to switch to
8946      * this CPU mode (ie all the UNPREDICTABLE cases in
8947      * the ARM ARM CPSRWriteByInstr pseudocode).
8948      */
8949 
8950     /* Changes to or from Hyp via MSR and CPS are illegal. */
8951     if (write_type == CPSRWriteByInstr &&
8952         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8953          mode == ARM_CPU_MODE_HYP)) {
8954         return 1;
8955     }
8956 
8957     switch (mode) {
8958     case ARM_CPU_MODE_USR:
8959         return 0;
8960     case ARM_CPU_MODE_SYS:
8961     case ARM_CPU_MODE_SVC:
8962     case ARM_CPU_MODE_ABT:
8963     case ARM_CPU_MODE_UND:
8964     case ARM_CPU_MODE_IRQ:
8965     case ARM_CPU_MODE_FIQ:
8966         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8967          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8968          */
8969         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8970          * and CPS are treated as illegal mode changes.
8971          */
8972         if (write_type == CPSRWriteByInstr &&
8973             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8974             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8975             return 1;
8976         }
8977         return 0;
8978     case ARM_CPU_MODE_HYP:
8979         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8980     case ARM_CPU_MODE_MON:
8981         return arm_current_el(env) < 3;
8982     default:
8983         return 1;
8984     }
8985 }
8986 
8987 uint32_t cpsr_read(CPUARMState *env)
8988 {
8989     int ZF;
8990     ZF = (env->ZF == 0);
8991     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8992         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8993         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8994         | ((env->condexec_bits & 0xfc) << 8)
8995         | (env->GE << 16) | (env->daif & CPSR_AIF);
8996 }
8997 
8998 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8999                 CPSRWriteType write_type)
9000 {
9001     uint32_t changed_daif;
9002     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9003         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9004 
9005     if (mask & CPSR_NZCV) {
9006         env->ZF = (~val) & CPSR_Z;
9007         env->NF = val;
9008         env->CF = (val >> 29) & 1;
9009         env->VF = (val << 3) & 0x80000000;
9010     }
9011     if (mask & CPSR_Q)
9012         env->QF = ((val & CPSR_Q) != 0);
9013     if (mask & CPSR_T)
9014         env->thumb = ((val & CPSR_T) != 0);
9015     if (mask & CPSR_IT_0_1) {
9016         env->condexec_bits &= ~3;
9017         env->condexec_bits |= (val >> 25) & 3;
9018     }
9019     if (mask & CPSR_IT_2_7) {
9020         env->condexec_bits &= 3;
9021         env->condexec_bits |= (val >> 8) & 0xfc;
9022     }
9023     if (mask & CPSR_GE) {
9024         env->GE = (val >> 16) & 0xf;
9025     }
9026 
9027     /* In a V7 implementation that includes the security extensions but does
9028      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9029      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9030      * bits respectively.
9031      *
9032      * In a V8 implementation, it is permitted for privileged software to
9033      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9034      */
9035     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9036         arm_feature(env, ARM_FEATURE_EL3) &&
9037         !arm_feature(env, ARM_FEATURE_EL2) &&
9038         !arm_is_secure(env)) {
9039 
9040         changed_daif = (env->daif ^ val) & mask;
9041 
9042         if (changed_daif & CPSR_A) {
9043             /* Check to see if we are allowed to change the masking of async
9044              * abort exceptions from a non-secure state.
9045              */
9046             if (!(env->cp15.scr_el3 & SCR_AW)) {
9047                 qemu_log_mask(LOG_GUEST_ERROR,
9048                               "Ignoring attempt to switch CPSR_A flag from "
9049                               "non-secure world with SCR.AW bit clear\n");
9050                 mask &= ~CPSR_A;
9051             }
9052         }
9053 
9054         if (changed_daif & CPSR_F) {
9055             /* Check to see if we are allowed to change the masking of FIQ
9056              * exceptions from a non-secure state.
9057              */
9058             if (!(env->cp15.scr_el3 & SCR_FW)) {
9059                 qemu_log_mask(LOG_GUEST_ERROR,
9060                               "Ignoring attempt to switch CPSR_F flag from "
9061                               "non-secure world with SCR.FW bit clear\n");
9062                 mask &= ~CPSR_F;
9063             }
9064 
9065             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9066              * If this bit is set software is not allowed to mask
9067              * FIQs, but is allowed to set CPSR_F to 0.
9068              */
9069             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9070                 (val & CPSR_F)) {
9071                 qemu_log_mask(LOG_GUEST_ERROR,
9072                               "Ignoring attempt to enable CPSR_F flag "
9073                               "(non-maskable FIQ [NMFI] support enabled)\n");
9074                 mask &= ~CPSR_F;
9075             }
9076         }
9077     }
9078 
9079     env->daif &= ~(CPSR_AIF & mask);
9080     env->daif |= val & CPSR_AIF & mask;
9081 
9082     if (write_type != CPSRWriteRaw &&
9083         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9084         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9085             /* Note that we can only get here in USR mode if this is a
9086              * gdb stub write; for this case we follow the architectural
9087              * behaviour for guest writes in USR mode of ignoring an attempt
9088              * to switch mode. (Those are caught by translate.c for writes
9089              * triggered by guest instructions.)
9090              */
9091             mask &= ~CPSR_M;
9092         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9093             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9094              * v7, and has defined behaviour in v8:
9095              *  + leave CPSR.M untouched
9096              *  + allow changes to the other CPSR fields
9097              *  + set PSTATE.IL
9098              * For user changes via the GDB stub, we don't set PSTATE.IL,
9099              * as this would be unnecessarily harsh for a user error.
9100              */
9101             mask &= ~CPSR_M;
9102             if (write_type != CPSRWriteByGDBStub &&
9103                 arm_feature(env, ARM_FEATURE_V8)) {
9104                 mask |= CPSR_IL;
9105                 val |= CPSR_IL;
9106             }
9107             qemu_log_mask(LOG_GUEST_ERROR,
9108                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9109                           aarch32_mode_name(env->uncached_cpsr),
9110                           aarch32_mode_name(val));
9111         } else {
9112             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9113                           write_type == CPSRWriteExceptionReturn ?
9114                           "Exception return from AArch32" :
9115                           "AArch32 mode switch from",
9116                           aarch32_mode_name(env->uncached_cpsr),
9117                           aarch32_mode_name(val), env->regs[15]);
9118             switch_mode(env, val & CPSR_M);
9119         }
9120     }
9121     mask &= ~CACHED_CPSR_BITS;
9122     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9123     if (rebuild_hflags) {
9124         arm_rebuild_hflags(env);
9125     }
9126 }
9127 
9128 /* Sign/zero extend */
9129 uint32_t HELPER(sxtb16)(uint32_t x)
9130 {
9131     uint32_t res;
9132     res = (uint16_t)(int8_t)x;
9133     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9134     return res;
9135 }
9136 
9137 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9138 {
9139     /*
9140      * Take a division-by-zero exception if necessary; otherwise return
9141      * to get the usual non-trapping division behaviour (result of 0)
9142      */
9143     if (arm_feature(env, ARM_FEATURE_M)
9144         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9145         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9146     }
9147 }
9148 
9149 uint32_t HELPER(uxtb16)(uint32_t x)
9150 {
9151     uint32_t res;
9152     res = (uint16_t)(uint8_t)x;
9153     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9154     return res;
9155 }
9156 
9157 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9158 {
9159     if (den == 0) {
9160         handle_possible_div0_trap(env, GETPC());
9161         return 0;
9162     }
9163     if (num == INT_MIN && den == -1) {
9164         return INT_MIN;
9165     }
9166     return num / den;
9167 }
9168 
9169 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9170 {
9171     if (den == 0) {
9172         handle_possible_div0_trap(env, GETPC());
9173         return 0;
9174     }
9175     return num / den;
9176 }
9177 
9178 uint32_t HELPER(rbit)(uint32_t x)
9179 {
9180     return revbit32(x);
9181 }
9182 
9183 #ifdef CONFIG_USER_ONLY
9184 
9185 static void switch_mode(CPUARMState *env, int mode)
9186 {
9187     ARMCPU *cpu = env_archcpu(env);
9188 
9189     if (mode != ARM_CPU_MODE_USR) {
9190         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9191     }
9192 }
9193 
9194 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9195                                  uint32_t cur_el, bool secure)
9196 {
9197     return 1;
9198 }
9199 
9200 void aarch64_sync_64_to_32(CPUARMState *env)
9201 {
9202     g_assert_not_reached();
9203 }
9204 
9205 #else
9206 
9207 static void switch_mode(CPUARMState *env, int mode)
9208 {
9209     int old_mode;
9210     int i;
9211 
9212     old_mode = env->uncached_cpsr & CPSR_M;
9213     if (mode == old_mode)
9214         return;
9215 
9216     if (old_mode == ARM_CPU_MODE_FIQ) {
9217         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9218         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9219     } else if (mode == ARM_CPU_MODE_FIQ) {
9220         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9221         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9222     }
9223 
9224     i = bank_number(old_mode);
9225     env->banked_r13[i] = env->regs[13];
9226     env->banked_spsr[i] = env->spsr;
9227 
9228     i = bank_number(mode);
9229     env->regs[13] = env->banked_r13[i];
9230     env->spsr = env->banked_spsr[i];
9231 
9232     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9233     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9234 }
9235 
9236 /* Physical Interrupt Target EL Lookup Table
9237  *
9238  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9239  *
9240  * The below multi-dimensional table is used for looking up the target
9241  * exception level given numerous condition criteria.  Specifically, the
9242  * target EL is based on SCR and HCR routing controls as well as the
9243  * currently executing EL and secure state.
9244  *
9245  *    Dimensions:
9246  *    target_el_table[2][2][2][2][2][4]
9247  *                    |  |  |  |  |  +--- Current EL
9248  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9249  *                    |  |  |  +--------- HCR mask override
9250  *                    |  |  +------------ SCR exec state control
9251  *                    |  +--------------- SCR mask override
9252  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9253  *
9254  *    The table values are as such:
9255  *    0-3 = EL0-EL3
9256  *     -1 = Cannot occur
9257  *
9258  * The ARM ARM target EL table includes entries indicating that an "exception
9259  * is not taken".  The two cases where this is applicable are:
9260  *    1) An exception is taken from EL3 but the SCR does not have the exception
9261  *    routed to EL3.
9262  *    2) An exception is taken from EL2 but the HCR does not have the exception
9263  *    routed to EL2.
9264  * In these two cases, the below table contain a target of EL1.  This value is
9265  * returned as it is expected that the consumer of the table data will check
9266  * for "target EL >= current EL" to ensure the exception is not taken.
9267  *
9268  *            SCR     HCR
9269  *         64  EA     AMO                 From
9270  *        BIT IRQ     IMO      Non-secure         Secure
9271  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9272  */
9273 static const int8_t target_el_table[2][2][2][2][2][4] = {
9274     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9275        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9276       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9277        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9278      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9279        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9280       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9281        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9282     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9283        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9284       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9285        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9286      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9287        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9288       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9289        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9290 };
9291 
9292 /*
9293  * Determine the target EL for physical exceptions
9294  */
9295 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9296                                  uint32_t cur_el, bool secure)
9297 {
9298     CPUARMState *env = cs->env_ptr;
9299     bool rw;
9300     bool scr;
9301     bool hcr;
9302     int target_el;
9303     /* Is the highest EL AArch64? */
9304     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9305     uint64_t hcr_el2;
9306 
9307     if (arm_feature(env, ARM_FEATURE_EL3)) {
9308         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9309     } else {
9310         /* Either EL2 is the highest EL (and so the EL2 register width
9311          * is given by is64); or there is no EL2 or EL3, in which case
9312          * the value of 'rw' does not affect the table lookup anyway.
9313          */
9314         rw = is64;
9315     }
9316 
9317     hcr_el2 = arm_hcr_el2_eff(env);
9318     switch (excp_idx) {
9319     case EXCP_IRQ:
9320         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9321         hcr = hcr_el2 & HCR_IMO;
9322         break;
9323     case EXCP_FIQ:
9324         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9325         hcr = hcr_el2 & HCR_FMO;
9326         break;
9327     default:
9328         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9329         hcr = hcr_el2 & HCR_AMO;
9330         break;
9331     };
9332 
9333     /*
9334      * For these purposes, TGE and AMO/IMO/FMO both force the
9335      * interrupt to EL2.  Fold TGE into the bit extracted above.
9336      */
9337     hcr |= (hcr_el2 & HCR_TGE) != 0;
9338 
9339     /* Perform a table-lookup for the target EL given the current state */
9340     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9341 
9342     assert(target_el > 0);
9343 
9344     return target_el;
9345 }
9346 
9347 void arm_log_exception(CPUState *cs)
9348 {
9349     int idx = cs->exception_index;
9350 
9351     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9352         const char *exc = NULL;
9353         static const char * const excnames[] = {
9354             [EXCP_UDEF] = "Undefined Instruction",
9355             [EXCP_SWI] = "SVC",
9356             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9357             [EXCP_DATA_ABORT] = "Data Abort",
9358             [EXCP_IRQ] = "IRQ",
9359             [EXCP_FIQ] = "FIQ",
9360             [EXCP_BKPT] = "Breakpoint",
9361             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9362             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9363             [EXCP_HVC] = "Hypervisor Call",
9364             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9365             [EXCP_SMC] = "Secure Monitor Call",
9366             [EXCP_VIRQ] = "Virtual IRQ",
9367             [EXCP_VFIQ] = "Virtual FIQ",
9368             [EXCP_SEMIHOST] = "Semihosting call",
9369             [EXCP_NOCP] = "v7M NOCP UsageFault",
9370             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9371             [EXCP_STKOF] = "v8M STKOF UsageFault",
9372             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9373             [EXCP_LSERR] = "v8M LSERR UsageFault",
9374             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9375             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9376         };
9377 
9378         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9379             exc = excnames[idx];
9380         }
9381         if (!exc) {
9382             exc = "unknown";
9383         }
9384         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9385                       idx, exc, cs->cpu_index);
9386     }
9387 }
9388 
9389 /*
9390  * Function used to synchronize QEMU's AArch64 register set with AArch32
9391  * register set.  This is necessary when switching between AArch32 and AArch64
9392  * execution state.
9393  */
9394 void aarch64_sync_32_to_64(CPUARMState *env)
9395 {
9396     int i;
9397     uint32_t mode = env->uncached_cpsr & CPSR_M;
9398 
9399     /* We can blanket copy R[0:7] to X[0:7] */
9400     for (i = 0; i < 8; i++) {
9401         env->xregs[i] = env->regs[i];
9402     }
9403 
9404     /*
9405      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9406      * Otherwise, they come from the banked user regs.
9407      */
9408     if (mode == ARM_CPU_MODE_FIQ) {
9409         for (i = 8; i < 13; i++) {
9410             env->xregs[i] = env->usr_regs[i - 8];
9411         }
9412     } else {
9413         for (i = 8; i < 13; i++) {
9414             env->xregs[i] = env->regs[i];
9415         }
9416     }
9417 
9418     /*
9419      * Registers x13-x23 are the various mode SP and FP registers. Registers
9420      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9421      * from the mode banked register.
9422      */
9423     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9424         env->xregs[13] = env->regs[13];
9425         env->xregs[14] = env->regs[14];
9426     } else {
9427         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9428         /* HYP is an exception in that it is copied from r14 */
9429         if (mode == ARM_CPU_MODE_HYP) {
9430             env->xregs[14] = env->regs[14];
9431         } else {
9432             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9433         }
9434     }
9435 
9436     if (mode == ARM_CPU_MODE_HYP) {
9437         env->xregs[15] = env->regs[13];
9438     } else {
9439         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9440     }
9441 
9442     if (mode == ARM_CPU_MODE_IRQ) {
9443         env->xregs[16] = env->regs[14];
9444         env->xregs[17] = env->regs[13];
9445     } else {
9446         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9447         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9448     }
9449 
9450     if (mode == ARM_CPU_MODE_SVC) {
9451         env->xregs[18] = env->regs[14];
9452         env->xregs[19] = env->regs[13];
9453     } else {
9454         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9455         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9456     }
9457 
9458     if (mode == ARM_CPU_MODE_ABT) {
9459         env->xregs[20] = env->regs[14];
9460         env->xregs[21] = env->regs[13];
9461     } else {
9462         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9463         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9464     }
9465 
9466     if (mode == ARM_CPU_MODE_UND) {
9467         env->xregs[22] = env->regs[14];
9468         env->xregs[23] = env->regs[13];
9469     } else {
9470         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9471         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9472     }
9473 
9474     /*
9475      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9476      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9477      * FIQ bank for r8-r14.
9478      */
9479     if (mode == ARM_CPU_MODE_FIQ) {
9480         for (i = 24; i < 31; i++) {
9481             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9482         }
9483     } else {
9484         for (i = 24; i < 29; i++) {
9485             env->xregs[i] = env->fiq_regs[i - 24];
9486         }
9487         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9488         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9489     }
9490 
9491     env->pc = env->regs[15];
9492 }
9493 
9494 /*
9495  * Function used to synchronize QEMU's AArch32 register set with AArch64
9496  * register set.  This is necessary when switching between AArch32 and AArch64
9497  * execution state.
9498  */
9499 void aarch64_sync_64_to_32(CPUARMState *env)
9500 {
9501     int i;
9502     uint32_t mode = env->uncached_cpsr & CPSR_M;
9503 
9504     /* We can blanket copy X[0:7] to R[0:7] */
9505     for (i = 0; i < 8; i++) {
9506         env->regs[i] = env->xregs[i];
9507     }
9508 
9509     /*
9510      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9511      * Otherwise, we copy x8-x12 into the banked user regs.
