xref: /qemu/target/arm/helper.c (revision e66e665f)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/host-utils.h"
17 #include "qemu/main-loop.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "semihosting/semihost.h"
25 #include "sysemu/cpus.h"
26 #include "sysemu/cpu-timers.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #include "semihosting/common-semi.h"
37 #endif
38 
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */
41 
42 #ifndef CONFIG_USER_ONLY
43 
44 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
45                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
46                                bool s1_is_el0,
47                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
48                                target_ulong *page_size_ptr,
49                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
50     __attribute__((nonnull));
51 #endif
52 
53 static void switch_mode(CPUARMState *env, int mode);
54 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
55 
56 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
57 {
58     assert(ri->fieldoffset);
59     if (cpreg_field_is_64bit(ri)) {
60         return CPREG_FIELD64(env, ri);
61     } else {
62         return CPREG_FIELD32(env, ri);
63     }
64 }
65 
66 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
67                       uint64_t value)
68 {
69     assert(ri->fieldoffset);
70     if (cpreg_field_is_64bit(ri)) {
71         CPREG_FIELD64(env, ri) = value;
72     } else {
73         CPREG_FIELD32(env, ri) = value;
74     }
75 }
76 
77 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
78 {
79     return (char *)env + ri->fieldoffset;
80 }
81 
82 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
83 {
84     /* Raw read of a coprocessor register (as needed for migration, etc). */
85     if (ri->type & ARM_CP_CONST) {
86         return ri->resetvalue;
87     } else if (ri->raw_readfn) {
88         return ri->raw_readfn(env, ri);
89     } else if (ri->readfn) {
90         return ri->readfn(env, ri);
91     } else {
92         return raw_read(env, ri);
93     }
94 }
95 
96 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
97                              uint64_t v)
98 {
99     /* Raw write of a coprocessor register (as needed for migration, etc).
100      * Note that constant registers are treated as write-ignored; the
101      * caller should check for success by whether a readback gives the
102      * value written.
103      */
104     if (ri->type & ARM_CP_CONST) {
105         return;
106     } else if (ri->raw_writefn) {
107         ri->raw_writefn(env, ri, v);
108     } else if (ri->writefn) {
109         ri->writefn(env, ri, v);
110     } else {
111         raw_write(env, ri, v);
112     }
113 }
114 
115 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
116 {
117    /* Return true if the regdef would cause an assertion if you called
118     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
119     * program bug for it not to have the NO_RAW flag).
120     * NB that returning false here doesn't necessarily mean that calling
121     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
122     * read/write access functions which are safe for raw use" from "has
123     * read/write access functions which have side effects but has forgotten
124     * to provide raw access functions".
125     * The tests here line up with the conditions in read/write_raw_cp_reg()
126     * and assertions in raw_read()/raw_write().
127     */
128     if ((ri->type & ARM_CP_CONST) ||
129         ri->fieldoffset ||
130         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
131         return false;
132     }
133     return true;
134 }
135 
136 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
137 {
138     /* Write the coprocessor state from cpu->env to the (index,value) list. */
139     int i;
140     bool ok = true;
141 
142     for (i = 0; i < cpu->cpreg_array_len; i++) {
143         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
144         const ARMCPRegInfo *ri;
145         uint64_t newval;
146 
147         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
148         if (!ri) {
149             ok = false;
150             continue;
151         }
152         if (ri->type & ARM_CP_NO_RAW) {
153             continue;
154         }
155 
156         newval = read_raw_cp_reg(&cpu->env, ri);
157         if (kvm_sync) {
158             /*
159              * Only sync if the previous list->cpustate sync succeeded.
160              * Rather than tracking the success/failure state for every
161              * item in the list, we just recheck "does the raw write we must
162              * have made in write_list_to_cpustate() read back OK" here.
163              */
164             uint64_t oldval = cpu->cpreg_values[i];
165 
166             if (oldval == newval) {
167                 continue;
168             }
169 
170             write_raw_cp_reg(&cpu->env, ri, oldval);
171             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
172                 continue;
173             }
174 
175             write_raw_cp_reg(&cpu->env, ri, newval);
176         }
177         cpu->cpreg_values[i] = newval;
178     }
179     return ok;
180 }
181 
182 bool write_list_to_cpustate(ARMCPU *cpu)
183 {
184     int i;
185     bool ok = true;
186 
187     for (i = 0; i < cpu->cpreg_array_len; i++) {
188         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
189         uint64_t v = cpu->cpreg_values[i];
190         const ARMCPRegInfo *ri;
191 
192         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
193         if (!ri) {
194             ok = false;
195             continue;
196         }
197         if (ri->type & ARM_CP_NO_RAW) {
198             continue;
199         }
200         /* Write value and confirm it reads back as written
201          * (to catch read-only registers and partially read-only
202          * registers where the incoming migration value doesn't match)
203          */
204         write_raw_cp_reg(&cpu->env, ri, v);
205         if (read_raw_cp_reg(&cpu->env, ri) != v) {
206             ok = false;
207         }
208     }
209     return ok;
210 }
211 
212 static void add_cpreg_to_list(gpointer key, gpointer opaque)
213 {
214     ARMCPU *cpu = opaque;
215     uint64_t regidx;
216     const ARMCPRegInfo *ri;
217 
218     regidx = *(uint32_t *)key;
219     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
220 
221     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
222         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
223         /* The value array need not be initialized at this point */
224         cpu->cpreg_array_len++;
225     }
226 }
227 
228 static void count_cpreg(gpointer key, gpointer opaque)
229 {
230     ARMCPU *cpu = opaque;
231     uint64_t regidx;
232     const ARMCPRegInfo *ri;
233 
234     regidx = *(uint32_t *)key;
235     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
236 
237     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
238         cpu->cpreg_array_len++;
239     }
240 }
241 
242 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
243 {
244     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
245     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
246 
247     if (aidx > bidx) {
248         return 1;
249     }
250     if (aidx < bidx) {
251         return -1;
252     }
253     return 0;
254 }
255 
256 void init_cpreg_list(ARMCPU *cpu)
257 {
258     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
259      * Note that we require cpreg_tuples[] to be sorted by key ID.
260      */
261     GList *keys;
262     int arraylen;
263 
264     keys = g_hash_table_get_keys(cpu->cp_regs);
265     keys = g_list_sort(keys, cpreg_key_compare);
266 
267     cpu->cpreg_array_len = 0;
268 
269     g_list_foreach(keys, count_cpreg, cpu);
270 
271     arraylen = cpu->cpreg_array_len;
272     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
273     cpu->cpreg_values = g_new(uint64_t, arraylen);
274     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
275     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
276     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
277     cpu->cpreg_array_len = 0;
278 
279     g_list_foreach(keys, add_cpreg_to_list, cpu);
280 
281     assert(cpu->cpreg_array_len == arraylen);
282 
283     g_list_free(keys);
284 }
285 
286 /*
287  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
288  */
289 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
290                                         const ARMCPRegInfo *ri,
291                                         bool isread)
292 {
293     if (!is_a64(env) && arm_current_el(env) == 3 &&
294         arm_is_secure_below_el3(env)) {
295         return CP_ACCESS_TRAP_UNCATEGORIZED;
296     }
297     return CP_ACCESS_OK;
298 }
299 
300 /* Some secure-only AArch32 registers trap to EL3 if used from
301  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
302  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
303  * We assume that the .access field is set to PL1_RW.
304  */
305 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
306                                             const ARMCPRegInfo *ri,
307                                             bool isread)
308 {
309     if (arm_current_el(env) == 3) {
310         return CP_ACCESS_OK;
311     }
312     if (arm_is_secure_below_el3(env)) {
313         if (env->cp15.scr_el3 & SCR_EEL2) {
314             return CP_ACCESS_TRAP_EL2;
315         }
316         return CP_ACCESS_TRAP_EL3;
317     }
318     /* This will be EL1 NS and EL2 NS, which just UNDEF */
319     return CP_ACCESS_TRAP_UNCATEGORIZED;
320 }
321 
322 static uint64_t arm_mdcr_el2_eff(CPUARMState *env)
323 {
324     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
325 }
326 
327 /* Check for traps to "powerdown debug" registers, which are controlled
328  * by MDCR.TDOSA
329  */
330 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
331                                    bool isread)
332 {
333     int el = arm_current_el(env);
334     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
335     bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
336         (arm_hcr_el2_eff(env) & HCR_TGE);
337 
338     if (el < 2 && mdcr_el2_tdosa) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
342         return CP_ACCESS_TRAP_EL3;
343     }
344     return CP_ACCESS_OK;
345 }
346 
347 /* Check for traps to "debug ROM" registers, which are controlled
348  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
349  */
350 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
351                                   bool isread)
352 {
353     int el = arm_current_el(env);
354     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
355     bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
356         (arm_hcr_el2_eff(env) & HCR_TGE);
357 
358     if (el < 2 && mdcr_el2_tdra) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
362         return CP_ACCESS_TRAP_EL3;
363     }
364     return CP_ACCESS_OK;
365 }
366 
367 /* Check for traps to general debug registers, which are controlled
368  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
369  */
370 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
371                                   bool isread)
372 {
373     int el = arm_current_el(env);
374     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
375     bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
376         (arm_hcr_el2_eff(env) & HCR_TGE);
377 
378     if (el < 2 && mdcr_el2_tda) {
379         return CP_ACCESS_TRAP_EL2;
380     }
381     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
382         return CP_ACCESS_TRAP_EL3;
383     }
384     return CP_ACCESS_OK;
385 }
386 
387 /* Check for traps to performance monitor registers, which are controlled
388  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
389  */
390 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
391                                  bool isread)
392 {
393     int el = arm_current_el(env);
394     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
395 
396     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
397         return CP_ACCESS_TRAP_EL2;
398     }
399     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
400         return CP_ACCESS_TRAP_EL3;
401     }
402     return CP_ACCESS_OK;
403 }
404 
405 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
406 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
407                                       bool isread)
408 {
409     if (arm_current_el(env) == 1) {
410         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
411         if (arm_hcr_el2_eff(env) & trap) {
412             return CP_ACCESS_TRAP_EL2;
413         }
414     }
415     return CP_ACCESS_OK;
416 }
417 
418 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
419 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
420                                  bool isread)
421 {
422     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
423         return CP_ACCESS_TRAP_EL2;
424     }
425     return CP_ACCESS_OK;
426 }
427 
428 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
429 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
433         return CP_ACCESS_TRAP_EL2;
434     }
435     return CP_ACCESS_OK;
436 }
437 
438 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
439 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
440                                   bool isread)
441 {
442     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
443         return CP_ACCESS_TRAP_EL2;
444     }
445     return CP_ACCESS_OK;
446 }
447 
448 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
449 {
450     ARMCPU *cpu = env_archcpu(env);
451 
452     raw_write(env, ri, value);
453     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
454 }
455 
456 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
457 {
458     ARMCPU *cpu = env_archcpu(env);
459 
460     if (raw_read(env, ri) != value) {
461         /* Unlike real hardware the qemu TLB uses virtual addresses,
462          * not modified virtual addresses, so this causes a TLB flush.
463          */
464         tlb_flush(CPU(cpu));
465         raw_write(env, ri, value);
466     }
467 }
468 
469 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
470                              uint64_t value)
471 {
472     ARMCPU *cpu = env_archcpu(env);
473 
474     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
475         && !extended_addresses_enabled(env)) {
476         /* For VMSA (when not using the LPAE long descriptor page table
477          * format) this register includes the ASID, so do a TLB flush.
478          * For PMSA it is purely a process ID and no action is needed.
479          */
480         tlb_flush(CPU(cpu));
481     }
482     raw_write(env, ri, value);
483 }
484 
485 /* IS variants of TLB operations must affect all cores */
486 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
487                              uint64_t value)
488 {
489     CPUState *cs = env_cpu(env);
490 
491     tlb_flush_all_cpus_synced(cs);
492 }
493 
494 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
495                              uint64_t value)
496 {
497     CPUState *cs = env_cpu(env);
498 
499     tlb_flush_all_cpus_synced(cs);
500 }
501 
502 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
503                              uint64_t value)
504 {
505     CPUState *cs = env_cpu(env);
506 
507     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
508 }
509 
510 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
511                              uint64_t value)
512 {
513     CPUState *cs = env_cpu(env);
514 
515     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
516 }
517 
518 /*
519  * Non-IS variants of TLB operations are upgraded to
520  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
521  * force broadcast of these operations.
522  */
523 static bool tlb_force_broadcast(CPUARMState *env)
524 {
525     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
526 }
527 
528 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
529                           uint64_t value)
530 {
531     /* Invalidate all (TLBIALL) */
532     CPUState *cs = env_cpu(env);
533 
534     if (tlb_force_broadcast(env)) {
535         tlb_flush_all_cpus_synced(cs);
536     } else {
537         tlb_flush(cs);
538     }
539 }
540 
541 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
542                           uint64_t value)
543 {
544     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
545     CPUState *cs = env_cpu(env);
546 
547     value &= TARGET_PAGE_MASK;
548     if (tlb_force_broadcast(env)) {
549         tlb_flush_page_all_cpus_synced(cs, value);
550     } else {
551         tlb_flush_page(cs, value);
552     }
553 }
554 
555 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
556                            uint64_t value)
557 {
558     /* Invalidate by ASID (TLBIASID) */
559     CPUState *cs = env_cpu(env);
560 
561     if (tlb_force_broadcast(env)) {
562         tlb_flush_all_cpus_synced(cs);
563     } else {
564         tlb_flush(cs);
565     }
566 }
567 
568 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                            uint64_t value)
570 {
571     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
572     CPUState *cs = env_cpu(env);
573 
574     value &= TARGET_PAGE_MASK;
575     if (tlb_force_broadcast(env)) {
576         tlb_flush_page_all_cpus_synced(cs, value);
577     } else {
578         tlb_flush_page(cs, value);
579     }
580 }
581 
582 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586 
587     tlb_flush_by_mmuidx(cs,
588                         ARMMMUIdxBit_E10_1 |
589                         ARMMMUIdxBit_E10_1_PAN |
590                         ARMMMUIdxBit_E10_0);
591 }
592 
593 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
594                                   uint64_t value)
595 {
596     CPUState *cs = env_cpu(env);
597 
598     tlb_flush_by_mmuidx_all_cpus_synced(cs,
599                                         ARMMMUIdxBit_E10_1 |
600                                         ARMMMUIdxBit_E10_1_PAN |
601                                         ARMMMUIdxBit_E10_0);
602 }
603 
604 
605 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
606                               uint64_t value)
607 {
608     CPUState *cs = env_cpu(env);
609 
610     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
611 }
612 
613 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
614                                  uint64_t value)
615 {
616     CPUState *cs = env_cpu(env);
617 
618     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
619 }
620 
621 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
622                               uint64_t value)
623 {
624     CPUState *cs = env_cpu(env);
625     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
626 
627     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
628 }
629 
630 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
631                                  uint64_t value)
632 {
633     CPUState *cs = env_cpu(env);
634     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
635 
636     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
637                                              ARMMMUIdxBit_E2);
638 }
639 
640 static const ARMCPRegInfo cp_reginfo[] = {
641     /* Define the secure and non-secure FCSE identifier CP registers
642      * separately because there is no secure bank in V8 (no _EL3).  This allows
643      * the secure register to be properly reset and migrated. There is also no
644      * v8 EL1 version of the register so the non-secure instance stands alone.
645      */
646     { .name = "FCSEIDR",
647       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
648       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
649       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
650       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
651     { .name = "FCSEIDR_S",
652       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
653       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
654       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
655       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
656     /* Define the secure and non-secure context identifier CP registers
657      * separately because there is no secure bank in V8 (no _EL3).  This allows
658      * the secure register to be properly reset and migrated.  In the
659      * non-secure case, the 32-bit register will have reset and migration
660      * disabled during registration as it is handled by the 64-bit instance.
661      */
662     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
663       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
664       .access = PL1_RW, .accessfn = access_tvm_trvm,
665       .secure = ARM_CP_SECSTATE_NS,
666       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
667       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
668     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
670       .access = PL1_RW, .accessfn = access_tvm_trvm,
671       .secure = ARM_CP_SECSTATE_S,
672       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
673       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
674     REGINFO_SENTINEL
675 };
676 
677 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
678     /* NB: Some of these registers exist in v8 but with more precise
679      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
680      */
681     /* MMU Domain access control / MPU write buffer control */
682     { .name = "DACR",
683       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
684       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
685       .writefn = dacr_write, .raw_writefn = raw_write,
686       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
687                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
688     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
689      * For v6 and v5, these mappings are overly broad.
690      */
691     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
692       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
693     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
694       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
695     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
696       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
697     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
698       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
699     /* Cache maintenance ops; some of this space may be overridden later. */
700     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
701       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
702       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
703     REGINFO_SENTINEL
704 };
705 
706 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
707     /* Not all pre-v6 cores implemented this WFI, so this is slightly
708      * over-broad.
709      */
710     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
711       .access = PL1_W, .type = ARM_CP_WFI },
712     REGINFO_SENTINEL
713 };
714 
715 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
716     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
717      * is UNPREDICTABLE; we choose to NOP as most implementations do).
718      */
719     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
720       .access = PL1_W, .type = ARM_CP_WFI },
721     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
722      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
723      * OMAPCP will override this space.
724      */
725     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
726       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
727       .resetvalue = 0 },
728     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
729       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
730       .resetvalue = 0 },
731     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
732     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
733       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
734       .resetvalue = 0 },
735     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
736      * implementing it as RAZ means the "debug architecture version" bits
737      * will read as a reserved value, which should cause Linux to not try
738      * to use the debug hardware.
739      */
740     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
741       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
742     /* MMU TLB control. Note that the wildcarding means we cover not just
743      * the unified TLB ops but also the dside/iside/inner-shareable variants.
744      */
745     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
746       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
747       .type = ARM_CP_NO_RAW },
748     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
749       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
750       .type = ARM_CP_NO_RAW },
751     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
752       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
753       .type = ARM_CP_NO_RAW },
754     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
755       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
756       .type = ARM_CP_NO_RAW },
757     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
758       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
759     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
760       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
761     REGINFO_SENTINEL
762 };
763 
764 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
765                         uint64_t value)
766 {
767     uint32_t mask = 0;
768 
769     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
770     if (!arm_feature(env, ARM_FEATURE_V8)) {
771         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
772          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
773          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
774          */
775         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
776             /* VFP coprocessor: cp10 & cp11 [23:20] */
777             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
778 
779             if (!arm_feature(env, ARM_FEATURE_NEON)) {
780                 /* ASEDIS [31] bit is RAO/WI */
781                 value |= (1 << 31);
782             }
783 
784             /* VFPv3 and upwards with NEON implement 32 double precision
785              * registers (D0-D31).
786              */
787             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
788                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
789                 value |= (1 << 30);
790             }
791         }
792         value &= mask;
793     }
794 
795     /*
796      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
797      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
798      */
799     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
800         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
801         value &= ~(0xf << 20);
802         value |= env->cp15.cpacr_el1 & (0xf << 20);
803     }
804 
805     env->cp15.cpacr_el1 = value;
806 }
807 
808 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
809 {
810     /*
811      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
812      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
813      */
814     uint64_t value = env->cp15.cpacr_el1;
815 
816     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
817         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
818         value &= ~(0xf << 20);
819     }
820     return value;
821 }
822 
823 
824 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
825 {
826     /* Call cpacr_write() so that we reset with the correct RAO bits set
827      * for our CPU features.
828      */
829     cpacr_write(env, ri, 0);
830 }
831 
832 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                    bool isread)
834 {
835     if (arm_feature(env, ARM_FEATURE_V8)) {
836         /* Check if CPACR accesses are to be trapped to EL2 */
837         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
838             (env->cp15.cptr_el[2] & CPTR_TCPAC)) {
839             return CP_ACCESS_TRAP_EL2;
840         /* Check if CPACR accesses are to be trapped to EL3 */
841         } else if (arm_current_el(env) < 3 &&
842                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
843             return CP_ACCESS_TRAP_EL3;
844         }
845     }
846 
847     return CP_ACCESS_OK;
848 }
849 
850 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
851                                   bool isread)
852 {
853     /* Check if CPTR accesses are set to trap to EL3 */
854     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
855         return CP_ACCESS_TRAP_EL3;
856     }
857 
858     return CP_ACCESS_OK;
859 }
860 
861 static const ARMCPRegInfo v6_cp_reginfo[] = {
862     /* prefetch by MVA in v6, NOP in v7 */
863     { .name = "MVA_prefetch",
864       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
865       .access = PL1_W, .type = ARM_CP_NOP },
866     /* We need to break the TB after ISB to execute self-modifying code
867      * correctly and also to take any pending interrupts immediately.
868      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
869      */
870     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
871       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
872     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
873       .access = PL0_W, .type = ARM_CP_NOP },
874     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
875       .access = PL0_W, .type = ARM_CP_NOP },
876     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
877       .access = PL1_RW, .accessfn = access_tvm_trvm,
878       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
879                              offsetof(CPUARMState, cp15.ifar_ns) },
880       .resetvalue = 0, },
881     /* Watchpoint Fault Address Register : should actually only be present
882      * for 1136, 1176, 11MPCore.
883      */
884     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
885       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
886     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
887       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
888       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
889       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
890     REGINFO_SENTINEL
891 };
892 
893 typedef struct pm_event {
894     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
895     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
896     bool (*supported)(CPUARMState *);
897     /*
898      * Retrieve the current count of the underlying event. The programmed
899      * counters hold a difference from the return value from this function
900      */
901     uint64_t (*get_count)(CPUARMState *);
902     /*
903      * Return how many nanoseconds it will take (at a minimum) for count events
904      * to occur. A negative value indicates the counter will never overflow, or
905      * that the counter has otherwise arranged for the overflow bit to be set
906      * and the PMU interrupt to be raised on overflow.
907      */
908     int64_t (*ns_per_count)(uint64_t);
909 } pm_event;
910 
911 static bool event_always_supported(CPUARMState *env)
912 {
913     return true;
914 }
915 
916 static uint64_t swinc_get_count(CPUARMState *env)
917 {
918     /*
919      * SW_INCR events are written directly to the pmevcntr's by writes to
920      * PMSWINC, so there is no underlying count maintained by the PMU itself
921      */
922     return 0;
923 }
924 
925 static int64_t swinc_ns_per(uint64_t ignored)
926 {
927     return -1;
928 }
929 
930 /*
931  * Return the underlying cycle count for the PMU cycle counters. If we're in
932  * usermode, simply return 0.
933  */
934 static uint64_t cycles_get_count(CPUARMState *env)
935 {
936 #ifndef CONFIG_USER_ONLY
937     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
938                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
939 #else
940     return cpu_get_host_ticks();
941 #endif
942 }
943 
944 #ifndef CONFIG_USER_ONLY
945 static int64_t cycles_ns_per(uint64_t cycles)
946 {
947     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
948 }
949 
950 static bool instructions_supported(CPUARMState *env)
951 {
952     return icount_enabled() == 1; /* Precise instruction counting */
953 }
954 
955 static uint64_t instructions_get_count(CPUARMState *env)
956 {
957     return (uint64_t)icount_get_raw();
958 }
959 
960 static int64_t instructions_ns_per(uint64_t icount)
961 {
962     return icount_to_ns((int64_t)icount);
963 }
964 #endif
965 
966 static bool pmu_8_1_events_supported(CPUARMState *env)
967 {
968     /* For events which are supported in any v8.1 PMU */
969     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
970 }
971 
972 static bool pmu_8_4_events_supported(CPUARMState *env)
973 {
974     /* For events which are supported in any v8.1 PMU */
975     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
976 }
977 
978 static uint64_t zero_event_get_count(CPUARMState *env)
979 {
980     /* For events which on QEMU never fire, so their count is always zero */
981     return 0;
982 }
983 
984 static int64_t zero_event_ns_per(uint64_t cycles)
985 {
986     /* An event which never fires can never overflow */
987     return -1;
988 }
989 
990 static const pm_event pm_events[] = {
991     { .number = 0x000, /* SW_INCR */
992       .supported = event_always_supported,
993       .get_count = swinc_get_count,
994       .ns_per_count = swinc_ns_per,
995     },
996 #ifndef CONFIG_USER_ONLY
997     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
998       .supported = instructions_supported,
999       .get_count = instructions_get_count,
1000       .ns_per_count = instructions_ns_per,
1001     },
1002     { .number = 0x011, /* CPU_CYCLES, Cycle */
1003       .supported = event_always_supported,
1004       .get_count = cycles_get_count,
1005       .ns_per_count = cycles_ns_per,
1006     },
1007 #endif
1008     { .number = 0x023, /* STALL_FRONTEND */
1009       .supported = pmu_8_1_events_supported,
1010       .get_count = zero_event_get_count,
1011       .ns_per_count = zero_event_ns_per,
1012     },
1013     { .number = 0x024, /* STALL_BACKEND */
1014       .supported = pmu_8_1_events_supported,
1015       .get_count = zero_event_get_count,
1016       .ns_per_count = zero_event_ns_per,
1017     },
1018     { .number = 0x03c, /* STALL */
1019       .supported = pmu_8_4_events_supported,
1020       .get_count = zero_event_get_count,
1021       .ns_per_count = zero_event_ns_per,
1022     },
1023 };
1024 
1025 /*
1026  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1027  * events (i.e. the statistical profiling extension), this implementation
1028  * should first be updated to something sparse instead of the current
1029  * supported_event_map[] array.
