xref: /qemu/target/arm/helper.c (revision dcc474c6)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
37 
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
39 
40 #ifndef CONFIG_USER_ONLY
41 
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
44                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
45                                target_ulong *page_size_ptr,
46                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
47 #endif
48 
49 static void switch_mode(CPUARMState *env, int mode);
50 
51 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
52 {
53     ARMCPU *cpu = env_archcpu(env);
54     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
55 
56     /* VFP data registers are always little-endian.  */
57     if (reg < nregs) {
58         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
59         return 8;
60     }
61     if (arm_feature(env, ARM_FEATURE_NEON)) {
62         /* Aliases for Q regs.  */
63         nregs += 16;
64         if (reg < nregs) {
65             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
66             stq_le_p(buf, q[0]);
67             stq_le_p(buf + 8, q[1]);
68             return 16;
69         }
70     }
71     switch (reg - nregs) {
72     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
73     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
74     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
75     }
76     return 0;
77 }
78 
79 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
80 {
81     ARMCPU *cpu = env_archcpu(env);
82     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
83 
84     if (reg < nregs) {
85         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
86         return 8;
87     }
88     if (arm_feature(env, ARM_FEATURE_NEON)) {
89         nregs += 16;
90         if (reg < nregs) {
91             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
92             q[0] = ldq_le_p(buf);
93             q[1] = ldq_le_p(buf + 8);
94             return 16;
95         }
96     }
97     switch (reg - nregs) {
98     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
99     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
100     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
101     }
102     return 0;
103 }
104 
105 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
106 {
107     switch (reg) {
108     case 0 ... 31:
109         /* 128 bit FP register */
110         {
111             uint64_t *q = aa64_vfp_qreg(env, reg);
112             stq_le_p(buf, q[0]);
113             stq_le_p(buf + 8, q[1]);
114             return 16;
115         }
116     case 32:
117         /* FPSR */
118         stl_p(buf, vfp_get_fpsr(env));
119         return 4;
120     case 33:
121         /* FPCR */
122         stl_p(buf, vfp_get_fpcr(env));
123         return 4;
124     default:
125         return 0;
126     }
127 }
128 
129 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
130 {
131     switch (reg) {
132     case 0 ... 31:
133         /* 128 bit FP register */
134         {
135             uint64_t *q = aa64_vfp_qreg(env, reg);
136             q[0] = ldq_le_p(buf);
137             q[1] = ldq_le_p(buf + 8);
138             return 16;
139         }
140     case 32:
141         /* FPSR */
142         vfp_set_fpsr(env, ldl_p(buf));
143         return 4;
144     case 33:
145         /* FPCR */
146         vfp_set_fpcr(env, ldl_p(buf));
147         return 4;
148     default:
149         return 0;
150     }
151 }
152 
153 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
154 {
155     assert(ri->fieldoffset);
156     if (cpreg_field_is_64bit(ri)) {
157         return CPREG_FIELD64(env, ri);
158     } else {
159         return CPREG_FIELD32(env, ri);
160     }
161 }
162 
163 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
164                       uint64_t value)
165 {
166     assert(ri->fieldoffset);
167     if (cpreg_field_is_64bit(ri)) {
168         CPREG_FIELD64(env, ri) = value;
169     } else {
170         CPREG_FIELD32(env, ri) = value;
171     }
172 }
173 
174 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
175 {
176     return (char *)env + ri->fieldoffset;
177 }
178 
179 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
180 {
181     /* Raw read of a coprocessor register (as needed for migration, etc). */
182     if (ri->type & ARM_CP_CONST) {
183         return ri->resetvalue;
184     } else if (ri->raw_readfn) {
185         return ri->raw_readfn(env, ri);
186     } else if (ri->readfn) {
187         return ri->readfn(env, ri);
188     } else {
189         return raw_read(env, ri);
190     }
191 }
192 
193 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
194                              uint64_t v)
195 {
196     /* Raw write of a coprocessor register (as needed for migration, etc).
197      * Note that constant registers are treated as write-ignored; the
198      * caller should check for success by whether a readback gives the
199      * value written.
200      */
201     if (ri->type & ARM_CP_CONST) {
202         return;
203     } else if (ri->raw_writefn) {
204         ri->raw_writefn(env, ri, v);
205     } else if (ri->writefn) {
206         ri->writefn(env, ri, v);
207     } else {
208         raw_write(env, ri, v);
209     }
210 }
211 
212 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
213 {
214     ARMCPU *cpu = env_archcpu(env);
215     const ARMCPRegInfo *ri;
216     uint32_t key;
217 
218     key = cpu->dyn_xml.cpregs_keys[reg];
219     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
220     if (ri) {
221         if (cpreg_field_is_64bit(ri)) {
222             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
223         } else {
224             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
225         }
226     }
227     return 0;
228 }
229 
230 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
231 {
232     return 0;
233 }
234 
235 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
236 {
237    /* Return true if the regdef would cause an assertion if you called
238     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
239     * program bug for it not to have the NO_RAW flag).
240     * NB that returning false here doesn't necessarily mean that calling
241     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
242     * read/write access functions which are safe for raw use" from "has
243     * read/write access functions which have side effects but has forgotten
244     * to provide raw access functions".
245     * The tests here line up with the conditions in read/write_raw_cp_reg()
246     * and assertions in raw_read()/raw_write().
247     */
248     if ((ri->type & ARM_CP_CONST) ||
249         ri->fieldoffset ||
250         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
251         return false;
252     }
253     return true;
254 }
255 
256 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
257 {
258     /* Write the coprocessor state from cpu->env to the (index,value) list. */
259     int i;
260     bool ok = true;
261 
262     for (i = 0; i < cpu->cpreg_array_len; i++) {
263         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264         const ARMCPRegInfo *ri;
265         uint64_t newval;
266 
267         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268         if (!ri) {
269             ok = false;
270             continue;
271         }
272         if (ri->type & ARM_CP_NO_RAW) {
273             continue;
274         }
275 
276         newval = read_raw_cp_reg(&cpu->env, ri);
277         if (kvm_sync) {
278             /*
279              * Only sync if the previous list->cpustate sync succeeded.
280              * Rather than tracking the success/failure state for every
281              * item in the list, we just recheck "does the raw write we must
282              * have made in write_list_to_cpustate() read back OK" here.
283              */
284             uint64_t oldval = cpu->cpreg_values[i];
285 
286             if (oldval == newval) {
287                 continue;
288             }
289 
290             write_raw_cp_reg(&cpu->env, ri, oldval);
291             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
292                 continue;
293             }
294 
295             write_raw_cp_reg(&cpu->env, ri, newval);
296         }
297         cpu->cpreg_values[i] = newval;
298     }
299     return ok;
300 }
301 
302 bool write_list_to_cpustate(ARMCPU *cpu)
303 {
304     int i;
305     bool ok = true;
306 
307     for (i = 0; i < cpu->cpreg_array_len; i++) {
308         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
309         uint64_t v = cpu->cpreg_values[i];
310         const ARMCPRegInfo *ri;
311 
312         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
313         if (!ri) {
314             ok = false;
315             continue;
316         }
317         if (ri->type & ARM_CP_NO_RAW) {
318             continue;
319         }
320         /* Write value and confirm it reads back as written
321          * (to catch read-only registers and partially read-only
322          * registers where the incoming migration value doesn't match)
323          */
324         write_raw_cp_reg(&cpu->env, ri, v);
325         if (read_raw_cp_reg(&cpu->env, ri) != v) {
326             ok = false;
327         }
328     }
329     return ok;
330 }
331 
332 static void add_cpreg_to_list(gpointer key, gpointer opaque)
333 {
334     ARMCPU *cpu = opaque;
335     uint64_t regidx;
336     const ARMCPRegInfo *ri;
337 
338     regidx = *(uint32_t *)key;
339     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
340 
341     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
342         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
343         /* The value array need not be initialized at this point */
344         cpu->cpreg_array_len++;
345     }
346 }
347 
348 static void count_cpreg(gpointer key, gpointer opaque)
349 {
350     ARMCPU *cpu = opaque;
351     uint64_t regidx;
352     const ARMCPRegInfo *ri;
353 
354     regidx = *(uint32_t *)key;
355     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
356 
357     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
358         cpu->cpreg_array_len++;
359     }
360 }
361 
362 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
363 {
364     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
365     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
366 
367     if (aidx > bidx) {
368         return 1;
369     }
370     if (aidx < bidx) {
371         return -1;
372     }
373     return 0;
374 }
375 
376 void init_cpreg_list(ARMCPU *cpu)
377 {
378     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
379      * Note that we require cpreg_tuples[] to be sorted by key ID.
380      */
381     GList *keys;
382     int arraylen;
383 
384     keys = g_hash_table_get_keys(cpu->cp_regs);
385     keys = g_list_sort(keys, cpreg_key_compare);
386 
387     cpu->cpreg_array_len = 0;
388 
389     g_list_foreach(keys, count_cpreg, cpu);
390 
391     arraylen = cpu->cpreg_array_len;
392     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
393     cpu->cpreg_values = g_new(uint64_t, arraylen);
394     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
395     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
396     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
397     cpu->cpreg_array_len = 0;
398 
399     g_list_foreach(keys, add_cpreg_to_list, cpu);
400 
401     assert(cpu->cpreg_array_len == arraylen);
402 
403     g_list_free(keys);
404 }
405 
406 /*
407  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
408  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
409  *
410  * access_el3_aa32ns: Used to check AArch32 register views.
411  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
412  */
413 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
414                                         const ARMCPRegInfo *ri,
415                                         bool isread)
416 {
417     bool secure = arm_is_secure_below_el3(env);
418 
419     assert(!arm_el_is_aa64(env, 3));
420     if (secure) {
421         return CP_ACCESS_TRAP_UNCATEGORIZED;
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
427                                                 const ARMCPRegInfo *ri,
428                                                 bool isread)
429 {
430     if (!arm_el_is_aa64(env, 3)) {
431         return access_el3_aa32ns(env, ri, isread);
432     }
433     return CP_ACCESS_OK;
434 }
435 
436 /* Some secure-only AArch32 registers trap to EL3 if used from
437  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
438  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
439  * We assume that the .access field is set to PL1_RW.
440  */
441 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
442                                             const ARMCPRegInfo *ri,
443                                             bool isread)
444 {
445     if (arm_current_el(env) == 3) {
446         return CP_ACCESS_OK;
447     }
448     if (arm_is_secure_below_el3(env)) {
449         return CP_ACCESS_TRAP_EL3;
450     }
451     /* This will be EL1 NS and EL2 NS, which just UNDEF */
452     return CP_ACCESS_TRAP_UNCATEGORIZED;
453 }
454 
455 /* Check for traps to "powerdown debug" registers, which are controlled
456  * by MDCR.TDOSA
457  */
458 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
459                                    bool isread)
460 {
461     int el = arm_current_el(env);
462     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
463         (env->cp15.mdcr_el2 & MDCR_TDE) ||
464         (arm_hcr_el2_eff(env) & HCR_TGE);
465 
466     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
467         return CP_ACCESS_TRAP_EL2;
468     }
469     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
470         return CP_ACCESS_TRAP_EL3;
471     }
472     return CP_ACCESS_OK;
473 }
474 
475 /* Check for traps to "debug ROM" registers, which are controlled
476  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
477  */
478 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
479                                   bool isread)
480 {
481     int el = arm_current_el(env);
482     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
483         (env->cp15.mdcr_el2 & MDCR_TDE) ||
484         (arm_hcr_el2_eff(env) & HCR_TGE);
485 
486     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
487         return CP_ACCESS_TRAP_EL2;
488     }
489     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
490         return CP_ACCESS_TRAP_EL3;
491     }
492     return CP_ACCESS_OK;
493 }
494 
495 /* Check for traps to general debug registers, which are controlled
496  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
497  */
498 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
499                                   bool isread)
500 {
501     int el = arm_current_el(env);
502     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
503         (env->cp15.mdcr_el2 & MDCR_TDE) ||
504         (arm_hcr_el2_eff(env) & HCR_TGE);
505 
506     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
507         return CP_ACCESS_TRAP_EL2;
508     }
509     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
510         return CP_ACCESS_TRAP_EL3;
511     }
512     return CP_ACCESS_OK;
513 }
514 
515 /* Check for traps to performance monitor registers, which are controlled
516  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
517  */
518 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
519                                  bool isread)
520 {
521     int el = arm_current_el(env);
522 
523     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
524         && !arm_is_secure_below_el3(env)) {
525         return CP_ACCESS_TRAP_EL2;
526     }
527     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
528         return CP_ACCESS_TRAP_EL3;
529     }
530     return CP_ACCESS_OK;
531 }
532 
533 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
534 {
535     ARMCPU *cpu = env_archcpu(env);
536 
537     raw_write(env, ri, value);
538     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
539 }
540 
541 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
542 {
543     ARMCPU *cpu = env_archcpu(env);
544 
545     if (raw_read(env, ri) != value) {
546         /* Unlike real hardware the qemu TLB uses virtual addresses,
547          * not modified virtual addresses, so this causes a TLB flush.
548          */
549         tlb_flush(CPU(cpu));
550         raw_write(env, ri, value);
551     }
552 }
553 
554 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
555                              uint64_t value)
556 {
557     ARMCPU *cpu = env_archcpu(env);
558 
559     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
560         && !extended_addresses_enabled(env)) {
561         /* For VMSA (when not using the LPAE long descriptor page table
562          * format) this register includes the ASID, so do a TLB flush.
563          * For PMSA it is purely a process ID and no action is needed.
564          */
565         tlb_flush(CPU(cpu));
566     }
567     raw_write(env, ri, value);
568 }
569 
570 /* IS variants of TLB operations must affect all cores */
571 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
572                              uint64_t value)
573 {
574     CPUState *cs = env_cpu(env);
575 
576     tlb_flush_all_cpus_synced(cs);
577 }
578 
579 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                              uint64_t value)
581 {
582     CPUState *cs = env_cpu(env);
583 
584     tlb_flush_all_cpus_synced(cs);
585 }
586 
587 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
588                              uint64_t value)
589 {
590     CPUState *cs = env_cpu(env);
591 
592     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
593 }
594 
595 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
596                              uint64_t value)
597 {
598     CPUState *cs = env_cpu(env);
599 
600     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
601 }
602 
603 /*
604  * Non-IS variants of TLB operations are upgraded to
605  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
606  * force broadcast of these operations.
607  */
608 static bool tlb_force_broadcast(CPUARMState *env)
609 {
610     return (env->cp15.hcr_el2 & HCR_FB) &&
611         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
612 }
613 
614 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
615                           uint64_t value)
616 {
617     /* Invalidate all (TLBIALL) */
618     CPUState *cs = env_cpu(env);
619 
620     if (tlb_force_broadcast(env)) {
621         tlb_flush_all_cpus_synced(cs);
622     } else {
623         tlb_flush(cs);
624     }
625 }
626 
627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                           uint64_t value)
629 {
630     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
631     CPUState *cs = env_cpu(env);
632 
633     value &= TARGET_PAGE_MASK;
634     if (tlb_force_broadcast(env)) {
635         tlb_flush_page_all_cpus_synced(cs, value);
636     } else {
637         tlb_flush_page(cs, value);
638     }
639 }
640 
641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
642                            uint64_t value)
643 {
644     /* Invalidate by ASID (TLBIASID) */
645     CPUState *cs = env_cpu(env);
646 
647     if (tlb_force_broadcast(env)) {
648         tlb_flush_all_cpus_synced(cs);
649     } else {
650         tlb_flush(cs);
651     }
652 }
653 
654 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
655                            uint64_t value)
656 {
657     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
658     CPUState *cs = env_cpu(env);
659 
660     value &= TARGET_PAGE_MASK;
661     if (tlb_force_broadcast(env)) {
662         tlb_flush_page_all_cpus_synced(cs, value);
663     } else {
664         tlb_flush_page(cs, value);
665     }
666 }
667 
668 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
669                                uint64_t value)
670 {
671     CPUState *cs = env_cpu(env);
672 
673     tlb_flush_by_mmuidx(cs,
674                         ARMMMUIdxBit_E10_1 |
675                         ARMMMUIdxBit_E10_1_PAN |
676                         ARMMMUIdxBit_E10_0 |
677                         ARMMMUIdxBit_Stage2);
678 }
679 
680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
681                                   uint64_t value)
682 {
683     CPUState *cs = env_cpu(env);
684 
685     tlb_flush_by_mmuidx_all_cpus_synced(cs,
686                                         ARMMMUIdxBit_E10_1 |
687                                         ARMMMUIdxBit_E10_1_PAN |
688                                         ARMMMUIdxBit_E10_0 |
689                                         ARMMMUIdxBit_Stage2);
690 }
691 
692 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
693                             uint64_t value)
694 {
695     /* Invalidate by IPA. This has to invalidate any structures that
696      * contain only stage 2 translation information, but does not need
697      * to apply to structures that contain combined stage 1 and stage 2
698      * translation information.
699      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
700      */
701     CPUState *cs = env_cpu(env);
702     uint64_t pageaddr;
703 
704     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
705         return;
706     }
707 
708     pageaddr = sextract64(value << 12, 0, 40);
709 
710     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
711 }
712 
713 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
714                                uint64_t value)
715 {
716     CPUState *cs = env_cpu(env);
717     uint64_t pageaddr;
718 
719     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
720         return;
721     }
722 
723     pageaddr = sextract64(value << 12, 0, 40);
724 
725     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
726                                              ARMMMUIdxBit_Stage2);
727 }
728 
729 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
730                               uint64_t value)
731 {
732     CPUState *cs = env_cpu(env);
733 
734     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
735 }
736 
737 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
738                                  uint64_t value)
739 {
740     CPUState *cs = env_cpu(env);
741 
742     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
743 }
744 
745 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
746                               uint64_t value)
747 {
748     CPUState *cs = env_cpu(env);
749     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
750 
751     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
752 }
753 
754 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
755                                  uint64_t value)
756 {
757     CPUState *cs = env_cpu(env);
758     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
759 
760     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
761                                              ARMMMUIdxBit_E2);
762 }
763 
764 static const ARMCPRegInfo cp_reginfo[] = {
765     /* Define the secure and non-secure FCSE identifier CP registers
766      * separately because there is no secure bank in V8 (no _EL3).  This allows
767      * the secure register to be properly reset and migrated. There is also no
768      * v8 EL1 version of the register so the non-secure instance stands alone.
769      */
770     { .name = "FCSEIDR",
771       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
772       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
773       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
774       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
775     { .name = "FCSEIDR_S",
776       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
777       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
778       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
779       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
780     /* Define the secure and non-secure context identifier CP registers
781      * separately because there is no secure bank in V8 (no _EL3).  This allows
782      * the secure register to be properly reset and migrated.  In the
783      * non-secure case, the 32-bit register will have reset and migration
784      * disabled during registration as it is handled by the 64-bit instance.
785      */
786     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
787       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
788       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
789       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
790       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
791     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
792       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
793       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
794       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
795       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
796     REGINFO_SENTINEL
797 };
798 
799 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
800     /* NB: Some of these registers exist in v8 but with more precise
801      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
802      */
803     /* MMU Domain access control / MPU write buffer control */
804     { .name = "DACR",
805       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
806       .access = PL1_RW, .resetvalue = 0,
807       .writefn = dacr_write, .raw_writefn = raw_write,
808       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
809                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
810     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
811      * For v6 and v5, these mappings are overly broad.
812      */
813     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
814       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
815     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
816       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
817     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
818       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
819     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
820       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
821     /* Cache maintenance ops; some of this space may be overridden later. */
822     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
823       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
824       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
825     REGINFO_SENTINEL
826 };
827 
828 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
829     /* Not all pre-v6 cores implemented this WFI, so this is slightly
830      * over-broad.
831      */
832     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
833       .access = PL1_W, .type = ARM_CP_WFI },
834     REGINFO_SENTINEL
835 };
836 
837 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
838     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
839      * is UNPREDICTABLE; we choose to NOP as most implementations do).
840      */
841     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
842       .access = PL1_W, .type = ARM_CP_WFI },
843     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
844      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
845      * OMAPCP will override this space.
846      */
847     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
848       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
849       .resetvalue = 0 },
850     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
851       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
852       .resetvalue = 0 },
853     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
854     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
855       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
856       .resetvalue = 0 },
857     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
858      * implementing it as RAZ means the "debug architecture version" bits
859      * will read as a reserved value, which should cause Linux to not try
860      * to use the debug hardware.
861      */
862     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
863       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
864     /* MMU TLB control. Note that the wildcarding means we cover not just
865      * the unified TLB ops but also the dside/iside/inner-shareable variants.
866      */
867     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
868       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
869       .type = ARM_CP_NO_RAW },
870     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
871       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
872       .type = ARM_CP_NO_RAW },
873     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
874       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
875       .type = ARM_CP_NO_RAW },
876     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
877       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
878       .type = ARM_CP_NO_RAW },
879     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
880       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
881     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
882       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
883     REGINFO_SENTINEL
884 };
885 
886 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
887                         uint64_t value)
888 {
889     uint32_t mask = 0;
890 
891     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
892     if (!arm_feature(env, ARM_FEATURE_V8)) {
893         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
894          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
895          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
896          */
897         if (arm_feature(env, ARM_FEATURE_VFP)) {
898             /* VFP coprocessor: cp10 & cp11 [23:20] */
899             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
900 
901             if (!arm_feature(env, ARM_FEATURE_NEON)) {
902                 /* ASEDIS [31] bit is RAO/WI */
903                 value |= (1 << 31);
904             }
905 
906             /* VFPv3 and upwards with NEON implement 32 double precision
907              * registers (D0-D31).
908              */
909             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
910                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
911                 value |= (1 << 30);
912             }
913         }
914         value &= mask;
915     }
916 
917     /*
918      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
919      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
920      */
921     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
922         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
923         value &= ~(0xf << 20);
924         value |= env->cp15.cpacr_el1 & (0xf << 20);
925     }
926 
927     env->cp15.cpacr_el1 = value;
928 }
929 
930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
931 {
932     /*
933      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
934      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
935      */
936     uint64_t value = env->cp15.cpacr_el1;
937 
938     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
939         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
940         value &= ~(0xf << 20);
941     }
942     return value;
943 }
944 
945 
946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
947 {
948     /* Call cpacr_write() so that we reset with the correct RAO bits set
949      * for our CPU features.
950      */
951     cpacr_write(env, ri, 0);
952 }
953 
954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
955                                    bool isread)
956 {
957     if (arm_feature(env, ARM_FEATURE_V8)) {
958         /* Check if CPACR accesses are to be trapped to EL2 */
959         if (arm_current_el(env) == 1 &&
960             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
961             return CP_ACCESS_TRAP_EL2;
962         /* Check if CPACR accesses are to be trapped to EL3 */
963         } else if (arm_current_el(env) < 3 &&
964                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
965             return CP_ACCESS_TRAP_EL3;
966         }
967     }
968 
969     return CP_ACCESS_OK;
970 }
971 
972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
973                                   bool isread)
974 {
975     /* Check if CPTR accesses are set to trap to EL3 */
976     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
977         return CP_ACCESS_TRAP_EL3;
978     }
979 
980     return CP_ACCESS_OK;
981 }
982 
983 static const ARMCPRegInfo v6_cp_reginfo[] = {
984     /* prefetch by MVA in v6, NOP in v7 */
985     { .name = "MVA_prefetch",
986       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
987       .access = PL1_W, .type = ARM_CP_NOP },
988     /* We need to break the TB after ISB to execute self-modifying code
989      * correctly and also to take any pending interrupts immediately.
990      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
991      */
992     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
993       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
994     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
995       .access = PL0_W, .type = ARM_CP_NOP },
996     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
997       .access = PL0_W, .type = ARM_CP_NOP },
998     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
999       .access = PL1_RW,
1000       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1001                              offsetof(CPUARMState, cp15.ifar_ns) },
1002       .resetvalue = 0, },
1003     /* Watchpoint Fault Address Register : should actually only be present
1004      * for 1136, 1176, 11MPCore.
1005      */
1006     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1007       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1008     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1009       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1010       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1011       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1012     REGINFO_SENTINEL
1013 };
1014 
1015 /* Definitions for the PMU registers */
1016 #define PMCRN_MASK  0xf800
1017 #define PMCRN_SHIFT 11
1018 #define PMCRLC  0x40
1019 #define PMCRDP  0x20
1020 #define PMCRX   0x10
1021 #define PMCRD   0x8
1022 #define PMCRC   0x4
1023 #define PMCRP   0x2
1024 #define PMCRE   0x1
1025 /*
1026  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1027  * which can be written as 1 to trigger behaviour but which stay RAZ).
1028  */
1029 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1030 
1031 #define PMXEVTYPER_P          0x80000000
1032 #define PMXEVTYPER_U          0x40000000
1033 #define PMXEVTYPER_NSK        0x20000000
1034 #define PMXEVTYPER_NSU        0x10000000
1035 #define PMXEVTYPER_NSH        0x08000000
1036 #define PMXEVTYPER_M          0x04000000
1037 #define PMXEVTYPER_MT         0x02000000
1038 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1039 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1040                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1041                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1042                                PMXEVTYPER_EVTCOUNT)
1043 
1044 #define PMCCFILTR             0xf8000000
1045 #define PMCCFILTR_M           PMXEVTYPER_M
1046 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1047 
1048 static inline uint32_t pmu_num_counters(CPUARMState *env)
1049 {
1050   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1051 }
1052 
1053 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1054 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1055 {
1056   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1057 }
1058 
1059 typedef struct pm_event {
1060     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1061     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1062     bool (*supported)(CPUARMState *);
1063     /*
1064      * Retrieve the current count of the underlying event. The programmed
1065      * counters hold a difference from the return value from this function
1066      */
1067     uint64_t (*get_count)(CPUARMState *);
1068     /*
1069      * Return how many nanoseconds it will take (at a minimum) for count events
1070      * to occur. A negative value indicates the counter will never overflow, or
1071      * that the counter has otherwise arranged for the overflow bit to be set
1072      * and the PMU interrupt to be raised on overflow.
1073      */
1074     int64_t (*ns_per_count)(uint64_t);
1075 } pm_event;
1076 
1077 static bool event_always_supported(CPUARMState *env)
1078 {
1079     return true;
1080 }
1081 
1082 static uint64_t swinc_get_count(CPUARMState *env)
1083 {
1084     /*
1085      * SW_INCR events are written directly to the pmevcntr's by writes to
1086      * PMSWINC, so there is no underlying count maintained by the PMU itself
1087      */
1088     return 0;
1089 }
1090 
1091 static int64_t swinc_ns_per(uint64_t ignored)
1092 {
1093     return -1;
1094 }
1095 
1096 /*
1097  * Return the underlying cycle count for the PMU cycle counters. If we're in
1098  * usermode, simply return 0.
1099  */
1100 static uint64_t cycles_get_count(CPUARMState *env)
1101 {
1102 #ifndef CONFIG_USER_ONLY
1103     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1104                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1105 #else
1106     return cpu_get_host_ticks();
1107 #endif
1108 }
1109 
1110 #ifndef CONFIG_USER_ONLY
1111 static int64_t cycles_ns_per(uint64_t cycles)
1112 {
1113     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1114 }
1115 
1116 static bool instructions_supported(CPUARMState *env)
1117 {
1118     return use_icount == 1 /* Precise instruction counting */;
1119 }
1120 
1121 static uint64_t instructions_get_count(CPUARMState *env)
1122 {
1123     return (uint64_t)cpu_get_icount_raw();
1124 }
1125 
1126 static int64_t instructions_ns_per(uint64_t icount)
1127 {
1128     return cpu_icount_to_ns((int64_t)icount);
1129 }
1130 #endif
1131 
1132 static bool pmu_8_1_events_supported(CPUARMState *env)
1133 {
1134     /* For events which are supported in any v8.1 PMU */
1135     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1136 }
1137 
1138 static bool pmu_8_4_events_supported(CPUARMState *env)
1139 {
1140     /* For events which are supported in any v8.1 PMU */
1141     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1142 }
1143 
1144 static uint64_t zero_event_get_count(CPUARMState *env)
1145 {
1146     /* For events which on QEMU never fire, so their count is always zero */
1147     return 0;
1148 }
1149 
1150 static int64_t zero_event_ns_per(uint64_t cycles)
1151 {
1152     /* An event which never fires can never overflow */
1153     return -1;
1154 }
1155 
1156 static const pm_event pm_events[] = {
1157     { .number = 0x000, /* SW_INCR */
1158       .supported = event_always_supported,
1159       .get_count = swinc_get_count,
1160       .ns_per_count = swinc_ns_per,
1161     },
1162 #ifndef CONFIG_USER_ONLY
1163     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1164       .supported = instructions_supported,
1165       .get_count = instructions_get_count,
1166       .ns_per_count = instructions_ns_per,
1167     },
1168     { .number = 0x011, /* CPU_CYCLES, Cycle */
1169       .supported = event_always_supported,
1170       .get_count = cycles_get_count,
1171       .ns_per_count = cycles_ns_per,
1172     },
1173 #endif
1174     { .number = 0x023, /* STALL_FRONTEND */
1175       .supported = pmu_8_1_events_supported,
1176       .get_count = zero_event_get_count,
1177       .ns_per_count = zero_event_ns_per,
1178     },
1179     { .number = 0x024, /* STALL_BACKEND */
1180       .supported = pmu_8_1_events_supported,
1181       .get_count = zero_event_get_count,
1182       .ns_per_count = zero_event_ns_per,
1183     },
1184     { .number = 0x03c, /* STALL */
1185       .supported = pmu_8_4_events_supported,
1186       .get_count = zero_event_get_count,
1187       .ns_per_count = zero_event_ns_per,
1188     },
1189 };
1190 
1191 /*
1192  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1193  * events (i.e. the statistical profiling extension), this implementation
1194  * should first be updated to something sparse instead of the current
1195  * supported_event_map[] array.
1196  */
1197 #define MAX_EVENT_ID 0x3c
1198 #define UNSUPPORTED_EVENT UINT16_MAX
1199 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1200 
1201 /*
1202  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1203  * of ARM event numbers to indices in our pm_events array.
1204  *
1205  * Note: Events in the 0x40XX range are not currently supported.
1206  */
1207 void pmu_init(ARMCPU *cpu)
1208 {
1209     unsigned int i;
1210 
1211     /*
1212      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1213      * events to them
1214      */
1215     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1216         supported_event_map[i] = UNSUPPORTED_EVENT;
1217     }
1218     cpu->pmceid0 = 0;
1219     cpu->pmceid1 = 0;
1220 
1221     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1222         const pm_event *cnt = &pm_events[i];
1223         assert(cnt->number <= MAX_EVENT_ID);
1224         /* We do not currently support events in the 0x40xx range */
1225         assert(cnt->number <= 0x3f);
1226 
1227         if (cnt->supported(&cpu->env)) {
1228             supported_event_map[cnt->number] = i;
1229             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1230             if (cnt->number & 0x20) {
1231                 cpu->pmceid1 |= event_mask;
1232             } else {
1233                 cpu->pmceid0 |= event_mask;
1234             }
1235         }
1236     }
1237 }
1238 
1239 /*
1240  * Check at runtime whether a PMU event is supported for the current machine
1241  */
1242 static bool event_supported(uint16_t number)
1243 {
1244     if (number > MAX_EVENT_ID) {
1245         return false;
1246     }
1247     return supported_event_map[number] != UNSUPPORTED_EVENT;
1248 }
1249 
1250 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1251                                    bool isread)
1252 {
1253     /* Performance monitor registers user accessibility is controlled
1254      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1255      * trapping to EL2 or EL3 for other accesses.
1256      */
1257     int el = arm_current_el(env);
1258 
1259     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1260         return CP_ACCESS_TRAP;
1261     }
1262     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1263         && !arm_is_secure_below_el3(env)) {
1264         return CP_ACCESS_TRAP_EL2;
1265     }
1266     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1267         return CP_ACCESS_TRAP_EL3;
1268     }
1269 
1270     return CP_ACCESS_OK;
1271 }
1272 
1273 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1274                                            const ARMCPRegInfo *ri,
1275                                            bool isread)
1276 {
1277     /* ER: event counter read trap control */
1278     if (arm_feature(env, ARM_FEATURE_V8)
1279         && arm_current_el(env) == 0
1280         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1281         && isread) {
1282         return CP_ACCESS_OK;
1283     }
1284 
1285     return pmreg_access(env, ri, isread);
1286 }
1287 
1288 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1289                                          const ARMCPRegInfo *ri,
1290                                          bool isread)
1291 {
1292     /* SW: software increment write trap control */
1293     if (arm_feature(env, ARM_FEATURE_V8)
1294         && arm_current_el(env) == 0
1295         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1296         && !isread) {
1297         return CP_ACCESS_OK;
1298     }
1299 
1300     return pmreg_access(env, ri, isread);
1301 }
1302 
1303 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1304                                         const ARMCPRegInfo *ri,
1305                                         bool isread)
1306 {
1307     /* ER: event counter read trap control */
1308     if (arm_feature(env, ARM_FEATURE_V8)
1309         && arm_current_el(env) == 0
1310         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1311         return CP_ACCESS_OK;
1312     }
1313 
1314     return pmreg_access(env, ri, isread);
1315 }
1316 
1317 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1318                                          const ARMCPRegInfo *ri,
1319                                          bool isread)
1320 {
1321     /* CR: cycle counter read trap control */
1322     if (arm_feature(env, ARM_FEATURE_V8)
1323         && arm_current_el(env) == 0
1324         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1325         && isread) {
1326         return CP_ACCESS_OK;
1327     }
1328 
1329     return pmreg_access(env, ri, isread);
1330 }
1331 
1332 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1333  * the current EL, security state, and register configuration.
1334  */
1335 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1336 {
1337     uint64_t filter;
1338     bool e, p, u, nsk, nsu, nsh, m;
1339     bool enabled, prohibited, filtered;
1340     bool secure = arm_is_secure(env);
1341     int el = arm_current_el(env);
1342     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1343 
1344     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1345         return false;
1346     }
1347 
1348     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1349             (counter < hpmn || counter == 31)) {
1350         e = env->cp15.c9_pmcr & PMCRE;
1351     } else {
1352         e = env->cp15.mdcr_el2 & MDCR_HPME;
1353     }
1354     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1355 
1356     if (!secure) {
1357         if (el == 2 && (counter < hpmn || counter == 31)) {
1358             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1359         } else {
1360             prohibited = false;
1361         }
1362     } else {
1363         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1364            (env->cp15.mdcr_el3 & MDCR_SPME);
1365     }
1366 
1367     if (prohibited && counter == 31) {
1368         prohibited = env->cp15.c9_pmcr & PMCRDP;
1369     }
1370 
1371     if (counter == 31) {
1372         filter = env->cp15.pmccfiltr_el0;
1373     } else {
1374         filter = env->cp15.c14_pmevtyper[counter];
1375     }
1376 
1377     p   = filter & PMXEVTYPER_P;
1378     u   = filter & PMXEVTYPER_U;
1379     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1380     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1381     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1382     m   = arm_el_is_aa64(env, 1) &&
1383               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1384 
1385     if (el == 0) {
1386         filtered = secure ? u : u != nsu;
1387     } else if (el == 1) {
1388         filtered = secure ? p : p != nsk;
1389     } else if (el == 2) {
1390         filtered = !nsh;
1391     } else { /* EL3 */
1392         filtered = m != p;
1393     }
1394 
1395     if (counter != 31) {
1396         /*
1397          * If not checking PMCCNTR, ensure the counter is setup to an event we
1398          * support
1399          */
1400         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1401         if (!event_supported(event)) {
1402             return false;
1403         }
1404     }
1405 
1406     return enabled && !prohibited && !filtered;
1407 }
1408 
1409 static void pmu_update_irq(CPUARMState *env)
1410 {
1411     ARMCPU *cpu = env_archcpu(env);
1412     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1413             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1414 }
1415 
1416 /*
1417  * Ensure c15_ccnt is the guest-visible count so that operations such as
1418  * enabling/disabling the counter or filtering, modifying the count itself,
1419  * etc. can be done logically. This is essentially a no-op if the counter is
1420  * not enabled at the time of the call.
1421  */
1422 static void pmccntr_op_start(CPUARMState *env)
1423 {
1424     uint64_t cycles = cycles_get_count(env);
1425 
1426     if (pmu_counter_enabled(env, 31)) {
1427         uint64_t eff_cycles = cycles;
1428         if (env->cp15.c9_pmcr & PMCRD) {
1429             /* Increment once every 64 processor clock cycles */
1430             eff_cycles /= 64;
1431         }
1432 
1433         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1434 
1435         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1436                                  1ull << 63 : 1ull << 31;
1437         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1438             env->cp15.c9_pmovsr |= (1 << 31);
1439             pmu_update_irq(env);
1440         }
1441 
1442         env->cp15.c15_ccnt = new_pmccntr;
1443     }
1444     env->cp15.c15_ccnt_delta = cycles;
1445 }
1446 
1447 /*
1448  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1449  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1450  * pmccntr_op_start.
1451  */
1452 static void pmccntr_op_finish(CPUARMState *env)
1453 {
1454     if (pmu_counter_enabled(env, 31)) {
1455 #ifndef CONFIG_USER_ONLY
1456         /* Calculate when the counter will next overflow */
1457         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1458         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1459             remaining_cycles = (uint32_t)remaining_cycles;
1460         }
1461         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1462 
1463         if (overflow_in > 0) {
1464             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1465                 overflow_in;
1466             ARMCPU *cpu = env_archcpu(env);
1467             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1468         }
1469 #endif
1470 
1471         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1472         if (env->cp15.c9_pmcr & PMCRD) {
1473             /* Increment once every 64 processor clock cycles */
1474             prev_cycles /= 64;
1475         }
1476         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1477     }
1478 }
1479 
1480 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1481 {
1482 
1483     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1484     uint64_t count = 0;
1485     if (event_supported(event)) {
1486         uint16_t event_idx = supported_event_map[event];
1487         count = pm_events[event_idx].get_count(env);
1488     }
1489 
1490     if (pmu_counter_enabled(env, counter)) {
1491         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1492 
1493         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1494             env->cp15.c9_pmovsr |= (1 << counter);
1495             pmu_update_irq(env);
1496         }
1497         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1498     }
1499     env->cp15.c14_pmevcntr_delta[counter] = count;
1500 }
1501 
1502 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1503 {
1504     if (pmu_counter_enabled(env, counter)) {
1505 #ifndef CONFIG_USER_ONLY
1506         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1507         uint16_t event_idx = supported_event_map[event];
1508         uint64_t delta = UINT32_MAX -
1509             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1510         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1511 
1512         if (overflow_in > 0) {
1513             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1514                 overflow_in;
1515             ARMCPU *cpu = env_archcpu(env);
1516             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1517         }
1518 #endif
1519 
1520         env->cp15.c14_pmevcntr_delta[counter] -=
1521             env->cp15.c14_pmevcntr[counter];
1522     }
1523 }
1524 
1525 void pmu_op_start(CPUARMState *env)
1526 {
1527     unsigned int i;
1528     pmccntr_op_start(env);
1529     for (i = 0; i < pmu_num_counters(env); i++) {
1530         pmevcntr_op_start(env, i);
1531     }
1532 }
1533 
1534 void pmu_op_finish(CPUARMState *env)
1535 {
1536     unsigned int i;
1537     pmccntr_op_finish(env);
1538     for (i = 0; i < pmu_num_counters(env); i++) {
1539         pmevcntr_op_finish(env, i);
1540     }
1541 }
1542 
1543 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1544 {
1545     pmu_op_start(&cpu->env);
1546 }
1547 
1548 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1549 {
1550     pmu_op_finish(&cpu->env);
1551 }
1552 
1553 void arm_pmu_timer_cb(void *opaque)
1554 {
1555     ARMCPU *cpu = opaque;
1556 
1557     /*
1558      * Update all the counter values based on the current underlying counts,
1559      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1560      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1561      * counter may expire.
1562      */
1563     pmu_op_start(&cpu->env);
1564     pmu_op_finish(&cpu->env);
1565 }
1566 
1567 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1568                        uint64_t value)
1569 {
1570     pmu_op_start(env);
1571 
1572     if (value & PMCRC) {
1573         /* The counter has been reset */
1574         env->cp15.c15_ccnt = 0;
1575     }
1576 
1577     if (value & PMCRP) {
1578         unsigned int i;
1579         for (i = 0; i < pmu_num_counters(env); i++) {
1580             env->cp15.c14_pmevcntr[i] = 0;
1581         }
1582     }
1583 
1584     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1585     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1586 
1587     pmu_op_finish(env);
1588 }
1589 
1590 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1591                           uint64_t value)
1592 {
1593     unsigned int i;
1594     for (i = 0; i < pmu_num_counters(env); i++) {
1595         /* Increment a counter's count iff: */
1596         if ((value & (1 << i)) && /* counter's bit is set */
1597                 /* counter is enabled and not filtered */
1598                 pmu_counter_enabled(env, i) &&
1599                 /* counter is SW_INCR */
1600                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1601             pmevcntr_op_start(env, i);
1602 
1603             /*
1604              * Detect if this write causes an overflow since we can't predict
1605              * PMSWINC overflows like we can for other events
1606              */
1607             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1608 
1609             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1610                 env->cp15.c9_pmovsr |= (1 << i);
1611                 pmu_update_irq(env);
1612             }
1613 
1614             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1615 
1616             pmevcntr_op_finish(env, i);
1617         }
1618     }
1619 }
1620 
1621 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1622 {
1623     uint64_t ret;
1624     pmccntr_op_start(env);
1625     ret = env->cp15.c15_ccnt;
1626     pmccntr_op_finish(env);
1627     return ret;
1628 }
1629 
1630 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631                          uint64_t value)
1632 {
1633     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1634      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1635      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1636      * accessed.
1637      */
1638     env->cp15.c9_pmselr = value & 0x1f;
1639 }
1640 
1641 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642                         uint64_t value)
1643 {
1644     pmccntr_op_start(env);
1645     env->cp15.c15_ccnt = value;
1646     pmccntr_op_finish(env);
1647 }
1648 
1649 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1650                             uint64_t value)
1651 {
1652     uint64_t cur_val = pmccntr_read(env, NULL);
1653 
1654     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1655 }
1656 
1657 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1658                             uint64_t value)
1659 {
1660     pmccntr_op_start(env);
1661     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1662     pmccntr_op_finish(env);
1663 }
1664 
1665 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1666                             uint64_t value)
1667 {
1668     pmccntr_op_start(env);
1669     /* M is not accessible from AArch32 */
1670     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1671         (value & PMCCFILTR);
1672     pmccntr_op_finish(env);
1673 }
1674 
1675 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1676 {
1677     /* M is not visible in AArch32 */
1678     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1679 }
1680 
1681 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1682                             uint64_t value)
1683 {
1684     value &= pmu_counter_mask(env);
1685     env->cp15.c9_pmcnten |= value;
1686 }
1687 
1688 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689                              uint64_t value)
1690 {
1691     value &= pmu_counter_mask(env);
1692     env->cp15.c9_pmcnten &= ~value;
1693 }
1694 
1695 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1696                          uint64_t value)
1697 {
1698     value &= pmu_counter_mask(env);
1699     env->cp15.c9_pmovsr &= ~value;
1700     pmu_update_irq(env);
1701 }
1702 
1703 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1704                          uint64_t value)
1705 {
1706     value &= pmu_counter_mask(env);
1707     env->cp15.c9_pmovsr |= value;
1708     pmu_update_irq(env);
1709 }
1710 
1711 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1712                              uint64_t value, const uint8_t counter)
1713 {
1714     if (counter == 31) {
1715         pmccfiltr_write(env, ri, value);
1716     } else if (counter < pmu_num_counters(env)) {
1717         pmevcntr_op_start(env, counter);
1718 
1719         /*
1720          * If this counter's event type is changing, store the current
1721          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1722          * pmevcntr_op_finish has the correct baseline when it converts back to
1723          * a delta.