9512      */
9513     if (mode == ARM_CPU_MODE_FIQ) {
9514         for (i = 8; i < 13; i++) {
9515             env->usr_regs[i - 8] = env->xregs[i];
9516         }
9517     } else {
9518         for (i = 8; i < 13; i++) {
9519             env->regs[i] = env->xregs[i];
9520         }
9521     }
9522 
9523     /*
9524      * Registers r13 & r14 depend on the current mode.
9525      * If we are in a given mode, we copy the corresponding x registers to r13
9526      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9527      * for the mode.
9528      */
9529     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9530         env->regs[13] = env->xregs[13];
9531         env->regs[14] = env->xregs[14];
9532     } else {
9533         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9534 
9535         /*
9536          * HYP is an exception in that it does not have its own banked r14 but
9537          * shares the USR r14
9538          */
9539         if (mode == ARM_CPU_MODE_HYP) {
9540             env->regs[14] = env->xregs[14];
9541         } else {
9542             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9543         }
9544     }
9545 
9546     if (mode == ARM_CPU_MODE_HYP) {
9547         env->regs[13] = env->xregs[15];
9548     } else {
9549         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9550     }
9551 
9552     if (mode == ARM_CPU_MODE_IRQ) {
9553         env->regs[14] = env->xregs[16];
9554         env->regs[13] = env->xregs[17];
9555     } else {
9556         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9557         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9558     }
9559 
9560     if (mode == ARM_CPU_MODE_SVC) {
9561         env->regs[14] = env->xregs[18];
9562         env->regs[13] = env->xregs[19];
9563     } else {
9564         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9565         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9566     }
9567 
9568     if (mode == ARM_CPU_MODE_ABT) {
9569         env->regs[14] = env->xregs[20];
9570         env->regs[13] = env->xregs[21];
9571     } else {
9572         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9573         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9574     }
9575 
9576     if (mode == ARM_CPU_MODE_UND) {
9577         env->regs[14] = env->xregs[22];
9578         env->regs[13] = env->xregs[23];
9579     } else {
9580         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9581         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9582     }
9583 
9584     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9585      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9586      * FIQ bank for r8-r14.
9587      */
9588     if (mode == ARM_CPU_MODE_FIQ) {
9589         for (i = 24; i < 31; i++) {
9590             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9591         }
9592     } else {
9593         for (i = 24; i < 29; i++) {
9594             env->fiq_regs[i - 24] = env->xregs[i];
9595         }
9596         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9597         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9598     }
9599 
9600     env->regs[15] = env->pc;
9601 }
9602 
9603 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9604                                    uint32_t mask, uint32_t offset,
9605                                    uint32_t newpc)
9606 {
9607     int new_el;
9608 
9609     /* Change the CPU state so as to actually take the exception. */
9610     switch_mode(env, new_mode);
9611 
9612     /*
9613      * For exceptions taken to AArch32 we must clear the SS bit in both
9614      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9615      */
9616     env->pstate &= ~PSTATE_SS;
9617     env->spsr = cpsr_read(env);
9618     /* Clear IT bits.  */
9619     env->condexec_bits = 0;
9620     /* Switch to the new mode, and to the correct instruction set.  */
9621     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9622 
9623     /* This must be after mode switching. */
9624     new_el = arm_current_el(env);
9625 
9626     /* Set new mode endianness */
9627     env->uncached_cpsr &= ~CPSR_E;
9628     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9629         env->uncached_cpsr |= CPSR_E;
9630     }
9631     /* J and IL must always be cleared for exception entry */
9632     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9633     env->daif |= mask;
9634 
9635     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9636         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9637             env->uncached_cpsr |= CPSR_SSBS;
9638         } else {
9639             env->uncached_cpsr &= ~CPSR_SSBS;
9640         }
9641     }
9642 
9643     if (new_mode == ARM_CPU_MODE_HYP) {
9644         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9645         env->elr_el[2] = env->regs[15];
9646     } else {
9647         /* CPSR.PAN is normally preserved preserved unless...  */
9648         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9649             switch (new_el) {
9650             case 3:
9651                 if (!arm_is_secure_below_el3(env)) {
9652                     /* ... the target is EL3, from non-secure state.  */
9653                     env->uncached_cpsr &= ~CPSR_PAN;
9654                     break;
9655                 }
9656                 /* ... the target is EL3, from secure state ... */
9657                 /* fall through */
9658             case 1:
9659                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9660                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9661                     env->uncached_cpsr |= CPSR_PAN;
9662                 }
9663                 break;
9664             }
9665         }
9666         /*
9667          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9668          * and we should just guard the thumb mode on V4
9669          */
9670         if (arm_feature(env, ARM_FEATURE_V4T)) {
9671             env->thumb =
9672                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9673         }
9674         env->regs[14] = env->regs[15] + offset;
9675     }
9676     env->regs[15] = newpc;
9677     arm_rebuild_hflags(env);
9678 }
9679 
9680 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9681 {
9682     /*
9683      * Handle exception entry to Hyp mode; this is sufficiently
9684      * different to entry to other AArch32 modes that we handle it
9685      * separately here.
9686      *
9687      * The vector table entry used is always the 0x14 Hyp mode entry point,
9688      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9689      * The offset applied to the preferred return address is always zero
9690      * (see DDI0487C.a section G1.12.3).
9691      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9692      */
9693     uint32_t addr, mask;
9694     ARMCPU *cpu = ARM_CPU(cs);
9695     CPUARMState *env = &cpu->env;
9696 
9697     switch (cs->exception_index) {
9698     case EXCP_UDEF:
9699         addr = 0x04;
9700         break;
9701     case EXCP_SWI:
9702         addr = 0x08;
9703         break;
9704     case EXCP_BKPT:
9705         /* Fall through to prefetch abort.  */
9706     case EXCP_PREFETCH_ABORT:
9707         env->cp15.ifar_s = env->exception.vaddress;
9708         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9709                       (uint32_t)env->exception.vaddress);
9710         addr = 0x0c;
9711         break;
9712     case EXCP_DATA_ABORT:
9713         env->cp15.dfar_s = env->exception.vaddress;
9714         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9715                       (uint32_t)env->exception.vaddress);
9716         addr = 0x10;
9717         break;
9718     case EXCP_IRQ:
9719         addr = 0x18;
9720         break;
9721     case EXCP_FIQ:
9722         addr = 0x1c;
9723         break;
9724     case EXCP_HVC:
9725         addr = 0x08;
9726         break;
9727     case EXCP_HYP_TRAP:
9728         addr = 0x14;
9729         break;
9730     default:
9731         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9732     }
9733 
9734     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9735         if (!arm_feature(env, ARM_FEATURE_V8)) {
9736             /*
9737              * QEMU syndrome values are v8-style. v7 has the IL bit
9738              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9739              * If this is a v7 CPU, squash the IL bit in those cases.
9740              */
9741             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9742                 (cs->exception_index == EXCP_DATA_ABORT &&
9743                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9744                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9745                 env->exception.syndrome &= ~ARM_EL_IL;
9746             }
9747         }
9748         env->cp15.esr_el[2] = env->exception.syndrome;
9749     }
9750 
9751     if (arm_current_el(env) != 2 && addr < 0x14) {
9752         addr = 0x14;
9753     }
9754 
9755     mask = 0;
9756     if (!(env->cp15.scr_el3 & SCR_EA)) {
9757         mask |= CPSR_A;
9758     }
9759     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9760         mask |= CPSR_I;
9761     }
9762     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9763         mask |= CPSR_F;
9764     }
9765 
9766     addr += env->cp15.hvbar;
9767 
9768     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9769 }
9770 
9771 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9772 {
9773     ARMCPU *cpu = ARM_CPU(cs);
9774     CPUARMState *env = &cpu->env;
9775     uint32_t addr;
9776     uint32_t mask;
9777     int new_mode;
9778     uint32_t offset;
9779     uint32_t moe;
9780 
9781     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9782     switch (syn_get_ec(env->exception.syndrome)) {
9783     case EC_BREAKPOINT:
9784     case EC_BREAKPOINT_SAME_EL:
9785         moe = 1;
9786         break;
9787     case EC_WATCHPOINT:
9788     case EC_WATCHPOINT_SAME_EL:
9789         moe = 10;
9790         break;
9791     case EC_AA32_BKPT:
9792         moe = 3;
9793         break;
9794     case EC_VECTORCATCH:
9795         moe = 5;
9796         break;
9797     default:
9798         moe = 0;
9799         break;
9800     }
9801 
9802     if (moe) {
9803         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9804     }
9805 
9806     if (env->exception.target_el == 2) {
9807         arm_cpu_do_interrupt_aarch32_hyp(cs);
9808         return;
9809     }
9810 
9811     switch (cs->exception_index) {
9812     case EXCP_UDEF:
9813         new_mode = ARM_CPU_MODE_UND;
9814         addr = 0x04;
9815         mask = CPSR_I;
9816         if (env->thumb)
9817             offset = 2;
9818         else
9819             offset = 4;
9820         break;
9821     case EXCP_SWI:
9822         new_mode = ARM_CPU_MODE_SVC;
9823         addr = 0x08;
9824         mask = CPSR_I;
9825         /* The PC already points to the next instruction.  */
9826         offset = 0;
9827         break;
9828     case EXCP_BKPT:
9829         /* Fall through to prefetch abort.  */
9830     case EXCP_PREFETCH_ABORT:
9831         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9832         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9833         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9834                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9835         new_mode = ARM_CPU_MODE_ABT;
9836         addr = 0x0c;
9837         mask = CPSR_A | CPSR_I;
9838         offset = 4;
9839         break;
9840     case EXCP_DATA_ABORT:
9841         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9842         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9843         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9844                       env->exception.fsr,
9845                       (uint32_t)env->exception.vaddress);
9846         new_mode = ARM_CPU_MODE_ABT;
9847         addr = 0x10;
9848         mask = CPSR_A | CPSR_I;
9849         offset = 8;
9850         break;
9851     case EXCP_IRQ:
9852         new_mode = ARM_CPU_MODE_IRQ;
9853         addr = 0x18;
9854         /* Disable IRQ and imprecise data aborts.  */
9855         mask = CPSR_A | CPSR_I;
9856         offset = 4;
9857         if (env->cp15.scr_el3 & SCR_IRQ) {
9858             /* IRQ routed to monitor mode */
9859             new_mode = ARM_CPU_MODE_MON;
9860             mask |= CPSR_F;
9861         }
9862         break;
9863     case EXCP_FIQ:
9864         new_mode = ARM_CPU_MODE_FIQ;
9865         addr = 0x1c;
9866         /* Disable FIQ, IRQ and imprecise data aborts.  */
9867         mask = CPSR_A | CPSR_I | CPSR_F;
9868         if (env->cp15.scr_el3 & SCR_FIQ) {
9869             /* FIQ routed to monitor mode */
9870             new_mode = ARM_CPU_MODE_MON;
9871         }
9872         offset = 4;
9873         break;
9874     case EXCP_VIRQ:
9875         new_mode = ARM_CPU_MODE_IRQ;
9876         addr = 0x18;
9877         /* Disable IRQ and imprecise data aborts.  */
9878         mask = CPSR_A | CPSR_I;
9879         offset = 4;
9880         break;
9881     case EXCP_VFIQ:
9882         new_mode = ARM_CPU_MODE_FIQ;
9883         addr = 0x1c;
9884         /* Disable FIQ, IRQ and imprecise data aborts.  */
9885         mask = CPSR_A | CPSR_I | CPSR_F;
9886         offset = 4;
9887         break;
9888     case EXCP_SMC:
9889         new_mode = ARM_CPU_MODE_MON;
9890         addr = 0x08;
9891         mask = CPSR_A | CPSR_I | CPSR_F;
9892         offset = 0;
9893         break;
9894     default:
9895         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9896         return; /* Never happens.  Keep compiler happy.  */
9897     }
9898 
9899     if (new_mode == ARM_CPU_MODE_MON) {
9900         addr += env->cp15.mvbar;
9901     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9902         /* High vectors. When enabled, base address cannot be remapped. */
9903         addr += 0xffff0000;
9904     } else {
9905         /* ARM v7 architectures provide a vector base address register to remap
9906          * the interrupt vector table.
9907          * This register is only followed in non-monitor mode, and is banked.
9908          * Note: only bits 31:5 are valid.
9909          */
9910         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9911     }
9912 
9913     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9914         env->cp15.scr_el3 &= ~SCR_NS;
9915     }
9916 
9917     take_aarch32_exception(env, new_mode, mask, offset, addr);
9918 }
9919 
9920 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9921 {
9922     /*
9923      * Return the register number of the AArch64 view of the AArch32
9924      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9925      * be that of the AArch32 mode the exception came from.
9926      */
9927     int mode = env->uncached_cpsr & CPSR_M;
9928 
9929     switch (aarch32_reg) {
9930     case 0 ... 7:
9931         return aarch32_reg;
9932     case 8 ... 12:
9933         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9934     case 13:
9935         switch (mode) {
9936         case ARM_CPU_MODE_USR:
9937         case ARM_CPU_MODE_SYS:
9938             return 13;
9939         case ARM_CPU_MODE_HYP:
9940             return 15;
9941         case ARM_CPU_MODE_IRQ:
9942             return 17;
9943         case ARM_CPU_MODE_SVC:
9944             return 19;
9945         case ARM_CPU_MODE_ABT:
9946             return 21;
9947         case ARM_CPU_MODE_UND:
9948             return 23;
9949         case ARM_CPU_MODE_FIQ:
9950             return 29;
9951         default:
9952             g_assert_not_reached();
9953         }
9954     case 14:
9955         switch (mode) {
9956         case ARM_CPU_MODE_USR:
9957         case ARM_CPU_MODE_SYS:
9958         case ARM_CPU_MODE_HYP:
9959             return 14;
9960         case ARM_CPU_MODE_IRQ:
9961             return 16;
9962         case ARM_CPU_MODE_SVC:
9963             return 18;
9964         case ARM_CPU_MODE_ABT:
9965             return 20;
9966         case ARM_CPU_MODE_UND:
9967             return 22;
9968         case ARM_CPU_MODE_FIQ:
9969             return 30;
9970         default:
9971             g_assert_not_reached();
9972         }
9973     case 15:
9974         return 31;
9975     default:
9976         g_assert_not_reached();
9977     }
9978 }
9979 
9980 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9981 {
9982     uint32_t ret = cpsr_read(env);
9983 
9984     /* Move DIT to the correct location for SPSR_ELx */
9985     if (ret & CPSR_DIT) {
9986         ret &= ~CPSR_DIT;
9987         ret |= PSTATE_DIT;
9988     }
9989     /* Merge PSTATE.SS into SPSR_ELx */
9990     ret |= env->pstate & PSTATE_SS;
9991 
9992     return ret;
9993 }
9994 
9995 /* Handle exception entry to a target EL which is using AArch64 */
9996 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9997 {
9998     ARMCPU *cpu = ARM_CPU(cs);
9999     CPUARMState *env = &cpu->env;
10000     unsigned int new_el = env->exception.target_el;
10001     target_ulong addr = env->cp15.vbar_el[new_el];
10002     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10003     unsigned int old_mode;
10004     unsigned int cur_el = arm_current_el(env);
10005     int rt;
10006 
10007     /*
10008      * Note that new_el can never be 0.  If cur_el is 0, then
10009      * el0_a64 is is_a64(), else el0_a64 is ignored.
10010      */
10011     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10012 
10013     if (cur_el < new_el) {
10014         /* Entry vector offset depends on whether the implemented EL
10015          * immediately lower than the target level is using AArch32 or AArch64
10016          */
10017         bool is_aa64;
10018         uint64_t hcr;
10019 
10020         switch (new_el) {
10021         case 3:
10022             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10023             break;
10024         case 2:
10025             hcr = arm_hcr_el2_eff(env);
10026             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10027                 is_aa64 = (hcr & HCR_RW) != 0;
10028                 break;
10029             }
10030             /* fall through */
10031         case 1:
10032             is_aa64 = is_a64(env);
10033             break;
10034         default:
10035             g_assert_not_reached();
10036         }
10037 
10038         if (is_aa64) {
10039             addr += 0x400;
10040         } else {
10041             addr += 0x600;
10042         }
10043     } else if (pstate_read(env) & PSTATE_SP) {
10044         addr += 0x200;
10045     }
10046 
10047     switch (cs->exception_index) {
10048     case EXCP_PREFETCH_ABORT:
10049     case EXCP_DATA_ABORT:
10050         env->cp15.far_el[new_el] = env->exception.vaddress;
10051         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10052                       env->cp15.far_el[new_el]);
10053         /* fall through */
10054     case EXCP_BKPT:
10055     case EXCP_UDEF:
10056     case EXCP_SWI:
10057     case EXCP_HVC:
10058     case EXCP_HYP_TRAP:
10059     case EXCP_SMC:
10060         switch (syn_get_ec(env->exception.syndrome)) {
10061         case EC_ADVSIMDFPACCESSTRAP:
10062             /*
10063              * QEMU internal FP/SIMD syndromes from AArch32 include the
10064              * TA and coproc fields which are only exposed if the exception
10065              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10066              * AArch64 format syndrome.
10067              */
10068             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10069             break;
10070         case EC_CP14RTTRAP:
10071         case EC_CP15RTTRAP:
10072         case EC_CP14DTTRAP:
10073             /*
10074              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10075              * the raw register field from the insn; when taking this to
10076              * AArch64 we must convert it to the AArch64 view of the register
10077              * number. Notice that we read a 4-bit AArch32 register number and
10078              * write back a 5-bit AArch64 one.