1030  */
1031 #define MAX_EVENT_ID 0x3c
1032 #define UNSUPPORTED_EVENT UINT16_MAX
1033 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1034 
1035 /*
1036  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1037  * of ARM event numbers to indices in our pm_events array.
1038  *
1039  * Note: Events in the 0x40XX range are not currently supported.
1040  */
1041 void pmu_init(ARMCPU *cpu)
1042 {
1043     unsigned int i;
1044 
1045     /*
1046      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1047      * events to them
1048      */
1049     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1050         supported_event_map[i] = UNSUPPORTED_EVENT;
1051     }
1052     cpu->pmceid0 = 0;
1053     cpu->pmceid1 = 0;
1054 
1055     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1056         const pm_event *cnt = &pm_events[i];
1057         assert(cnt->number <= MAX_EVENT_ID);
1058         /* We do not currently support events in the 0x40xx range */
1059         assert(cnt->number <= 0x3f);
1060 
1061         if (cnt->supported(&cpu->env)) {
1062             supported_event_map[cnt->number] = i;
1063             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1064             if (cnt->number & 0x20) {
1065                 cpu->pmceid1 |= event_mask;
1066             } else {
1067                 cpu->pmceid0 |= event_mask;
1068             }
1069         }
1070     }
1071 }
1072 
1073 /*
1074  * Check at runtime whether a PMU event is supported for the current machine
1075  */
1076 static bool event_supported(uint16_t number)
1077 {
1078     if (number > MAX_EVENT_ID) {
1079         return false;
1080     }
1081     return supported_event_map[number] != UNSUPPORTED_EVENT;
1082 }
1083 
1084 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1085                                    bool isread)
1086 {
1087     /* Performance monitor registers user accessibility is controlled
1088      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1089      * trapping to EL2 or EL3 for other accesses.
1090      */
1091     int el = arm_current_el(env);
1092     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1093 
1094     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1095         return CP_ACCESS_TRAP;
1096     }
1097     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1098         return CP_ACCESS_TRAP_EL2;
1099     }
1100     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1101         return CP_ACCESS_TRAP_EL3;
1102     }
1103 
1104     return CP_ACCESS_OK;
1105 }
1106 
1107 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1108                                            const ARMCPRegInfo *ri,
1109                                            bool isread)
1110 {
1111     /* ER: event counter read trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1115         && isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1123                                          const ARMCPRegInfo *ri,
1124                                          bool isread)
1125 {
1126     /* SW: software increment write trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1130         && !isread) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
1137 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1138                                         const ARMCPRegInfo *ri,
1139                                         bool isread)
1140 {
1141     /* ER: event counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1152                                          const ARMCPRegInfo *ri,
1153                                          bool isread)
1154 {
1155     /* CR: cycle counter read trap control */
1156     if (arm_feature(env, ARM_FEATURE_V8)
1157         && arm_current_el(env) == 0
1158         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1159         && isread) {
1160         return CP_ACCESS_OK;
1161     }
1162 
1163     return pmreg_access(env, ri, isread);
1164 }
1165 
1166 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1167  * the current EL, security state, and register configuration.
1168  */
1169 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1170 {
1171     uint64_t filter;
1172     bool e, p, u, nsk, nsu, nsh, m;
1173     bool enabled, prohibited, filtered;
1174     bool secure = arm_is_secure(env);
1175     int el = arm_current_el(env);
1176     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1177     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1178 
1179     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1180         return false;
1181     }
1182 
1183     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1184             (counter < hpmn || counter == 31)) {
1185         e = env->cp15.c9_pmcr & PMCRE;
1186     } else {
1187         e = mdcr_el2 & MDCR_HPME;
1188     }
1189     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1190 
1191     if (!secure) {
1192         if (el == 2 && (counter < hpmn || counter == 31)) {
1193             prohibited = mdcr_el2 & MDCR_HPMD;
1194         } else {
1195             prohibited = false;
1196         }
1197     } else {
1198         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1199            !(env->cp15.mdcr_el3 & MDCR_SPME);
1200     }
1201 
1202     if (prohibited && counter == 31) {
1203         prohibited = env->cp15.c9_pmcr & PMCRDP;
1204     }
1205 
1206     if (counter == 31) {
1207         filter = env->cp15.pmccfiltr_el0;
1208     } else {
1209         filter = env->cp15.c14_pmevtyper[counter];
1210     }
1211 
1212     p   = filter & PMXEVTYPER_P;
1213     u   = filter & PMXEVTYPER_U;
1214     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1215     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1216     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1217     m   = arm_el_is_aa64(env, 1) &&
1218               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1219 
1220     if (el == 0) {
1221         filtered = secure ? u : u != nsu;
1222     } else if (el == 1) {
1223         filtered = secure ? p : p != nsk;
1224     } else if (el == 2) {
1225         filtered = !nsh;
1226     } else { /* EL3 */
1227         filtered = m != p;
1228     }
1229 
1230     if (counter != 31) {
1231         /*
1232          * If not checking PMCCNTR, ensure the counter is setup to an event we
1233          * support
1234          */
1235         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1236         if (!event_supported(event)) {
1237             return false;
1238         }
1239     }
1240 
1241     return enabled && !prohibited && !filtered;
1242 }
1243 
1244 static void pmu_update_irq(CPUARMState *env)
1245 {
1246     ARMCPU *cpu = env_archcpu(env);
1247     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1248             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1249 }
1250 
1251 /*
1252  * Ensure c15_ccnt is the guest-visible count so that operations such as
1253  * enabling/disabling the counter or filtering, modifying the count itself,
1254  * etc. can be done logically. This is essentially a no-op if the counter is
1255  * not enabled at the time of the call.
1256  */
1257 static void pmccntr_op_start(CPUARMState *env)
1258 {
1259     uint64_t cycles = cycles_get_count(env);
1260 
1261     if (pmu_counter_enabled(env, 31)) {
1262         uint64_t eff_cycles = cycles;
1263         if (env->cp15.c9_pmcr & PMCRD) {
1264             /* Increment once every 64 processor clock cycles */
1265             eff_cycles /= 64;
1266         }
1267 
1268         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1269 
1270         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1271                                  1ull << 63 : 1ull << 31;
1272         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1273             env->cp15.c9_pmovsr |= (1 << 31);
1274             pmu_update_irq(env);
1275         }
1276 
1277         env->cp15.c15_ccnt = new_pmccntr;
1278     }
1279     env->cp15.c15_ccnt_delta = cycles;
1280 }
1281 
1282 /*
1283  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1284  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1285  * pmccntr_op_start.
1286  */
1287 static void pmccntr_op_finish(CPUARMState *env)
1288 {
1289     if (pmu_counter_enabled(env, 31)) {
1290 #ifndef CONFIG_USER_ONLY
1291         /* Calculate when the counter will next overflow */
1292         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1293         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1294             remaining_cycles = (uint32_t)remaining_cycles;
1295         }
1296         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1297 
1298         if (overflow_in > 0) {
1299             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1300                 overflow_in;
1301             ARMCPU *cpu = env_archcpu(env);
1302             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1303         }
1304 #endif
1305 
1306         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1307         if (env->cp15.c9_pmcr & PMCRD) {
1308             /* Increment once every 64 processor clock cycles */
1309             prev_cycles /= 64;
1310         }
1311         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1312     }
1313 }
1314 
1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1316 {
1317 
1318     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1319     uint64_t count = 0;
1320     if (event_supported(event)) {
1321         uint16_t event_idx = supported_event_map[event];
1322         count = pm_events[event_idx].get_count(env);
1323     }
1324 
1325     if (pmu_counter_enabled(env, counter)) {
1326         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1327 
1328         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1329             env->cp15.c9_pmovsr |= (1 << counter);
1330             pmu_update_irq(env);
1331         }
1332         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1333     }
1334     env->cp15.c14_pmevcntr_delta[counter] = count;
1335 }
1336 
1337 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1338 {
1339     if (pmu_counter_enabled(env, counter)) {
1340 #ifndef CONFIG_USER_ONLY
1341         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1342         uint16_t event_idx = supported_event_map[event];
1343         uint64_t delta = UINT32_MAX -
1344             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1345         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1346 
1347         if (overflow_in > 0) {
1348             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1349                 overflow_in;
1350             ARMCPU *cpu = env_archcpu(env);
1351             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1352         }
1353 #endif
1354 
1355         env->cp15.c14_pmevcntr_delta[counter] -=
1356             env->cp15.c14_pmevcntr[counter];
1357     }
1358 }
1359 
1360 void pmu_op_start(CPUARMState *env)
1361 {
1362     unsigned int i;
1363     pmccntr_op_start(env);
1364     for (i = 0; i < pmu_num_counters(env); i++) {
1365         pmevcntr_op_start(env, i);
1366     }
1367 }
1368 
1369 void pmu_op_finish(CPUARMState *env)
1370 {
1371     unsigned int i;
1372     pmccntr_op_finish(env);
1373     for (i = 0; i < pmu_num_counters(env); i++) {
1374         pmevcntr_op_finish(env, i);
1375     }
1376 }
1377 
1378 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1379 {
1380     pmu_op_start(&cpu->env);
1381 }
1382 
1383 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1384 {
1385     pmu_op_finish(&cpu->env);
1386 }
1387 
1388 void arm_pmu_timer_cb(void *opaque)
1389 {
1390     ARMCPU *cpu = opaque;
1391 
1392     /*
1393      * Update all the counter values based on the current underlying counts,
1394      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1395      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1396      * counter may expire.
1397      */
1398     pmu_op_start(&cpu->env);
1399     pmu_op_finish(&cpu->env);
1400 }
1401 
1402 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1403                        uint64_t value)
1404 {
1405     pmu_op_start(env);
1406 
1407     if (value & PMCRC) {
1408         /* The counter has been reset */
1409         env->cp15.c15_ccnt = 0;
1410     }
1411 
1412     if (value & PMCRP) {
1413         unsigned int i;
1414         for (i = 0; i < pmu_num_counters(env); i++) {
1415             env->cp15.c14_pmevcntr[i] = 0;
1416         }
1417     }
1418 
1419     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1420     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1421 
1422     pmu_op_finish(env);
1423 }
1424 
1425 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1426                           uint64_t value)
1427 {
1428     unsigned int i;
1429     for (i = 0; i < pmu_num_counters(env); i++) {
1430         /* Increment a counter's count iff: */
1431         if ((value & (1 << i)) && /* counter's bit is set */
1432                 /* counter is enabled and not filtered */
1433                 pmu_counter_enabled(env, i) &&
1434                 /* counter is SW_INCR */
1435                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1436             pmevcntr_op_start(env, i);
1437 
1438             /*
1439              * Detect if this write causes an overflow since we can't predict
1440              * PMSWINC overflows like we can for other events
1441              */
1442             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1443 
1444             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1445                 env->cp15.c9_pmovsr |= (1 << i);
1446                 pmu_update_irq(env);
1447             }
1448 
1449             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1450 
1451             pmevcntr_op_finish(env, i);
1452         }
1453     }
1454 }
1455 
1456 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1457 {
1458     uint64_t ret;
1459     pmccntr_op_start(env);
1460     ret = env->cp15.c15_ccnt;
1461     pmccntr_op_finish(env);
1462     return ret;
1463 }
1464 
1465 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1466                          uint64_t value)
1467 {
1468     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1469      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1470      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1471      * accessed.
1472      */
1473     env->cp15.c9_pmselr = value & 0x1f;
1474 }
1475 
1476 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1477                         uint64_t value)
1478 {
1479     pmccntr_op_start(env);
1480     env->cp15.c15_ccnt = value;
1481     pmccntr_op_finish(env);
1482 }
1483 
1484 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1485                             uint64_t value)
1486 {
1487     uint64_t cur_val = pmccntr_read(env, NULL);
1488 
1489     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1490 }
1491 
1492 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1493                             uint64_t value)
1494 {
1495     pmccntr_op_start(env);
1496     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1497     pmccntr_op_finish(env);
1498 }
1499 
1500 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1501                             uint64_t value)
1502 {
1503     pmccntr_op_start(env);
1504     /* M is not accessible from AArch32 */
1505     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1506         (value & PMCCFILTR);
1507     pmccntr_op_finish(env);
1508 }
1509 
1510 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1511 {
1512     /* M is not visible in AArch32 */
1513     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1514 }
1515 
1516 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1517                             uint64_t value)
1518 {
1519     value &= pmu_counter_mask(env);
1520     env->cp15.c9_pmcnten |= value;
1521 }
1522 
1523 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                              uint64_t value)
1525 {
1526     value &= pmu_counter_mask(env);
1527     env->cp15.c9_pmcnten &= ~value;
1528 }
1529 
1530 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1531                          uint64_t value)
1532 {
1533     value &= pmu_counter_mask(env);
1534     env->cp15.c9_pmovsr &= ~value;
1535     pmu_update_irq(env);
1536 }
1537 
1538 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1539                          uint64_t value)
1540 {
1541     value &= pmu_counter_mask(env);
1542     env->cp15.c9_pmovsr |= value;
1543     pmu_update_irq(env);
1544 }
1545 
1546 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1547                              uint64_t value, const uint8_t counter)
1548 {
1549     if (counter == 31) {
1550         pmccfiltr_write(env, ri, value);
1551     } else if (counter < pmu_num_counters(env)) {
1552         pmevcntr_op_start(env, counter);
1553 
1554         /*
1555          * If this counter's event type is changing, store the current
1556          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1557          * pmevcntr_op_finish has the correct baseline when it converts back to
1558          * a delta.
1559          */
1560         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1561             PMXEVTYPER_EVTCOUNT;
1562         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1563         if (old_event != new_event) {
1564             uint64_t count = 0;
1565             if (event_supported(new_event)) {
1566                 uint16_t event_idx = supported_event_map[new_event];
1567                 count = pm_events[event_idx].get_count(env);
1568             }
1569             env->cp15.c14_pmevcntr_delta[counter] = count;
1570         }
1571 
1572         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1573         pmevcntr_op_finish(env, counter);
1574     }
1575     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1576      * PMSELR value is equal to or greater than the number of implemented
1577      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1578      */
1579 }
1580 
1581 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1582                                const uint8_t counter)
1583 {
1584     if (counter == 31) {
1585         return env->cp15.pmccfiltr_el0;
1586     } else if (counter < pmu_num_counters(env)) {
1587         return env->cp15.c14_pmevtyper[counter];
1588     } else {
1589       /*
1590        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1591        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1592        */
1593         return 0;
1594     }
1595 }
1596 
1597 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1598                               uint64_t value)
1599 {
1600     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1601     pmevtyper_write(env, ri, value, counter);
1602 }
1603 
1604 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1605                                uint64_t value)
1606 {
1607     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1608     env->cp15.c14_pmevtyper[counter] = value;
1609 
1610     /*
1611      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1612      * pmu_op_finish calls when loading saved state for a migration. Because
1613      * we're potentially updating the type of event here, the value written to
1614      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1615      * different counter type. Therefore, we need to set this value to the
1616      * current count for the counter type we're writing so that pmu_op_finish
1617      * has the correct count for its calculation.
1618      */
1619     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1620     if (event_supported(event)) {
1621         uint16_t event_idx = supported_event_map[event];
1622         env->cp15.c14_pmevcntr_delta[counter] =
1623             pm_events[event_idx].get_count(env);
1624     }
1625 }
1626 
1627 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1628 {
1629     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1630     return pmevtyper_read(env, ri, counter);
1631 }
1632 
1633 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634                              uint64_t value)
1635 {
1636     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1637 }
1638 
1639 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1640 {
1641     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1642 }
1643 
1644 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1645                              uint64_t value, uint8_t counter)
1646 {
1647     if (counter < pmu_num_counters(env)) {
1648         pmevcntr_op_start(env, counter);
1649         env->cp15.c14_pmevcntr[counter] = value;
1650         pmevcntr_op_finish(env, counter);
1651     }
1652     /*
1653      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1654      * are CONSTRAINED UNPREDICTABLE.
1655      */
1656 }
1657 
1658 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1659                               uint8_t counter)
1660 {
1661     if (counter < pmu_num_counters(env)) {
1662         uint64_t ret;
1663         pmevcntr_op_start(env, counter);
1664         ret = env->cp15.c14_pmevcntr[counter];
1665         pmevcntr_op_finish(env, counter);
1666         return ret;
1667     } else {
1668       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1669        * are CONSTRAINED UNPREDICTABLE. */
1670         return 0;
1671     }
1672 }
1673 
1674 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1675                              uint64_t value)
1676 {
1677     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1678     pmevcntr_write(env, ri, value, counter);
1679 }
1680 
1681 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1682 {
1683     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1684     return pmevcntr_read(env, ri, counter);
1685 }
1686 
1687 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1688                              uint64_t value)
1689 {
1690     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1691     assert(counter < pmu_num_counters(env));
1692     env->cp15.c14_pmevcntr[counter] = value;
1693     pmevcntr_write(env, ri, value, counter);
1694 }
1695 
1696 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1697 {
1698     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1699     assert(counter < pmu_num_counters(env));
1700     return env->cp15.c14_pmevcntr[counter];
1701 }
1702 
1703 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1704                              uint64_t value)
1705 {
1706     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1707 }
1708 
1709 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1710 {
1711     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1712 }
1713 
1714 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1715                             uint64_t value)
1716 {
1717     if (arm_feature(env, ARM_FEATURE_V8)) {
1718         env->cp15.c9_pmuserenr = value & 0xf;
1719     } else {
1720         env->cp15.c9_pmuserenr = value & 1;
1721     }
1722 }
1723 
1724 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725                              uint64_t value)
1726 {
1727     /* We have no event counters so only the C bit can be changed */
1728     value &= pmu_counter_mask(env);
1729     env->cp15.c9_pminten |= value;
1730     pmu_update_irq(env);
1731 }
1732 
1733 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                              uint64_t value)
1735 {
1736     value &= pmu_counter_mask(env);
1737     env->cp15.c9_pminten &= ~value;
1738     pmu_update_irq(env);
1739 }
1740 
1741 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1742                        uint64_t value)
1743 {
1744     /* Note that even though the AArch64 view of this register has bits
1745      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1746      * architectural requirements for bits which are RES0 only in some
1747      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1748      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1749      */
1750     raw_write(env, ri, value & ~0x1FULL);
1751 }
1752 
1753 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1754 {
1755     /* Begin with base v8.0 state.  */
1756     uint32_t valid_mask = 0x3fff;
1757     ARMCPU *cpu = env_archcpu(env);
1758 
1759     if (ri->state == ARM_CP_STATE_AA64) {
1760         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1761             !cpu_isar_feature(aa64_aa32_el1, cpu)) {
1762                 value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1763         }
1764         valid_mask &= ~SCR_NET;
1765 
1766         if (cpu_isar_feature(aa64_lor, cpu)) {
1767             valid_mask |= SCR_TLOR;
1768         }
1769         if (cpu_isar_feature(aa64_pauth, cpu)) {
1770             valid_mask |= SCR_API | SCR_APK;
1771         }
1772         if (cpu_isar_feature(aa64_sel2, cpu)) {
1773             valid_mask |= SCR_EEL2;
1774         }
1775         if (cpu_isar_feature(aa64_mte, cpu)) {
1776             valid_mask |= SCR_ATA;
1777         }
1778     } else {
1779         valid_mask &= ~(SCR_RW | SCR_ST);
1780     }
1781 
1782     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1783         valid_mask &= ~SCR_HCE;
1784 
1785         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1786          * supported if EL2 exists. The bit is UNK/SBZP when
1787          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1788          * when EL2 is unavailable.
1789          * On ARMv8, this bit is always available.
1790          */
1791         if (arm_feature(env, ARM_FEATURE_V7) &&
1792             !arm_feature(env, ARM_FEATURE_V8)) {
1793             valid_mask &= ~SCR_SMD;
1794         }
1795     }
1796 
1797     /* Clear all-context RES0 bits.  */
1798     value &= valid_mask;
1799     raw_write(env, ri, value);
1800 }
1801 
1802 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1803 {
1804     /*
1805      * scr_write will set the RES1 bits on an AArch64-only CPU.
1806      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1807      */
1808     scr_write(env, ri, 0);
1809 }
1810 
1811 static CPAccessResult access_aa64_tid2(CPUARMState *env,
1812                                        const ARMCPRegInfo *ri,
1813                                        bool isread)
1814 {
1815     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
1816         return CP_ACCESS_TRAP_EL2;
1817     }
1818 
1819     return CP_ACCESS_OK;
1820 }
1821 
1822 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1823 {
1824     ARMCPU *cpu = env_archcpu(env);
1825 
1826     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1827      * bank
1828      */
1829     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1830                                         ri->secure & ARM_CP_SECSTATE_S);
1831 
1832     return cpu->ccsidr[index];
1833 }
1834 
1835 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1836                          uint64_t value)
1837 {
1838     raw_write(env, ri, value & 0xf);
1839 }
1840 
1841 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1842 {
1843     CPUState *cs = env_cpu(env);
1844     bool el1 = arm_current_el(env) == 1;
1845     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1846     uint64_t ret = 0;
1847 
1848     if (hcr_el2 & HCR_IMO) {
1849         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1850             ret |= CPSR_I;
1851         }
1852     } else {
1853         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1854             ret |= CPSR_I;
1855         }
1856     }
1857 
1858     if (hcr_el2 & HCR_FMO) {
1859         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1860             ret |= CPSR_F;
1861         }
1862     } else {
1863         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1864             ret |= CPSR_F;
1865         }
1866     }
1867 
1868     /* External aborts are not possible in QEMU so A bit is always clear */
1869     return ret;
1870 }
1871 
1872 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1873                                        bool isread)
1874 {
1875     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
1876         return CP_ACCESS_TRAP_EL2;
1877     }
1878 
1879     return CP_ACCESS_OK;
1880 }
1881 
1882 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
1883                                        bool isread)
1884 {
1885     if (arm_feature(env, ARM_FEATURE_V8)) {
1886         return access_aa64_tid1(env, ri, isread);
1887     }
1888 
1889     return CP_ACCESS_OK;
1890 }
1891 
1892 static const ARMCPRegInfo v7_cp_reginfo[] = {
1893     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1894     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1895       .access = PL1_W, .type = ARM_CP_NOP },
1896     /* Performance monitors are implementation defined in v7,
1897      * but with an ARM recommended set of registers, which we
1898      * follow.