1724          */
1725         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1726             PMXEVTYPER_EVTCOUNT;
1727         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1728         if (old_event != new_event) {
1729             uint64_t count = 0;
1730             if (event_supported(new_event)) {
1731                 uint16_t event_idx = supported_event_map[new_event];
1732                 count = pm_events[event_idx].get_count(env);
1733             }
1734             env->cp15.c14_pmevcntr_delta[counter] = count;
1735         }
1736 
1737         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1738         pmevcntr_op_finish(env, counter);
1739     }
1740     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1741      * PMSELR value is equal to or greater than the number of implemented
1742      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1743      */
1744 }
1745 
1746 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1747                                const uint8_t counter)
1748 {
1749     if (counter == 31) {
1750         return env->cp15.pmccfiltr_el0;
1751     } else if (counter < pmu_num_counters(env)) {
1752         return env->cp15.c14_pmevtyper[counter];
1753     } else {
1754       /*
1755        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1756        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1757        */
1758         return 0;
1759     }
1760 }
1761 
1762 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1763                               uint64_t value)
1764 {
1765     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1766     pmevtyper_write(env, ri, value, counter);
1767 }
1768 
1769 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1770                                uint64_t value)
1771 {
1772     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773     env->cp15.c14_pmevtyper[counter] = value;
1774 
1775     /*
1776      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1777      * pmu_op_finish calls when loading saved state for a migration. Because
1778      * we're potentially updating the type of event here, the value written to
1779      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1780      * different counter type. Therefore, we need to set this value to the
1781      * current count for the counter type we're writing so that pmu_op_finish
1782      * has the correct count for its calculation.
1783      */
1784     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1785     if (event_supported(event)) {
1786         uint16_t event_idx = supported_event_map[event];
1787         env->cp15.c14_pmevcntr_delta[counter] =
1788             pm_events[event_idx].get_count(env);
1789     }
1790 }
1791 
1792 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1793 {
1794     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1795     return pmevtyper_read(env, ri, counter);
1796 }
1797 
1798 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                              uint64_t value)
1800 {
1801     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1802 }
1803 
1804 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1807 }
1808 
1809 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810                              uint64_t value, uint8_t counter)
1811 {
1812     if (counter < pmu_num_counters(env)) {
1813         pmevcntr_op_start(env, counter);
1814         env->cp15.c14_pmevcntr[counter] = value;
1815         pmevcntr_op_finish(env, counter);
1816     }
1817     /*
1818      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1819      * are CONSTRAINED UNPREDICTABLE.
1820      */
1821 }
1822 
1823 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1824                               uint8_t counter)
1825 {
1826     if (counter < pmu_num_counters(env)) {
1827         uint64_t ret;
1828         pmevcntr_op_start(env, counter);
1829         ret = env->cp15.c14_pmevcntr[counter];
1830         pmevcntr_op_finish(env, counter);
1831         return ret;
1832     } else {
1833       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1834        * are CONSTRAINED UNPREDICTABLE. */
1835         return 0;
1836     }
1837 }
1838 
1839 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1840                              uint64_t value)
1841 {
1842     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1843     pmevcntr_write(env, ri, value, counter);
1844 }
1845 
1846 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1847 {
1848     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1849     return pmevcntr_read(env, ri, counter);
1850 }
1851 
1852 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1853                              uint64_t value)
1854 {
1855     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1856     assert(counter < pmu_num_counters(env));
1857     env->cp15.c14_pmevcntr[counter] = value;
1858     pmevcntr_write(env, ri, value, counter);
1859 }
1860 
1861 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1862 {
1863     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1864     assert(counter < pmu_num_counters(env));
1865     return env->cp15.c14_pmevcntr[counter];
1866 }
1867 
1868 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                              uint64_t value)
1870 {
1871     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1872 }
1873 
1874 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1875 {
1876     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1877 }
1878 
1879 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1880                             uint64_t value)
1881 {
1882     if (arm_feature(env, ARM_FEATURE_V8)) {
1883         env->cp15.c9_pmuserenr = value & 0xf;
1884     } else {
1885         env->cp15.c9_pmuserenr = value & 1;
1886     }
1887 }
1888 
1889 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890                              uint64_t value)
1891 {
1892     /* We have no event counters so only the C bit can be changed */
1893     value &= pmu_counter_mask(env);
1894     env->cp15.c9_pminten |= value;
1895     pmu_update_irq(env);
1896 }
1897 
1898 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1899                              uint64_t value)
1900 {
1901     value &= pmu_counter_mask(env);
1902     env->cp15.c9_pminten &= ~value;
1903     pmu_update_irq(env);
1904 }
1905 
1906 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1907                        uint64_t value)
1908 {
1909     /* Note that even though the AArch64 view of this register has bits
1910      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1911      * architectural requirements for bits which are RES0 only in some
1912      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1913      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1914      */
1915     raw_write(env, ri, value & ~0x1FULL);
1916 }
1917 
1918 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1919 {
1920     /* Begin with base v8.0 state.  */
1921     uint32_t valid_mask = 0x3fff;
1922     ARMCPU *cpu = env_archcpu(env);
1923 
1924     if (arm_el_is_aa64(env, 3)) {
1925         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1926         valid_mask &= ~SCR_NET;
1927     } else {
1928         valid_mask &= ~(SCR_RW | SCR_ST);
1929     }
1930 
1931     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1932         valid_mask &= ~SCR_HCE;
1933 
1934         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1935          * supported if EL2 exists. The bit is UNK/SBZP when
1936          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1937          * when EL2 is unavailable.
1938          * On ARMv8, this bit is always available.
1939          */
1940         if (arm_feature(env, ARM_FEATURE_V7) &&
1941             !arm_feature(env, ARM_FEATURE_V8)) {
1942             valid_mask &= ~SCR_SMD;
1943         }
1944     }
1945     if (cpu_isar_feature(aa64_lor, cpu)) {
1946         valid_mask |= SCR_TLOR;
1947     }
1948     if (cpu_isar_feature(aa64_pauth, cpu)) {
1949         valid_mask |= SCR_API | SCR_APK;
1950     }
1951 
1952     /* Clear all-context RES0 bits.  */
1953     value &= valid_mask;
1954     raw_write(env, ri, value);
1955 }
1956 
1957 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1958                                        const ARMCPRegInfo *ri,
1959                                        bool isread)
1960 {
1961     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1962         return CP_ACCESS_TRAP_EL2;
1963     }
1964 
1965     return CP_ACCESS_OK;
1966 }
1967 
1968 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970     ARMCPU *cpu = env_archcpu(env);
1971 
1972     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1973      * bank
1974      */
1975     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1976                                         ri->secure & ARM_CP_SECSTATE_S);
1977 
1978     return cpu->ccsidr[index];
1979 }
1980 
1981 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1982                          uint64_t value)
1983 {
1984     raw_write(env, ri, value & 0xf);
1985 }
1986 
1987 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1988 {
1989     CPUState *cs = env_cpu(env);
1990     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1991     uint64_t ret = 0;
1992     bool allow_virt = (arm_current_el(env) == 1 &&
1993                        (!arm_is_secure_below_el3(env) ||
1994                         (env->cp15.scr_el3 & SCR_EEL2)));
1995 
1996     if (allow_virt && (hcr_el2 & HCR_IMO)) {
1997         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1998             ret |= CPSR_I;
1999         }
2000     } else {
2001         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2002             ret |= CPSR_I;
2003         }
2004     }
2005 
2006     if (allow_virt && (hcr_el2 & HCR_FMO)) {
2007         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2008             ret |= CPSR_F;
2009         }
2010     } else {
2011         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2012             ret |= CPSR_F;
2013         }
2014     }
2015 
2016     /* External aborts are not possible in QEMU so A bit is always clear */
2017     return ret;
2018 }
2019 
2020 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2021                                        bool isread)
2022 {
2023     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2024         return CP_ACCESS_TRAP_EL2;
2025     }
2026 
2027     return CP_ACCESS_OK;
2028 }
2029 
2030 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2031                                        bool isread)
2032 {
2033     if (arm_feature(env, ARM_FEATURE_V8)) {
2034         return access_aa64_tid1(env, ri, isread);
2035     }
2036 
2037     return CP_ACCESS_OK;
2038 }
2039 
2040 static const ARMCPRegInfo v7_cp_reginfo[] = {
2041     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2042     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2043       .access = PL1_W, .type = ARM_CP_NOP },
2044     /* Performance monitors are implementation defined in v7,
2045      * but with an ARM recommended set of registers, which we
2046      * follow.
2047      *
2048      * Performance registers fall into three categories:
2049      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2050      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2051      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2052      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2053      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2054      */
2055     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2056       .access = PL0_RW, .type = ARM_CP_ALIAS,
2057       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2058       .writefn = pmcntenset_write,
2059       .accessfn = pmreg_access,
2060       .raw_writefn = raw_write },
2061     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2062       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2063       .access = PL0_RW, .accessfn = pmreg_access,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2065       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2066     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2067       .access = PL0_RW,
2068       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2069       .accessfn = pmreg_access,
2070       .writefn = pmcntenclr_write,
2071       .type = ARM_CP_ALIAS },
2072     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2074       .access = PL0_RW, .accessfn = pmreg_access,
2075       .type = ARM_CP_ALIAS,
2076       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2077       .writefn = pmcntenclr_write },
2078     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2079       .access = PL0_RW, .type = ARM_CP_IO,
2080       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2081       .accessfn = pmreg_access,
2082       .writefn = pmovsr_write,
2083       .raw_writefn = raw_write },
2084     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2085       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2086       .access = PL0_RW, .accessfn = pmreg_access,
2087       .type = ARM_CP_ALIAS | ARM_CP_IO,
2088       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2089       .writefn = pmovsr_write,
2090       .raw_writefn = raw_write },
2091     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2092       .access = PL0_W, .accessfn = pmreg_access_swinc,
2093       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2094       .writefn = pmswinc_write },
2095     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2097       .access = PL0_W, .accessfn = pmreg_access_swinc,
2098       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2099       .writefn = pmswinc_write },
2100     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2101       .access = PL0_RW, .type = ARM_CP_ALIAS,
2102       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2103       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2104       .raw_writefn = raw_write},
2105     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2106       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2107       .access = PL0_RW, .accessfn = pmreg_access_selr,
2108       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2109       .writefn = pmselr_write, .raw_writefn = raw_write, },
2110     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2111       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2112       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2113       .accessfn = pmreg_access_ccntr },
2114     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2115       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2116       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2117       .type = ARM_CP_IO,
2118       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2119       .readfn = pmccntr_read, .writefn = pmccntr_write,
2120       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2121     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2122       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2123       .access = PL0_RW, .accessfn = pmreg_access,
2124       .type = ARM_CP_ALIAS | ARM_CP_IO,
2125       .resetvalue = 0, },
2126     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2127       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2128       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2129       .access = PL0_RW, .accessfn = pmreg_access,
2130       .type = ARM_CP_IO,
2131       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2132       .resetvalue = 0, },
2133     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2134       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2135       .accessfn = pmreg_access,
2136       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2139       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140       .accessfn = pmreg_access,
2141       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2146     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2147       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2148       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2149       .accessfn = pmreg_access_xevcntr,
2150       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2151     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2152       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2153       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2154       .resetvalue = 0,
2155       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2156     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2157       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2158       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2159       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2160       .resetvalue = 0,
2161       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2162     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2163       .access = PL1_RW, .accessfn = access_tpm,
2164       .type = ARM_CP_ALIAS | ARM_CP_IO,
2165       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2166       .resetvalue = 0,
2167       .writefn = pmintenset_write, .raw_writefn = raw_write },
2168     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2169       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2170       .access = PL1_RW, .accessfn = access_tpm,
2171       .type = ARM_CP_IO,
2172       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2173       .writefn = pmintenset_write, .raw_writefn = raw_write,
2174       .resetvalue = 0x0 },
2175     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2176       .access = PL1_RW, .accessfn = access_tpm,
2177       .type = ARM_CP_ALIAS | ARM_CP_IO,
2178       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2179       .writefn = pmintenclr_write, },
2180     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2181       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2182       .access = PL1_RW, .accessfn = access_tpm,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185       .writefn = pmintenclr_write },
2186     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2187       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2188       .access = PL1_R,
2189       .accessfn = access_aa64_tid2,
2190       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2191     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2192       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2193       .access = PL1_RW,
2194       .accessfn = access_aa64_tid2,
2195       .writefn = csselr_write, .resetvalue = 0,
2196       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2197                              offsetof(CPUARMState, cp15.csselr_ns) } },
2198     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2199      * just RAZ for all cores:
2200      */
2201     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2202       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2203       .access = PL1_R, .type = ARM_CP_CONST,
2204       .accessfn = access_aa64_tid1,
2205       .resetvalue = 0 },
2206     /* Auxiliary fault status registers: these also are IMPDEF, and we
2207      * choose to RAZ/WI for all cores.
2208      */
2209     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2210       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2211       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2212     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2213       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2214       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2215     /* MAIR can just read-as-written because we don't implement caches
2216      * and so don't need to care about memory attributes.
2217      */
2218     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2219       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2220       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2221       .resetvalue = 0 },
2222     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2223       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2224       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2225       .resetvalue = 0 },
2226     /* For non-long-descriptor page tables these are PRRR and NMRR;
2227      * regardless they still act as reads-as-written for QEMU.
2228      */
2229      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2230       * allows them to assign the correct fieldoffset based on the endianness
2231       * handled in the field definitions.
2232       */
2233     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2234       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2235       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2236                              offsetof(CPUARMState, cp15.mair0_ns) },
2237       .resetfn = arm_cp_reset_ignore },
2238     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2239       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2240       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2241                              offsetof(CPUARMState, cp15.mair1_ns) },
2242       .resetfn = arm_cp_reset_ignore },
2243     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2244       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2245       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2246     /* 32 bit ITLB invalidates */
2247     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2248       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2249     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2250       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2251     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2252       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2253     /* 32 bit DTLB invalidates */
2254     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2255       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2256     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2257       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2258     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2259       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2260     /* 32 bit TLB invalidates */
2261     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2262       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2263     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2264       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2265     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2266       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2267     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2268       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2269     REGINFO_SENTINEL
2270 };
2271 
2272 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2273     /* 32 bit TLB invalidates, Inner Shareable */
2274     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2275       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2276     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2277       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2278     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2279       .type = ARM_CP_NO_RAW, .access = PL1_W,
2280       .writefn = tlbiasid_is_write },
2281     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2282       .type = ARM_CP_NO_RAW, .access = PL1_W,
2283       .writefn = tlbimvaa_is_write },
2284     REGINFO_SENTINEL
2285 };
2286 
2287 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2288     /* PMOVSSET is not implemented in v7 before v7ve */
2289     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2290       .access = PL0_RW, .accessfn = pmreg_access,
2291       .type = ARM_CP_ALIAS | ARM_CP_IO,
2292       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2293       .writefn = pmovsset_write,
2294       .raw_writefn = raw_write },
2295     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2296       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2297       .access = PL0_RW, .accessfn = pmreg_access,
2298       .type = ARM_CP_ALIAS | ARM_CP_IO,
2299       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2300       .writefn = pmovsset_write,
2301       .raw_writefn = raw_write },
2302     REGINFO_SENTINEL
2303 };
2304 
2305 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2306                         uint64_t value)
2307 {
2308     value &= 1;
2309     env->teecr = value;
2310 }
2311 
2312 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2313                                     bool isread)
2314 {
2315     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2316         return CP_ACCESS_TRAP;
2317     }
2318     return CP_ACCESS_OK;
2319 }
2320 
2321 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2322     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2323       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2324       .resetvalue = 0,
2325       .writefn = teecr_write },
2326     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2327       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2328       .accessfn = teehbr_access, .resetvalue = 0 },
2329     REGINFO_SENTINEL
2330 };
2331 
2332 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2333     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2334       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2335       .access = PL0_RW,
2336       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2337     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2338       .access = PL0_RW,
2339       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2340                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2341       .resetfn = arm_cp_reset_ignore },
2342     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2343       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2344       .access = PL0_R|PL1_W,
2345       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2346       .resetvalue = 0},
2347     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2348       .access = PL0_R|PL1_W,
2349       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2350                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2351       .resetfn = arm_cp_reset_ignore },
2352     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2353       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2354       .access = PL1_RW,
2355       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2356     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2357       .access = PL1_RW,
2358       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2359                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2360       .resetvalue = 0 },
2361     REGINFO_SENTINEL
2362 };
2363 
2364 #ifndef CONFIG_USER_ONLY
2365 
2366 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2367                                        bool isread)
2368 {
2369     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2370      * Writable only at the highest implemented exception level.
2371      */
2372     int el = arm_current_el(env);
2373     uint64_t hcr;
2374     uint32_t cntkctl;
2375 
2376     switch (el) {
2377     case 0:
2378         hcr = arm_hcr_el2_eff(env);
2379         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2380             cntkctl = env->cp15.cnthctl_el2;
2381         } else {
2382             cntkctl = env->cp15.c14_cntkctl;
2383         }
2384         if (!extract32(cntkctl, 0, 2)) {
2385             return CP_ACCESS_TRAP;
2386         }
2387         break;
2388     case 1:
2389         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2390             arm_is_secure_below_el3(env)) {
2391             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2392             return CP_ACCESS_TRAP_UNCATEGORIZED;
2393         }
2394         break;
2395     case 2:
2396     case 3:
2397         break;
2398     }
2399 
2400     if (!isread && el < arm_highest_el(env)) {
2401         return CP_ACCESS_TRAP_UNCATEGORIZED;
2402     }
2403 
2404     return CP_ACCESS_OK;
2405 }
2406 
2407 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2408                                         bool isread)
2409 {
2410     unsigned int cur_el = arm_current_el(env);
2411     bool secure = arm_is_secure(env);
2412     uint64_t hcr = arm_hcr_el2_eff(env);
2413 
2414     switch (cur_el) {
2415     case 0:
2416         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2417         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2418             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2419                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2420         }
2421 
2422         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2423         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2424             return CP_ACCESS_TRAP;
2425         }
2426 
2427         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2428         if (hcr & HCR_E2H) {
2429             if (timeridx == GTIMER_PHYS &&
2430                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2431                 return CP_ACCESS_TRAP_EL2;
2432             }
2433         } else {
2434             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2435             if (arm_feature(env, ARM_FEATURE_EL2) &&
2436                 timeridx == GTIMER_PHYS && !secure &&
2437                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2438                 return CP_ACCESS_TRAP_EL2;
2439             }
2440         }
2441         break;
2442 
2443     case 1:
2444         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2445         if (arm_feature(env, ARM_FEATURE_EL2) &&
2446             timeridx == GTIMER_PHYS && !secure &&
2447             (hcr & HCR_E2H
2448              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2449              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2450             return CP_ACCESS_TRAP_EL2;
2451         }
2452         break;
2453     }
2454     return CP_ACCESS_OK;
2455 }
2456 
2457 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2458                                       bool isread)
2459 {
2460     unsigned int cur_el = arm_current_el(env);
2461     bool secure = arm_is_secure(env);
2462     uint64_t hcr = arm_hcr_el2_eff(env);
2463 
2464     switch (cur_el) {
2465     case 0:
2466         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2467             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2468             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2469                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2470         }
2471 
2472         /*
2473          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2474          * EL0 if EL0[PV]TEN is zero.
2475          */
2476         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2477             return CP_ACCESS_TRAP;
2478         }
2479         /* fall through */
2480 
2481     case 1:
2482         if (arm_feature(env, ARM_FEATURE_EL2) &&
2483             timeridx == GTIMER_PHYS && !secure) {
2484             if (hcr & HCR_E2H) {
2485                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2486                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2487                     return CP_ACCESS_TRAP_EL2;
2488                 }
2489             } else {
2490                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2491                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2492                     return CP_ACCESS_TRAP_EL2;
2493                 }
2494             }
2495         }
2496         break;
2497     }
2498     return CP_ACCESS_OK;
2499 }
2500 
2501 static CPAccessResult gt_pct_access(CPUARMState *env,
2502                                     const ARMCPRegInfo *ri,
2503                                     bool isread)
2504 {
2505     return gt_counter_access(env, GTIMER_PHYS, isread);
2506 }
2507 
2508 static CPAccessResult gt_vct_access(CPUARMState *env,
2509                                     const ARMCPRegInfo *ri,
2510                                     bool isread)
2511 {
2512     return gt_counter_access(env, GTIMER_VIRT, isread);
2513 }
2514 
2515 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2516                                        bool isread)
2517 {
2518     return gt_timer_access(env, GTIMER_PHYS, isread);
2519 }
2520 
2521 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2522                                        bool isread)
2523 {
2524     return gt_timer_access(env, GTIMER_VIRT, isread);
2525 }
2526 
2527 static CPAccessResult gt_stimer_access(CPUARMState *env,
2528                                        const ARMCPRegInfo *ri,
2529                                        bool isread)
2530 {
2531     /* The AArch64 register view of the secure physical timer is
2532      * always accessible from EL3, and configurably accessible from
2533      * Secure EL1.
2534      */
2535     switch (arm_current_el(env)) {
2536     case 1:
2537         if (!arm_is_secure(env)) {
2538             return CP_ACCESS_TRAP;
2539         }
2540         if (!(env->cp15.scr_el3 & SCR_ST)) {
2541             return CP_ACCESS_TRAP_EL3;
2542         }
2543         return CP_ACCESS_OK;
2544     case 0:
2545     case 2:
2546         return CP_ACCESS_TRAP;
2547     case 3:
2548         return CP_ACCESS_OK;
2549     default:
2550         g_assert_not_reached();
2551     }
2552 }
2553 
2554 static uint64_t gt_get_countervalue(CPUARMState *env)
2555 {
2556     ARMCPU *cpu = env_archcpu(env);
2557 
2558     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2559 }
2560 
2561 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2562 {
2563     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2564 
2565     if (gt->ctl & 1) {
2566         /* Timer enabled: calculate and set current ISTATUS, irq, and
2567          * reset timer to when ISTATUS next has to change
2568          */
2569         uint64_t offset = timeridx == GTIMER_VIRT ?
2570                                       cpu->env.cp15.cntvoff_el2 : 0;
2571         uint64_t count = gt_get_countervalue(&cpu->env);
2572         /* Note that this must be unsigned 64 bit arithmetic: */
2573         int istatus = count - offset >= gt->cval;
2574         uint64_t nexttick;
2575         int irqstate;
2576 
2577         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2578 
2579         irqstate = (istatus && !(gt->ctl & 2));
2580         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2581 
2582         if (istatus) {
2583             /* Next transition is when count rolls back over to zero */
2584             nexttick = UINT64_MAX;
2585         } else {
2586             /* Next transition is when we hit cval */
2587             nexttick = gt->cval + offset;
2588         }
2589         /* Note that the desired next expiry time might be beyond the
2590          * signed-64-bit range of a QEMUTimer -- in this case we just
2591          * set the timer for as far in the future as possible. When the
2592          * timer expires we will reset the timer for any remaining period.
2593          */
2594         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2595             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2596         } else {
2597             timer_mod(cpu->gt_timer[timeridx], nexttick);
2598         }
2599         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2600     } else {
2601         /* Timer disabled: ISTATUS and timer output always clear */
2602         gt->ctl &= ~4;
2603         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2604         timer_del(cpu->gt_timer[timeridx]);
2605         trace_arm_gt_recalc_disabled(timeridx);
2606     }
2607 }
2608 
2609 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2610                            int timeridx)
2611 {
2612     ARMCPU *cpu = env_archcpu(env);
2613 
2614     timer_del(cpu->gt_timer[timeridx]);
2615 }
2616 
2617 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2618 {
2619     return gt_get_countervalue(env);
2620 }
2621 
2622 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2623 {
2624     uint64_t hcr;
2625 
2626     switch (arm_current_el(env)) {
2627     case 2:
2628         hcr = arm_hcr_el2_eff(env);
2629         if (hcr & HCR_E2H) {
2630             return 0;
2631         }
2632         break;
2633     case 0:
2634         hcr = arm_hcr_el2_eff(env);
2635         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2636             return 0;
2637         }
2638         break;
2639     }
2640 
2641     return env->cp15.cntvoff_el2;
2642 }
2643 
2644 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2645 {
2646     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2647 }
2648 
2649 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2650                           int timeridx,
2651                           uint64_t value)
2652 {
2653     trace_arm_gt_cval_write(timeridx, value);
2654     env->cp15.c14_timer[timeridx].cval = value;
2655     gt_recalc_timer(env_archcpu(env), timeridx);
2656 }
2657 
2658 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2659                              int timeridx)
2660 {
2661     uint64_t offset = 0;
2662 
2663     switch (timeridx) {
2664     case GTIMER_VIRT:
2665     case GTIMER_HYPVIRT:
2666         offset = gt_virt_cnt_offset(env);
2667         break;
2668     }
2669 
2670     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2671                       (gt_get_countervalue(env) - offset));
2672 }
2673 
2674 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2675                           int timeridx,
2676                           uint64_t value)
2677 {
2678     uint64_t offset = 0;
2679 
2680     switch (timeridx) {
2681     case GTIMER_VIRT:
2682     case GTIMER_HYPVIRT:
2683         offset = gt_virt_cnt_offset(env);
2684         break;
2685     }
2686 
2687     trace_arm_gt_tval_write(timeridx, value);
2688     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2689                                          sextract64(value, 0, 32);
2690     gt_recalc_timer(env_archcpu(env), timeridx);
2691 }
2692 
2693 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2694                          int timeridx,
2695                          uint64_t value)
2696 {
2697     ARMCPU *cpu = env_archcpu(env);
2698     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2699 
2700     trace_arm_gt_ctl_write(timeridx, value);
2701     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2702     if ((oldval ^ value) & 1) {
2703         /* Enable toggled */
2704         gt_recalc_timer(cpu, timeridx);
2705     } else if ((oldval ^ value) & 2) {
2706         /* IMASK toggled: don't need to recalculate,
2707          * just set the interrupt line based on ISTATUS
2708          */
2709         int irqstate = (oldval & 4) && !(value & 2);
2710 
2711         trace_arm_gt_imask_toggle(timeridx, irqstate);
2712         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2713     }
2714 }
2715 
2716 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2717 {
2718     gt_timer_reset(env, ri, GTIMER_PHYS);
2719 }
2720 
2721 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2722                                uint64_t value)
2723 {
2724     gt_cval_write(env, ri, GTIMER_PHYS, value);
2725 }
2726 
2727 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2728 {
2729     return gt_tval_read(env, ri, GTIMER_PHYS);
2730 }
2731 
2732 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2733                                uint64_t value)
2734 {
2735     gt_tval_write(env, ri, GTIMER_PHYS, value);
2736 }
2737 
2738 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2739                               uint64_t value)
2740 {
2741     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2742 }
2743 
2744 static int gt_phys_redir_timeridx(CPUARMState *env)
2745 {
2746     switch (arm_mmu_idx(env)) {
2747     case ARMMMUIdx_E20_0:
2748     case ARMMMUIdx_E20_2:
2749     case ARMMMUIdx_E20_2_PAN:
2750         return GTIMER_HYP;
2751     default:
2752         return GTIMER_PHYS;
2753     }
2754 }
2755 
2756 static int gt_virt_redir_timeridx(CPUARMState *env)
2757 {
2758     switch (arm_mmu_idx(env)) {
2759     case ARMMMUIdx_E20_0:
2760     case ARMMMUIdx_E20_2:
2761     case ARMMMUIdx_E20_2_PAN:
2762         return GTIMER_HYPVIRT;
2763     default:
2764         return GTIMER_VIRT;
2765     }
2766 }
2767 
2768 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2769                                         const ARMCPRegInfo *ri)
2770 {
2771     int timeridx = gt_phys_redir_timeridx(env);
2772     return env->cp15.c14_timer[timeridx].cval;
2773 }
2774 
2775 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2776                                      uint64_t value)
2777 {
2778     int timeridx = gt_phys_redir_timeridx(env);
2779     gt_cval_write(env, ri, timeridx, value);
2780 }
2781 
2782 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2783                                         const ARMCPRegInfo *ri)
2784 {
2785     int timeridx = gt_phys_redir_timeridx(env);
2786     return gt_tval_read(env, ri, timeridx);
2787 }
2788 
2789 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2790                                      uint64_t value)
2791 {
2792     int timeridx = gt_phys_redir_timeridx(env);
2793     gt_tval_write(env, ri, timeridx, value);
2794 }
2795 
2796 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2797                                        const ARMCPRegInfo *ri)
2798 {
2799     int timeridx = gt_phys_redir_timeridx(env);
2800     return env->cp15.c14_timer[timeridx].ctl;
2801 }
2802 
2803 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2804                                     uint64_t value)
2805 {
2806     int timeridx = gt_phys_redir_timeridx(env);
2807     gt_ctl_write(env, ri, timeridx, value);
2808 }
2809 
2810 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2811 {
2812     gt_timer_reset(env, ri, GTIMER_VIRT);
2813 }
2814 
2815 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2816                                uint64_t value)
2817 {
2818     gt_cval_write(env, ri, GTIMER_VIRT, value);
2819 }
2820 
2821 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2822 {
2823     return gt_tval_read(env, ri, GTIMER_VIRT);
2824 }
2825 
2826 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                                uint64_t value)
2828 {
2829     gt_tval_write(env, ri, GTIMER_VIRT, value);
2830 }
2831 
2832 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2833                               uint64_t value)
2834 {
2835     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2836 }
2837 
2838 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2839                               uint64_t value)
2840 {
2841     ARMCPU *cpu = env_archcpu(env);
2842 
2843     trace_arm_gt_cntvoff_write(value);
2844     raw_write(env, ri, value);
2845     gt_recalc_timer(cpu, GTIMER_VIRT);
2846 }
2847 
2848 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2849                                         const ARMCPRegInfo *ri)
2850 {
2851     int timeridx = gt_virt_redir_timeridx(env);
2852     return env->cp15.c14_timer[timeridx].cval;
2853 }
2854 
2855 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                      uint64_t value)
2857 {
2858     int timeridx = gt_virt_redir_timeridx(env);
2859     gt_cval_write(env, ri, timeridx, value);
2860 }
2861 
2862 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2863                                         const ARMCPRegInfo *ri)
2864 {
2865     int timeridx = gt_virt_redir_timeridx(env);
2866     return gt_tval_read(env, ri, timeridx);
2867 }
2868 
2869 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870                                      uint64_t value)
2871 {
2872     int timeridx = gt_virt_redir_timeridx(env);
2873     gt_tval_write(env, ri, timeridx, value);
2874 }
2875 
2876 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2877                                        const ARMCPRegInfo *ri)
2878 {
2879     int timeridx = gt_virt_redir_timeridx(env);
2880     return env->cp15.c14_timer[timeridx].ctl;
2881 }
2882 
2883 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2884                                     uint64_t value)
2885 {
2886     int timeridx = gt_virt_redir_timeridx(env);
2887     gt_ctl_write(env, ri, timeridx, value);
2888 }
2889 
2890 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2891 {
2892     gt_timer_reset(env, ri, GTIMER_HYP);
2893 }
2894 
2895 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2896                               uint64_t value)
2897 {
2898     gt_cval_write(env, ri, GTIMER_HYP, value);
2899 }
2900 
2901 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2902 {
2903     return gt_tval_read(env, ri, GTIMER_HYP);
2904 }
2905 
2906 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907                               uint64_t value)
2908 {
2909     gt_tval_write(env, ri, GTIMER_HYP, value);
2910 }
2911 
2912 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2913                               uint64_t value)
2914 {
2915     gt_ctl_write(env, ri, GTIMER_HYP, value);
2916 }
2917 
2918 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2919 {
2920     gt_timer_reset(env, ri, GTIMER_SEC);
2921 }
2922 
2923 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2924                               uint64_t value)
2925 {
2926     gt_cval_write(env, ri, GTIMER_SEC, value);
2927 }
2928 
2929 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2930 {
2931     return gt_tval_read(env, ri, GTIMER_SEC);
2932 }
2933 
2934 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2935                               uint64_t value)
2936 {
2937     gt_tval_write(env, ri, GTIMER_SEC, value);
2938 }
2939 
2940 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2941                               uint64_t value)
2942 {
2943     gt_ctl_write(env, ri, GTIMER_SEC, value);
2944 }
2945 
2946 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2947 {
2948     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2949 }
2950 
2951 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2952                              uint64_t value)
2953 {
2954     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2955 }
2956 
2957 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2958 {
2959     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2960 }
2961 
2962 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2963                              uint64_t value)
2964 {
2965     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2966 }
2967 
2968 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969                             uint64_t value)
2970 {
2971     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2972 }
2973 
2974 void arm_gt_ptimer_cb(void *opaque)
2975 {
2976     ARMCPU *cpu = opaque;
2977 
2978     gt_recalc_timer(cpu, GTIMER_PHYS);
2979 }
2980 
2981 void arm_gt_vtimer_cb(void *opaque)
2982 {
2983     ARMCPU *cpu = opaque;
2984 
2985     gt_recalc_timer(cpu, GTIMER_VIRT);
2986 }
2987 
2988 void arm_gt_htimer_cb(void *opaque)
2989 {
2990     ARMCPU *cpu = opaque;
2991 
2992     gt_recalc_timer(cpu, GTIMER_HYP);
2993 }
2994 
2995 void arm_gt_stimer_cb(void *opaque)
2996 {
2997     ARMCPU *cpu = opaque;
2998 
2999     gt_recalc_timer(cpu, GTIMER_SEC);
3000 }
3001 
3002 void arm_gt_hvtimer_cb(void *opaque)
3003 {
3004     ARMCPU *cpu = opaque;
3005 
3006     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3007 }
3008 
3009 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3010 {
3011     ARMCPU *cpu = env_archcpu(env);
3012 
3013     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3014 }
3015 
3016 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3017     /* Note that CNTFRQ is purely reads-as-written for the benefit
3018      * of software; writing it doesn't actually change the timer frequency.
3019      * Our reset value matches the fixed frequency we implement the timer at.
3020      */
3021     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3022       .type = ARM_CP_ALIAS,
3023       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3024       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3025     },
3026     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3027       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3028       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3029       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3030       .resetfn = arm_gt_cntfrq_reset,
3031     },
3032     /* overall control: mostly access permissions */
3033     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3034       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3035       .access = PL1_RW,
3036       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3037       .resetvalue = 0,
3038     },
3039     /* per-timer control */
3040     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3041       .secure = ARM_CP_SECSTATE_NS,
3042       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3043       .accessfn = gt_ptimer_access,
3044       .fieldoffset = offsetoflow32(CPUARMState,
3045                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3046       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3047       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3048     },
3049     { .name = "CNTP_CTL_S",
3050       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3051       .secure = ARM_CP_SECSTATE_S,
3052       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3053       .accessfn = gt_ptimer_access,
3054       .fieldoffset = offsetoflow32(CPUARMState,
3055                                    cp15.c14_timer[GTIMER_SEC].ctl),
3056       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3057     },
3058     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3059       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3060       .type = ARM_CP_IO, .access = PL0_RW,
3061       .accessfn = gt_ptimer_access,
3062       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3063       .resetvalue = 0,
3064       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3065       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3066     },
3067     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3068       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3069       .accessfn = gt_vtimer_access,
3070       .fieldoffset = offsetoflow32(CPUARMState,
3071                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3072       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3073       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3074     },
3075     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3076       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3077       .type = ARM_CP_IO, .access = PL0_RW,
3078       .accessfn = gt_vtimer_access,
3079       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3080       .resetvalue = 0,
3081       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3082       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3083     },
3084     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3085     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3086       .secure = ARM_CP_SECSTATE_NS,
3087       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3088       .accessfn = gt_ptimer_access,
3089       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3090     },
3091     { .name = "CNTP_TVAL_S",
3092       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3093       .secure = ARM_CP_SECSTATE_S,
3094       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3095       .accessfn = gt_ptimer_access,
3096       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3097     },
3098     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3099       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3100       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3101       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3102       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3103     },
3104     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3105       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3106       .accessfn = gt_vtimer_access,
3107       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3108     },
3109     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3110       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3111       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3112       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3113       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3114     },
3115     /* The counter itself */
3116     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3117       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3118       .accessfn = gt_pct_access,
3119       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3120     },
3121     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3122       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3123       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3124       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3125     },
3126     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3127       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3128       .accessfn = gt_vct_access,
3129       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3130     },
3131     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3132       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3133       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3134       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3135     },
3136     /* Comparison value, indicating when the timer goes off */
3137     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3138       .secure = ARM_CP_SECSTATE_NS,
3139       .access = PL0_RW,
3140       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3141       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3142       .accessfn = gt_ptimer_access,
3143       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3144       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3145     },
3146     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3147       .secure = ARM_CP_SECSTATE_S,
3148       .access = PL0_RW,
3149       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3150       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3151       .accessfn = gt_ptimer_access,
3152       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3153     },
3154     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3155       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3156       .access = PL0_RW,
3157       .type = ARM_CP_IO,
3158       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3159       .resetvalue = 0, .accessfn = gt_ptimer_access,
3160       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3161       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3162     },
3163     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3164       .access = PL0_RW,
3165       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3166       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3167       .accessfn = gt_vtimer_access,
3168       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3169       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3170     },
3171     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3172       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3173       .access = PL0_RW,
3174       .type = ARM_CP_IO,
3175       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3176       .resetvalue = 0, .accessfn = gt_vtimer_access,
3177       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3178       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3179     },
3180     /* Secure timer -- this is actually restricted to only EL3
3181      * and configurably Secure-EL1 via the accessfn.
3182      */
3183     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3184       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3185       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3186       .accessfn = gt_stimer_access,
3187       .readfn = gt_sec_tval_read,
3188       .writefn = gt_sec_tval_write,
3189       .resetfn = gt_sec_timer_reset,
3190     },
3191     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3192       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3193       .type = ARM_CP_IO, .access = PL1_RW,
3194       .accessfn = gt_stimer_access,
3195       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3196       .resetvalue = 0,
3197       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3198     },
3199     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3200       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3201       .type = ARM_CP_IO, .access = PL1_RW,
3202       .accessfn = gt_stimer_access,
3203       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3204       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3205     },
3206     REGINFO_SENTINEL
3207 };
3208 
3209 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3210                                  bool isread)
3211 {
3212     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3213         return CP_ACCESS_TRAP;
3214     }
3215     return CP_ACCESS_OK;
3216 }
3217 
3218 #else
3219 
3220 /* In user-mode most of the generic timer registers are inaccessible
3221  * however modern kernels (4.12+) allow access to cntvct_el0
3222  */
3223 
3224 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3225 {
3226     ARMCPU *cpu = env_archcpu(env);
3227 
3228     /* Currently we have no support for QEMUTimer in linux-user so we
3229      * can't call gt_get_countervalue(env), instead we directly
3230      * call the lower level functions.
3231      */
3232     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3233 }
3234 
3235 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3236     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3237       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3238       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3239       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3240       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3241     },
3242     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3243       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3244       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3245       .readfn = gt_virt_cnt_read,
3246     },
3247     REGINFO_SENTINEL
3248 };
3249 
3250 #endif
3251 
3252 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3253 {
3254     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3255         raw_write(env, ri, value);
3256     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3257         raw_write(env, ri, value & 0xfffff6ff);
3258     } else {
3259         raw_write(env, ri, value & 0xfffff1ff);
3260     }
3261 }
3262 
3263 #ifndef CONFIG_USER_ONLY
3264 /* get_phys_addr() isn't present for user-mode-only targets */
3265 
3266 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3267                                  bool isread)
3268 {
3269     if (ri->opc2 & 4) {
3270         /* The ATS12NSO* operations must trap to EL3 if executed in
3271          * Secure EL1 (which can only happen if EL3 is AArch64).
3272          * They are simply UNDEF if executed from NS EL1.
3273          * They function normally from EL2 or EL3.
3274          */
3275         if (arm_current_el(env) == 1) {
3276             if (arm_is_secure_below_el3(env)) {
3277                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3278             }
3279             return CP_ACCESS_TRAP_UNCATEGORIZED;
3280         }
3281     }
3282     return CP_ACCESS_OK;
3283 }
3284 
3285 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3286                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3287 {
3288     hwaddr phys_addr;
3289     target_ulong page_size;
3290     int prot;
3291     bool ret;
3292     uint64_t par64;
3293     bool format64 = false;
3294     MemTxAttrs attrs = {};
3295     ARMMMUFaultInfo fi = {};
3296     ARMCacheAttrs cacheattrs = {};
3297 
3298     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3299                         &prot, &page_size, &fi, &cacheattrs);
3300 
3301     if (ret) {
3302         /*
3303          * Some kinds of translation fault must cause exceptions rather
3304          * than being reported in the PAR.
3305          */
3306         int current_el = arm_current_el(env);
3307         int target_el;
3308         uint32_t syn, fsr, fsc;
3309         bool take_exc = false;
3310 
3311         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3312             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3313             /*
3314              * Synchronous stage 2 fault on an access made as part of the
3315              * translation table walk for AT S1E0* or AT S1E1* insn
3316              * executed from NS EL1. If this is a synchronous external abort
3317              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3318              * to EL3. Otherwise the fault is taken as an exception to EL2,
3319              * and HPFAR_EL2 holds the faulting IPA.
3320              */
3321             if (fi.type == ARMFault_SyncExternalOnWalk &&
3322                 (env->cp15.scr_el3 & SCR_EA)) {
3323                 target_el = 3;
3324             } else {
3325                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3326                 target_el = 2;
3327             }
3328             take_exc = true;
3329         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3330             /*
3331              * Synchronous external aborts during a translation table walk
3332              * are taken as Data Abort exceptions.
3333              */
3334             if (fi.stage2) {
3335                 if (current_el == 3) {
3336                     target_el = 3;
3337                 } else {
3338                     target_el = 2;
3339                 }
3340             } else {
3341                 target_el = exception_target_el(env);
3342             }
3343             take_exc = true;
3344         }
3345 
3346         if (take_exc) {
3347             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3348             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3349                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3350                 fsr = arm_fi_to_lfsc(&fi);
3351                 fsc = extract32(fsr, 0, 6);
3352             } else {
3353                 fsr = arm_fi_to_sfsc(&fi);
3354                 fsc = 0x3f;
3355             }
3356             /*
3357              * Report exception with ESR indicating a fault due to a
3358              * translation table walk for a cache maintenance instruction.
3359              */
3360             syn = syn_data_abort_no_iss(current_el == target_el,
3361                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3362             env->exception.vaddress = value;
3363             env->exception.fsr = fsr;
3364             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3365         }
3366     }
3367 
3368     if (is_a64(env)) {
3369         format64 = true;
3370     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3371         /*
3372          * ATS1Cxx:
3373          * * TTBCR.EAE determines whether the result is returned using the
3374          *   32-bit or the 64-bit PAR format
3375          * * Instructions executed in Hyp mode always use the 64bit format
3376          *
3377          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3378          * * The Non-secure TTBCR.EAE bit is set to 1
3379          * * The implementation includes EL2, and the value of HCR.VM is 1
3380          *
3381          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3382          *
3383          * ATS1Hx always uses the 64bit format.
3384          */
3385         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3386 
3387         if (arm_feature(env, ARM_FEATURE_EL2)) {
3388             if (mmu_idx == ARMMMUIdx_E10_0 ||
3389                 mmu_idx == ARMMMUIdx_E10_1 ||
3390                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3391                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3392             } else {
3393                 format64 |= arm_current_el(env) == 2;
3394             }
3395         }
3396     }
3397 
3398     if (format64) {
3399         /* Create a 64-bit PAR */
3400         par64 = (1 << 11); /* LPAE bit always set */
3401         if (!ret) {
3402             par64 |= phys_addr & ~0xfffULL;
3403             if (!attrs.secure) {
3404                 par64 |= (1 << 9); /* NS */
3405             }
3406             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3407             par64 |= cacheattrs.shareability << 7; /* SH */
3408         } else {
3409             uint32_t fsr = arm_fi_to_lfsc(&fi);
3410 
3411             par64 |= 1; /* F */
3412             par64 |= (fsr & 0x3f) << 1; /* FS */
3413             if (fi.stage2) {
3414                 par64 |= (1 << 9); /* S */
3415             }
3416             if (fi.s1ptw) {
3417                 par64 |= (1 << 8); /* PTW */
3418             }
3419         }
3420     } else {
3421         /* fsr is a DFSR/IFSR value for the short descriptor
3422          * translation table format (with WnR always clear).