10079              */
10080             rt = extract32(env->exception.syndrome, 5, 4);
10081             rt = aarch64_regnum(env, rt);
10082             env->exception.syndrome = deposit32(env->exception.syndrome,
10083                                                 5, 5, rt);
10084             break;
10085         case EC_CP15RRTTRAP:
10086         case EC_CP14RRTTRAP:
10087             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10088             rt = extract32(env->exception.syndrome, 5, 4);
10089             rt = aarch64_regnum(env, rt);
10090             env->exception.syndrome = deposit32(env->exception.syndrome,
10091                                                 5, 5, rt);
10092             rt = extract32(env->exception.syndrome, 10, 4);
10093             rt = aarch64_regnum(env, rt);
10094             env->exception.syndrome = deposit32(env->exception.syndrome,
10095                                                 10, 5, rt);
10096             break;
10097         }
10098         env->cp15.esr_el[new_el] = env->exception.syndrome;
10099         break;
10100     case EXCP_IRQ:
10101     case EXCP_VIRQ:
10102         addr += 0x80;
10103         break;
10104     case EXCP_FIQ:
10105     case EXCP_VFIQ:
10106         addr += 0x100;
10107         break;
10108     default:
10109         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10110     }
10111 
10112     if (is_a64(env)) {
10113         old_mode = pstate_read(env);
10114         aarch64_save_sp(env, arm_current_el(env));
10115         env->elr_el[new_el] = env->pc;
10116     } else {
10117         old_mode = cpsr_read_for_spsr_elx(env);
10118         env->elr_el[new_el] = env->regs[15];
10119 
10120         aarch64_sync_32_to_64(env);
10121 
10122         env->condexec_bits = 0;
10123     }
10124     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10125 
10126     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10127                   env->elr_el[new_el]);
10128 
10129     if (cpu_isar_feature(aa64_pan, cpu)) {
10130         /* The value of PSTATE.PAN is normally preserved, except when ... */
10131         new_mode |= old_mode & PSTATE_PAN;
10132         switch (new_el) {
10133         case 2:
10134             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10135             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10136                 != (HCR_E2H | HCR_TGE)) {
10137                 break;
10138             }
10139             /* fall through */
10140         case 1:
10141             /* ... the target is EL1 ... */
10142             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10143             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10144                 new_mode |= PSTATE_PAN;
10145             }
10146             break;
10147         }
10148     }
10149     if (cpu_isar_feature(aa64_mte, cpu)) {
10150         new_mode |= PSTATE_TCO;
10151     }
10152 
10153     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10154         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10155             new_mode |= PSTATE_SSBS;
10156         } else {
10157             new_mode &= ~PSTATE_SSBS;
10158         }
10159     }
10160 
10161     pstate_write(env, PSTATE_DAIF | new_mode);
10162     env->aarch64 = 1;
10163     aarch64_restore_sp(env, new_el);
10164     helper_rebuild_hflags_a64(env, new_el);
10165 
10166     env->pc = addr;
10167 
10168     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10169                   new_el, env->pc, pstate_read(env));
10170 }
10171 
10172 /*
10173  * Do semihosting call and set the appropriate return value. All the
10174  * permission and validity checks have been done at translate time.
10175  *
10176  * We only see semihosting exceptions in TCG only as they are not
10177  * trapped to the hypervisor in KVM.
10178  */
10179 #ifdef CONFIG_TCG
10180 static void handle_semihosting(CPUState *cs)
10181 {
10182     ARMCPU *cpu = ARM_CPU(cs);
10183     CPUARMState *env = &cpu->env;
10184 
10185     if (is_a64(env)) {
10186         qemu_log_mask(CPU_LOG_INT,
10187                       "...handling as semihosting call 0x%" PRIx64 "\n",
10188                       env->xregs[0]);
10189         env->xregs[0] = do_common_semihosting(cs);
10190         env->pc += 4;
10191     } else {
10192         qemu_log_mask(CPU_LOG_INT,
10193                       "...handling as semihosting call 0x%x\n",
10194                       env->regs[0]);
10195         env->regs[0] = do_common_semihosting(cs);
10196         env->regs[15] += env->thumb ? 2 : 4;
10197     }
10198 }
10199 #endif
10200 
10201 /* Handle a CPU exception for A and R profile CPUs.
10202  * Do any appropriate logging, handle PSCI calls, and then hand off
10203  * to the AArch64-entry or AArch32-entry function depending on the
10204  * target exception level's register width.
10205  *
10206  * Note: this is used for both TCG (as the do_interrupt tcg op),
10207  *       and KVM to re-inject guest debug exceptions, and to
10208  *       inject a Synchronous-External-Abort.
10209  */
10210 void arm_cpu_do_interrupt(CPUState *cs)
10211 {
10212     ARMCPU *cpu = ARM_CPU(cs);
10213     CPUARMState *env = &cpu->env;
10214     unsigned int new_el = env->exception.target_el;
10215 
10216     assert(!arm_feature(env, ARM_FEATURE_M));
10217 
10218     arm_log_exception(cs);
10219     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10220                   new_el);
10221     if (qemu_loglevel_mask(CPU_LOG_INT)
10222         && !excp_is_internal(cs->exception_index)) {
10223         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10224                       syn_get_ec(env->exception.syndrome),
10225                       env->exception.syndrome);
10226     }
10227 
10228     if (arm_is_psci_call(cpu, cs->exception_index)) {
10229         arm_handle_psci_call(cpu);
10230         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10231         return;
10232     }
10233 
10234     /*
10235      * Semihosting semantics depend on the register width of the code
10236      * that caused the exception, not the target exception level, so
10237      * must be handled here.
10238      */
10239 #ifdef CONFIG_TCG
10240     if (cs->exception_index == EXCP_SEMIHOST) {
10241         handle_semihosting(cs);
10242         return;
10243     }
10244 #endif
10245 
10246     /* Hooks may change global state so BQL should be held, also the
10247      * BQL needs to be held for any modification of
10248      * cs->interrupt_request.
10249      */
10250     g_assert(qemu_mutex_iothread_locked());
10251 
10252     arm_call_pre_el_change_hook(cpu);
10253 
10254     assert(!excp_is_internal(cs->exception_index));
10255     if (arm_el_is_aa64(env, new_el)) {
10256         arm_cpu_do_interrupt_aarch64(cs);
10257     } else {
10258         arm_cpu_do_interrupt_aarch32(cs);
10259     }
10260 
10261     arm_call_el_change_hook(cpu);
10262 
10263     if (!kvm_enabled()) {
10264         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10265     }
10266 }
10267 #endif /* !CONFIG_USER_ONLY */
10268 
10269 uint64_t arm_sctlr(CPUARMState *env, int el)
10270 {
10271     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10272     if (el == 0) {
10273         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10274         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10275              ? 2 : 1;
10276     }
10277     return env->cp15.sctlr_el[el];
10278 }
10279 
10280 /* Return the SCTLR value which controls this address translation regime */
10281 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10282 {
10283     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10284 }
10285 
10286 #ifndef CONFIG_USER_ONLY
10287 
10288 /* Return true if the specified stage of address translation is disabled */
10289 static inline bool regime_translation_disabled(CPUARMState *env,
10290                                                ARMMMUIdx mmu_idx)
10291 {
10292     uint64_t hcr_el2;
10293 
10294     if (arm_feature(env, ARM_FEATURE_M)) {
10295         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10296                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10297         case R_V7M_MPU_CTRL_ENABLE_MASK:
10298             /* Enabled, but not for HardFault and NMI */
10299             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10300         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10301             /* Enabled for all cases */
10302             return false;
10303         case 0:
10304         default:
10305             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10306              * we warned about that in armv7m_nvic.c when the guest set it.
10307              */
10308             return true;
10309         }
10310     }
10311 
10312     hcr_el2 = arm_hcr_el2_eff(env);
10313 
10314     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10315         /* HCR.DC means HCR.VM behaves as 1 */
10316         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10317     }
10318 
10319     if (hcr_el2 & HCR_TGE) {
10320         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10321         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10322             return true;
10323         }
10324     }
10325 
10326     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10327         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10328         return true;
10329     }
10330 
10331     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10332 }
10333 
10334 static inline bool regime_translation_big_endian(CPUARMState *env,
10335                                                  ARMMMUIdx mmu_idx)
10336 {
10337     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10338 }
10339 
10340 /* Return the TTBR associated with this translation regime */
10341 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10342                                    int ttbrn)
10343 {
10344     if (mmu_idx == ARMMMUIdx_Stage2) {
10345         return env->cp15.vttbr_el2;
10346     }
10347     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10348         return env->cp15.vsttbr_el2;
10349     }
10350     if (ttbrn == 0) {
10351         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10352     } else {
10353         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10354     }
10355 }
10356 
10357 #endif /* !CONFIG_USER_ONLY */
10358 
10359 /* Convert a possible stage1+2 MMU index into the appropriate
10360  * stage 1 MMU index
10361  */
10362 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10363 {
10364     switch (mmu_idx) {
10365     case ARMMMUIdx_SE10_0:
10366         return ARMMMUIdx_Stage1_SE0;
10367     case ARMMMUIdx_SE10_1:
10368         return ARMMMUIdx_Stage1_SE1;
10369     case ARMMMUIdx_SE10_1_PAN:
10370         return ARMMMUIdx_Stage1_SE1_PAN;
10371     case ARMMMUIdx_E10_0:
10372         return ARMMMUIdx_Stage1_E0;
10373     case ARMMMUIdx_E10_1:
10374         return ARMMMUIdx_Stage1_E1;
10375     case ARMMMUIdx_E10_1_PAN:
10376         return ARMMMUIdx_Stage1_E1_PAN;
10377     default:
10378         return mmu_idx;
10379     }
10380 }
10381 
10382 /* Return true if the translation regime is using LPAE format page tables */
10383 static inline bool regime_using_lpae_format(CPUARMState *env,
10384                                             ARMMMUIdx mmu_idx)
10385 {
10386     int el = regime_el(env, mmu_idx);
10387     if (el == 2 || arm_el_is_aa64(env, el)) {
10388         return true;
10389     }
10390     if (arm_feature(env, ARM_FEATURE_LPAE)
10391         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10392         return true;
10393     }
10394     return false;
10395 }
10396 
10397 /* Returns true if the stage 1 translation regime is using LPAE format page
10398  * tables. Used when raising alignment exceptions, whose FSR changes depending
10399  * on whether the long or short descriptor format is in use. */
10400 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10401 {
10402     mmu_idx = stage_1_mmu_idx(mmu_idx);
10403 
10404     return regime_using_lpae_format(env, mmu_idx);
10405 }
10406 
10407 #ifndef CONFIG_USER_ONLY
10408 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10409 {
10410     switch (mmu_idx) {
10411     case ARMMMUIdx_SE10_0:
10412     case ARMMMUIdx_E20_0:
10413     case ARMMMUIdx_SE20_0:
10414     case ARMMMUIdx_Stage1_E0:
10415     case ARMMMUIdx_Stage1_SE0:
10416     case ARMMMUIdx_MUser:
10417     case ARMMMUIdx_MSUser:
10418     case ARMMMUIdx_MUserNegPri:
10419     case ARMMMUIdx_MSUserNegPri:
10420         return true;
10421     default:
10422         return false;
10423     case ARMMMUIdx_E10_0:
10424     case ARMMMUIdx_E10_1:
10425     case ARMMMUIdx_E10_1_PAN:
10426         g_assert_not_reached();
10427     }
10428 }
10429 
10430 /* Translate section/page access permissions to page
10431  * R/W protection flags
10432  *
10433  * @env:         CPUARMState
10434  * @mmu_idx:     MMU index indicating required translation regime
10435  * @ap:          The 3-bit access permissions (AP[2:0])
10436  * @domain_prot: The 2-bit domain access permissions
10437  */
10438 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10439                                 int ap, int domain_prot)
10440 {
10441     bool is_user = regime_is_user(env, mmu_idx);
10442 
10443     if (domain_prot == 3) {
10444         return PAGE_READ | PAGE_WRITE;
10445     }
10446 
10447     switch (ap) {
10448     case 0:
10449         if (arm_feature(env, ARM_FEATURE_V7)) {
10450             return 0;
10451         }
10452         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10453         case SCTLR_S:
10454             return is_user ? 0 : PAGE_READ;
10455         case SCTLR_R:
10456             return PAGE_READ;
10457         default:
10458             return 0;
10459         }
10460     case 1:
10461         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10462     case 2:
10463         if (is_user) {
10464             return PAGE_READ;
10465         } else {
10466             return PAGE_READ | PAGE_WRITE;
10467         }
10468     case 3:
10469         return PAGE_READ | PAGE_WRITE;
10470     case 4: /* Reserved.  */
10471         return 0;
10472     case 5:
10473         return is_user ? 0 : PAGE_READ;
10474     case 6:
10475         return PAGE_READ;
10476     case 7:
10477         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10478             return 0;
10479         }
10480         return PAGE_READ;
10481     default:
10482         g_assert_not_reached();
10483     }
10484 }
10485 
10486 /* Translate section/page access permissions to page
10487  * R/W protection flags.
10488  *
10489  * @ap:      The 2-bit simple AP (AP[2:1])
10490  * @is_user: TRUE if accessing from PL0
10491  */
10492 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10493 {
10494     switch (ap) {
10495     case 0:
10496         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10497     case 1:
10498         return PAGE_READ | PAGE_WRITE;
10499     case 2:
10500         return is_user ? 0 : PAGE_READ;
10501     case 3:
10502         return PAGE_READ;
10503     default:
10504         g_assert_not_reached();
10505     }
10506 }
10507 
10508 static inline int
10509 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10510 {
10511     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10512 }
10513 
10514 /* Translate S2 section/page access permissions to protection flags
10515  *
10516  * @env:     CPUARMState
10517  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10518  * @xn:      XN (execute-never) bits
10519  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10520  */
10521 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10522 {
10523     int prot = 0;
10524 
10525     if (s2ap & 1) {
10526         prot |= PAGE_READ;
10527     }
10528     if (s2ap & 2) {
10529         prot |= PAGE_WRITE;
10530     }
10531 
10532     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10533         switch (xn) {
10534         case 0:
10535             prot |= PAGE_EXEC;
10536             break;
10537         case 1:
10538             if (s1_is_el0) {
10539                 prot |= PAGE_EXEC;
10540             }
10541             break;
10542         case 2:
10543             break;
10544         case 3:
10545             if (!s1_is_el0) {
10546                 prot |= PAGE_EXEC;
10547             }
10548             break;
10549         default:
10550             g_assert_not_reached();
10551         }
10552     } else {
10553         if (!extract32(xn, 1, 1)) {
10554             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10555                 prot |= PAGE_EXEC;
10556             }
10557         }
10558     }
10559     return prot;
10560 }
10561 
10562 /* Translate section/page access permissions to protection flags
10563  *
10564  * @env:     CPUARMState
10565  * @mmu_idx: MMU index indicating required translation regime
10566  * @is_aa64: TRUE if AArch64
10567  * @ap:      The 2-bit simple AP (AP[2:1])
10568  * @ns:      NS (non-secure) bit
10569  * @xn:      XN (execute-never) bit
10570  * @pxn:     PXN (privileged execute-never) bit
10571  */
10572 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10573                       int ap, int ns, int xn, int pxn)
10574 {
10575     bool is_user = regime_is_user(env, mmu_idx);
10576     int prot_rw, user_rw;
10577     bool have_wxn;
10578     int wxn = 0;
10579 
10580     assert(mmu_idx != ARMMMUIdx_Stage2);
10581     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10582 
10583     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10584     if (is_user) {
10585         prot_rw = user_rw;
10586     } else {
10587         if (user_rw && regime_is_pan(env, mmu_idx)) {
10588             /* PAN forbids data accesses but doesn't affect insn fetch */
10589             prot_rw = 0;
10590         } else {
10591             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10592         }
10593     }
10594 
10595     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10596         return prot_rw;
10597     }
10598 
10599     /* TODO have_wxn should be replaced with
10600      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10601      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10602      * compatible processors have EL2, which is required for [U]WXN.
10603      */
10604     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10605 
10606     if (have_wxn) {
10607         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10608     }
10609 
10610     if (is_aa64) {
10611         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10612             xn = pxn || (user_rw & PAGE_WRITE);
10613         }
10614     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10615         switch (regime_el(env, mmu_idx)) {
10616         case 1:
10617         case 3:
10618             if (is_user) {
10619                 xn = xn || !(user_rw & PAGE_READ);
10620             } else {
10621                 int uwxn = 0;
10622                 if (have_wxn) {
10623                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10624                 }
10625                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10626                      (uwxn && (user_rw & PAGE_WRITE));
10627             }
10628             break;
10629         case 2:
10630             break;
10631         }
10632     } else {
10633         xn = wxn = 0;
10634     }
10635 
10636     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10637         return prot_rw;
10638     }
10639     return prot_rw | PAGE_EXEC;
10640 }
10641 
10642 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10643                                      uint32_t *table, uint32_t address)
10644 {
10645     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10646     TCR *tcr = regime_tcr(env, mmu_idx);
10647 
10648     if (address & tcr->mask) {
10649         if (tcr->raw_tcr & TTBCR_PD1) {
10650             /* Translation table walk disabled for TTBR1 */
10651             return false;
10652         }
10653         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10654     } else {
10655         if (tcr->raw_tcr & TTBCR_PD0) {
10656             /* Translation table walk disabled for TTBR0 */
10657             return false;
10658         }
10659         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10660     }
10661     *table |= (address >> 18) & 0x3ffc;
10662     return true;
10663 }
10664 
10665 /* Translate a S1 pagetable walk through S2 if needed.  */
10666 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10667                                hwaddr addr, bool *is_secure,
10668                                ARMMMUFaultInfo *fi)
10669 {
10670     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10671         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10672         target_ulong s2size;
10673         hwaddr s2pa;
10674         int s2prot;
10675         int ret;
10676         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10677                                           : ARMMMUIdx_Stage2;
10678         ARMCacheAttrs cacheattrs = {};
10679         MemTxAttrs txattrs = {};
10680 
10681         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10682                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10683                                  &cacheattrs);
10684         if (ret) {
10685             assert(fi->type != ARMFault_None);
10686             fi->s2addr = addr;
10687             fi->stage2 = true;
10688             fi->s1ptw = true;
10689             fi->s1ns = !*is_secure;
10690             return ~0;
10691         }
10692         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10693             (cacheattrs.attrs & 0xf0) == 0) {
10694             /*
10695              * PTW set and S1 walk touched S2 Device memory:
10696              * generate Permission fault.