1899      *
1900      * Performance registers fall into three categories:
1901      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1902      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1903      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1904      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1905      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1906      */
1907     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1908       .access = PL0_RW, .type = ARM_CP_ALIAS,
1909       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1910       .writefn = pmcntenset_write,
1911       .accessfn = pmreg_access,
1912       .raw_writefn = raw_write },
1913     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1914       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1915       .access = PL0_RW, .accessfn = pmreg_access,
1916       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1917       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1918     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1919       .access = PL0_RW,
1920       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1921       .accessfn = pmreg_access,
1922       .writefn = pmcntenclr_write,
1923       .type = ARM_CP_ALIAS },
1924     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1925       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1926       .access = PL0_RW, .accessfn = pmreg_access,
1927       .type = ARM_CP_ALIAS,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1929       .writefn = pmcntenclr_write },
1930     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1931       .access = PL0_RW, .type = ARM_CP_IO,
1932       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1933       .accessfn = pmreg_access,
1934       .writefn = pmovsr_write,
1935       .raw_writefn = raw_write },
1936     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1937       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1938       .access = PL0_RW, .accessfn = pmreg_access,
1939       .type = ARM_CP_ALIAS | ARM_CP_IO,
1940       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1941       .writefn = pmovsr_write,
1942       .raw_writefn = raw_write },
1943     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1944       .access = PL0_W, .accessfn = pmreg_access_swinc,
1945       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1946       .writefn = pmswinc_write },
1947     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
1948       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
1949       .access = PL0_W, .accessfn = pmreg_access_swinc,
1950       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1951       .writefn = pmswinc_write },
1952     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1953       .access = PL0_RW, .type = ARM_CP_ALIAS,
1954       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1955       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1956       .raw_writefn = raw_write},
1957     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1958       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1959       .access = PL0_RW, .accessfn = pmreg_access_selr,
1960       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1961       .writefn = pmselr_write, .raw_writefn = raw_write, },
1962     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1963       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1964       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1965       .accessfn = pmreg_access_ccntr },
1966     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1967       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1968       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1969       .type = ARM_CP_IO,
1970       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
1971       .readfn = pmccntr_read, .writefn = pmccntr_write,
1972       .raw_readfn = raw_read, .raw_writefn = raw_write, },
1973     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
1974       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
1975       .access = PL0_RW, .accessfn = pmreg_access,
1976       .type = ARM_CP_ALIAS | ARM_CP_IO,
1977       .resetvalue = 0, },
1978     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1979       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1980       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
1981       .access = PL0_RW, .accessfn = pmreg_access,
1982       .type = ARM_CP_IO,
1983       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1984       .resetvalue = 0, },
1985     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1986       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1987       .accessfn = pmreg_access,
1988       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1989     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1990       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1991       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1992       .accessfn = pmreg_access,
1993       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1994     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1995       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1996       .accessfn = pmreg_access_xevcntr,
1997       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
1998     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
1999       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2000       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2001       .accessfn = pmreg_access_xevcntr,
2002       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2003     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2004       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2005       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2006       .resetvalue = 0,
2007       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2008     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2009       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2010       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2011       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2012       .resetvalue = 0,
2013       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2014     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2015       .access = PL1_RW, .accessfn = access_tpm,
2016       .type = ARM_CP_ALIAS | ARM_CP_IO,
2017       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2018       .resetvalue = 0,
2019       .writefn = pmintenset_write, .raw_writefn = raw_write },
2020     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2021       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2022       .access = PL1_RW, .accessfn = access_tpm,
2023       .type = ARM_CP_IO,
2024       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2025       .writefn = pmintenset_write, .raw_writefn = raw_write,
2026       .resetvalue = 0x0 },
2027     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2028       .access = PL1_RW, .accessfn = access_tpm,
2029       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2030       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2031       .writefn = pmintenclr_write, },
2032     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2034       .access = PL1_RW, .accessfn = access_tpm,
2035       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2037       .writefn = pmintenclr_write },
2038     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2039       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2040       .access = PL1_R,
2041       .accessfn = access_aa64_tid2,
2042       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2043     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2044       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2045       .access = PL1_RW,
2046       .accessfn = access_aa64_tid2,
2047       .writefn = csselr_write, .resetvalue = 0,
2048       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2049                              offsetof(CPUARMState, cp15.csselr_ns) } },
2050     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2051      * just RAZ for all cores:
2052      */
2053     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2054       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2055       .access = PL1_R, .type = ARM_CP_CONST,
2056       .accessfn = access_aa64_tid1,
2057       .resetvalue = 0 },
2058     /* Auxiliary fault status registers: these also are IMPDEF, and we
2059      * choose to RAZ/WI for all cores.
2060      */
2061     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2062       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2063       .access = PL1_RW, .accessfn = access_tvm_trvm,
2064       .type = ARM_CP_CONST, .resetvalue = 0 },
2065     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2066       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2067       .access = PL1_RW, .accessfn = access_tvm_trvm,
2068       .type = ARM_CP_CONST, .resetvalue = 0 },
2069     /* MAIR can just read-as-written because we don't implement caches
2070      * and so don't need to care about memory attributes.
2071      */
2072     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2074       .access = PL1_RW, .accessfn = access_tvm_trvm,
2075       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2076       .resetvalue = 0 },
2077     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2078       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2079       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2080       .resetvalue = 0 },
2081     /* For non-long-descriptor page tables these are PRRR and NMRR;
2082      * regardless they still act as reads-as-written for QEMU.
2083      */
2084      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2085       * allows them to assign the correct fieldoffset based on the endianness
2086       * handled in the field definitions.
2087       */
2088     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2089       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2090       .access = PL1_RW, .accessfn = access_tvm_trvm,
2091       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2092                              offsetof(CPUARMState, cp15.mair0_ns) },
2093       .resetfn = arm_cp_reset_ignore },
2094     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2095       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2096       .access = PL1_RW, .accessfn = access_tvm_trvm,
2097       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2098                              offsetof(CPUARMState, cp15.mair1_ns) },
2099       .resetfn = arm_cp_reset_ignore },
2100     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2101       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2102       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2103     /* 32 bit ITLB invalidates */
2104     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2105       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2106       .writefn = tlbiall_write },
2107     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2108       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2109       .writefn = tlbimva_write },
2110     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2111       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2112       .writefn = tlbiasid_write },
2113     /* 32 bit DTLB invalidates */
2114     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2115       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2116       .writefn = tlbiall_write },
2117     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2118       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2119       .writefn = tlbimva_write },
2120     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2121       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2122       .writefn = tlbiasid_write },
2123     /* 32 bit TLB invalidates */
2124     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2125       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2126       .writefn = tlbiall_write },
2127     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2128       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2129       .writefn = tlbimva_write },
2130     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2131       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2132       .writefn = tlbiasid_write },
2133     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2134       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2135       .writefn = tlbimvaa_write },
2136     REGINFO_SENTINEL
2137 };
2138 
2139 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2140     /* 32 bit TLB invalidates, Inner Shareable */
2141     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2142       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2143       .writefn = tlbiall_is_write },
2144     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2145       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2146       .writefn = tlbimva_is_write },
2147     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2148       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2149       .writefn = tlbiasid_is_write },
2150     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2151       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2152       .writefn = tlbimvaa_is_write },
2153     REGINFO_SENTINEL
2154 };
2155 
2156 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2157     /* PMOVSSET is not implemented in v7 before v7ve */
2158     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2159       .access = PL0_RW, .accessfn = pmreg_access,
2160       .type = ARM_CP_ALIAS | ARM_CP_IO,
2161       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2162       .writefn = pmovsset_write,
2163       .raw_writefn = raw_write },
2164     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2165       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2166       .access = PL0_RW, .accessfn = pmreg_access,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2169       .writefn = pmovsset_write,
2170       .raw_writefn = raw_write },
2171     REGINFO_SENTINEL
2172 };
2173 
2174 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2175                         uint64_t value)
2176 {
2177     value &= 1;
2178     env->teecr = value;
2179 }
2180 
2181 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2182                                    bool isread)
2183 {
2184     /*
2185      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2186      * at all, so we don't need to check whether we're v8A.
2187      */
2188     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2189         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2190         return CP_ACCESS_TRAP_EL2;
2191     }
2192     return CP_ACCESS_OK;
2193 }
2194 
2195 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2196                                     bool isread)
2197 {
2198     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2199         return CP_ACCESS_TRAP;
2200     }
2201     return teecr_access(env, ri, isread);
2202 }
2203 
2204 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2205     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2206       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2207       .resetvalue = 0,
2208       .writefn = teecr_write, .accessfn = teecr_access },
2209     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2210       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2211       .accessfn = teehbr_access, .resetvalue = 0 },
2212     REGINFO_SENTINEL
2213 };
2214 
2215 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2216     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2217       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2218       .access = PL0_RW,
2219       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2220     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2221       .access = PL0_RW,
2222       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2223                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2224       .resetfn = arm_cp_reset_ignore },
2225     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2226       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2227       .access = PL0_R|PL1_W,
2228       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2229       .resetvalue = 0},
2230     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2231       .access = PL0_R|PL1_W,
2232       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2233                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2234       .resetfn = arm_cp_reset_ignore },
2235     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2236       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2237       .access = PL1_RW,
2238       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2239     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2240       .access = PL1_RW,
2241       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2242                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2243       .resetvalue = 0 },
2244     REGINFO_SENTINEL
2245 };
2246 
2247 #ifndef CONFIG_USER_ONLY
2248 
2249 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2250                                        bool isread)
2251 {
2252     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2253      * Writable only at the highest implemented exception level.
2254      */
2255     int el = arm_current_el(env);
2256     uint64_t hcr;
2257     uint32_t cntkctl;
2258 
2259     switch (el) {
2260     case 0:
2261         hcr = arm_hcr_el2_eff(env);
2262         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2263             cntkctl = env->cp15.cnthctl_el2;
2264         } else {
2265             cntkctl = env->cp15.c14_cntkctl;
2266         }
2267         if (!extract32(cntkctl, 0, 2)) {
2268             return CP_ACCESS_TRAP;
2269         }
2270         break;
2271     case 1:
2272         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2273             arm_is_secure_below_el3(env)) {
2274             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2275             return CP_ACCESS_TRAP_UNCATEGORIZED;
2276         }
2277         break;
2278     case 2:
2279     case 3:
2280         break;
2281     }
2282 
2283     if (!isread && el < arm_highest_el(env)) {
2284         return CP_ACCESS_TRAP_UNCATEGORIZED;
2285     }
2286 
2287     return CP_ACCESS_OK;
2288 }
2289 
2290 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2291                                         bool isread)
2292 {
2293     unsigned int cur_el = arm_current_el(env);
2294     bool has_el2 = arm_is_el2_enabled(env);
2295     uint64_t hcr = arm_hcr_el2_eff(env);
2296 
2297     switch (cur_el) {
2298     case 0:
2299         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2300         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2301             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2302                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2303         }
2304 
2305         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2306         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2307             return CP_ACCESS_TRAP;
2308         }
2309 
2310         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2311         if (hcr & HCR_E2H) {
2312             if (timeridx == GTIMER_PHYS &&
2313                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2314                 return CP_ACCESS_TRAP_EL2;
2315             }
2316         } else {
2317             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2318             if (has_el2 && timeridx == GTIMER_PHYS &&
2319                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2320                 return CP_ACCESS_TRAP_EL2;
2321             }
2322         }
2323         break;
2324 
2325     case 1:
2326         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2327         if (has_el2 && timeridx == GTIMER_PHYS &&
2328             (hcr & HCR_E2H
2329              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2330              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2331             return CP_ACCESS_TRAP_EL2;
2332         }
2333         break;
2334     }
2335     return CP_ACCESS_OK;
2336 }
2337 
2338 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2339                                       bool isread)
2340 {
2341     unsigned int cur_el = arm_current_el(env);
2342     bool has_el2 = arm_is_el2_enabled(env);
2343     uint64_t hcr = arm_hcr_el2_eff(env);
2344 
2345     switch (cur_el) {
2346     case 0:
2347         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2348             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2349             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2350                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2351         }
2352 
2353         /*
2354          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2355          * EL0 if EL0[PV]TEN is zero.
2356          */
2357         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2358             return CP_ACCESS_TRAP;
2359         }
2360         /* fall through */
2361 
2362     case 1:
2363         if (has_el2 && timeridx == GTIMER_PHYS) {
2364             if (hcr & HCR_E2H) {
2365                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2366                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2367                     return CP_ACCESS_TRAP_EL2;
2368                 }
2369             } else {
2370                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2371                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2372                     return CP_ACCESS_TRAP_EL2;
2373                 }
2374             }
2375         }
2376         break;
2377     }
2378     return CP_ACCESS_OK;
2379 }
2380 
2381 static CPAccessResult gt_pct_access(CPUARMState *env,
2382                                     const ARMCPRegInfo *ri,
2383                                     bool isread)
2384 {
2385     return gt_counter_access(env, GTIMER_PHYS, isread);
2386 }
2387 
2388 static CPAccessResult gt_vct_access(CPUARMState *env,
2389                                     const ARMCPRegInfo *ri,
2390                                     bool isread)
2391 {
2392     return gt_counter_access(env, GTIMER_VIRT, isread);
2393 }
2394 
2395 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2396                                        bool isread)
2397 {
2398     return gt_timer_access(env, GTIMER_PHYS, isread);
2399 }
2400 
2401 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2402                                        bool isread)
2403 {
2404     return gt_timer_access(env, GTIMER_VIRT, isread);
2405 }
2406 
2407 static CPAccessResult gt_stimer_access(CPUARMState *env,
2408                                        const ARMCPRegInfo *ri,
2409                                        bool isread)
2410 {
2411     /* The AArch64 register view of the secure physical timer is
2412      * always accessible from EL3, and configurably accessible from
2413      * Secure EL1.
2414      */
2415     switch (arm_current_el(env)) {
2416     case 1:
2417         if (!arm_is_secure(env)) {
2418             return CP_ACCESS_TRAP;
2419         }
2420         if (!(env->cp15.scr_el3 & SCR_ST)) {
2421             return CP_ACCESS_TRAP_EL3;
2422         }
2423         return CP_ACCESS_OK;
2424     case 0:
2425     case 2:
2426         return CP_ACCESS_TRAP;
2427     case 3:
2428         return CP_ACCESS_OK;
2429     default:
2430         g_assert_not_reached();
2431     }
2432 }
2433 
2434 static uint64_t gt_get_countervalue(CPUARMState *env)
2435 {
2436     ARMCPU *cpu = env_archcpu(env);
2437 
2438     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2439 }
2440 
2441 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2442 {
2443     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2444 
2445     if (gt->ctl & 1) {
2446         /* Timer enabled: calculate and set current ISTATUS, irq, and
2447          * reset timer to when ISTATUS next has to change
2448          */
2449         uint64_t offset = timeridx == GTIMER_VIRT ?
2450                                       cpu->env.cp15.cntvoff_el2 : 0;
2451         uint64_t count = gt_get_countervalue(&cpu->env);
2452         /* Note that this must be unsigned 64 bit arithmetic: */
2453         int istatus = count - offset >= gt->cval;
2454         uint64_t nexttick;
2455         int irqstate;
2456 
2457         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2458 
2459         irqstate = (istatus && !(gt->ctl & 2));
2460         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2461 
2462         if (istatus) {
2463             /* Next transition is when count rolls back over to zero */
2464             nexttick = UINT64_MAX;
2465         } else {
2466             /* Next transition is when we hit cval */
2467             nexttick = gt->cval + offset;
2468         }
2469         /* Note that the desired next expiry time might be beyond the
2470          * signed-64-bit range of a QEMUTimer -- in this case we just
2471          * set the timer for as far in the future as possible. When the
2472          * timer expires we will reset the timer for any remaining period.
2473          */
2474         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2475             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2476         } else {
2477             timer_mod(cpu->gt_timer[timeridx], nexttick);
2478         }
2479         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2480     } else {
2481         /* Timer disabled: ISTATUS and timer output always clear */
2482         gt->ctl &= ~4;
2483         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2484         timer_del(cpu->gt_timer[timeridx]);
2485         trace_arm_gt_recalc_disabled(timeridx);
2486     }
2487 }
2488 
2489 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2490                            int timeridx)
2491 {
2492     ARMCPU *cpu = env_archcpu(env);
2493 
2494     timer_del(cpu->gt_timer[timeridx]);
2495 }
2496 
2497 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2498 {
2499     return gt_get_countervalue(env);
2500 }
2501 
2502 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2503 {
2504     uint64_t hcr;
2505 
2506     switch (arm_current_el(env)) {
2507     case 2:
2508         hcr = arm_hcr_el2_eff(env);
2509         if (hcr & HCR_E2H) {
2510             return 0;
2511         }
2512         break;
2513     case 0:
2514         hcr = arm_hcr_el2_eff(env);
2515         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2516             return 0;
2517         }
2518         break;
2519     }
2520 
2521     return env->cp15.cntvoff_el2;
2522 }
2523 
2524 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2525 {
2526     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2527 }
2528 
2529 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2530                           int timeridx,
2531                           uint64_t value)
2532 {
2533     trace_arm_gt_cval_write(timeridx, value);
2534     env->cp15.c14_timer[timeridx].cval = value;
2535     gt_recalc_timer(env_archcpu(env), timeridx);
2536 }
2537 
2538 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2539                              int timeridx)
2540 {
2541     uint64_t offset = 0;
2542 
2543     switch (timeridx) {
2544     case GTIMER_VIRT:
2545     case GTIMER_HYPVIRT:
2546         offset = gt_virt_cnt_offset(env);
2547         break;
2548     }
2549 
2550     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2551                       (gt_get_countervalue(env) - offset));
2552 }
2553 
2554 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2555                           int timeridx,
2556                           uint64_t value)
2557 {
2558     uint64_t offset = 0;
2559 
2560     switch (timeridx) {
2561     case GTIMER_VIRT:
2562     case GTIMER_HYPVIRT:
2563         offset = gt_virt_cnt_offset(env);
2564         break;
2565     }
2566 
2567     trace_arm_gt_tval_write(timeridx, value);
2568     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2569                                          sextract64(value, 0, 32);
2570     gt_recalc_timer(env_archcpu(env), timeridx);
2571 }
2572 
2573 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2574                          int timeridx,
2575                          uint64_t value)
2576 {
2577     ARMCPU *cpu = env_archcpu(env);
2578     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2579 
2580     trace_arm_gt_ctl_write(timeridx, value);
2581     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2582     if ((oldval ^ value) & 1) {
2583         /* Enable toggled */
2584         gt_recalc_timer(cpu, timeridx);
2585     } else if ((oldval ^ value) & 2) {
2586         /* IMASK toggled: don't need to recalculate,
2587          * just set the interrupt line based on ISTATUS
2588          */
2589         int irqstate = (oldval & 4) && !(value & 2);
2590 
2591         trace_arm_gt_imask_toggle(timeridx, irqstate);
2592         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2593     }
2594 }
2595 
2596 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2597 {
2598     gt_timer_reset(env, ri, GTIMER_PHYS);
2599 }
2600 
2601 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2602                                uint64_t value)
2603 {
2604     gt_cval_write(env, ri, GTIMER_PHYS, value);
2605 }
2606 
2607 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2608 {
2609     return gt_tval_read(env, ri, GTIMER_PHYS);
2610 }
2611 
2612 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2613                                uint64_t value)
2614 {
2615     gt_tval_write(env, ri, GTIMER_PHYS, value);
2616 }
2617 
2618 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2619                               uint64_t value)
2620 {
2621     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2622 }
2623 
2624 static int gt_phys_redir_timeridx(CPUARMState *env)
2625 {
2626     switch (arm_mmu_idx(env)) {
2627     case ARMMMUIdx_E20_0:
2628     case ARMMMUIdx_E20_2:
2629     case ARMMMUIdx_E20_2_PAN:
2630     case ARMMMUIdx_SE20_0:
2631     case ARMMMUIdx_SE20_2:
2632     case ARMMMUIdx_SE20_2_PAN:
2633         return GTIMER_HYP;
2634     default:
2635         return GTIMER_PHYS;
2636     }
2637 }
2638 
2639 static int gt_virt_redir_timeridx(CPUARMState *env)
2640 {
2641     switch (arm_mmu_idx(env)) {
2642     case ARMMMUIdx_E20_0:
2643     case ARMMMUIdx_E20_2:
2644     case ARMMMUIdx_E20_2_PAN:
2645     case ARMMMUIdx_SE20_0:
2646     case ARMMMUIdx_SE20_2:
2647     case ARMMMUIdx_SE20_2_PAN:
2648         return GTIMER_HYPVIRT;
2649     default:
2650         return GTIMER_VIRT;
2651     }
2652 }
2653 
2654 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2655                                         const ARMCPRegInfo *ri)
2656 {
2657     int timeridx = gt_phys_redir_timeridx(env);
2658     return env->cp15.c14_timer[timeridx].cval;
2659 }
2660 
2661 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2662                                      uint64_t value)
2663 {
2664     int timeridx = gt_phys_redir_timeridx(env);
2665     gt_cval_write(env, ri, timeridx, value);
2666 }
2667 
2668 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2669                                         const ARMCPRegInfo *ri)
2670 {
2671     int timeridx = gt_phys_redir_timeridx(env);
2672     return gt_tval_read(env, ri, timeridx);
2673 }
2674 
2675 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2676                                      uint64_t value)
2677 {
2678     int timeridx = gt_phys_redir_timeridx(env);
2679     gt_tval_write(env, ri, timeridx, value);
2680 }
2681 
2682 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2683                                        const ARMCPRegInfo *ri)
2684 {
2685     int timeridx = gt_phys_redir_timeridx(env);
2686     return env->cp15.c14_timer[timeridx].ctl;
2687 }
2688 
2689 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2690                                     uint64_t value)
2691 {
2692     int timeridx = gt_phys_redir_timeridx(env);
2693     gt_ctl_write(env, ri, timeridx, value);
2694 }
2695 
2696 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698     gt_timer_reset(env, ri, GTIMER_VIRT);
2699 }
2700 
2701 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                                uint64_t value)
2703 {
2704     gt_cval_write(env, ri, GTIMER_VIRT, value);
2705 }
2706 
2707 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2708 {
2709     return gt_tval_read(env, ri, GTIMER_VIRT);
2710 }
2711 
2712 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2713                                uint64_t value)
2714 {
2715     gt_tval_write(env, ri, GTIMER_VIRT, value);
2716 }
2717 
2718 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2719                               uint64_t value)
2720 {
2721     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2722 }
2723 
2724 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2725                               uint64_t value)
2726 {
2727     ARMCPU *cpu = env_archcpu(env);
2728 
2729     trace_arm_gt_cntvoff_write(value);
2730     raw_write(env, ri, value);
2731     gt_recalc_timer(cpu, GTIMER_VIRT);
2732 }
2733 
2734 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2735                                         const ARMCPRegInfo *ri)
2736 {
2737     int timeridx = gt_virt_redir_timeridx(env);
2738     return env->cp15.c14_timer[timeridx].cval;
2739 }
2740 
2741 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                                      uint64_t value)
2743 {
2744     int timeridx = gt_virt_redir_timeridx(env);
2745     gt_cval_write(env, ri, timeridx, value);
2746 }
2747 
2748 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2749                                         const ARMCPRegInfo *ri)
2750 {
2751     int timeridx = gt_virt_redir_timeridx(env);
2752     return gt_tval_read(env, ri, timeridx);
2753 }
2754 
2755 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                      uint64_t value)
2757 {
2758     int timeridx = gt_virt_redir_timeridx(env);
2759     gt_tval_write(env, ri, timeridx, value);
2760 }
2761 
2762 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2763                                        const ARMCPRegInfo *ri)
2764 {
2765     int timeridx = gt_virt_redir_timeridx(env);
2766     return env->cp15.c14_timer[timeridx].ctl;
2767 }
2768 
2769 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2770                                     uint64_t value)
2771 {
2772     int timeridx = gt_virt_redir_timeridx(env);
2773     gt_ctl_write(env, ri, timeridx, value);
2774 }
2775 
2776 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2777 {
2778     gt_timer_reset(env, ri, GTIMER_HYP);
2779 }
2780 
2781 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2782                               uint64_t value)
2783 {
2784     gt_cval_write(env, ri, GTIMER_HYP, value);
2785 }
2786 
2787 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2788 {
2789     return gt_tval_read(env, ri, GTIMER_HYP);
2790 }
2791 
2792 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2793                               uint64_t value)
2794 {
2795     gt_tval_write(env, ri, GTIMER_HYP, value);
2796 }
2797 
2798 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                               uint64_t value)
2800 {
2801     gt_ctl_write(env, ri, GTIMER_HYP, value);
2802 }
2803 
2804 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2805 {
2806     gt_timer_reset(env, ri, GTIMER_SEC);
2807 }
2808 
2809 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2810                               uint64_t value)
2811 {
2812     gt_cval_write(env, ri, GTIMER_SEC, value);
2813 }
2814 
2815 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2816 {
2817     return gt_tval_read(env, ri, GTIMER_SEC);
2818 }
2819 
2820 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2821                               uint64_t value)
2822 {
2823     gt_tval_write(env, ri, GTIMER_SEC, value);
2824 }
2825 
2826 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827                               uint64_t value)
2828 {
2829     gt_ctl_write(env, ri, GTIMER_SEC, value);
2830 }
2831 
2832 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2833 {
2834     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
2835 }
2836 
2837 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2838                              uint64_t value)
2839 {
2840     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
2841 }
2842 
2843 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2844 {
2845     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
2846 }
2847 
2848 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2849                              uint64_t value)
2850 {
2851     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
2852 }
2853 
2854 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2855                             uint64_t value)
2856 {
2857     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
2858 }
2859 
2860 void arm_gt_ptimer_cb(void *opaque)
2861 {
2862     ARMCPU *cpu = opaque;
2863 
2864     gt_recalc_timer(cpu, GTIMER_PHYS);
2865 }
2866 
2867 void arm_gt_vtimer_cb(void *opaque)
2868 {
2869     ARMCPU *cpu = opaque;
2870 
2871     gt_recalc_timer(cpu, GTIMER_VIRT);
2872 }
2873 
2874 void arm_gt_htimer_cb(void *opaque)
2875 {
2876     ARMCPU *cpu = opaque;
2877 
2878     gt_recalc_timer(cpu, GTIMER_HYP);
2879 }
2880 
2881 void arm_gt_stimer_cb(void *opaque)
2882 {
2883     ARMCPU *cpu = opaque;
2884 
2885     gt_recalc_timer(cpu, GTIMER_SEC);
2886 }
2887 
2888 void arm_gt_hvtimer_cb(void *opaque)
2889 {
2890     ARMCPU *cpu = opaque;
2891 
2892     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
2893 }
2894 
2895 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
2896 {
2897     ARMCPU *cpu = env_archcpu(env);
2898 
2899     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
2900 }
2901 
2902 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2903     /* Note that CNTFRQ is purely reads-as-written for the benefit
2904      * of software; writing it doesn't actually change the timer frequency.