3423          * Convert it to a 32-bit PAR.
3424          */
3425         if (!ret) {
3426             /* We do not set any attribute bits in the PAR */
3427             if (page_size == (1 << 24)
3428                 && arm_feature(env, ARM_FEATURE_V7)) {
3429                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3430             } else {
3431                 par64 = phys_addr & 0xfffff000;
3432             }
3433             if (!attrs.secure) {
3434                 par64 |= (1 << 9); /* NS */
3435             }
3436         } else {
3437             uint32_t fsr = arm_fi_to_sfsc(&fi);
3438 
3439             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3440                     ((fsr & 0xf) << 1) | 1;
3441         }
3442     }
3443     return par64;
3444 }
3445 
3446 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3447 {
3448     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3449     uint64_t par64;
3450     ARMMMUIdx mmu_idx;
3451     int el = arm_current_el(env);
3452     bool secure = arm_is_secure_below_el3(env);
3453 
3454     switch (ri->opc2 & 6) {
3455     case 0:
3456         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3457         switch (el) {
3458         case 3:
3459             mmu_idx = ARMMMUIdx_SE3;
3460             break;
3461         case 2:
3462             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
3463             /* fall through */
3464         case 1:
3465             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3466                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3467                            : ARMMMUIdx_Stage1_E1_PAN);
3468             } else {
3469                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3470             }
3471             break;
3472         default:
3473             g_assert_not_reached();
3474         }
3475         break;
3476     case 2:
3477         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3478         switch (el) {
3479         case 3:
3480             mmu_idx = ARMMMUIdx_SE10_0;
3481             break;
3482         case 2:
3483             mmu_idx = ARMMMUIdx_Stage1_E0;
3484             break;
3485         case 1:
3486             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3487             break;
3488         default:
3489             g_assert_not_reached();
3490         }
3491         break;
3492     case 4:
3493         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3494         mmu_idx = ARMMMUIdx_E10_1;
3495         break;
3496     case 6:
3497         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3498         mmu_idx = ARMMMUIdx_E10_0;
3499         break;
3500     default:
3501         g_assert_not_reached();
3502     }
3503 
3504     par64 = do_ats_write(env, value, access_type, mmu_idx);
3505 
3506     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3507 }
3508 
3509 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3510                         uint64_t value)
3511 {
3512     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3513     uint64_t par64;
3514 
3515     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3516 
3517     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3518 }
3519 
3520 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3521                                      bool isread)
3522 {
3523     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3524         return CP_ACCESS_TRAP;
3525     }
3526     return CP_ACCESS_OK;
3527 }
3528 
3529 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3530                         uint64_t value)
3531 {
3532     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3533     ARMMMUIdx mmu_idx;
3534     int secure = arm_is_secure_below_el3(env);
3535 
3536     switch (ri->opc2 & 6) {
3537     case 0:
3538         switch (ri->opc1) {
3539         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3540             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3541                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3542                            : ARMMMUIdx_Stage1_E1_PAN);
3543             } else {
3544                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3545             }
3546             break;
3547         case 4: /* AT S1E2R, AT S1E2W */
3548             mmu_idx = ARMMMUIdx_E2;
3549             break;
3550         case 6: /* AT S1E3R, AT S1E3W */
3551             mmu_idx = ARMMMUIdx_SE3;
3552             break;
3553         default:
3554             g_assert_not_reached();
3555         }
3556         break;
3557     case 2: /* AT S1E0R, AT S1E0W */
3558         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3559         break;
3560     case 4: /* AT S12E1R, AT S12E1W */
3561         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3562         break;
3563     case 6: /* AT S12E0R, AT S12E0W */
3564         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3565         break;
3566     default:
3567         g_assert_not_reached();
3568     }
3569 
3570     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3571 }
3572 #endif
3573 
3574 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3575     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3576       .access = PL1_RW, .resetvalue = 0,
3577       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3578                              offsetoflow32(CPUARMState, cp15.par_ns) },
3579       .writefn = par_write },
3580 #ifndef CONFIG_USER_ONLY
3581     /* This underdecoding is safe because the reginfo is NO_RAW. */
3582     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3583       .access = PL1_W, .accessfn = ats_access,
3584       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3585 #endif
3586     REGINFO_SENTINEL
3587 };
3588 
3589 /* Return basic MPU access permission bits.  */
3590 static uint32_t simple_mpu_ap_bits(uint32_t val)
3591 {
3592     uint32_t ret;
3593     uint32_t mask;
3594     int i;
3595     ret = 0;
3596     mask = 3;
3597     for (i = 0; i < 16; i += 2) {
3598         ret |= (val >> i) & mask;
3599         mask <<= 2;
3600     }
3601     return ret;
3602 }
3603 
3604 /* Pad basic MPU access permission bits to extended format.  */
3605 static uint32_t extended_mpu_ap_bits(uint32_t val)
3606 {
3607     uint32_t ret;
3608     uint32_t mask;
3609     int i;
3610     ret = 0;
3611     mask = 3;
3612     for (i = 0; i < 16; i += 2) {
3613         ret |= (val & mask) << i;
3614         mask <<= 2;
3615     }
3616     return ret;
3617 }
3618 
3619 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3620                                  uint64_t value)
3621 {
3622     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3623 }
3624 
3625 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3626 {
3627     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3628 }
3629 
3630 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3631                                  uint64_t value)
3632 {
3633     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3634 }
3635 
3636 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3637 {
3638     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3639 }
3640 
3641 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3642 {
3643     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3644 
3645     if (!u32p) {
3646         return 0;
3647     }
3648 
3649     u32p += env->pmsav7.rnr[M_REG_NS];
3650     return *u32p;
3651 }
3652 
3653 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3654                          uint64_t value)
3655 {
3656     ARMCPU *cpu = env_archcpu(env);
3657     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3658 
3659     if (!u32p) {
3660         return;
3661     }
3662 
3663     u32p += env->pmsav7.rnr[M_REG_NS];
3664     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3665     *u32p = value;
3666 }
3667 
3668 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3669                               uint64_t value)
3670 {
3671     ARMCPU *cpu = env_archcpu(env);
3672     uint32_t nrgs = cpu->pmsav7_dregion;
3673 
3674     if (value >= nrgs) {
3675         qemu_log_mask(LOG_GUEST_ERROR,
3676                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3677                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3678         return;
3679     }
3680 
3681     raw_write(env, ri, value);
3682 }
3683 
3684 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3685     /* Reset for all these registers is handled in arm_cpu_reset(),
3686      * because the PMSAv7 is also used by M-profile CPUs, which do
3687      * not register cpregs but still need the state to be reset.
3688      */
3689     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3690       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3691       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3692       .readfn = pmsav7_read, .writefn = pmsav7_write,
3693       .resetfn = arm_cp_reset_ignore },
3694     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3695       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3696       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3697       .readfn = pmsav7_read, .writefn = pmsav7_write,
3698       .resetfn = arm_cp_reset_ignore },
3699     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3700       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3701       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3702       .readfn = pmsav7_read, .writefn = pmsav7_write,
3703       .resetfn = arm_cp_reset_ignore },
3704     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3705       .access = PL1_RW,
3706       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3707       .writefn = pmsav7_rgnr_write,
3708       .resetfn = arm_cp_reset_ignore },
3709     REGINFO_SENTINEL
3710 };
3711 
3712 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3713     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3714       .access = PL1_RW, .type = ARM_CP_ALIAS,
3715       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3716       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3717     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3718       .access = PL1_RW, .type = ARM_CP_ALIAS,
3719       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3720       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3721     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3722       .access = PL1_RW,
3723       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3724       .resetvalue = 0, },
3725     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3726       .access = PL1_RW,
3727       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3728       .resetvalue = 0, },
3729     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3730       .access = PL1_RW,
3731       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3732     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3733       .access = PL1_RW,
3734       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3735     /* Protection region base and size registers */
3736     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3737       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3738       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3739     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3740       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3741       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3742     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3743       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3744       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3745     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3746       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3747       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3748     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3749       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3750       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3751     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3752       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3753       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3754     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3755       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3756       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3757     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3758       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3759       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3760     REGINFO_SENTINEL
3761 };
3762 
3763 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3764                                  uint64_t value)
3765 {
3766     TCR *tcr = raw_ptr(env, ri);
3767     int maskshift = extract32(value, 0, 3);
3768 
3769     if (!arm_feature(env, ARM_FEATURE_V8)) {
3770         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3771             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3772              * using Long-desciptor translation table format */
3773             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3774         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3775             /* In an implementation that includes the Security Extensions
3776              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3777              * Short-descriptor translation table format.
3778              */
3779             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3780         } else {
3781             value &= TTBCR_N;
3782         }
3783     }
3784 
3785     /* Update the masks corresponding to the TCR bank being written
3786      * Note that we always calculate mask and base_mask, but
3787      * they are only used for short-descriptor tables (ie if EAE is 0);
3788      * for long-descriptor tables the TCR fields are used differently
3789      * and the mask and base_mask values are meaningless.
3790      */
3791     tcr->raw_tcr = value;
3792     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3793     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3794 }
3795 
3796 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3797                              uint64_t value)
3798 {
3799     ARMCPU *cpu = env_archcpu(env);
3800     TCR *tcr = raw_ptr(env, ri);
3801 
3802     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3803         /* With LPAE the TTBCR could result in a change of ASID
3804          * via the TTBCR.A1 bit, so do a TLB flush.
3805          */
3806         tlb_flush(CPU(cpu));
3807     }
3808     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3809     value = deposit64(tcr->raw_tcr, 0, 32, value);
3810     vmsa_ttbcr_raw_write(env, ri, value);
3811 }
3812 
3813 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3814 {
3815     TCR *tcr = raw_ptr(env, ri);
3816 
3817     /* Reset both the TCR as well as the masks corresponding to the bank of
3818      * the TCR being reset.
3819      */
3820     tcr->raw_tcr = 0;
3821     tcr->mask = 0;
3822     tcr->base_mask = 0xffffc000u;
3823 }
3824 
3825 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3826                                uint64_t value)
3827 {
3828     ARMCPU *cpu = env_archcpu(env);
3829     TCR *tcr = raw_ptr(env, ri);
3830 
3831     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3832     tlb_flush(CPU(cpu));
3833     tcr->raw_tcr = value;
3834 }
3835 
3836 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3837                             uint64_t value)
3838 {
3839     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3840     if (cpreg_field_is_64bit(ri) &&
3841         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3842         ARMCPU *cpu = env_archcpu(env);
3843         tlb_flush(CPU(cpu));
3844     }
3845     raw_write(env, ri, value);
3846 }
3847 
3848 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                                     uint64_t value)
3850 {
3851     /*
3852      * If we are running with E2&0 regime, then an ASID is active.
3853      * Flush if that might be changing.  Note we're not checking
3854      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3855      * holds the active ASID, only checking the field that might.
3856      */
3857     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3858         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3859         tlb_flush_by_mmuidx(env_cpu(env),
3860                             ARMMMUIdxBit_E20_2 |
3861                             ARMMMUIdxBit_E20_2_PAN |
3862                             ARMMMUIdxBit_E20_0);
3863     }
3864     raw_write(env, ri, value);
3865 }
3866 
3867 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3868                         uint64_t value)
3869 {
3870     ARMCPU *cpu = env_archcpu(env);
3871     CPUState *cs = CPU(cpu);
3872 
3873     /*
3874      * A change in VMID to the stage2 page table (Stage2) invalidates
3875      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3876      */
3877     if (raw_read(env, ri) != value) {
3878         tlb_flush_by_mmuidx(cs,
3879                             ARMMMUIdxBit_E10_1 |
3880                             ARMMMUIdxBit_E10_1_PAN |
3881                             ARMMMUIdxBit_E10_0 |
3882                             ARMMMUIdxBit_Stage2);
3883         raw_write(env, ri, value);
3884     }
3885 }
3886 
3887 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3888     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3889       .access = PL1_RW, .type = ARM_CP_ALIAS,
3890       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3891                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3892     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3893       .access = PL1_RW, .resetvalue = 0,
3894       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3895                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3896     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3897       .access = PL1_RW, .resetvalue = 0,
3898       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3899                              offsetof(CPUARMState, cp15.dfar_ns) } },
3900     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3901       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3902       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3903       .resetvalue = 0, },
3904     REGINFO_SENTINEL
3905 };
3906 
3907 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3908     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3909       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3910       .access = PL1_RW,
3911       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3912     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3913       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3914       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3915       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3916                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3917     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3918       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3919       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3920       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3921                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3922     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3923       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3924       .access = PL1_RW, .writefn = vmsa_tcr_el12_write,
3925       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3926       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3927     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3928       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3929       .raw_writefn = vmsa_ttbcr_raw_write,
3930       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3931                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3932     REGINFO_SENTINEL
3933 };
3934 
3935 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3936  * qemu tlbs nor adjusting cached masks.
3937  */
3938 static const ARMCPRegInfo ttbcr2_reginfo = {
3939     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3940     .access = PL1_RW, .type = ARM_CP_ALIAS,
3941     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3942                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3943 };
3944 
3945 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3946                                 uint64_t value)
3947 {
3948     env->cp15.c15_ticonfig = value & 0xe7;
3949     /* The OS_TYPE bit in this register changes the reported CPUID! */
3950     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3951         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3952 }
3953 
3954 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3955                                 uint64_t value)
3956 {
3957     env->cp15.c15_threadid = value & 0xffff;
3958 }
3959 
3960 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3961                            uint64_t value)
3962 {
3963     /* Wait-for-interrupt (deprecated) */
3964     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3965 }
3966 
3967 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3968                                   uint64_t value)
3969 {
3970     /* On OMAP there are registers indicating the max/min index of dcache lines
3971      * containing a dirty line; cache flush operations have to reset these.
3972      */
3973     env->cp15.c15_i_max = 0x000;
3974     env->cp15.c15_i_min = 0xff0;
3975 }
3976 
3977 static const ARMCPRegInfo omap_cp_reginfo[] = {
3978     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3979       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3980       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3981       .resetvalue = 0, },
3982     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3983       .access = PL1_RW, .type = ARM_CP_NOP },
3984     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3985       .access = PL1_RW,
3986       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3987       .writefn = omap_ticonfig_write },
3988     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3989       .access = PL1_RW,
3990       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3991     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3992       .access = PL1_RW, .resetvalue = 0xff0,
3993       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3994     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3995       .access = PL1_RW,
3996       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3997       .writefn = omap_threadid_write },
3998     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3999       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4000       .type = ARM_CP_NO_RAW,
4001       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4002     /* TODO: Peripheral port remap register:
4003      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4004      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4005      * when MMU is off.
4006      */
4007     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4008       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4009       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4010       .writefn = omap_cachemaint_write },
4011     { .name = "C9", .cp = 15, .crn = 9,
4012       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4013       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4014     REGINFO_SENTINEL
4015 };
4016 
4017 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4018                               uint64_t value)
4019 {
4020     env->cp15.c15_cpar = value & 0x3fff;
4021 }
4022 
4023 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4024     { .name = "XSCALE_CPAR",
4025       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4026       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4027       .writefn = xscale_cpar_write, },
4028     { .name = "XSCALE_AUXCR",
4029       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4030       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4031       .resetvalue = 0, },
4032     /* XScale specific cache-lockdown: since we have no cache we NOP these
4033      * and hope the guest does not really rely on cache behaviour.
4034      */
4035     { .name = "XSCALE_LOCK_ICACHE_LINE",
4036       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4037       .access = PL1_W, .type = ARM_CP_NOP },
4038     { .name = "XSCALE_UNLOCK_ICACHE",
4039       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4040       .access = PL1_W, .type = ARM_CP_NOP },
4041     { .name = "XSCALE_DCACHE_LOCK",
4042       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4043       .access = PL1_RW, .type = ARM_CP_NOP },
4044     { .name = "XSCALE_UNLOCK_DCACHE",
4045       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4046       .access = PL1_W, .type = ARM_CP_NOP },
4047     REGINFO_SENTINEL
4048 };
4049 
4050 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4051     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4052      * implementation of this implementation-defined space.
4053      * Ideally this should eventually disappear in favour of actually
4054      * implementing the correct behaviour for all cores.
4055      */
4056     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4057       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4058       .access = PL1_RW,
4059       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4060       .resetvalue = 0 },
4061     REGINFO_SENTINEL
4062 };
4063 
4064 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4065     /* Cache status: RAZ because we have no cache so it's always clean */
4066     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4067       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4068       .resetvalue = 0 },
4069     REGINFO_SENTINEL
4070 };
4071 
4072 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4073     /* We never have a a block transfer operation in progress */
4074     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4075       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4076       .resetvalue = 0 },
4077     /* The cache ops themselves: these all NOP for QEMU */
4078     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4079       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4080     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4081       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4082     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4083       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4084     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4085       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4086     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4087       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4088     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4089       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4090     REGINFO_SENTINEL
4091 };
4092 
4093 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4094     /* The cache test-and-clean instructions always return (1 << 30)
4095      * to indicate that there are no dirty cache lines.
4096      */
4097     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4098       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4099       .resetvalue = (1 << 30) },
4100     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4101       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4102       .resetvalue = (1 << 30) },
4103     REGINFO_SENTINEL
4104 };
4105 
4106 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4107     /* Ignore ReadBuffer accesses */
4108     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4109       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4110       .access = PL1_RW, .resetvalue = 0,
4111       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4112     REGINFO_SENTINEL
4113 };
4114 
4115 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4116 {
4117     ARMCPU *cpu = env_archcpu(env);
4118     unsigned int cur_el = arm_current_el(env);
4119     bool secure = arm_is_secure(env);
4120 
4121     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4122         return env->cp15.vpidr_el2;
4123     }
4124     return raw_read(env, ri);
4125 }
4126 
4127 static uint64_t mpidr_read_val(CPUARMState *env)
4128 {
4129     ARMCPU *cpu = env_archcpu(env);
4130     uint64_t mpidr = cpu->mp_affinity;
4131 
4132     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4133         mpidr |= (1U << 31);
4134         /* Cores which are uniprocessor (non-coherent)
4135          * but still implement the MP extensions set
4136          * bit 30. (For instance, Cortex-R5).
4137          */
4138         if (cpu->mp_is_up) {
4139             mpidr |= (1u << 30);
4140         }
4141     }
4142     return mpidr;
4143 }
4144 
4145 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4146 {
4147     unsigned int cur_el = arm_current_el(env);
4148     bool secure = arm_is_secure(env);
4149 
4150     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4151         return env->cp15.vmpidr_el2;
4152     }
4153     return mpidr_read_val(env);
4154 }
4155 
4156 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4157     /* NOP AMAIR0/1 */
4158     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4159       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4160       .access = PL1_RW, .type = ARM_CP_CONST,
4161       .resetvalue = 0 },
4162     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4163     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4164       .access = PL1_RW, .type = ARM_CP_CONST,
4165       .resetvalue = 0 },
4166     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4167       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4168       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4169                              offsetof(CPUARMState, cp15.par_ns)} },
4170     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4171       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4172       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4173                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4174       .writefn = vmsa_ttbr_write, },
4175     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4176       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4177       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4178                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4179       .writefn = vmsa_ttbr_write, },
4180     REGINFO_SENTINEL
4181 };
4182 
4183 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4184 {
4185     return vfp_get_fpcr(env);
4186 }
4187 
4188 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4189                             uint64_t value)
4190 {
4191     vfp_set_fpcr(env, value);
4192 }
4193 
4194 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4195 {
4196     return vfp_get_fpsr(env);
4197 }
4198 
4199 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4200                             uint64_t value)
4201 {
4202     vfp_set_fpsr(env, value);
4203 }
4204 
4205 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4206                                        bool isread)
4207 {
4208     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4209         return CP_ACCESS_TRAP;
4210     }
4211     return CP_ACCESS_OK;
4212 }
4213 
4214 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4215                             uint64_t value)
4216 {
4217     env->daif = value & PSTATE_DAIF;
4218 }
4219 
4220 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4221 {
4222     return env->pstate & PSTATE_PAN;
4223 }
4224 
4225 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4226                            uint64_t value)
4227 {
4228     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4229 }
4230 
4231 static const ARMCPRegInfo pan_reginfo = {
4232     .name = "PAN", .state = ARM_CP_STATE_AA64,
4233     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4234     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4235     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4236 };
4237 
4238 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4239 {
4240     return env->pstate & PSTATE_UAO;
4241 }
4242 
4243 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4244                            uint64_t value)
4245 {
4246     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4247 }
4248 
4249 static const ARMCPRegInfo uao_reginfo = {
4250     .name = "UAO", .state = ARM_CP_STATE_AA64,
4251     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4252     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4253     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4254 };
4255 
4256 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
4257                                           const ARMCPRegInfo *ri,
4258                                           bool isread)
4259 {
4260     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
4261      * SCTLR_EL1.UCI is set.
4262      */
4263     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UCI)) {
4264         return CP_ACCESS_TRAP;
4265     }
4266     return CP_ACCESS_OK;
4267 }
4268 
4269 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4270  * Page D4-1736 (DDI0487A.b)
4271  */
4272 
4273 static int vae1_tlbmask(CPUARMState *env)
4274 {
4275     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4276     if (arm_is_secure_below_el3(env)) {
4277         return ARMMMUIdxBit_SE10_1 |
4278                ARMMMUIdxBit_SE10_1_PAN |
4279                ARMMMUIdxBit_SE10_0;
4280     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4281                == (HCR_E2H | HCR_TGE)) {
4282         return ARMMMUIdxBit_E20_2 |
4283                ARMMMUIdxBit_E20_2_PAN |
4284                ARMMMUIdxBit_E20_0;
4285     } else {
4286         return ARMMMUIdxBit_E10_1 |
4287                ARMMMUIdxBit_E10_1_PAN |
4288                ARMMMUIdxBit_E10_0;
4289     }
4290 }
4291 
4292 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4293                                       uint64_t value)
4294 {
4295     CPUState *cs = env_cpu(env);
4296     int mask = vae1_tlbmask(env);
4297 
4298     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4299 }
4300 
4301 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4302                                     uint64_t value)
4303 {
4304     CPUState *cs = env_cpu(env);
4305     int mask = vae1_tlbmask(env);
4306 
4307     if (tlb_force_broadcast(env)) {
4308         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4309     } else {
4310         tlb_flush_by_mmuidx(cs, mask);
4311     }
4312 }
4313 
4314 static int alle1_tlbmask(CPUARMState *env)
4315 {
4316     /*
4317      * Note that the 'ALL' scope must invalidate both stage 1 and
4318      * stage 2 translations, whereas most other scopes only invalidate
4319      * stage 1 translations.
4320      */
4321     if (arm_is_secure_below_el3(env)) {
4322         return ARMMMUIdxBit_SE10_1 |
4323                ARMMMUIdxBit_SE10_1_PAN |
4324                ARMMMUIdxBit_SE10_0;
4325     } else if (arm_feature(env, ARM_FEATURE_EL2)) {
4326         return ARMMMUIdxBit_E10_1 |
4327                ARMMMUIdxBit_E10_1_PAN |
4328                ARMMMUIdxBit_E10_0 |
4329                ARMMMUIdxBit_Stage2;
4330     } else {
4331         return ARMMMUIdxBit_E10_1 |
4332                ARMMMUIdxBit_E10_1_PAN |
4333                ARMMMUIdxBit_E10_0;
4334     }
4335 }
4336 
4337 static int e2_tlbmask(CPUARMState *env)
4338 {
4339     /* TODO: ARMv8.4-SecEL2 */
4340     return ARMMMUIdxBit_E20_0 |
4341            ARMMMUIdxBit_E20_2 |
4342            ARMMMUIdxBit_E20_2_PAN |
4343            ARMMMUIdxBit_E2;
4344 }
4345 
4346 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4347                                   uint64_t value)
4348 {
4349     CPUState *cs = env_cpu(env);
4350     int mask = alle1_tlbmask(env);
4351 
4352     tlb_flush_by_mmuidx(cs, mask);
4353 }
4354 
4355 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4356                                   uint64_t value)
4357 {
4358     CPUState *cs = env_cpu(env);
4359     int mask = e2_tlbmask(env);
4360 
4361     tlb_flush_by_mmuidx(cs, mask);
4362 }
4363 
4364 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4365                                   uint64_t value)
4366 {
4367     ARMCPU *cpu = env_archcpu(env);
4368     CPUState *cs = CPU(cpu);
4369 
4370     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4371 }
4372 
4373 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4374                                     uint64_t value)
4375 {
4376     CPUState *cs = env_cpu(env);
4377     int mask = alle1_tlbmask(env);
4378 
4379     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4380 }
4381 
4382 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4383                                     uint64_t value)
4384 {
4385     CPUState *cs = env_cpu(env);
4386     int mask = e2_tlbmask(env);
4387 
4388     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4389 }
4390 
4391 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4392                                     uint64_t value)
4393 {
4394     CPUState *cs = env_cpu(env);
4395 
4396     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4397 }
4398 
4399 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4400                                  uint64_t value)
4401 {
4402     /* Invalidate by VA, EL2
4403      * Currently handles both VAE2 and VALE2, since we don't support
4404      * flush-last-level-only.
4405      */
4406     CPUState *cs = env_cpu(env);
4407     int mask = e2_tlbmask(env);
4408     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4409 
4410     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4411 }
4412 
4413 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4414                                  uint64_t value)
4415 {
4416     /* Invalidate by VA, EL3
4417      * Currently handles both VAE3 and VALE3, since we don't support
4418      * flush-last-level-only.
4419      */
4420     ARMCPU *cpu = env_archcpu(env);
4421     CPUState *cs = CPU(cpu);
4422     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4423 
4424     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4425 }
4426 
4427 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4428                                    uint64_t value)
4429 {
4430     CPUState *cs = env_cpu(env);
4431     int mask = vae1_tlbmask(env);
4432     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4433 
4434     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4435 }
4436 
4437 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4438                                  uint64_t value)
4439 {
4440     /* Invalidate by VA, EL1&0 (AArch64 version).
4441      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4442      * since we don't support flush-for-specific-ASID-only or
4443      * flush-last-level-only.
4444      */
4445     CPUState *cs = env_cpu(env);
4446     int mask = vae1_tlbmask(env);
4447     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4448 
4449     if (tlb_force_broadcast(env)) {
4450         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4451     } else {
4452         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4453     }
4454 }
4455 
4456 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4457                                    uint64_t value)
4458 {
4459     CPUState *cs = env_cpu(env);
4460     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4461 
4462     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4463                                              ARMMMUIdxBit_E2);
4464 }
4465 
4466 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4467                                    uint64_t value)
4468 {
4469     CPUState *cs = env_cpu(env);
4470     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4471 
4472     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4473                                              ARMMMUIdxBit_SE3);
4474 }
4475 
4476 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4477                                     uint64_t value)
4478 {
4479     /* Invalidate by IPA. This has to invalidate any structures that
4480      * contain only stage 2 translation information, but does not need
4481      * to apply to structures that contain combined stage 1 and stage 2
4482      * translation information.
4483      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
4484      */
4485     ARMCPU *cpu = env_archcpu(env);
4486     CPUState *cs = CPU(cpu);
4487     uint64_t pageaddr;
4488 
4489     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4490         return;
4491     }
4492 
4493     pageaddr = sextract64(value << 12, 0, 48);
4494 
4495     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
4496 }
4497 
4498 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4499                                       uint64_t value)
4500 {
4501     CPUState *cs = env_cpu(env);
4502     uint64_t pageaddr;
4503 
4504     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4505         return;
4506     }
4507 
4508     pageaddr = sextract64(value << 12, 0, 48);
4509 
4510     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4511                                              ARMMMUIdxBit_Stage2);
4512 }
4513 
4514 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4515                                       bool isread)
4516 {
4517     int cur_el = arm_current_el(env);
4518 
4519     if (cur_el < 2) {
4520         uint64_t hcr = arm_hcr_el2_eff(env);
4521 
4522         if (cur_el == 0) {
4523             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4524                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4525                     return CP_ACCESS_TRAP_EL2;
4526                 }
4527             } else {
4528                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4529                     return CP_ACCESS_TRAP;
4530                 }
4531                 if (hcr & HCR_TDZ) {
4532                     return CP_ACCESS_TRAP_EL2;
4533                 }
4534             }
4535         } else if (hcr & HCR_TDZ) {
4536             return CP_ACCESS_TRAP_EL2;
4537         }
4538     }
4539     return CP_ACCESS_OK;
4540 }
4541 
4542 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4543 {
4544     ARMCPU *cpu = env_archcpu(env);
4545     int dzp_bit = 1 << 4;
4546 
4547     /* DZP indicates whether DC ZVA access is allowed */
4548     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4549         dzp_bit = 0;
4550     }
4551     return cpu->dcz_blocksize | dzp_bit;
4552 }
4553 
4554 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4555                                     bool isread)
4556 {
4557     if (!(env->pstate & PSTATE_SP)) {
4558         /* Access to SP_EL0 is undefined if it's being used as
4559          * the stack pointer.
4560          */
4561         return CP_ACCESS_TRAP_UNCATEGORIZED;
4562     }
4563     return CP_ACCESS_OK;
4564 }
4565 
4566 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4567 {
4568     return env->pstate & PSTATE_SP;
4569 }
4570 
4571 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4572 {
4573     update_spsel(env, val);
4574 }
4575 
4576 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4577                         uint64_t value)
4578 {
4579     ARMCPU *cpu = env_archcpu(env);
4580 
4581     if (raw_read(env, ri) == value) {
4582         /* Skip the TLB flush if nothing actually changed; Linux likes
4583          * to do a lot of pointless SCTLR writes.
4584          */
4585         return;
4586     }
4587 
4588     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4589         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4590         value &= ~SCTLR_M;
4591     }
4592 
4593     raw_write(env, ri, value);
4594     /* ??? Lots of these bits are not implemented.  */
4595     /* This may enable/disable the MMU, so do a TLB flush.  */
4596     tlb_flush(CPU(cpu));
4597 
4598     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4599         /*
4600          * Normally we would always end the TB on an SCTLR write; see the
4601          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4602          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4603          * of hflags from the translator, so do it here.
4604          */
4605         arm_rebuild_hflags(env);
4606     }
4607 }
4608 
4609 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4610                                      bool isread)
4611 {
4612     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4613         return CP_ACCESS_TRAP_FP_EL2;
4614     }
4615     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4616         return CP_ACCESS_TRAP_FP_EL3;
4617     }
4618     return CP_ACCESS_OK;
4619 }
4620 
4621 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4622                        uint64_t value)
4623 {
4624     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4625 }
4626 
4627 static const ARMCPRegInfo v8_cp_reginfo[] = {
4628     /* Minimal set of EL0-visible registers. This will need to be expanded
4629      * significantly for system emulation of AArch64 CPUs.
4630      */
4631     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4632       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4633       .access = PL0_RW, .type = ARM_CP_NZCV },
4634     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4635       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4636       .type = ARM_CP_NO_RAW,
4637       .access = PL0_RW, .accessfn = aa64_daif_access,
4638       .fieldoffset = offsetof(CPUARMState, daif),
4639       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4640     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4641       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4642       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4643       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4644     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4645       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4646       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4647       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4648     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4649       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4650       .access = PL0_R, .type = ARM_CP_NO_RAW,
4651       .readfn = aa64_dczid_read },
4652     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4653       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4654       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4655 #ifndef CONFIG_USER_ONLY
4656       /* Avoid overhead of an access check that always passes in user-mode */
4657       .accessfn = aa64_zva_access,
4658 #endif
4659     },
4660     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4661       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4662       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4663     /* Cache ops: all NOPs since we don't emulate caches */
4664     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4665       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4666       .access = PL1_W, .type = ARM_CP_NOP },
4667     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4668       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4669       .access = PL1_W, .type = ARM_CP_NOP },
4670     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4671       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4672       .access = PL0_W, .type = ARM_CP_NOP,
4673       .accessfn = aa64_cacheop_access },
4674     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4675       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4676       .access = PL1_W, .type = ARM_CP_NOP },
4677     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4678       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4679       .access = PL1_W, .type = ARM_CP_NOP },
4680     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4681       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4682       .access = PL0_W, .type = ARM_CP_NOP,
4683       .accessfn = aa64_cacheop_access },
4684     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4685       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4686       .access = PL1_W, .type = ARM_CP_NOP },
4687     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4688       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4689       .access = PL0_W, .type = ARM_CP_NOP,
4690       .accessfn = aa64_cacheop_access },
4691     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4692       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4693       .access = PL0_W, .type = ARM_CP_NOP,
4694       .accessfn = aa64_cacheop_access },
4695     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4696       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4697       .access = PL1_W, .type = ARM_CP_NOP },
4698     /* TLBI operations */
4699     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4700       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4701       .access = PL1_W, .type = ARM_CP_NO_RAW,
4702       .writefn = tlbi_aa64_vmalle1is_write },
4703     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4704       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4705       .access = PL1_W, .type = ARM_CP_NO_RAW,
4706       .writefn = tlbi_aa64_vae1is_write },
4707     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4708       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4709       .access = PL1_W, .type = ARM_CP_NO_RAW,
4710       .writefn = tlbi_aa64_vmalle1is_write },
4711     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4712       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4713       .access = PL1_W, .type = ARM_CP_NO_RAW,
4714       .writefn = tlbi_aa64_vae1is_write },
4715     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4716       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4717       .access = PL1_W, .type = ARM_CP_NO_RAW,
4718       .writefn = tlbi_aa64_vae1is_write },
4719     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4720       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4721       .access = PL1_W, .type = ARM_CP_NO_RAW,
4722       .writefn = tlbi_aa64_vae1is_write },
4723     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4724       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4725       .access = PL1_W, .type = ARM_CP_NO_RAW,
4726       .writefn = tlbi_aa64_vmalle1_write },
4727     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4728       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4729       .access = PL1_W, .type = ARM_CP_NO_RAW,
4730       .writefn = tlbi_aa64_vae1_write },
4731     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4732       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4733       .access = PL1_W, .type = ARM_CP_NO_RAW,
4734       .writefn = tlbi_aa64_vmalle1_write },
4735     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4736       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4737       .access = PL1_W, .type = ARM_CP_NO_RAW,
4738       .writefn = tlbi_aa64_vae1_write },
4739     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4740       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4741       .access = PL1_W, .type = ARM_CP_NO_RAW,
4742       .writefn = tlbi_aa64_vae1_write },
4743     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4744       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4745       .access = PL1_W, .type = ARM_CP_NO_RAW,
4746       .writefn = tlbi_aa64_vae1_write },
4747     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4748       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4749       .access = PL2_W, .type = ARM_CP_NO_RAW,
4750       .writefn = tlbi_aa64_ipas2e1is_write },
4751     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4752       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4753       .access = PL2_W, .type = ARM_CP_NO_RAW,
4754       .writefn = tlbi_aa64_ipas2e1is_write },
4755     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4756       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4757       .access = PL2_W, .type = ARM_CP_NO_RAW,
4758       .writefn = tlbi_aa64_alle1is_write },
4759     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4760       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4761       .access = PL2_W, .type = ARM_CP_NO_RAW,
4762       .writefn = tlbi_aa64_alle1is_write },
4763     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4764       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4765       .access = PL2_W, .type = ARM_CP_NO_RAW,
4766       .writefn = tlbi_aa64_ipas2e1_write },
4767     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4768       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4769       .access = PL2_W, .type = ARM_CP_NO_RAW,
4770       .writefn = tlbi_aa64_ipas2e1_write },
4771     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4772       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4773       .access = PL2_W, .type = ARM_CP_NO_RAW,
4774       .writefn = tlbi_aa64_alle1_write },
4775     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4776       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4777       .access = PL2_W, .type = ARM_CP_NO_RAW,
4778       .writefn = tlbi_aa64_alle1is_write },
4779 #ifndef CONFIG_USER_ONLY
4780     /* 64 bit address translation operations */
4781     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4782       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4783       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4784       .writefn = ats_write64 },
4785     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4786       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4787       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4788       .writefn = ats_write64 },
4789     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4790       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4791       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4792       .writefn = ats_write64 },
4793     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4794       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4795       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4796       .writefn = ats_write64 },
4797     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4798       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4799       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4800       .writefn = ats_write64 },
4801     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4802       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4803       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4804       .writefn = ats_write64 },
4805     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4806       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4807       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4808       .writefn = ats_write64 },
4809     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4810       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4811       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4812       .writefn = ats_write64 },
4813     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4814     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4815       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4816       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4817       .writefn = ats_write64 },
4818     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4820       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4821       .writefn = ats_write64 },
4822     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4823       .type = ARM_CP_ALIAS,
4824       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4825       .access = PL1_RW, .resetvalue = 0,
4826       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4827       .writefn = par_write },
4828 #endif
4829     /* TLB invalidate last level of translation table walk */
4830     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4831       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4832     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4833       .type = ARM_CP_NO_RAW, .access = PL1_W,
4834       .writefn = tlbimvaa_is_write },
4835     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4836       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4837     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4838       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4839     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4840       .type = ARM_CP_NO_RAW, .access = PL2_W,
4841       .writefn = tlbimva_hyp_write },
4842     { .name = "TLBIMVALHIS",
4843       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4844       .type = ARM_CP_NO_RAW, .access = PL2_W,
4845       .writefn = tlbimva_hyp_is_write },
4846     { .name = "TLBIIPAS2",
4847       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4848       .type = ARM_CP_NO_RAW, .access = PL2_W,
4849       .writefn = tlbiipas2_write },
4850     { .name = "TLBIIPAS2IS",
4851       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4852       .type = ARM_CP_NO_RAW, .access = PL2_W,
4853       .writefn = tlbiipas2_is_write },
4854     { .name = "TLBIIPAS2L",
4855       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4856       .type = ARM_CP_NO_RAW, .access = PL2_W,
4857       .writefn = tlbiipas2_write },
4858     { .name = "TLBIIPAS2LIS",
4859       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4860       .type = ARM_CP_NO_RAW, .access = PL2_W,
4861       .writefn = tlbiipas2_is_write },
4862     /* 32 bit cache operations */
4863     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4864       .type = ARM_CP_NOP, .access = PL1_W },
4865     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4866       .type = ARM_CP_NOP, .access = PL1_W },
4867     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4868       .type = ARM_CP_NOP, .access = PL1_W },
4869     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4870       .type = ARM_CP_NOP, .access = PL1_W },
4871     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4872       .type = ARM_CP_NOP, .access = PL1_W },
4873     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4874       .type = ARM_CP_NOP, .access = PL1_W },
4875     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4876       .type = ARM_CP_NOP, .access = PL1_W },
4877     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4878       .type = ARM_CP_NOP, .access = PL1_W },
4879     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4880       .type = ARM_CP_NOP, .access = PL1_W },
4881     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4882       .type = ARM_CP_NOP, .access = PL1_W },
4883     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4884       .type = ARM_CP_NOP, .access = PL1_W },
4885     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4886       .type = ARM_CP_NOP, .access = PL1_W },
4887     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4888       .type = ARM_CP_NOP, .access = PL1_W },
4889     /* MMU Domain access control / MPU write buffer control */
4890     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4891       .access = PL1_RW, .resetvalue = 0,
4892       .writefn = dacr_write, .raw_writefn = raw_write,
4893       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4894                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4895     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4896       .type = ARM_CP_ALIAS,
4897       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4898       .access = PL1_RW,
4899       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4900     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4901       .type = ARM_CP_ALIAS,
4902       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4903       .access = PL1_RW,
4904       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4905     /* We rely on the access checks not allowing the guest to write to the
4906      * state field when SPSel indicates that it's being used as the stack
4907      * pointer.
4908      */
4909     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4911       .access = PL1_RW, .accessfn = sp_el0_access,
4912       .type = ARM_CP_ALIAS,
4913       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4914     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4915       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4916       .access = PL2_RW, .type = ARM_CP_ALIAS,
4917       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4918     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4919       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4920       .type = ARM_CP_NO_RAW,
4921       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4922     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4923       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4924       .type = ARM_CP_ALIAS,
4925       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4926       .access = PL2_RW, .accessfn = fpexc32_access },
4927     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4929       .access = PL2_RW, .resetvalue = 0,
4930       .writefn = dacr_write, .raw_writefn = raw_write,
4931       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4932     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4933       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4934       .access = PL2_RW, .resetvalue = 0,
4935       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4936     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4937       .type = ARM_CP_ALIAS,
4938       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4939       .access = PL2_RW,
4940       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4941     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4942       .type = ARM_CP_ALIAS,
4943       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4944       .access = PL2_RW,
4945       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4946     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4947       .type = ARM_CP_ALIAS,
4948       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4949       .access = PL2_RW,
4950       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4951     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4952       .type = ARM_CP_ALIAS,
4953       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4954       .access = PL2_RW,
4955       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4956     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4957       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4958       .resetvalue = 0,
4959       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4960     { .name = "SDCR", .type = ARM_CP_ALIAS,
4961       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4962       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4963       .writefn = sdcr_write,
4964       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4965     REGINFO_SENTINEL
4966 };
4967 
4968 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4969 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4970     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4971       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4972       .access = PL2_RW,
4973       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4974     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4975       .type = ARM_CP_NO_RAW,
4976       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4977       .access = PL2_RW,
4978       .type = ARM_CP_CONST, .resetvalue = 0 },
4979     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4980       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4981       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4982     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4983       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4984       .access = PL2_RW,
4985       .type = ARM_CP_CONST, .resetvalue = 0 },
4986     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4987       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4988       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4989     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4990       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4991       .access = PL2_RW, .type = ARM_CP_CONST,
4992       .resetvalue = 0 },
4993     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4994       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4995       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4996     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4997       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4998       .access = PL2_RW, .type = ARM_CP_CONST,
4999       .resetvalue = 0 },
5000     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5001       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5002       .access = PL2_RW, .type = ARM_CP_CONST,
5003       .resetvalue = 0 },
5004     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5005       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5006       .access = PL2_RW, .type = ARM_CP_CONST,
5007       .resetvalue = 0 },
5008     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5009       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5010       .access = PL2_RW, .type = ARM_CP_CONST,
5011       .resetvalue = 0 },
5012     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5013       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5014       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5015     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5016       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5017       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5018       .type = ARM_CP_CONST, .resetvalue = 0 },
5019     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5020       .cp = 15, .opc1 = 6, .crm = 2,
5021       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5022       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5023     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5024       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5025       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5026     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5027       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5028       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5029     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5030       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5031       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5032     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5033       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5034       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5035     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5036       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5037       .resetvalue = 0 },
5038     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5039       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5040       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5041     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5042       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5043       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5044     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5045       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5046       .resetvalue = 0 },
5047     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5048       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5049       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5050     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5051       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5052       .resetvalue = 0 },
5053     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5054       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5055       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5056     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5057       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5058       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5059     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5060       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5061       .access = PL2_RW, .accessfn = access_tda,
5062       .type = ARM_CP_CONST, .resetvalue = 0 },
5063     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5064       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5065       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5066       .type = ARM_CP_CONST, .resetvalue = 0 },
5067     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5068       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5069       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5070     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5071       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5072       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5073     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5074       .type = ARM_CP_CONST,
5075       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5076       .access = PL2_RW, .resetvalue = 0 },
5077     REGINFO_SENTINEL
5078 };
5079 
5080 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5081 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5082     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5083       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5084       .access = PL2_RW,
5085       .type = ARM_CP_CONST, .resetvalue = 0 },
5086     REGINFO_SENTINEL
5087 };
5088 
5089 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5090 {
5091     ARMCPU *cpu = env_archcpu(env);
5092     /* Begin with bits defined in base ARMv8.0.  */
5093     uint64_t valid_mask = MAKE_64BIT_MASK(0, 34);
5094 
5095     if (arm_feature(env, ARM_FEATURE_EL3)) {
5096         valid_mask &= ~HCR_HCD;
5097     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5098         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5099          * However, if we're using the SMC PSCI conduit then QEMU is
5100          * effectively acting like EL3 firmware and so the guest at
5101          * EL2 should retain the ability to prevent EL1 from being
5102          * able to make SMC calls into the ersatz firmware, so in
5103          * that case HCR.TSC should be read/write.