10697              */
10698             fi->type = ARMFault_Permission;
10699             fi->s2addr = addr;
10700             fi->stage2 = true;
10701             fi->s1ptw = true;
10702             fi->s1ns = !*is_secure;
10703             return ~0;
10704         }
10705 
10706         if (arm_is_secure_below_el3(env)) {
10707             /* Check if page table walk is to secure or non-secure PA space. */
10708             if (*is_secure) {
10709                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10710             } else {
10711                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10712             }
10713         } else {
10714             assert(!*is_secure);
10715         }
10716 
10717         addr = s2pa;
10718     }
10719     return addr;
10720 }
10721 
10722 /* All loads done in the course of a page table walk go through here. */
10723 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10724                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10725 {
10726     ARMCPU *cpu = ARM_CPU(cs);
10727     CPUARMState *env = &cpu->env;
10728     MemTxAttrs attrs = {};
10729     MemTxResult result = MEMTX_OK;
10730     AddressSpace *as;
10731     uint32_t data;
10732 
10733     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10734     attrs.secure = is_secure;
10735     as = arm_addressspace(cs, attrs);
10736     if (fi->s1ptw) {
10737         return 0;
10738     }
10739     if (regime_translation_big_endian(env, mmu_idx)) {
10740         data = address_space_ldl_be(as, addr, attrs, &result);
10741     } else {
10742         data = address_space_ldl_le(as, addr, attrs, &result);
10743     }
10744     if (result == MEMTX_OK) {
10745         return data;
10746     }
10747     fi->type = ARMFault_SyncExternalOnWalk;
10748     fi->ea = arm_extabort_type(result);
10749     return 0;
10750 }
10751 
10752 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10753                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10754 {
10755     ARMCPU *cpu = ARM_CPU(cs);
10756     CPUARMState *env = &cpu->env;
10757     MemTxAttrs attrs = {};
10758     MemTxResult result = MEMTX_OK;
10759     AddressSpace *as;
10760     uint64_t data;
10761 
10762     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10763     attrs.secure = is_secure;
10764     as = arm_addressspace(cs, attrs);
10765     if (fi->s1ptw) {
10766         return 0;
10767     }
10768     if (regime_translation_big_endian(env, mmu_idx)) {
10769         data = address_space_ldq_be(as, addr, attrs, &result);
10770     } else {
10771         data = address_space_ldq_le(as, addr, attrs, &result);
10772     }
10773     if (result == MEMTX_OK) {
10774         return data;
10775     }
10776     fi->type = ARMFault_SyncExternalOnWalk;
10777     fi->ea = arm_extabort_type(result);
10778     return 0;
10779 }
10780 
10781 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10782                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10783                              hwaddr *phys_ptr, int *prot,
10784                              target_ulong *page_size,
10785                              ARMMMUFaultInfo *fi)
10786 {
10787     CPUState *cs = env_cpu(env);
10788     int level = 1;
10789     uint32_t table;
10790     uint32_t desc;
10791     int type;
10792     int ap;
10793     int domain = 0;
10794     int domain_prot;
10795     hwaddr phys_addr;
10796     uint32_t dacr;
10797 
10798     /* Pagetable walk.  */
10799     /* Lookup l1 descriptor.  */
10800     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10801         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10802         fi->type = ARMFault_Translation;
10803         goto do_fault;
10804     }
10805     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10806                        mmu_idx, fi);
10807     if (fi->type != ARMFault_None) {
10808         goto do_fault;
10809     }
10810     type = (desc & 3);
10811     domain = (desc >> 5) & 0x0f;
10812     if (regime_el(env, mmu_idx) == 1) {
10813         dacr = env->cp15.dacr_ns;
10814     } else {
10815         dacr = env->cp15.dacr_s;
10816     }
10817     domain_prot = (dacr >> (domain * 2)) & 3;
10818     if (type == 0) {
10819         /* Section translation fault.  */
10820         fi->type = ARMFault_Translation;
10821         goto do_fault;
10822     }
10823     if (type != 2) {
10824         level = 2;
10825     }
10826     if (domain_prot == 0 || domain_prot == 2) {
10827         fi->type = ARMFault_Domain;
10828         goto do_fault;
10829     }
10830     if (type == 2) {
10831         /* 1Mb section.  */
10832         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10833         ap = (desc >> 10) & 3;
10834         *page_size = 1024 * 1024;
10835     } else {
10836         /* Lookup l2 entry.  */
10837         if (type == 1) {
10838             /* Coarse pagetable.  */
10839             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10840         } else {
10841             /* Fine pagetable.  */
10842             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10843         }
10844         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10845                            mmu_idx, fi);
10846         if (fi->type != ARMFault_None) {
10847             goto do_fault;
10848         }
10849         switch (desc & 3) {
10850         case 0: /* Page translation fault.  */
10851             fi->type = ARMFault_Translation;
10852             goto do_fault;
10853         case 1: /* 64k page.  */
10854             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10855             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10856             *page_size = 0x10000;
10857             break;
10858         case 2: /* 4k page.  */
10859             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10860             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10861             *page_size = 0x1000;
10862             break;
10863         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10864             if (type == 1) {
10865                 /* ARMv6/XScale extended small page format */
10866                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10867                     || arm_feature(env, ARM_FEATURE_V6)) {
10868                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10869                     *page_size = 0x1000;
10870                 } else {
10871                     /* UNPREDICTABLE in ARMv5; we choose to take a
10872                      * page translation fault.
10873                      */
10874                     fi->type = ARMFault_Translation;
10875                     goto do_fault;
10876                 }
10877             } else {
10878                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10879                 *page_size = 0x400;
10880             }
10881             ap = (desc >> 4) & 3;
10882             break;
10883         default:
10884             /* Never happens, but compiler isn't smart enough to tell.  */
10885             abort();
10886         }
10887     }
10888     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10889     *prot |= *prot ? PAGE_EXEC : 0;
10890     if (!(*prot & (1 << access_type))) {
10891         /* Access permission fault.  */
10892         fi->type = ARMFault_Permission;
10893         goto do_fault;
10894     }
10895     *phys_ptr = phys_addr;
10896     return false;
10897 do_fault:
10898     fi->domain = domain;
10899     fi->level = level;
10900     return true;
10901 }
10902 
10903 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10904                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10905                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10906                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10907 {
10908     CPUState *cs = env_cpu(env);
10909     ARMCPU *cpu = env_archcpu(env);
10910     int level = 1;
10911     uint32_t table;
10912     uint32_t desc;
10913     uint32_t xn;
10914     uint32_t pxn = 0;
10915     int type;
10916     int ap;
10917     int domain = 0;
10918     int domain_prot;
10919     hwaddr phys_addr;
10920     uint32_t dacr;
10921     bool ns;
10922 
10923     /* Pagetable walk.  */
10924     /* Lookup l1 descriptor.  */
10925     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10926         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10927         fi->type = ARMFault_Translation;
10928         goto do_fault;
10929     }
10930     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10931                        mmu_idx, fi);
10932     if (fi->type != ARMFault_None) {
10933         goto do_fault;
10934     }
10935     type = (desc & 3);
10936     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10937         /* Section translation fault, or attempt to use the encoding
10938          * which is Reserved on implementations without PXN.
10939          */
10940         fi->type = ARMFault_Translation;
10941         goto do_fault;
10942     }
10943     if ((type == 1) || !(desc & (1 << 18))) {
10944         /* Page or Section.  */
10945         domain = (desc >> 5) & 0x0f;
10946     }
10947     if (regime_el(env, mmu_idx) == 1) {
10948         dacr = env->cp15.dacr_ns;
10949     } else {
10950         dacr = env->cp15.dacr_s;
10951     }
10952     if (type == 1) {
10953         level = 2;
10954     }
10955     domain_prot = (dacr >> (domain * 2)) & 3;
10956     if (domain_prot == 0 || domain_prot == 2) {
10957         /* Section or Page domain fault */
10958         fi->type = ARMFault_Domain;
10959         goto do_fault;
10960     }
10961     if (type != 1) {
10962         if (desc & (1 << 18)) {
10963             /* Supersection.  */
10964             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10965             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10966             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10967             *page_size = 0x1000000;
10968         } else {
10969             /* Section.  */
10970             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10971             *page_size = 0x100000;
10972         }
10973         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10974         xn = desc & (1 << 4);
10975         pxn = desc & 1;
10976         ns = extract32(desc, 19, 1);
10977     } else {
10978         if (cpu_isar_feature(aa32_pxn, cpu)) {
10979             pxn = (desc >> 2) & 1;
10980         }
10981         ns = extract32(desc, 3, 1);
10982         /* Lookup l2 entry.  */
10983         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10984         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10985                            mmu_idx, fi);
10986         if (fi->type != ARMFault_None) {
10987             goto do_fault;
10988         }
10989         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10990         switch (desc & 3) {
10991         case 0: /* Page translation fault.  */
10992             fi->type = ARMFault_Translation;
10993             goto do_fault;
10994         case 1: /* 64k page.  */
10995             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10996             xn = desc & (1 << 15);
10997             *page_size = 0x10000;
10998             break;
10999         case 2: case 3: /* 4k page.  */
11000             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
11001             xn = desc & 1;
11002             *page_size = 0x1000;
11003             break;
11004         default:
11005             /* Never happens, but compiler isn't smart enough to tell.  */
11006             abort();
11007         }
11008     }
11009     if (domain_prot == 3) {
11010         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11011     } else {
11012         if (pxn && !regime_is_user(env, mmu_idx)) {
11013             xn = 1;
11014         }
11015         if (xn && access_type == MMU_INST_FETCH) {
11016             fi->type = ARMFault_Permission;
11017             goto do_fault;
11018         }
11019 
11020         if (arm_feature(env, ARM_FEATURE_V6K) &&
11021                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
11022             /* The simplified model uses AP[0] as an access control bit.  */
11023             if ((ap & 1) == 0) {
11024                 /* Access flag fault.  */
11025                 fi->type = ARMFault_AccessFlag;
11026                 goto do_fault;
11027             }
11028             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11029         } else {
11030             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11031         }
11032         if (*prot && !xn) {
11033             *prot |= PAGE_EXEC;
11034         }
11035         if (!(*prot & (1 << access_type))) {
11036             /* Access permission fault.  */
11037             fi->type = ARMFault_Permission;
11038             goto do_fault;
11039         }
11040     }
11041     if (ns) {
11042         /* The NS bit will (as required by the architecture) have no effect if
11043          * the CPU doesn't support TZ or this is a non-secure translation
11044          * regime, because the attribute will already be non-secure.
11045          */
11046         attrs->secure = false;
11047     }
11048     *phys_ptr = phys_addr;
11049     return false;
11050 do_fault:
11051     fi->domain = domain;
11052     fi->level = level;
11053     return true;
11054 }
11055 
11056 /*
11057  * check_s2_mmu_setup
11058  * @cpu:        ARMCPU
11059  * @is_aa64:    True if the translation regime is in AArch64 state
11060  * @startlevel: Suggested starting level
11061  * @inputsize:  Bitsize of IPAs
11062  * @stride:     Page-table stride (See the ARM ARM)
11063  *
11064  * Returns true if the suggested S2 translation parameters are OK and
11065  * false otherwise.
11066  */
11067 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11068                                int inputsize, int stride)
11069 {
11070     const int grainsize = stride + 3;
11071     int startsizecheck;
11072 
11073     /* Negative levels are never allowed.  */
11074     if (level < 0) {
11075         return false;
11076     }
11077 
11078     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11079     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11080         return false;
11081     }
11082 
11083     if (is_aa64) {
11084         CPUARMState *env = &cpu->env;
11085         unsigned int pamax = arm_pamax(cpu);
11086 
11087         switch (stride) {
11088         case 13: /* 64KB Pages.  */
11089             if (level == 0 || (level == 1 && pamax <= 42)) {
11090                 return false;
11091             }
11092             break;
11093         case 11: /* 16KB Pages.  */
11094             if (level == 0 || (level == 1 && pamax <= 40)) {
11095                 return false;
11096             }
11097             break;
11098         case 9: /* 4KB Pages.  */
11099             if (level == 0 && pamax <= 42) {
11100                 return false;
11101             }
11102             break;
11103         default:
11104             g_assert_not_reached();
11105         }
11106 
11107         /* Inputsize checks.  */
11108         if (inputsize > pamax &&
11109             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11110             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11111             return false;
11112         }
11113     } else {
11114         /* AArch32 only supports 4KB pages. Assert on that.  */
11115         assert(stride == 9);
11116 
11117         if (level == 0) {
11118             return false;
11119         }
11120     }
11121     return true;
11122 }
11123 
11124 /* Translate from the 4-bit stage 2 representation of
11125  * memory attributes (without cache-allocation hints) to
11126  * the 8-bit representation of the stage 1 MAIR registers
11127  * (which includes allocation hints).
11128  *
11129  * ref: shared/translation/attrs/S2AttrDecode()
11130  *      .../S2ConvertAttrsHints()
11131  */
11132 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11133 {
11134     uint8_t hiattr = extract32(s2attrs, 2, 2);
11135     uint8_t loattr = extract32(s2attrs, 0, 2);
11136     uint8_t hihint = 0, lohint = 0;
11137 
11138     if (hiattr != 0) { /* normal memory */
11139         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11140             hiattr = loattr = 1; /* non-cacheable */
11141         } else {
11142             if (hiattr != 1) { /* Write-through or write-back */
11143                 hihint = 3; /* RW allocate */
11144             }
11145             if (loattr != 1) { /* Write-through or write-back */
11146                 lohint = 3; /* RW allocate */
11147             }
11148         }
11149     }
11150 
11151     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11152 }
11153 #endif /* !CONFIG_USER_ONLY */
11154 
11155 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11156 {
11157     if (regime_has_2_ranges(mmu_idx)) {
11158         return extract64(tcr, 37, 2);
11159     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11160         return 0; /* VTCR_EL2 */
11161     } else {
11162         /* Replicate the single TBI bit so we always have 2 bits.  */
11163         return extract32(tcr, 20, 1) * 3;
11164     }
11165 }
11166 
11167 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11168 {
11169     if (regime_has_2_ranges(mmu_idx)) {
11170         return extract64(tcr, 51, 2);
11171     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11172         return 0; /* VTCR_EL2 */
11173     } else {
11174         /* Replicate the single TBID bit so we always have 2 bits.  */
11175         return extract32(tcr, 29, 1) * 3;
11176     }
11177 }
11178 
11179 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11180 {
11181     if (regime_has_2_ranges(mmu_idx)) {
11182         return extract64(tcr, 57, 2);
11183     } else {
11184         /* Replicate the single TCMA bit so we always have 2 bits.  */
11185         return extract32(tcr, 30, 1) * 3;
11186     }
11187 }
11188 
11189 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11190                                    ARMMMUIdx mmu_idx, bool data)
11191 {
11192     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11193     bool epd, hpd, using16k, using64k;
11194     int select, tsz, tbi, max_tsz;
11195 
11196     if (!regime_has_2_ranges(mmu_idx)) {
11197         select = 0;
11198         tsz = extract32(tcr, 0, 6);
11199         using64k = extract32(tcr, 14, 1);
11200         using16k = extract32(tcr, 15, 1);
11201         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11202             /* VTCR_EL2 */
11203             hpd = false;
11204         } else {
11205             hpd = extract32(tcr, 24, 1);
11206         }
11207         epd = false;
11208     } else {
11209         /*
11210          * Bit 55 is always between the two regions, and is canonical for
11211          * determining if address tagging is enabled.
11212          */
11213         select = extract64(va, 55, 1);
11214         if (!select) {
11215             tsz = extract32(tcr, 0, 6);
11216             epd = extract32(tcr, 7, 1);
11217             using64k = extract32(tcr, 14, 1);
11218             using16k = extract32(tcr, 15, 1);
11219             hpd = extract64(tcr, 41, 1);
11220         } else {
11221             int tg = extract32(tcr, 30, 2);
11222             using16k = tg == 1;
11223             using64k = tg == 3;
11224             tsz = extract32(tcr, 16, 6);
11225             epd = extract32(tcr, 23, 1);
11226             hpd = extract64(tcr, 42, 1);
11227         }
11228     }
11229 
11230     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11231         max_tsz = 48 - using64k;
11232     } else {
11233         max_tsz = 39;
11234     }
11235 
11236     tsz = MIN(tsz, max_tsz);
11237     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11238 
11239     /* Present TBI as a composite with TBID.  */
11240     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11241     if (!data) {
11242         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11243     }
11244     tbi = (tbi >> select) & 1;
11245 
11246     return (ARMVAParameters) {
11247         .tsz = tsz,
11248         .select = select,
11249         .tbi = tbi,
11250         .epd = epd,
11251         .hpd = hpd,
11252         .using16k = using16k,
11253         .using64k = using64k,
11254     };
11255 }
11256 
11257 #ifndef CONFIG_USER_ONLY
11258 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11259                                           ARMMMUIdx mmu_idx)
11260 {
11261     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11262     uint32_t el = regime_el(env, mmu_idx);
11263     int select, tsz;
11264     bool epd, hpd;
11265 
11266     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11267 
11268     if (mmu_idx == ARMMMUIdx_Stage2) {
11269         /* VTCR */
11270         bool sext = extract32(tcr, 4, 1);
11271         bool sign = extract32(tcr, 3, 1);
11272 
11273         /*
11274          * If the sign-extend bit is not the same as t0sz[3], the result
11275          * is unpredictable. Flag this as a guest error.