2905      * Our reset value matches the fixed frequency we implement the timer at.
2906      */
2907     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2908       .type = ARM_CP_ALIAS,
2909       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2910       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2911     },
2912     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2913       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2914       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2915       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2916       .resetfn = arm_gt_cntfrq_reset,
2917     },
2918     /* overall control: mostly access permissions */
2919     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2920       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2921       .access = PL1_RW,
2922       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2923       .resetvalue = 0,
2924     },
2925     /* per-timer control */
2926     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2927       .secure = ARM_CP_SECSTATE_NS,
2928       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2929       .accessfn = gt_ptimer_access,
2930       .fieldoffset = offsetoflow32(CPUARMState,
2931                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2932       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2933       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2934     },
2935     { .name = "CNTP_CTL_S",
2936       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2937       .secure = ARM_CP_SECSTATE_S,
2938       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2939       .accessfn = gt_ptimer_access,
2940       .fieldoffset = offsetoflow32(CPUARMState,
2941                                    cp15.c14_timer[GTIMER_SEC].ctl),
2942       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2943     },
2944     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2945       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2946       .type = ARM_CP_IO, .access = PL0_RW,
2947       .accessfn = gt_ptimer_access,
2948       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2949       .resetvalue = 0,
2950       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
2951       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
2952     },
2953     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2954       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
2955       .accessfn = gt_vtimer_access,
2956       .fieldoffset = offsetoflow32(CPUARMState,
2957                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2958       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2959       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2960     },
2961     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2962       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2963       .type = ARM_CP_IO, .access = PL0_RW,
2964       .accessfn = gt_vtimer_access,
2965       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2966       .resetvalue = 0,
2967       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
2968       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
2969     },
2970     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2971     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2972       .secure = ARM_CP_SECSTATE_NS,
2973       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2974       .accessfn = gt_ptimer_access,
2975       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2976     },
2977     { .name = "CNTP_TVAL_S",
2978       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2979       .secure = ARM_CP_SECSTATE_S,
2980       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2981       .accessfn = gt_ptimer_access,
2982       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2983     },
2984     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2986       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2987       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2988       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
2989     },
2990     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2991       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2992       .accessfn = gt_vtimer_access,
2993       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
2994     },
2995     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2996       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2997       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
2998       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2999       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3000     },
3001     /* The counter itself */
3002     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3003       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3004       .accessfn = gt_pct_access,
3005       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3006     },
3007     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3008       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3009       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3010       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3011     },
3012     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3013       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3014       .accessfn = gt_vct_access,
3015       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3016     },
3017     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3018       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3019       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3020       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3021     },
3022     /* Comparison value, indicating when the timer goes off */
3023     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3024       .secure = ARM_CP_SECSTATE_NS,
3025       .access = PL0_RW,
3026       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3027       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3028       .accessfn = gt_ptimer_access,
3029       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3030       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3031     },
3032     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3033       .secure = ARM_CP_SECSTATE_S,
3034       .access = PL0_RW,
3035       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3036       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3037       .accessfn = gt_ptimer_access,
3038       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3039     },
3040     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3041       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3042       .access = PL0_RW,
3043       .type = ARM_CP_IO,
3044       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3045       .resetvalue = 0, .accessfn = gt_ptimer_access,
3046       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3047       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3048     },
3049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3050       .access = PL0_RW,
3051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3053       .accessfn = gt_vtimer_access,
3054       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3055       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3056     },
3057     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3058       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3059       .access = PL0_RW,
3060       .type = ARM_CP_IO,
3061       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3062       .resetvalue = 0, .accessfn = gt_vtimer_access,
3063       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3064       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3065     },
3066     /* Secure timer -- this is actually restricted to only EL3
3067      * and configurably Secure-EL1 via the accessfn.
3068      */
3069     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3070       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3071       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3072       .accessfn = gt_stimer_access,
3073       .readfn = gt_sec_tval_read,
3074       .writefn = gt_sec_tval_write,
3075       .resetfn = gt_sec_timer_reset,
3076     },
3077     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3078       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3079       .type = ARM_CP_IO, .access = PL1_RW,
3080       .accessfn = gt_stimer_access,
3081       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3082       .resetvalue = 0,
3083       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3084     },
3085     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3086       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3087       .type = ARM_CP_IO, .access = PL1_RW,
3088       .accessfn = gt_stimer_access,
3089       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3090       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3091     },
3092     REGINFO_SENTINEL
3093 };
3094 
3095 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3096                                  bool isread)
3097 {
3098     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3099         return CP_ACCESS_TRAP;
3100     }
3101     return CP_ACCESS_OK;
3102 }
3103 
3104 #else
3105 
3106 /* In user-mode most of the generic timer registers are inaccessible
3107  * however modern kernels (4.12+) allow access to cntvct_el0
3108  */
3109 
3110 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3111 {
3112     ARMCPU *cpu = env_archcpu(env);
3113 
3114     /* Currently we have no support for QEMUTimer in linux-user so we
3115      * can't call gt_get_countervalue(env), instead we directly
3116      * call the lower level functions.
3117      */
3118     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3119 }
3120 
3121 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3122     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3123       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3124       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3125       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3126       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3127     },
3128     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3129       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3130       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3131       .readfn = gt_virt_cnt_read,
3132     },
3133     REGINFO_SENTINEL
3134 };
3135 
3136 #endif
3137 
3138 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3139 {
3140     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3141         raw_write(env, ri, value);
3142     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3143         raw_write(env, ri, value & 0xfffff6ff);
3144     } else {
3145         raw_write(env, ri, value & 0xfffff1ff);
3146     }
3147 }
3148 
3149 #ifndef CONFIG_USER_ONLY
3150 /* get_phys_addr() isn't present for user-mode-only targets */
3151 
3152 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3153                                  bool isread)
3154 {
3155     if (ri->opc2 & 4) {
3156         /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3157          * Secure EL1 (which can only happen if EL3 is AArch64).
3158          * They are simply UNDEF if executed from NS EL1.
3159          * They function normally from EL2 or EL3.
3160          */
3161         if (arm_current_el(env) == 1) {
3162             if (arm_is_secure_below_el3(env)) {
3163                 if (env->cp15.scr_el3 & SCR_EEL2) {
3164                     return CP_ACCESS_TRAP_UNCATEGORIZED_EL2;
3165                 }
3166                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3167             }
3168             return CP_ACCESS_TRAP_UNCATEGORIZED;
3169         }
3170     }
3171     return CP_ACCESS_OK;
3172 }
3173 
3174 #ifdef CONFIG_TCG
3175 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3176                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3177 {
3178     hwaddr phys_addr;
3179     target_ulong page_size;
3180     int prot;
3181     bool ret;
3182     uint64_t par64;
3183     bool format64 = false;
3184     MemTxAttrs attrs = {};
3185     ARMMMUFaultInfo fi = {};
3186     ARMCacheAttrs cacheattrs = {};
3187 
3188     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3189                         &prot, &page_size, &fi, &cacheattrs);
3190 
3191     if (ret) {
3192         /*
3193          * Some kinds of translation fault must cause exceptions rather
3194          * than being reported in the PAR.
3195          */
3196         int current_el = arm_current_el(env);
3197         int target_el;
3198         uint32_t syn, fsr, fsc;
3199         bool take_exc = false;
3200 
3201         if (fi.s1ptw && current_el == 1
3202             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3203             /*
3204              * Synchronous stage 2 fault on an access made as part of the
3205              * translation table walk for AT S1E0* or AT S1E1* insn
3206              * executed from NS EL1. If this is a synchronous external abort
3207              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3208              * to EL3. Otherwise the fault is taken as an exception to EL2,
3209              * and HPFAR_EL2 holds the faulting IPA.
3210              */
3211             if (fi.type == ARMFault_SyncExternalOnWalk &&
3212                 (env->cp15.scr_el3 & SCR_EA)) {
3213                 target_el = 3;
3214             } else {
3215                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3216                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3217                     env->cp15.hpfar_el2 |= HPFAR_NS;
3218                 }
3219                 target_el = 2;
3220             }
3221             take_exc = true;
3222         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3223             /*
3224              * Synchronous external aborts during a translation table walk
3225              * are taken as Data Abort exceptions.
3226              */
3227             if (fi.stage2) {
3228                 if (current_el == 3) {
3229                     target_el = 3;
3230                 } else {
3231                     target_el = 2;
3232                 }
3233             } else {
3234                 target_el = exception_target_el(env);
3235             }
3236             take_exc = true;
3237         }
3238 
3239         if (take_exc) {
3240             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3241             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3242                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3243                 fsr = arm_fi_to_lfsc(&fi);
3244                 fsc = extract32(fsr, 0, 6);
3245             } else {
3246                 fsr = arm_fi_to_sfsc(&fi);
3247                 fsc = 0x3f;
3248             }
3249             /*
3250              * Report exception with ESR indicating a fault due to a
3251              * translation table walk for a cache maintenance instruction.
3252              */
3253             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3254                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3255             env->exception.vaddress = value;
3256             env->exception.fsr = fsr;
3257             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3258         }
3259     }
3260 
3261     if (is_a64(env)) {
3262         format64 = true;
3263     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3264         /*
3265          * ATS1Cxx:
3266          * * TTBCR.EAE determines whether the result is returned using the
3267          *   32-bit or the 64-bit PAR format
3268          * * Instructions executed in Hyp mode always use the 64bit format
3269          *
3270          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3271          * * The Non-secure TTBCR.EAE bit is set to 1
3272          * * The implementation includes EL2, and the value of HCR.VM is 1
3273          *
3274          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3275          *
3276          * ATS1Hx always uses the 64bit format.
3277          */
3278         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3279 
3280         if (arm_feature(env, ARM_FEATURE_EL2)) {
3281             if (mmu_idx == ARMMMUIdx_E10_0 ||
3282                 mmu_idx == ARMMMUIdx_E10_1 ||
3283                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3284                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3285             } else {
3286                 format64 |= arm_current_el(env) == 2;
3287             }
3288         }
3289     }
3290 
3291     if (format64) {
3292         /* Create a 64-bit PAR */
3293         par64 = (1 << 11); /* LPAE bit always set */
3294         if (!ret) {
3295             par64 |= phys_addr & ~0xfffULL;
3296             if (!attrs.secure) {
3297                 par64 |= (1 << 9); /* NS */
3298             }
3299             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3300             par64 |= cacheattrs.shareability << 7; /* SH */
3301         } else {
3302             uint32_t fsr = arm_fi_to_lfsc(&fi);
3303 
3304             par64 |= 1; /* F */
3305             par64 |= (fsr & 0x3f) << 1; /* FS */
3306             if (fi.stage2) {
3307                 par64 |= (1 << 9); /* S */
3308             }
3309             if (fi.s1ptw) {
3310                 par64 |= (1 << 8); /* PTW */
3311             }
3312         }
3313     } else {
3314         /* fsr is a DFSR/IFSR value for the short descriptor
3315          * translation table format (with WnR always clear).
3316          * Convert it to a 32-bit PAR.
3317          */
3318         if (!ret) {
3319             /* We do not set any attribute bits in the PAR */
3320             if (page_size == (1 << 24)
3321                 && arm_feature(env, ARM_FEATURE_V7)) {
3322                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3323             } else {
3324                 par64 = phys_addr & 0xfffff000;
3325             }
3326             if (!attrs.secure) {
3327                 par64 |= (1 << 9); /* NS */
3328             }
3329         } else {
3330             uint32_t fsr = arm_fi_to_sfsc(&fi);
3331 
3332             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3333                     ((fsr & 0xf) << 1) | 1;
3334         }
3335     }
3336     return par64;
3337 }
3338 #endif /* CONFIG_TCG */
3339 
3340 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3341 {
3342 #ifdef CONFIG_TCG
3343     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3344     uint64_t par64;
3345     ARMMMUIdx mmu_idx;
3346     int el = arm_current_el(env);
3347     bool secure = arm_is_secure_below_el3(env);
3348 
3349     switch (ri->opc2 & 6) {
3350     case 0:
3351         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3352         switch (el) {
3353         case 3:
3354             mmu_idx = ARMMMUIdx_SE3;
3355             break;
3356         case 2:
3357             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3358             /* fall through */
3359         case 1:
3360             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3361                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3362                            : ARMMMUIdx_Stage1_E1_PAN);
3363             } else {
3364                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3365             }
3366             break;
3367         default:
3368             g_assert_not_reached();
3369         }
3370         break;
3371     case 2:
3372         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3373         switch (el) {
3374         case 3:
3375             mmu_idx = ARMMMUIdx_SE10_0;
3376             break;
3377         case 2:
3378             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3379             mmu_idx = ARMMMUIdx_Stage1_E0;
3380             break;
3381         case 1:
3382             mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3383             break;
3384         default:
3385             g_assert_not_reached();
3386         }
3387         break;
3388     case 4:
3389         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3390         mmu_idx = ARMMMUIdx_E10_1;
3391         break;
3392     case 6:
3393         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3394         mmu_idx = ARMMMUIdx_E10_0;
3395         break;
3396     default:
3397         g_assert_not_reached();
3398     }
3399 
3400     par64 = do_ats_write(env, value, access_type, mmu_idx);
3401 
3402     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3403 #else
3404     /* Handled by hardware accelerator. */
3405     g_assert_not_reached();
3406 #endif /* CONFIG_TCG */
3407 }
3408 
3409 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3410                         uint64_t value)
3411 {
3412 #ifdef CONFIG_TCG
3413     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3414     uint64_t par64;
3415 
3416     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3417 
3418     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3419 #else
3420     /* Handled by hardware accelerator. */
3421     g_assert_not_reached();
3422 #endif /* CONFIG_TCG */
3423 }
3424 
3425 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3426                                      bool isread)
3427 {
3428     if (arm_current_el(env) == 3 &&
3429         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3430         return CP_ACCESS_TRAP;
3431     }
3432     return CP_ACCESS_OK;
3433 }
3434 
3435 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3436                         uint64_t value)
3437 {
3438 #ifdef CONFIG_TCG
3439     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3440     ARMMMUIdx mmu_idx;
3441     int secure = arm_is_secure_below_el3(env);
3442 
3443     switch (ri->opc2 & 6) {
3444     case 0:
3445         switch (ri->opc1) {
3446         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3447             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3448                 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN
3449                            : ARMMMUIdx_Stage1_E1_PAN);
3450             } else {
3451                 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1;
3452             }
3453             break;
3454         case 4: /* AT S1E2R, AT S1E2W */
3455             mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2;
3456             break;
3457         case 6: /* AT S1E3R, AT S1E3W */
3458             mmu_idx = ARMMMUIdx_SE3;
3459             break;
3460         default:
3461             g_assert_not_reached();
3462         }
3463         break;
3464     case 2: /* AT S1E0R, AT S1E0W */
3465         mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0;
3466         break;
3467     case 4: /* AT S12E1R, AT S12E1W */
3468         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3469         break;
3470     case 6: /* AT S12E0R, AT S12E0W */
3471         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3472         break;
3473     default:
3474         g_assert_not_reached();
3475     }
3476 
3477     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3478 #else
3479     /* Handled by hardware accelerator. */
3480     g_assert_not_reached();
3481 #endif /* CONFIG_TCG */
3482 }
3483 #endif
3484 
3485 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3486     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3487       .access = PL1_RW, .resetvalue = 0,
3488       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3489                              offsetoflow32(CPUARMState, cp15.par_ns) },
3490       .writefn = par_write },
3491 #ifndef CONFIG_USER_ONLY
3492     /* This underdecoding is safe because the reginfo is NO_RAW. */
3493     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3494       .access = PL1_W, .accessfn = ats_access,
3495       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3496 #endif
3497     REGINFO_SENTINEL
3498 };
3499 
3500 /* Return basic MPU access permission bits.  */
3501 static uint32_t simple_mpu_ap_bits(uint32_t val)
3502 {
3503     uint32_t ret;
3504     uint32_t mask;
3505     int i;
3506     ret = 0;
3507     mask = 3;
3508     for (i = 0; i < 16; i += 2) {
3509         ret |= (val >> i) & mask;
3510         mask <<= 2;
3511     }
3512     return ret;
3513 }
3514 
3515 /* Pad basic MPU access permission bits to extended format.  */
3516 static uint32_t extended_mpu_ap_bits(uint32_t val)
3517 {
3518     uint32_t ret;
3519     uint32_t mask;
3520     int i;
3521     ret = 0;
3522     mask = 3;
3523     for (i = 0; i < 16; i += 2) {
3524         ret |= (val & mask) << i;
3525         mask <<= 2;
3526     }
3527     return ret;
3528 }
3529 
3530 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3531                                  uint64_t value)
3532 {
3533     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3534 }
3535 
3536 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3537 {
3538     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3539 }
3540 
3541 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3542                                  uint64_t value)
3543 {
3544     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3545 }
3546 
3547 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3548 {
3549     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3550 }
3551 
3552 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3553 {
3554     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3555 
3556     if (!u32p) {
3557         return 0;
3558     }
3559 
3560     u32p += env->pmsav7.rnr[M_REG_NS];
3561     return *u32p;
3562 }
3563 
3564 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3565                          uint64_t value)
3566 {
3567     ARMCPU *cpu = env_archcpu(env);
3568     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3569 
3570     if (!u32p) {
3571         return;
3572     }
3573 
3574     u32p += env->pmsav7.rnr[M_REG_NS];
3575     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3576     *u32p = value;
3577 }
3578 
3579 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3580                               uint64_t value)
3581 {
3582     ARMCPU *cpu = env_archcpu(env);
3583     uint32_t nrgs = cpu->pmsav7_dregion;
3584 
3585     if (value >= nrgs) {
3586         qemu_log_mask(LOG_GUEST_ERROR,
3587                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3588                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3589         return;
3590     }
3591 
3592     raw_write(env, ri, value);
3593 }
3594 
3595 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3596     /* Reset for all these registers is handled in arm_cpu_reset(),
3597      * because the PMSAv7 is also used by M-profile CPUs, which do
3598      * not register cpregs but still need the state to be reset.
3599      */
3600     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3601       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3602       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3603       .readfn = pmsav7_read, .writefn = pmsav7_write,
3604       .resetfn = arm_cp_reset_ignore },
3605     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3606       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3607       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3608       .readfn = pmsav7_read, .writefn = pmsav7_write,
3609       .resetfn = arm_cp_reset_ignore },
3610     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3611       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3612       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3613       .readfn = pmsav7_read, .writefn = pmsav7_write,
3614       .resetfn = arm_cp_reset_ignore },
3615     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3616       .access = PL1_RW,
3617       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3618       .writefn = pmsav7_rgnr_write,
3619       .resetfn = arm_cp_reset_ignore },
3620     REGINFO_SENTINEL
3621 };
3622 
3623 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3624     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3625       .access = PL1_RW, .type = ARM_CP_ALIAS,
3626       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3627       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3628     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3629       .access = PL1_RW, .type = ARM_CP_ALIAS,
3630       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3631       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3632     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3633       .access = PL1_RW,
3634       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3635       .resetvalue = 0, },
3636     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3637       .access = PL1_RW,
3638       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3639       .resetvalue = 0, },
3640     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3641       .access = PL1_RW,
3642       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3643     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3644       .access = PL1_RW,
3645       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3646     /* Protection region base and size registers */
3647     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3648       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3649       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3650     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3651       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3652       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3653     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3654       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3655       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3656     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3657       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3658       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3659     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3660       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3661       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3662     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3663       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3664       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3665     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3666       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3667       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3668     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3669       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3670       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3671     REGINFO_SENTINEL
3672 };
3673 
3674 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3675                                  uint64_t value)
3676 {
3677     TCR *tcr = raw_ptr(env, ri);
3678     int maskshift = extract32(value, 0, 3);
3679 
3680     if (!arm_feature(env, ARM_FEATURE_V8)) {
3681         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3682             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3683              * using Long-desciptor translation table format */
3684             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3685         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3686             /* In an implementation that includes the Security Extensions
3687              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3688              * Short-descriptor translation table format.
3689              */
3690             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3691         } else {
3692             value &= TTBCR_N;
3693         }
3694     }
3695 
3696     /* Update the masks corresponding to the TCR bank being written
3697      * Note that we always calculate mask and base_mask, but
3698      * they are only used for short-descriptor tables (ie if EAE is 0);
3699      * for long-descriptor tables the TCR fields are used differently
3700      * and the mask and base_mask values are meaningless.
3701      */
3702     tcr->raw_tcr = value;
3703     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3704     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3705 }
3706 
3707 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3708                              uint64_t value)
3709 {
3710     ARMCPU *cpu = env_archcpu(env);
3711     TCR *tcr = raw_ptr(env, ri);
3712 
3713     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3714         /* With LPAE the TTBCR could result in a change of ASID
3715          * via the TTBCR.A1 bit, so do a TLB flush.
3716          */
3717         tlb_flush(CPU(cpu));
3718     }
3719     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3720     value = deposit64(tcr->raw_tcr, 0, 32, value);
3721     vmsa_ttbcr_raw_write(env, ri, value);
3722 }
3723 
3724 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3725 {
3726     TCR *tcr = raw_ptr(env, ri);
3727 
3728     /* Reset both the TCR as well as the masks corresponding to the bank of
3729      * the TCR being reset.
3730      */
3731     tcr->raw_tcr = 0;
3732     tcr->mask = 0;
3733     tcr->base_mask = 0xffffc000u;
3734 }
3735 
3736 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3737                                uint64_t value)
3738 {
3739     ARMCPU *cpu = env_archcpu(env);
3740     TCR *tcr = raw_ptr(env, ri);
3741 
3742     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3743     tlb_flush(CPU(cpu));
3744     tcr->raw_tcr = value;
3745 }
3746 
3747 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3748                             uint64_t value)
3749 {
3750     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3751     if (cpreg_field_is_64bit(ri) &&
3752         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3753         ARMCPU *cpu = env_archcpu(env);
3754         tlb_flush(CPU(cpu));
3755     }
3756     raw_write(env, ri, value);
3757 }
3758 
3759 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760                                     uint64_t value)
3761 {
3762     /*
3763      * If we are running with E2&0 regime, then an ASID is active.
3764      * Flush if that might be changing.  Note we're not checking
3765      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3766      * holds the active ASID, only checking the field that might.