5104          */
5105         valid_mask &= ~HCR_TSC;
5106     }
5107     if (cpu_isar_feature(aa64_vh, cpu)) {
5108         valid_mask |= HCR_E2H;
5109     }
5110     if (cpu_isar_feature(aa64_lor, cpu)) {
5111         valid_mask |= HCR_TLOR;
5112     }
5113     if (cpu_isar_feature(aa64_pauth, cpu)) {
5114         valid_mask |= HCR_API | HCR_APK;
5115     }
5116 
5117     /* Clear RES0 bits.  */
5118     value &= valid_mask;
5119 
5120     /* These bits change the MMU setup:
5121      * HCR_VM enables stage 2 translation
5122      * HCR_PTW forbids certain page-table setups
5123      * HCR_DC Disables stage1 and enables stage2 translation
5124      */
5125     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
5126         tlb_flush(CPU(cpu));
5127     }
5128     env->cp15.hcr_el2 = value;
5129 
5130     /*
5131      * Updates to VI and VF require us to update the status of
5132      * virtual interrupts, which are the logical OR of these bits
5133      * and the state of the input lines from the GIC. (This requires
5134      * that we have the iothread lock, which is done by marking the
5135      * reginfo structs as ARM_CP_IO.)
5136      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5137      * possible for it to be taken immediately, because VIRQ and
5138      * VFIQ are masked unless running at EL0 or EL1, and HCR
5139      * can only be written at EL2.
5140      */
5141     g_assert(qemu_mutex_iothread_locked());
5142     arm_cpu_update_virq(cpu);
5143     arm_cpu_update_vfiq(cpu);
5144 }
5145 
5146 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5147                           uint64_t value)
5148 {
5149     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5150     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5151     hcr_write(env, NULL, value);
5152 }
5153 
5154 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5155                          uint64_t value)
5156 {
5157     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5158     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5159     hcr_write(env, NULL, value);
5160 }
5161 
5162 /*
5163  * Return the effective value of HCR_EL2.
5164  * Bits that are not included here:
5165  * RW       (read from SCR_EL3.RW as needed)
5166  */
5167 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5168 {
5169     uint64_t ret = env->cp15.hcr_el2;
5170 
5171     if (arm_is_secure_below_el3(env)) {
5172         /*
5173          * "This register has no effect if EL2 is not enabled in the
5174          * current Security state".  This is ARMv8.4-SecEL2 speak for
5175          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5176          *
5177          * Prior to that, the language was "In an implementation that
5178          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5179          * as if this field is 0 for all purposes other than a direct
5180          * read or write access of HCR_EL2".  With lots of enumeration
5181          * on a per-field basis.  In current QEMU, this is condition
5182          * is arm_is_secure_below_el3.
5183          *
5184          * Since the v8.4 language applies to the entire register, and
5185          * appears to be backward compatible, use that.
5186          */
5187         ret = 0;
5188     } else if (ret & HCR_TGE) {
5189         /* These bits are up-to-date as of ARMv8.4.  */
5190         if (ret & HCR_E2H) {
5191             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5192                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5193                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5194                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
5195         } else {
5196             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5197         }
5198         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5199                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5200                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5201                  HCR_TLOR);
5202     }
5203 
5204     return ret;
5205 }
5206 
5207 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5208                            uint64_t value)
5209 {
5210     /*
5211      * For A-profile AArch32 EL3, if NSACR.CP10
5212      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5213      */
5214     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5215         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5216         value &= ~(0x3 << 10);
5217         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5218     }
5219     env->cp15.cptr_el[2] = value;
5220 }
5221 
5222 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5223 {
5224     /*
5225      * For A-profile AArch32 EL3, if NSACR.CP10
5226      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5227      */
5228     uint64_t value = env->cp15.cptr_el[2];
5229 
5230     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5231         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5232         value |= 0x3 << 10;
5233     }
5234     return value;
5235 }
5236 
5237 static const ARMCPRegInfo el2_cp_reginfo[] = {
5238     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5239       .type = ARM_CP_IO,
5240       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5241       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5242       .writefn = hcr_write },
5243     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5244       .type = ARM_CP_ALIAS | ARM_CP_IO,
5245       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5246       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5247       .writefn = hcr_writelow },
5248     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5249       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5250       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5251     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5252       .type = ARM_CP_ALIAS,
5253       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5254       .access = PL2_RW,
5255       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5256     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5257       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5258       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5259     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5260       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5261       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5262     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5263       .type = ARM_CP_ALIAS,
5264       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5265       .access = PL2_RW,
5266       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5267     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5268       .type = ARM_CP_ALIAS,
5269       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5270       .access = PL2_RW,
5271       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5272     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5273       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5274       .access = PL2_RW, .writefn = vbar_write,
5275       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5276       .resetvalue = 0 },
5277     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5278       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5279       .access = PL3_RW, .type = ARM_CP_ALIAS,
5280       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5281     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5282       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5283       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5284       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5285       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5286     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5287       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5288       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5289       .resetvalue = 0 },
5290     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5291       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5292       .access = PL2_RW, .type = ARM_CP_ALIAS,
5293       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5294     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5295       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5296       .access = PL2_RW, .type = ARM_CP_CONST,
5297       .resetvalue = 0 },
5298     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5299     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5300       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5301       .access = PL2_RW, .type = ARM_CP_CONST,
5302       .resetvalue = 0 },
5303     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5304       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5305       .access = PL2_RW, .type = ARM_CP_CONST,
5306       .resetvalue = 0 },
5307     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5308       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5309       .access = PL2_RW, .type = ARM_CP_CONST,
5310       .resetvalue = 0 },
5311     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5312       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5313       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5314       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5315       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5316     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5317       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5318       .type = ARM_CP_ALIAS,
5319       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5320       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5321     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5322       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5323       .access = PL2_RW,
5324       /* no .writefn needed as this can't cause an ASID change;
5325        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5326        */
5327       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5328     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5329       .cp = 15, .opc1 = 6, .crm = 2,
5330       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5331       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5332       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5333       .writefn = vttbr_write },
5334     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5335       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5336       .access = PL2_RW, .writefn = vttbr_write,
5337       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5338     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5339       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5340       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5341       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5342     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5343       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5344       .access = PL2_RW, .resetvalue = 0,
5345       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5346     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5347       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5348       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5349       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5350     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5351       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5352       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5353     { .name = "TLBIALLNSNH",
5354       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5355       .type = ARM_CP_NO_RAW, .access = PL2_W,
5356       .writefn = tlbiall_nsnh_write },
5357     { .name = "TLBIALLNSNHIS",
5358       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5359       .type = ARM_CP_NO_RAW, .access = PL2_W,
5360       .writefn = tlbiall_nsnh_is_write },
5361     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5362       .type = ARM_CP_NO_RAW, .access = PL2_W,
5363       .writefn = tlbiall_hyp_write },
5364     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5365       .type = ARM_CP_NO_RAW, .access = PL2_W,
5366       .writefn = tlbiall_hyp_is_write },
5367     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5368       .type = ARM_CP_NO_RAW, .access = PL2_W,
5369       .writefn = tlbimva_hyp_write },
5370     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5371       .type = ARM_CP_NO_RAW, .access = PL2_W,
5372       .writefn = tlbimva_hyp_is_write },
5373     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5374       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5375       .type = ARM_CP_NO_RAW, .access = PL2_W,
5376       .writefn = tlbi_aa64_alle2_write },
5377     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5378       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5379       .type = ARM_CP_NO_RAW, .access = PL2_W,
5380       .writefn = tlbi_aa64_vae2_write },
5381     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5382       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5383       .access = PL2_W, .type = ARM_CP_NO_RAW,
5384       .writefn = tlbi_aa64_vae2_write },
5385     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5386       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5387       .access = PL2_W, .type = ARM_CP_NO_RAW,
5388       .writefn = tlbi_aa64_alle2is_write },
5389     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5390       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5391       .type = ARM_CP_NO_RAW, .access = PL2_W,
5392       .writefn = tlbi_aa64_vae2is_write },
5393     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5394       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5395       .access = PL2_W, .type = ARM_CP_NO_RAW,
5396       .writefn = tlbi_aa64_vae2is_write },
5397 #ifndef CONFIG_USER_ONLY
5398     /* Unlike the other EL2-related AT operations, these must
5399      * UNDEF from EL3 if EL2 is not implemented, which is why we
5400      * define them here rather than with the rest of the AT ops.
5401      */
5402     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5403       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5404       .access = PL2_W, .accessfn = at_s1e2_access,
5405       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5406     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5407       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5408       .access = PL2_W, .accessfn = at_s1e2_access,
5409       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5410     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5411      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5412      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5413      * to behave as if SCR.NS was 1.
5414      */
5415     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5416       .access = PL2_W,
5417       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5418     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5419       .access = PL2_W,
5420       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5421     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5422       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5423       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5424        * reset values as IMPDEF. We choose to reset to 3 to comply with
5425        * both ARMv7 and ARMv8.
5426        */
5427       .access = PL2_RW, .resetvalue = 3,
5428       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5429     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5430       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5431       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5432       .writefn = gt_cntvoff_write,
5433       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5434     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5435       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5436       .writefn = gt_cntvoff_write,
5437       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5438     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5439       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5440       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5441       .type = ARM_CP_IO, .access = PL2_RW,
5442       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5443     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5444       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5445       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5446       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5447     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5448       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5449       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5450       .resetfn = gt_hyp_timer_reset,
5451       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5452     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5453       .type = ARM_CP_IO,
5454       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5455       .access = PL2_RW,
5456       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5457       .resetvalue = 0,
5458       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5459 #endif
5460     /* The only field of MDCR_EL2 that has a defined architectural reset value
5461      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5462      * don't implement any PMU event counters, so using zero as a reset
5463      * value for MDCR_EL2 is okay
5464      */
5465     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5466       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5467       .access = PL2_RW, .resetvalue = 0,
5468       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5469     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5470       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5471       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5472       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5473     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5474       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5475       .access = PL2_RW,
5476       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5477     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5478       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5479       .access = PL2_RW,
5480       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5481     REGINFO_SENTINEL
5482 };
5483 
5484 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5485     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5486       .type = ARM_CP_ALIAS | ARM_CP_IO,
5487       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5488       .access = PL2_RW,
5489       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5490       .writefn = hcr_writehigh },
5491     REGINFO_SENTINEL
5492 };
5493 
5494 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5495                                    bool isread)
5496 {
5497     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5498      * At Secure EL1 it traps to EL3.
5499      */
5500     if (arm_current_el(env) == 3) {
5501         return CP_ACCESS_OK;
5502     }
5503     if (arm_is_secure_below_el3(env)) {
5504         return CP_ACCESS_TRAP_EL3;
5505     }
5506     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5507     if (isread) {
5508         return CP_ACCESS_OK;
5509     }
5510     return CP_ACCESS_TRAP_UNCATEGORIZED;
5511 }
5512 
5513 static const ARMCPRegInfo el3_cp_reginfo[] = {
5514     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5515       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5516       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5517       .resetvalue = 0, .writefn = scr_write },
5518     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5519       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5520       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5521       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5522       .writefn = scr_write },
5523     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5524       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5525       .access = PL3_RW, .resetvalue = 0,
5526       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5527     { .name = "SDER",
5528       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5529       .access = PL3_RW, .resetvalue = 0,
5530       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5531     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5532       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5533       .writefn = vbar_write, .resetvalue = 0,
5534       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5535     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5536       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5537       .access = PL3_RW, .resetvalue = 0,
5538       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5539     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5540       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5541       .access = PL3_RW,
5542       /* no .writefn needed as this can't cause an ASID change;
5543        * we must provide a .raw_writefn and .resetfn because we handle
5544        * reset and migration for the AArch32 TTBCR(S), which might be
5545        * using mask and base_mask.
5546        */
5547       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5548       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5549     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5550       .type = ARM_CP_ALIAS,
5551       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5552       .access = PL3_RW,
5553       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5554     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5555       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5556       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5557     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5558       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5559       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5560     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5561       .type = ARM_CP_ALIAS,
5562       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5563       .access = PL3_RW,
5564       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5565     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5566       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5567       .access = PL3_RW, .writefn = vbar_write,
5568       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5569       .resetvalue = 0 },
5570     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5571       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5572       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5573       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5574     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5575       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5576       .access = PL3_RW, .resetvalue = 0,
5577       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5578     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5579       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5580       .access = PL3_RW, .type = ARM_CP_CONST,
5581       .resetvalue = 0 },
5582     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5583       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5584       .access = PL3_RW, .type = ARM_CP_CONST,
5585       .resetvalue = 0 },
5586     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5587       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5588       .access = PL3_RW, .type = ARM_CP_CONST,
5589       .resetvalue = 0 },
5590     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5591       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5592       .access = PL3_W, .type = ARM_CP_NO_RAW,
5593       .writefn = tlbi_aa64_alle3is_write },
5594     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5595       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5596       .access = PL3_W, .type = ARM_CP_NO_RAW,
5597       .writefn = tlbi_aa64_vae3is_write },
5598     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5599       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5600       .access = PL3_W, .type = ARM_CP_NO_RAW,
5601       .writefn = tlbi_aa64_vae3is_write },
5602     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5603       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5604       .access = PL3_W, .type = ARM_CP_NO_RAW,
5605       .writefn = tlbi_aa64_alle3_write },
5606     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5608       .access = PL3_W, .type = ARM_CP_NO_RAW,
5609       .writefn = tlbi_aa64_vae3_write },
5610     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5611       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5612       .access = PL3_W, .type = ARM_CP_NO_RAW,
5613       .writefn = tlbi_aa64_vae3_write },
5614     REGINFO_SENTINEL
5615 };
5616 
5617 #ifndef CONFIG_USER_ONLY
5618 /* Test if system register redirection is to occur in the current state.  */
5619 static bool redirect_for_e2h(CPUARMState *env)
5620 {
5621     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5622 }
5623 
5624 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5625 {
5626     CPReadFn *readfn;
5627 
5628     if (redirect_for_e2h(env)) {
5629         /* Switch to the saved EL2 version of the register.  */
5630         ri = ri->opaque;
5631         readfn = ri->readfn;
5632     } else {
5633         readfn = ri->orig_readfn;
5634     }
5635     if (readfn == NULL) {
5636         readfn = raw_read;
5637     }
5638     return readfn(env, ri);
5639 }
5640 
5641 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5642                           uint64_t value)
5643 {
5644     CPWriteFn *writefn;
5645 
5646     if (redirect_for_e2h(env)) {
5647         /* Switch to the saved EL2 version of the register.  */
5648         ri = ri->opaque;
5649         writefn = ri->writefn;
5650     } else {
5651         writefn = ri->orig_writefn;
5652     }
5653     if (writefn == NULL) {
5654         writefn = raw_write;
5655     }
5656     writefn(env, ri, value);
5657 }
5658 
5659 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5660 {
5661     struct E2HAlias {
5662         uint32_t src_key, dst_key, new_key;
5663         const char *src_name, *dst_name, *new_name;
5664         bool (*feature)(const ARMISARegisters *id);
5665     };
5666 
5667 #define K(op0, op1, crn, crm, op2) \
5668     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5669 
5670     static const struct E2HAlias aliases[] = {
5671         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5672           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5673         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5674           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5675         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5676           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5677         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5678           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5679         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5680           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5681         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5682           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5683         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5684           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5685         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5686           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5687         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5688           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5689         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5690           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5691         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5692           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5693         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5694           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5695         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5696           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5697         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5698           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5699         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5700           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5701         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5702           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5703 
5704         /*
5705          * Note that redirection of ZCR is mentioned in the description
5706          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5707          * not in the summary table.
5708          */
5709         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5710           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5711 
5712         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5713         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5714     };
5715 #undef K
5716 
5717     size_t i;
5718 
5719     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5720         const struct E2HAlias *a = &aliases[i];
5721         ARMCPRegInfo *src_reg, *dst_reg;
5722 
5723         if (a->feature && !a->feature(&cpu->isar)) {
5724             continue;
5725         }
5726 
5727         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5728         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5729         g_assert(src_reg != NULL);
5730         g_assert(dst_reg != NULL);
5731 
5732         /* Cross-compare names to detect typos in the keys.  */
5733         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5734         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5735 
5736         /* None of the core system registers use opaque; we will.  */
5737         g_assert(src_reg->opaque == NULL);
5738 
5739         /* Create alias before redirection so we dup the right data. */
5740         if (a->new_key) {
5741             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5742             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5743             bool ok;
5744 
5745             new_reg->name = a->new_name;
5746             new_reg->type |= ARM_CP_ALIAS;
5747             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5748             new_reg->access &= PL2_RW | PL3_RW;
5749 
5750             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5751             g_assert(ok);
5752         }
5753 
5754         src_reg->opaque = dst_reg;
5755         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5756         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5757         if (!src_reg->raw_readfn) {
5758             src_reg->raw_readfn = raw_read;
5759         }
5760         if (!src_reg->raw_writefn) {
5761             src_reg->raw_writefn = raw_write;
5762         }
5763         src_reg->readfn = el2_e2h_read;
5764         src_reg->writefn = el2_e2h_write;
5765     }
5766 }
5767 #endif
5768 
5769 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5770                                      bool isread)
5771 {
5772     int cur_el = arm_current_el(env);
5773 
5774     if (cur_el < 2) {
5775         uint64_t hcr = arm_hcr_el2_eff(env);
5776 
5777         if (cur_el == 0) {
5778             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5779                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5780                     return CP_ACCESS_TRAP_EL2;
5781                 }
5782             } else {
5783                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5784                     return CP_ACCESS_TRAP;
5785                 }
5786                 if (hcr & HCR_TID2) {
5787                     return CP_ACCESS_TRAP_EL2;
5788                 }
5789             }
5790         } else if (hcr & HCR_TID2) {
5791             return CP_ACCESS_TRAP_EL2;
5792         }
5793     }
5794 
5795     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5796         return CP_ACCESS_TRAP_EL2;
5797     }
5798 
5799     return CP_ACCESS_OK;
5800 }
5801 
5802 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5803                         uint64_t value)
5804 {
5805     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5806      * read via a bit in OSLSR_EL1.
5807      */
5808     int oslock;
5809 
5810     if (ri->state == ARM_CP_STATE_AA32) {
5811         oslock = (value == 0xC5ACCE55);
5812     } else {
5813         oslock = value & 1;
5814     }
5815 
5816     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5817 }
5818 
5819 static const ARMCPRegInfo debug_cp_reginfo[] = {
5820     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5821      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5822      * unlike DBGDRAR it is never accessible from EL0.
5823      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5824      * accessor.
5825      */
5826     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5827       .access = PL0_R, .accessfn = access_tdra,
5828       .type = ARM_CP_CONST, .resetvalue = 0 },
5829     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5830       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5831       .access = PL1_R, .accessfn = access_tdra,
5832       .type = ARM_CP_CONST, .resetvalue = 0 },
5833     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5834       .access = PL0_R, .accessfn = access_tdra,
5835       .type = ARM_CP_CONST, .resetvalue = 0 },
5836     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5837     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5838       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5839       .access = PL1_RW, .accessfn = access_tda,
5840       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5841       .resetvalue = 0 },
5842     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5843      * We don't implement the configurable EL0 access.
5844      */
5845     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5846       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5847       .type = ARM_CP_ALIAS,
5848       .access = PL1_R, .accessfn = access_tda,
5849       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5850     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5851       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5852       .access = PL1_W, .type = ARM_CP_NO_RAW,
5853       .accessfn = access_tdosa,
5854       .writefn = oslar_write },
5855     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5856       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5857       .access = PL1_R, .resetvalue = 10,
5858       .accessfn = access_tdosa,
5859       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5860     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5861     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5862       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5863       .access = PL1_RW, .accessfn = access_tdosa,
5864       .type = ARM_CP_NOP },
5865     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5866      * implement vector catch debug events yet.
5867      */
5868     { .name = "DBGVCR",
5869       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5870       .access = PL1_RW, .accessfn = access_tda,
5871       .type = ARM_CP_NOP },
5872     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5873      * to save and restore a 32-bit guest's DBGVCR)
5874      */
5875     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5876       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5877       .access = PL2_RW, .accessfn = access_tda,
5878       .type = ARM_CP_NOP },
5879     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5880      * Channel but Linux may try to access this register. The 32-bit
5881      * alias is DBGDCCINT.
5882      */
5883     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5884       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5885       .access = PL1_RW, .accessfn = access_tda,
5886       .type = ARM_CP_NOP },
5887     REGINFO_SENTINEL
5888 };
5889 
5890 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5891     /* 64 bit access versions of the (dummy) debug registers */
5892     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5893       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5894     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5895       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5896     REGINFO_SENTINEL
5897 };
5898 
5899 /* Return the exception level to which exceptions should be taken
5900  * via SVEAccessTrap.  If an exception should be routed through
5901  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5902  * take care of raising that exception.
5903  * C.f. the ARM pseudocode function CheckSVEEnabled.
5904  */
5905 int sve_exception_el(CPUARMState *env, int el)
5906 {
5907 #ifndef CONFIG_USER_ONLY
5908     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
5909 
5910     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
5911         bool disabled = false;
5912 
5913         /* The CPACR.ZEN controls traps to EL1:
5914          * 0, 2 : trap EL0 and EL1 accesses
5915          * 1    : trap only EL0 accesses
5916          * 3    : trap no accesses
5917          */
5918         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5919             disabled = true;
5920         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5921             disabled = el == 0;
5922         }
5923         if (disabled) {
5924             /* route_to_el2 */
5925             return hcr_el2 & HCR_TGE ? 2 : 1;
5926         }
5927 
5928         /* Check CPACR.FPEN.  */
5929         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5930             disabled = true;
5931         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5932             disabled = el == 0;
5933         }
5934         if (disabled) {
5935             return 0;
5936         }
5937     }
5938 
5939     /* CPTR_EL2.  Since TZ and TFP are positive,
5940      * they will be zero when EL2 is not present.
5941      */
5942     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5943         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5944             return 2;
5945         }
5946         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5947             return 0;
5948         }
5949     }
5950 
5951     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5952     if (arm_feature(env, ARM_FEATURE_EL3)
5953         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5954         return 3;
5955     }
5956 #endif
5957     return 0;
5958 }
5959 
5960 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
5961 {
5962     uint32_t end_len;
5963 
5964     end_len = start_len &= 0xf;
5965     if (!test_bit(start_len, cpu->sve_vq_map)) {
5966         end_len = find_last_bit(cpu->sve_vq_map, start_len);
5967         assert(end_len < start_len);
5968     }
5969     return end_len;
5970 }
5971 
5972 /*
5973  * Given that SVE is enabled, return the vector length for EL.
5974  */
5975 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5976 {
5977     ARMCPU *cpu = env_archcpu(env);
5978     uint32_t zcr_len = cpu->sve_max_vq - 1;
5979 
5980     if (el <= 1) {
5981         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5982     }
5983     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5984         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5985     }
5986     if (arm_feature(env, ARM_FEATURE_EL3)) {
5987         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5988     }
5989 
5990     return sve_zcr_get_valid_len(cpu, zcr_len);
5991 }
5992 
5993 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5994                       uint64_t value)
5995 {
5996     int cur_el = arm_current_el(env);
5997     int old_len = sve_zcr_len_for_el(env, cur_el);
5998     int new_len;
5999 
6000     /* Bits other than [3:0] are RAZ/WI.  */
6001     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6002     raw_write(env, ri, value & 0xf);
6003 
6004     /*
6005      * Because we arrived here, we know both FP and SVE are enabled;
6006      * otherwise we would have trapped access to the ZCR_ELn register.
6007      */
6008     new_len = sve_zcr_len_for_el(env, cur_el);
6009     if (new_len < old_len) {
6010         aarch64_sve_narrow_vq(env, new_len + 1);
6011     }
6012 }
6013 
6014 static const ARMCPRegInfo zcr_el1_reginfo = {
6015     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6016     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6017     .access = PL1_RW, .type = ARM_CP_SVE,
6018     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6019     .writefn = zcr_write, .raw_writefn = raw_write
6020 };
6021 
6022 static const ARMCPRegInfo zcr_el2_reginfo = {
6023     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6024     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6025     .access = PL2_RW, .type = ARM_CP_SVE,
6026     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6027     .writefn = zcr_write, .raw_writefn = raw_write
6028 };
6029 
6030 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6031     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6032     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6033     .access = PL2_RW, .type = ARM_CP_SVE,
6034     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6035 };
6036 
6037 static const ARMCPRegInfo zcr_el3_reginfo = {
6038     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6039     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6040     .access = PL3_RW, .type = ARM_CP_SVE,
6041     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6042     .writefn = zcr_write, .raw_writefn = raw_write
6043 };
6044 
6045 void hw_watchpoint_update(ARMCPU *cpu, int n)
6046 {
6047     CPUARMState *env = &cpu->env;
6048     vaddr len = 0;
6049     vaddr wvr = env->cp15.dbgwvr[n];
6050     uint64_t wcr = env->cp15.dbgwcr[n];
6051     int mask;
6052     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6053 
6054     if (env->cpu_watchpoint[n]) {
6055         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6056         env->cpu_watchpoint[n] = NULL;
6057     }
6058 
6059     if (!extract64(wcr, 0, 1)) {
6060         /* E bit clear : watchpoint disabled */
6061         return;
6062     }
6063 
6064     switch (extract64(wcr, 3, 2)) {
6065     case 0:
6066         /* LSC 00 is reserved and must behave as if the wp is disabled */
6067         return;
6068     case 1:
6069         flags |= BP_MEM_READ;
6070         break;
6071     case 2:
6072         flags |= BP_MEM_WRITE;
6073         break;
6074     case 3:
6075         flags |= BP_MEM_ACCESS;
6076         break;
6077     }
6078 
6079     /* Attempts to use both MASK and BAS fields simultaneously are
6080      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6081      * thus generating a watchpoint for every byte in the masked region.
6082      */
6083     mask = extract64(wcr, 24, 4);
6084     if (mask == 1 || mask == 2) {
6085         /* Reserved values of MASK; we must act as if the mask value was
6086          * some non-reserved value, or as if the watchpoint were disabled.
6087          * We choose the latter.
6088          */
6089         return;
6090     } else if (mask) {
6091         /* Watchpoint covers an aligned area up to 2GB in size */
6092         len = 1ULL << mask;
6093         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6094          * whether the watchpoint fires when the unmasked bits match; we opt
6095          * to generate the exceptions.
6096          */
6097         wvr &= ~(len - 1);
6098     } else {
6099         /* Watchpoint covers bytes defined by the byte address select bits */
6100         int bas = extract64(wcr, 5, 8);
6101         int basstart;
6102 
6103         if (bas == 0) {
6104             /* This must act as if the watchpoint is disabled */
6105             return;
6106         }
6107 
6108         if (extract64(wvr, 2, 1)) {
6109             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6110              * ignored, and BAS[3:0] define which bytes to watch.
6111              */
6112             bas &= 0xf;
6113         }
6114         /* The BAS bits are supposed to be programmed to indicate a contiguous
6115          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6116          * we fire for each byte in the word/doubleword addressed by the WVR.
6117          * We choose to ignore any non-zero bits after the first range of 1s.
6118          */
6119         basstart = ctz32(bas);
6120         len = cto32(bas >> basstart);
6121         wvr += basstart;
6122     }
6123 
6124     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6125                           &env->cpu_watchpoint[n]);
6126 }
6127 
6128 void hw_watchpoint_update_all(ARMCPU *cpu)
6129 {
6130     int i;
6131     CPUARMState *env = &cpu->env;
6132 
6133     /* Completely clear out existing QEMU watchpoints and our array, to
6134      * avoid possible stale entries following migration load.
6135      */
6136     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6137     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6138 
6139     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6140         hw_watchpoint_update(cpu, i);
6141     }
6142 }
6143 
6144 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6145                          uint64_t value)
6146 {
6147     ARMCPU *cpu = env_archcpu(env);
6148     int i = ri->crm;
6149 
6150     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6151      * register reads and behaves as if values written are sign extended.
6152      * Bits [1:0] are RES0.
6153      */
6154     value = sextract64(value, 0, 49) & ~3ULL;
6155 
6156     raw_write(env, ri, value);
6157     hw_watchpoint_update(cpu, i);
6158 }
6159 
6160 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6161                          uint64_t value)
6162 {
6163     ARMCPU *cpu = env_archcpu(env);
6164     int i = ri->crm;
6165 
6166     raw_write(env, ri, value);
6167     hw_watchpoint_update(cpu, i);
6168 }
6169 
6170 void hw_breakpoint_update(ARMCPU *cpu, int n)
6171 {
6172     CPUARMState *env = &cpu->env;
6173     uint64_t bvr = env->cp15.dbgbvr[n];
6174     uint64_t bcr = env->cp15.dbgbcr[n];
6175     vaddr addr;
6176     int bt;
6177     int flags = BP_CPU;
6178 
6179     if (env->cpu_breakpoint[n]) {
6180         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6181         env->cpu_breakpoint[n] = NULL;
6182     }
6183 
6184     if (!extract64(bcr, 0, 1)) {
6185         /* E bit clear : watchpoint disabled */
6186         return;
6187     }
6188 
6189     bt = extract64(bcr, 20, 4);
6190 
6191     switch (bt) {
6192     case 4: /* unlinked address mismatch (reserved if AArch64) */
6193     case 5: /* linked address mismatch (reserved if AArch64) */
6194         qemu_log_mask(LOG_UNIMP,
6195                       "arm: address mismatch breakpoint types not implemented\n");
6196         return;
6197     case 0: /* unlinked address match */
6198     case 1: /* linked address match */
6199     {
6200         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6201          * we behave as if the register was sign extended. Bits [1:0] are
6202          * RES0. The BAS field is used to allow setting breakpoints on 16
6203          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6204          * a bp will fire if the addresses covered by the bp and the addresses
6205          * covered by the insn overlap but the insn doesn't start at the
6206          * start of the bp address range. We choose to require the insn and
6207          * the bp to have the same address. The constraints on writing to
6208          * BAS enforced in dbgbcr_write mean we have only four cases:
6209          *  0b0000  => no breakpoint
6210          *  0b0011  => breakpoint on addr
6211          *  0b1100  => breakpoint on addr + 2
6212          *  0b1111  => breakpoint on addr
6213          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6214          */
6215         int bas = extract64(bcr, 5, 4);
6216         addr = sextract64(bvr, 0, 49) & ~3ULL;
6217         if (bas == 0) {
6218             return;
6219         }
6220         if (bas == 0xc) {
6221             addr += 2;
6222         }
6223         break;
6224     }
6225     case 2: /* unlinked context ID match */
6226     case 8: /* unlinked VMID match (reserved if no EL2) */
6227     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6228         qemu_log_mask(LOG_UNIMP,
6229                       "arm: unlinked context breakpoint types not implemented\n");
6230         return;
6231     case 9: /* linked VMID match (reserved if no EL2) */
6232     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6233     case 3: /* linked context ID match */
6234     default:
6235         /* We must generate no events for Linked context matches (unless
6236          * they are linked to by some other bp/wp, which is handled in
6237          * updates for the linking bp/wp). We choose to also generate no events
6238          * for reserved values.
6239          */
6240         return;
6241     }
6242 
6243     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6244 }
6245 
6246 void hw_breakpoint_update_all(ARMCPU *cpu)
6247 {
6248     int i;
6249     CPUARMState *env = &cpu->env;
6250 
6251     /* Completely clear out existing QEMU breakpoints and our array, to
6252      * avoid possible stale entries following migration load.
6253      */
6254     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6255     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6256 
6257     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6258         hw_breakpoint_update(cpu, i);
6259     }
6260 }
6261 
6262 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6263                          uint64_t value)
6264 {
6265     ARMCPU *cpu = env_archcpu(env);
6266     int i = ri->crm;
6267 
6268     raw_write(env, ri, value);
6269     hw_breakpoint_update(cpu, i);
6270 }
6271 
6272 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6273                          uint64_t value)
6274 {
6275     ARMCPU *cpu = env_archcpu(env);
6276     int i = ri->crm;
6277 
6278     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6279      * copy of BAS[0].
6280      */
6281     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6282     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6283 
6284     raw_write(env, ri, value);
6285     hw_breakpoint_update(cpu, i);
6286 }
6287 
6288 static void define_debug_regs(ARMCPU *cpu)
6289 {
6290     /* Define v7 and v8 architectural debug registers.
6291      * These are just dummy implementations for now.
6292      */
6293     int i;
6294     int wrps, brps, ctx_cmps;
6295     ARMCPRegInfo dbgdidr = {
6296         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6297         .access = PL0_R, .accessfn = access_tda,
6298         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6299     };
6300 
6301     /* Note that all these register fields hold "number of Xs minus 1". */
6302     brps = arm_num_brps(cpu);
6303     wrps = arm_num_wrps(cpu);
6304     ctx_cmps = arm_num_ctx_cmps(cpu);
6305 
6306     assert(ctx_cmps <= brps);
6307 
6308     define_one_arm_cp_reg(cpu, &dbgdidr);
6309     define_arm_cp_regs(cpu, debug_cp_reginfo);
6310 
6311     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6312         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6313     }
6314 
6315     for (i = 0; i < brps; i++) {
6316         ARMCPRegInfo dbgregs[] = {
6317             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6318               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6319               .access = PL1_RW, .accessfn = access_tda,
6320               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6321               .writefn = dbgbvr_write, .raw_writefn = raw_write
6322             },
6323             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6324               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6325               .access = PL1_RW, .accessfn = access_tda,
6326               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6327               .writefn = dbgbcr_write, .raw_writefn = raw_write
6328             },
6329             REGINFO_SENTINEL
6330         };
6331         define_arm_cp_regs(cpu, dbgregs);
6332     }
6333 
6334     for (i = 0; i < wrps; i++) {
6335         ARMCPRegInfo dbgregs[] = {
6336             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6337               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6338               .access = PL1_RW, .accessfn = access_tda,
6339               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6340               .writefn = dbgwvr_write, .raw_writefn = raw_write
6341             },
6342             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6343               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6344               .access = PL1_RW, .accessfn = access_tda,
6345               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6346               .writefn = dbgwcr_write, .raw_writefn = raw_write
6347             },
6348             REGINFO_SENTINEL
6349         };
6350         define_arm_cp_regs(cpu, dbgregs);
6351     }
6352 }
6353 
6354 static void define_pmu_regs(ARMCPU *cpu)
6355 {
6356     /*
6357      * v7 performance monitor control register: same implementor
6358      * field as main ID register, and we implement four counters in
6359      * addition to the cycle count register.
6360      */
6361     unsigned int i, pmcrn = 4;
6362     ARMCPRegInfo pmcr = {
6363         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6364         .access = PL0_RW,
6365         .type = ARM_CP_IO | ARM_CP_ALIAS,
6366         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6367         .accessfn = pmreg_access, .writefn = pmcr_write,
6368         .raw_writefn = raw_write,
6369     };
6370     ARMCPRegInfo pmcr64 = {
6371         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6372         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6373         .access = PL0_RW, .accessfn = pmreg_access,
6374         .type = ARM_CP_IO,
6375         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6376         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6377                       PMCRLC,
6378         .writefn = pmcr_write, .raw_writefn = raw_write,
6379     };
6380     define_one_arm_cp_reg(cpu, &pmcr);
6381     define_one_arm_cp_reg(cpu, &pmcr64);
6382     for (i = 0; i < pmcrn; i++) {
6383         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6384         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6385         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6386         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6387         ARMCPRegInfo pmev_regs[] = {
6388             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6389               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6390               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6391               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6392               .accessfn = pmreg_access },
6393             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6394               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6395               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6396               .type = ARM_CP_IO,
6397               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6398               .raw_readfn = pmevcntr_rawread,
6399               .raw_writefn = pmevcntr_rawwrite },
6400             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6401               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6402               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6403               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6404               .accessfn = pmreg_access },
6405             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6406               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6407               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6408               .type = ARM_CP_IO,
6409               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6410               .raw_writefn = pmevtyper_rawwrite },
6411             REGINFO_SENTINEL
6412         };
6413         define_arm_cp_regs(cpu, pmev_regs);
6414         g_free(pmevcntr_name);
6415         g_free(pmevcntr_el0_name);
6416         g_free(pmevtyper_name);
6417         g_free(pmevtyper_el0_name);
6418     }
6419     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6420         ARMCPRegInfo v81_pmu_regs[] = {
6421             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6422               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6423               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6424               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6425             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6426               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6427               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6428               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6429             REGINFO_SENTINEL
6430         };
6431         define_arm_cp_regs(cpu, v81_pmu_regs);
6432     }
6433     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6434         static const ARMCPRegInfo v84_pmmir = {
6435             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6436             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6437             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6438             .resetvalue = 0
6439         };
6440         define_one_arm_cp_reg(cpu, &v84_pmmir);
6441     }
6442 }
6443 
6444 /* We don't know until after realize whether there's a GICv3
6445  * attached, and that is what registers the gicv3 sysregs.
6446  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6447  * at runtime.
6448  */
6449 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6450 {
6451     ARMCPU *cpu = env_archcpu(env);
6452     uint64_t pfr1 = cpu->id_pfr1;
6453 
6454     if (env->gicv3state) {
6455         pfr1 |= 1 << 28;
6456     }
6457     return pfr1;
6458 }
6459 
6460 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6461 {
6462     ARMCPU *cpu = env_archcpu(env);
6463     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6464 
6465     if (env->gicv3state) {
6466         pfr0 |= 1 << 24;
6467     }
6468     return pfr0;
6469 }
6470 
6471 /* Shared logic between LORID and the rest of the LOR* registers.
6472  * Secure state has already been delt with.
6473  */
6474 static CPAccessResult access_lor_ns(CPUARMState *env)
6475 {
6476     int el = arm_current_el(env);
6477 
6478     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6479         return CP_ACCESS_TRAP_EL2;
6480     }
6481     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6482         return CP_ACCESS_TRAP_EL3;
6483     }
6484     return CP_ACCESS_OK;
6485 }
6486 
6487 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6488                                    bool isread)
6489 {
6490     if (arm_is_secure_below_el3(env)) {
6491         /* Access ok in secure mode.  */
6492         return CP_ACCESS_OK;
6493     }
6494     return access_lor_ns(env);
6495 }
6496 
6497 static CPAccessResult access_lor_other(CPUARMState *env,
6498                                        const ARMCPRegInfo *ri, bool isread)
6499 {
6500     if (arm_is_secure_below_el3(env)) {
6501         /* Access denied in secure mode.  */
6502         return CP_ACCESS_TRAP;
6503     }
6504     return access_lor_ns(env);
6505 }
6506 
6507 /*
6508  * A trivial implementation of ARMv8.1-LOR leaves all of these
6509  * registers fixed at 0, which indicates that there are zero
6510  * supported Limited Ordering regions.
6511  */
6512 static const ARMCPRegInfo lor_reginfo[] = {
6513     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6514       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6515       .access = PL1_RW, .accessfn = access_lor_other,
6516       .type = ARM_CP_CONST, .resetvalue = 0 },
6517     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6518       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6519       .access = PL1_RW, .accessfn = access_lor_other,
6520       .type = ARM_CP_CONST, .resetvalue = 0 },
6521     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6522       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6523       .access = PL1_RW, .accessfn = access_lor_other,
6524       .type = ARM_CP_CONST, .resetvalue = 0 },
6525     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6526       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6527       .access = PL1_RW, .accessfn = access_lor_other,
6528       .type = ARM_CP_CONST, .resetvalue = 0 },
6529     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6530       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6531       .access = PL1_R, .accessfn = access_lorid,
6532       .type = ARM_CP_CONST, .resetvalue = 0 },
6533     REGINFO_SENTINEL
6534 };
6535 
6536 #ifdef TARGET_AARCH64
6537 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6538                                    bool isread)
6539 {
6540     int el = arm_current_el(env);
6541 
6542     if (el < 2 &&
6543         arm_feature(env, ARM_FEATURE_EL2) &&
6544         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6545         return CP_ACCESS_TRAP_EL2;
6546     }
6547     if (el < 3 &&
6548         arm_feature(env, ARM_FEATURE_EL3) &&
6549         !(env->cp15.scr_el3 & SCR_APK)) {
6550         return CP_ACCESS_TRAP_EL3;
6551     }
6552     return CP_ACCESS_OK;
6553 }
6554 
6555 static const ARMCPRegInfo pauth_reginfo[] = {
6556     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6557       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6558       .access = PL1_RW, .accessfn = access_pauth,
6559       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6560     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6561       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6562       .access = PL1_RW, .accessfn = access_pauth,
6563       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6564     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6565       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6566       .access = PL1_RW, .accessfn = access_pauth,
6567       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6568     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6569       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6570       .access = PL1_RW, .accessfn = access_pauth,
6571       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6572     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6573       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6574       .access = PL1_RW, .accessfn = access_pauth,
6575       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6576     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6577       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6578       .access = PL1_RW, .accessfn = access_pauth,
6579       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6580     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6581       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6582       .access = PL1_RW, .accessfn = access_pauth,
6583       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6584     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6585       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6586       .access = PL1_RW, .accessfn = access_pauth,
6587       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6588     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6589       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6590       .access = PL1_RW, .accessfn = access_pauth,
6591       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6592     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6593       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6594       .access = PL1_RW, .accessfn = access_pauth,
6595       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6596     REGINFO_SENTINEL
6597 };
6598 
6599 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6600 {
6601     Error *err = NULL;
6602     uint64_t ret;
6603 
6604     /* Success sets NZCV = 0000.  */
6605     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6606 
6607     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6608         /*
6609          * ??? Failed, for unknown reasons in the crypto subsystem.
6610          * The best we can do is log the reason and return the
6611          * timed-out indication to the guest.  There is no reason
6612          * we know to expect this failure to be transitory, so the
6613          * guest may well hang retrying the operation.
6614          */
6615         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6616                       ri->name, error_get_pretty(err));
6617         error_free(err);
6618 
6619         env->ZF = 0; /* NZCF = 0100 */
6620         return 0;
6621     }
6622     return ret;
6623 }
6624 
6625 /* We do not support re-seeding, so the two registers operate the same.  */
6626 static const ARMCPRegInfo rndr_reginfo[] = {
6627     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6628       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6629       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6630       .access = PL0_R, .readfn = rndr_readfn },
6631     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6632       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6633       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6634       .access = PL0_R, .readfn = rndr_readfn },
6635     REGINFO_SENTINEL
6636 };
6637 
6638 #ifndef CONFIG_USER_ONLY
6639 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6640                           uint64_t value)
6641 {
6642     ARMCPU *cpu = env_archcpu(env);
6643     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6644     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6645     uint64_t vaddr_in = (uint64_t) value;
6646     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6647     void *haddr;
6648     int mem_idx = cpu_mmu_index(env, false);
6649 
6650     /* This won't be crossing page boundaries */
6651     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6652     if (haddr) {
6653 
6654         ram_addr_t offset;
6655         MemoryRegion *mr;
6656 
6657         /* RCU lock is already being held */
6658         mr = memory_region_from_host(haddr, &offset);
6659 
6660         if (mr) {
6661             memory_region_do_writeback(mr, offset, dline_size);
6662         }
6663     }
6664 }
6665 
6666 static const ARMCPRegInfo dcpop_reg[] = {
6667     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6668       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6669       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6670       .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6671     REGINFO_SENTINEL
6672 };
6673 
6674 static const ARMCPRegInfo dcpodp_reg[] = {
6675     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6676       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6677       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6678       .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn },
6679     REGINFO_SENTINEL
6680 };
6681 #endif /*CONFIG_USER_ONLY*/
6682 
6683 #endif
6684 
6685 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
6686                                      bool isread)
6687 {
6688     int el = arm_current_el(env);
6689 
6690     if (el == 0) {
6691         uint64_t sctlr = arm_sctlr(env, el);
6692         if (!(sctlr & SCTLR_EnRCTX)) {
6693             return CP_ACCESS_TRAP;
6694         }
6695     } else if (el == 1) {
6696         uint64_t hcr = arm_hcr_el2_eff(env);
6697         if (hcr & HCR_NV) {
6698             return CP_ACCESS_TRAP_EL2;
6699         }
6700     }
6701     return CP_ACCESS_OK;
6702 }
6703 
6704 static const ARMCPRegInfo predinv_reginfo[] = {
6705     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
6706       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
6707       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6708     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
6709       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
6710       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6711     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
6712       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
6713       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6714     /*
6715      * Note the AArch32 opcodes have a different OPC1.