11276          */
11277         if (sign != sext) {
11278             qemu_log_mask(LOG_GUEST_ERROR,
11279                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11280         }
11281         tsz = sextract32(tcr, 0, 4) + 8;
11282         select = 0;
11283         hpd = false;
11284         epd = false;
11285     } else if (el == 2) {
11286         /* HTCR */
11287         tsz = extract32(tcr, 0, 3);
11288         select = 0;
11289         hpd = extract64(tcr, 24, 1);
11290         epd = false;
11291     } else {
11292         int t0sz = extract32(tcr, 0, 3);
11293         int t1sz = extract32(tcr, 16, 3);
11294 
11295         if (t1sz == 0) {
11296             select = va > (0xffffffffu >> t0sz);
11297         } else {
11298             /* Note that we will detect errors later.  */
11299             select = va >= ~(0xffffffffu >> t1sz);
11300         }
11301         if (!select) {
11302             tsz = t0sz;
11303             epd = extract32(tcr, 7, 1);
11304             hpd = extract64(tcr, 41, 1);
11305         } else {
11306             tsz = t1sz;
11307             epd = extract32(tcr, 23, 1);
11308             hpd = extract64(tcr, 42, 1);
11309         }
11310         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11311         hpd &= extract32(tcr, 6, 1);
11312     }
11313 
11314     return (ARMVAParameters) {
11315         .tsz = tsz,
11316         .select = select,
11317         .epd = epd,
11318         .hpd = hpd,
11319     };
11320 }
11321 
11322 /**
11323  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11324  *
11325  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11326  * prot and page_size may not be filled in, and the populated fsr value provides
11327  * information on why the translation aborted, in the format of a long-format
11328  * DFSR/IFSR fault register, with the following caveats:
11329  *  * the WnR bit is never set (the caller must do this).
11330  *
11331  * @env: CPUARMState
11332  * @address: virtual address to get physical address for
11333  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11334  * @mmu_idx: MMU index indicating required translation regime
11335  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11336  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11337  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11338  * @phys_ptr: set to the physical address corresponding to the virtual address
11339  * @attrs: set to the memory transaction attributes to use
11340  * @prot: set to the permissions for the page containing phys_ptr
11341  * @page_size_ptr: set to the size of the page containing phys_ptr
11342  * @fi: set to fault info if the translation fails
11343  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11344  */
11345 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11346                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11347                                bool s1_is_el0,
11348                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11349                                target_ulong *page_size_ptr,
11350                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11351 {
11352     ARMCPU *cpu = env_archcpu(env);
11353     CPUState *cs = CPU(cpu);
11354     /* Read an LPAE long-descriptor translation table. */
11355     ARMFaultType fault_type = ARMFault_Translation;
11356     uint32_t level;
11357     ARMVAParameters param;
11358     uint64_t ttbr;
11359     hwaddr descaddr, indexmask, indexmask_grainsize;
11360     uint32_t tableattrs;
11361     target_ulong page_size;
11362     uint32_t attrs;
11363     int32_t stride;
11364     int addrsize, inputsize;
11365     TCR *tcr = regime_tcr(env, mmu_idx);
11366     int ap, ns, xn, pxn;
11367     uint32_t el = regime_el(env, mmu_idx);
11368     uint64_t descaddrmask;
11369     bool aarch64 = arm_el_is_aa64(env, el);
11370     bool guarded = false;
11371 
11372     /* TODO: This code does not support shareability levels. */
11373     if (aarch64) {
11374         param = aa64_va_parameters(env, address, mmu_idx,
11375                                    access_type != MMU_INST_FETCH);
11376         level = 0;
11377         addrsize = 64 - 8 * param.tbi;
11378         inputsize = 64 - param.tsz;
11379     } else {
11380         param = aa32_va_parameters(env, address, mmu_idx);
11381         level = 1;
11382         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11383         inputsize = addrsize - param.tsz;
11384     }
11385 
11386     /*
11387      * We determined the region when collecting the parameters, but we
11388      * have not yet validated that the address is valid for the region.
11389      * Extract the top bits and verify that they all match select.
11390      *
11391      * For aa32, if inputsize == addrsize, then we have selected the
11392      * region by exclusion in aa32_va_parameters and there is no more
11393      * validation to do here.
11394      */
11395     if (inputsize < addrsize) {
11396         target_ulong top_bits = sextract64(address, inputsize,
11397                                            addrsize - inputsize);
11398         if (-top_bits != param.select) {
11399             /* The gap between the two regions is a Translation fault */
11400             fault_type = ARMFault_Translation;
11401             goto do_fault;
11402         }
11403     }
11404 
11405     if (param.using64k) {
11406         stride = 13;
11407     } else if (param.using16k) {
11408         stride = 11;
11409     } else {
11410         stride = 9;
11411     }
11412 
11413     /* Note that QEMU ignores shareability and cacheability attributes,
11414      * so we don't need to do anything with the SH, ORGN, IRGN fields
11415      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11416      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11417      * implement any ASID-like capability so we can ignore it (instead
11418      * we will always flush the TLB any time the ASID is changed).
11419      */
11420     ttbr = regime_ttbr(env, mmu_idx, param.select);
11421 
11422     /* Here we should have set up all the parameters for the translation:
11423      * inputsize, ttbr, epd, stride, tbi
11424      */
11425 
11426     if (param.epd) {
11427         /* Translation table walk disabled => Translation fault on TLB miss
11428          * Note: This is always 0 on 64-bit EL2 and EL3.
11429          */
11430         goto do_fault;
11431     }
11432 
11433     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11434         /* The starting level depends on the virtual address size (which can
11435          * be up to 48 bits) and the translation granule size. It indicates
11436          * the number of strides (stride bits at a time) needed to
11437          * consume the bits of the input address. In the pseudocode this is:
11438          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11439          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11440          * our 'stride + 3' and 'stride' is our 'stride'.
11441          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11442          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11443          * = 4 - (inputsize - 4) / stride;
11444          */
11445         level = 4 - (inputsize - 4) / stride;
11446     } else {
11447         /* For stage 2 translations the starting level is specified by the
11448          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11449          */
11450         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11451         uint32_t startlevel;
11452         bool ok;
11453 
11454         if (!aarch64 || stride == 9) {
11455             /* AArch32 or 4KB pages */
11456             startlevel = 2 - sl0;
11457 
11458             if (cpu_isar_feature(aa64_st, cpu)) {
11459                 startlevel &= 3;
11460             }
11461         } else {
11462             /* 16KB or 64KB pages */
11463             startlevel = 3 - sl0;
11464         }
11465 
11466         /* Check that the starting level is valid. */
11467         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11468                                 inputsize, stride);
11469         if (!ok) {
11470             fault_type = ARMFault_Translation;
11471             goto do_fault;
11472         }
11473         level = startlevel;
11474     }
11475 
11476     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11477     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11478 
11479     /* Now we can extract the actual base address from the TTBR */
11480     descaddr = extract64(ttbr, 0, 48);
11481     /*
11482      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11483      * and also to mask out CnP (bit 0) which could validly be non-zero.
11484      */
11485     descaddr &= ~indexmask;
11486 
11487     /* The address field in the descriptor goes up to bit 39 for ARMv7
11488      * but up to bit 47 for ARMv8, but we use the descaddrmask
11489      * up to bit 39 for AArch32, because we don't need other bits in that case
11490      * to construct next descriptor address (anyway they should be all zeroes).
11491      */
11492     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11493                    ~indexmask_grainsize;
11494 
11495     /* Secure accesses start with the page table in secure memory and
11496      * can be downgraded to non-secure at any step. Non-secure accesses
11497      * remain non-secure. We implement this by just ORing in the NSTable/NS
11498      * bits at each step.
11499      */
11500     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11501     for (;;) {
11502         uint64_t descriptor;
11503         bool nstable;
11504 
11505         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11506         descaddr &= ~7ULL;
11507         nstable = extract32(tableattrs, 4, 1);
11508         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11509         if (fi->type != ARMFault_None) {
11510             goto do_fault;
11511         }
11512 
11513         if (!(descriptor & 1) ||
11514             (!(descriptor & 2) && (level == 3))) {
11515             /* Invalid, or the Reserved level 3 encoding */
11516             goto do_fault;
11517         }
11518         descaddr = descriptor & descaddrmask;
11519 
11520         if ((descriptor & 2) && (level < 3)) {
11521             /* Table entry. The top five bits are attributes which may
11522              * propagate down through lower levels of the table (and
11523              * which are all arranged so that 0 means "no effect", so
11524              * we can gather them up by ORing in the bits at each level).
11525              */
11526             tableattrs |= extract64(descriptor, 59, 5);
11527             level++;
11528             indexmask = indexmask_grainsize;
11529             continue;
11530         }
11531         /* Block entry at level 1 or 2, or page entry at level 3.
11532          * These are basically the same thing, although the number
11533          * of bits we pull in from the vaddr varies.
11534          */
11535         page_size = (1ULL << ((stride * (4 - level)) + 3));
11536         descaddr |= (address & (page_size - 1));
11537         /* Extract attributes from the descriptor */
11538         attrs = extract64(descriptor, 2, 10)
11539             | (extract64(descriptor, 52, 12) << 10);
11540 
11541         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11542             /* Stage 2 table descriptors do not include any attribute fields */
11543             break;
11544         }
11545         /* Merge in attributes from table descriptors */
11546         attrs |= nstable << 3; /* NS */
11547         guarded = extract64(descriptor, 50, 1);  /* GP */
11548         if (param.hpd) {
11549             /* HPD disables all the table attributes except NSTable.  */
11550             break;
11551         }
11552         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11553         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11554          * means "force PL1 access only", which means forcing AP[1] to 0.
11555          */
11556         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11557         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11558         break;
11559     }
11560     /* Here descaddr is the final physical address, and attributes
11561      * are all in attrs.
11562      */
11563     fault_type = ARMFault_AccessFlag;
11564     if ((attrs & (1 << 8)) == 0) {
11565         /* Access flag */
11566         goto do_fault;
11567     }
11568 
11569     ap = extract32(attrs, 4, 2);
11570 
11571     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11572         ns = mmu_idx == ARMMMUIdx_Stage2;
11573         xn = extract32(attrs, 11, 2);
11574         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11575     } else {
11576         ns = extract32(attrs, 3, 1);
11577         xn = extract32(attrs, 12, 1);
11578         pxn = extract32(attrs, 11, 1);
11579         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11580     }
11581 
11582     fault_type = ARMFault_Permission;
11583     if (!(*prot & (1 << access_type))) {
11584         goto do_fault;
11585     }
11586 
11587     if (ns) {
11588         /* The NS bit will (as required by the architecture) have no effect if
11589          * the CPU doesn't support TZ or this is a non-secure translation
11590          * regime, because the attribute will already be non-secure.
11591          */
11592         txattrs->secure = false;
11593     }
11594     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11595     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11596         arm_tlb_bti_gp(txattrs) = true;
11597     }
11598 
11599     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11600         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11601     } else {
11602         /* Index into MAIR registers for cache attributes */
11603         uint8_t attrindx = extract32(attrs, 0, 3);
11604         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11605         assert(attrindx <= 7);
11606         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11607     }
11608     cacheattrs->shareability = extract32(attrs, 6, 2);
11609 
11610     *phys_ptr = descaddr;
11611     *page_size_ptr = page_size;
11612     return false;
11613 
11614 do_fault:
11615     fi->type = fault_type;
11616     fi->level = level;
11617     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11618     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11619                                mmu_idx == ARMMMUIdx_Stage2_S);
11620     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11621     return true;
11622 }
11623 
11624 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11625                                                 ARMMMUIdx mmu_idx,
11626                                                 int32_t address, int *prot)
11627 {
11628     if (!arm_feature(env, ARM_FEATURE_M)) {
11629         *prot = PAGE_READ | PAGE_WRITE;
11630         switch (address) {
11631         case 0xF0000000 ... 0xFFFFFFFF:
11632             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11633                 /* hivecs execing is ok */
11634                 *prot |= PAGE_EXEC;
11635             }
11636             break;
11637         case 0x00000000 ... 0x7FFFFFFF:
11638             *prot |= PAGE_EXEC;
11639             break;
11640         }
11641     } else {
11642         /* Default system address map for M profile cores.
11643          * The architecture specifies which regions are execute-never;
11644          * at the MPU level no other checks are defined.
11645          */
11646         switch (address) {
11647         case 0x00000000 ... 0x1fffffff: /* ROM */
11648         case 0x20000000 ... 0x3fffffff: /* SRAM */
11649         case 0x60000000 ... 0x7fffffff: /* RAM */
11650         case 0x80000000 ... 0x9fffffff: /* RAM */
11651             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11652             break;
11653         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11654         case 0xa0000000 ... 0xbfffffff: /* Device */
11655         case 0xc0000000 ... 0xdfffffff: /* Device */
11656         case 0xe0000000 ... 0xffffffff: /* System */
11657             *prot = PAGE_READ | PAGE_WRITE;
11658             break;
11659         default:
11660             g_assert_not_reached();
11661         }
11662     }
11663 }
11664 
11665 static bool pmsav7_use_background_region(ARMCPU *cpu,
11666                                          ARMMMUIdx mmu_idx, bool is_user)
11667 {
11668     /* Return true if we should use the default memory map as a
11669      * "background" region if there are no hits against any MPU regions.
11670      */
11671     CPUARMState *env = &cpu->env;
11672 
11673     if (is_user) {
11674         return false;
11675     }
11676 
11677     if (arm_feature(env, ARM_FEATURE_M)) {
11678         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11679             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11680     } else {
11681         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11682     }
11683 }
11684 
11685 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11686 {
11687     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11688     return arm_feature(env, ARM_FEATURE_M) &&
11689         extract32(address, 20, 12) == 0xe00;
11690 }
11691 
11692 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11693 {
11694     /* True if address is in the M profile system region
11695      * 0xe0000000 - 0xffffffff
11696      */
11697     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11698 }
11699 
11700 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11701                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11702                                  hwaddr *phys_ptr, int *prot,
11703                                  target_ulong *page_size,
11704                                  ARMMMUFaultInfo *fi)
11705 {
11706     ARMCPU *cpu = env_archcpu(env);
11707     int n;
11708     bool is_user = regime_is_user(env, mmu_idx);
11709 
11710     *phys_ptr = address;
11711     *page_size = TARGET_PAGE_SIZE;
11712     *prot = 0;
11713 
11714     if (regime_translation_disabled(env, mmu_idx) ||
11715         m_is_ppb_region(env, address)) {
11716         /* MPU disabled or M profile PPB access: use default memory map.
11717          * The other case which uses the default memory map in the
11718          * v7M ARM ARM pseudocode is exception vector reads from the vector
11719          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11720          * which always does a direct read using address_space_ldl(), rather
11721          * than going via this function, so we don't need to check that here.
11722          */
11723         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11724     } else { /* MPU enabled */
11725         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11726             /* region search */
11727             uint32_t base = env->pmsav7.drbar[n];
11728             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11729             uint32_t rmask;
11730             bool srdis = false;
11731 
11732             if (!(env->pmsav7.drsr[n] & 0x1)) {
11733                 continue;
11734             }
11735 
11736             if (!rsize) {
11737                 qemu_log_mask(LOG_GUEST_ERROR,
11738                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11739                 continue;
11740             }
11741             rsize++;
11742             rmask = (1ull << rsize) - 1;
11743 
11744             if (base & rmask) {
11745                 qemu_log_mask(LOG_GUEST_ERROR,
11746                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11747                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11748                               n, base, rmask);
11749                 continue;
11750             }
11751 
11752             if (address < base || address > base + rmask) {
11753                 /*
11754                  * Address not in this region. We must check whether the
11755                  * region covers addresses in the same page as our address.
11756                  * In that case we must not report a size that covers the
11757                  * whole page for a subsequent hit against a different MPU
11758                  * region or the background region, because it would result in
11759                  * incorrect TLB hits for subsequent accesses to addresses that
11760                  * are in this MPU region.
11761                  */
11762                 if (ranges_overlap(base, rmask,
11763                                    address & TARGET_PAGE_MASK,
11764                                    TARGET_PAGE_SIZE)) {
11765                     *page_size = 1;
11766                 }
11767                 continue;
11768             }
11769 
11770             /* Region matched */
11771 
11772             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11773                 int i, snd;
11774                 uint32_t srdis_mask;
11775 
11776                 rsize -= 3; /* sub region size (power of 2) */
11777                 snd = ((address - base) >> rsize) & 0x7;
11778                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11779 
11780                 srdis_mask = srdis ? 0x3 : 0x0;
11781                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11782                     /* This will check in groups of 2, 4 and then 8, whether
11783                      * the subregion bits are consistent. rsize is incremented
11784                      * back up to give the region size, considering consistent
11785                      * adjacent subregions as one region. Stop testing if rsize
11786                      * is already big enough for an entire QEMU page.