3767      */
3768     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3769         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3770         uint16_t mask = ARMMMUIdxBit_E20_2 |
3771                         ARMMMUIdxBit_E20_2_PAN |
3772                         ARMMMUIdxBit_E20_0;
3773 
3774         if (arm_is_secure_below_el3(env)) {
3775             mask >>= ARM_MMU_IDX_A_NS;
3776         }
3777 
3778         tlb_flush_by_mmuidx(env_cpu(env), mask);
3779     }
3780     raw_write(env, ri, value);
3781 }
3782 
3783 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784                         uint64_t value)
3785 {
3786     ARMCPU *cpu = env_archcpu(env);
3787     CPUState *cs = CPU(cpu);
3788 
3789     /*
3790      * A change in VMID to the stage2 page table (Stage2) invalidates
3791      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
3792      */
3793     if (raw_read(env, ri) != value) {
3794         uint16_t mask = ARMMMUIdxBit_E10_1 |
3795                         ARMMMUIdxBit_E10_1_PAN |
3796                         ARMMMUIdxBit_E10_0;
3797 
3798         if (arm_is_secure_below_el3(env)) {
3799             mask >>= ARM_MMU_IDX_A_NS;
3800         }
3801 
3802         tlb_flush_by_mmuidx(cs, mask);
3803         raw_write(env, ri, value);
3804     }
3805 }
3806 
3807 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3808     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3809       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
3810       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3811                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3812     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3813       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3814       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3815                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3816     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3817       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
3818       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3819                              offsetof(CPUARMState, cp15.dfar_ns) } },
3820     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3821       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3822       .access = PL1_RW, .accessfn = access_tvm_trvm,
3823       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3824       .resetvalue = 0, },
3825     REGINFO_SENTINEL
3826 };
3827 
3828 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3829     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3830       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3831       .access = PL1_RW, .accessfn = access_tvm_trvm,
3832       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3833     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3834       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3835       .access = PL1_RW, .accessfn = access_tvm_trvm,
3836       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3837       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3838                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3839     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3840       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3841       .access = PL1_RW, .accessfn = access_tvm_trvm,
3842       .writefn = vmsa_ttbr_write, .resetvalue = 0,
3843       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3844                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3845     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3846       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3847       .access = PL1_RW, .accessfn = access_tvm_trvm,
3848       .writefn = vmsa_tcr_el12_write,
3849       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3850       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3851     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3852       .access = PL1_RW, .accessfn = access_tvm_trvm,
3853       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3854       .raw_writefn = vmsa_ttbcr_raw_write,
3855       /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */
3856       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]),
3857                              offsetof(CPUARMState, cp15.tcr_el[1])} },
3858     REGINFO_SENTINEL
3859 };
3860 
3861 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3862  * qemu tlbs nor adjusting cached masks.
3863  */
3864 static const ARMCPRegInfo ttbcr2_reginfo = {
3865     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3866     .access = PL1_RW, .accessfn = access_tvm_trvm,
3867     .type = ARM_CP_ALIAS,
3868     .bank_fieldoffsets = {
3869         offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr),
3870         offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr),
3871     },
3872 };
3873 
3874 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3875                                 uint64_t value)
3876 {
3877     env->cp15.c15_ticonfig = value & 0xe7;
3878     /* The OS_TYPE bit in this register changes the reported CPUID! */
3879     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3880         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3881 }
3882 
3883 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3884                                 uint64_t value)
3885 {
3886     env->cp15.c15_threadid = value & 0xffff;
3887 }
3888 
3889 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3890                            uint64_t value)
3891 {
3892     /* Wait-for-interrupt (deprecated) */
3893     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
3894 }
3895 
3896 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3897                                   uint64_t value)
3898 {
3899     /* On OMAP there are registers indicating the max/min index of dcache lines
3900      * containing a dirty line; cache flush operations have to reset these.
3901      */
3902     env->cp15.c15_i_max = 0x000;
3903     env->cp15.c15_i_min = 0xff0;
3904 }
3905 
3906 static const ARMCPRegInfo omap_cp_reginfo[] = {
3907     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3908       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3909       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3910       .resetvalue = 0, },
3911     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3912       .access = PL1_RW, .type = ARM_CP_NOP },
3913     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3914       .access = PL1_RW,
3915       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3916       .writefn = omap_ticonfig_write },
3917     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3918       .access = PL1_RW,
3919       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3920     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3921       .access = PL1_RW, .resetvalue = 0xff0,
3922       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3923     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3924       .access = PL1_RW,
3925       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3926       .writefn = omap_threadid_write },
3927     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3928       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3929       .type = ARM_CP_NO_RAW,
3930       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3931     /* TODO: Peripheral port remap register:
3932      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3933      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3934      * when MMU is off.
3935      */
3936     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3937       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3938       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3939       .writefn = omap_cachemaint_write },
3940     { .name = "C9", .cp = 15, .crn = 9,
3941       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3942       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3943     REGINFO_SENTINEL
3944 };
3945 
3946 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3947                               uint64_t value)
3948 {
3949     env->cp15.c15_cpar = value & 0x3fff;
3950 }
3951 
3952 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3953     { .name = "XSCALE_CPAR",
3954       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3955       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3956       .writefn = xscale_cpar_write, },
3957     { .name = "XSCALE_AUXCR",
3958       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3959       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3960       .resetvalue = 0, },
3961     /* XScale specific cache-lockdown: since we have no cache we NOP these
3962      * and hope the guest does not really rely on cache behaviour.
3963      */
3964     { .name = "XSCALE_LOCK_ICACHE_LINE",
3965       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3966       .access = PL1_W, .type = ARM_CP_NOP },
3967     { .name = "XSCALE_UNLOCK_ICACHE",
3968       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3969       .access = PL1_W, .type = ARM_CP_NOP },
3970     { .name = "XSCALE_DCACHE_LOCK",
3971       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3972       .access = PL1_RW, .type = ARM_CP_NOP },
3973     { .name = "XSCALE_UNLOCK_DCACHE",
3974       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3975       .access = PL1_W, .type = ARM_CP_NOP },
3976     REGINFO_SENTINEL
3977 };
3978 
3979 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3980     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3981      * implementation of this implementation-defined space.
3982      * Ideally this should eventually disappear in favour of actually
3983      * implementing the correct behaviour for all cores.
3984      */
3985     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3986       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3987       .access = PL1_RW,
3988       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3989       .resetvalue = 0 },
3990     REGINFO_SENTINEL
3991 };
3992 
3993 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3994     /* Cache status: RAZ because we have no cache so it's always clean */
3995     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3996       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3997       .resetvalue = 0 },
3998     REGINFO_SENTINEL
3999 };
4000 
4001 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4002     /* We never have a a block transfer operation in progress */
4003     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4004       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4005       .resetvalue = 0 },
4006     /* The cache ops themselves: these all NOP for QEMU */
4007     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4008       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4009     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4010       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4011     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4012       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4013     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4014       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4015     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4016       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4017     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4018       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4019     REGINFO_SENTINEL
4020 };
4021 
4022 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4023     /* The cache test-and-clean instructions always return (1 << 30)
4024      * to indicate that there are no dirty cache lines.
4025      */
4026     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4027       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4028       .resetvalue = (1 << 30) },
4029     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4030       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4031       .resetvalue = (1 << 30) },
4032     REGINFO_SENTINEL
4033 };
4034 
4035 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4036     /* Ignore ReadBuffer accesses */
4037     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4038       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4039       .access = PL1_RW, .resetvalue = 0,
4040       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4041     REGINFO_SENTINEL
4042 };
4043 
4044 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4045 {
4046     unsigned int cur_el = arm_current_el(env);
4047 
4048     if (arm_is_el2_enabled(env) && cur_el == 1) {
4049         return env->cp15.vpidr_el2;
4050     }
4051     return raw_read(env, ri);
4052 }
4053 
4054 static uint64_t mpidr_read_val(CPUARMState *env)
4055 {
4056     ARMCPU *cpu = env_archcpu(env);
4057     uint64_t mpidr = cpu->mp_affinity;
4058 
4059     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4060         mpidr |= (1U << 31);
4061         /* Cores which are uniprocessor (non-coherent)
4062          * but still implement the MP extensions set
4063          * bit 30. (For instance, Cortex-R5).
4064          */
4065         if (cpu->mp_is_up) {
4066             mpidr |= (1u << 30);
4067         }
4068     }
4069     return mpidr;
4070 }
4071 
4072 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4073 {
4074     unsigned int cur_el = arm_current_el(env);
4075 
4076     if (arm_is_el2_enabled(env) && cur_el == 1) {
4077         return env->cp15.vmpidr_el2;
4078     }
4079     return mpidr_read_val(env);
4080 }
4081 
4082 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4083     /* NOP AMAIR0/1 */
4084     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4085       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4086       .access = PL1_RW, .accessfn = access_tvm_trvm,
4087       .type = ARM_CP_CONST, .resetvalue = 0 },
4088     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4089     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4090       .access = PL1_RW, .accessfn = access_tvm_trvm,
4091       .type = ARM_CP_CONST, .resetvalue = 0 },
4092     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4093       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4094       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4095                              offsetof(CPUARMState, cp15.par_ns)} },
4096     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4097       .access = PL1_RW, .accessfn = access_tvm_trvm,
4098       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4099       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4100                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4101       .writefn = vmsa_ttbr_write, },
4102     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4103       .access = PL1_RW, .accessfn = access_tvm_trvm,
4104       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4105       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4106                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4107       .writefn = vmsa_ttbr_write, },
4108     REGINFO_SENTINEL
4109 };
4110 
4111 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4112 {
4113     return vfp_get_fpcr(env);
4114 }
4115 
4116 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4117                             uint64_t value)
4118 {
4119     vfp_set_fpcr(env, value);
4120 }
4121 
4122 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4123 {
4124     return vfp_get_fpsr(env);
4125 }
4126 
4127 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4128                             uint64_t value)
4129 {
4130     vfp_set_fpsr(env, value);
4131 }
4132 
4133 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4134                                        bool isread)
4135 {
4136     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4137         return CP_ACCESS_TRAP;
4138     }
4139     return CP_ACCESS_OK;
4140 }
4141 
4142 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4143                             uint64_t value)
4144 {
4145     env->daif = value & PSTATE_DAIF;
4146 }
4147 
4148 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4149 {
4150     return env->pstate & PSTATE_PAN;
4151 }
4152 
4153 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4154                            uint64_t value)
4155 {
4156     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4157 }
4158 
4159 static const ARMCPRegInfo pan_reginfo = {
4160     .name = "PAN", .state = ARM_CP_STATE_AA64,
4161     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4162     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4163     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4164 };
4165 
4166 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4167 {
4168     return env->pstate & PSTATE_UAO;
4169 }
4170 
4171 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4172                            uint64_t value)
4173 {
4174     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4175 }
4176 
4177 static const ARMCPRegInfo uao_reginfo = {
4178     .name = "UAO", .state = ARM_CP_STATE_AA64,
4179     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4180     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4181     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4182 };
4183 
4184 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4185 {
4186     return env->pstate & PSTATE_DIT;
4187 }
4188 
4189 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4190                            uint64_t value)
4191 {
4192     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4193 }
4194 
4195 static const ARMCPRegInfo dit_reginfo = {
4196     .name = "DIT", .state = ARM_CP_STATE_AA64,
4197     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4198     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4199     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4200 };
4201 
4202 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4203 {
4204     return env->pstate & PSTATE_SSBS;
4205 }
4206 
4207 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4208                            uint64_t value)
4209 {
4210     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4211 }
4212 
4213 static const ARMCPRegInfo ssbs_reginfo = {
4214     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4215     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4216     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4217     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4218 };
4219 
4220 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4221                                               const ARMCPRegInfo *ri,
4222                                               bool isread)
4223 {
4224     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4225     switch (arm_current_el(env)) {
4226     case 0:
4227         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4228         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4229             return CP_ACCESS_TRAP;
4230         }
4231         /* fall through */
4232     case 1:
4233         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4234         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4235             return CP_ACCESS_TRAP_EL2;
4236         }
4237         break;
4238     }
4239     return CP_ACCESS_OK;
4240 }
4241 
4242 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4243                                               const ARMCPRegInfo *ri,
4244                                               bool isread)
4245 {
4246     /* Cache invalidate/clean to Point of Unification... */
4247     switch (arm_current_el(env)) {
4248     case 0:
4249         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4250         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4251             return CP_ACCESS_TRAP;
4252         }
4253         /* fall through */
4254     case 1:
4255         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4256         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4257             return CP_ACCESS_TRAP_EL2;
4258         }
4259         break;
4260     }
4261     return CP_ACCESS_OK;
4262 }
4263 
4264 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4265  * Page D4-1736 (DDI0487A.b)
4266  */
4267 
4268 static int vae1_tlbmask(CPUARMState *env)
4269 {
4270     uint64_t hcr = arm_hcr_el2_eff(env);
4271     uint16_t mask;
4272 
4273     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4274         mask = ARMMMUIdxBit_E20_2 |
4275                ARMMMUIdxBit_E20_2_PAN |
4276                ARMMMUIdxBit_E20_0;
4277     } else {
4278         mask = ARMMMUIdxBit_E10_1 |
4279                ARMMMUIdxBit_E10_1_PAN |
4280                ARMMMUIdxBit_E10_0;
4281     }
4282 
4283     if (arm_is_secure_below_el3(env)) {
4284         mask >>= ARM_MMU_IDX_A_NS;
4285     }
4286 
4287     return mask;
4288 }
4289 
4290 /* Return 56 if TBI is enabled, 64 otherwise. */
4291 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4292                               uint64_t addr)
4293 {
4294     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4295     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4296     int select = extract64(addr, 55, 1);
4297 
4298     return (tbi >> select) & 1 ? 56 : 64;
4299 }
4300 
4301 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4302 {
4303     uint64_t hcr = arm_hcr_el2_eff(env);
4304     ARMMMUIdx mmu_idx;
4305 
4306     /* Only the regime of the mmu_idx below is significant. */
4307     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4308         mmu_idx = ARMMMUIdx_E20_0;
4309     } else {
4310         mmu_idx = ARMMMUIdx_E10_0;
4311     }
4312 
4313     if (arm_is_secure_below_el3(env)) {
4314         mmu_idx &= ~ARM_MMU_IDX_A_NS;
4315     }
4316 
4317     return tlbbits_for_regime(env, mmu_idx, addr);
4318 }
4319 
4320 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4321                                       uint64_t value)
4322 {
4323     CPUState *cs = env_cpu(env);
4324     int mask = vae1_tlbmask(env);
4325 
4326     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4327 }
4328 
4329 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4330                                     uint64_t value)
4331 {
4332     CPUState *cs = env_cpu(env);
4333     int mask = vae1_tlbmask(env);
4334 
4335     if (tlb_force_broadcast(env)) {
4336         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4337     } else {
4338         tlb_flush_by_mmuidx(cs, mask);
4339     }
4340 }
4341 
4342 static int alle1_tlbmask(CPUARMState *env)
4343 {
4344     /*
4345      * Note that the 'ALL' scope must invalidate both stage 1 and
4346      * stage 2 translations, whereas most other scopes only invalidate
4347      * stage 1 translations.
4348      */
4349     if (arm_is_secure_below_el3(env)) {
4350         return ARMMMUIdxBit_SE10_1 |
4351                ARMMMUIdxBit_SE10_1_PAN |
4352                ARMMMUIdxBit_SE10_0;
4353     } else {
4354         return ARMMMUIdxBit_E10_1 |
4355                ARMMMUIdxBit_E10_1_PAN |
4356                ARMMMUIdxBit_E10_0;
4357     }
4358 }
4359 
4360 static int e2_tlbmask(CPUARMState *env)
4361 {
4362     if (arm_is_secure_below_el3(env)) {
4363         return ARMMMUIdxBit_SE20_0 |
4364                ARMMMUIdxBit_SE20_2 |
4365                ARMMMUIdxBit_SE20_2_PAN |
4366                ARMMMUIdxBit_SE2;
4367     } else {
4368         return ARMMMUIdxBit_E20_0 |
4369                ARMMMUIdxBit_E20_2 |
4370                ARMMMUIdxBit_E20_2_PAN |
4371                ARMMMUIdxBit_E2;
4372     }
4373 }
4374 
4375 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4376                                   uint64_t value)
4377 {
4378     CPUState *cs = env_cpu(env);
4379     int mask = alle1_tlbmask(env);
4380 
4381     tlb_flush_by_mmuidx(cs, mask);
4382 }
4383 
4384 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4385                                   uint64_t value)
4386 {
4387     CPUState *cs = env_cpu(env);
4388     int mask = e2_tlbmask(env);
4389 
4390     tlb_flush_by_mmuidx(cs, mask);
4391 }
4392 
4393 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4394                                   uint64_t value)
4395 {
4396     ARMCPU *cpu = env_archcpu(env);
4397     CPUState *cs = CPU(cpu);
4398 
4399     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4400 }
4401 
4402 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4403                                     uint64_t value)
4404 {
4405     CPUState *cs = env_cpu(env);
4406     int mask = alle1_tlbmask(env);
4407 
4408     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4409 }
4410 
4411 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4412                                     uint64_t value)
4413 {
4414     CPUState *cs = env_cpu(env);
4415     int mask = e2_tlbmask(env);
4416 
4417     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4418 }
4419 
4420 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4421                                     uint64_t value)
4422 {
4423     CPUState *cs = env_cpu(env);
4424 
4425     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4426 }
4427 
4428 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429                                  uint64_t value)
4430 {
4431     /* Invalidate by VA, EL2
4432      * Currently handles both VAE2 and VALE2, since we don't support
4433      * flush-last-level-only.
4434      */
4435     CPUState *cs = env_cpu(env);
4436     int mask = e2_tlbmask(env);
4437     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4438 
4439     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4440 }
4441 
4442 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4443                                  uint64_t value)
4444 {
4445     /* Invalidate by VA, EL3
4446      * Currently handles both VAE3 and VALE3, since we don't support
4447      * flush-last-level-only.
4448      */
4449     ARMCPU *cpu = env_archcpu(env);
4450     CPUState *cs = CPU(cpu);
4451     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4452 
4453     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4454 }
4455 
4456 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4457                                    uint64_t value)
4458 {
4459     CPUState *cs = env_cpu(env);
4460     int mask = vae1_tlbmask(env);
4461     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4462     int bits = vae1_tlbbits(env, pageaddr);
4463 
4464     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4465 }
4466 
4467 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4468                                  uint64_t value)
4469 {
4470     /* Invalidate by VA, EL1&0 (AArch64 version).
4471      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4472      * since we don't support flush-for-specific-ASID-only or
4473      * flush-last-level-only.
4474      */
4475     CPUState *cs = env_cpu(env);
4476     int mask = vae1_tlbmask(env);
4477     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4478     int bits = vae1_tlbbits(env, pageaddr);
4479 
4480     if (tlb_force_broadcast(env)) {
4481         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4482     } else {
4483         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4484     }
4485 }
4486 
4487 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488                                    uint64_t value)
4489 {
4490     CPUState *cs = env_cpu(env);
4491     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4492     bool secure = arm_is_secure_below_el3(env);
4493     int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2;
4494     int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2,
4495                                   pageaddr);
4496 
4497     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4498 }
4499 
4500 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4501                                    uint64_t value)
4502 {
4503     CPUState *cs = env_cpu(env);
4504     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4505     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4506 
4507     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4508                                                   ARMMMUIdxBit_SE3, bits);
4509 }
4510 
4511 #ifdef TARGET_AARCH64
4512 static uint64_t tlbi_aa64_range_get_length(CPUARMState *env,
4513                                            uint64_t value)
4514 {
4515     unsigned int page_shift;
4516     unsigned int page_size_granule;
4517     uint64_t num;
4518     uint64_t scale;
4519     uint64_t exponent;
4520     uint64_t length;
4521 
4522     num = extract64(value, 39, 5);
4523     scale = extract64(value, 44, 2);
4524     page_size_granule = extract64(value, 46, 2);
4525 
4526     if (page_size_granule == 0) {
4527         qemu_log_mask(LOG_GUEST_ERROR, "Invalid page size granule %d\n",
4528                       page_size_granule);
4529         return 0;
4530     }
4531 
4532     page_shift = (page_size_granule - 1) * 2 + 12;
4533 
4534     exponent = (5 * scale) + 1;
4535     length = (num + 1) << (exponent + page_shift);
4536 
4537     return length;
4538 }
4539 
4540 static uint64_t tlbi_aa64_range_get_base(CPUARMState *env, uint64_t value,
4541                                         bool two_ranges)
4542 {
4543     /* TODO: ARMv8.7 FEAT_LPA2 */
4544     uint64_t pageaddr;
4545 
4546     if (two_ranges) {
4547         pageaddr = sextract64(value, 0, 37) << TARGET_PAGE_BITS;
4548     } else {
4549         pageaddr = extract64(value, 0, 37) << TARGET_PAGE_BITS;
4550     }
4551 
4552     return pageaddr;
4553 }
4554 
4555 static void do_rvae_write(CPUARMState *env, uint64_t value,
4556                           int idxmap, bool synced)
4557 {
4558     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4559     bool two_ranges = regime_has_2_ranges(one_idx);
4560     uint64_t baseaddr, length;
4561     int bits;
4562 
4563     baseaddr = tlbi_aa64_range_get_base(env, value, two_ranges);
4564     length = tlbi_aa64_range_get_length(env, value);
4565     bits = tlbbits_for_regime(env, one_idx, baseaddr);
4566 
4567     if (synced) {
4568         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4569                                                   baseaddr,
4570                                                   length,
4571                                                   idxmap,
4572                                                   bits);
4573     } else {
4574         tlb_flush_range_by_mmuidx(env_cpu(env), baseaddr,
4575                                   length, idxmap, bits);
4576     }
4577 }
4578 
4579 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4580                                   const ARMCPRegInfo *ri,
4581                                   uint64_t value)
4582 {
4583     /*
4584      * Invalidate by VA range, EL1&0.
4585      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4586      * since we don't support flush-for-specific-ASID-only or
4587      * flush-last-level-only.
4588      */
4589 
4590     do_rvae_write(env, value, vae1_tlbmask(env),
4591                   tlb_force_broadcast(env));
4592 }
4593 
4594 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4595                                     const ARMCPRegInfo *ri,
4596                                     uint64_t value)
4597 {
4598     /*
4599      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4600      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4601      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4602      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4603      * shareable specific flushes.
4604      */
4605 
4606     do_rvae_write(env, value, vae1_tlbmask(env), true);
4607 }
4608 
4609 static int vae2_tlbmask(CPUARMState *env)
4610 {
4611     return (arm_is_secure_below_el3(env)
4612             ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2);
4613 }
4614 
4615 static void tlbi_aa64_rvae2_write(CPUARMState *env,
4616                                   const ARMCPRegInfo *ri,
4617                                   uint64_t value)
4618 {
4619     /*
4620      * Invalidate by VA range, EL2.
4621      * Currently handles all of RVAE2 and RVALE2,
4622      * since we don't support flush-for-specific-ASID-only or
4623      * flush-last-level-only.
4624      */
4625 
4626     do_rvae_write(env, value, vae2_tlbmask(env),
4627                   tlb_force_broadcast(env));
4628 
4629 
4630 }
4631 
4632 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
4633                                     const ARMCPRegInfo *ri,
4634                                     uint64_t value)
4635 {
4636     /*
4637      * Invalidate by VA range, Inner/Outer Shareable, EL2.
4638      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
4639      * since we don't support flush-for-specific-ASID-only,
4640      * flush-last-level-only or inner/outer shareable specific flushes.
4641      */
4642 
4643     do_rvae_write(env, value, vae2_tlbmask(env), true);
4644 
4645 }
4646 
4647 static void tlbi_aa64_rvae3_write(CPUARMState *env,
4648                                   const ARMCPRegInfo *ri,
4649                                   uint64_t value)
4650 {
4651     /*
4652      * Invalidate by VA range, EL3.
4653      * Currently handles all of RVAE3 and RVALE3,
4654      * since we don't support flush-for-specific-ASID-only or
4655      * flush-last-level-only.
4656      */
4657 
4658     do_rvae_write(env, value, ARMMMUIdxBit_SE3,
4659                   tlb_force_broadcast(env));
4660 }
4661 
4662 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
4663                                     const ARMCPRegInfo *ri,
4664                                     uint64_t value)
4665 {
4666     /*
4667      * Invalidate by VA range, EL3, Inner/Outer Shareable.
4668      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
4669      * since we don't support flush-for-specific-ASID-only,
4670      * flush-last-level-only or inner/outer specific flushes.
4671      */
4672 
4673     do_rvae_write(env, value, ARMMMUIdxBit_SE3, true);
4674 }
4675 #endif
4676 
4677 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4678                                       bool isread)
4679 {
4680     int cur_el = arm_current_el(env);
4681 
4682     if (cur_el < 2) {
4683         uint64_t hcr = arm_hcr_el2_eff(env);
4684 
4685         if (cur_el == 0) {
4686             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4687                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4688                     return CP_ACCESS_TRAP_EL2;
4689                 }
4690             } else {
4691                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4692                     return CP_ACCESS_TRAP;
4693                 }
4694                 if (hcr & HCR_TDZ) {
4695                     return CP_ACCESS_TRAP_EL2;
4696                 }
4697             }
4698         } else if (hcr & HCR_TDZ) {
4699             return CP_ACCESS_TRAP_EL2;
4700         }
4701     }
4702     return CP_ACCESS_OK;
4703 }
4704 
4705 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4706 {
4707     ARMCPU *cpu = env_archcpu(env);
4708     int dzp_bit = 1 << 4;
4709 
4710     /* DZP indicates whether DC ZVA access is allowed */
4711     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4712         dzp_bit = 0;
4713     }
4714     return cpu->dcz_blocksize | dzp_bit;
4715 }
4716 
4717 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4718                                     bool isread)
4719 {
4720     if (!(env->pstate & PSTATE_SP)) {
4721         /* Access to SP_EL0 is undefined if it's being used as
4722          * the stack pointer.