6716      */
6717     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
6718       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
6719       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6720     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
6721       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
6722       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6723     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
6724       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
6725       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
6726     REGINFO_SENTINEL
6727 };
6728 
6729 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6730                                        bool isread)
6731 {
6732     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
6733         return CP_ACCESS_TRAP_EL2;
6734     }
6735 
6736     return CP_ACCESS_OK;
6737 }
6738 
6739 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
6740                                        bool isread)
6741 {
6742     if (arm_feature(env, ARM_FEATURE_V8)) {
6743         return access_aa64_tid3(env, ri, isread);
6744     }
6745 
6746     return CP_ACCESS_OK;
6747 }
6748 
6749 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
6750                                      bool isread)
6751 {
6752     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
6753         return CP_ACCESS_TRAP_EL2;
6754     }
6755 
6756     return CP_ACCESS_OK;
6757 }
6758 
6759 static const ARMCPRegInfo jazelle_regs[] = {
6760     { .name = "JIDR",
6761       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
6762       .access = PL1_R, .accessfn = access_jazelle,
6763       .type = ARM_CP_CONST, .resetvalue = 0 },
6764     { .name = "JOSCR",
6765       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
6766       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6767     { .name = "JMCR",
6768       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
6769       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6770     REGINFO_SENTINEL
6771 };
6772 
6773 static const ARMCPRegInfo vhe_reginfo[] = {
6774     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
6775       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
6776       .access = PL2_RW,
6777       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
6778     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
6779       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
6780       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
6781       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
6782 #ifndef CONFIG_USER_ONLY
6783     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6784       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
6785       .fieldoffset =
6786         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
6787       .type = ARM_CP_IO, .access = PL2_RW,
6788       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
6789     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6790       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
6791       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6792       .resetfn = gt_hv_timer_reset,
6793       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
6794     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6795       .type = ARM_CP_IO,
6796       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
6797       .access = PL2_RW,
6798       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
6799       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
6800     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
6801       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
6802       .type = ARM_CP_IO | ARM_CP_ALIAS,
6803       .access = PL2_RW, .accessfn = e2h_access,
6804       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
6805       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
6806     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
6807       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
6808       .type = ARM_CP_IO | ARM_CP_ALIAS,
6809       .access = PL2_RW, .accessfn = e2h_access,
6810       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
6811       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
6812     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6813       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
6814       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6815       .access = PL2_RW, .accessfn = e2h_access,
6816       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
6817     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
6818       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
6819       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
6820       .access = PL2_RW, .accessfn = e2h_access,
6821       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
6822     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6823       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
6824       .type = ARM_CP_IO | ARM_CP_ALIAS,
6825       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
6826       .access = PL2_RW, .accessfn = e2h_access,
6827       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
6828     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
6829       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
6830       .type = ARM_CP_IO | ARM_CP_ALIAS,
6831       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
6832       .access = PL2_RW, .accessfn = e2h_access,
6833       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
6834 #endif
6835     REGINFO_SENTINEL
6836 };
6837 
6838 #ifndef CONFIG_USER_ONLY
6839 static const ARMCPRegInfo ats1e1_reginfo[] = {
6840     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
6841       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
6842       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6843       .writefn = ats_write64 },
6844     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
6845       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
6846       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6847       .writefn = ats_write64 },
6848     REGINFO_SENTINEL
6849 };
6850 
6851 static const ARMCPRegInfo ats1cp_reginfo[] = {
6852     { .name = "ATS1CPRP",
6853       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
6854       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6855       .writefn = ats_write },
6856     { .name = "ATS1CPWP",
6857       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
6858       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
6859       .writefn = ats_write },
6860     REGINFO_SENTINEL
6861 };
6862 #endif
6863 
6864 /*
6865  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
6866  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
6867  * is non-zero, which is never for ARMv7, optionally in ARMv8
6868  * and mandatorily for ARMv8.2 and up.
6869  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
6870  * implementation is RAZ/WI we can ignore this detail, as we
6871  * do for ACTLR.
6872  */
6873 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
6874     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
6875       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
6876       .access = PL1_RW, .type = ARM_CP_CONST,
6877       .resetvalue = 0 },
6878     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6879       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6880       .access = PL2_RW, .type = ARM_CP_CONST,
6881       .resetvalue = 0 },
6882     REGINFO_SENTINEL
6883 };
6884 
6885 void register_cp_regs_for_features(ARMCPU *cpu)
6886 {
6887     /* Register all the coprocessor registers based on feature bits */
6888     CPUARMState *env = &cpu->env;
6889     if (arm_feature(env, ARM_FEATURE_M)) {
6890         /* M profile has no coprocessor registers */
6891         return;
6892     }
6893 
6894     define_arm_cp_regs(cpu, cp_reginfo);
6895     if (!arm_feature(env, ARM_FEATURE_V8)) {
6896         /* Must go early as it is full of wildcards that may be
6897          * overridden by later definitions.
6898          */
6899         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
6900     }
6901 
6902     if (arm_feature(env, ARM_FEATURE_V6)) {
6903         /* The ID registers all have impdef reset values */
6904         ARMCPRegInfo v6_idregs[] = {
6905             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
6906               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6907               .access = PL1_R, .type = ARM_CP_CONST,
6908               .accessfn = access_aa32_tid3,
6909               .resetvalue = cpu->id_pfr0 },
6910             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
6911              * the value of the GIC field until after we define these regs.
6912              */
6913             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
6914               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
6915               .access = PL1_R, .type = ARM_CP_NO_RAW,
6916               .accessfn = access_aa32_tid3,
6917               .readfn = id_pfr1_read,
6918               .writefn = arm_cp_write_ignore },
6919             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
6920               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
6921               .access = PL1_R, .type = ARM_CP_CONST,
6922               .accessfn = access_aa32_tid3,
6923               .resetvalue = cpu->isar.id_dfr0 },
6924             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
6925               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
6926               .access = PL1_R, .type = ARM_CP_CONST,
6927               .accessfn = access_aa32_tid3,
6928               .resetvalue = cpu->id_afr0 },
6929             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
6930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
6931               .access = PL1_R, .type = ARM_CP_CONST,
6932               .accessfn = access_aa32_tid3,
6933               .resetvalue = cpu->isar.id_mmfr0 },
6934             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
6935               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
6936               .access = PL1_R, .type = ARM_CP_CONST,
6937               .accessfn = access_aa32_tid3,
6938               .resetvalue = cpu->isar.id_mmfr1 },
6939             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
6940               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
6941               .access = PL1_R, .type = ARM_CP_CONST,
6942               .accessfn = access_aa32_tid3,
6943               .resetvalue = cpu->isar.id_mmfr2 },
6944             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
6945               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
6946               .access = PL1_R, .type = ARM_CP_CONST,
6947               .accessfn = access_aa32_tid3,
6948               .resetvalue = cpu->isar.id_mmfr3 },
6949             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
6950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6951               .access = PL1_R, .type = ARM_CP_CONST,
6952               .accessfn = access_aa32_tid3,
6953               .resetvalue = cpu->isar.id_isar0 },
6954             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
6955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
6956               .access = PL1_R, .type = ARM_CP_CONST,
6957               .accessfn = access_aa32_tid3,
6958               .resetvalue = cpu->isar.id_isar1 },
6959             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
6960               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6961               .access = PL1_R, .type = ARM_CP_CONST,
6962               .accessfn = access_aa32_tid3,
6963               .resetvalue = cpu->isar.id_isar2 },
6964             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
6965               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
6966               .access = PL1_R, .type = ARM_CP_CONST,
6967               .accessfn = access_aa32_tid3,
6968               .resetvalue = cpu->isar.id_isar3 },
6969             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
6970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
6971               .access = PL1_R, .type = ARM_CP_CONST,
6972               .accessfn = access_aa32_tid3,
6973               .resetvalue = cpu->isar.id_isar4 },
6974             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
6975               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
6976               .access = PL1_R, .type = ARM_CP_CONST,
6977               .accessfn = access_aa32_tid3,
6978               .resetvalue = cpu->isar.id_isar5 },
6979             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
6980               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
6981               .access = PL1_R, .type = ARM_CP_CONST,
6982               .accessfn = access_aa32_tid3,
6983               .resetvalue = cpu->isar.id_mmfr4 },
6984             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
6985               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
6986               .access = PL1_R, .type = ARM_CP_CONST,
6987               .accessfn = access_aa32_tid3,
6988               .resetvalue = cpu->isar.id_isar6 },
6989             REGINFO_SENTINEL
6990         };
6991         define_arm_cp_regs(cpu, v6_idregs);
6992         define_arm_cp_regs(cpu, v6_cp_reginfo);
6993     } else {
6994         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
6995     }
6996     if (arm_feature(env, ARM_FEATURE_V6K)) {
6997         define_arm_cp_regs(cpu, v6k_cp_reginfo);
6998     }
6999     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7000         !arm_feature(env, ARM_FEATURE_PMSA)) {
7001         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7002     }
7003     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7004         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7005     }
7006     if (arm_feature(env, ARM_FEATURE_V7)) {
7007         ARMCPRegInfo clidr = {
7008             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7009             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7010             .access = PL1_R, .type = ARM_CP_CONST,
7011             .accessfn = access_aa64_tid2,
7012             .resetvalue = cpu->clidr
7013         };
7014         define_one_arm_cp_reg(cpu, &clidr);
7015         define_arm_cp_regs(cpu, v7_cp_reginfo);
7016         define_debug_regs(cpu);
7017         define_pmu_regs(cpu);
7018     } else {
7019         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7020     }
7021     if (arm_feature(env, ARM_FEATURE_V8)) {
7022         /* AArch64 ID registers, which all have impdef reset values.
7023          * Note that within the ID register ranges the unused slots
7024          * must all RAZ, not UNDEF; future architecture versions may
7025          * define new registers here.
7026          */
7027         ARMCPRegInfo v8_idregs[] = {
7028             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
7029              * know the right value for the GIC field until after we
7030              * define these regs.
7031              */
7032             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7034               .access = PL1_R, .type = ARM_CP_NO_RAW,
7035               .accessfn = access_aa64_tid3,
7036               .readfn = id_aa64pfr0_read,
7037               .writefn = arm_cp_write_ignore },
7038             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7039               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7040               .access = PL1_R, .type = ARM_CP_CONST,
7041               .accessfn = access_aa64_tid3,
7042               .resetvalue = cpu->isar.id_aa64pfr1},
7043             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7045               .access = PL1_R, .type = ARM_CP_CONST,
7046               .accessfn = access_aa64_tid3,
7047               .resetvalue = 0 },
7048             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7050               .access = PL1_R, .type = ARM_CP_CONST,
7051               .accessfn = access_aa64_tid3,
7052               .resetvalue = 0 },
7053             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7055               .access = PL1_R, .type = ARM_CP_CONST,
7056               .accessfn = access_aa64_tid3,
7057               /* At present, only SVEver == 0 is defined anyway.  */
7058               .resetvalue = 0 },
7059             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7060               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7061               .access = PL1_R, .type = ARM_CP_CONST,
7062               .accessfn = access_aa64_tid3,
7063               .resetvalue = 0 },
7064             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7066               .access = PL1_R, .type = ARM_CP_CONST,
7067               .accessfn = access_aa64_tid3,
7068               .resetvalue = 0 },
7069             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7071               .access = PL1_R, .type = ARM_CP_CONST,
7072               .accessfn = access_aa64_tid3,
7073               .resetvalue = 0 },
7074             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7075               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7076               .access = PL1_R, .type = ARM_CP_CONST,
7077               .accessfn = access_aa64_tid3,
7078               .resetvalue = cpu->isar.id_aa64dfr0 },
7079             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7081               .access = PL1_R, .type = ARM_CP_CONST,
7082               .accessfn = access_aa64_tid3,
7083               .resetvalue = cpu->isar.id_aa64dfr1 },
7084             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7085               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7086               .access = PL1_R, .type = ARM_CP_CONST,
7087               .accessfn = access_aa64_tid3,
7088               .resetvalue = 0 },
7089             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7091               .access = PL1_R, .type = ARM_CP_CONST,
7092               .accessfn = access_aa64_tid3,
7093               .resetvalue = 0 },
7094             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7095               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7096               .access = PL1_R, .type = ARM_CP_CONST,
7097               .accessfn = access_aa64_tid3,
7098               .resetvalue = cpu->id_aa64afr0 },
7099             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7101               .access = PL1_R, .type = ARM_CP_CONST,
7102               .accessfn = access_aa64_tid3,
7103               .resetvalue = cpu->id_aa64afr1 },
7104             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7105               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7106               .access = PL1_R, .type = ARM_CP_CONST,
7107               .accessfn = access_aa64_tid3,
7108               .resetvalue = 0 },
7109             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7110               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7111               .access = PL1_R, .type = ARM_CP_CONST,
7112               .accessfn = access_aa64_tid3,
7113               .resetvalue = 0 },
7114             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7115               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7116               .access = PL1_R, .type = ARM_CP_CONST,
7117               .accessfn = access_aa64_tid3,
7118               .resetvalue = cpu->isar.id_aa64isar0 },
7119             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7120               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7121               .access = PL1_R, .type = ARM_CP_CONST,
7122               .accessfn = access_aa64_tid3,
7123               .resetvalue = cpu->isar.id_aa64isar1 },
7124             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7125               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7126               .access = PL1_R, .type = ARM_CP_CONST,
7127               .accessfn = access_aa64_tid3,
7128               .resetvalue = 0 },
7129             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7130               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7131               .access = PL1_R, .type = ARM_CP_CONST,
7132               .accessfn = access_aa64_tid3,
7133               .resetvalue = 0 },
7134             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7135               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7136               .access = PL1_R, .type = ARM_CP_CONST,
7137               .accessfn = access_aa64_tid3,
7138               .resetvalue = 0 },
7139             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7140               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7141               .access = PL1_R, .type = ARM_CP_CONST,
7142               .accessfn = access_aa64_tid3,
7143               .resetvalue = 0 },
7144             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7145               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7146               .access = PL1_R, .type = ARM_CP_CONST,
7147               .accessfn = access_aa64_tid3,
7148               .resetvalue = 0 },
7149             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7150               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7151               .access = PL1_R, .type = ARM_CP_CONST,
7152               .accessfn = access_aa64_tid3,
7153               .resetvalue = 0 },
7154             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7155               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7156               .access = PL1_R, .type = ARM_CP_CONST,
7157               .accessfn = access_aa64_tid3,
7158               .resetvalue = cpu->isar.id_aa64mmfr0 },
7159             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7160               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7161               .access = PL1_R, .type = ARM_CP_CONST,
7162               .accessfn = access_aa64_tid3,
7163               .resetvalue = cpu->isar.id_aa64mmfr1 },
7164             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7165               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7166               .access = PL1_R, .type = ARM_CP_CONST,
7167               .accessfn = access_aa64_tid3,
7168               .resetvalue = cpu->isar.id_aa64mmfr2 },
7169             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7170               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7171               .access = PL1_R, .type = ARM_CP_CONST,
7172               .accessfn = access_aa64_tid3,
7173               .resetvalue = 0 },
7174             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7175               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7176               .access = PL1_R, .type = ARM_CP_CONST,
7177               .accessfn = access_aa64_tid3,
7178               .resetvalue = 0 },
7179             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7180               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7181               .access = PL1_R, .type = ARM_CP_CONST,
7182               .accessfn = access_aa64_tid3,
7183               .resetvalue = 0 },
7184             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7186               .access = PL1_R, .type = ARM_CP_CONST,
7187               .accessfn = access_aa64_tid3,
7188               .resetvalue = 0 },
7189             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7190               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7191               .access = PL1_R, .type = ARM_CP_CONST,
7192               .accessfn = access_aa64_tid3,
7193               .resetvalue = 0 },
7194             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7195               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7196               .access = PL1_R, .type = ARM_CP_CONST,
7197               .accessfn = access_aa64_tid3,
7198               .resetvalue = cpu->isar.mvfr0 },
7199             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7200               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7201               .access = PL1_R, .type = ARM_CP_CONST,
7202               .accessfn = access_aa64_tid3,
7203               .resetvalue = cpu->isar.mvfr1 },
7204             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7205               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7206               .access = PL1_R, .type = ARM_CP_CONST,
7207               .accessfn = access_aa64_tid3,
7208               .resetvalue = cpu->isar.mvfr2 },
7209             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7210               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7211               .access = PL1_R, .type = ARM_CP_CONST,
7212               .accessfn = access_aa64_tid3,
7213               .resetvalue = 0 },
7214             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7215               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7216               .access = PL1_R, .type = ARM_CP_CONST,
7217               .accessfn = access_aa64_tid3,
7218               .resetvalue = 0 },
7219             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7220               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7221               .access = PL1_R, .type = ARM_CP_CONST,
7222               .accessfn = access_aa64_tid3,
7223               .resetvalue = 0 },
7224             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7225               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7226               .access = PL1_R, .type = ARM_CP_CONST,
7227               .accessfn = access_aa64_tid3,
7228               .resetvalue = 0 },
7229             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7230               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7231               .access = PL1_R, .type = ARM_CP_CONST,
7232               .accessfn = access_aa64_tid3,
7233               .resetvalue = 0 },
7234             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7235               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7236               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7237               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7238             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7239               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7240               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7241               .resetvalue = cpu->pmceid0 },
7242             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7243               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7244               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7245               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7246             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7247               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7248               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7249               .resetvalue = cpu->pmceid1 },
7250             REGINFO_SENTINEL
7251         };
7252 #ifdef CONFIG_USER_ONLY
7253         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7254             { .name = "ID_AA64PFR0_EL1",
7255               .exported_bits = 0x000f000f00ff0000,
7256               .fixed_bits    = 0x0000000000000011 },
7257             { .name = "ID_AA64PFR1_EL1",
7258               .exported_bits = 0x00000000000000f0 },
7259             { .name = "ID_AA64PFR*_EL1_RESERVED",
7260               .is_glob = true                     },
7261             { .name = "ID_AA64ZFR0_EL1"           },
7262             { .name = "ID_AA64MMFR0_EL1",
7263               .fixed_bits    = 0x00000000ff000000 },
7264             { .name = "ID_AA64MMFR1_EL1"          },
7265             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7266               .is_glob = true                     },
7267             { .name = "ID_AA64DFR0_EL1",
7268               .fixed_bits    = 0x0000000000000006 },
7269             { .name = "ID_AA64DFR1_EL1"           },
7270             { .name = "ID_AA64DFR*_EL1_RESERVED",
7271               .is_glob = true                     },
7272             { .name = "ID_AA64AFR*",
7273               .is_glob = true                     },
7274             { .name = "ID_AA64ISAR0_EL1",
7275               .exported_bits = 0x00fffffff0fffff0 },
7276             { .name = "ID_AA64ISAR1_EL1",
7277               .exported_bits = 0x000000f0ffffffff },
7278             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7279               .is_glob = true                     },
7280             REGUSERINFO_SENTINEL
7281         };
7282         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7283 #endif
7284         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7285         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7286             !arm_feature(env, ARM_FEATURE_EL2)) {
7287             ARMCPRegInfo rvbar = {
7288                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7289                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7290                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7291             };
7292             define_one_arm_cp_reg(cpu, &rvbar);
7293         }
7294         define_arm_cp_regs(cpu, v8_idregs);
7295         define_arm_cp_regs(cpu, v8_cp_reginfo);
7296     }
7297     if (arm_feature(env, ARM_FEATURE_EL2)) {
7298         uint64_t vmpidr_def = mpidr_read_val(env);
7299         ARMCPRegInfo vpidr_regs[] = {
7300             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7301               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7302               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7303               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7304               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7305             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7306               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7307               .access = PL2_RW, .resetvalue = cpu->midr,
7308               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7309             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7310               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7311               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7312               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7313               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7314             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7315               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7316               .access = PL2_RW,
7317               .resetvalue = vmpidr_def,
7318               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7319             REGINFO_SENTINEL
7320         };
7321         define_arm_cp_regs(cpu, vpidr_regs);
7322         define_arm_cp_regs(cpu, el2_cp_reginfo);
7323         if (arm_feature(env, ARM_FEATURE_V8)) {
7324             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7325         }
7326         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7327         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7328             ARMCPRegInfo rvbar = {
7329                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7330                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7331                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7332             };
7333             define_one_arm_cp_reg(cpu, &rvbar);
7334         }
7335     } else {
7336         /* If EL2 is missing but higher ELs are enabled, we need to
7337          * register the no_el2 reginfos.
7338          */
7339         if (arm_feature(env, ARM_FEATURE_EL3)) {
7340             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7341              * of MIDR_EL1 and MPIDR_EL1.
7342              */
7343             ARMCPRegInfo vpidr_regs[] = {
7344                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7345                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7346                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7347                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7348                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7349                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7350                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7351                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
7352                   .type = ARM_CP_NO_RAW,
7353                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7354                 REGINFO_SENTINEL
7355             };
7356             define_arm_cp_regs(cpu, vpidr_regs);
7357             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7358             if (arm_feature(env, ARM_FEATURE_V8)) {
7359                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7360             }
7361         }
7362     }
7363     if (arm_feature(env, ARM_FEATURE_EL3)) {
7364         define_arm_cp_regs(cpu, el3_cp_reginfo);
7365         ARMCPRegInfo el3_regs[] = {
7366             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7367               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7368               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7369             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7370               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7371               .access = PL3_RW,
7372               .raw_writefn = raw_write, .writefn = sctlr_write,
7373               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7374               .resetvalue = cpu->reset_sctlr },
7375             REGINFO_SENTINEL
7376         };
7377 
7378         define_arm_cp_regs(cpu, el3_regs);
7379     }
7380     /* The behaviour of NSACR is sufficiently various that we don't
7381      * try to describe it in a single reginfo:
7382      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7383      *     reads as constant 0xc00 from NS EL1 and NS EL2
7384      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7385      *  if v7 without EL3, register doesn't exist
7386      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7387      */
7388     if (arm_feature(env, ARM_FEATURE_EL3)) {
7389         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7390             ARMCPRegInfo nsacr = {
7391                 .name = "NSACR", .type = ARM_CP_CONST,
7392                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7393                 .access = PL1_RW, .accessfn = nsacr_access,
7394                 .resetvalue = 0xc00
7395             };
7396             define_one_arm_cp_reg(cpu, &nsacr);
7397         } else {
7398             ARMCPRegInfo nsacr = {
7399                 .name = "NSACR",
7400                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7401                 .access = PL3_RW | PL1_R,
7402                 .resetvalue = 0,
7403                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7404             };
7405             define_one_arm_cp_reg(cpu, &nsacr);
7406         }
7407     } else {
7408         if (arm_feature(env, ARM_FEATURE_V8)) {
7409             ARMCPRegInfo nsacr = {
7410                 .name = "NSACR", .type = ARM_CP_CONST,
7411                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7412                 .access = PL1_R,
7413                 .resetvalue = 0xc00
7414             };
7415             define_one_arm_cp_reg(cpu, &nsacr);
7416         }
7417     }
7418 
7419     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7420         if (arm_feature(env, ARM_FEATURE_V6)) {
7421             /* PMSAv6 not implemented */
7422             assert(arm_feature(env, ARM_FEATURE_V7));
7423             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7424             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7425         } else {
7426             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7427         }
7428     } else {
7429         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7430         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7431         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7432         if (cpu_isar_feature(aa32_hpd, cpu)) {
7433             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7434         }
7435     }
7436     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7437         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7438     }
7439     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7440         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7441     }
7442     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7443         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7444     }
7445     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7446         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7447     }
7448     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7449         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7450     }
7451     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7452         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7453     }
7454     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7455         define_arm_cp_regs(cpu, omap_cp_reginfo);
7456     }
7457     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7458         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7459     }
7460     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7461         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7462     }
7463     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7464         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7465     }
7466     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7467         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7468     }
7469     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7470         define_arm_cp_regs(cpu, jazelle_regs);
7471     }
7472     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7473      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7474      * be read-only (ie write causes UNDEF exception).
7475      */
7476     {
7477         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7478             /* Pre-v8 MIDR space.
7479              * Note that the MIDR isn't a simple constant register because
7480              * of the TI925 behaviour where writes to another register can
7481              * cause the MIDR value to change.
7482              *
7483              * Unimplemented registers in the c15 0 0 0 space default to
7484              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7485              * and friends override accordingly.
7486              */
7487             { .name = "MIDR",
7488               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7489               .access = PL1_R, .resetvalue = cpu->midr,
7490               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7491               .readfn = midr_read,
7492               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7493               .type = ARM_CP_OVERRIDE },
7494             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7495             { .name = "DUMMY",
7496               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7497               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7498             { .name = "DUMMY",
7499               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7500               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7501             { .name = "DUMMY",
7502               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7503               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7504             { .name = "DUMMY",
7505               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7506               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7507             { .name = "DUMMY",
7508               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7509               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7510             REGINFO_SENTINEL
7511         };
7512         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7513             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7514               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7515               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7516               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7517               .readfn = midr_read },
7518             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7519             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7520               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7521               .access = PL1_R, .resetvalue = cpu->midr },
7522             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7523               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7524               .access = PL1_R, .resetvalue = cpu->midr },
7525             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7526               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7527               .access = PL1_R,
7528               .accessfn = access_aa64_tid1,
7529               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7530             REGINFO_SENTINEL
7531         };
7532         ARMCPRegInfo id_cp_reginfo[] = {
7533             /* These are common to v8 and pre-v8 */
7534             { .name = "CTR",
7535               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7536               .access = PL1_R, .accessfn = ctr_el0_access,
7537               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7538             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7539               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7540               .access = PL0_R, .accessfn = ctr_el0_access,
7541               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7542             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7543             { .name = "TCMTR",
7544               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7545               .access = PL1_R,
7546               .accessfn = access_aa32_tid1,
7547               .type = ARM_CP_CONST, .resetvalue = 0 },
7548             REGINFO_SENTINEL
7549         };
7550         /* TLBTR is specific to VMSA */
7551         ARMCPRegInfo id_tlbtr_reginfo = {
7552               .name = "TLBTR",
7553               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7554               .access = PL1_R,
7555               .accessfn = access_aa32_tid1,
7556               .type = ARM_CP_CONST, .resetvalue = 0,
7557         };
7558         /* MPUIR is specific to PMSA V6+ */
7559         ARMCPRegInfo id_mpuir_reginfo = {
7560               .name = "MPUIR",
7561               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7562               .access = PL1_R, .type = ARM_CP_CONST,
7563               .resetvalue = cpu->pmsav7_dregion << 8
7564         };
7565         ARMCPRegInfo crn0_wi_reginfo = {
7566             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7567             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7568             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7569         };
7570 #ifdef CONFIG_USER_ONLY
7571         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7572             { .name = "MIDR_EL1",
7573               .exported_bits = 0x00000000ffffffff },
7574             { .name = "REVIDR_EL1"                },
7575             REGUSERINFO_SENTINEL
7576         };
7577         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7578 #endif
7579         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7580             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7581             ARMCPRegInfo *r;
7582             /* Register the blanket "writes ignored" value first to cover the
7583              * whole space. Then update the specific ID registers to allow write
7584              * access, so that they ignore writes rather than causing them to
7585              * UNDEF.
7586              */
7587             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7588             for (r = id_pre_v8_midr_cp_reginfo;
7589                  r->type != ARM_CP_SENTINEL; r++) {
7590                 r->access = PL1_RW;
7591             }
7592             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7593                 r->access = PL1_RW;
7594             }
7595             id_mpuir_reginfo.access = PL1_RW;
7596             id_tlbtr_reginfo.access = PL1_RW;
7597         }
7598         if (arm_feature(env, ARM_FEATURE_V8)) {
7599             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7600         } else {
7601             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7602         }
7603         define_arm_cp_regs(cpu, id_cp_reginfo);
7604         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7605             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7606         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7607             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7608         }
7609     }
7610 
7611     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7612         ARMCPRegInfo mpidr_cp_reginfo[] = {
7613             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7614               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7615               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7616             REGINFO_SENTINEL
7617         };
7618 #ifdef CONFIG_USER_ONLY
7619         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7620             { .name = "MPIDR_EL1",
7621               .fixed_bits = 0x0000000080000000 },
7622             REGUSERINFO_SENTINEL
7623         };
7624         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7625 #endif
7626         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7627     }
7628 
7629     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7630         ARMCPRegInfo auxcr_reginfo[] = {
7631             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7632               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7633               .access = PL1_RW, .type = ARM_CP_CONST,
7634               .resetvalue = cpu->reset_auxcr },
7635             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7636               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7637               .access = PL2_RW, .type = ARM_CP_CONST,
7638               .resetvalue = 0 },
7639             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
7640               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
7641               .access = PL3_RW, .type = ARM_CP_CONST,
7642               .resetvalue = 0 },
7643             REGINFO_SENTINEL
7644         };
7645         define_arm_cp_regs(cpu, auxcr_reginfo);
7646         if (cpu_isar_feature(aa32_ac2, cpu)) {
7647             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
7648         }
7649     }
7650 
7651     if (arm_feature(env, ARM_FEATURE_CBAR)) {
7652         /*
7653          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
7654          * There are two flavours:
7655          *  (1) older 32-bit only cores have a simple 32-bit CBAR
7656          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
7657          *      32-bit register visible to AArch32 at a different encoding
7658          *      to the "flavour 1" register and with the bits rearranged to
7659          *      be able to squash a 64-bit address into the 32-bit view.
7660          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
7661          * in future if we support AArch32-only configs of some of the
7662          * AArch64 cores we might need to add a specific feature flag
7663          * to indicate cores with "flavour 2" CBAR.
7664          */
7665         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7666             /* 32 bit view is [31:18] 0...0 [43:32]. */
7667             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
7668                 | extract64(cpu->reset_cbar, 32, 12);
7669             ARMCPRegInfo cbar_reginfo[] = {
7670                 { .name = "CBAR",
7671                   .type = ARM_CP_CONST,
7672                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
7673                   .access = PL1_R, .resetvalue = cbar32 },
7674                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
7675                   .type = ARM_CP_CONST,
7676                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
7677                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
7678                 REGINFO_SENTINEL
7679             };
7680             /* We don't implement a r/w 64 bit CBAR currently */
7681             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
7682             define_arm_cp_regs(cpu, cbar_reginfo);
7683         } else {
7684             ARMCPRegInfo cbar = {
7685                 .name = "CBAR",
7686                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
7687                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
7688                 .fieldoffset = offsetof(CPUARMState,
7689                                         cp15.c15_config_base_address)
7690             };
7691             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
7692                 cbar.access = PL1_R;
7693                 cbar.fieldoffset = 0;
7694                 cbar.type = ARM_CP_CONST;
7695             }
7696             define_one_arm_cp_reg(cpu, &cbar);
7697         }
7698     }
7699 
7700     if (arm_feature(env, ARM_FEATURE_VBAR)) {
7701         ARMCPRegInfo vbar_cp_reginfo[] = {
7702             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
7703               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
7704               .access = PL1_RW, .writefn = vbar_write,
7705               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
7706                                      offsetof(CPUARMState, cp15.vbar_ns) },
7707               .resetvalue = 0 },
7708             REGINFO_SENTINEL
7709         };
7710         define_arm_cp_regs(cpu, vbar_cp_reginfo);
7711     }
7712 
7713     /* Generic registers whose values depend on the implementation */
7714     {
7715         ARMCPRegInfo sctlr = {
7716             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
7717             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
7718             .access = PL1_RW,
7719             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
7720                                    offsetof(CPUARMState, cp15.sctlr_ns) },
7721             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
7722             .raw_writefn = raw_write,
7723         };
7724         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7725             /* Normally we would always end the TB on an SCTLR write, but Linux
7726              * arch/arm/mach-pxa/sleep.S expects two instructions following
7727              * an MMU enable to execute from cache.  Imitate this behaviour.
7728              */
7729             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
7730         }
7731         define_one_arm_cp_reg(cpu, &sctlr);
7732     }
7733 
7734     if (cpu_isar_feature(aa64_lor, cpu)) {
7735         define_arm_cp_regs(cpu, lor_reginfo);
7736     }
7737     if (cpu_isar_feature(aa64_pan, cpu)) {
7738         define_one_arm_cp_reg(cpu, &pan_reginfo);
7739     }
7740 #ifndef CONFIG_USER_ONLY
7741     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
7742         define_arm_cp_regs(cpu, ats1e1_reginfo);
7743     }
7744     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
7745         define_arm_cp_regs(cpu, ats1cp_reginfo);
7746     }
7747 #endif
7748     if (cpu_isar_feature(aa64_uao, cpu)) {
7749         define_one_arm_cp_reg(cpu, &uao_reginfo);
7750     }
7751 
7752     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7753         define_arm_cp_regs(cpu, vhe_reginfo);
7754     }
7755 
7756     if (cpu_isar_feature(aa64_sve, cpu)) {
7757         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
7758         if (arm_feature(env, ARM_FEATURE_EL2)) {
7759             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
7760         } else {
7761             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
7762         }
7763         if (arm_feature(env, ARM_FEATURE_EL3)) {
7764             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
7765         }
7766     }
7767 
7768 #ifdef TARGET_AARCH64
7769     if (cpu_isar_feature(aa64_pauth, cpu)) {
7770         define_arm_cp_regs(cpu, pauth_reginfo);
7771     }
7772     if (cpu_isar_feature(aa64_rndr, cpu)) {
7773         define_arm_cp_regs(cpu, rndr_reginfo);
7774     }
7775 #ifndef CONFIG_USER_ONLY
7776     /* Data Cache clean instructions up to PoP */
7777     if (cpu_isar_feature(aa64_dcpop, cpu)) {
7778         define_one_arm_cp_reg(cpu, dcpop_reg);
7779 
7780         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
7781             define_one_arm_cp_reg(cpu, dcpodp_reg);
7782         }
7783     }
7784 #endif /*CONFIG_USER_ONLY*/
7785 #endif
7786 
7787     if (cpu_isar_feature(any_predinv, cpu)) {
7788         define_arm_cp_regs(cpu, predinv_reginfo);
7789     }
7790 
7791 #ifndef CONFIG_USER_ONLY
7792     /*
7793      * Register redirections and aliases must be done last,
7794      * after the registers from the other extensions have been defined.
7795      */
7796     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
7797         define_arm_vh_e2h_redirects_aliases(cpu);
7798     }
7799 #endif
7800 }
7801 
7802 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
7803 {
7804     CPUState *cs = CPU(cpu);
7805     CPUARMState *env = &cpu->env;
7806 
7807     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7808         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
7809                                  aarch64_fpu_gdb_set_reg,
7810                                  34, "aarch64-fpu.xml", 0);
7811     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
7812         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7813                                  51, "arm-neon.xml", 0);
7814     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
7815         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7816                                  35, "arm-vfp3.xml", 0);
7817     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
7818         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
7819                                  19, "arm-vfp.xml", 0);
7820     }
7821     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
7822                              arm_gen_dynamic_xml(cs),
7823                              "system-registers.xml", 0);
7824 }
7825 
7826 /* Sort alphabetically by type name, except for "any". */
7827 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
7828 {
7829     ObjectClass *class_a = (ObjectClass *)a;
7830     ObjectClass *class_b = (ObjectClass *)b;
7831     const char *name_a, *name_b;
7832 
7833     name_a = object_class_get_name(class_a);
7834     name_b = object_class_get_name(class_b);
7835     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
7836         return 1;
7837     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
7838         return -1;
7839     } else {
7840         return strcmp(name_a, name_b);
7841     }
7842 }
7843 
7844 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
7845 {
7846     ObjectClass *oc = data;
7847     const char *typename;
7848     char *name;
7849 
7850     typename = object_class_get_name(oc);
7851     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
7852     qemu_printf("  %s\n", name);
7853     g_free(name);
7854 }
7855 
7856 void arm_cpu_list(void)
7857 {
7858     GSList *list;
7859 
7860     list = object_class_get_list(TYPE_ARM_CPU, false);
7861     list = g_slist_sort(list, arm_cpu_list_compare);
7862     qemu_printf("Available CPUs:\n");
7863     g_slist_foreach(list, arm_cpu_list_entry, NULL);
7864     g_slist_free(list);
7865 }
7866 
7867 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
7868 {
7869     ObjectClass *oc = data;
7870     CpuDefinitionInfoList **cpu_list = user_data;
7871     CpuDefinitionInfoList *entry;
7872     CpuDefinitionInfo *info;
7873     const char *typename;
7874 
7875     typename = object_class_get_name(oc);
7876     info = g_malloc0(sizeof(*info));
7877     info->name = g_strndup(typename,
7878                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
7879     info->q_typename = g_strdup(typename);
7880 
7881     entry = g_malloc0(sizeof(*entry));
7882     entry->value = info;
7883     entry->next = *cpu_list;
7884     *cpu_list = entry;
7885 }
7886 
7887 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
7888 {
7889     CpuDefinitionInfoList *cpu_list = NULL;
7890     GSList *list;
7891 
7892     list = object_class_get_list(TYPE_ARM_CPU, false);
7893     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
7894     g_slist_free(list);
7895 
7896     return cpu_list;
7897 }
7898 
7899 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
7900                                    void *opaque, int state, int secstate,
7901                                    int crm, int opc1, int opc2,
7902                                    const char *name)
7903 {
7904     /* Private utility function for define_one_arm_cp_reg_with_opaque():
7905      * add a single reginfo struct to the hash table.
7906      */
7907     uint32_t *key = g_new(uint32_t, 1);
7908     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
7909     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
7910     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
7911 
7912     r2->name = g_strdup(name);
7913     /* Reset the secure state to the specific incoming state.  This is
7914      * necessary as the register may have been defined with both states.
7915      */
7916     r2->secure = secstate;
7917 
7918     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7919         /* Register is banked (using both entries in array).
7920          * Overwriting fieldoffset as the array is only used to define
7921          * banked registers but later only fieldoffset is used.
7922          */
7923         r2->fieldoffset = r->bank_fieldoffsets[ns];
7924     }
7925 
7926     if (state == ARM_CP_STATE_AA32) {
7927         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
7928             /* If the register is banked then we don't need to migrate or
7929              * reset the 32-bit instance in certain cases:
7930              *
7931              * 1) If the register has both 32-bit and 64-bit instances then we
7932              *    can count on the 64-bit instance taking care of the
7933              *    non-secure bank.
7934              * 2) If ARMv8 is enabled then we can count on a 64-bit version
7935              *    taking care of the secure bank.  This requires that separate
7936              *    32 and 64-bit definitions are provided.
7937              */
7938             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
7939                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
7940                 r2->type |= ARM_CP_ALIAS;
7941             }
7942         } else if ((secstate != r->secure) && !ns) {
7943             /* The register is not banked so we only want to allow migration of
7944              * the non-secure instance.
7945              */
7946             r2->type |= ARM_CP_ALIAS;
7947         }
7948 
7949         if (r->state == ARM_CP_STATE_BOTH) {
7950             /* We assume it is a cp15 register if the .cp field is left unset.
7951              */
7952             if (r2->cp == 0) {
7953                 r2->cp = 15;
7954             }
7955 
7956 #ifdef HOST_WORDS_BIGENDIAN
7957             if (r2->fieldoffset) {
7958                 r2->fieldoffset += sizeof(uint32_t);
7959             }
7960 #endif
7961         }
7962     }
7963     if (state == ARM_CP_STATE_AA64) {
7964         /* To allow abbreviation of ARMCPRegInfo
7965          * definitions, we treat cp == 0 as equivalent to
7966          * the value for "standard guest-visible sysreg".
7967          * STATE_BOTH definitions are also always "standard
7968          * sysreg" in their AArch64 view (the .cp value may
7969          * be non-zero for the benefit of the AArch32 view).
7970          */
7971         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
7972             r2->cp = CP_REG_ARM64_SYSREG_CP;
7973         }
7974         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
7975                                   r2->opc0, opc1, opc2);
7976     } else {
7977         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
7978     }
7979     if (opaque) {
7980         r2->opaque = opaque;
7981     }
7982     /* reginfo passed to helpers is correct for the actual access,
7983      * and is never ARM_CP_STATE_BOTH:
7984      */
7985     r2->state = state;
7986     /* Make sure reginfo passed to helpers for wildcarded regs
7987      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
7988      */
7989     r2->crm = crm;
7990     r2->opc1 = opc1;
7991     r2->opc2 = opc2;
7992     /* By convention, for wildcarded registers only the first
7993      * entry is used for migration; the others are marked as
7994      * ALIAS so we don't try to transfer the register
7995      * multiple times. Special registers (ie NOP/WFI) are
7996      * never migratable and not even raw-accessible.
7997      */
7998     if ((r->type & ARM_CP_SPECIAL)) {
7999         r2->type |= ARM_CP_NO_RAW;
8000     }
8001     if (((r->crm == CP_ANY) && crm != 0) ||
8002         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8003         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8004         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8005     }
8006 
8007     /* Check that raw accesses are either forbidden or handled. Note that
8008      * we can't assert this earlier because the setup of fieldoffset for
8009      * banked registers has to be done first.
8010      */
8011     if (!(r2->type & ARM_CP_NO_RAW)) {
8012         assert(!raw_accessors_invalid(r2));
8013     }
8014 
8015     /* Overriding of an existing definition must be explicitly
8016      * requested.
8017      */
8018     if (!(r->type & ARM_CP_OVERRIDE)) {
8019         ARMCPRegInfo *oldreg;
8020         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8021         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8022             fprintf(stderr, "Register redefined: cp=%d %d bit "
8023                     "crn=%d crm=%d opc1=%d opc2=%d, "
8024                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8025                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8026                     oldreg->name, r2->name);
8027             g_assert_not_reached();
8028         }
8029     }
8030     g_hash_table_insert(cpu->cp_regs, key, r2);
8031 }
8032 
8033 
8034 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8035                                        const ARMCPRegInfo *r, void *opaque)
8036 {
8037     /* Define implementations of coprocessor registers.
8038      * We store these in a hashtable because typically
8039      * there are less than 150 registers in a space which
8040      * is 16*16*16*8*8 = 262144 in size.
8041      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8042      * If a register is defined twice then the second definition is
8043      * used, so this can be used to define some generic registers and
8044      * then override them with implementation specific variations.
8045      * At least one of the original and the second definition should
8046      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8047      * against accidental use.
8048      *
8049      * The state field defines whether the register is to be
8050      * visible in the AArch32 or AArch64 execution state. If the
8051      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8052      * reginfo structure for the AArch32 view, which sees the lower
8053      * 32 bits of the 64 bit register.
8054      *
8055      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8056      * be wildcarded. AArch64 registers are always considered to be 64
8057      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8058      * the register, if any.
8059      */
8060     int crm, opc1, opc2, state;
8061     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8062     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8063     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8064     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8065     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8066     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8067     /* 64 bit registers have only CRm and Opc1 fields */
8068     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8069     /* op0 only exists in the AArch64 encodings */
8070     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8071     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8072     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8073     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8074      * encodes a minimum access level for the register. We roll this
8075      * runtime check into our general permission check code, so check
8076      * here that the reginfo's specified permissions are strict enough
8077      * to encompass the generic architectural permission check.
8078      */
8079     if (r->state != ARM_CP_STATE_AA32) {
8080         int mask = 0;
8081         switch (r->opc1) {
8082         case 0:
8083             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8084             mask = PL0U_R | PL1_RW;
8085             break;
8086         case 1: case 2:
8087             /* min_EL EL1 */
8088             mask = PL1_RW;
8089             break;
8090         case 3:
8091             /* min_EL EL0 */
8092             mask = PL0_RW;
8093             break;
8094         case 4:
8095         case 5:
8096             /* min_EL EL2 */
8097             mask = PL2_RW;
8098             break;
8099         case 6:
8100             /* min_EL EL3 */
8101             mask = PL3_RW;
8102             break;
8103         case 7:
8104             /* min_EL EL1, secure mode only (we don't check the latter) */
8105             mask = PL1_RW;
8106             break;
8107         default:
8108             /* broken reginfo with out-of-range opc1 */
8109             assert(false);
8110             break;
8111         }
8112         /* assert our permissions are not too lax (stricter is fine) */
8113         assert((r->access & ~mask) == 0);
8114     }
8115 
8116     /* Check that the register definition has enough info to handle
8117      * reads and writes if they are permitted.