11787                      */
11788                     int snd_rounded = snd & ~(i - 1);
11789                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11790                                                      snd_rounded + 8, i);
11791                     if (srdis_mask ^ srdis_multi) {
11792                         break;
11793                     }
11794                     srdis_mask = (srdis_mask << i) | srdis_mask;
11795                     rsize++;
11796                 }
11797             }
11798             if (srdis) {
11799                 continue;
11800             }
11801             if (rsize < TARGET_PAGE_BITS) {
11802                 *page_size = 1 << rsize;
11803             }
11804             break;
11805         }
11806 
11807         if (n == -1) { /* no hits */
11808             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11809                 /* background fault */
11810                 fi->type = ARMFault_Background;
11811                 return true;
11812             }
11813             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11814         } else { /* a MPU hit! */
11815             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11816             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11817 
11818             if (m_is_system_region(env, address)) {
11819                 /* System space is always execute never */
11820                 xn = 1;
11821             }
11822 
11823             if (is_user) { /* User mode AP bit decoding */
11824                 switch (ap) {
11825                 case 0:
11826                 case 1:
11827                 case 5:
11828                     break; /* no access */
11829                 case 3:
11830                     *prot |= PAGE_WRITE;
11831                     /* fall through */
11832                 case 2:
11833                 case 6:
11834                     *prot |= PAGE_READ | PAGE_EXEC;
11835                     break;
11836                 case 7:
11837                     /* for v7M, same as 6; for R profile a reserved value */
11838                     if (arm_feature(env, ARM_FEATURE_M)) {
11839                         *prot |= PAGE_READ | PAGE_EXEC;
11840                         break;
11841                     }
11842                     /* fall through */
11843                 default:
11844                     qemu_log_mask(LOG_GUEST_ERROR,
11845                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11846                                   PRIx32 "\n", n, ap);
11847                 }
11848             } else { /* Priv. mode AP bits decoding */
11849                 switch (ap) {
11850                 case 0:
11851                     break; /* no access */
11852                 case 1:
11853                 case 2:
11854                 case 3:
11855                     *prot |= PAGE_WRITE;
11856                     /* fall through */
11857                 case 5:
11858                 case 6:
11859                     *prot |= PAGE_READ | PAGE_EXEC;
11860                     break;
11861                 case 7:
11862                     /* for v7M, same as 6; for R profile a reserved value */
11863                     if (arm_feature(env, ARM_FEATURE_M)) {
11864                         *prot |= PAGE_READ | PAGE_EXEC;
11865                         break;
11866                     }
11867                     /* fall through */
11868                 default:
11869                     qemu_log_mask(LOG_GUEST_ERROR,
11870                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11871                                   PRIx32 "\n", n, ap);
11872                 }
11873             }
11874 
11875             /* execute never */
11876             if (xn) {
11877                 *prot &= ~PAGE_EXEC;
11878             }
11879         }
11880     }
11881 
11882     fi->type = ARMFault_Permission;
11883     fi->level = 1;
11884     return !(*prot & (1 << access_type));
11885 }
11886 
11887 static bool v8m_is_sau_exempt(CPUARMState *env,
11888                               uint32_t address, MMUAccessType access_type)
11889 {
11890     /* The architecture specifies that certain address ranges are
11891      * exempt from v8M SAU/IDAU checks.
11892      */
11893     return
11894         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11895         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11896         (address >= 0xe000e000 && address <= 0xe000efff) ||
11897         (address >= 0xe002e000 && address <= 0xe002efff) ||
11898         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11899         (address >= 0xe00ff000 && address <= 0xe00fffff);
11900 }
11901 
11902 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11903                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11904                                 V8M_SAttributes *sattrs)
11905 {
11906     /* Look up the security attributes for this address. Compare the
11907      * pseudocode SecurityCheck() function.
11908      * We assume the caller has zero-initialized *sattrs.
11909      */
11910     ARMCPU *cpu = env_archcpu(env);
11911     int r;
11912     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11913     int idau_region = IREGION_NOTVALID;
11914     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11915     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11916 
11917     if (cpu->idau) {
11918         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11919         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11920 
11921         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11922                    &idau_nsc);
11923     }
11924 
11925     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11926         /* 0xf0000000..0xffffffff is always S for insn fetches */
11927         return;
11928     }
11929 
11930     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11931         sattrs->ns = !regime_is_secure(env, mmu_idx);
11932         return;
11933     }
11934 
11935     if (idau_region != IREGION_NOTVALID) {
11936         sattrs->irvalid = true;
11937         sattrs->iregion = idau_region;
11938     }
11939 
11940     switch (env->sau.ctrl & 3) {
11941     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11942         break;
11943     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11944         sattrs->ns = true;
11945         break;
11946     default: /* SAU.ENABLE == 1 */
11947         for (r = 0; r < cpu->sau_sregion; r++) {
11948             if (env->sau.rlar[r] & 1) {
11949                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11950                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11951 
11952                 if (base <= address && limit >= address) {
11953                     if (base > addr_page_base || limit < addr_page_limit) {
11954                         sattrs->subpage = true;
11955                     }
11956                     if (sattrs->srvalid) {
11957                         /* If we hit in more than one region then we must report
11958                          * as Secure, not NS-Callable, with no valid region
11959                          * number info.
11960                          */
11961                         sattrs->ns = false;
11962                         sattrs->nsc = false;
11963                         sattrs->sregion = 0;
11964                         sattrs->srvalid = false;
11965                         break;
11966                     } else {
11967                         if (env->sau.rlar[r] & 2) {
11968                             sattrs->nsc = true;
11969                         } else {
11970                             sattrs->ns = true;
11971                         }
11972                         sattrs->srvalid = true;
11973                         sattrs->sregion = r;
11974                     }
11975                 } else {
11976                     /*
11977                      * Address not in this region. We must check whether the
11978                      * region covers addresses in the same page as our address.
11979                      * In that case we must not report a size that covers the
11980                      * whole page for a subsequent hit against a different MPU
11981                      * region or the background region, because it would result
11982                      * in incorrect TLB hits for subsequent accesses to
11983                      * addresses that are in this MPU region.
11984                      */
11985                     if (limit >= base &&
11986                         ranges_overlap(base, limit - base + 1,
11987                                        addr_page_base,
11988                                        TARGET_PAGE_SIZE)) {
11989                         sattrs->subpage = true;
11990                     }
11991                 }
11992             }
11993         }
11994         break;
11995     }
11996 
11997     /*
11998      * The IDAU will override the SAU lookup results if it specifies
11999      * higher security than the SAU does.
12000      */
12001     if (!idau_ns) {
12002         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
12003             sattrs->ns = false;
12004             sattrs->nsc = idau_nsc;
12005         }
12006     }
12007 }
12008 
12009 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
12010                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
12011                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
12012                               int *prot, bool *is_subpage,
12013                               ARMMMUFaultInfo *fi, uint32_t *mregion)
12014 {
12015     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
12016      * that a full phys-to-virt translation does).
12017      * mregion is (if not NULL) set to the region number which matched,
12018      * or -1 if no region number is returned (MPU off, address did not
12019      * hit a region, address hit in multiple regions).
12020      * We set is_subpage to true if the region hit doesn't cover the
12021      * entire TARGET_PAGE the address is within.
12022      */
12023     ARMCPU *cpu = env_archcpu(env);
12024     bool is_user = regime_is_user(env, mmu_idx);
12025     uint32_t secure = regime_is_secure(env, mmu_idx);
12026     int n;
12027     int matchregion = -1;
12028     bool hit = false;
12029     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12030     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12031 
12032     *is_subpage = false;
12033     *phys_ptr = address;
12034     *prot = 0;
12035     if (mregion) {
12036         *mregion = -1;
12037     }
12038 
12039     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12040      * was an exception vector read from the vector table (which is always
12041      * done using the default system address map), because those accesses
12042      * are done in arm_v7m_load_vector(), which always does a direct
12043      * read using address_space_ldl(), rather than going via this function.
12044      */
12045     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12046         hit = true;
12047     } else if (m_is_ppb_region(env, address)) {
12048         hit = true;
12049     } else {
12050         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12051             hit = true;
12052         }
12053 
12054         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12055             /* region search */
12056             /* Note that the base address is bits [31:5] from the register
12057              * with bits [4:0] all zeroes, but the limit address is bits
12058              * [31:5] from the register with bits [4:0] all ones.
12059              */
12060             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12061             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12062 
12063             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12064                 /* Region disabled */
12065                 continue;
12066             }
12067 
12068             if (address < base || address > limit) {
12069                 /*
12070                  * Address not in this region. We must check whether the
12071                  * region covers addresses in the same page as our address.
12072                  * In that case we must not report a size that covers the
12073                  * whole page for a subsequent hit against a different MPU
12074                  * region or the background region, because it would result in
12075                  * incorrect TLB hits for subsequent accesses to addresses that
12076                  * are in this MPU region.
12077                  */
12078                 if (limit >= base &&
12079                     ranges_overlap(base, limit - base + 1,
12080                                    addr_page_base,
12081                                    TARGET_PAGE_SIZE)) {
12082                     *is_subpage = true;
12083                 }
12084                 continue;
12085             }
12086 
12087             if (base > addr_page_base || limit < addr_page_limit) {
12088                 *is_subpage = true;
12089             }
12090 
12091             if (matchregion != -1) {
12092                 /* Multiple regions match -- always a failure (unlike
12093                  * PMSAv7 where highest-numbered-region wins)
12094                  */
12095                 fi->type = ARMFault_Permission;
12096                 fi->level = 1;
12097                 return true;
12098             }
12099 
12100             matchregion = n;
12101             hit = true;
12102         }
12103     }
12104 
12105     if (!hit) {
12106         /* background fault */
12107         fi->type = ARMFault_Background;
12108         return true;
12109     }
12110 
12111     if (matchregion == -1) {
12112         /* hit using the background region */
12113         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12114     } else {
12115         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12116         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12117         bool pxn = false;
12118 
12119         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12120             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12121         }
12122 
12123         if (m_is_system_region(env, address)) {
12124             /* System space is always execute never */
12125             xn = 1;
12126         }
12127 
12128         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12129         if (*prot && !xn && !(pxn && !is_user)) {
12130             *prot |= PAGE_EXEC;
12131         }
12132         /* We don't need to look the attribute up in the MAIR0/MAIR1
12133          * registers because that only tells us about cacheability.
12134          */
12135         if (mregion) {
12136             *mregion = matchregion;
12137         }
12138     }
12139 
12140     fi->type = ARMFault_Permission;
12141     fi->level = 1;
12142     return !(*prot & (1 << access_type));
12143 }
12144 
12145 
12146 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12147                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12148                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12149                                  int *prot, target_ulong *page_size,
12150                                  ARMMMUFaultInfo *fi)
12151 {
12152     uint32_t secure = regime_is_secure(env, mmu_idx);
12153     V8M_SAttributes sattrs = {};
12154     bool ret;
12155     bool mpu_is_subpage;
12156 
12157     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12158         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12159         if (access_type == MMU_INST_FETCH) {
12160             /* Instruction fetches always use the MMU bank and the
12161              * transaction attribute determined by the fetch address,
12162              * regardless of CPU state. This is painful for QEMU
12163              * to handle, because it would mean we need to encode
12164              * into the mmu_idx not just the (user, negpri) information
12165              * for the current security state but also that for the
12166              * other security state, which would balloon the number
12167              * of mmu_idx values needed alarmingly.
12168              * Fortunately we can avoid this because it's not actually
12169              * possible to arbitrarily execute code from memory with
12170              * the wrong security attribute: it will always generate
12171              * an exception of some kind or another, apart from the
12172              * special case of an NS CPU executing an SG instruction
12173              * in S&NSC memory. So we always just fail the translation
12174              * here and sort things out in the exception handler
12175              * (including possibly emulating an SG instruction).
12176              */
12177             if (sattrs.ns != !secure) {
12178                 if (sattrs.nsc) {
12179                     fi->type = ARMFault_QEMU_NSCExec;
12180                 } else {
12181                     fi->type = ARMFault_QEMU_SFault;
12182                 }
12183                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12184                 *phys_ptr = address;
12185                 *prot = 0;
12186                 return true;
12187             }
12188         } else {
12189             /* For data accesses we always use the MMU bank indicated
12190              * by the current CPU state, but the security attributes
12191              * might downgrade a secure access to nonsecure.
12192              */
12193             if (sattrs.ns) {
12194                 txattrs->secure = false;
12195             } else if (!secure) {
12196                 /* NS access to S memory must fault.
12197                  * Architecturally we should first check whether the
12198                  * MPU information for this address indicates that we
12199                  * are doing an unaligned access to Device memory, which
12200                  * should generate a UsageFault instead. QEMU does not
12201                  * currently check for that kind of unaligned access though.
12202                  * If we added it we would need to do so as a special case
12203                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12204                  */
12205                 fi->type = ARMFault_QEMU_SFault;
12206                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12207                 *phys_ptr = address;
12208                 *prot = 0;
12209                 return true;
12210             }
12211         }
12212     }
12213 
12214     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12215                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12216     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12217     return ret;
12218 }
12219 
12220 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12221                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12222                                  hwaddr *phys_ptr, int *prot,
12223                                  ARMMMUFaultInfo *fi)
12224 {
12225     int n;
12226     uint32_t mask;
12227     uint32_t base;
12228     bool is_user = regime_is_user(env, mmu_idx);
12229 
12230     if (regime_translation_disabled(env, mmu_idx)) {
12231         /* MPU disabled.  */
12232         *phys_ptr = address;
12233         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12234         return false;
12235     }
12236 
12237     *phys_ptr = address;
12238     for (n = 7; n >= 0; n--) {
12239         base = env->cp15.c6_region[n];
12240         if ((base & 1) == 0) {
12241             continue;
12242         }
12243         mask = 1 << ((base >> 1) & 0x1f);
12244         /* Keep this shift separate from the above to avoid an
12245            (undefined) << 32.  */
12246         mask = (mask << 1) - 1;
12247         if (((base ^ address) & ~mask) == 0) {
12248             break;
12249         }
12250     }
12251     if (n < 0) {
12252         fi->type = ARMFault_Background;
12253         return true;
12254     }
12255 
12256     if (access_type == MMU_INST_FETCH) {
12257         mask = env->cp15.pmsav5_insn_ap;
12258     } else {
12259         mask = env->cp15.pmsav5_data_ap;
12260     }
12261     mask = (mask >> (n * 4)) & 0xf;
12262     switch (mask) {
12263     case 0:
12264         fi->type = ARMFault_Permission;
12265         fi->level = 1;
12266         return true;
12267     case 1:
12268         if (is_user) {
12269             fi->type = ARMFault_Permission;
12270             fi->level = 1;
12271             return true;
12272         }
12273         *prot = PAGE_READ | PAGE_WRITE;
12274         break;
12275     case 2:
12276         *prot = PAGE_READ;
12277         if (!is_user) {
12278             *prot |= PAGE_WRITE;
12279         }
12280         break;
12281     case 3:
12282         *prot = PAGE_READ | PAGE_WRITE;
12283         break;
12284     case 5:
12285         if (is_user) {
12286             fi->type = ARMFault_Permission;
12287             fi->level = 1;
12288             return true;
12289         }
12290         *prot = PAGE_READ;
12291         break;
12292     case 6:
12293         *prot = PAGE_READ;
12294         break;
12295     default:
12296         /* Bad permission.  */
12297         fi->type = ARMFault_Permission;
12298         fi->level = 1;
12299         return true;
12300     }
12301     *prot |= PAGE_EXEC;
12302     return false;
12303 }
12304 
12305 /* Combine either inner or outer cacheability attributes for normal
12306  * memory, according to table D4-42 and pseudocode procedure
12307  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12308  *
12309  * NB: only stage 1 includes allocation hints (RW bits), leading to
12310  * some asymmetry.
12311  */
12312 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12313 {
12314     if (s1 == 4 || s2 == 4) {
12315         /* non-cacheable has precedence */
12316         return 4;
12317     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12318         /* stage 1 write-through takes precedence */
12319         return s1;
12320     } else if (extract32(s2, 2, 2) == 2) {
12321         /* stage 2 write-through takes precedence, but the allocation hint
12322          * is still taken from stage 1
12323          */
12324         return (2 << 2) | extract32(s1, 0, 2);
12325     } else { /* write-back */
12326         return s1;
12327     }
12328 }
12329 
12330 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12331  * and CombineS1S2Desc()
12332  *
12333  * @s1:      Attributes from stage 1 walk
12334  * @s2:      Attributes from stage 2 walk
12335  */
12336 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12337 {
12338     uint8_t s1lo, s2lo, s1hi, s2hi;
12339     ARMCacheAttrs ret;
12340     bool tagged = false;
12341 
12342     if (s1.attrs == 0xf0) {
12343         tagged = true;
12344         s1.attrs = 0xff;
12345     }
12346 
12347     s1lo = extract32(s1.attrs, 0, 4);
12348     s2lo = extract32(s2.attrs, 0, 4);
12349     s1hi = extract32(s1.attrs, 4, 4);
12350     s2hi = extract32(s2.attrs, 4, 4);
12351 
12352     /* Combine shareability attributes (table D4-43) */
12353     if (s1.shareability == 2 || s2.shareability == 2) {
12354         /* if either are outer-shareable, the result is outer-shareable */
12355         ret.shareability = 2;
12356     } else if (s1.shareability == 3 || s2.shareability == 3) {
12357         /* if either are inner-shareable, the result is inner-shareable */
12358         ret.shareability = 3;
12359     } else {
12360         /* both non-shareable */
12361         ret.shareability = 0;
12362     }
12363 
12364     /* Combine memory type and cacheability attributes */
12365     if (s1hi == 0 || s2hi == 0) {
12366         /* Device has precedence over normal */
12367         if (s1lo == 0 || s2lo == 0) {
12368             /* nGnRnE has precedence over anything */
12369             ret.attrs = 0;
12370         } else if (s1lo == 4 || s2lo == 4) {
12371             /* non-Reordering has precedence over Reordering */
12372             ret.attrs = 4;  /* nGnRE */
12373         } else if (s1lo == 8 || s2lo == 8) {
12374             /* non-Gathering has precedence over Gathering */
12375             ret.attrs = 8;  /* nGRE */
12376         } else {
12377             ret.attrs = 0xc; /* GRE */
12378         }
12379 
12380         /* Any location for which the resultant memory type is any
12381          * type of Device memory is always treated as Outer Shareable.