4723          */
4724         return CP_ACCESS_TRAP_UNCATEGORIZED;
4725     }
4726     return CP_ACCESS_OK;
4727 }
4728 
4729 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4730 {
4731     return env->pstate & PSTATE_SP;
4732 }
4733 
4734 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4735 {
4736     update_spsel(env, val);
4737 }
4738 
4739 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4740                         uint64_t value)
4741 {
4742     ARMCPU *cpu = env_archcpu(env);
4743 
4744     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4745         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4746         value &= ~SCTLR_M;
4747     }
4748 
4749     /* ??? Lots of these bits are not implemented.  */
4750 
4751     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4752         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4753             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4754         } else {
4755             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4756                        SCTLR_ATA0 | SCTLR_ATA);
4757         }
4758     }
4759 
4760     if (raw_read(env, ri) == value) {
4761         /* Skip the TLB flush if nothing actually changed; Linux likes
4762          * to do a lot of pointless SCTLR writes.
4763          */
4764         return;
4765     }
4766 
4767     raw_write(env, ri, value);
4768 
4769     /* This may enable/disable the MMU, so do a TLB flush.  */
4770     tlb_flush(CPU(cpu));
4771 
4772     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4773         /*
4774          * Normally we would always end the TB on an SCTLR write; see the
4775          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4776          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4777          * of hflags from the translator, so do it here.
4778          */
4779         arm_rebuild_hflags(env);
4780     }
4781 }
4782 
4783 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4784                                      bool isread)
4785 {
4786     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4787         return CP_ACCESS_TRAP_FP_EL2;
4788     }
4789     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4790         return CP_ACCESS_TRAP_FP_EL3;
4791     }
4792     return CP_ACCESS_OK;
4793 }
4794 
4795 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4796                        uint64_t value)
4797 {
4798     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4799 }
4800 
4801 static const ARMCPRegInfo v8_cp_reginfo[] = {
4802     /* Minimal set of EL0-visible registers. This will need to be expanded
4803      * significantly for system emulation of AArch64 CPUs.
4804      */
4805     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4806       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4807       .access = PL0_RW, .type = ARM_CP_NZCV },
4808     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4809       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4810       .type = ARM_CP_NO_RAW,
4811       .access = PL0_RW, .accessfn = aa64_daif_access,
4812       .fieldoffset = offsetof(CPUARMState, daif),
4813       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4814     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4815       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4816       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4817       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4818     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4819       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4820       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4821       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4822     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4823       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4824       .access = PL0_R, .type = ARM_CP_NO_RAW,
4825       .readfn = aa64_dczid_read },
4826     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4827       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4828       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4829 #ifndef CONFIG_USER_ONLY
4830       /* Avoid overhead of an access check that always passes in user-mode */
4831       .accessfn = aa64_zva_access,
4832 #endif
4833     },
4834     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4835       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4836       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4837     /* Cache ops: all NOPs since we don't emulate caches */
4838     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4839       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4840       .access = PL1_W, .type = ARM_CP_NOP,
4841       .accessfn = aa64_cacheop_pou_access },
4842     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4843       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4844       .access = PL1_W, .type = ARM_CP_NOP,
4845       .accessfn = aa64_cacheop_pou_access },
4846     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4847       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4848       .access = PL0_W, .type = ARM_CP_NOP,
4849       .accessfn = aa64_cacheop_pou_access },
4850     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4851       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4852       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4853       .type = ARM_CP_NOP },
4854     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4855       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4856       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4857     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4859       .access = PL0_W, .type = ARM_CP_NOP,
4860       .accessfn = aa64_cacheop_poc_access },
4861     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4863       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4864     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4865       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4866       .access = PL0_W, .type = ARM_CP_NOP,
4867       .accessfn = aa64_cacheop_pou_access },
4868     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4869       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4870       .access = PL0_W, .type = ARM_CP_NOP,
4871       .accessfn = aa64_cacheop_poc_access },
4872     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4873       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4874       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4875     /* TLBI operations */
4876     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4877       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4878       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4879       .writefn = tlbi_aa64_vmalle1is_write },
4880     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4881       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4882       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4883       .writefn = tlbi_aa64_vae1is_write },
4884     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4885       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4886       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4887       .writefn = tlbi_aa64_vmalle1is_write },
4888     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4889       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4890       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4891       .writefn = tlbi_aa64_vae1is_write },
4892     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4893       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4894       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4895       .writefn = tlbi_aa64_vae1is_write },
4896     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4897       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4898       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4899       .writefn = tlbi_aa64_vae1is_write },
4900     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4901       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4902       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4903       .writefn = tlbi_aa64_vmalle1_write },
4904     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4905       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4906       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4907       .writefn = tlbi_aa64_vae1_write },
4908     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4909       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4910       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4911       .writefn = tlbi_aa64_vmalle1_write },
4912     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4913       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4914       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4915       .writefn = tlbi_aa64_vae1_write },
4916     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4917       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4918       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4919       .writefn = tlbi_aa64_vae1_write },
4920     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4921       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4922       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4923       .writefn = tlbi_aa64_vae1_write },
4924     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4925       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4926       .access = PL2_W, .type = ARM_CP_NOP },
4927     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4929       .access = PL2_W, .type = ARM_CP_NOP },
4930     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4931       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4932       .access = PL2_W, .type = ARM_CP_NO_RAW,
4933       .writefn = tlbi_aa64_alle1is_write },
4934     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4936       .access = PL2_W, .type = ARM_CP_NO_RAW,
4937       .writefn = tlbi_aa64_alle1is_write },
4938     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4939       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4940       .access = PL2_W, .type = ARM_CP_NOP },
4941     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4942       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4943       .access = PL2_W, .type = ARM_CP_NOP },
4944     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4945       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4946       .access = PL2_W, .type = ARM_CP_NO_RAW,
4947       .writefn = tlbi_aa64_alle1_write },
4948     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4949       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4950       .access = PL2_W, .type = ARM_CP_NO_RAW,
4951       .writefn = tlbi_aa64_alle1is_write },
4952 #ifndef CONFIG_USER_ONLY
4953     /* 64 bit address translation operations */
4954     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4955       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4956       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4957       .writefn = ats_write64 },
4958     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4959       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4960       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4961       .writefn = ats_write64 },
4962     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4963       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4964       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4965       .writefn = ats_write64 },
4966     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4967       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4968       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4969       .writefn = ats_write64 },
4970     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4971       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4972       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4973       .writefn = ats_write64 },
4974     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4975       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4976       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4977       .writefn = ats_write64 },
4978     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4979       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4980       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4981       .writefn = ats_write64 },
4982     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4983       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4984       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4985       .writefn = ats_write64 },
4986     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4987     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4988       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4989       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4990       .writefn = ats_write64 },
4991     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4992       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4993       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4994       .writefn = ats_write64 },
4995     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4996       .type = ARM_CP_ALIAS,
4997       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4998       .access = PL1_RW, .resetvalue = 0,
4999       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5000       .writefn = par_write },
5001 #endif
5002     /* TLB invalidate last level of translation table walk */
5003     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5004       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5005       .writefn = tlbimva_is_write },
5006     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5007       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5008       .writefn = tlbimvaa_is_write },
5009     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5010       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5011       .writefn = tlbimva_write },
5012     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5013       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5014       .writefn = tlbimvaa_write },
5015     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5016       .type = ARM_CP_NO_RAW, .access = PL2_W,
5017       .writefn = tlbimva_hyp_write },
5018     { .name = "TLBIMVALHIS",
5019       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5020       .type = ARM_CP_NO_RAW, .access = PL2_W,
5021       .writefn = tlbimva_hyp_is_write },
5022     { .name = "TLBIIPAS2",
5023       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5024       .type = ARM_CP_NOP, .access = PL2_W },
5025     { .name = "TLBIIPAS2IS",
5026       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5027       .type = ARM_CP_NOP, .access = PL2_W },
5028     { .name = "TLBIIPAS2L",
5029       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5030       .type = ARM_CP_NOP, .access = PL2_W },
5031     { .name = "TLBIIPAS2LIS",
5032       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5033       .type = ARM_CP_NOP, .access = PL2_W },
5034     /* 32 bit cache operations */
5035     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5036       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5037     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5038       .type = ARM_CP_NOP, .access = PL1_W },
5039     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5040       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5041     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5042       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5043     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5044       .type = ARM_CP_NOP, .access = PL1_W },
5045     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5046       .type = ARM_CP_NOP, .access = PL1_W },
5047     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5048       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5049     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5050       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5051     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5052       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5053     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5054       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5055     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5056       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5057     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5058       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5059     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5060       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5061     /* MMU Domain access control / MPU write buffer control */
5062     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5063       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5064       .writefn = dacr_write, .raw_writefn = raw_write,
5065       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5066                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5067     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5068       .type = ARM_CP_ALIAS,
5069       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5070       .access = PL1_RW,
5071       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5072     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5073       .type = ARM_CP_ALIAS,
5074       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5075       .access = PL1_RW,
5076       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5077     /* We rely on the access checks not allowing the guest to write to the
5078      * state field when SPSel indicates that it's being used as the stack
5079      * pointer.
5080      */
5081     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5082       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5083       .access = PL1_RW, .accessfn = sp_el0_access,
5084       .type = ARM_CP_ALIAS,
5085       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5086     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5087       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5088       .access = PL2_RW, .type = ARM_CP_ALIAS,
5089       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5090     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5091       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5092       .type = ARM_CP_NO_RAW,
5093       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5094     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5095       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5096       .type = ARM_CP_ALIAS,
5097       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5098       .access = PL2_RW, .accessfn = fpexc32_access },
5099     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5100       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5101       .access = PL2_RW, .resetvalue = 0,
5102       .writefn = dacr_write, .raw_writefn = raw_write,
5103       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5104     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5105       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5106       .access = PL2_RW, .resetvalue = 0,
5107       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5108     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5109       .type = ARM_CP_ALIAS,
5110       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5111       .access = PL2_RW,
5112       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5113     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5114       .type = ARM_CP_ALIAS,
5115       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5116       .access = PL2_RW,
5117       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5118     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5119       .type = ARM_CP_ALIAS,
5120       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5121       .access = PL2_RW,
5122       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5123     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5124       .type = ARM_CP_ALIAS,
5125       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5126       .access = PL2_RW,
5127       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5128     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5129       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5130       .resetvalue = 0,
5131       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5132     { .name = "SDCR", .type = ARM_CP_ALIAS,
5133       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5134       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5135       .writefn = sdcr_write,
5136       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5137     REGINFO_SENTINEL
5138 };
5139 
5140 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5141 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5142     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5143       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5144       .access = PL2_RW,
5145       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5146     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5147       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5148       .access = PL2_RW,
5149       .type = ARM_CP_CONST, .resetvalue = 0 },
5150     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5151       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5152       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5153     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5154       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5155       .access = PL2_RW,
5156       .type = ARM_CP_CONST, .resetvalue = 0 },
5157     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5158       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5159       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5160     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5161       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5162       .access = PL2_RW, .type = ARM_CP_CONST,
5163       .resetvalue = 0 },
5164     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5165       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5166       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5168       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5169       .access = PL2_RW, .type = ARM_CP_CONST,
5170       .resetvalue = 0 },
5171     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5172       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5173       .access = PL2_RW, .type = ARM_CP_CONST,
5174       .resetvalue = 0 },
5175     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5176       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5177       .access = PL2_RW, .type = ARM_CP_CONST,
5178       .resetvalue = 0 },
5179     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5180       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5181       .access = PL2_RW, .type = ARM_CP_CONST,
5182       .resetvalue = 0 },
5183     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5184       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5185       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5186     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5187       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5188       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5189       .type = ARM_CP_CONST, .resetvalue = 0 },
5190     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5191       .cp = 15, .opc1 = 6, .crm = 2,
5192       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5193       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5194     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5195       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5196       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5197     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5198       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5199       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5200     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5201       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5202       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5204       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5205       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5207       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5208       .resetvalue = 0 },
5209     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5210       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5211       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5212     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5213       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5214       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5215     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5216       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5217       .resetvalue = 0 },
5218     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5219       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5220       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5221     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5222       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5223       .resetvalue = 0 },
5224     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5225       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5226       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5227     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5228       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5229       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5230     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5231       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5232       .access = PL2_RW, .accessfn = access_tda,
5233       .type = ARM_CP_CONST, .resetvalue = 0 },
5234     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5235       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5236       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5237       .type = ARM_CP_CONST, .resetvalue = 0 },
5238     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5239       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5240       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5241     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5242       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5243       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5244     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5245       .type = ARM_CP_CONST,
5246       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5247       .access = PL2_RW, .resetvalue = 0 },
5248     REGINFO_SENTINEL
5249 };
5250 
5251 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5252 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5253     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5254       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5255       .access = PL2_RW,
5256       .type = ARM_CP_CONST, .resetvalue = 0 },
5257     REGINFO_SENTINEL
5258 };
5259 
5260 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5261 {
5262     ARMCPU *cpu = env_archcpu(env);
5263 
5264     if (arm_feature(env, ARM_FEATURE_V8)) {
5265         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5266     } else {
5267         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5268     }
5269 
5270     if (arm_feature(env, ARM_FEATURE_EL3)) {
5271         valid_mask &= ~HCR_HCD;
5272     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5273         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5274          * However, if we're using the SMC PSCI conduit then QEMU is
5275          * effectively acting like EL3 firmware and so the guest at
5276          * EL2 should retain the ability to prevent EL1 from being
5277          * able to make SMC calls into the ersatz firmware, so in
5278          * that case HCR.TSC should be read/write.
5279          */
5280         valid_mask &= ~HCR_TSC;
5281     }
5282 
5283     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5284         if (cpu_isar_feature(aa64_vh, cpu)) {
5285             valid_mask |= HCR_E2H;
5286         }
5287         if (cpu_isar_feature(aa64_lor, cpu)) {
5288             valid_mask |= HCR_TLOR;
5289         }
5290         if (cpu_isar_feature(aa64_pauth, cpu)) {
5291             valid_mask |= HCR_API | HCR_APK;
5292         }
5293         if (cpu_isar_feature(aa64_mte, cpu)) {
5294             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5295         }
5296     }
5297 
5298     /* Clear RES0 bits.  */
5299     value &= valid_mask;
5300 
5301     /*
5302      * These bits change the MMU setup:
5303      * HCR_VM enables stage 2 translation
5304      * HCR_PTW forbids certain page-table setups
5305      * HCR_DC disables stage1 and enables stage2 translation
5306      * HCR_DCT enables tagging on (disabled) stage1 translation
5307      */
5308     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5309         tlb_flush(CPU(cpu));
5310     }
5311     env->cp15.hcr_el2 = value;
5312 
5313     /*
5314      * Updates to VI and VF require us to update the status of
5315      * virtual interrupts, which are the logical OR of these bits
5316      * and the state of the input lines from the GIC. (This requires
5317      * that we have the iothread lock, which is done by marking the
5318      * reginfo structs as ARM_CP_IO.)
5319      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5320      * possible for it to be taken immediately, because VIRQ and
5321      * VFIQ are masked unless running at EL0 or EL1, and HCR
5322      * can only be written at EL2.
5323      */
5324     g_assert(qemu_mutex_iothread_locked());
5325     arm_cpu_update_virq(cpu);
5326     arm_cpu_update_vfiq(cpu);
5327 }
5328 
5329 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5330 {
5331     do_hcr_write(env, value, 0);
5332 }
5333 
5334 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5335                           uint64_t value)
5336 {
5337     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5338     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5339     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5340 }
5341 
5342 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5343                          uint64_t value)
5344 {
5345     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5346     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5347     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5348 }
5349 
5350 /*
5351  * Return the effective value of HCR_EL2.
5352  * Bits that are not included here:
5353  * RW       (read from SCR_EL3.RW as needed)
5354  */
5355 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5356 {
5357     uint64_t ret = env->cp15.hcr_el2;
5358 
5359     if (!arm_is_el2_enabled(env)) {
5360         /*
5361          * "This register has no effect if EL2 is not enabled in the
5362          * current Security state".  This is ARMv8.4-SecEL2 speak for
5363          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5364          *
5365          * Prior to that, the language was "In an implementation that
5366          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5367          * as if this field is 0 for all purposes other than a direct
5368          * read or write access of HCR_EL2".  With lots of enumeration
5369          * on a per-field basis.  In current QEMU, this is condition
5370          * is arm_is_secure_below_el3.
5371          *
5372          * Since the v8.4 language applies to the entire register, and
5373          * appears to be backward compatible, use that.
5374          */
5375         return 0;
5376     }
5377 
5378     /*
5379      * For a cpu that supports both aarch64 and aarch32, we can set bits
5380      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5381      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5382      */
5383     if (!arm_el_is_aa64(env, 2)) {
5384         uint64_t aa32_valid;
5385 
5386         /*
5387          * These bits are up-to-date as of ARMv8.6.
5388          * For HCR, it's easiest to list just the 2 bits that are invalid.
5389          * For HCR2, list those that are valid.
5390          */
5391         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5392         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5393                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5394         ret &= aa32_valid;
5395     }
5396 
5397     if (ret & HCR_TGE) {
5398         /* These bits are up-to-date as of ARMv8.6.  */
5399         if (ret & HCR_E2H) {
5400             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5401                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5402                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5403                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5404                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5405                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5406         } else {
5407             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5408         }
5409         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5410                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5411                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5412                  HCR_TLOR);
5413     }
5414 
5415     return ret;
5416 }
5417 
5418 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5419                            uint64_t value)
5420 {
5421     /*
5422      * For A-profile AArch32 EL3, if NSACR.CP10
5423      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5424      */
5425     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5426         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5427         value &= ~(0x3 << 10);
5428         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5429     }
5430     env->cp15.cptr_el[2] = value;
5431 }
5432 
5433 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5434 {
5435     /*
5436      * For A-profile AArch32 EL3, if NSACR.CP10
5437      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5438      */
5439     uint64_t value = env->cp15.cptr_el[2];
5440 
5441     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5442         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5443         value |= 0x3 << 10;
5444     }
5445     return value;
5446 }
5447 
5448 static const ARMCPRegInfo el2_cp_reginfo[] = {
5449     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5450       .type = ARM_CP_IO,
5451       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5452       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5453       .writefn = hcr_write },
5454     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5455       .type = ARM_CP_ALIAS | ARM_CP_IO,
5456       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5457       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5458       .writefn = hcr_writelow },
5459     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5460       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5461       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5462     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5463       .type = ARM_CP_ALIAS,
5464       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5465       .access = PL2_RW,
5466       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5467     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5468       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5469       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5470     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5471       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5472       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5473     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5474       .type = ARM_CP_ALIAS,
5475       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5476       .access = PL2_RW,
5477       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5478     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5479       .type = ARM_CP_ALIAS,
5480       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5481       .access = PL2_RW,
5482       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5483     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5484       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5485       .access = PL2_RW, .writefn = vbar_write,
5486       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5487       .resetvalue = 0 },
5488     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5489       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5490       .access = PL3_RW, .type = ARM_CP_ALIAS,
5491       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5492     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5493       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5494       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5495       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5496       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5497     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5498       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5499       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5500       .resetvalue = 0 },
5501     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5502       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5503       .access = PL2_RW, .type = ARM_CP_ALIAS,
5504       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5505     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5506       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5507       .access = PL2_RW, .type = ARM_CP_CONST,
5508       .resetvalue = 0 },
5509     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5510     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5511       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5512       .access = PL2_RW, .type = ARM_CP_CONST,
5513       .resetvalue = 0 },
5514     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5515       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5516       .access = PL2_RW, .type = ARM_CP_CONST,
5517       .resetvalue = 0 },
5518     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5519       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5520       .access = PL2_RW, .type = ARM_CP_CONST,
5521       .resetvalue = 0 },
5522     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5523       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5524       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5525       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5526       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5527     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5528       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5529       .type = ARM_CP_ALIAS,
5530       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5531       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5532     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5533       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5534       .access = PL2_RW,
5535       /* no .writefn needed as this can't cause an ASID change;
5536        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5537        */
5538       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5539     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5540       .cp = 15, .opc1 = 6, .crm = 2,
5541       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5542       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5543       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5544       .writefn = vttbr_write },
5545     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5546       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5547       .access = PL2_RW, .writefn = vttbr_write,
5548       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5549     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5550       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5551       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5552       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5553     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5554       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5555       .access = PL2_RW, .resetvalue = 0,
5556       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5557     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5558       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5559       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5560       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5561     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5562       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5563       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5564     { .name = "TLBIALLNSNH",
5565       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5566       .type = ARM_CP_NO_RAW, .access = PL2_W,
5567       .writefn = tlbiall_nsnh_write },
5568     { .name = "TLBIALLNSNHIS",
5569       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5570       .type = ARM_CP_NO_RAW, .access = PL2_W,
5571       .writefn = tlbiall_nsnh_is_write },
5572     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5573       .type = ARM_CP_NO_RAW, .access = PL2_W,
5574       .writefn = tlbiall_hyp_write },
5575     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5576       .type = ARM_CP_NO_RAW, .access = PL2_W,
5577       .writefn = tlbiall_hyp_is_write },
5578     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5579       .type = ARM_CP_NO_RAW, .access = PL2_W,
5580       .writefn = tlbimva_hyp_write },
5581     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5582       .type = ARM_CP_NO_RAW, .access = PL2_W,
5583       .writefn = tlbimva_hyp_is_write },
5584     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5585       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5586       .type = ARM_CP_NO_RAW, .access = PL2_W,
5587       .writefn = tlbi_aa64_alle2_write },
5588     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5589       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5590       .type = ARM_CP_NO_RAW, .access = PL2_W,
5591       .writefn = tlbi_aa64_vae2_write },
5592     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5593       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5594       .access = PL2_W, .type = ARM_CP_NO_RAW,
5595       .writefn = tlbi_aa64_vae2_write },
5596     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5597       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5598       .access = PL2_W, .type = ARM_CP_NO_RAW,
5599       .writefn = tlbi_aa64_alle2is_write },
5600     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5601       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5602       .type = ARM_CP_NO_RAW, .access = PL2_W,
5603       .writefn = tlbi_aa64_vae2is_write },
5604     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5605       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5606       .access = PL2_W, .type = ARM_CP_NO_RAW,
5607       .writefn = tlbi_aa64_vae2is_write },
5608 #ifndef CONFIG_USER_ONLY
5609     /* Unlike the other EL2-related AT operations, these must
5610      * UNDEF from EL3 if EL2 is not implemented, which is why we
5611      * define them here rather than with the rest of the AT ops.
5612      */
5613     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5614       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5615       .access = PL2_W, .accessfn = at_s1e2_access,
5616       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5617     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5618       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5619       .access = PL2_W, .accessfn = at_s1e2_access,
5620       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5621     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5622      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5623      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5624      * to behave as if SCR.NS was 1.
5625      */
5626     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5627       .access = PL2_W,
5628       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5629     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5630       .access = PL2_W,
5631       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5632     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5633       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5634       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5635        * reset values as IMPDEF. We choose to reset to 3 to comply with
5636        * both ARMv7 and ARMv8.
5637        */
5638       .access = PL2_RW, .resetvalue = 3,
5639       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5640     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5641       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5642       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5643       .writefn = gt_cntvoff_write,
5644       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5645     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5646       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5647       .writefn = gt_cntvoff_write,
5648       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5649     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5650       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5651       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5652       .type = ARM_CP_IO, .access = PL2_RW,
5653       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5654     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5655       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5656       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5657       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5658     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5659       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5660       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5661       .resetfn = gt_hyp_timer_reset,
5662       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5663     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5664       .type = ARM_CP_IO,
5665       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5666       .access = PL2_RW,
5667       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5668       .resetvalue = 0,
5669       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5670 #endif
5671     /* The only field of MDCR_EL2 that has a defined architectural reset value
5672      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
5673      */
5674     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5675       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5676       .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS,
5677       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5678     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5679       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5680       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5681       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5682     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5683       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5684       .access = PL2_RW,
5685       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5686     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5687       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5688       .access = PL2_RW,
5689       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5690     REGINFO_SENTINEL
5691 };
5692 
5693 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5694     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5695       .type = ARM_CP_ALIAS | ARM_CP_IO,
5696       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5697       .access = PL2_RW,
5698       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5699       .writefn = hcr_writehigh },
5700     REGINFO_SENTINEL
5701 };
5702 
5703 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
5704                                   bool isread)
5705 {
5706     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
5707         return CP_ACCESS_OK;
5708     }
5709     return CP_ACCESS_TRAP_UNCATEGORIZED;
5710 }
5711 
5712 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
5713     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
5714       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
5715       .access = PL2_RW, .accessfn = sel2_access,
5716       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
5717     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
5718       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
5719       .access = PL2_RW, .accessfn = sel2_access,
5720       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
5721     REGINFO_SENTINEL
5722 };
5723 
5724 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5725                                    bool isread)
5726 {
5727     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5728      * At Secure EL1 it traps to EL3 or EL2.