8118      */
8119     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8120         if (r->access & PL3_R) {
8121             assert((r->fieldoffset ||
8122                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8123                    r->readfn);
8124         }
8125         if (r->access & PL3_W) {
8126             assert((r->fieldoffset ||
8127                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8128                    r->writefn);
8129         }
8130     }
8131     /* Bad type field probably means missing sentinel at end of reg list */
8132     assert(cptype_valid(r->type));
8133     for (crm = crmmin; crm <= crmmax; crm++) {
8134         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8135             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8136                 for (state = ARM_CP_STATE_AA32;
8137                      state <= ARM_CP_STATE_AA64; state++) {
8138                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8139                         continue;
8140                     }
8141                     if (state == ARM_CP_STATE_AA32) {
8142                         /* Under AArch32 CP registers can be common
8143                          * (same for secure and non-secure world) or banked.
8144                          */
8145                         char *name;
8146 
8147                         switch (r->secure) {
8148                         case ARM_CP_SECSTATE_S:
8149                         case ARM_CP_SECSTATE_NS:
8150                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8151                                                    r->secure, crm, opc1, opc2,
8152                                                    r->name);
8153                             break;
8154                         default:
8155                             name = g_strdup_printf("%s_S", r->name);
8156                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8157                                                    ARM_CP_SECSTATE_S,
8158                                                    crm, opc1, opc2, name);
8159                             g_free(name);
8160                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8161                                                    ARM_CP_SECSTATE_NS,
8162                                                    crm, opc1, opc2, r->name);
8163                             break;
8164                         }
8165                     } else {
8166                         /* AArch64 registers get mapped to non-secure instance
8167                          * of AArch32 */
8168                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8169                                                ARM_CP_SECSTATE_NS,
8170                                                crm, opc1, opc2, r->name);
8171                     }
8172                 }
8173             }
8174         }
8175     }
8176 }
8177 
8178 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8179                                     const ARMCPRegInfo *regs, void *opaque)
8180 {
8181     /* Define a whole list of registers */
8182     const ARMCPRegInfo *r;
8183     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8184         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8185     }
8186 }
8187 
8188 /*
8189  * Modify ARMCPRegInfo for access from userspace.
8190  *
8191  * This is a data driven modification directed by
8192  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8193  * user-space cannot alter any values and dynamic values pertaining to
8194  * execution state are hidden from user space view anyway.
8195  */
8196 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8197 {
8198     const ARMCPRegUserSpaceInfo *m;
8199     ARMCPRegInfo *r;
8200 
8201     for (m = mods; m->name; m++) {
8202         GPatternSpec *pat = NULL;
8203         if (m->is_glob) {
8204             pat = g_pattern_spec_new(m->name);
8205         }
8206         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8207             if (pat && g_pattern_match_string(pat, r->name)) {
8208                 r->type = ARM_CP_CONST;
8209                 r->access = PL0U_R;
8210                 r->resetvalue = 0;
8211                 /* continue */
8212             } else if (strcmp(r->name, m->name) == 0) {
8213                 r->type = ARM_CP_CONST;
8214                 r->access = PL0U_R;
8215                 r->resetvalue &= m->exported_bits;
8216                 r->resetvalue |= m->fixed_bits;
8217                 break;
8218             }
8219         }
8220         if (pat) {
8221             g_pattern_spec_free(pat);
8222         }
8223     }
8224 }
8225 
8226 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8227 {
8228     return g_hash_table_lookup(cpregs, &encoded_cp);
8229 }
8230 
8231 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8232                          uint64_t value)
8233 {
8234     /* Helper coprocessor write function for write-ignore registers */
8235 }
8236 
8237 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8238 {
8239     /* Helper coprocessor write function for read-as-zero registers */
8240     return 0;
8241 }
8242 
8243 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8244 {
8245     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8246 }
8247 
8248 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8249 {
8250     /* Return true if it is not valid for us to switch to
8251      * this CPU mode (ie all the UNPREDICTABLE cases in
8252      * the ARM ARM CPSRWriteByInstr pseudocode).
8253      */
8254 
8255     /* Changes to or from Hyp via MSR and CPS are illegal. */
8256     if (write_type == CPSRWriteByInstr &&
8257         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8258          mode == ARM_CPU_MODE_HYP)) {
8259         return 1;
8260     }
8261 
8262     switch (mode) {
8263     case ARM_CPU_MODE_USR:
8264         return 0;
8265     case ARM_CPU_MODE_SYS:
8266     case ARM_CPU_MODE_SVC:
8267     case ARM_CPU_MODE_ABT:
8268     case ARM_CPU_MODE_UND:
8269     case ARM_CPU_MODE_IRQ:
8270     case ARM_CPU_MODE_FIQ:
8271         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8272          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8273          */
8274         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8275          * and CPS are treated as illegal mode changes.
8276          */
8277         if (write_type == CPSRWriteByInstr &&
8278             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8279             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8280             return 1;
8281         }
8282         return 0;
8283     case ARM_CPU_MODE_HYP:
8284         return !arm_feature(env, ARM_FEATURE_EL2)
8285             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8286     case ARM_CPU_MODE_MON:
8287         return arm_current_el(env) < 3;
8288     default:
8289         return 1;
8290     }
8291 }
8292 
8293 uint32_t cpsr_read(CPUARMState *env)
8294 {
8295     int ZF;
8296     ZF = (env->ZF == 0);
8297     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8298         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8299         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8300         | ((env->condexec_bits & 0xfc) << 8)
8301         | (env->GE << 16) | (env->daif & CPSR_AIF);
8302 }
8303 
8304 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8305                 CPSRWriteType write_type)
8306 {
8307     uint32_t changed_daif;
8308 
8309     if (mask & CPSR_NZCV) {
8310         env->ZF = (~val) & CPSR_Z;
8311         env->NF = val;
8312         env->CF = (val >> 29) & 1;
8313         env->VF = (val << 3) & 0x80000000;
8314     }
8315     if (mask & CPSR_Q)
8316         env->QF = ((val & CPSR_Q) != 0);
8317     if (mask & CPSR_T)
8318         env->thumb = ((val & CPSR_T) != 0);
8319     if (mask & CPSR_IT_0_1) {
8320         env->condexec_bits &= ~3;
8321         env->condexec_bits |= (val >> 25) & 3;
8322     }
8323     if (mask & CPSR_IT_2_7) {
8324         env->condexec_bits &= 3;
8325         env->condexec_bits |= (val >> 8) & 0xfc;
8326     }
8327     if (mask & CPSR_GE) {
8328         env->GE = (val >> 16) & 0xf;
8329     }
8330 
8331     /* In a V7 implementation that includes the security extensions but does
8332      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8333      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8334      * bits respectively.
8335      *
8336      * In a V8 implementation, it is permitted for privileged software to
8337      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8338      */
8339     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8340         arm_feature(env, ARM_FEATURE_EL3) &&
8341         !arm_feature(env, ARM_FEATURE_EL2) &&
8342         !arm_is_secure(env)) {
8343 
8344         changed_daif = (env->daif ^ val) & mask;
8345 
8346         if (changed_daif & CPSR_A) {
8347             /* Check to see if we are allowed to change the masking of async
8348              * abort exceptions from a non-secure state.
8349              */
8350             if (!(env->cp15.scr_el3 & SCR_AW)) {
8351                 qemu_log_mask(LOG_GUEST_ERROR,
8352                               "Ignoring attempt to switch CPSR_A flag from "
8353                               "non-secure world with SCR.AW bit clear\n");
8354                 mask &= ~CPSR_A;
8355             }
8356         }
8357 
8358         if (changed_daif & CPSR_F) {
8359             /* Check to see if we are allowed to change the masking of FIQ
8360              * exceptions from a non-secure state.
8361              */
8362             if (!(env->cp15.scr_el3 & SCR_FW)) {
8363                 qemu_log_mask(LOG_GUEST_ERROR,
8364                               "Ignoring attempt to switch CPSR_F flag from "
8365                               "non-secure world with SCR.FW bit clear\n");
8366                 mask &= ~CPSR_F;
8367             }
8368 
8369             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8370              * If this bit is set software is not allowed to mask
8371              * FIQs, but is allowed to set CPSR_F to 0.
8372              */
8373             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8374                 (val & CPSR_F)) {
8375                 qemu_log_mask(LOG_GUEST_ERROR,
8376                               "Ignoring attempt to enable CPSR_F flag "
8377                               "(non-maskable FIQ [NMFI] support enabled)\n");
8378                 mask &= ~CPSR_F;
8379             }
8380         }
8381     }
8382 
8383     env->daif &= ~(CPSR_AIF & mask);
8384     env->daif |= val & CPSR_AIF & mask;
8385 
8386     if (write_type != CPSRWriteRaw &&
8387         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8388         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8389             /* Note that we can only get here in USR mode if this is a
8390              * gdb stub write; for this case we follow the architectural
8391              * behaviour for guest writes in USR mode of ignoring an attempt
8392              * to switch mode. (Those are caught by translate.c for writes
8393              * triggered by guest instructions.)
8394              */
8395             mask &= ~CPSR_M;
8396         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8397             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8398              * v7, and has defined behaviour in v8:
8399              *  + leave CPSR.M untouched
8400              *  + allow changes to the other CPSR fields
8401              *  + set PSTATE.IL
8402              * For user changes via the GDB stub, we don't set PSTATE.IL,
8403              * as this would be unnecessarily harsh for a user error.
8404              */
8405             mask &= ~CPSR_M;
8406             if (write_type != CPSRWriteByGDBStub &&
8407                 arm_feature(env, ARM_FEATURE_V8)) {
8408                 mask |= CPSR_IL;
8409                 val |= CPSR_IL;
8410             }
8411             qemu_log_mask(LOG_GUEST_ERROR,
8412                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8413                           aarch32_mode_name(env->uncached_cpsr),
8414                           aarch32_mode_name(val));
8415         } else {
8416             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8417                           write_type == CPSRWriteExceptionReturn ?
8418                           "Exception return from AArch32" :
8419                           "AArch32 mode switch from",
8420                           aarch32_mode_name(env->uncached_cpsr),
8421                           aarch32_mode_name(val), env->regs[15]);
8422             switch_mode(env, val & CPSR_M);
8423         }
8424     }
8425     mask &= ~CACHED_CPSR_BITS;
8426     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8427 }
8428 
8429 /* Sign/zero extend */
8430 uint32_t HELPER(sxtb16)(uint32_t x)
8431 {
8432     uint32_t res;
8433     res = (uint16_t)(int8_t)x;
8434     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8435     return res;
8436 }
8437 
8438 uint32_t HELPER(uxtb16)(uint32_t x)
8439 {
8440     uint32_t res;
8441     res = (uint16_t)(uint8_t)x;
8442     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8443     return res;
8444 }
8445 
8446 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8447 {
8448     if (den == 0)
8449       return 0;
8450     if (num == INT_MIN && den == -1)
8451       return INT_MIN;
8452     return num / den;
8453 }
8454 
8455 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8456 {
8457     if (den == 0)
8458       return 0;
8459     return num / den;
8460 }
8461 
8462 uint32_t HELPER(rbit)(uint32_t x)
8463 {
8464     return revbit32(x);
8465 }
8466 
8467 #ifdef CONFIG_USER_ONLY
8468 
8469 static void switch_mode(CPUARMState *env, int mode)
8470 {
8471     ARMCPU *cpu = env_archcpu(env);
8472 
8473     if (mode != ARM_CPU_MODE_USR) {
8474         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8475     }
8476 }
8477 
8478 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8479                                  uint32_t cur_el, bool secure)
8480 {
8481     return 1;
8482 }
8483 
8484 void aarch64_sync_64_to_32(CPUARMState *env)
8485 {
8486     g_assert_not_reached();
8487 }
8488 
8489 #else
8490 
8491 static void switch_mode(CPUARMState *env, int mode)
8492 {
8493     int old_mode;
8494     int i;
8495 
8496     old_mode = env->uncached_cpsr & CPSR_M;
8497     if (mode == old_mode)
8498         return;
8499 
8500     if (old_mode == ARM_CPU_MODE_FIQ) {
8501         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8502         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8503     } else if (mode == ARM_CPU_MODE_FIQ) {
8504         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8505         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8506     }
8507 
8508     i = bank_number(old_mode);
8509     env->banked_r13[i] = env->regs[13];
8510     env->banked_spsr[i] = env->spsr;
8511 
8512     i = bank_number(mode);
8513     env->regs[13] = env->banked_r13[i];
8514     env->spsr = env->banked_spsr[i];
8515 
8516     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8517     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8518 }
8519 
8520 /* Physical Interrupt Target EL Lookup Table
8521  *
8522  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8523  *
8524  * The below multi-dimensional table is used for looking up the target
8525  * exception level given numerous condition criteria.  Specifically, the
8526  * target EL is based on SCR and HCR routing controls as well as the
8527  * currently executing EL and secure state.
8528  *
8529  *    Dimensions:
8530  *    target_el_table[2][2][2][2][2][4]
8531  *                    |  |  |  |  |  +--- Current EL
8532  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8533  *                    |  |  |  +--------- HCR mask override
8534  *                    |  |  +------------ SCR exec state control
8535  *                    |  +--------------- SCR mask override
8536  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8537  *
8538  *    The table values are as such:
8539  *    0-3 = EL0-EL3
8540  *     -1 = Cannot occur
8541  *
8542  * The ARM ARM target EL table includes entries indicating that an "exception
8543  * is not taken".  The two cases where this is applicable are:
8544  *    1) An exception is taken from EL3 but the SCR does not have the exception
8545  *    routed to EL3.
8546  *    2) An exception is taken from EL2 but the HCR does not have the exception
8547  *    routed to EL2.
8548  * In these two cases, the below table contain a target of EL1.  This value is
8549  * returned as it is expected that the consumer of the table data will check
8550  * for "target EL >= current EL" to ensure the exception is not taken.
8551  *
8552  *            SCR     HCR
8553  *         64  EA     AMO                 From
8554  *        BIT IRQ     IMO      Non-secure         Secure
8555  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
8556  */
8557 static const int8_t target_el_table[2][2][2][2][2][4] = {
8558     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8559        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
8560       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
8561        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
8562      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8563        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
8564       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
8565        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
8566     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
8567        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
8568       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
8569        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
8570      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8571        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
8572       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
8573        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
8574 };
8575 
8576 /*
8577  * Determine the target EL for physical exceptions
8578  */
8579 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8580                                  uint32_t cur_el, bool secure)
8581 {
8582     CPUARMState *env = cs->env_ptr;
8583     bool rw;
8584     bool scr;
8585     bool hcr;
8586     int target_el;
8587     /* Is the highest EL AArch64? */
8588     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
8589     uint64_t hcr_el2;
8590 
8591     if (arm_feature(env, ARM_FEATURE_EL3)) {
8592         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
8593     } else {
8594         /* Either EL2 is the highest EL (and so the EL2 register width
8595          * is given by is64); or there is no EL2 or EL3, in which case
8596          * the value of 'rw' does not affect the table lookup anyway.
8597          */
8598         rw = is64;
8599     }
8600 
8601     hcr_el2 = arm_hcr_el2_eff(env);
8602     switch (excp_idx) {
8603     case EXCP_IRQ:
8604         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
8605         hcr = hcr_el2 & HCR_IMO;
8606         break;
8607     case EXCP_FIQ:
8608         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
8609         hcr = hcr_el2 & HCR_FMO;
8610         break;
8611     default:
8612         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
8613         hcr = hcr_el2 & HCR_AMO;
8614         break;
8615     };
8616 
8617     /*
8618      * For these purposes, TGE and AMO/IMO/FMO both force the
8619      * interrupt to EL2.  Fold TGE into the bit extracted above.
8620      */
8621     hcr |= (hcr_el2 & HCR_TGE) != 0;
8622 
8623     /* Perform a table-lookup for the target EL given the current state */
8624     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
8625 
8626     assert(target_el > 0);
8627 
8628     return target_el;
8629 }
8630 
8631 void arm_log_exception(int idx)
8632 {
8633     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8634         const char *exc = NULL;
8635         static const char * const excnames[] = {
8636             [EXCP_UDEF] = "Undefined Instruction",
8637             [EXCP_SWI] = "SVC",
8638             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8639             [EXCP_DATA_ABORT] = "Data Abort",
8640             [EXCP_IRQ] = "IRQ",
8641             [EXCP_FIQ] = "FIQ",
8642             [EXCP_BKPT] = "Breakpoint",
8643             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8644             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8645             [EXCP_HVC] = "Hypervisor Call",
8646             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8647             [EXCP_SMC] = "Secure Monitor Call",
8648             [EXCP_VIRQ] = "Virtual IRQ",
8649             [EXCP_VFIQ] = "Virtual FIQ",
8650             [EXCP_SEMIHOST] = "Semihosting call",
8651             [EXCP_NOCP] = "v7M NOCP UsageFault",
8652             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8653             [EXCP_STKOF] = "v8M STKOF UsageFault",
8654             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
8655             [EXCP_LSERR] = "v8M LSERR UsageFault",
8656             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
8657         };
8658 
8659         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8660             exc = excnames[idx];
8661         }
8662         if (!exc) {
8663             exc = "unknown";
8664         }
8665         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8666     }
8667 }
8668 
8669 /*
8670  * Function used to synchronize QEMU's AArch64 register set with AArch32
8671  * register set.  This is necessary when switching between AArch32 and AArch64
8672  * execution state.
8673  */
8674 void aarch64_sync_32_to_64(CPUARMState *env)
8675 {
8676     int i;
8677     uint32_t mode = env->uncached_cpsr & CPSR_M;
8678 
8679     /* We can blanket copy R[0:7] to X[0:7] */
8680     for (i = 0; i < 8; i++) {
8681         env->xregs[i] = env->regs[i];
8682     }
8683 
8684     /*
8685      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8686      * Otherwise, they come from the banked user regs.
8687      */
8688     if (mode == ARM_CPU_MODE_FIQ) {
8689         for (i = 8; i < 13; i++) {
8690             env->xregs[i] = env->usr_regs[i - 8];
8691         }
8692     } else {
8693         for (i = 8; i < 13; i++) {
8694             env->xregs[i] = env->regs[i];
8695         }
8696     }
8697 
8698     /*
8699      * Registers x13-x23 are the various mode SP and FP registers. Registers
8700      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8701      * from the mode banked register.
8702      */
8703     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8704         env->xregs[13] = env->regs[13];
8705         env->xregs[14] = env->regs[14];
8706     } else {
8707         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8708         /* HYP is an exception in that it is copied from r14 */
8709         if (mode == ARM_CPU_MODE_HYP) {
8710             env->xregs[14] = env->regs[14];
8711         } else {
8712             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8713         }
8714     }
8715 
8716     if (mode == ARM_CPU_MODE_HYP) {
8717         env->xregs[15] = env->regs[13];
8718     } else {
8719         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8720     }
8721 
8722     if (mode == ARM_CPU_MODE_IRQ) {
8723         env->xregs[16] = env->regs[14];
8724         env->xregs[17] = env->regs[13];
8725     } else {
8726         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
8727         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8728     }
8729 
8730     if (mode == ARM_CPU_MODE_SVC) {
8731         env->xregs[18] = env->regs[14];
8732         env->xregs[19] = env->regs[13];
8733     } else {
8734         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
8735         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8736     }
8737 
8738     if (mode == ARM_CPU_MODE_ABT) {
8739         env->xregs[20] = env->regs[14];
8740         env->xregs[21] = env->regs[13];
8741     } else {
8742         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
8743         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8744     }
8745 
8746     if (mode == ARM_CPU_MODE_UND) {
8747         env->xregs[22] = env->regs[14];
8748         env->xregs[23] = env->regs[13];
8749     } else {
8750         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
8751         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8752     }
8753 
8754     /*
8755      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8756      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8757      * FIQ bank for r8-r14.
8758      */
8759     if (mode == ARM_CPU_MODE_FIQ) {
8760         for (i = 24; i < 31; i++) {
8761             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8762         }
8763     } else {
8764         for (i = 24; i < 29; i++) {
8765             env->xregs[i] = env->fiq_regs[i - 24];
8766         }
8767         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8768         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
8769     }
8770 
8771     env->pc = env->regs[15];
8772 }
8773 
8774 /*
8775  * Function used to synchronize QEMU's AArch32 register set with AArch64
8776  * register set.  This is necessary when switching between AArch32 and AArch64
8777  * execution state.
8778  */
8779 void aarch64_sync_64_to_32(CPUARMState *env)
8780 {
8781     int i;
8782     uint32_t mode = env->uncached_cpsr & CPSR_M;
8783 
8784     /* We can blanket copy X[0:7] to R[0:7] */
8785     for (i = 0; i < 8; i++) {
8786         env->regs[i] = env->xregs[i];
8787     }
8788 
8789     /*
8790      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8791      * Otherwise, we copy x8-x12 into the banked user regs.
8792      */
8793     if (mode == ARM_CPU_MODE_FIQ) {
8794         for (i = 8; i < 13; i++) {
8795             env->usr_regs[i - 8] = env->xregs[i];
8796         }
8797     } else {
8798         for (i = 8; i < 13; i++) {
8799             env->regs[i] = env->xregs[i];
8800         }
8801     }
8802 
8803     /*
8804      * Registers r13 & r14 depend on the current mode.
8805      * If we are in a given mode, we copy the corresponding x registers to r13
8806      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
8807      * for the mode.
8808      */
8809     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8810         env->regs[13] = env->xregs[13];
8811         env->regs[14] = env->xregs[14];
8812     } else {
8813         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8814 
8815         /*
8816          * HYP is an exception in that it does not have its own banked r14 but
8817          * shares the USR r14
8818          */
8819         if (mode == ARM_CPU_MODE_HYP) {
8820             env->regs[14] = env->xregs[14];
8821         } else {
8822             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8823         }
8824     }
8825 
8826     if (mode == ARM_CPU_MODE_HYP) {
8827         env->regs[13] = env->xregs[15];
8828     } else {
8829         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8830     }
8831 
8832     if (mode == ARM_CPU_MODE_IRQ) {
8833         env->regs[14] = env->xregs[16];
8834         env->regs[13] = env->xregs[17];
8835     } else {
8836         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8837         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8838     }
8839 
8840     if (mode == ARM_CPU_MODE_SVC) {
8841         env->regs[14] = env->xregs[18];
8842         env->regs[13] = env->xregs[19];
8843     } else {
8844         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8845         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8846     }
8847 
8848     if (mode == ARM_CPU_MODE_ABT) {
8849         env->regs[14] = env->xregs[20];
8850         env->regs[13] = env->xregs[21];
8851     } else {
8852         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8853         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8854     }
8855 
8856     if (mode == ARM_CPU_MODE_UND) {
8857         env->regs[14] = env->xregs[22];
8858         env->regs[13] = env->xregs[23];
8859     } else {
8860         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8861         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8862     }
8863 
8864     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8865      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8866      * FIQ bank for r8-r14.
8867      */
8868     if (mode == ARM_CPU_MODE_FIQ) {
8869         for (i = 24; i < 31; i++) {
8870             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8871         }
8872     } else {
8873         for (i = 24; i < 29; i++) {
8874             env->fiq_regs[i - 24] = env->xregs[i];
8875         }
8876         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8877         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8878     }
8879 
8880     env->regs[15] = env->pc;
8881 }
8882 
8883 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8884                                    uint32_t mask, uint32_t offset,
8885                                    uint32_t newpc)
8886 {
8887     int new_el;
8888 
8889     /* Change the CPU state so as to actually take the exception. */
8890     switch_mode(env, new_mode);
8891     new_el = arm_current_el(env);
8892 
8893     /*
8894      * For exceptions taken to AArch32 we must clear the SS bit in both
8895      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8896      */
8897     env->uncached_cpsr &= ~PSTATE_SS;
8898     env->spsr = cpsr_read(env);
8899     /* Clear IT bits.  */
8900     env->condexec_bits = 0;
8901     /* Switch to the new mode, and to the correct instruction set.  */
8902     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8903     /* Set new mode endianness */
8904     env->uncached_cpsr &= ~CPSR_E;
8905     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
8906         env->uncached_cpsr |= CPSR_E;
8907     }
8908     /* J and IL must always be cleared for exception entry */
8909     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8910     env->daif |= mask;
8911 
8912     if (new_mode == ARM_CPU_MODE_HYP) {
8913         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8914         env->elr_el[2] = env->regs[15];
8915     } else {
8916         /* CPSR.PAN is normally preserved preserved unless...  */
8917         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
8918             switch (new_el) {
8919             case 3:
8920                 if (!arm_is_secure_below_el3(env)) {
8921                     /* ... the target is EL3, from non-secure state.  */
8922                     env->uncached_cpsr &= ~CPSR_PAN;
8923                     break;
8924                 }
8925                 /* ... the target is EL3, from secure state ... */
8926                 /* fall through */
8927             case 1:
8928                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
8929                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
8930                     env->uncached_cpsr |= CPSR_PAN;
8931                 }
8932                 break;
8933             }
8934         }
8935         /*
8936          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8937          * and we should just guard the thumb mode on V4
8938          */
8939         if (arm_feature(env, ARM_FEATURE_V4T)) {
8940             env->thumb =
8941                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8942         }
8943         env->regs[14] = env->regs[15] + offset;
8944     }
8945     env->regs[15] = newpc;
8946     arm_rebuild_hflags(env);
8947 }
8948 
8949 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8950 {
8951     /*
8952      * Handle exception entry to Hyp mode; this is sufficiently
8953      * different to entry to other AArch32 modes that we handle it
8954      * separately here.
8955      *
8956      * The vector table entry used is always the 0x14 Hyp mode entry point,
8957      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8958      * The offset applied to the preferred return address is always zero
8959      * (see DDI0487C.a section G1.12.3).
8960      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8961      */
8962     uint32_t addr, mask;
8963     ARMCPU *cpu = ARM_CPU(cs);
8964     CPUARMState *env = &cpu->env;
8965 
8966     switch (cs->exception_index) {
8967     case EXCP_UDEF:
8968         addr = 0x04;
8969         break;
8970     case EXCP_SWI:
8971         addr = 0x14;
8972         break;
8973     case EXCP_BKPT:
8974         /* Fall through to prefetch abort.  */
8975     case EXCP_PREFETCH_ABORT:
8976         env->cp15.ifar_s = env->exception.vaddress;
8977         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8978                       (uint32_t)env->exception.vaddress);
8979         addr = 0x0c;
8980         break;
8981     case EXCP_DATA_ABORT:
8982         env->cp15.dfar_s = env->exception.vaddress;
8983         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8984                       (uint32_t)env->exception.vaddress);
8985         addr = 0x10;
8986         break;
8987     case EXCP_IRQ:
8988         addr = 0x18;
8989         break;
8990     case EXCP_FIQ:
8991         addr = 0x1c;
8992         break;
8993     case EXCP_HVC:
8994         addr = 0x08;
8995         break;
8996     case EXCP_HYP_TRAP:
8997         addr = 0x14;
8998         break;
8999     default:
9000         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9001     }
9002 
9003     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9004         if (!arm_feature(env, ARM_FEATURE_V8)) {
9005             /*
9006              * QEMU syndrome values are v8-style. v7 has the IL bit
9007              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9008              * If this is a v7 CPU, squash the IL bit in those cases.
9009              */
9010             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9011                 (cs->exception_index == EXCP_DATA_ABORT &&
9012                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9013                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9014                 env->exception.syndrome &= ~ARM_EL_IL;
9015             }
9016         }
9017         env->cp15.esr_el[2] = env->exception.syndrome;
9018     }
9019 
9020     if (arm_current_el(env) != 2 && addr < 0x14) {
9021         addr = 0x14;
9022     }
9023 
9024     mask = 0;
9025     if (!(env->cp15.scr_el3 & SCR_EA)) {
9026         mask |= CPSR_A;
9027     }
9028     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9029         mask |= CPSR_I;
9030     }
9031     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9032         mask |= CPSR_F;
9033     }
9034 
9035     addr += env->cp15.hvbar;
9036 
9037     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9038 }
9039 
9040 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9041 {
9042     ARMCPU *cpu = ARM_CPU(cs);
9043     CPUARMState *env = &cpu->env;
9044     uint32_t addr;
9045     uint32_t mask;
9046     int new_mode;
9047     uint32_t offset;
9048     uint32_t moe;
9049 
9050     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9051     switch (syn_get_ec(env->exception.syndrome)) {
9052     case EC_BREAKPOINT:
9053     case EC_BREAKPOINT_SAME_EL:
9054         moe = 1;
9055         break;
9056     case EC_WATCHPOINT:
9057     case EC_WATCHPOINT_SAME_EL:
9058         moe = 10;
9059         break;
9060     case EC_AA32_BKPT:
9061         moe = 3;
9062         break;
9063     case EC_VECTORCATCH:
9064         moe = 5;
9065         break;
9066     default:
9067         moe = 0;
9068         break;
9069     }
9070 
9071     if (moe) {
9072         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9073     }
9074 
9075     if (env->exception.target_el == 2) {
9076         arm_cpu_do_interrupt_aarch32_hyp(cs);
9077         return;
9078     }
9079 
9080     switch (cs->exception_index) {
9081     case EXCP_UDEF:
9082         new_mode = ARM_CPU_MODE_UND;
9083         addr = 0x04;
9084         mask = CPSR_I;
9085         if (env->thumb)
9086             offset = 2;
9087         else
9088             offset = 4;
9089         break;
9090     case EXCP_SWI:
9091         new_mode = ARM_CPU_MODE_SVC;
9092         addr = 0x08;
9093         mask = CPSR_I;
9094         /* The PC already points to the next instruction.  */
9095         offset = 0;
9096         break;
9097     case EXCP_BKPT:
9098         /* Fall through to prefetch abort.  */
9099     case EXCP_PREFETCH_ABORT:
9100         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9101         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9102         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9103                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9104         new_mode = ARM_CPU_MODE_ABT;
9105         addr = 0x0c;
9106         mask = CPSR_A | CPSR_I;
9107         offset = 4;
9108         break;
9109     case EXCP_DATA_ABORT:
9110         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9111         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9112         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9113                       env->exception.fsr,
9114                       (uint32_t)env->exception.vaddress);
9115         new_mode = ARM_CPU_MODE_ABT;
9116         addr = 0x10;
9117         mask = CPSR_A | CPSR_I;
9118         offset = 8;
9119         break;
9120     case EXCP_IRQ:
9121         new_mode = ARM_CPU_MODE_IRQ;
9122         addr = 0x18;
9123         /* Disable IRQ and imprecise data aborts.  */
9124         mask = CPSR_A | CPSR_I;
9125         offset = 4;
9126         if (env->cp15.scr_el3 & SCR_IRQ) {
9127             /* IRQ routed to monitor mode */
9128             new_mode = ARM_CPU_MODE_MON;
9129             mask |= CPSR_F;
9130         }
9131         break;
9132     case EXCP_FIQ:
9133         new_mode = ARM_CPU_MODE_FIQ;
9134         addr = 0x1c;
9135         /* Disable FIQ, IRQ and imprecise data aborts.  */
9136         mask = CPSR_A | CPSR_I | CPSR_F;
9137         if (env->cp15.scr_el3 & SCR_FIQ) {
9138             /* FIQ routed to monitor mode */
9139             new_mode = ARM_CPU_MODE_MON;
9140         }
9141         offset = 4;
9142         break;
9143     case EXCP_VIRQ:
9144         new_mode = ARM_CPU_MODE_IRQ;
9145         addr = 0x18;
9146         /* Disable IRQ and imprecise data aborts.  */
9147         mask = CPSR_A | CPSR_I;
9148         offset = 4;
9149         break;
9150     case EXCP_VFIQ:
9151         new_mode = ARM_CPU_MODE_FIQ;
9152         addr = 0x1c;
9153         /* Disable FIQ, IRQ and imprecise data aborts.  */
9154         mask = CPSR_A | CPSR_I | CPSR_F;
9155         offset = 4;
9156         break;
9157     case EXCP_SMC:
9158         new_mode = ARM_CPU_MODE_MON;
9159         addr = 0x08;
9160         mask = CPSR_A | CPSR_I | CPSR_F;
9161         offset = 0;
9162         break;
9163     default:
9164         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9165         return; /* Never happens.  Keep compiler happy.  */
9166     }
9167 
9168     if (new_mode == ARM_CPU_MODE_MON) {
9169         addr += env->cp15.mvbar;
9170     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9171         /* High vectors. When enabled, base address cannot be remapped. */
9172         addr += 0xffff0000;
9173     } else {
9174         /* ARM v7 architectures provide a vector base address register to remap
9175          * the interrupt vector table.
9176          * This register is only followed in non-monitor mode, and is banked.
9177          * Note: only bits 31:5 are valid.
9178          */
9179         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9180     }
9181 
9182     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9183         env->cp15.scr_el3 &= ~SCR_NS;
9184     }
9185 
9186     take_aarch32_exception(env, new_mode, mask, offset, addr);
9187 }
9188 
9189 /* Handle exception entry to a target EL which is using AArch64 */
9190 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9191 {
9192     ARMCPU *cpu = ARM_CPU(cs);
9193     CPUARMState *env = &cpu->env;
9194     unsigned int new_el = env->exception.target_el;
9195     target_ulong addr = env->cp15.vbar_el[new_el];
9196     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9197     unsigned int old_mode;
9198     unsigned int cur_el = arm_current_el(env);
9199 
9200     /*
9201      * Note that new_el can never be 0.  If cur_el is 0, then
9202      * el0_a64 is is_a64(), else el0_a64 is ignored.
9203      */
9204     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9205 
9206     if (cur_el < new_el) {
9207         /* Entry vector offset depends on whether the implemented EL
9208          * immediately lower than the target level is using AArch32 or AArch64
9209          */
9210         bool is_aa64;
9211         uint64_t hcr;
9212 
9213         switch (new_el) {
9214         case 3:
9215             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9216             break;
9217         case 2:
9218             hcr = arm_hcr_el2_eff(env);
9219             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9220                 is_aa64 = (hcr & HCR_RW) != 0;
9221                 break;
9222             }
9223             /* fall through */
9224         case 1:
9225             is_aa64 = is_a64(env);
9226             break;
9227         default:
9228             g_assert_not_reached();
9229         }
9230 
9231         if (is_aa64) {
9232             addr += 0x400;
9233         } else {
9234             addr += 0x600;
9235         }
9236     } else if (pstate_read(env) & PSTATE_SP) {
9237         addr += 0x200;
9238     }
9239 
9240     switch (cs->exception_index) {
9241     case EXCP_PREFETCH_ABORT:
9242     case EXCP_DATA_ABORT:
9243         env->cp15.far_el[new_el] = env->exception.vaddress;
9244         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9245                       env->cp15.far_el[new_el]);
9246         /* fall through */
9247     case EXCP_BKPT:
9248     case EXCP_UDEF:
9249     case EXCP_SWI:
9250     case EXCP_HVC:
9251     case EXCP_HYP_TRAP:
9252     case EXCP_SMC:
9253         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9254             /*
9255              * QEMU internal FP/SIMD syndromes from AArch32 include the
9256              * TA and coproc fields which are only exposed if the exception
9257              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9258              * AArch64 format syndrome.
9259              */
9260             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9261         }
9262         env->cp15.esr_el[new_el] = env->exception.syndrome;
9263         break;
9264     case EXCP_IRQ:
9265     case EXCP_VIRQ:
9266         addr += 0x80;
9267         break;
9268     case EXCP_FIQ:
9269     case EXCP_VFIQ:
9270         addr += 0x100;
9271         break;
9272     default:
9273         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9274     }
9275 
9276     if (is_a64(env)) {
9277         old_mode = pstate_read(env);
9278         aarch64_save_sp(env, arm_current_el(env));
9279         env->elr_el[new_el] = env->pc;
9280     } else {
9281         old_mode = cpsr_read(env);
9282         env->elr_el[new_el] = env->regs[15];
9283 
9284         aarch64_sync_32_to_64(env);
9285 
9286         env->condexec_bits = 0;
9287     }
9288     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9289 
9290     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9291                   env->elr_el[new_el]);
9292 
9293     if (cpu_isar_feature(aa64_pan, cpu)) {
9294         /* The value of PSTATE.PAN is normally preserved, except when ... */
9295         new_mode |= old_mode & PSTATE_PAN;
9296         switch (new_el) {
9297         case 2:
9298             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9299             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9300                 != (HCR_E2H | HCR_TGE)) {
9301                 break;
9302             }
9303             /* fall through */
9304         case 1:
9305             /* ... the target is EL1 ... */
9306             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9307             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9308                 new_mode |= PSTATE_PAN;
9309             }
9310             break;
9311         }
9312     }
9313 
9314     pstate_write(env, PSTATE_DAIF | new_mode);
9315     env->aarch64 = 1;
9316     aarch64_restore_sp(env, new_el);
9317     helper_rebuild_hflags_a64(env, new_el);
9318 
9319     env->pc = addr;
9320 
9321     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9322                   new_el, env->pc, pstate_read(env));
9323 }
9324 
9325 /*
9326  * Do semihosting call and set the appropriate return value. All the
9327  * permission and validity checks have been done at translate time.
9328  *
9329  * We only see semihosting exceptions in TCG only as they are not
9330  * trapped to the hypervisor in KVM.
9331  */
9332 #ifdef CONFIG_TCG
9333 static void handle_semihosting(CPUState *cs)
9334 {
9335     ARMCPU *cpu = ARM_CPU(cs);
9336     CPUARMState *env = &cpu->env;
9337 
9338     if (is_a64(env)) {
9339         qemu_log_mask(CPU_LOG_INT,
9340                       "...handling as semihosting call 0x%" PRIx64 "\n",
9341                       env->xregs[0]);
9342         env->xregs[0] = do_arm_semihosting(env);
9343         env->pc += 4;
9344     } else {
9345         qemu_log_mask(CPU_LOG_INT,
9346                       "...handling as semihosting call 0x%x\n",
9347                       env->regs[0]);
9348         env->regs[0] = do_arm_semihosting(env);
9349         env->regs[15] += env->thumb ? 2 : 4;
9350     }
9351 }
9352 #endif
9353 
9354 /* Handle a CPU exception for A and R profile CPUs.
9355  * Do any appropriate logging, handle PSCI calls, and then hand off
9356  * to the AArch64-entry or AArch32-entry function depending on the
9357  * target exception level's register width.
9358  */
9359 void arm_cpu_do_interrupt(CPUState *cs)
9360 {
9361     ARMCPU *cpu = ARM_CPU(cs);
9362     CPUARMState *env = &cpu->env;
9363     unsigned int new_el = env->exception.target_el;
9364 
9365     assert(!arm_feature(env, ARM_FEATURE_M));
9366 
9367     arm_log_exception(cs->exception_index);
9368     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9369                   new_el);
9370     if (qemu_loglevel_mask(CPU_LOG_INT)
9371         && !excp_is_internal(cs->exception_index)) {
9372         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9373                       syn_get_ec(env->exception.syndrome),
9374                       env->exception.syndrome);
9375     }
9376 
9377     if (arm_is_psci_call(cpu, cs->exception_index)) {
9378         arm_handle_psci_call(cpu);
9379         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9380         return;
9381     }
9382 
9383     /*
9384      * Semihosting semantics depend on the register width of the code
9385      * that caused the exception, not the target exception level, so
9386      * must be handled here.
9387      */
9388 #ifdef CONFIG_TCG
9389     if (cs->exception_index == EXCP_SEMIHOST) {
9390         handle_semihosting(cs);
9391         return;
9392     }
9393 #endif
9394 
9395     /* Hooks may change global state so BQL should be held, also the
9396      * BQL needs to be held for any modification of
9397      * cs->interrupt_request.
9398      */
9399     g_assert(qemu_mutex_iothread_locked());
9400 
9401     arm_call_pre_el_change_hook(cpu);
9402 
9403     assert(!excp_is_internal(cs->exception_index));
9404     if (arm_el_is_aa64(env, new_el)) {
9405         arm_cpu_do_interrupt_aarch64(cs);
9406     } else {
9407         arm_cpu_do_interrupt_aarch32(cs);
9408     }
9409 
9410     arm_call_el_change_hook(cpu);
9411 
9412     if (!kvm_enabled()) {
9413         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9414     }
9415 }
9416 #endif /* !CONFIG_USER_ONLY */
9417 
9418 /* Return the exception level which controls this address translation regime */
9419 static uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9420 {
9421     switch (mmu_idx) {
9422     case ARMMMUIdx_E20_0:
9423     case ARMMMUIdx_E20_2:
9424     case ARMMMUIdx_E20_2_PAN:
9425     case ARMMMUIdx_Stage2:
9426     case ARMMMUIdx_E2:
9427         return 2;
9428     case ARMMMUIdx_SE3:
9429         return 3;
9430     case ARMMMUIdx_SE10_0:
9431         return arm_el_is_aa64(env, 3) ? 1 : 3;
9432     case ARMMMUIdx_SE10_1:
9433     case ARMMMUIdx_SE10_1_PAN:
9434     case ARMMMUIdx_Stage1_E0:
9435     case ARMMMUIdx_Stage1_E1:
9436     case ARMMMUIdx_Stage1_E1_PAN:
9437     case ARMMMUIdx_E10_0:
9438     case ARMMMUIdx_E10_1:
9439     case ARMMMUIdx_E10_1_PAN:
9440     case ARMMMUIdx_MPrivNegPri:
9441     case ARMMMUIdx_MUserNegPri:
9442     case ARMMMUIdx_MPriv:
9443     case ARMMMUIdx_MUser:
9444     case ARMMMUIdx_MSPrivNegPri:
9445     case ARMMMUIdx_MSUserNegPri:
9446     case ARMMMUIdx_MSPriv:
9447     case ARMMMUIdx_MSUser:
9448         return 1;
9449     default:
9450         g_assert_not_reached();
9451     }
9452 }
9453 
9454 uint64_t arm_sctlr(CPUARMState *env, int el)
9455 {
9456     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9457     if (el == 0) {
9458         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9459         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9460     }
9461     return env->cp15.sctlr_el[el];
9462 }
9463 
9464 /* Return the SCTLR value which controls this address translation regime */
9465 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9466 {
9467     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9468 }
9469 
9470 #ifndef CONFIG_USER_ONLY
9471 
9472 /* Return true if the specified stage of address translation is disabled */
9473 static inline bool regime_translation_disabled(CPUARMState *env,
9474                                                ARMMMUIdx mmu_idx)
9475 {
9476     if (arm_feature(env, ARM_FEATURE_M)) {
9477         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9478                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9479         case R_V7M_MPU_CTRL_ENABLE_MASK:
9480             /* Enabled, but not for HardFault and NMI */
9481             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9482         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9483             /* Enabled for all cases */
9484             return false;
9485         case 0:
9486         default:
9487             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9488              * we warned about that in armv7m_nvic.c when the guest set it.