12382          */
12383         ret.shareability = 2;
12384     } else { /* Normal memory */
12385         /* Outer/inner cacheability combine independently */
12386         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12387                   | combine_cacheattr_nibble(s1lo, s2lo);
12388 
12389         if (ret.attrs == 0x44) {
12390             /* Any location for which the resultant memory type is Normal
12391              * Inner Non-cacheable, Outer Non-cacheable is always treated
12392              * as Outer Shareable.
12393              */
12394             ret.shareability = 2;
12395         }
12396     }
12397 
12398     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12399     if (tagged && ret.attrs == 0xff) {
12400         ret.attrs = 0xf0;
12401     }
12402 
12403     return ret;
12404 }
12405 
12406 
12407 /* get_phys_addr - get the physical address for this virtual address
12408  *
12409  * Find the physical address corresponding to the given virtual address,
12410  * by doing a translation table walk on MMU based systems or using the
12411  * MPU state on MPU based systems.
12412  *
12413  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12414  * prot and page_size may not be filled in, and the populated fsr value provides
12415  * information on why the translation aborted, in the format of a
12416  * DFSR/IFSR fault register, with the following caveats:
12417  *  * we honour the short vs long DFSR format differences.
12418  *  * the WnR bit is never set (the caller must do this).
12419  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12420  *    value.
12421  *
12422  * @env: CPUARMState
12423  * @address: virtual address to get physical address for
12424  * @access_type: 0 for read, 1 for write, 2 for execute
12425  * @mmu_idx: MMU index indicating required translation regime
12426  * @phys_ptr: set to the physical address corresponding to the virtual address
12427  * @attrs: set to the memory transaction attributes to use
12428  * @prot: set to the permissions for the page containing phys_ptr
12429  * @page_size: set to the size of the page containing phys_ptr
12430  * @fi: set to fault info if the translation fails
12431  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12432  */
12433 bool get_phys_addr(CPUARMState *env, target_ulong address,
12434                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12435                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12436                    target_ulong *page_size,
12437                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12438 {
12439     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12440 
12441     if (mmu_idx != s1_mmu_idx) {
12442         /* Call ourselves recursively to do the stage 1 and then stage 2
12443          * translations if mmu_idx is a two-stage regime.
12444          */
12445         if (arm_feature(env, ARM_FEATURE_EL2)) {
12446             hwaddr ipa;
12447             int s2_prot;
12448             int ret;
12449             ARMCacheAttrs cacheattrs2 = {};
12450             ARMMMUIdx s2_mmu_idx;
12451             bool is_el0;
12452 
12453             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12454                                 attrs, prot, page_size, fi, cacheattrs);
12455 
12456             /* If S1 fails or S2 is disabled, return early.  */
12457             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12458                 *phys_ptr = ipa;
12459                 return ret;
12460             }
12461 
12462             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12463             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12464 
12465             /* S1 is done. Now do S2 translation.  */
12466             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12467                                      phys_ptr, attrs, &s2_prot,
12468                                      page_size, fi, &cacheattrs2);
12469             fi->s2addr = ipa;
12470             /* Combine the S1 and S2 perms.  */
12471             *prot &= s2_prot;
12472 
12473             /* If S2 fails, return early.  */
12474             if (ret) {
12475                 return ret;
12476             }
12477 
12478             /* Combine the S1 and S2 cache attributes. */
12479             if (arm_hcr_el2_eff(env) & HCR_DC) {
12480                 /*
12481                  * HCR.DC forces the first stage attributes to
12482                  *  Normal Non-Shareable,
12483                  *  Inner Write-Back Read-Allocate Write-Allocate,
12484                  *  Outer Write-Back Read-Allocate Write-Allocate.
12485                  * Do not overwrite Tagged within attrs.
12486                  */
12487                 if (cacheattrs->attrs != 0xf0) {
12488                     cacheattrs->attrs = 0xff;
12489                 }
12490                 cacheattrs->shareability = 0;
12491             }
12492             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12493 
12494             /* Check if IPA translates to secure or non-secure PA space. */
12495             if (arm_is_secure_below_el3(env)) {
12496                 if (attrs->secure) {
12497                     attrs->secure =
12498                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12499                 } else {
12500                     attrs->secure =
12501                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12502                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12503                 }
12504             }
12505             return 0;
12506         } else {
12507             /*
12508              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12509              */
12510             mmu_idx = stage_1_mmu_idx(mmu_idx);
12511         }
12512     }
12513 
12514     /* The page table entries may downgrade secure to non-secure, but
12515      * cannot upgrade an non-secure translation regime's attributes
12516      * to secure.
12517      */
12518     attrs->secure = regime_is_secure(env, mmu_idx);
12519     attrs->user = regime_is_user(env, mmu_idx);
12520 
12521     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12522      * In v7 and earlier it affects all stage 1 translations.
12523      */
12524     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12525         && !arm_feature(env, ARM_FEATURE_V8)) {
12526         if (regime_el(env, mmu_idx) == 3) {
12527             address += env->cp15.fcseidr_s;
12528         } else {
12529             address += env->cp15.fcseidr_ns;
12530         }
12531     }
12532 
12533     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12534         bool ret;
12535         *page_size = TARGET_PAGE_SIZE;
12536 
12537         if (arm_feature(env, ARM_FEATURE_V8)) {
12538             /* PMSAv8 */
12539             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12540                                        phys_ptr, attrs, prot, page_size, fi);
12541         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12542             /* PMSAv7 */
12543             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12544                                        phys_ptr, prot, page_size, fi);
12545         } else {
12546             /* Pre-v7 MPU */
12547             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12548                                        phys_ptr, prot, fi);
12549         }
12550         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12551                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12552                       access_type == MMU_DATA_LOAD ? "reading" :
12553                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12554                       (uint32_t)address, mmu_idx,
12555                       ret ? "Miss" : "Hit",
12556                       *prot & PAGE_READ ? 'r' : '-',
12557                       *prot & PAGE_WRITE ? 'w' : '-',
12558                       *prot & PAGE_EXEC ? 'x' : '-');
12559 
12560         return ret;
12561     }
12562 
12563     /* Definitely a real MMU, not an MPU */
12564 
12565     if (regime_translation_disabled(env, mmu_idx)) {
12566         uint64_t hcr;
12567         uint8_t memattr;
12568 
12569         /*
12570          * MMU disabled.  S1 addresses within aa64 translation regimes are
12571          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12572          */
12573         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12574             int r_el = regime_el(env, mmu_idx);
12575             if (arm_el_is_aa64(env, r_el)) {
12576                 int pamax = arm_pamax(env_archcpu(env));
12577                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12578                 int addrtop, tbi;
12579 
12580                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12581                 if (access_type == MMU_INST_FETCH) {
12582                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12583                 }
12584                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12585                 addrtop = (tbi ? 55 : 63);
12586 
12587                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12588                     fi->type = ARMFault_AddressSize;
12589                     fi->level = 0;
12590                     fi->stage2 = false;
12591                     return 1;
12592                 }
12593 
12594                 /*
12595                  * When TBI is disabled, we've just validated that all of the
12596                  * bits above PAMax are zero, so logically we only need to
12597                  * clear the top byte for TBI.  But it's clearer to follow
12598                  * the pseudocode set of addrdesc.paddress.
12599                  */
12600                 address = extract64(address, 0, 52);
12601             }
12602         }
12603         *phys_ptr = address;
12604         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12605         *page_size = TARGET_PAGE_SIZE;
12606 
12607         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12608         hcr = arm_hcr_el2_eff(env);
12609         cacheattrs->shareability = 0;
12610         if (hcr & HCR_DC) {
12611             if (hcr & HCR_DCT) {
12612                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12613             } else {
12614                 memattr = 0xff;  /* Normal, WB, RWA */
12615             }
12616         } else if (access_type == MMU_INST_FETCH) {
12617             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12618                 memattr = 0xee;  /* Normal, WT, RA, NT */
12619             } else {
12620                 memattr = 0x44;  /* Normal, NC, No */
12621             }
12622             cacheattrs->shareability = 2; /* outer sharable */
12623         } else {
12624             memattr = 0x00;      /* Device, nGnRnE */
12625         }
12626         cacheattrs->attrs = memattr;
12627         return 0;
12628     }
12629 
12630     if (regime_using_lpae_format(env, mmu_idx)) {
12631         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12632                                   phys_ptr, attrs, prot, page_size,
12633                                   fi, cacheattrs);
12634     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12635         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12636                                 phys_ptr, attrs, prot, page_size, fi);
12637     } else {
12638         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12639                                     phys_ptr, prot, page_size, fi);
12640     }
12641 }
12642 
12643 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12644                                          MemTxAttrs *attrs)
12645 {
12646     ARMCPU *cpu = ARM_CPU(cs);
12647     CPUARMState *env = &cpu->env;
12648     hwaddr phys_addr;
12649     target_ulong page_size;
12650     int prot;
12651     bool ret;
12652     ARMMMUFaultInfo fi = {};
12653     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12654     ARMCacheAttrs cacheattrs = {};
12655 
12656     *attrs = (MemTxAttrs) {};
12657 
12658     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12659                         attrs, &prot, &page_size, &fi, &cacheattrs);
12660 
12661     if (ret) {
12662         return -1;
12663     }
12664     return phys_addr;
12665 }
12666 
12667 #endif
12668 
12669 /* Note that signed overflow is undefined in C.  The following routines are
12670    careful to use unsigned types where modulo arithmetic is required.
12671    Failure to do so _will_ break on newer gcc.  */
12672 
12673 /* Signed saturating arithmetic.  */
12674 
12675 /* Perform 16-bit signed saturating addition.  */
12676 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12677 {
12678     uint16_t res;
12679 
12680     res = a + b;
12681     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12682         if (a & 0x8000)
12683             res = 0x8000;
12684         else
12685             res = 0x7fff;
12686     }
12687     return res;
12688 }
12689 
12690 /* Perform 8-bit signed saturating addition.  */
12691 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12692 {
12693     uint8_t res;
12694 
12695     res = a + b;
12696     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12697         if (a & 0x80)
12698             res = 0x80;
12699         else
12700             res = 0x7f;
12701     }
12702     return res;
12703 }
12704 
12705 /* Perform 16-bit signed saturating subtraction.  */
12706 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12707 {
12708     uint16_t res;
12709 
12710     res = a - b;
12711     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12712         if (a & 0x8000)
12713             res = 0x8000;
12714         else
12715             res = 0x7fff;
12716     }
12717     return res;
12718 }
12719 
12720 /* Perform 8-bit signed saturating subtraction.  */
12721 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12722 {
12723     uint8_t res;
12724 
12725     res = a - b;
12726     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12727         if (a & 0x80)
12728             res = 0x80;
12729         else
12730             res = 0x7f;
12731     }
12732     return res;
12733 }
12734 
12735 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12736 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12737 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12738 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12739 #define PFX q
12740 
12741 #include "op_addsub.h"
12742 
12743 /* Unsigned saturating arithmetic.  */
12744 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12745 {
12746     uint16_t res;
12747     res = a + b;
12748     if (res < a)
12749         res = 0xffff;
12750     return res;
12751 }
12752 
12753 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12754 {
12755     if (a > b)
12756         return a - b;
12757     else
12758         return 0;
12759 }
12760 
12761 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12762 {
12763     uint8_t res;
12764     res = a + b;
12765     if (res < a)
12766         res = 0xff;
12767     return res;
12768 }
12769 
12770 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12771 {
12772     if (a > b)
12773         return a - b;
12774     else
12775         return 0;
12776 }
12777 
12778 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12779 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12780 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12781 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12782 #define PFX uq
12783 
12784 #include "op_addsub.h"
12785 
12786 /* Signed modulo arithmetic.  */
12787 #define SARITH16(a, b, n, op) do { \
12788     int32_t sum; \
12789     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12790     RESULT(sum, n, 16); \
12791     if (sum >= 0) \
12792         ge |= 3 << (n * 2); \
12793     } while(0)
12794 
12795 #define SARITH8(a, b, n, op) do { \
12796     int32_t sum; \
12797     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12798     RESULT(sum, n, 8); \
12799     if (sum >= 0) \
12800         ge |= 1 << n; \
12801     } while(0)
12802 
12803 
12804 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12805 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12806 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12807 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12808 #define PFX s
12809 #define ARITH_GE
12810 
12811 #include "op_addsub.h"
12812 
12813 /* Unsigned modulo arithmetic.  */
12814 #define ADD16(a, b, n) do { \
12815     uint32_t sum; \
12816     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12817     RESULT(sum, n, 16); \
12818     if ((sum >> 16) == 1) \
12819         ge |= 3 << (n * 2); \
12820     } while(0)
12821 
12822 #define ADD8(a, b, n) do { \
12823     uint32_t sum; \
12824     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12825     RESULT(sum, n, 8); \
12826     if ((sum >> 8) == 1) \
12827         ge |= 1 << n; \
12828     } while(0)
12829 
12830 #define SUB16(a, b, n) do { \
12831     uint32_t sum; \
12832     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12833     RESULT(sum, n, 16); \
12834     if ((sum >> 16) == 0) \
12835         ge |= 3 << (n * 2); \
12836     } while(0)
12837 
12838 #define SUB8(a, b, n) do { \
12839     uint32_t sum; \
12840     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12841     RESULT(sum, n, 8); \
12842     if ((sum >> 8) == 0) \
12843         ge |= 1 << n; \
12844     } while(0)
12845 
12846 #define PFX u
12847 #define ARITH_GE
12848 
12849 #include "op_addsub.h"
12850 
12851 /* Halved signed arithmetic.  */
12852 #define ADD16(a, b, n) \
12853   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12854 #define SUB16(a, b, n) \
12855   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12856 #define ADD8(a, b, n) \
12857   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12858 #define SUB8(a, b, n) \
12859   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12860 #define PFX sh
12861 
12862 #include "op_addsub.h"
12863 
12864 /* Halved unsigned arithmetic.  */
12865 #define ADD16(a, b, n) \
12866   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12867 #define SUB16(a, b, n) \
12868   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12869 #define ADD8(a, b, n) \
12870   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12871 #define SUB8(a, b, n) \
12872   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12873 #define PFX uh
12874 
12875 #include "op_addsub.h"
12876 
12877 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12878 {
12879     if (a > b)
12880         return a - b;
12881     else
12882         return b - a;
12883 }
12884 
12885 /* Unsigned sum of absolute byte differences.  */
12886 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12887 {
12888     uint32_t sum;
12889     sum = do_usad(a, b);
12890     sum += do_usad(a >> 8, b >> 8);
12891     sum += do_usad(a >> 16, b >> 16);
12892     sum += do_usad(a >> 24, b >> 24);
12893     return sum;
12894 }
12895 
12896 /* For ARMv6 SEL instruction.  */
12897 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12898 {
12899     uint32_t mask;
12900 
12901     mask = 0;
12902     if (flags & 1)
12903         mask |= 0xff;
12904     if (flags & 2)
12905         mask |= 0xff00;
12906     if (flags & 4)
12907         mask |= 0xff0000;
12908     if (flags & 8)
12909         mask |= 0xff000000;
12910     return (a & mask) | (b & ~mask);
12911 }
12912 
12913 /* CRC helpers.
12914  * The upper bytes of val (above the number specified by 'bytes') must have
12915  * been zeroed out by the caller.
12916  */
12917 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12918 {
12919     uint8_t buf[4];
12920 
12921     stl_le_p(buf, val);
12922 
12923     /* zlib crc32 converts the accumulator and output to one's complement.  */
12924     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12925 }
12926 
12927 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12928 {
12929     uint8_t buf[4];
12930 
12931     stl_le_p(buf, val);
12932 
12933     /* Linux crc32c converts the output to one's complement.  */
12934     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12935 }
12936 
12937 /* Return the exception level to which FP-disabled exceptions should
12938  * be taken, or 0 if FP is enabled.
12939  */
12940 int fp_exception_el(CPUARMState *env, int cur_el)
12941 {
12942 #ifndef CONFIG_USER_ONLY
12943     uint64_t hcr_el2;
12944 
12945     /* CPACR and the CPTR registers don't exist before v6, so FP is
12946      * always accessible
12947      */
12948     if (!arm_feature(env, ARM_FEATURE_V6)) {
12949         return 0;
12950     }
12951 
12952     if (arm_feature(env, ARM_FEATURE_M)) {
12953         /* CPACR can cause a NOCP UsageFault taken to current security state */
12954         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12955             return 1;
12956         }
12957 
12958         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12959             if (!extract32(env->v7m.nsacr, 10, 1)) {
12960                 /* FP insns cause a NOCP UsageFault taken to Secure */
12961                 return 3;
12962             }
12963         }
12964 
12965         return 0;
12966     }
12967 
12968     hcr_el2 = arm_hcr_el2_eff(env);
12969 
12970     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12971      * 0, 2 : trap EL0 and EL1/PL1 accesses
12972      * 1    : trap only EL0 accesses
12973      * 3    : trap no accesses
12974      * This register is ignored if E2H+TGE are both set.