5729      */
5730     if (arm_current_el(env) == 3) {
5731         return CP_ACCESS_OK;
5732     }
5733     if (arm_is_secure_below_el3(env)) {
5734         if (env->cp15.scr_el3 & SCR_EEL2) {
5735             return CP_ACCESS_TRAP_EL2;
5736         }
5737         return CP_ACCESS_TRAP_EL3;
5738     }
5739     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5740     if (isread) {
5741         return CP_ACCESS_OK;
5742     }
5743     return CP_ACCESS_TRAP_UNCATEGORIZED;
5744 }
5745 
5746 static const ARMCPRegInfo el3_cp_reginfo[] = {
5747     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5748       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5749       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5750       .resetfn = scr_reset, .writefn = scr_write },
5751     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5752       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5753       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5754       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5755       .writefn = scr_write },
5756     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5757       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5758       .access = PL3_RW, .resetvalue = 0,
5759       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5760     { .name = "SDER",
5761       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5762       .access = PL3_RW, .resetvalue = 0,
5763       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5764     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5765       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5766       .writefn = vbar_write, .resetvalue = 0,
5767       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5768     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5769       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5770       .access = PL3_RW, .resetvalue = 0,
5771       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5772     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5773       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5774       .access = PL3_RW,
5775       /* no .writefn needed as this can't cause an ASID change;
5776        * we must provide a .raw_writefn and .resetfn because we handle
5777        * reset and migration for the AArch32 TTBCR(S), which might be
5778        * using mask and base_mask.
5779        */
5780       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5781       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5782     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5783       .type = ARM_CP_ALIAS,
5784       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5785       .access = PL3_RW,
5786       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5787     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5788       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5789       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5790     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5791       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5792       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5793     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5794       .type = ARM_CP_ALIAS,
5795       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5796       .access = PL3_RW,
5797       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5798     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5799       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5800       .access = PL3_RW, .writefn = vbar_write,
5801       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5802       .resetvalue = 0 },
5803     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5804       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5805       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5806       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5807     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5808       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5809       .access = PL3_RW, .resetvalue = 0,
5810       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5811     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5812       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5813       .access = PL3_RW, .type = ARM_CP_CONST,
5814       .resetvalue = 0 },
5815     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5816       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5817       .access = PL3_RW, .type = ARM_CP_CONST,
5818       .resetvalue = 0 },
5819     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5820       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5821       .access = PL3_RW, .type = ARM_CP_CONST,
5822       .resetvalue = 0 },
5823     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5824       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5825       .access = PL3_W, .type = ARM_CP_NO_RAW,
5826       .writefn = tlbi_aa64_alle3is_write },
5827     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5828       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5829       .access = PL3_W, .type = ARM_CP_NO_RAW,
5830       .writefn = tlbi_aa64_vae3is_write },
5831     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5832       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5833       .access = PL3_W, .type = ARM_CP_NO_RAW,
5834       .writefn = tlbi_aa64_vae3is_write },
5835     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5836       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5837       .access = PL3_W, .type = ARM_CP_NO_RAW,
5838       .writefn = tlbi_aa64_alle3_write },
5839     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5840       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5841       .access = PL3_W, .type = ARM_CP_NO_RAW,
5842       .writefn = tlbi_aa64_vae3_write },
5843     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5844       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5845       .access = PL3_W, .type = ARM_CP_NO_RAW,
5846       .writefn = tlbi_aa64_vae3_write },
5847     REGINFO_SENTINEL
5848 };
5849 
5850 #ifndef CONFIG_USER_ONLY
5851 /* Test if system register redirection is to occur in the current state.  */
5852 static bool redirect_for_e2h(CPUARMState *env)
5853 {
5854     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5855 }
5856 
5857 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5858 {
5859     CPReadFn *readfn;
5860 
5861     if (redirect_for_e2h(env)) {
5862         /* Switch to the saved EL2 version of the register.  */
5863         ri = ri->opaque;
5864         readfn = ri->readfn;
5865     } else {
5866         readfn = ri->orig_readfn;
5867     }
5868     if (readfn == NULL) {
5869         readfn = raw_read;
5870     }
5871     return readfn(env, ri);
5872 }
5873 
5874 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5875                           uint64_t value)
5876 {
5877     CPWriteFn *writefn;
5878 
5879     if (redirect_for_e2h(env)) {
5880         /* Switch to the saved EL2 version of the register.  */
5881         ri = ri->opaque;
5882         writefn = ri->writefn;
5883     } else {
5884         writefn = ri->orig_writefn;
5885     }
5886     if (writefn == NULL) {
5887         writefn = raw_write;
5888     }
5889     writefn(env, ri, value);
5890 }
5891 
5892 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5893 {
5894     struct E2HAlias {
5895         uint32_t src_key, dst_key, new_key;
5896         const char *src_name, *dst_name, *new_name;
5897         bool (*feature)(const ARMISARegisters *id);
5898     };
5899 
5900 #define K(op0, op1, crn, crm, op2) \
5901     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5902 
5903     static const struct E2HAlias aliases[] = {
5904         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5905           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5906         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5907           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5908         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5909           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5910         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5911           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5912         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5913           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5914         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5915           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5916         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5917           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5918         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5919           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5920         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5921           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5922         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5923           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5924         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5925           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5926         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5927           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5928         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5929           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5930         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5931           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5932         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5933           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5934         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5935           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5936 
5937         /*
5938          * Note that redirection of ZCR is mentioned in the description
5939          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5940          * not in the summary table.
5941          */
5942         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5943           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5944 
5945         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5946           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5947 
5948         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5949         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5950     };
5951 #undef K
5952 
5953     size_t i;
5954 
5955     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5956         const struct E2HAlias *a = &aliases[i];
5957         ARMCPRegInfo *src_reg, *dst_reg;
5958 
5959         if (a->feature && !a->feature(&cpu->isar)) {
5960             continue;
5961         }
5962 
5963         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5964         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5965         g_assert(src_reg != NULL);
5966         g_assert(dst_reg != NULL);
5967 
5968         /* Cross-compare names to detect typos in the keys.  */
5969         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5970         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5971 
5972         /* None of the core system registers use opaque; we will.  */
5973         g_assert(src_reg->opaque == NULL);
5974 
5975         /* Create alias before redirection so we dup the right data. */
5976         if (a->new_key) {
5977             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5978             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5979             bool ok;
5980 
5981             new_reg->name = a->new_name;
5982             new_reg->type |= ARM_CP_ALIAS;
5983             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5984             new_reg->access &= PL2_RW | PL3_RW;
5985 
5986             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5987             g_assert(ok);
5988         }
5989 
5990         src_reg->opaque = dst_reg;
5991         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5992         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5993         if (!src_reg->raw_readfn) {
5994             src_reg->raw_readfn = raw_read;
5995         }
5996         if (!src_reg->raw_writefn) {
5997             src_reg->raw_writefn = raw_write;
5998         }
5999         src_reg->readfn = el2_e2h_read;
6000         src_reg->writefn = el2_e2h_write;
6001     }
6002 }
6003 #endif
6004 
6005 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6006                                      bool isread)
6007 {
6008     int cur_el = arm_current_el(env);
6009 
6010     if (cur_el < 2) {
6011         uint64_t hcr = arm_hcr_el2_eff(env);
6012 
6013         if (cur_el == 0) {
6014             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6015                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6016                     return CP_ACCESS_TRAP_EL2;
6017                 }
6018             } else {
6019                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6020                     return CP_ACCESS_TRAP;
6021                 }
6022                 if (hcr & HCR_TID2) {
6023                     return CP_ACCESS_TRAP_EL2;
6024                 }
6025             }
6026         } else if (hcr & HCR_TID2) {
6027             return CP_ACCESS_TRAP_EL2;
6028         }
6029     }
6030 
6031     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6032         return CP_ACCESS_TRAP_EL2;
6033     }
6034 
6035     return CP_ACCESS_OK;
6036 }
6037 
6038 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6039                         uint64_t value)
6040 {
6041     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6042      * read via a bit in OSLSR_EL1.
6043      */
6044     int oslock;
6045 
6046     if (ri->state == ARM_CP_STATE_AA32) {
6047         oslock = (value == 0xC5ACCE55);
6048     } else {
6049         oslock = value & 1;
6050     }
6051 
6052     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6053 }
6054 
6055 static const ARMCPRegInfo debug_cp_reginfo[] = {
6056     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6057      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6058      * unlike DBGDRAR it is never accessible from EL0.
6059      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6060      * accessor.
6061      */
6062     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6063       .access = PL0_R, .accessfn = access_tdra,
6064       .type = ARM_CP_CONST, .resetvalue = 0 },
6065     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6066       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6067       .access = PL1_R, .accessfn = access_tdra,
6068       .type = ARM_CP_CONST, .resetvalue = 0 },
6069     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6070       .access = PL0_R, .accessfn = access_tdra,
6071       .type = ARM_CP_CONST, .resetvalue = 0 },
6072     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6073     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6074       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6075       .access = PL1_RW, .accessfn = access_tda,
6076       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6077       .resetvalue = 0 },
6078     /*
6079      * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
6080      * Debug Communication Channel is not implemented.
6081      */
6082     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
6083       .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
6084       .access = PL0_R, .accessfn = access_tda,
6085       .type = ARM_CP_CONST, .resetvalue = 0 },
6086     /*
6087      * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
6088      * it is unlikely a guest will care.
6089      * We don't implement the configurable EL0 access.
6090      */
6091     { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
6092       .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6093       .type = ARM_CP_ALIAS,
6094       .access = PL1_R, .accessfn = access_tda,
6095       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6096     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6097       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6098       .access = PL1_W, .type = ARM_CP_NO_RAW,
6099       .accessfn = access_tdosa,
6100       .writefn = oslar_write },
6101     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6102       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6103       .access = PL1_R, .resetvalue = 10,
6104       .accessfn = access_tdosa,
6105       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6106     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6107     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6108       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6109       .access = PL1_RW, .accessfn = access_tdosa,
6110       .type = ARM_CP_NOP },
6111     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6112      * implement vector catch debug events yet.
6113      */
6114     { .name = "DBGVCR",
6115       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6116       .access = PL1_RW, .accessfn = access_tda,
6117       .type = ARM_CP_NOP },
6118     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6119      * to save and restore a 32-bit guest's DBGVCR)
6120      */
6121     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6122       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6123       .access = PL2_RW, .accessfn = access_tda,
6124       .type = ARM_CP_NOP },
6125     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6126      * Channel but Linux may try to access this register. The 32-bit
6127      * alias is DBGDCCINT.
6128      */
6129     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6130       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6131       .access = PL1_RW, .accessfn = access_tda,
6132       .type = ARM_CP_NOP },
6133     REGINFO_SENTINEL
6134 };
6135 
6136 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6137     /* 64 bit access versions of the (dummy) debug registers */
6138     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6139       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6140     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6141       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6142     REGINFO_SENTINEL
6143 };
6144 
6145 /* Return the exception level to which exceptions should be taken
6146  * via SVEAccessTrap.  If an exception should be routed through
6147  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6148  * take care of raising that exception.
6149  * C.f. the ARM pseudocode function CheckSVEEnabled.
6150  */
6151 int sve_exception_el(CPUARMState *env, int el)
6152 {
6153 #ifndef CONFIG_USER_ONLY
6154     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6155 
6156     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6157         bool disabled = false;
6158 
6159         /* The CPACR.ZEN controls traps to EL1:
6160          * 0, 2 : trap EL0 and EL1 accesses
6161          * 1    : trap only EL0 accesses
6162          * 3    : trap no accesses
6163          */
6164         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6165             disabled = true;
6166         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6167             disabled = el == 0;
6168         }
6169         if (disabled) {
6170             /* route_to_el2 */
6171             return hcr_el2 & HCR_TGE ? 2 : 1;
6172         }
6173 
6174         /* Check CPACR.FPEN.  */
6175         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6176             disabled = true;
6177         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6178             disabled = el == 0;
6179         }
6180         if (disabled) {
6181             return 0;
6182         }
6183     }
6184 
6185     /* CPTR_EL2.  Since TZ and TFP are positive,
6186      * they will be zero when EL2 is not present.
6187      */
6188     if (el <= 2 && arm_is_el2_enabled(env)) {
6189         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6190             return 2;
6191         }
6192         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6193             return 0;
6194         }
6195     }
6196 
6197     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6198     if (arm_feature(env, ARM_FEATURE_EL3)
6199         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6200         return 3;
6201     }
6202 #endif
6203     return 0;
6204 }
6205 
6206 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6207 {
6208     uint32_t end_len;
6209 
6210     start_len = MIN(start_len, ARM_MAX_VQ - 1);
6211     end_len = start_len;
6212 
6213     if (!test_bit(start_len, cpu->sve_vq_map)) {
6214         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6215         assert(end_len < start_len);
6216     }
6217     return end_len;
6218 }
6219 
6220 /*
6221  * Given that SVE is enabled, return the vector length for EL.
6222  */
6223 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6224 {
6225     ARMCPU *cpu = env_archcpu(env);
6226     uint32_t zcr_len = cpu->sve_max_vq - 1;
6227 
6228     if (el <= 1) {
6229         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6230     }
6231     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6232         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6233     }
6234     if (arm_feature(env, ARM_FEATURE_EL3)) {
6235         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6236     }
6237 
6238     return aarch64_sve_zcr_get_valid_len(cpu, zcr_len);
6239 }
6240 
6241 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6242                       uint64_t value)
6243 {
6244     int cur_el = arm_current_el(env);
6245     int old_len = sve_zcr_len_for_el(env, cur_el);
6246     int new_len;
6247 
6248     /* Bits other than [3:0] are RAZ/WI.  */
6249     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6250     raw_write(env, ri, value & 0xf);
6251 
6252     /*
6253      * Because we arrived here, we know both FP and SVE are enabled;
6254      * otherwise we would have trapped access to the ZCR_ELn register.
6255      */
6256     new_len = sve_zcr_len_for_el(env, cur_el);
6257     if (new_len < old_len) {
6258         aarch64_sve_narrow_vq(env, new_len + 1);
6259     }
6260 }
6261 
6262 static const ARMCPRegInfo zcr_el1_reginfo = {
6263     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6264     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6265     .access = PL1_RW, .type = ARM_CP_SVE,
6266     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6267     .writefn = zcr_write, .raw_writefn = raw_write
6268 };
6269 
6270 static const ARMCPRegInfo zcr_el2_reginfo = {
6271     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6272     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6273     .access = PL2_RW, .type = ARM_CP_SVE,
6274     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6275     .writefn = zcr_write, .raw_writefn = raw_write
6276 };
6277 
6278 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6279     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6280     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6281     .access = PL2_RW, .type = ARM_CP_SVE,
6282     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6283 };
6284 
6285 static const ARMCPRegInfo zcr_el3_reginfo = {
6286     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6287     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6288     .access = PL3_RW, .type = ARM_CP_SVE,
6289     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6290     .writefn = zcr_write, .raw_writefn = raw_write
6291 };
6292 
6293 void hw_watchpoint_update(ARMCPU *cpu, int n)
6294 {
6295     CPUARMState *env = &cpu->env;
6296     vaddr len = 0;
6297     vaddr wvr = env->cp15.dbgwvr[n];
6298     uint64_t wcr = env->cp15.dbgwcr[n];
6299     int mask;
6300     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6301 
6302     if (env->cpu_watchpoint[n]) {
6303         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6304         env->cpu_watchpoint[n] = NULL;
6305     }
6306 
6307     if (!extract64(wcr, 0, 1)) {
6308         /* E bit clear : watchpoint disabled */
6309         return;
6310     }
6311 
6312     switch (extract64(wcr, 3, 2)) {
6313     case 0:
6314         /* LSC 00 is reserved and must behave as if the wp is disabled */
6315         return;
6316     case 1:
6317         flags |= BP_MEM_READ;
6318         break;
6319     case 2:
6320         flags |= BP_MEM_WRITE;
6321         break;
6322     case 3:
6323         flags |= BP_MEM_ACCESS;
6324         break;
6325     }
6326 
6327     /* Attempts to use both MASK and BAS fields simultaneously are
6328      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6329      * thus generating a watchpoint for every byte in the masked region.
6330      */
6331     mask = extract64(wcr, 24, 4);
6332     if (mask == 1 || mask == 2) {
6333         /* Reserved values of MASK; we must act as if the mask value was
6334          * some non-reserved value, or as if the watchpoint were disabled.
6335          * We choose the latter.
6336          */
6337         return;
6338     } else if (mask) {
6339         /* Watchpoint covers an aligned area up to 2GB in size */
6340         len = 1ULL << mask;
6341         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6342          * whether the watchpoint fires when the unmasked bits match; we opt
6343          * to generate the exceptions.
6344          */
6345         wvr &= ~(len - 1);
6346     } else {
6347         /* Watchpoint covers bytes defined by the byte address select bits */
6348         int bas = extract64(wcr, 5, 8);
6349         int basstart;
6350 
6351         if (extract64(wvr, 2, 1)) {
6352             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6353              * ignored, and BAS[3:0] define which bytes to watch.
6354              */
6355             bas &= 0xf;
6356         }
6357 
6358         if (bas == 0) {
6359             /* This must act as if the watchpoint is disabled */
6360             return;
6361         }
6362 
6363         /* The BAS bits are supposed to be programmed to indicate a contiguous
6364          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6365          * we fire for each byte in the word/doubleword addressed by the WVR.
6366          * We choose to ignore any non-zero bits after the first range of 1s.
6367          */
6368         basstart = ctz32(bas);
6369         len = cto32(bas >> basstart);
6370         wvr += basstart;
6371     }
6372 
6373     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6374                           &env->cpu_watchpoint[n]);
6375 }
6376 
6377 void hw_watchpoint_update_all(ARMCPU *cpu)
6378 {
6379     int i;
6380     CPUARMState *env = &cpu->env;
6381 
6382     /* Completely clear out existing QEMU watchpoints and our array, to
6383      * avoid possible stale entries following migration load.
6384      */
6385     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6386     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6387 
6388     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6389         hw_watchpoint_update(cpu, i);
6390     }
6391 }
6392 
6393 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6394                          uint64_t value)
6395 {
6396     ARMCPU *cpu = env_archcpu(env);
6397     int i = ri->crm;
6398 
6399     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6400      * register reads and behaves as if values written are sign extended.
6401      * Bits [1:0] are RES0.
6402      */
6403     value = sextract64(value, 0, 49) & ~3ULL;
6404 
6405     raw_write(env, ri, value);
6406     hw_watchpoint_update(cpu, i);
6407 }
6408 
6409 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6410                          uint64_t value)
6411 {
6412     ARMCPU *cpu = env_archcpu(env);
6413     int i = ri->crm;
6414 
6415     raw_write(env, ri, value);
6416     hw_watchpoint_update(cpu, i);
6417 }
6418 
6419 void hw_breakpoint_update(ARMCPU *cpu, int n)
6420 {
6421     CPUARMState *env = &cpu->env;
6422     uint64_t bvr = env->cp15.dbgbvr[n];
6423     uint64_t bcr = env->cp15.dbgbcr[n];
6424     vaddr addr;
6425     int bt;
6426     int flags = BP_CPU;
6427 
6428     if (env->cpu_breakpoint[n]) {
6429         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6430         env->cpu_breakpoint[n] = NULL;
6431     }
6432 
6433     if (!extract64(bcr, 0, 1)) {
6434         /* E bit clear : watchpoint disabled */
6435         return;
6436     }
6437 
6438     bt = extract64(bcr, 20, 4);
6439 
6440     switch (bt) {
6441     case 4: /* unlinked address mismatch (reserved if AArch64) */
6442     case 5: /* linked address mismatch (reserved if AArch64) */
6443         qemu_log_mask(LOG_UNIMP,
6444                       "arm: address mismatch breakpoint types not implemented\n");
6445         return;
6446     case 0: /* unlinked address match */
6447     case 1: /* linked address match */
6448     {
6449         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6450          * we behave as if the register was sign extended. Bits [1:0] are
6451          * RES0. The BAS field is used to allow setting breakpoints on 16
6452          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6453          * a bp will fire if the addresses covered by the bp and the addresses
6454          * covered by the insn overlap but the insn doesn't start at the
6455          * start of the bp address range. We choose to require the insn and
6456          * the bp to have the same address. The constraints on writing to
6457          * BAS enforced in dbgbcr_write mean we have only four cases:
6458          *  0b0000  => no breakpoint
6459          *  0b0011  => breakpoint on addr
6460          *  0b1100  => breakpoint on addr + 2
6461          *  0b1111  => breakpoint on addr
6462          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6463          */
6464         int bas = extract64(bcr, 5, 4);
6465         addr = sextract64(bvr, 0, 49) & ~3ULL;
6466         if (bas == 0) {
6467             return;
6468         }
6469         if (bas == 0xc) {
6470             addr += 2;
6471         }
6472         break;
6473     }
6474     case 2: /* unlinked context ID match */
6475     case 8: /* unlinked VMID match (reserved if no EL2) */
6476     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6477         qemu_log_mask(LOG_UNIMP,
6478                       "arm: unlinked context breakpoint types not implemented\n");
6479         return;
6480     case 9: /* linked VMID match (reserved if no EL2) */
6481     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6482     case 3: /* linked context ID match */
6483     default:
6484         /* We must generate no events for Linked context matches (unless
6485          * they are linked to by some other bp/wp, which is handled in
6486          * updates for the linking bp/wp). We choose to also generate no events
6487          * for reserved values.
6488          */
6489         return;
6490     }
6491 
6492     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6493 }
6494 
6495 void hw_breakpoint_update_all(ARMCPU *cpu)
6496 {
6497     int i;
6498     CPUARMState *env = &cpu->env;
6499 
6500     /* Completely clear out existing QEMU breakpoints and our array, to
6501      * avoid possible stale entries following migration load.
6502      */
6503     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6504     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6505 
6506     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6507         hw_breakpoint_update(cpu, i);
6508     }
6509 }
6510 
6511 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6512                          uint64_t value)
6513 {
6514     ARMCPU *cpu = env_archcpu(env);
6515     int i = ri->crm;
6516 
6517     raw_write(env, ri, value);
6518     hw_breakpoint_update(cpu, i);
6519 }
6520 
6521 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6522                          uint64_t value)
6523 {
6524     ARMCPU *cpu = env_archcpu(env);
6525     int i = ri->crm;
6526 
6527     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6528      * copy of BAS[0].
6529      */
6530     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6531     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6532 
6533     raw_write(env, ri, value);
6534     hw_breakpoint_update(cpu, i);
6535 }
6536 
6537 static void define_debug_regs(ARMCPU *cpu)
6538 {
6539     /* Define v7 and v8 architectural debug registers.
6540      * These are just dummy implementations for now.
6541      */
6542     int i;
6543     int wrps, brps, ctx_cmps;
6544 
6545     /*
6546      * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
6547      * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
6548      * the register must not exist for this cpu.
6549      */
6550     if (cpu->isar.dbgdidr != 0) {
6551         ARMCPRegInfo dbgdidr = {
6552             .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
6553             .opc1 = 0, .opc2 = 0,
6554             .access = PL0_R, .accessfn = access_tda,
6555             .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6556         };
6557         define_one_arm_cp_reg(cpu, &dbgdidr);
6558     }
6559 
6560     /* Note that all these register fields hold "number of Xs minus 1". */
6561     brps = arm_num_brps(cpu);
6562     wrps = arm_num_wrps(cpu);
6563     ctx_cmps = arm_num_ctx_cmps(cpu);
6564 
6565     assert(ctx_cmps <= brps);
6566 
6567     define_arm_cp_regs(cpu, debug_cp_reginfo);
6568 
6569     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6570         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6571     }
6572 
6573     for (i = 0; i < brps; i++) {
6574         ARMCPRegInfo dbgregs[] = {
6575             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6576               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6577               .access = PL1_RW, .accessfn = access_tda,
6578               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6579               .writefn = dbgbvr_write, .raw_writefn = raw_write
6580             },
6581             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6582               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6583               .access = PL1_RW, .accessfn = access_tda,
6584               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6585               .writefn = dbgbcr_write, .raw_writefn = raw_write
6586             },
6587             REGINFO_SENTINEL
6588         };
6589         define_arm_cp_regs(cpu, dbgregs);
6590     }
6591 
6592     for (i = 0; i < wrps; i++) {
6593         ARMCPRegInfo dbgregs[] = {
6594             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6595               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6596               .access = PL1_RW, .accessfn = access_tda,
6597               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6598               .writefn = dbgwvr_write, .raw_writefn = raw_write
6599             },
6600             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6601               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6602               .access = PL1_RW, .accessfn = access_tda,
6603               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6604               .writefn = dbgwcr_write, .raw_writefn = raw_write
6605             },
6606             REGINFO_SENTINEL
6607         };
6608         define_arm_cp_regs(cpu, dbgregs);
6609     }
6610 }
6611 
6612 static void define_pmu_regs(ARMCPU *cpu)
6613 {
6614     /*
6615      * v7 performance monitor control register: same implementor
6616      * field as main ID register, and we implement four counters in
6617      * addition to the cycle count register.