9489              */
9490             return true;
9491         }
9492     }
9493 
9494     if (mmu_idx == ARMMMUIdx_Stage2) {
9495         /* HCR.DC means HCR.VM behaves as 1 */
9496         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9497     }
9498 
9499     if (env->cp15.hcr_el2 & HCR_TGE) {
9500         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9501         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9502             return true;
9503         }
9504     }
9505 
9506     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9507         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9508         return true;
9509     }
9510 
9511     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9512 }
9513 
9514 static inline bool regime_translation_big_endian(CPUARMState *env,
9515                                                  ARMMMUIdx mmu_idx)
9516 {
9517     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9518 }
9519 
9520 /* Return the TTBR associated with this translation regime */
9521 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9522                                    int ttbrn)
9523 {
9524     if (mmu_idx == ARMMMUIdx_Stage2) {
9525         return env->cp15.vttbr_el2;
9526     }
9527     if (ttbrn == 0) {
9528         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9529     } else {
9530         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9531     }
9532 }
9533 
9534 #endif /* !CONFIG_USER_ONLY */
9535 
9536 /* Return the TCR controlling this translation regime */
9537 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9538 {
9539     if (mmu_idx == ARMMMUIdx_Stage2) {
9540         return &env->cp15.vtcr_el2;
9541     }
9542     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9543 }
9544 
9545 /* Convert a possible stage1+2 MMU index into the appropriate
9546  * stage 1 MMU index
9547  */
9548 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9549 {
9550     switch (mmu_idx) {
9551     case ARMMMUIdx_E10_0:
9552         return ARMMMUIdx_Stage1_E0;
9553     case ARMMMUIdx_E10_1:
9554         return ARMMMUIdx_Stage1_E1;
9555     case ARMMMUIdx_E10_1_PAN:
9556         return ARMMMUIdx_Stage1_E1_PAN;
9557     default:
9558         return mmu_idx;
9559     }
9560 }
9561 
9562 /* Return true if the translation regime is using LPAE format page tables */
9563 static inline bool regime_using_lpae_format(CPUARMState *env,
9564                                             ARMMMUIdx mmu_idx)
9565 {
9566     int el = regime_el(env, mmu_idx);
9567     if (el == 2 || arm_el_is_aa64(env, el)) {
9568         return true;
9569     }
9570     if (arm_feature(env, ARM_FEATURE_LPAE)
9571         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9572         return true;
9573     }
9574     return false;
9575 }
9576 
9577 /* Returns true if the stage 1 translation regime is using LPAE format page
9578  * tables. Used when raising alignment exceptions, whose FSR changes depending
9579  * on whether the long or short descriptor format is in use. */
9580 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9581 {
9582     mmu_idx = stage_1_mmu_idx(mmu_idx);
9583 
9584     return regime_using_lpae_format(env, mmu_idx);
9585 }
9586 
9587 #ifndef CONFIG_USER_ONLY
9588 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9589 {
9590     switch (mmu_idx) {
9591     case ARMMMUIdx_SE10_0:
9592     case ARMMMUIdx_E20_0:
9593     case ARMMMUIdx_Stage1_E0:
9594     case ARMMMUIdx_MUser:
9595     case ARMMMUIdx_MSUser:
9596     case ARMMMUIdx_MUserNegPri:
9597     case ARMMMUIdx_MSUserNegPri:
9598         return true;
9599     default:
9600         return false;
9601     case ARMMMUIdx_E10_0:
9602     case ARMMMUIdx_E10_1:
9603     case ARMMMUIdx_E10_1_PAN:
9604         g_assert_not_reached();
9605     }
9606 }
9607 
9608 /* Translate section/page access permissions to page
9609  * R/W protection flags
9610  *
9611  * @env:         CPUARMState
9612  * @mmu_idx:     MMU index indicating required translation regime
9613  * @ap:          The 3-bit access permissions (AP[2:0])
9614  * @domain_prot: The 2-bit domain access permissions
9615  */
9616 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9617                                 int ap, int domain_prot)
9618 {
9619     bool is_user = regime_is_user(env, mmu_idx);
9620 
9621     if (domain_prot == 3) {
9622         return PAGE_READ | PAGE_WRITE;
9623     }
9624 
9625     switch (ap) {
9626     case 0:
9627         if (arm_feature(env, ARM_FEATURE_V7)) {
9628             return 0;
9629         }
9630         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9631         case SCTLR_S:
9632             return is_user ? 0 : PAGE_READ;
9633         case SCTLR_R:
9634             return PAGE_READ;
9635         default:
9636             return 0;
9637         }
9638     case 1:
9639         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9640     case 2:
9641         if (is_user) {
9642             return PAGE_READ;
9643         } else {
9644             return PAGE_READ | PAGE_WRITE;
9645         }
9646     case 3:
9647         return PAGE_READ | PAGE_WRITE;
9648     case 4: /* Reserved.  */
9649         return 0;
9650     case 5:
9651         return is_user ? 0 : PAGE_READ;
9652     case 6:
9653         return PAGE_READ;
9654     case 7:
9655         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9656             return 0;
9657         }
9658         return PAGE_READ;
9659     default:
9660         g_assert_not_reached();
9661     }
9662 }
9663 
9664 /* Translate section/page access permissions to page
9665  * R/W protection flags.
9666  *
9667  * @ap:      The 2-bit simple AP (AP[2:1])
9668  * @is_user: TRUE if accessing from PL0
9669  */
9670 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9671 {
9672     switch (ap) {
9673     case 0:
9674         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9675     case 1:
9676         return PAGE_READ | PAGE_WRITE;
9677     case 2:
9678         return is_user ? 0 : PAGE_READ;
9679     case 3:
9680         return PAGE_READ;
9681     default:
9682         g_assert_not_reached();
9683     }
9684 }
9685 
9686 static inline int
9687 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9688 {
9689     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9690 }
9691 
9692 /* Translate S2 section/page access permissions to protection flags
9693  *
9694  * @env:     CPUARMState
9695  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9696  * @xn:      XN (execute-never) bit
9697  */
9698 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9699 {
9700     int prot = 0;
9701 
9702     if (s2ap & 1) {
9703         prot |= PAGE_READ;
9704     }
9705     if (s2ap & 2) {
9706         prot |= PAGE_WRITE;
9707     }
9708     if (!xn) {
9709         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9710             prot |= PAGE_EXEC;
9711         }
9712     }
9713     return prot;
9714 }
9715 
9716 /* Translate section/page access permissions to protection flags
9717  *
9718  * @env:     CPUARMState
9719  * @mmu_idx: MMU index indicating required translation regime
9720  * @is_aa64: TRUE if AArch64
9721  * @ap:      The 2-bit simple AP (AP[2:1])
9722  * @ns:      NS (non-secure) bit
9723  * @xn:      XN (execute-never) bit
9724  * @pxn:     PXN (privileged execute-never) bit
9725  */
9726 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9727                       int ap, int ns, int xn, int pxn)
9728 {
9729     bool is_user = regime_is_user(env, mmu_idx);
9730     int prot_rw, user_rw;
9731     bool have_wxn;
9732     int wxn = 0;
9733 
9734     assert(mmu_idx != ARMMMUIdx_Stage2);
9735 
9736     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9737     if (is_user) {
9738         prot_rw = user_rw;
9739     } else {
9740         if (user_rw && regime_is_pan(env, mmu_idx)) {
9741             return 0;
9742         }
9743         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9744     }
9745 
9746     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9747         return prot_rw;
9748     }
9749 
9750     /* TODO have_wxn should be replaced with
9751      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9752      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9753      * compatible processors have EL2, which is required for [U]WXN.
9754      */
9755     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9756 
9757     if (have_wxn) {
9758         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9759     }
9760 
9761     if (is_aa64) {
9762         if (regime_has_2_ranges(mmu_idx) && !is_user) {
9763             xn = pxn || (user_rw & PAGE_WRITE);
9764         }
9765     } else if (arm_feature(env, ARM_FEATURE_V7)) {
9766         switch (regime_el(env, mmu_idx)) {
9767         case 1:
9768         case 3:
9769             if (is_user) {
9770                 xn = xn || !(user_rw & PAGE_READ);
9771             } else {
9772                 int uwxn = 0;
9773                 if (have_wxn) {
9774                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9775                 }
9776                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9777                      (uwxn && (user_rw & PAGE_WRITE));
9778             }
9779             break;
9780         case 2:
9781             break;
9782         }
9783     } else {
9784         xn = wxn = 0;
9785     }
9786 
9787     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9788         return prot_rw;
9789     }
9790     return prot_rw | PAGE_EXEC;
9791 }
9792 
9793 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9794                                      uint32_t *table, uint32_t address)
9795 {
9796     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9797     TCR *tcr = regime_tcr(env, mmu_idx);
9798 
9799     if (address & tcr->mask) {
9800         if (tcr->raw_tcr & TTBCR_PD1) {
9801             /* Translation table walk disabled for TTBR1 */
9802             return false;
9803         }
9804         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9805     } else {
9806         if (tcr->raw_tcr & TTBCR_PD0) {
9807             /* Translation table walk disabled for TTBR0 */
9808             return false;
9809         }
9810         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9811     }
9812     *table |= (address >> 18) & 0x3ffc;
9813     return true;
9814 }
9815 
9816 /* Translate a S1 pagetable walk through S2 if needed.  */
9817 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9818                                hwaddr addr, MemTxAttrs txattrs,
9819                                ARMMMUFaultInfo *fi)
9820 {
9821     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
9822         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
9823         target_ulong s2size;
9824         hwaddr s2pa;
9825         int s2prot;
9826         int ret;
9827         ARMCacheAttrs cacheattrs = {};
9828         ARMCacheAttrs *pcacheattrs = NULL;
9829 
9830         if (env->cp15.hcr_el2 & HCR_PTW) {
9831             /*
9832              * PTW means we must fault if this S1 walk touches S2 Device
9833              * memory; otherwise we don't care about the attributes and can
9834              * save the S2 translation the effort of computing them.
9835              */
9836             pcacheattrs = &cacheattrs;
9837         }
9838 
9839         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_Stage2, &s2pa,
9840                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9841         if (ret) {
9842             assert(fi->type != ARMFault_None);
9843             fi->s2addr = addr;
9844             fi->stage2 = true;
9845             fi->s1ptw = true;
9846             return ~0;
9847         }
9848         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9849             /* Access was to Device memory: generate Permission fault */
9850             fi->type = ARMFault_Permission;
9851             fi->s2addr = addr;
9852             fi->stage2 = true;
9853             fi->s1ptw = true;
9854             return ~0;
9855         }
9856         addr = s2pa;
9857     }
9858     return addr;
9859 }
9860 
9861 /* All loads done in the course of a page table walk go through here. */
9862 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9863                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9864 {
9865     ARMCPU *cpu = ARM_CPU(cs);
9866     CPUARMState *env = &cpu->env;
9867     MemTxAttrs attrs = {};
9868     MemTxResult result = MEMTX_OK;
9869     AddressSpace *as;
9870     uint32_t data;
9871 
9872     attrs.secure = is_secure;
9873     as = arm_addressspace(cs, attrs);
9874     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9875     if (fi->s1ptw) {
9876         return 0;
9877     }
9878     if (regime_translation_big_endian(env, mmu_idx)) {
9879         data = address_space_ldl_be(as, addr, attrs, &result);
9880     } else {
9881         data = address_space_ldl_le(as, addr, attrs, &result);
9882     }
9883     if (result == MEMTX_OK) {
9884         return data;
9885     }
9886     fi->type = ARMFault_SyncExternalOnWalk;
9887     fi->ea = arm_extabort_type(result);
9888     return 0;
9889 }
9890 
9891 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9892                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9893 {
9894     ARMCPU *cpu = ARM_CPU(cs);
9895     CPUARMState *env = &cpu->env;
9896     MemTxAttrs attrs = {};
9897     MemTxResult result = MEMTX_OK;
9898     AddressSpace *as;
9899     uint64_t data;
9900 
9901     attrs.secure = is_secure;
9902     as = arm_addressspace(cs, attrs);
9903     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9904     if (fi->s1ptw) {
9905         return 0;
9906     }
9907     if (regime_translation_big_endian(env, mmu_idx)) {
9908         data = address_space_ldq_be(as, addr, attrs, &result);
9909     } else {
9910         data = address_space_ldq_le(as, addr, attrs, &result);
9911     }
9912     if (result == MEMTX_OK) {
9913         return data;
9914     }
9915     fi->type = ARMFault_SyncExternalOnWalk;
9916     fi->ea = arm_extabort_type(result);
9917     return 0;
9918 }
9919 
9920 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9921                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9922                              hwaddr *phys_ptr, int *prot,
9923                              target_ulong *page_size,
9924                              ARMMMUFaultInfo *fi)
9925 {
9926     CPUState *cs = env_cpu(env);
9927     int level = 1;
9928     uint32_t table;
9929     uint32_t desc;
9930     int type;
9931     int ap;
9932     int domain = 0;
9933     int domain_prot;
9934     hwaddr phys_addr;
9935     uint32_t dacr;
9936 
9937     /* Pagetable walk.  */
9938     /* Lookup l1 descriptor.  */
9939     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9940         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9941         fi->type = ARMFault_Translation;
9942         goto do_fault;
9943     }
9944     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9945                        mmu_idx, fi);
9946     if (fi->type != ARMFault_None) {
9947         goto do_fault;
9948     }
9949     type = (desc & 3);
9950     domain = (desc >> 5) & 0x0f;
9951     if (regime_el(env, mmu_idx) == 1) {
9952         dacr = env->cp15.dacr_ns;
9953     } else {
9954         dacr = env->cp15.dacr_s;
9955     }
9956     domain_prot = (dacr >> (domain * 2)) & 3;
9957     if (type == 0) {
9958         /* Section translation fault.  */
9959         fi->type = ARMFault_Translation;
9960         goto do_fault;
9961     }
9962     if (type != 2) {
9963         level = 2;
9964     }
9965     if (domain_prot == 0 || domain_prot == 2) {
9966         fi->type = ARMFault_Domain;
9967         goto do_fault;
9968     }
9969     if (type == 2) {
9970         /* 1Mb section.  */
9971         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9972         ap = (desc >> 10) & 3;
9973         *page_size = 1024 * 1024;
9974     } else {
9975         /* Lookup l2 entry.  */
9976         if (type == 1) {
9977             /* Coarse pagetable.  */
9978             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9979         } else {
9980             /* Fine pagetable.  */
9981             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9982         }
9983         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9984                            mmu_idx, fi);
9985         if (fi->type != ARMFault_None) {
9986             goto do_fault;
9987         }
9988         switch (desc & 3) {
9989         case 0: /* Page translation fault.  */
9990             fi->type = ARMFault_Translation;
9991             goto do_fault;
9992         case 1: /* 64k page.  */
9993             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9994             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9995             *page_size = 0x10000;
9996             break;
9997         case 2: /* 4k page.  */
9998             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9999             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10000             *page_size = 0x1000;
10001             break;
10002         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10003             if (type == 1) {
10004                 /* ARMv6/XScale extended small page format */
10005                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10006                     || arm_feature(env, ARM_FEATURE_V6)) {
10007                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10008                     *page_size = 0x1000;
10009                 } else {
10010                     /* UNPREDICTABLE in ARMv5; we choose to take a
10011                      * page translation fault.
10012                      */
10013                     fi->type = ARMFault_Translation;
10014                     goto do_fault;
10015                 }
10016             } else {
10017                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10018                 *page_size = 0x400;
10019             }
10020             ap = (desc >> 4) & 3;
10021             break;
10022         default:
10023             /* Never happens, but compiler isn't smart enough to tell.  */
10024             abort();
10025         }
10026     }
10027     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10028     *prot |= *prot ? PAGE_EXEC : 0;
10029     if (!(*prot & (1 << access_type))) {
10030         /* Access permission fault.  */
10031         fi->type = ARMFault_Permission;
10032         goto do_fault;
10033     }
10034     *phys_ptr = phys_addr;
10035     return false;
10036 do_fault:
10037     fi->domain = domain;
10038     fi->level = level;
10039     return true;
10040 }
10041 
10042 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10043                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10044                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10045                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10046 {
10047     CPUState *cs = env_cpu(env);
10048     int level = 1;
10049     uint32_t table;
10050     uint32_t desc;
10051     uint32_t xn;
10052     uint32_t pxn = 0;
10053     int type;
10054     int ap;
10055     int domain = 0;
10056     int domain_prot;
10057     hwaddr phys_addr;
10058     uint32_t dacr;
10059     bool ns;
10060 
10061     /* Pagetable walk.  */
10062     /* Lookup l1 descriptor.  */
10063     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10064         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10065         fi->type = ARMFault_Translation;
10066         goto do_fault;
10067     }
10068     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10069                        mmu_idx, fi);
10070     if (fi->type != ARMFault_None) {
10071         goto do_fault;
10072     }
10073     type = (desc & 3);
10074     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10075         /* Section translation fault, or attempt to use the encoding
10076          * which is Reserved on implementations without PXN.
10077          */
10078         fi->type = ARMFault_Translation;
10079         goto do_fault;
10080     }
10081     if ((type == 1) || !(desc & (1 << 18))) {
10082         /* Page or Section.  */
10083         domain = (desc >> 5) & 0x0f;
10084     }
10085     if (regime_el(env, mmu_idx) == 1) {
10086         dacr = env->cp15.dacr_ns;
10087     } else {
10088         dacr = env->cp15.dacr_s;
10089     }
10090     if (type == 1) {
10091         level = 2;
10092     }
10093     domain_prot = (dacr >> (domain * 2)) & 3;
10094     if (domain_prot == 0 || domain_prot == 2) {
10095         /* Section or Page domain fault */
10096         fi->type = ARMFault_Domain;
10097         goto do_fault;
10098     }
10099     if (type != 1) {
10100         if (desc & (1 << 18)) {
10101             /* Supersection.  */
10102             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10103             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10104             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10105             *page_size = 0x1000000;
10106         } else {
10107             /* Section.  */
10108             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10109             *page_size = 0x100000;
10110         }
10111         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10112         xn = desc & (1 << 4);
10113         pxn = desc & 1;
10114         ns = extract32(desc, 19, 1);
10115     } else {
10116         if (arm_feature(env, ARM_FEATURE_PXN)) {
10117             pxn = (desc >> 2) & 1;
10118         }
10119         ns = extract32(desc, 3, 1);
10120         /* Lookup l2 entry.  */
10121         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10122         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10123                            mmu_idx, fi);
10124         if (fi->type != ARMFault_None) {
10125             goto do_fault;
10126         }
10127         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10128         switch (desc & 3) {
10129         case 0: /* Page translation fault.  */
10130             fi->type = ARMFault_Translation;
10131             goto do_fault;
10132         case 1: /* 64k page.  */
10133             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10134             xn = desc & (1 << 15);
10135             *page_size = 0x10000;
10136             break;
10137         case 2: case 3: /* 4k page.  */
10138             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10139             xn = desc & 1;
10140             *page_size = 0x1000;
10141             break;
10142         default:
10143             /* Never happens, but compiler isn't smart enough to tell.  */
10144             abort();
10145         }
10146     }
10147     if (domain_prot == 3) {
10148         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10149     } else {
10150         if (pxn && !regime_is_user(env, mmu_idx)) {
10151             xn = 1;
10152         }
10153         if (xn && access_type == MMU_INST_FETCH) {
10154             fi->type = ARMFault_Permission;
10155             goto do_fault;
10156         }
10157 
10158         if (arm_feature(env, ARM_FEATURE_V6K) &&
10159                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10160             /* The simplified model uses AP[0] as an access control bit.  */
10161             if ((ap & 1) == 0) {
10162                 /* Access flag fault.  */
10163                 fi->type = ARMFault_AccessFlag;
10164                 goto do_fault;
10165             }
10166             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10167         } else {
10168             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10169         }
10170         if (*prot && !xn) {
10171             *prot |= PAGE_EXEC;
10172         }
10173         if (!(*prot & (1 << access_type))) {
10174             /* Access permission fault.  */
10175             fi->type = ARMFault_Permission;
10176             goto do_fault;
10177         }
10178     }
10179     if (ns) {
10180         /* The NS bit will (as required by the architecture) have no effect if
10181          * the CPU doesn't support TZ or this is a non-secure translation
10182          * regime, because the attribute will already be non-secure.
10183          */
10184         attrs->secure = false;
10185     }
10186     *phys_ptr = phys_addr;
10187     return false;
10188 do_fault:
10189     fi->domain = domain;
10190     fi->level = level;
10191     return true;
10192 }
10193 
10194 /*
10195  * check_s2_mmu_setup
10196  * @cpu:        ARMCPU
10197  * @is_aa64:    True if the translation regime is in AArch64 state
10198  * @startlevel: Suggested starting level
10199  * @inputsize:  Bitsize of IPAs
10200  * @stride:     Page-table stride (See the ARM ARM)
10201  *
10202  * Returns true if the suggested S2 translation parameters are OK and
10203  * false otherwise.
10204  */
10205 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10206                                int inputsize, int stride)
10207 {
10208     const int grainsize = stride + 3;
10209     int startsizecheck;
10210 
10211     /* Negative levels are never allowed.  */
10212     if (level < 0) {
10213         return false;
10214     }
10215 
10216     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10217     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10218         return false;
10219     }
10220 
10221     if (is_aa64) {
10222         CPUARMState *env = &cpu->env;
10223         unsigned int pamax = arm_pamax(cpu);
10224 
10225         switch (stride) {
10226         case 13: /* 64KB Pages.  */
10227             if (level == 0 || (level == 1 && pamax <= 42)) {
10228                 return false;
10229             }
10230             break;
10231         case 11: /* 16KB Pages.  */
10232             if (level == 0 || (level == 1 && pamax <= 40)) {
10233                 return false;
10234             }
10235             break;
10236         case 9: /* 4KB Pages.  */
10237             if (level == 0 && pamax <= 42) {
10238                 return false;
10239             }
10240             break;
10241         default:
10242             g_assert_not_reached();
10243         }
10244 
10245         /* Inputsize checks.  */
10246         if (inputsize > pamax &&
10247             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10248             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10249             return false;
10250         }
10251     } else {
10252         /* AArch32 only supports 4KB pages. Assert on that.  */
10253         assert(stride == 9);
10254 
10255         if (level == 0) {
10256             return false;
10257         }
10258     }
10259     return true;
10260 }
10261 
10262 /* Translate from the 4-bit stage 2 representation of
10263  * memory attributes (without cache-allocation hints) to
10264  * the 8-bit representation of the stage 1 MAIR registers
10265  * (which includes allocation hints).
10266  *
10267  * ref: shared/translation/attrs/S2AttrDecode()
10268  *      .../S2ConvertAttrsHints()
10269  */
10270 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10271 {
10272     uint8_t hiattr = extract32(s2attrs, 2, 2);
10273     uint8_t loattr = extract32(s2attrs, 0, 2);
10274     uint8_t hihint = 0, lohint = 0;
10275 
10276     if (hiattr != 0) { /* normal memory */
10277         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10278             hiattr = loattr = 1; /* non-cacheable */
10279         } else {
10280             if (hiattr != 1) { /* Write-through or write-back */
10281                 hihint = 3; /* RW allocate */
10282             }
10283             if (loattr != 1) { /* Write-through or write-back */
10284                 lohint = 3; /* RW allocate */
10285             }
10286         }
10287     }
10288 
10289     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10290 }
10291 #endif /* !CONFIG_USER_ONLY */
10292 
10293 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10294 {
10295     if (regime_has_2_ranges(mmu_idx)) {
10296         return extract64(tcr, 37, 2);
10297     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10298         return 0; /* VTCR_EL2 */
10299     } else {
10300         return extract32(tcr, 20, 1);
10301     }
10302 }
10303 
10304 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10305 {
10306     if (regime_has_2_ranges(mmu_idx)) {
10307         return extract64(tcr, 51, 2);
10308     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10309         return 0; /* VTCR_EL2 */
10310     } else {
10311         return extract32(tcr, 29, 1);
10312     }
10313 }
10314 
10315 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10316                                    ARMMMUIdx mmu_idx, bool data)
10317 {
10318     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10319     bool epd, hpd, using16k, using64k;
10320     int select, tsz, tbi;
10321 
10322     if (!regime_has_2_ranges(mmu_idx)) {
10323         select = 0;
10324         tsz = extract32(tcr, 0, 6);
10325         using64k = extract32(tcr, 14, 1);
10326         using16k = extract32(tcr, 15, 1);
10327         if (mmu_idx == ARMMMUIdx_Stage2) {
10328             /* VTCR_EL2 */
10329             hpd = false;
10330         } else {
10331             hpd = extract32(tcr, 24, 1);
10332         }
10333         epd = false;
10334     } else {
10335         /*
10336          * Bit 55 is always between the two regions, and is canonical for
10337          * determining if address tagging is enabled.
10338          */
10339         select = extract64(va, 55, 1);
10340         if (!select) {
10341             tsz = extract32(tcr, 0, 6);
10342             epd = extract32(tcr, 7, 1);
10343             using64k = extract32(tcr, 14, 1);
10344             using16k = extract32(tcr, 15, 1);
10345             hpd = extract64(tcr, 41, 1);
10346         } else {
10347             int tg = extract32(tcr, 30, 2);
10348             using16k = tg == 1;
10349             using64k = tg == 3;
10350             tsz = extract32(tcr, 16, 6);
10351             epd = extract32(tcr, 23, 1);
10352             hpd = extract64(tcr, 42, 1);
10353         }
10354     }
10355     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10356     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10357 
10358     /* Present TBI as a composite with TBID.  */
10359     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10360     if (!data) {
10361         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10362     }
10363     tbi = (tbi >> select) & 1;
10364 
10365     return (ARMVAParameters) {
10366         .tsz = tsz,
10367         .select = select,
10368         .tbi = tbi,
10369         .epd = epd,
10370         .hpd = hpd,
10371         .using16k = using16k,
10372         .using64k = using64k,
10373     };
10374 }
10375 
10376 #ifndef CONFIG_USER_ONLY
10377 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10378                                           ARMMMUIdx mmu_idx)
10379 {
10380     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10381     uint32_t el = regime_el(env, mmu_idx);
10382     int select, tsz;
10383     bool epd, hpd;
10384 
10385     if (mmu_idx == ARMMMUIdx_Stage2) {
10386         /* VTCR */
10387         bool sext = extract32(tcr, 4, 1);
10388         bool sign = extract32(tcr, 3, 1);
10389 
10390         /*
10391          * If the sign-extend bit is not the same as t0sz[3], the result
10392          * is unpredictable. Flag this as a guest error.
10393          */
10394         if (sign != sext) {
10395             qemu_log_mask(LOG_GUEST_ERROR,
10396                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10397         }
10398         tsz = sextract32(tcr, 0, 4) + 8;
10399         select = 0;
10400         hpd = false;
10401         epd = false;
10402     } else if (el == 2) {
10403         /* HTCR */
10404         tsz = extract32(tcr, 0, 3);
10405         select = 0;
10406         hpd = extract64(tcr, 24, 1);
10407         epd = false;
10408     } else {
10409         int t0sz = extract32(tcr, 0, 3);
10410         int t1sz = extract32(tcr, 16, 3);
10411 
10412         if (t1sz == 0) {
10413             select = va > (0xffffffffu >> t0sz);
10414         } else {
10415             /* Note that we will detect errors later.  */
10416             select = va >= ~(0xffffffffu >> t1sz);
10417         }
10418         if (!select) {
10419             tsz = t0sz;
10420             epd = extract32(tcr, 7, 1);
10421             hpd = extract64(tcr, 41, 1);
10422         } else {
10423             tsz = t1sz;
10424             epd = extract32(tcr, 23, 1);
10425             hpd = extract64(tcr, 42, 1);
10426         }
10427         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10428         hpd &= extract32(tcr, 6, 1);
10429     }
10430 
10431     return (ARMVAParameters) {
10432         .tsz = tsz,
10433         .select = select,
10434         .epd = epd,
10435         .hpd = hpd,
10436     };
10437 }
10438 
10439 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10440                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10441                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10442                                target_ulong *page_size_ptr,
10443                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10444 {
10445     ARMCPU *cpu = env_archcpu(env);
10446     CPUState *cs = CPU(cpu);
10447     /* Read an LPAE long-descriptor translation table. */
10448     ARMFaultType fault_type = ARMFault_Translation;
10449     uint32_t level;
10450     ARMVAParameters param;
10451     uint64_t ttbr;
10452     hwaddr descaddr, indexmask, indexmask_grainsize;
10453     uint32_t tableattrs;
10454     target_ulong page_size;
10455     uint32_t attrs;
10456     int32_t stride;
10457     int addrsize, inputsize;
10458     TCR *tcr = regime_tcr(env, mmu_idx);
10459     int ap, ns, xn, pxn;
10460     uint32_t el = regime_el(env, mmu_idx);
10461     uint64_t descaddrmask;
10462     bool aarch64 = arm_el_is_aa64(env, el);
10463     bool guarded = false;
10464 
10465     /* TODO:
10466      * This code does not handle the different format TCR for VTCR_EL2.
10467      * This code also does not support shareability levels.
10468      * Attribute and permission bit handling should also be checked when adding
10469      * support for those page table walks.
10470      */
10471     if (aarch64) {
10472         param = aa64_va_parameters(env, address, mmu_idx,
10473                                    access_type != MMU_INST_FETCH);
10474         level = 0;
10475         addrsize = 64 - 8 * param.tbi;
10476         inputsize = 64 - param.tsz;
10477     } else {
10478         param = aa32_va_parameters(env, address, mmu_idx);
10479         level = 1;
10480         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
10481         inputsize = addrsize - param.tsz;
10482     }
10483 
10484     /*
10485      * We determined the region when collecting the parameters, but we
10486      * have not yet validated that the address is valid for the region.
10487      * Extract the top bits and verify that they all match select.
10488      *
10489      * For aa32, if inputsize == addrsize, then we have selected the
10490      * region by exclusion in aa32_va_parameters and there is no more
10491      * validation to do here.
10492      */
10493     if (inputsize < addrsize) {
10494         target_ulong top_bits = sextract64(address, inputsize,
10495                                            addrsize - inputsize);
10496         if (-top_bits != param.select) {
10497             /* The gap between the two regions is a Translation fault */
10498             fault_type = ARMFault_Translation;
10499             goto do_fault;
10500         }
10501     }
10502 
10503     if (param.using64k) {
10504         stride = 13;
10505     } else if (param.using16k) {
10506         stride = 11;
10507     } else {
10508         stride = 9;
10509     }
10510 
10511     /* Note that QEMU ignores shareability and cacheability attributes,
10512      * so we don't need to do anything with the SH, ORGN, IRGN fields
10513      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10514      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10515      * implement any ASID-like capability so we can ignore it (instead
10516      * we will always flush the TLB any time the ASID is changed).
10517      */
10518     ttbr = regime_ttbr(env, mmu_idx, param.select);
10519 
10520     /* Here we should have set up all the parameters for the translation:
10521      * inputsize, ttbr, epd, stride, tbi
10522      */
10523 
10524     if (param.epd) {
10525         /* Translation table walk disabled => Translation fault on TLB miss
10526          * Note: This is always 0 on 64-bit EL2 and EL3.
10527          */
10528         goto do_fault;
10529     }
10530 
10531     if (mmu_idx != ARMMMUIdx_Stage2) {
10532         /* The starting level depends on the virtual address size (which can
10533          * be up to 48 bits) and the translation granule size. It indicates
10534          * the number of strides (stride bits at a time) needed to
10535          * consume the bits of the input address. In the pseudocode this is:
10536          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10537          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10538          * our 'stride + 3' and 'stride' is our 'stride'.
10539          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10540          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10541          * = 4 - (inputsize - 4) / stride;
10542          */
10543         level = 4 - (inputsize - 4) / stride;
10544     } else {
10545         /* For stage 2 translations the starting level is specified by the
10546          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10547          */
10548         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10549         uint32_t startlevel;
10550         bool ok;
10551 
10552         if (!aarch64 || stride == 9) {
10553             /* AArch32 or 4KB pages */
10554             startlevel = 2 - sl0;
10555         } else {
10556             /* 16KB or 64KB pages */
10557             startlevel = 3 - sl0;
10558         }
10559 
10560         /* Check that the starting level is valid. */
10561         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10562                                 inputsize, stride);
10563         if (!ok) {
10564             fault_type = ARMFault_Translation;
10565             goto do_fault;
10566         }
10567         level = startlevel;
10568     }
10569 
10570     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10571     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10572 
10573     /* Now we can extract the actual base address from the TTBR */
10574     descaddr = extract64(ttbr, 0, 48);
10575     descaddr &= ~indexmask;
10576 
10577     /* The address field in the descriptor goes up to bit 39 for ARMv7
10578      * but up to bit 47 for ARMv8, but we use the descaddrmask
10579      * up to bit 39 for AArch32, because we don't need other bits in that case
10580      * to construct next descriptor address (anyway they should be all zeroes).
10581      */
10582     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10583                    ~indexmask_grainsize;
10584 
10585     /* Secure accesses start with the page table in secure memory and
10586      * can be downgraded to non-secure at any step. Non-secure accesses
10587      * remain non-secure. We implement this by just ORing in the NSTable/NS
10588      * bits at each step.
10589      */
10590     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10591     for (;;) {
10592         uint64_t descriptor;
10593         bool nstable;
10594 
10595         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10596         descaddr &= ~7ULL;
10597         nstable = extract32(tableattrs, 4, 1);
10598         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10599         if (fi->type != ARMFault_None) {
10600             goto do_fault;
10601         }
10602 
10603         if (!(descriptor & 1) ||
10604             (!(descriptor & 2) && (level == 3))) {
10605             /* Invalid, or the Reserved level 3 encoding */
10606             goto do_fault;
10607         }
10608         descaddr = descriptor & descaddrmask;
10609 
10610         if ((descriptor & 2) && (level < 3)) {
10611             /* Table entry. The top five bits are attributes which may
10612              * propagate down through lower levels of the table (and
10613              * which are all arranged so that 0 means "no effect", so
10614              * we can gather them up by ORing in the bits at each level).
10615              */
10616             tableattrs |= extract64(descriptor, 59, 5);
10617             level++;
10618             indexmask = indexmask_grainsize;
10619             continue;
10620         }
10621         /* Block entry at level 1 or 2, or page entry at level 3.
10622          * These are basically the same thing, although the number
10623          * of bits we pull in from the vaddr varies.
10624          */
10625         page_size = (1ULL << ((stride * (4 - level)) + 3));
10626         descaddr |= (address & (page_size - 1));
10627         /* Extract attributes from the descriptor */
10628         attrs = extract64(descriptor, 2, 10)
10629             | (extract64(descriptor, 52, 12) << 10);
10630 
10631         if (mmu_idx == ARMMMUIdx_Stage2) {
10632             /* Stage 2 table descriptors do not include any attribute fields */
10633             break;
10634         }
10635         /* Merge in attributes from table descriptors */
10636         attrs |= nstable << 3; /* NS */
10637         guarded = extract64(descriptor, 50, 1);  /* GP */
10638         if (param.hpd) {
10639             /* HPD disables all the table attributes except NSTable.  */
10640             break;
10641         }
10642         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10643         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10644          * means "force PL1 access only", which means forcing AP[1] to 0.
10645          */
10646         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10647         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10648         break;
10649     }
10650     /* Here descaddr is the final physical address, and attributes
10651      * are all in attrs.
10652      */
10653     fault_type = ARMFault_AccessFlag;
10654     if ((attrs & (1 << 8)) == 0) {
10655         /* Access flag */
10656         goto do_fault;
10657     }
10658 
10659     ap = extract32(attrs, 4, 2);
10660     xn = extract32(attrs, 12, 1);
10661 
10662     if (mmu_idx == ARMMMUIdx_Stage2) {
10663         ns = true;
10664         *prot = get_S2prot(env, ap, xn);
10665     } else {
10666         ns = extract32(attrs, 3, 1);
10667         pxn = extract32(attrs, 11, 1);
10668         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10669     }
10670 
10671     fault_type = ARMFault_Permission;
10672     if (!(*prot & (1 << access_type))) {
10673         goto do_fault;
10674     }
10675 
10676     if (ns) {
10677         /* The NS bit will (as required by the architecture) have no effect if
10678          * the CPU doesn't support TZ or this is a non-secure translation
10679          * regime, because the attribute will already be non-secure.
10680          */
10681         txattrs->secure = false;
10682     }
10683     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10684     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10685         txattrs->target_tlb_bit0 = true;
10686     }
10687 
10688     if (cacheattrs != NULL) {
10689         if (mmu_idx == ARMMMUIdx_Stage2) {
10690             cacheattrs->attrs = convert_stage2_attrs(env,
10691                                                      extract32(attrs, 0, 4));
10692         } else {
10693             /* Index into MAIR registers for cache attributes */
10694             uint8_t attrindx = extract32(attrs, 0, 3);
10695             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10696             assert(attrindx <= 7);
10697             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10698         }
10699         cacheattrs->shareability = extract32(attrs, 6, 2);
10700     }
10701 
10702     *phys_ptr = descaddr;
10703     *page_size_ptr = page_size;
10704     return false;
10705 
10706 do_fault:
10707     fi->type = fault_type;
10708     fi->level = level;
10709     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10710     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
10711     return true;
10712 }
10713 
10714 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10715                                                 ARMMMUIdx mmu_idx,
10716                                                 int32_t address, int *prot)
10717 {
10718     if (!arm_feature(env, ARM_FEATURE_M)) {
10719         *prot = PAGE_READ | PAGE_WRITE;
10720         switch (address) {
10721         case 0xF0000000 ... 0xFFFFFFFF:
10722             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10723                 /* hivecs execing is ok */
10724                 *prot |= PAGE_EXEC;
10725             }
10726             break;
10727         case 0x00000000 ... 0x7FFFFFFF:
10728             *prot |= PAGE_EXEC;
10729             break;
10730         }
10731     } else {
10732         /* Default system address map for M profile cores.
10733          * The architecture specifies which regions are execute-never;
10734          * at the MPU level no other checks are defined.
10735          */
10736         switch (address) {
10737         case 0x00000000 ... 0x1fffffff: /* ROM */
10738         case 0x20000000 ... 0x3fffffff: /* SRAM */
10739         case 0x60000000 ... 0x7fffffff: /* RAM */
10740         case 0x80000000 ... 0x9fffffff: /* RAM */
10741             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10742             break;
10743         case 0x40000000 ... 0x5fffffff: /* Peripheral */
10744         case 0xa0000000 ... 0xbfffffff: /* Device */
10745         case 0xc0000000 ... 0xdfffffff: /* Device */
10746         case 0xe0000000 ... 0xffffffff: /* System */
10747             *prot = PAGE_READ | PAGE_WRITE;
10748             break;
10749         default:
10750             g_assert_not_reached();
10751         }
10752     }
10753 }
10754 
10755 static bool pmsav7_use_background_region(ARMCPU *cpu,
10756                                          ARMMMUIdx mmu_idx, bool is_user)
10757 {
10758     /* Return true if we should use the default memory map as a
10759      * "background" region if there are no hits against any MPU regions.
10760      */
10761     CPUARMState *env = &cpu->env;
10762 
10763     if (is_user) {
10764         return false;
10765     }
10766 
10767     if (arm_feature(env, ARM_FEATURE_M)) {
10768         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10769             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10770     } else {
10771         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10772     }
10773 }
10774 
10775 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10776 {
10777     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10778     return arm_feature(env, ARM_FEATURE_M) &&
10779         extract32(address, 20, 12) == 0xe00;
10780 }
10781 
10782 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10783 {
10784     /* True if address is in the M profile system region
10785      * 0xe0000000 - 0xffffffff
10786      */
10787     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10788 }
10789 
10790 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10791                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10792                                  hwaddr *phys_ptr, int *prot,
10793                                  target_ulong *page_size,
10794                                  ARMMMUFaultInfo *fi)
10795 {
10796     ARMCPU *cpu = env_archcpu(env);
10797     int n;
10798     bool is_user = regime_is_user(env, mmu_idx);
10799 
10800     *phys_ptr = address;
10801     *page_size = TARGET_PAGE_SIZE;
10802     *prot = 0;
10803 
10804     if (regime_translation_disabled(env, mmu_idx) ||
10805         m_is_ppb_region(env, address)) {
10806         /* MPU disabled or M profile PPB access: use default memory map.
10807          * The other case which uses the default memory map in the
10808          * v7M ARM ARM pseudocode is exception vector reads from the vector
10809          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10810          * which always does a direct read using address_space_ldl(), rather
10811          * than going via this function, so we don't need to check that here.
10812          */
10813         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10814     } else { /* MPU enabled */
10815         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10816             /* region search */
10817             uint32_t base = env->pmsav7.drbar[n];
10818             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10819             uint32_t rmask;
10820             bool srdis = false;
10821 
10822             if (!(env->pmsav7.drsr[n] & 0x1)) {
10823                 continue;
10824             }
10825 
10826             if (!rsize) {
10827                 qemu_log_mask(LOG_GUEST_ERROR,
10828                               "DRSR[%d]: Rsize field cannot be 0\n", n);
10829                 continue;
10830             }
10831             rsize++;
10832             rmask = (1ull << rsize) - 1;
10833 
10834             if (base & rmask) {
10835                 qemu_log_mask(LOG_GUEST_ERROR,
10836                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10837                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
10838                               n, base, rmask);
10839                 continue;
10840             }
10841 
10842             if (address < base || address > base + rmask) {
10843                 /*
10844                  * Address not in this region. We must check whether the
10845                  * region covers addresses in the same page as our address.
10846                  * In that case we must not report a size that covers the
10847                  * whole page for a subsequent hit against a different MPU
10848                  * region or the background region, because it would result in
10849                  * incorrect TLB hits for subsequent accesses to addresses that
10850                  * are in this MPU region.
10851                  */
10852                 if (ranges_overlap(base, rmask,
10853                                    address & TARGET_PAGE_MASK,
10854                                    TARGET_PAGE_SIZE)) {
10855                     *page_size = 1;
10856                 }
10857                 continue;
10858             }
10859 
10860             /* Region matched */
10861 
10862             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10863                 int i, snd;
10864                 uint32_t srdis_mask;
10865 
10866                 rsize -= 3; /* sub region size (power of 2) */
10867                 snd = ((address - base) >> rsize) & 0x7;
10868                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10869 
10870                 srdis_mask = srdis ? 0x3 : 0x0;
10871                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10872                     /* This will check in groups of 2, 4 and then 8, whether
10873                      * the subregion bits are consistent. rsize is incremented
10874                      * back up to give the region size, considering consistent
10875                      * adjacent subregions as one region. Stop testing if rsize
10876                      * is already big enough for an entire QEMU page.
10877                      */
10878                     int snd_rounded = snd & ~(i - 1);
10879                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10880                                                      snd_rounded + 8, i);
10881                     if (srdis_mask ^ srdis_multi) {
10882                         break;
10883                     }
10884                     srdis_mask = (srdis_mask << i) | srdis_mask;
10885                     rsize++;
10886                 }
10887             }
10888             if (srdis) {
10889                 continue;
10890             }
10891             if (rsize < TARGET_PAGE_BITS) {
10892                 *page_size = 1 << rsize;
10893             }
10894             break;
10895         }
10896 
10897         if (n == -1) { /* no hits */
10898             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10899                 /* background fault */
10900                 fi->type = ARMFault_Background;
10901                 return true;
10902             }
10903             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10904         } else { /* a MPU hit! */
10905             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10906             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10907 
10908             if (m_is_system_region(env, address)) {
10909                 /* System space is always execute never */
10910                 xn = 1;
10911             }
10912 
10913             if (is_user) { /* User mode AP bit decoding */
10914                 switch (ap) {
10915                 case 0:
10916                 case 1:
10917                 case 5:
10918                     break; /* no access */
10919                 case 3:
10920                     *prot |= PAGE_WRITE;
10921                     /* fall through */
10922                 case 2:
10923                 case 6:
10924                     *prot |= PAGE_READ | PAGE_EXEC;
10925                     break;
10926                 case 7:
10927                     /* for v7M, same as 6; for R profile a reserved value */
10928                     if (arm_feature(env, ARM_FEATURE_M)) {
10929                         *prot |= PAGE_READ | PAGE_EXEC;
10930                         break;
10931                     }
10932                     /* fall through */
10933                 default:
10934                     qemu_log_mask(LOG_GUEST_ERROR,
10935                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10936                                   PRIx32 "\n", n, ap);
10937                 }
10938             } else { /* Priv. mode AP bits decoding */
10939                 switch (ap) {
10940                 case 0:
10941                     break; /* no access */
10942                 case 1:
10943                 case 2:
10944                 case 3:
10945                     *prot |= PAGE_WRITE;
10946                     /* fall through */
10947                 case 5:
10948                 case 6:
10949                     *prot |= PAGE_READ | PAGE_EXEC;
10950                     break;
10951                 case 7:
10952                     /* for v7M, same as 6; for R profile a reserved value */
10953                     if (arm_feature(env, ARM_FEATURE_M)) {
10954                         *prot |= PAGE_READ | PAGE_EXEC;
10955                         break;
10956                     }
10957                     /* fall through */
10958                 default:
10959                     qemu_log_mask(LOG_GUEST_ERROR,
10960                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10961                                   PRIx32 "\n", n, ap);
10962                 }
10963             }
10964 
10965             /* execute never */
10966             if (xn) {
10967                 *prot &= ~PAGE_EXEC;
10968             }
10969         }
10970     }
10971 
10972     fi->type = ARMFault_Permission;
10973     fi->level = 1;
10974     return !(*prot & (1 << access_type));
10975 }
10976 
10977 static bool v8m_is_sau_exempt(CPUARMState *env,
10978                               uint32_t address, MMUAccessType access_type)
10979 {
10980     /* The architecture specifies that certain address ranges are
10981      * exempt from v8M SAU/IDAU checks.