12975      */
12976     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12977         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12978 
12979         switch (fpen) {
12980         case 0:
12981         case 2:
12982             if (cur_el == 0 || cur_el == 1) {
12983                 /* Trap to PL1, which might be EL1 or EL3 */
12984                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12985                     return 3;
12986                 }
12987                 return 1;
12988             }
12989             if (cur_el == 3 && !is_a64(env)) {
12990                 /* Secure PL1 running at EL3 */
12991                 return 3;
12992             }
12993             break;
12994         case 1:
12995             if (cur_el == 0) {
12996                 return 1;
12997             }
12998             break;
12999         case 3:
13000             break;
13001         }
13002     }
13003 
13004     /*
13005      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
13006      * to control non-secure access to the FPU. It doesn't have any
13007      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
13008      */
13009     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
13010          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
13011         if (!extract32(env->cp15.nsacr, 10, 1)) {
13012             /* FP insns act as UNDEF */
13013             return cur_el == 2 ? 2 : 1;
13014         }
13015     }
13016 
13017     /*
13018      * CPTR_EL2 is present in v7VE or v8, and changes format
13019      * with HCR_EL2.E2H (regardless of TGE).
13020      */
13021     if (cur_el <= 2) {
13022         if (hcr_el2 & HCR_E2H) {
13023             /* Check CPTR_EL2.FPEN.  */
13024             switch (extract32(env->cp15.cptr_el[2], 20, 2)) {
13025             case 1:
13026                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
13027                     break;
13028                 }
13029                 /* fall through */
13030             case 0:
13031             case 2:
13032                 return 2;
13033             }
13034         } else if (arm_is_el2_enabled(env)) {
13035             if (env->cp15.cptr_el[2] & CPTR_TFP) {
13036                 return 2;
13037             }
13038         }
13039     }
13040 
13041     /* CPTR_EL3 : present in v8 */
13042     if (env->cp15.cptr_el[3] & CPTR_TFP) {
13043         /* Trap all FP ops to EL3 */
13044         return 3;
13045     }
13046 #endif
13047     return 0;
13048 }
13049 
13050 /* Return the exception level we're running at if this is our mmu_idx */
13051 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13052 {
13053     if (mmu_idx & ARM_MMU_IDX_M) {
13054         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13055     }
13056 
13057     switch (mmu_idx) {
13058     case ARMMMUIdx_E10_0:
13059     case ARMMMUIdx_E20_0:
13060     case ARMMMUIdx_SE10_0:
13061     case ARMMMUIdx_SE20_0:
13062         return 0;
13063     case ARMMMUIdx_E10_1:
13064     case ARMMMUIdx_E10_1_PAN:
13065     case ARMMMUIdx_SE10_1:
13066     case ARMMMUIdx_SE10_1_PAN:
13067         return 1;
13068     case ARMMMUIdx_E2:
13069     case ARMMMUIdx_E20_2:
13070     case ARMMMUIdx_E20_2_PAN:
13071     case ARMMMUIdx_SE2:
13072     case ARMMMUIdx_SE20_2:
13073     case ARMMMUIdx_SE20_2_PAN:
13074         return 2;
13075     case ARMMMUIdx_SE3:
13076         return 3;
13077     default:
13078         g_assert_not_reached();
13079     }
13080 }
13081 
13082 #ifndef CONFIG_TCG
13083 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13084 {
13085     g_assert_not_reached();
13086 }
13087 #endif
13088 
13089 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13090 {
13091     ARMMMUIdx idx;
13092     uint64_t hcr;
13093 
13094     if (arm_feature(env, ARM_FEATURE_M)) {
13095         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13096     }
13097 
13098     /* See ARM pseudo-function ELIsInHost.  */
13099     switch (el) {
13100     case 0:
13101         hcr = arm_hcr_el2_eff(env);
13102         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13103             idx = ARMMMUIdx_E20_0;
13104         } else {
13105             idx = ARMMMUIdx_E10_0;
13106         }
13107         break;
13108     case 1:
13109         if (env->pstate & PSTATE_PAN) {
13110             idx = ARMMMUIdx_E10_1_PAN;
13111         } else {
13112             idx = ARMMMUIdx_E10_1;
13113         }
13114         break;
13115     case 2:
13116         /* Note that TGE does not apply at EL2.  */
13117         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13118             if (env->pstate & PSTATE_PAN) {
13119                 idx = ARMMMUIdx_E20_2_PAN;
13120             } else {
13121                 idx = ARMMMUIdx_E20_2;
13122             }
13123         } else {
13124             idx = ARMMMUIdx_E2;
13125         }
13126         break;
13127     case 3:
13128         return ARMMMUIdx_SE3;
13129     default:
13130         g_assert_not_reached();
13131     }
13132 
13133     if (arm_is_secure_below_el3(env)) {
13134         idx &= ~ARM_MMU_IDX_A_NS;
13135     }
13136 
13137     return idx;
13138 }
13139 
13140 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13141 {
13142     return arm_mmu_idx_el(env, arm_current_el(env));
13143 }
13144 
13145 #ifndef CONFIG_USER_ONLY
13146 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13147 {
13148     return stage_1_mmu_idx(arm_mmu_idx(env));
13149 }
13150 #endif
13151 
13152 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13153                                            ARMMMUIdx mmu_idx,
13154                                            CPUARMTBFlags flags)
13155 {
13156     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13157     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13158 
13159     if (arm_singlestep_active(env)) {
13160         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13161     }
13162     return flags;
13163 }
13164 
13165 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13166                                               ARMMMUIdx mmu_idx,
13167                                               CPUARMTBFlags flags)
13168 {
13169     bool sctlr_b = arm_sctlr_b(env);
13170 
13171     if (sctlr_b) {
13172         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13173     }
13174     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13175         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13176     }
13177     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13178 
13179     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13180 }
13181 
13182 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13183                                         ARMMMUIdx mmu_idx)
13184 {
13185     CPUARMTBFlags flags = {};
13186     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13187 
13188     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13189     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13190         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13191     }
13192 
13193     if (arm_v7m_is_handler_mode(env)) {
13194         DP_TBFLAG_M32(flags, HANDLER, 1);
13195     }
13196 
13197     /*
13198      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13199      * is suppressing them because the requested execution priority
13200      * is less than 0.
13201      */
13202     if (arm_feature(env, ARM_FEATURE_V8) &&
13203         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13204           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13205         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13206     }
13207 
13208     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13209 }
13210 
13211 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13212 {
13213     CPUARMTBFlags flags = {};
13214 
13215     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13216     return flags;
13217 }
13218 
13219 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13220                                         ARMMMUIdx mmu_idx)
13221 {
13222     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13223     int el = arm_current_el(env);
13224 
13225     if (arm_sctlr(env, el) & SCTLR_A) {
13226         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13227     }
13228 
13229     if (arm_el_is_aa64(env, 1)) {
13230         DP_TBFLAG_A32(flags, VFPEN, 1);
13231     }
13232 
13233     if (el < 2 && env->cp15.hstr_el2 &&
13234         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13235         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13236     }
13237 
13238     if (env->uncached_cpsr & CPSR_IL) {
13239         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13240     }
13241 
13242     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13243 }
13244 
13245 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13246                                         ARMMMUIdx mmu_idx)
13247 {
13248     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13249     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13250     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13251     uint64_t sctlr;
13252     int tbii, tbid;
13253 
13254     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13255 
13256     /* Get control bits for tagged addresses.  */
13257     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13258     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13259 
13260     DP_TBFLAG_A64(flags, TBII, tbii);
13261     DP_TBFLAG_A64(flags, TBID, tbid);
13262 
13263     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13264         int sve_el = sve_exception_el(env, el);
13265         uint32_t zcr_len;
13266 
13267         /*
13268          * If SVE is disabled, but FP is enabled,
13269          * then the effective len is 0.
13270          */
13271         if (sve_el != 0 && fp_el == 0) {
13272             zcr_len = 0;
13273         } else {
13274             zcr_len = sve_zcr_len_for_el(env, el);
13275         }
13276         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13277         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13278     }
13279 
13280     sctlr = regime_sctlr(env, stage1);
13281 
13282     if (sctlr & SCTLR_A) {
13283         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13284     }
13285 
13286     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13287         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13288     }
13289 
13290     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13291         /*
13292          * In order to save space in flags, we record only whether
13293          * pauth is "inactive", meaning all insns are implemented as
13294          * a nop, or "active" when some action must be performed.
13295          * The decision of which action to take is left to a helper.
13296          */
13297         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13298             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13299         }
13300     }
13301 
13302     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13303         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13304         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13305             DP_TBFLAG_A64(flags, BT, 1);
13306         }
13307     }
13308 
13309     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13310     if (!(env->pstate & PSTATE_UAO)) {
13311         switch (mmu_idx) {
13312         case ARMMMUIdx_E10_1:
13313         case ARMMMUIdx_E10_1_PAN:
13314         case ARMMMUIdx_SE10_1:
13315         case ARMMMUIdx_SE10_1_PAN:
13316             /* TODO: ARMv8.3-NV */
13317             DP_TBFLAG_A64(flags, UNPRIV, 1);
13318             break;
13319         case ARMMMUIdx_E20_2:
13320         case ARMMMUIdx_E20_2_PAN:
13321         case ARMMMUIdx_SE20_2:
13322         case ARMMMUIdx_SE20_2_PAN:
13323             /*
13324              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13325              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13326              */
13327             if (env->cp15.hcr_el2 & HCR_TGE) {
13328                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13329             }
13330             break;
13331         default:
13332             break;
13333         }
13334     }
13335 
13336     if (env->pstate & PSTATE_IL) {
13337         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13338     }
13339 
13340     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13341         /*
13342          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13343          * if all accesses must be Unchecked:
13344          * 1) If no TBI, then there are no tags in the address to check,
13345          * 2) If Tag Check Override, then all accesses are Unchecked,
13346          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13347          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13348          */
13349         if (allocation_tag_access_enabled(env, el, sctlr)) {
13350             DP_TBFLAG_A64(flags, ATA, 1);
13351             if (tbid
13352                 && !(env->pstate & PSTATE_TCO)
13353                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13354                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13355             }
13356         }
13357         /* And again for unprivileged accesses, if required.  */
13358         if (EX_TBFLAG_A64(flags, UNPRIV)
13359             && tbid
13360             && !(env->pstate & PSTATE_TCO)
13361             && (sctlr & SCTLR_TCF0)
13362             && allocation_tag_access_enabled(env, 0, sctlr)) {
13363             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13364         }
13365         /* Cache TCMA as well as TBI. */
13366         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13367     }
13368 
13369     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13370 }
13371 
13372 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13373 {
13374     int el = arm_current_el(env);
13375     int fp_el = fp_exception_el(env, el);
13376     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13377 
13378     if (is_a64(env)) {
13379         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13380     } else if (arm_feature(env, ARM_FEATURE_M)) {
13381         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13382     } else {
13383         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13384     }
13385 }
13386 
13387 void arm_rebuild_hflags(CPUARMState *env)
13388 {
13389     env->hflags = rebuild_hflags_internal(env);
13390 }
13391 
13392 /*
13393  * If we have triggered a EL state change we can't rely on the
13394  * translator having passed it to us, we need to recompute.
13395  */
13396 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13397 {
13398     int el = arm_current_el(env);
13399     int fp_el = fp_exception_el(env, el);
13400     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13401 
13402     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13403 }
13404 
13405 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13406 {
13407     int fp_el = fp_exception_el(env, el);
13408     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13409 
13410     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13411 }
13412 
13413 /*
13414  * If we have triggered a EL state change we can't rely on the
13415  * translator having passed it to us, we need to recompute.
13416  */
13417 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13418 {
13419     int el = arm_current_el(env);
13420     int fp_el = fp_exception_el(env, el);
13421     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13422     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13423 }
13424 
13425 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13426 {
13427     int fp_el = fp_exception_el(env, el);
13428     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13429 
13430     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13431 }
13432 
13433 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13434 {
13435     int fp_el = fp_exception_el(env, el);
13436     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13437 
13438     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13439 }
13440 
13441 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13442 {
13443 #ifdef CONFIG_DEBUG_TCG
13444     CPUARMTBFlags c = env->hflags;
13445     CPUARMTBFlags r = rebuild_hflags_internal(env);
13446 
13447     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13448         fprintf(stderr, "TCG hflags mismatch "
13449                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13450                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13451                 c.flags, c.flags2, r.flags, r.flags2);
13452         abort();
13453     }
13454 #endif
13455 }
13456 
13457 static bool mve_no_pred(CPUARMState *env)
13458 {
13459     /*
13460      * Return true if there is definitely no predication of MVE
13461      * instructions by VPR or LTPSIZE. (Returning false even if there
13462      * isn't any predication is OK; generated code will just be
13463      * a little worse.)
13464      * If the CPU does not implement MVE then this TB flag is always 0.
13465      *
13466      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13467      * logic in gen_update_fp_context() needs to be updated to match.
13468      *
13469      * We do not include the effect of the ECI bits here -- they are
13470      * tracked in other TB flags. This simplifies the logic for
13471      * "when did we emit code that changes the MVE_NO_PRED TB flag
13472      * and thus need to end the TB?".
13473      */
13474     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13475         return false;
13476     }
13477     if (env->v7m.vpr) {
13478         return false;
13479     }
13480     if (env->v7m.ltpsize < 4) {
13481         return false;
13482     }
13483     return true;
13484 }
13485 
13486 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13487                           target_ulong *cs_base, uint32_t *pflags)
13488 {
13489     CPUARMTBFlags flags;
13490 
13491     assert_hflags_rebuild_correctly(env);
13492     flags = env->hflags;
13493 
13494     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13495         *pc = env->pc;
13496         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13497             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13498         }
13499     } else {
13500         *pc = env->regs[15];
13501 
13502         if (arm_feature(env, ARM_FEATURE_M)) {
13503             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13504                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13505                 != env->v7m.secure) {
13506                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13507             }
13508 
13509             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13510                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13511                  (env->v7m.secure &&
13512                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13513                 /*
13514                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13515                  * active FP context; we must create a new FP context before
13516                  * executing any FP insn.
13517                  */
13518                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13519             }
13520 
13521             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13522             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13523                 DP_TBFLAG_M32(flags, LSPACT, 1);
13524             }
13525 
13526             if (mve_no_pred(env)) {
13527                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13528             }
13529         } else {
13530             /*
13531              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13532              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13533              */
13534             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13535                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13536             } else {
13537                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13538                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13539             }
13540             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13541                 DP_TBFLAG_A32(flags, VFPEN, 1);
13542             }
13543         }
13544 
13545         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13546         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13547     }
13548 
13549     /*
13550      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13551      * states defined in the ARM ARM for software singlestep:
13552      *  SS_ACTIVE   PSTATE.SS   State
13553      *     0            x       Inactive (the TB flag for SS is always 0)
13554      *     1            0       Active-pending
13555      *     1            1       Active-not-pending
13556      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13557      */
13558     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13559         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13560     }
13561 
13562     *pflags = flags.flags;
13563     *cs_base = flags.flags2;
13564 }
13565 
13566 #ifdef TARGET_AARCH64
13567 /*
13568  * The manual says that when SVE is enabled and VQ is widened the
13569  * implementation is allowed to zero the previously inaccessible
13570  * portion of the registers.  The corollary to that is that when
13571  * SVE is enabled and VQ is narrowed we are also allowed to zero
13572  * the now inaccessible portion of the registers.
13573  *
13574  * The intent of this is that no predicate bit beyond VQ is ever set.
13575  * Which means that some operations on predicate registers themselves
13576  * may operate on full uint64_t or even unrolled across the maximum
13577  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13578  * may well be cheaper than conditionals to restrict the operation
13579  * to the relevant portion of a uint16_t[16].
13580  */
13581 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13582 {
13583     int i, j;
13584     uint64_t pmask;
13585 
13586     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13587     assert(vq <= env_archcpu(env)->sve_max_vq);
13588 
13589     /* Zap the high bits of the zregs.  */
13590     for (i = 0; i < 32; i++) {
13591         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13592     }
13593 
13594     /* Zap the high bits of the pregs and ffr.  */
13595     pmask = 0;
13596     if (vq & 3) {
13597         pmask = ~(-1ULL << (16 * (vq & 3)));
13598     }
13599     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13600         for (i = 0; i < 17; ++i) {
13601             env->vfp.pregs[i].p[j] &= pmask;
13602         }
13603         pmask = 0;
13604     }
13605 }
13606 
13607 /*
13608  * Notice a change in SVE vector size when changing EL.
13609  */
13610 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13611                            int new_el, bool el0_a64)
13612 {
13613     ARMCPU *cpu = env_archcpu(env);
13614     int old_len, new_len;
13615     bool old_a64, new_a64;
13616 
13617     /* Nothing to do if no SVE.  */
13618     if (!cpu_isar_feature(aa64_sve, cpu)) {
13619         return;
13620     }
13621 
13622     /* Nothing to do if FP is disabled in either EL.  */
13623     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13624         return;
13625     }
13626 
13627     /*
13628      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13629      * at ELx, or not available because the EL is in AArch32 state, then
13630      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13631      * has an effective value of 0".
13632      *
13633      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13634      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13635      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13636      * we already have the correct register contents when encountering the
13637      * vq0->vq0 transition between EL0->EL1.
13638      */
13639     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13640     old_len = (old_a64 && !sve_exception_el(env, old_el)
13641                ? sve_zcr_len_for_el(env, old_el) : 0);
13642     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13643     new_len = (new_a64 && !sve_exception_el(env, new_el)
13644                ? sve_zcr_len_for_el(env, new_el) : 0);
13645 
13646     /* When changing vector length, clear inaccessible state.  */
13647     if (new_len < old_len) {
13648         aarch64_sve_narrow_vq(env, new_len + 1);
13649     }
13650 }
13651 #endif
13652