10982      */
10983     return
10984         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10985         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10986         (address >= 0xe000e000 && address <= 0xe000efff) ||
10987         (address >= 0xe002e000 && address <= 0xe002efff) ||
10988         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10989         (address >= 0xe00ff000 && address <= 0xe00fffff);
10990 }
10991 
10992 void v8m_security_lookup(CPUARMState *env, uint32_t address,
10993                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10994                                 V8M_SAttributes *sattrs)
10995 {
10996     /* Look up the security attributes for this address. Compare the
10997      * pseudocode SecurityCheck() function.
10998      * We assume the caller has zero-initialized *sattrs.
10999      */
11000     ARMCPU *cpu = env_archcpu(env);
11001     int r;
11002     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11003     int idau_region = IREGION_NOTVALID;
11004     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11005     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11006 
11007     if (cpu->idau) {
11008         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11009         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11010 
11011         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11012                    &idau_nsc);
11013     }
11014 
11015     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11016         /* 0xf0000000..0xffffffff is always S for insn fetches */
11017         return;
11018     }
11019 
11020     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11021         sattrs->ns = !regime_is_secure(env, mmu_idx);
11022         return;
11023     }
11024 
11025     if (idau_region != IREGION_NOTVALID) {
11026         sattrs->irvalid = true;
11027         sattrs->iregion = idau_region;
11028     }
11029 
11030     switch (env->sau.ctrl & 3) {
11031     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11032         break;
11033     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11034         sattrs->ns = true;
11035         break;
11036     default: /* SAU.ENABLE == 1 */
11037         for (r = 0; r < cpu->sau_sregion; r++) {
11038             if (env->sau.rlar[r] & 1) {
11039                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11040                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11041 
11042                 if (base <= address && limit >= address) {
11043                     if (base > addr_page_base || limit < addr_page_limit) {
11044                         sattrs->subpage = true;
11045                     }
11046                     if (sattrs->srvalid) {
11047                         /* If we hit in more than one region then we must report
11048                          * as Secure, not NS-Callable, with no valid region
11049                          * number info.
11050                          */
11051                         sattrs->ns = false;
11052                         sattrs->nsc = false;
11053                         sattrs->sregion = 0;
11054                         sattrs->srvalid = false;
11055                         break;
11056                     } else {
11057                         if (env->sau.rlar[r] & 2) {
11058                             sattrs->nsc = true;
11059                         } else {
11060                             sattrs->ns = true;
11061                         }
11062                         sattrs->srvalid = true;
11063                         sattrs->sregion = r;
11064                     }
11065                 } else {
11066                     /*
11067                      * Address not in this region. We must check whether the
11068                      * region covers addresses in the same page as our address.
11069                      * In that case we must not report a size that covers the
11070                      * whole page for a subsequent hit against a different MPU
11071                      * region or the background region, because it would result
11072                      * in incorrect TLB hits for subsequent accesses to
11073                      * addresses that are in this MPU region.
11074                      */
11075                     if (limit >= base &&
11076                         ranges_overlap(base, limit - base + 1,
11077                                        addr_page_base,
11078                                        TARGET_PAGE_SIZE)) {
11079                         sattrs->subpage = true;
11080                     }
11081                 }
11082             }
11083         }
11084         break;
11085     }
11086 
11087     /*
11088      * The IDAU will override the SAU lookup results if it specifies
11089      * higher security than the SAU does.
11090      */
11091     if (!idau_ns) {
11092         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11093             sattrs->ns = false;
11094             sattrs->nsc = idau_nsc;
11095         }
11096     }
11097 }
11098 
11099 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11100                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11101                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11102                               int *prot, bool *is_subpage,
11103                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11104 {
11105     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11106      * that a full phys-to-virt translation does).
11107      * mregion is (if not NULL) set to the region number which matched,
11108      * or -1 if no region number is returned (MPU off, address did not
11109      * hit a region, address hit in multiple regions).
11110      * We set is_subpage to true if the region hit doesn't cover the
11111      * entire TARGET_PAGE the address is within.
11112      */
11113     ARMCPU *cpu = env_archcpu(env);
11114     bool is_user = regime_is_user(env, mmu_idx);
11115     uint32_t secure = regime_is_secure(env, mmu_idx);
11116     int n;
11117     int matchregion = -1;
11118     bool hit = false;
11119     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11120     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11121 
11122     *is_subpage = false;
11123     *phys_ptr = address;
11124     *prot = 0;
11125     if (mregion) {
11126         *mregion = -1;
11127     }
11128 
11129     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11130      * was an exception vector read from the vector table (which is always
11131      * done using the default system address map), because those accesses
11132      * are done in arm_v7m_load_vector(), which always does a direct
11133      * read using address_space_ldl(), rather than going via this function.
11134      */
11135     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11136         hit = true;
11137     } else if (m_is_ppb_region(env, address)) {
11138         hit = true;
11139     } else {
11140         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11141             hit = true;
11142         }
11143 
11144         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11145             /* region search */
11146             /* Note that the base address is bits [31:5] from the register
11147              * with bits [4:0] all zeroes, but the limit address is bits
11148              * [31:5] from the register with bits [4:0] all ones.
11149              */
11150             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11151             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11152 
11153             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11154                 /* Region disabled */
11155                 continue;
11156             }
11157 
11158             if (address < base || address > limit) {
11159                 /*
11160                  * Address not in this region. We must check whether the
11161                  * region covers addresses in the same page as our address.
11162                  * In that case we must not report a size that covers the
11163                  * whole page for a subsequent hit against a different MPU
11164                  * region or the background region, because it would result in
11165                  * incorrect TLB hits for subsequent accesses to addresses that
11166                  * are in this MPU region.
11167                  */
11168                 if (limit >= base &&
11169                     ranges_overlap(base, limit - base + 1,
11170                                    addr_page_base,
11171                                    TARGET_PAGE_SIZE)) {
11172                     *is_subpage = true;
11173                 }
11174                 continue;
11175             }
11176 
11177             if (base > addr_page_base || limit < addr_page_limit) {
11178                 *is_subpage = true;
11179             }
11180 
11181             if (matchregion != -1) {
11182                 /* Multiple regions match -- always a failure (unlike
11183                  * PMSAv7 where highest-numbered-region wins)
11184                  */
11185                 fi->type = ARMFault_Permission;
11186                 fi->level = 1;
11187                 return true;
11188             }
11189 
11190             matchregion = n;
11191             hit = true;
11192         }
11193     }
11194 
11195     if (!hit) {
11196         /* background fault */
11197         fi->type = ARMFault_Background;
11198         return true;
11199     }
11200 
11201     if (matchregion == -1) {
11202         /* hit using the background region */
11203         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11204     } else {
11205         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11206         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11207 
11208         if (m_is_system_region(env, address)) {
11209             /* System space is always execute never */
11210             xn = 1;
11211         }
11212 
11213         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11214         if (*prot && !xn) {
11215             *prot |= PAGE_EXEC;
11216         }
11217         /* We don't need to look the attribute up in the MAIR0/MAIR1
11218          * registers because that only tells us about cacheability.
11219          */
11220         if (mregion) {
11221             *mregion = matchregion;
11222         }
11223     }
11224 
11225     fi->type = ARMFault_Permission;
11226     fi->level = 1;
11227     return !(*prot & (1 << access_type));
11228 }
11229 
11230 
11231 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11232                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11233                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11234                                  int *prot, target_ulong *page_size,
11235                                  ARMMMUFaultInfo *fi)
11236 {
11237     uint32_t secure = regime_is_secure(env, mmu_idx);
11238     V8M_SAttributes sattrs = {};
11239     bool ret;
11240     bool mpu_is_subpage;
11241 
11242     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11243         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11244         if (access_type == MMU_INST_FETCH) {
11245             /* Instruction fetches always use the MMU bank and the
11246              * transaction attribute determined by the fetch address,
11247              * regardless of CPU state. This is painful for QEMU
11248              * to handle, because it would mean we need to encode
11249              * into the mmu_idx not just the (user, negpri) information
11250              * for the current security state but also that for the
11251              * other security state, which would balloon the number
11252              * of mmu_idx values needed alarmingly.
11253              * Fortunately we can avoid this because it's not actually
11254              * possible to arbitrarily execute code from memory with
11255              * the wrong security attribute: it will always generate
11256              * an exception of some kind or another, apart from the
11257              * special case of an NS CPU executing an SG instruction
11258              * in S&NSC memory. So we always just fail the translation
11259              * here and sort things out in the exception handler
11260              * (including possibly emulating an SG instruction).
11261              */
11262             if (sattrs.ns != !secure) {
11263                 if (sattrs.nsc) {
11264                     fi->type = ARMFault_QEMU_NSCExec;
11265                 } else {
11266                     fi->type = ARMFault_QEMU_SFault;
11267                 }
11268                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11269                 *phys_ptr = address;
11270                 *prot = 0;
11271                 return true;
11272             }
11273         } else {
11274             /* For data accesses we always use the MMU bank indicated
11275              * by the current CPU state, but the security attributes
11276              * might downgrade a secure access to nonsecure.
11277              */
11278             if (sattrs.ns) {
11279                 txattrs->secure = false;
11280             } else if (!secure) {
11281                 /* NS access to S memory must fault.
11282                  * Architecturally we should first check whether the
11283                  * MPU information for this address indicates that we
11284                  * are doing an unaligned access to Device memory, which
11285                  * should generate a UsageFault instead. QEMU does not
11286                  * currently check for that kind of unaligned access though.
11287                  * If we added it we would need to do so as a special case
11288                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11289                  */
11290                 fi->type = ARMFault_QEMU_SFault;
11291                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11292                 *phys_ptr = address;
11293                 *prot = 0;
11294                 return true;
11295             }
11296         }
11297     }
11298 
11299     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11300                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11301     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11302     return ret;
11303 }
11304 
11305 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11306                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11307                                  hwaddr *phys_ptr, int *prot,
11308                                  ARMMMUFaultInfo *fi)
11309 {
11310     int n;
11311     uint32_t mask;
11312     uint32_t base;
11313     bool is_user = regime_is_user(env, mmu_idx);
11314 
11315     if (regime_translation_disabled(env, mmu_idx)) {
11316         /* MPU disabled.  */
11317         *phys_ptr = address;
11318         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11319         return false;
11320     }
11321 
11322     *phys_ptr = address;
11323     for (n = 7; n >= 0; n--) {
11324         base = env->cp15.c6_region[n];
11325         if ((base & 1) == 0) {
11326             continue;
11327         }
11328         mask = 1 << ((base >> 1) & 0x1f);
11329         /* Keep this shift separate from the above to avoid an
11330            (undefined) << 32.  */
11331         mask = (mask << 1) - 1;
11332         if (((base ^ address) & ~mask) == 0) {
11333             break;
11334         }
11335     }
11336     if (n < 0) {
11337         fi->type = ARMFault_Background;
11338         return true;
11339     }
11340 
11341     if (access_type == MMU_INST_FETCH) {
11342         mask = env->cp15.pmsav5_insn_ap;
11343     } else {
11344         mask = env->cp15.pmsav5_data_ap;
11345     }
11346     mask = (mask >> (n * 4)) & 0xf;
11347     switch (mask) {
11348     case 0:
11349         fi->type = ARMFault_Permission;
11350         fi->level = 1;
11351         return true;
11352     case 1:
11353         if (is_user) {
11354             fi->type = ARMFault_Permission;
11355             fi->level = 1;
11356             return true;
11357         }
11358         *prot = PAGE_READ | PAGE_WRITE;
11359         break;
11360     case 2:
11361         *prot = PAGE_READ;
11362         if (!is_user) {
11363             *prot |= PAGE_WRITE;
11364         }
11365         break;
11366     case 3:
11367         *prot = PAGE_READ | PAGE_WRITE;
11368         break;
11369     case 5:
11370         if (is_user) {
11371             fi->type = ARMFault_Permission;
11372             fi->level = 1;
11373             return true;
11374         }
11375         *prot = PAGE_READ;
11376         break;
11377     case 6:
11378         *prot = PAGE_READ;
11379         break;
11380     default:
11381         /* Bad permission.  */
11382         fi->type = ARMFault_Permission;
11383         fi->level = 1;
11384         return true;
11385     }
11386     *prot |= PAGE_EXEC;
11387     return false;
11388 }
11389 
11390 /* Combine either inner or outer cacheability attributes for normal
11391  * memory, according to table D4-42 and pseudocode procedure
11392  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11393  *
11394  * NB: only stage 1 includes allocation hints (RW bits), leading to
11395  * some asymmetry.
11396  */
11397 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11398 {
11399     if (s1 == 4 || s2 == 4) {
11400         /* non-cacheable has precedence */
11401         return 4;
11402     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11403         /* stage 1 write-through takes precedence */
11404         return s1;
11405     } else if (extract32(s2, 2, 2) == 2) {
11406         /* stage 2 write-through takes precedence, but the allocation hint
11407          * is still taken from stage 1
11408          */
11409         return (2 << 2) | extract32(s1, 0, 2);
11410     } else { /* write-back */
11411         return s1;
11412     }
11413 }
11414 
11415 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11416  * and CombineS1S2Desc()
11417  *
11418  * @s1:      Attributes from stage 1 walk
11419  * @s2:      Attributes from stage 2 walk
11420  */
11421 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11422 {
11423     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11424     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11425     ARMCacheAttrs ret;
11426 
11427     /* Combine shareability attributes (table D4-43) */
11428     if (s1.shareability == 2 || s2.shareability == 2) {
11429         /* if either are outer-shareable, the result is outer-shareable */
11430         ret.shareability = 2;
11431     } else if (s1.shareability == 3 || s2.shareability == 3) {
11432         /* if either are inner-shareable, the result is inner-shareable */
11433         ret.shareability = 3;
11434     } else {
11435         /* both non-shareable */
11436         ret.shareability = 0;
11437     }
11438 
11439     /* Combine memory type and cacheability attributes */
11440     if (s1hi == 0 || s2hi == 0) {
11441         /* Device has precedence over normal */
11442         if (s1lo == 0 || s2lo == 0) {
11443             /* nGnRnE has precedence over anything */
11444             ret.attrs = 0;
11445         } else if (s1lo == 4 || s2lo == 4) {
11446             /* non-Reordering has precedence over Reordering */
11447             ret.attrs = 4;  /* nGnRE */
11448         } else if (s1lo == 8 || s2lo == 8) {
11449             /* non-Gathering has precedence over Gathering */
11450             ret.attrs = 8;  /* nGRE */
11451         } else {
11452             ret.attrs = 0xc; /* GRE */
11453         }
11454 
11455         /* Any location for which the resultant memory type is any
11456          * type of Device memory is always treated as Outer Shareable.
11457          */
11458         ret.shareability = 2;
11459     } else { /* Normal memory */
11460         /* Outer/inner cacheability combine independently */
11461         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11462                   | combine_cacheattr_nibble(s1lo, s2lo);
11463 
11464         if (ret.attrs == 0x44) {
11465             /* Any location for which the resultant memory type is Normal
11466              * Inner Non-cacheable, Outer Non-cacheable is always treated
11467              * as Outer Shareable.
11468              */
11469             ret.shareability = 2;
11470         }
11471     }
11472 
11473     return ret;
11474 }
11475 
11476 
11477 /* get_phys_addr - get the physical address for this virtual address
11478  *
11479  * Find the physical address corresponding to the given virtual address,
11480  * by doing a translation table walk on MMU based systems or using the
11481  * MPU state on MPU based systems.
11482  *
11483  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11484  * prot and page_size may not be filled in, and the populated fsr value provides
11485  * information on why the translation aborted, in the format of a
11486  * DFSR/IFSR fault register, with the following caveats:
11487  *  * we honour the short vs long DFSR format differences.
11488  *  * the WnR bit is never set (the caller must do this).
11489  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11490  *    value.
11491  *
11492  * @env: CPUARMState
11493  * @address: virtual address to get physical address for
11494  * @access_type: 0 for read, 1 for write, 2 for execute
11495  * @mmu_idx: MMU index indicating required translation regime
11496  * @phys_ptr: set to the physical address corresponding to the virtual address
11497  * @attrs: set to the memory transaction attributes to use
11498  * @prot: set to the permissions for the page containing phys_ptr
11499  * @page_size: set to the size of the page containing phys_ptr
11500  * @fi: set to fault info if the translation fails
11501  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11502  */
11503 bool get_phys_addr(CPUARMState *env, target_ulong address,
11504                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
11505                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11506                    target_ulong *page_size,
11507                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11508 {
11509     if (mmu_idx == ARMMMUIdx_E10_0 ||
11510         mmu_idx == ARMMMUIdx_E10_1 ||
11511         mmu_idx == ARMMMUIdx_E10_1_PAN) {
11512         /* Call ourselves recursively to do the stage 1 and then stage 2
11513          * translations.
11514          */
11515         if (arm_feature(env, ARM_FEATURE_EL2)) {
11516             hwaddr ipa;
11517             int s2_prot;
11518             int ret;
11519             ARMCacheAttrs cacheattrs2 = {};
11520 
11521             ret = get_phys_addr(env, address, access_type,
11522                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11523                                 prot, page_size, fi, cacheattrs);
11524 
11525             /* If S1 fails or S2 is disabled, return early.  */
11526             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
11527                 *phys_ptr = ipa;
11528                 return ret;
11529             }
11530 
11531             /* S1 is done. Now do S2 translation.  */
11532             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
11533                                      phys_ptr, attrs, &s2_prot,
11534                                      page_size, fi,
11535                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11536             fi->s2addr = ipa;
11537             /* Combine the S1 and S2 perms.  */
11538             *prot &= s2_prot;
11539 
11540             /* Combine the S1 and S2 cache attributes, if needed */
11541             if (!ret && cacheattrs != NULL) {
11542                 if (env->cp15.hcr_el2 & HCR_DC) {
11543                     /*
11544                      * HCR.DC forces the first stage attributes to
11545                      *  Normal Non-Shareable,
11546                      *  Inner Write-Back Read-Allocate Write-Allocate,
11547                      *  Outer Write-Back Read-Allocate Write-Allocate.
11548                      */
11549                     cacheattrs->attrs = 0xff;
11550                     cacheattrs->shareability = 0;
11551                 }
11552                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11553             }
11554 
11555             return ret;
11556         } else {
11557             /*
11558              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11559              */
11560             mmu_idx = stage_1_mmu_idx(mmu_idx);
11561         }
11562     }
11563 
11564     /* The page table entries may downgrade secure to non-secure, but
11565      * cannot upgrade an non-secure translation regime's attributes
11566      * to secure.
11567      */
11568     attrs->secure = regime_is_secure(env, mmu_idx);
11569     attrs->user = regime_is_user(env, mmu_idx);
11570 
11571     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11572      * In v7 and earlier it affects all stage 1 translations.
11573      */
11574     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
11575         && !arm_feature(env, ARM_FEATURE_V8)) {
11576         if (regime_el(env, mmu_idx) == 3) {
11577             address += env->cp15.fcseidr_s;
11578         } else {
11579             address += env->cp15.fcseidr_ns;
11580         }
11581     }
11582 
11583     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11584         bool ret;
11585         *page_size = TARGET_PAGE_SIZE;
11586 
11587         if (arm_feature(env, ARM_FEATURE_V8)) {
11588             /* PMSAv8 */
11589             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11590                                        phys_ptr, attrs, prot, page_size, fi);
11591         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11592             /* PMSAv7 */
11593             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11594                                        phys_ptr, prot, page_size, fi);
11595         } else {
11596             /* Pre-v7 MPU */
11597             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11598                                        phys_ptr, prot, fi);
11599         }
11600         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11601                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11602                       access_type == MMU_DATA_LOAD ? "reading" :
11603                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11604                       (uint32_t)address, mmu_idx,
11605                       ret ? "Miss" : "Hit",
11606                       *prot & PAGE_READ ? 'r' : '-',
11607                       *prot & PAGE_WRITE ? 'w' : '-',
11608                       *prot & PAGE_EXEC ? 'x' : '-');
11609 
11610         return ret;
11611     }
11612 
11613     /* Definitely a real MMU, not an MPU */
11614 
11615     if (regime_translation_disabled(env, mmu_idx)) {
11616         /* MMU disabled. */
11617         *phys_ptr = address;
11618         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11619         *page_size = TARGET_PAGE_SIZE;
11620         return 0;
11621     }
11622 
11623     if (regime_using_lpae_format(env, mmu_idx)) {
11624         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11625                                   phys_ptr, attrs, prot, page_size,
11626                                   fi, cacheattrs);
11627     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11628         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11629                                 phys_ptr, attrs, prot, page_size, fi);
11630     } else {
11631         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11632                                     phys_ptr, prot, page_size, fi);
11633     }
11634 }
11635 
11636 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11637                                          MemTxAttrs *attrs)
11638 {
11639     ARMCPU *cpu = ARM_CPU(cs);
11640     CPUARMState *env = &cpu->env;
11641     hwaddr phys_addr;
11642     target_ulong page_size;
11643     int prot;
11644     bool ret;
11645     ARMMMUFaultInfo fi = {};
11646     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11647 
11648     *attrs = (MemTxAttrs) {};
11649 
11650     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11651                         attrs, &prot, &page_size, &fi, NULL);
11652 
11653     if (ret) {
11654         return -1;
11655     }
11656     return phys_addr;
11657 }
11658 
11659 #endif
11660 
11661 /* Note that signed overflow is undefined in C.  The following routines are
11662    careful to use unsigned types where modulo arithmetic is required.
11663    Failure to do so _will_ break on newer gcc.  */
11664 
11665 /* Signed saturating arithmetic.  */
11666 
11667 /* Perform 16-bit signed saturating addition.  */
11668 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11669 {
11670     uint16_t res;
11671 
11672     res = a + b;
11673     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11674         if (a & 0x8000)
11675             res = 0x8000;
11676         else
11677             res = 0x7fff;
11678     }
11679     return res;
11680 }
11681 
11682 /* Perform 8-bit signed saturating addition.  */
11683 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11684 {
11685     uint8_t res;
11686 
11687     res = a + b;
11688     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11689         if (a & 0x80)
11690             res = 0x80;
11691         else
11692             res = 0x7f;
11693     }
11694     return res;
11695 }
11696 
11697 /* Perform 16-bit signed saturating subtraction.  */
11698 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11699 {
11700     uint16_t res;
11701 
11702     res = a - b;
11703     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11704         if (a & 0x8000)
11705             res = 0x8000;
11706         else
11707             res = 0x7fff;
11708     }
11709     return res;
11710 }
11711 
11712 /* Perform 8-bit signed saturating subtraction.  */
11713 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11714 {
11715     uint8_t res;
11716 
11717     res = a - b;
11718     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11719         if (a & 0x80)
11720             res = 0x80;
11721         else
11722             res = 0x7f;
11723     }
11724     return res;
11725 }
11726 
11727 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11728 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11729 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11730 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11731 #define PFX q
11732 
11733 #include "op_addsub.h"
11734 
11735 /* Unsigned saturating arithmetic.  */
11736 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11737 {
11738     uint16_t res;
11739     res = a + b;
11740     if (res < a)
11741         res = 0xffff;
11742     return res;
11743 }
11744 
11745 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11746 {
11747     if (a > b)
11748         return a - b;
11749     else
11750         return 0;
11751 }
11752 
11753 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11754 {
11755     uint8_t res;
11756     res = a + b;
11757     if (res < a)
11758         res = 0xff;
11759     return res;
11760 }
11761 
11762 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11763 {
11764     if (a > b)
11765         return a - b;
11766     else
11767         return 0;
11768 }
11769 
11770 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11771 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11772 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11773 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11774 #define PFX uq
11775 
11776 #include "op_addsub.h"
11777 
11778 /* Signed modulo arithmetic.  */
11779 #define SARITH16(a, b, n, op) do { \
11780     int32_t sum; \
11781     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11782     RESULT(sum, n, 16); \
11783     if (sum >= 0) \
11784         ge |= 3 << (n * 2); \
11785     } while(0)
11786 
11787 #define SARITH8(a, b, n, op) do { \
11788     int32_t sum; \
11789     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11790     RESULT(sum, n, 8); \
11791     if (sum >= 0) \
11792         ge |= 1 << n; \
11793     } while(0)
11794 
11795 
11796 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11797 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11798 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11799 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11800 #define PFX s
11801 #define ARITH_GE
11802 
11803 #include "op_addsub.h"
11804 
11805 /* Unsigned modulo arithmetic.  */
11806 #define ADD16(a, b, n) do { \
11807     uint32_t sum; \
11808     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11809     RESULT(sum, n, 16); \
11810     if ((sum >> 16) == 1) \
11811         ge |= 3 << (n * 2); \
11812     } while(0)
11813 
11814 #define ADD8(a, b, n) do { \
11815     uint32_t sum; \
11816     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11817     RESULT(sum, n, 8); \
11818     if ((sum >> 8) == 1) \
11819         ge |= 1 << n; \
11820     } while(0)
11821 
11822 #define SUB16(a, b, n) do { \
11823     uint32_t sum; \
11824     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11825     RESULT(sum, n, 16); \
11826     if ((sum >> 16) == 0) \
11827         ge |= 3 << (n * 2); \
11828     } while(0)
11829 
11830 #define SUB8(a, b, n) do { \
11831     uint32_t sum; \
11832     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11833     RESULT(sum, n, 8); \
11834     if ((sum >> 8) == 0) \
11835         ge |= 1 << n; \
11836     } while(0)
11837 
11838 #define PFX u
11839 #define ARITH_GE
11840 
11841 #include "op_addsub.h"
11842 
11843 /* Halved signed arithmetic.  */
11844 #define ADD16(a, b, n) \
11845   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11846 #define SUB16(a, b, n) \
11847   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11848 #define ADD8(a, b, n) \
11849   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11850 #define SUB8(a, b, n) \
11851   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11852 #define PFX sh
11853 
11854 #include "op_addsub.h"
11855 
11856 /* Halved unsigned arithmetic.  */
11857 #define ADD16(a, b, n) \
11858   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11859 #define SUB16(a, b, n) \
11860   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11861 #define ADD8(a, b, n) \
11862   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11863 #define SUB8(a, b, n) \
11864   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11865 #define PFX uh
11866 
11867 #include "op_addsub.h"
11868 
11869 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11870 {
11871     if (a > b)
11872         return a - b;
11873     else
11874         return b - a;
11875 }
11876 
11877 /* Unsigned sum of absolute byte differences.  */
11878 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11879 {
11880     uint32_t sum;
11881     sum = do_usad(a, b);
11882     sum += do_usad(a >> 8, b >> 8);
11883     sum += do_usad(a >> 16, b >>16);
11884     sum += do_usad(a >> 24, b >> 24);
11885     return sum;
11886 }
11887 
11888 /* For ARMv6 SEL instruction.  */
11889 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11890 {
11891     uint32_t mask;
11892 
11893     mask = 0;
11894     if (flags & 1)
11895         mask |= 0xff;
11896     if (flags & 2)
11897         mask |= 0xff00;
11898     if (flags & 4)
11899         mask |= 0xff0000;
11900     if (flags & 8)
11901         mask |= 0xff000000;
11902     return (a & mask) | (b & ~mask);
11903 }
11904 
11905 /* CRC helpers.
11906  * The upper bytes of val (above the number specified by 'bytes') must have
11907  * been zeroed out by the caller.
11908  */
11909 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11910 {
11911     uint8_t buf[4];
11912 
11913     stl_le_p(buf, val);
11914 
11915     /* zlib crc32 converts the accumulator and output to one's complement.  */
11916     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11917 }
11918 
11919 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11920 {
11921     uint8_t buf[4];
11922 
11923     stl_le_p(buf, val);
11924 
11925     /* Linux crc32c converts the output to one's complement.  */
11926     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11927 }
11928 
11929 /* Return the exception level to which FP-disabled exceptions should
11930  * be taken, or 0 if FP is enabled.
11931  */
11932 int fp_exception_el(CPUARMState *env, int cur_el)
11933 {
11934 #ifndef CONFIG_USER_ONLY
11935     /* CPACR and the CPTR registers don't exist before v6, so FP is
11936      * always accessible
11937      */
11938     if (!arm_feature(env, ARM_FEATURE_V6)) {
11939         return 0;
11940     }
11941 
11942     if (arm_feature(env, ARM_FEATURE_M)) {
11943         /* CPACR can cause a NOCP UsageFault taken to current security state */
11944         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11945             return 1;
11946         }
11947 
11948         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11949             if (!extract32(env->v7m.nsacr, 10, 1)) {
11950                 /* FP insns cause a NOCP UsageFault taken to Secure */
11951                 return 3;
11952             }
11953         }
11954 
11955         return 0;
11956     }
11957 
11958     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11959      * 0, 2 : trap EL0 and EL1/PL1 accesses
11960      * 1    : trap only EL0 accesses
11961      * 3    : trap no accesses
11962      * This register is ignored if E2H+TGE are both set.
11963      */
11964     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11965         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
11966 
11967         switch (fpen) {
11968         case 0:
11969         case 2:
11970             if (cur_el == 0 || cur_el == 1) {
11971                 /* Trap to PL1, which might be EL1 or EL3 */
11972                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
11973                     return 3;
11974                 }
11975                 return 1;
11976             }
11977             if (cur_el == 3 && !is_a64(env)) {
11978                 /* Secure PL1 running at EL3 */
11979                 return 3;
11980             }
11981             break;
11982         case 1:
11983             if (cur_el == 0) {
11984                 return 1;
11985             }
11986             break;
11987         case 3:
11988             break;
11989         }
11990     }
11991 
11992     /*
11993      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11994      * to control non-secure access to the FPU. It doesn't have any
11995      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11996      */
11997     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11998          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11999         if (!extract32(env->cp15.nsacr, 10, 1)) {
12000             /* FP insns act as UNDEF */
12001             return cur_el == 2 ? 2 : 1;
12002         }
12003     }
12004 
12005     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12006      * check because zero bits in the registers mean "don't trap".
12007      */
12008 
12009     /* CPTR_EL2 : present in v7VE or v8 */
12010     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12011         && !arm_is_secure_below_el3(env)) {
12012         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12013         return 2;
12014     }
12015 
12016     /* CPTR_EL3 : present in v8 */
12017     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12018         /* Trap all FP ops to EL3 */
12019         return 3;
12020     }
12021 #endif
12022     return 0;
12023 }
12024 
12025 /* Return the exception level we're running at if this is our mmu_idx */
12026 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12027 {
12028     if (mmu_idx & ARM_MMU_IDX_M) {
12029         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12030     }
12031 
12032     switch (mmu_idx) {
12033     case ARMMMUIdx_E10_0:
12034     case ARMMMUIdx_E20_0:
12035     case ARMMMUIdx_SE10_0:
12036         return 0;
12037     case ARMMMUIdx_E10_1:
12038     case ARMMMUIdx_E10_1_PAN:
12039     case ARMMMUIdx_SE10_1:
12040     case ARMMMUIdx_SE10_1_PAN:
12041         return 1;
12042     case ARMMMUIdx_E2:
12043     case ARMMMUIdx_E20_2:
12044     case ARMMMUIdx_E20_2_PAN:
12045         return 2;
12046     case ARMMMUIdx_SE3:
12047         return 3;
12048     default:
12049         g_assert_not_reached();
12050     }
12051 }
12052 
12053 #ifndef CONFIG_TCG
12054 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12055 {
12056     g_assert_not_reached();
12057 }
12058 #endif
12059 
12060 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12061 {
12062     if (arm_feature(env, ARM_FEATURE_M)) {
12063         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12064     }
12065 
12066     /* See ARM pseudo-function ELIsInHost.  */
12067     switch (el) {
12068     case 0:
12069         if (arm_is_secure_below_el3(env)) {
12070             return ARMMMUIdx_SE10_0;
12071         }
12072         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12073             && arm_el_is_aa64(env, 2)) {
12074             return ARMMMUIdx_E20_0;
12075         }
12076         return ARMMMUIdx_E10_0;
12077     case 1:
12078         if (arm_is_secure_below_el3(env)) {
12079             if (env->pstate & PSTATE_PAN) {
12080                 return ARMMMUIdx_SE10_1_PAN;
12081             }
12082             return ARMMMUIdx_SE10_1;
12083         }
12084         if (env->pstate & PSTATE_PAN) {
12085             return ARMMMUIdx_E10_1_PAN;
12086         }
12087         return ARMMMUIdx_E10_1;
12088     case 2:
12089         /* TODO: ARMv8.4-SecEL2 */
12090         /* Note that TGE does not apply at EL2.  */
12091         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12092             if (env->pstate & PSTATE_PAN) {
12093                 return ARMMMUIdx_E20_2_PAN;
12094             }
12095             return ARMMMUIdx_E20_2;
12096         }
12097         return ARMMMUIdx_E2;
12098     case 3:
12099         return ARMMMUIdx_SE3;
12100     default:
12101         g_assert_not_reached();
12102     }
12103 }
12104 
12105 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12106 {
12107     return arm_mmu_idx_el(env, arm_current_el(env));
12108 }
12109 
12110 int cpu_mmu_index(CPUARMState *env, bool ifetch)
12111 {
12112     return arm_to_core_mmu_idx(arm_mmu_idx(env));
12113 }
12114 
12115 #ifndef CONFIG_USER_ONLY
12116 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12117 {
12118     return stage_1_mmu_idx(arm_mmu_idx(env));
12119 }
12120 #endif
12121 
12122 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12123                                       ARMMMUIdx mmu_idx, uint32_t flags)
12124 {
12125     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12126     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12127                        arm_to_core_mmu_idx(mmu_idx));
12128 
12129     if (arm_singlestep_active(env)) {
12130         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12131     }
12132     return flags;
12133 }
12134 
12135 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12136                                          ARMMMUIdx mmu_idx, uint32_t flags)
12137 {
12138     bool sctlr_b = arm_sctlr_b(env);
12139 
12140     if (sctlr_b) {
12141         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12142     }
12143     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12144         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12145     }
12146     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12147 
12148     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12149 }
12150 
12151 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12152                                    ARMMMUIdx mmu_idx)
12153 {
12154     uint32_t flags = 0;
12155 
12156     if (arm_v7m_is_handler_mode(env)) {
12157         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12158     }
12159 
12160     /*
12161      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12162      * is suppressing them because the requested execution priority
12163      * is less than 0.
12164      */
12165     if (arm_feature(env, ARM_FEATURE_V8) &&
12166         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12167           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12168         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12169     }
12170 
12171     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12172 }
12173 
12174 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12175 {
12176     int flags = 0;
12177 
12178     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12179                        arm_debug_target_el(env));
12180     return flags;
12181 }
12182 
12183 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12184                                    ARMMMUIdx mmu_idx)
12185 {
12186     uint32_t flags = rebuild_hflags_aprofile(env);
12187 
12188     if (arm_el_is_aa64(env, 1)) {
12189         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12190     }
12191 
12192     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12193         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12194         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12195     }
12196 
12197     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12198 }
12199 
12200 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12201                                    ARMMMUIdx mmu_idx)
12202 {
12203     uint32_t flags = rebuild_hflags_aprofile(env);
12204     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12205     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12206     uint64_t sctlr;
12207     int tbii, tbid;
12208 
12209     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12210 
12211     /* Get control bits for tagged addresses.  */
12212     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12213     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12214 
12215     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12216     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12217 
12218     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12219         int sve_el = sve_exception_el(env, el);
12220         uint32_t zcr_len;
12221 
12222         /*
12223          * If SVE is disabled, but FP is enabled,
12224          * then the effective len is 0.
12225          */
12226         if (sve_el != 0 && fp_el == 0) {
12227             zcr_len = 0;
12228         } else {
12229             zcr_len = sve_zcr_len_for_el(env, el);
12230         }
12231         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12232         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12233     }
12234 
12235     sctlr = regime_sctlr(env, stage1);
12236 
12237     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12238         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12239     }
12240 
12241     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12242         /*
12243          * In order to save space in flags, we record only whether
12244          * pauth is "inactive", meaning all insns are implemented as
12245          * a nop, or "active" when some action must be performed.
12246          * The decision of which action to take is left to a helper.
12247          */
12248         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12249             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12250         }
12251     }
12252 
12253     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12254         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12255         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12256             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12257         }
12258     }
12259 
12260     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12261     if (!(env->pstate & PSTATE_UAO)) {
12262         switch (mmu_idx) {
12263         case ARMMMUIdx_E10_1:
12264         case ARMMMUIdx_E10_1_PAN:
12265         case ARMMMUIdx_SE10_1:
12266         case ARMMMUIdx_SE10_1_PAN:
12267             /* TODO: ARMv8.3-NV */
12268             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12269             break;
12270         case ARMMMUIdx_E20_2:
12271         case ARMMMUIdx_E20_2_PAN:
12272             /* TODO: ARMv8.4-SecEL2 */
12273             /*
12274              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12275              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12276              */
12277             if (env->cp15.hcr_el2 & HCR_TGE) {
12278                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12279             }
12280             break;
12281         default:
12282             break;
12283         }
12284     }
12285 
12286     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12287 }
12288 
12289 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12290 {
12291     int el = arm_current_el(env);
12292     int fp_el = fp_exception_el(env, el);
12293     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12294 
12295     if (is_a64(env)) {
12296         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12297     } else if (arm_feature(env, ARM_FEATURE_M)) {
12298         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12299     } else {
12300         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12301     }
12302 }
12303 
12304 void arm_rebuild_hflags(CPUARMState *env)
12305 {
12306     env->hflags = rebuild_hflags_internal(env);
12307 }
12308 
12309 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12310 {
12311     int fp_el = fp_exception_el(env, el);
12312     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12313 
12314     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12315 }
12316 
12317 /*
12318  * If we have triggered a EL state change we can't rely on the
12319  * translator having passed it too us, we need to recompute.
12320  */
12321 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12322 {
12323     int el = arm_current_el(env);
12324     int fp_el = fp_exception_el(env, el);
12325     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12326     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12327 }
12328 
12329 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12330 {
12331     int fp_el = fp_exception_el(env, el);
12332     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12333 
12334     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12335 }
12336 
12337 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12338 {
12339     int fp_el = fp_exception_el(env, el);
12340     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12341 
12342     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12343 }
12344 
12345 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12346 {
12347 #ifdef CONFIG_DEBUG_TCG
12348     uint32_t env_flags_current = env->hflags;
12349     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12350 
12351     if (unlikely(env_flags_current != env_flags_rebuilt)) {
12352         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12353                 env_flags_current, env_flags_rebuilt);
12354         abort();
12355     }
12356 #endif
12357 }
12358 
12359 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12360                           target_ulong *cs_base, uint32_t *pflags)
12361 {
12362     uint32_t flags = env->hflags;
12363     uint32_t pstate_for_ss;
12364 
12365     *cs_base = 0;
12366     assert_hflags_rebuild_correctly(env);
12367 
12368     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
12369         *pc = env->pc;
12370         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12371             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
12372         }
12373         pstate_for_ss = env->pstate;
12374     } else {
12375         *pc = env->regs[15];
12376 
12377         if (arm_feature(env, ARM_FEATURE_M)) {
12378             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12379                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12380                 != env->v7m.secure) {
12381                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
12382             }
12383 
12384             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12385                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12386                  (env->v7m.secure &&
12387                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12388                 /*
12389                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12390                  * active FP context; we must create a new FP context before
12391                  * executing any FP insn.
12392                  */
12393                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
12394             }
12395 
12396             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12397             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12398                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
12399             }
12400         } else {
12401             /*
12402              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12403              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12404              */
12405             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12406                 flags = FIELD_DP32(flags, TBFLAG_A32,
12407                                    XSCALE_CPAR, env->cp15.c15_cpar);
12408             } else {
12409                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
12410                                    env->vfp.vec_len);
12411                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
12412                                    env->vfp.vec_stride);
12413             }
12414             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12415                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12416             }
12417         }
12418 
12419         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
12420         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
12421         pstate_for_ss = env->uncached_cpsr;
12422     }
12423 
12424     /*
12425      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12426      * states defined in the ARM ARM for software singlestep:
12427      *  SS_ACTIVE   PSTATE.SS   State
12428      *     0            x       Inactive (the TB flag for SS is always 0)
12429      *     1            0       Active-pending
12430      *     1            1       Active-not-pending
12431      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
12432      */
12433     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
12434         (pstate_for_ss & PSTATE_SS)) {
12435         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
12436     }
12437 
12438     *pflags = flags;
12439 }
12440 
12441 #ifdef TARGET_AARCH64
12442 /*
12443  * The manual says that when SVE is enabled and VQ is widened the
12444  * implementation is allowed to zero the previously inaccessible
12445  * portion of the registers.  The corollary to that is that when
12446  * SVE is enabled and VQ is narrowed we are also allowed to zero
12447  * the now inaccessible portion of the registers.
12448  *
12449  * The intent of this is that no predicate bit beyond VQ is ever set.
12450  * Which means that some operations on predicate registers themselves
12451  * may operate on full uint64_t or even unrolled across the maximum
12452  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12453  * may well be cheaper than conditionals to restrict the operation
12454  * to the relevant portion of a uint16_t[16].
12455  */
12456 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12457 {
12458     int i, j;
12459     uint64_t pmask;
12460 
12461     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12462     assert(vq <= env_archcpu(env)->sve_max_vq);
12463 
12464     /* Zap the high bits of the zregs.  */
12465     for (i = 0; i < 32; i++) {
12466         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12467     }
12468 
12469     /* Zap the high bits of the pregs and ffr.  */
12470     pmask = 0;
12471     if (vq & 3) {
12472         pmask = ~(-1ULL << (16 * (vq & 3)));
12473     }
12474     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12475         for (i = 0; i < 17; ++i) {
12476             env->vfp.pregs[i].p[j] &= pmask;
12477         }
12478         pmask = 0;
12479     }
12480 }
12481 
12482 /*
12483  * Notice a change in SVE vector size when changing EL.
12484  */
12485 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12486                            int new_el, bool el0_a64)
12487 {
12488     ARMCPU *cpu = env_archcpu(env);
12489     int old_len, new_len;
12490     bool old_a64, new_a64;
12491 
12492     /* Nothing to do if no SVE.  */
12493     if (!cpu_isar_feature(aa64_sve, cpu)) {
12494         return;
12495     }
12496 
12497     /* Nothing to do if FP is disabled in either EL.  */
12498     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12499         return;
12500     }
12501 
12502     /*
12503      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12504      * at ELx, or not available because the EL is in AArch32 state, then
12505      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12506      * has an effective value of 0".
12507      *
12508      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12509      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12510      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12511      * we already have the correct register contents when encountering the
12512      * vq0->vq0 transition between EL0->EL1.
12513      */
12514     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12515     old_len = (old_a64 && !sve_exception_el(env, old_el)
12516                ? sve_zcr_len_for_el(env, old_el) : 0);
12517     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12518     new_len = (new_a64 && !sve_exception_el(env, new_el)
12519                ? sve_zcr_len_for_el(env, new_el) : 0);
12520 
12521     /* When changing vector length, clear inaccessible state.  */
12522     if (new_len < old_len) {
12523         aarch64_sve_narrow_vq(env, new_len + 1);
12524     }
12525 }
12526 #endif
12527