6618      */
6619     unsigned int i, pmcrn = PMCR_NUM_COUNTERS;
6620     ARMCPRegInfo pmcr = {
6621         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6622         .access = PL0_RW,
6623         .type = ARM_CP_IO | ARM_CP_ALIAS,
6624         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6625         .accessfn = pmreg_access, .writefn = pmcr_write,
6626         .raw_writefn = raw_write,
6627     };
6628     ARMCPRegInfo pmcr64 = {
6629         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6630         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6631         .access = PL0_RW, .accessfn = pmreg_access,
6632         .type = ARM_CP_IO,
6633         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6634         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6635                       PMCRLC,
6636         .writefn = pmcr_write, .raw_writefn = raw_write,
6637     };
6638     define_one_arm_cp_reg(cpu, &pmcr);
6639     define_one_arm_cp_reg(cpu, &pmcr64);
6640     for (i = 0; i < pmcrn; i++) {
6641         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6642         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6643         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6644         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6645         ARMCPRegInfo pmev_regs[] = {
6646             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6647               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6648               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6649               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6650               .accessfn = pmreg_access },
6651             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6652               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6653               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6654               .type = ARM_CP_IO,
6655               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6656               .raw_readfn = pmevcntr_rawread,
6657               .raw_writefn = pmevcntr_rawwrite },
6658             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6659               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6660               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6661               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6662               .accessfn = pmreg_access },
6663             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6664               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6665               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6666               .type = ARM_CP_IO,
6667               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6668               .raw_writefn = pmevtyper_rawwrite },
6669             REGINFO_SENTINEL
6670         };
6671         define_arm_cp_regs(cpu, pmev_regs);
6672         g_free(pmevcntr_name);
6673         g_free(pmevcntr_el0_name);
6674         g_free(pmevtyper_name);
6675         g_free(pmevtyper_el0_name);
6676     }
6677     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6678         ARMCPRegInfo v81_pmu_regs[] = {
6679             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6680               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6681               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6682               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6683             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6684               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6685               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6686               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6687             REGINFO_SENTINEL
6688         };
6689         define_arm_cp_regs(cpu, v81_pmu_regs);
6690     }
6691     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6692         static const ARMCPRegInfo v84_pmmir = {
6693             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6694             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6695             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6696             .resetvalue = 0
6697         };
6698         define_one_arm_cp_reg(cpu, &v84_pmmir);
6699     }
6700 }
6701 
6702 /* We don't know until after realize whether there's a GICv3
6703  * attached, and that is what registers the gicv3 sysregs.
6704  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6705  * at runtime.
6706  */
6707 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6708 {
6709     ARMCPU *cpu = env_archcpu(env);
6710     uint64_t pfr1 = cpu->isar.id_pfr1;
6711 
6712     if (env->gicv3state) {
6713         pfr1 |= 1 << 28;
6714     }
6715     return pfr1;
6716 }
6717 
6718 #ifndef CONFIG_USER_ONLY
6719 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6720 {
6721     ARMCPU *cpu = env_archcpu(env);
6722     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6723 
6724     if (env->gicv3state) {
6725         pfr0 |= 1 << 24;
6726     }
6727     return pfr0;
6728 }
6729 #endif
6730 
6731 /* Shared logic between LORID and the rest of the LOR* registers.
6732  * Secure state exclusion has already been dealt with.
6733  */
6734 static CPAccessResult access_lor_ns(CPUARMState *env,
6735                                     const ARMCPRegInfo *ri, bool isread)
6736 {
6737     int el = arm_current_el(env);
6738 
6739     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6740         return CP_ACCESS_TRAP_EL2;
6741     }
6742     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6743         return CP_ACCESS_TRAP_EL3;
6744     }
6745     return CP_ACCESS_OK;
6746 }
6747 
6748 static CPAccessResult access_lor_other(CPUARMState *env,
6749                                        const ARMCPRegInfo *ri, bool isread)
6750 {
6751     if (arm_is_secure_below_el3(env)) {
6752         /* Access denied in secure mode.  */
6753         return CP_ACCESS_TRAP;
6754     }
6755     return access_lor_ns(env, ri, isread);
6756 }
6757 
6758 /*
6759  * A trivial implementation of ARMv8.1-LOR leaves all of these
6760  * registers fixed at 0, which indicates that there are zero
6761  * supported Limited Ordering regions.
6762  */
6763 static const ARMCPRegInfo lor_reginfo[] = {
6764     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6765       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6766       .access = PL1_RW, .accessfn = access_lor_other,
6767       .type = ARM_CP_CONST, .resetvalue = 0 },
6768     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6769       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6770       .access = PL1_RW, .accessfn = access_lor_other,
6771       .type = ARM_CP_CONST, .resetvalue = 0 },
6772     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6773       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6774       .access = PL1_RW, .accessfn = access_lor_other,
6775       .type = ARM_CP_CONST, .resetvalue = 0 },
6776     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6777       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6778       .access = PL1_RW, .accessfn = access_lor_other,
6779       .type = ARM_CP_CONST, .resetvalue = 0 },
6780     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6781       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6782       .access = PL1_R, .accessfn = access_lor_ns,
6783       .type = ARM_CP_CONST, .resetvalue = 0 },
6784     REGINFO_SENTINEL
6785 };
6786 
6787 #ifdef TARGET_AARCH64
6788 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6789                                    bool isread)
6790 {
6791     int el = arm_current_el(env);
6792 
6793     if (el < 2 &&
6794         arm_feature(env, ARM_FEATURE_EL2) &&
6795         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6796         return CP_ACCESS_TRAP_EL2;
6797     }
6798     if (el < 3 &&
6799         arm_feature(env, ARM_FEATURE_EL3) &&
6800         !(env->cp15.scr_el3 & SCR_APK)) {
6801         return CP_ACCESS_TRAP_EL3;
6802     }
6803     return CP_ACCESS_OK;
6804 }
6805 
6806 static const ARMCPRegInfo pauth_reginfo[] = {
6807     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6808       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6809       .access = PL1_RW, .accessfn = access_pauth,
6810       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6811     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6812       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6813       .access = PL1_RW, .accessfn = access_pauth,
6814       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6815     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6816       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6817       .access = PL1_RW, .accessfn = access_pauth,
6818       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6819     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6820       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6821       .access = PL1_RW, .accessfn = access_pauth,
6822       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6823     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6824       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6825       .access = PL1_RW, .accessfn = access_pauth,
6826       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6827     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6828       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6829       .access = PL1_RW, .accessfn = access_pauth,
6830       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6831     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6832       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6833       .access = PL1_RW, .accessfn = access_pauth,
6834       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6835     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6836       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6837       .access = PL1_RW, .accessfn = access_pauth,
6838       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6839     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6840       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6841       .access = PL1_RW, .accessfn = access_pauth,
6842       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6843     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6844       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6845       .access = PL1_RW, .accessfn = access_pauth,
6846       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6847     REGINFO_SENTINEL
6848 };
6849 
6850 static const ARMCPRegInfo tlbirange_reginfo[] = {
6851     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
6852       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
6853       .access = PL1_W, .type = ARM_CP_NO_RAW,
6854       .writefn = tlbi_aa64_rvae1is_write },
6855     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
6856       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
6857       .access = PL1_W, .type = ARM_CP_NO_RAW,
6858       .writefn = tlbi_aa64_rvae1is_write },
6859    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
6860       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
6861       .access = PL1_W, .type = ARM_CP_NO_RAW,
6862       .writefn = tlbi_aa64_rvae1is_write },
6863     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
6864       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
6865       .access = PL1_W, .type = ARM_CP_NO_RAW,
6866       .writefn = tlbi_aa64_rvae1is_write },
6867     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
6868       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
6869       .access = PL1_W, .type = ARM_CP_NO_RAW,
6870       .writefn = tlbi_aa64_rvae1is_write },
6871     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
6872       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
6873       .access = PL1_W, .type = ARM_CP_NO_RAW,
6874       .writefn = tlbi_aa64_rvae1is_write },
6875    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
6876       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
6877       .access = PL1_W, .type = ARM_CP_NO_RAW,
6878       .writefn = tlbi_aa64_rvae1is_write },
6879     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
6880       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
6881       .access = PL1_W, .type = ARM_CP_NO_RAW,
6882       .writefn = tlbi_aa64_rvae1is_write },
6883     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
6884       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
6885       .access = PL1_W, .type = ARM_CP_NO_RAW,
6886       .writefn = tlbi_aa64_rvae1_write },
6887     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
6888       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
6889       .access = PL1_W, .type = ARM_CP_NO_RAW,
6890       .writefn = tlbi_aa64_rvae1_write },
6891    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
6892       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
6893       .access = PL1_W, .type = ARM_CP_NO_RAW,
6894       .writefn = tlbi_aa64_rvae1_write },
6895     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
6896       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
6897       .access = PL1_W, .type = ARM_CP_NO_RAW,
6898       .writefn = tlbi_aa64_rvae1_write },
6899     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
6900       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
6901       .access = PL2_W, .type = ARM_CP_NOP },
6902     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
6903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
6904       .access = PL2_W, .type = ARM_CP_NOP },
6905     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
6906       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
6907       .access = PL2_W, .type = ARM_CP_NO_RAW,
6908       .writefn = tlbi_aa64_rvae2is_write },
6909    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
6910       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
6911       .access = PL2_W, .type = ARM_CP_NO_RAW,
6912       .writefn = tlbi_aa64_rvae2is_write },
6913     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
6915       .access = PL2_W, .type = ARM_CP_NOP },
6916    { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
6917       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
6918       .access = PL2_W, .type = ARM_CP_NOP },
6919    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
6920       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
6921       .access = PL2_W, .type = ARM_CP_NO_RAW,
6922       .writefn = tlbi_aa64_rvae2is_write },
6923    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
6924       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
6925       .access = PL2_W, .type = ARM_CP_NO_RAW,
6926       .writefn = tlbi_aa64_rvae2is_write },
6927     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
6928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
6929       .access = PL2_W, .type = ARM_CP_NO_RAW,
6930       .writefn = tlbi_aa64_rvae2_write },
6931    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
6932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
6933       .access = PL2_W, .type = ARM_CP_NO_RAW,
6934       .writefn = tlbi_aa64_rvae2_write },
6935    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
6936       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
6937       .access = PL3_W, .type = ARM_CP_NO_RAW,
6938       .writefn = tlbi_aa64_rvae3is_write },
6939    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
6940       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
6941       .access = PL3_W, .type = ARM_CP_NO_RAW,
6942       .writefn = tlbi_aa64_rvae3is_write },
6943    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
6944       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
6945       .access = PL3_W, .type = ARM_CP_NO_RAW,
6946       .writefn = tlbi_aa64_rvae3is_write },
6947    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
6948       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
6949       .access = PL3_W, .type = ARM_CP_NO_RAW,
6950       .writefn = tlbi_aa64_rvae3is_write },
6951    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
6952       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
6953       .access = PL3_W, .type = ARM_CP_NO_RAW,
6954       .writefn = tlbi_aa64_rvae3_write },
6955    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
6956       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
6957       .access = PL3_W, .type = ARM_CP_NO_RAW,
6958       .writefn = tlbi_aa64_rvae3_write },
6959     REGINFO_SENTINEL
6960 };
6961 
6962 static const ARMCPRegInfo tlbios_reginfo[] = {
6963     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
6964       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
6965       .access = PL1_W, .type = ARM_CP_NO_RAW,
6966       .writefn = tlbi_aa64_vmalle1is_write },
6967     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
6968       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
6969       .access = PL1_W, .type = ARM_CP_NO_RAW,
6970       .writefn = tlbi_aa64_vae1is_write },
6971     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
6972       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
6973       .access = PL1_W, .type = ARM_CP_NO_RAW,
6974       .writefn = tlbi_aa64_vmalle1is_write },
6975     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
6976       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
6977       .access = PL1_W, .type = ARM_CP_NO_RAW,
6978       .writefn = tlbi_aa64_vae1is_write },
6979     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
6980       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
6981       .access = PL1_W, .type = ARM_CP_NO_RAW,
6982       .writefn = tlbi_aa64_vae1is_write },
6983     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
6984       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
6985       .access = PL1_W, .type = ARM_CP_NO_RAW,
6986       .writefn = tlbi_aa64_vae1is_write },
6987     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
6988       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
6989       .access = PL2_W, .type = ARM_CP_NO_RAW,
6990       .writefn = tlbi_aa64_alle2is_write },
6991     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
6992       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
6993       .access = PL2_W, .type = ARM_CP_NO_RAW,
6994       .writefn = tlbi_aa64_vae2is_write },
6995    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
6996       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
6997       .access = PL2_W, .type = ARM_CP_NO_RAW,
6998       .writefn = tlbi_aa64_alle1is_write },
6999     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7000       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7001       .access = PL2_W, .type = ARM_CP_NO_RAW,
7002       .writefn = tlbi_aa64_vae2is_write },
7003     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7004       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7005       .access = PL2_W, .type = ARM_CP_NO_RAW,
7006       .writefn = tlbi_aa64_alle1is_write },
7007     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7008       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7009       .access = PL2_W, .type = ARM_CP_NOP },
7010     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7011       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7012       .access = PL2_W, .type = ARM_CP_NOP },
7013     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7014       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7015       .access = PL2_W, .type = ARM_CP_NOP },
7016     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7017       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7018       .access = PL2_W, .type = ARM_CP_NOP },
7019     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7020       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7021       .access = PL3_W, .type = ARM_CP_NO_RAW,
7022       .writefn = tlbi_aa64_alle3is_write },
7023     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7024       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7025       .access = PL3_W, .type = ARM_CP_NO_RAW,
7026       .writefn = tlbi_aa64_vae3is_write },
7027     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7028       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7029       .access = PL3_W, .type = ARM_CP_NO_RAW,
7030       .writefn = tlbi_aa64_vae3is_write },
7031     REGINFO_SENTINEL
7032 };
7033 
7034 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7035 {
7036     Error *err = NULL;
7037     uint64_t ret;
7038 
7039     /* Success sets NZCV = 0000.  */
7040     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7041 
7042     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7043         /*
7044          * ??? Failed, for unknown reasons in the crypto subsystem.
7045          * The best we can do is log the reason and return the
7046          * timed-out indication to the guest.  There is no reason
7047          * we know to expect this failure to be transitory, so the
7048          * guest may well hang retrying the operation.
7049          */
7050         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7051                       ri->name, error_get_pretty(err));
7052         error_free(err);
7053 
7054         env->ZF = 0; /* NZCF = 0100 */
7055         return 0;
7056     }
7057     return ret;
7058 }
7059 
7060 /* We do not support re-seeding, so the two registers operate the same.  */
7061 static const ARMCPRegInfo rndr_reginfo[] = {
7062     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7063       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7064       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7065       .access = PL0_R, .readfn = rndr_readfn },
7066     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7067       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7068       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7069       .access = PL0_R, .readfn = rndr_readfn },
7070     REGINFO_SENTINEL
7071 };
7072 
7073 #ifndef CONFIG_USER_ONLY
7074 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7075                           uint64_t value)
7076 {
7077     ARMCPU *cpu = env_archcpu(env);
7078     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7079     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7080     uint64_t vaddr_in = (uint64_t) value;
7081     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7082     void *haddr;
7083     int mem_idx = cpu_mmu_index(env, false);
7084 
7085     /* This won't be crossing page boundaries */
7086     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7087     if (haddr) {
7088 
7089         ram_addr_t offset;
7090         MemoryRegion *mr;
7091 
7092         /* RCU lock is already being held */
7093         mr = memory_region_from_host(haddr, &offset);
7094 
7095         if (mr) {
7096             memory_region_writeback(mr, offset, dline_size);
7097         }
7098     }
7099 }
7100 
7101 static const ARMCPRegInfo dcpop_reg[] = {
7102     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7103       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7104       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7105       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7106     REGINFO_SENTINEL
7107 };
7108 
7109 static const ARMCPRegInfo dcpodp_reg[] = {
7110     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7111       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7112       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7113       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7114     REGINFO_SENTINEL
7115 };
7116 #endif /*CONFIG_USER_ONLY*/
7117 
7118 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7119                                        bool isread)
7120 {
7121     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7122         return CP_ACCESS_TRAP_EL2;
7123     }
7124 
7125     return CP_ACCESS_OK;
7126 }
7127 
7128 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7129                                  bool isread)
7130 {
7131     int el = arm_current_el(env);
7132 
7133     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
7134         uint64_t hcr = arm_hcr_el2_eff(env);
7135         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7136             return CP_ACCESS_TRAP_EL2;
7137         }
7138     }
7139     if (el < 3 &&
7140         arm_feature(env, ARM_FEATURE_EL3) &&
7141         !(env->cp15.scr_el3 & SCR_ATA)) {
7142         return CP_ACCESS_TRAP_EL3;
7143     }
7144     return CP_ACCESS_OK;
7145 }
7146 
7147 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7148 {
7149     return env->pstate & PSTATE_TCO;
7150 }
7151 
7152 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7153 {
7154     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7155 }
7156 
7157 static const ARMCPRegInfo mte_reginfo[] = {
7158     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7159       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7160       .access = PL1_RW, .accessfn = access_mte,
7161       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7162     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7163       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7164       .access = PL1_RW, .accessfn = access_mte,
7165       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7166     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7167       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7168       .access = PL2_RW, .accessfn = access_mte,
7169       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7170     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7171       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7172       .access = PL3_RW,
7173       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7174     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7175       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7176       .access = PL1_RW, .accessfn = access_mte,
7177       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7178     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7179       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7180       .access = PL1_RW, .accessfn = access_mte,
7181       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7182     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7183       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7184       .access = PL1_R, .accessfn = access_aa64_tid5,
7185       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7186     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7187       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7188       .type = ARM_CP_NO_RAW,
7189       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7190     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7191       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7192       .type = ARM_CP_NOP, .access = PL1_W,
7193       .accessfn = aa64_cacheop_poc_access },
7194     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7195       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7196       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7197     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7198       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7199       .type = ARM_CP_NOP, .access = PL1_W,
7200       .accessfn = aa64_cacheop_poc_access },
7201     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7202       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7203       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7204     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7205       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7206       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7207     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7208       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7209       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7210     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7211       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7212       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7213     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7214       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7215       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7216     REGINFO_SENTINEL
7217 };
7218 
7219 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7220     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7221       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7222       .type = ARM_CP_CONST, .access = PL0_RW, },
7223     REGINFO_SENTINEL
7224 };
7225 
7226 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7227     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7228       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7229       .type = ARM_CP_NOP, .access = PL0_W,
7230       .accessfn = aa64_cacheop_poc_access },
7231     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7232       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7233       .type = ARM_CP_NOP, .access = PL0_W,
7234       .accessfn = aa64_cacheop_poc_access },
7235     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7236       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7237       .type = ARM_CP_NOP, .access = PL0_W,
7238       .accessfn = aa64_cacheop_poc_access },
7239     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7240       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7241       .type = ARM_CP_NOP, .access = PL0_W,
7242       .accessfn = aa64_cacheop_poc_access },
7243     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7245       .type = ARM_CP_NOP, .access = PL0_W,
7246       .accessfn = aa64_cacheop_poc_access },
7247     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7248       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7249       .type = ARM_CP_NOP, .access = PL0_W,
7250       .accessfn = aa64_cacheop_poc_access },
7251     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7252       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7253       .type = ARM_CP_NOP, .access = PL0_W,
7254       .accessfn = aa64_cacheop_poc_access },
7255     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7256       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7257       .type = ARM_CP_NOP, .access = PL0_W,
7258       .accessfn = aa64_cacheop_poc_access },
7259     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7260       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7261       .access = PL0_W, .type = ARM_CP_DC_GVA,
7262 #ifndef CONFIG_USER_ONLY
7263       /* Avoid overhead of an access check that always passes in user-mode */
7264       .accessfn = aa64_zva_access,
7265 #endif
7266     },
7267     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7268       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7269       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7270 #ifndef CONFIG_USER_ONLY
7271       /* Avoid overhead of an access check that always passes in user-mode */
7272       .accessfn = aa64_zva_access,
7273 #endif
7274     },
7275     REGINFO_SENTINEL
7276 };
7277 
7278 #endif
7279 
7280 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7281                                      bool isread)
7282 {
7283     int el = arm_current_el(env);
7284 
7285     if (el == 0) {
7286         uint64_t sctlr = arm_sctlr(env, el);
7287         if (!(sctlr & SCTLR_EnRCTX)) {
7288             return CP_ACCESS_TRAP;
7289         }
7290     } else if (el == 1) {
7291         uint64_t hcr = arm_hcr_el2_eff(env);
7292         if (hcr & HCR_NV) {
7293             return CP_ACCESS_TRAP_EL2;
7294         }
7295     }
7296     return CP_ACCESS_OK;
7297 }
7298 
7299 static const ARMCPRegInfo predinv_reginfo[] = {
7300     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7301       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7302       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7303     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7304       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7305       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7306     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7307       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7308       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7309     /*
7310      * Note the AArch32 opcodes have a different OPC1.
7311      */
7312     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7313       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7314       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7315     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7316       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7317       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7318     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7319       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7320       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7321     REGINFO_SENTINEL
7322 };
7323 
7324 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7325 {
7326     /* Read the high 32 bits of the current CCSIDR */
7327     return extract64(ccsidr_read(env, ri), 32, 32);
7328 }
7329 
7330 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7331     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7332       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7333       .access = PL1_R,
7334       .accessfn = access_aa64_tid2,
7335       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7336     REGINFO_SENTINEL
7337 };
7338 
7339 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7340                                        bool isread)
7341 {
7342     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7343         return CP_ACCESS_TRAP_EL2;
7344     }
7345 
7346     return CP_ACCESS_OK;
7347 }
7348 
7349 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7350                                        bool isread)
7351 {
7352     if (arm_feature(env, ARM_FEATURE_V8)) {
7353         return access_aa64_tid3(env, ri, isread);
7354     }
7355 
7356     return CP_ACCESS_OK;
7357 }
7358 
7359 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7360                                      bool isread)
7361 {
7362     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7363         return CP_ACCESS_TRAP_EL2;
7364     }
7365 
7366     return CP_ACCESS_OK;
7367 }
7368 
7369 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7370                                         const ARMCPRegInfo *ri, bool isread)
7371 {
7372     /*
7373      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7374      * in v7A, not in v8A.
7375      */
7376     if (!arm_feature(env, ARM_FEATURE_V8) &&
7377         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7378         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7379         return CP_ACCESS_TRAP_EL2;
7380     }
7381     return CP_ACCESS_OK;
7382 }
7383 
7384 static const ARMCPRegInfo jazelle_regs[] = {
7385     { .name = "JIDR",
7386       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7387       .access = PL1_R, .accessfn = access_jazelle,
7388       .type = ARM_CP_CONST, .resetvalue = 0 },
7389     { .name = "JOSCR",
7390       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7391       .accessfn = access_joscr_jmcr,
7392       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7393     { .name = "JMCR",
7394       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7395       .accessfn = access_joscr_jmcr,
7396       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7397     REGINFO_SENTINEL
7398 };
7399 
7400 static const ARMCPRegInfo vhe_reginfo[] = {
7401     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7402       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7403       .access = PL2_RW,
7404       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7405     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7406       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7407       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7408       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7409 #ifndef CONFIG_USER_ONLY
7410     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7411       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7412       .fieldoffset =
7413         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7414       .type = ARM_CP_IO, .access = PL2_RW,
7415       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7416     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7417       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7418       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7419       .resetfn = gt_hv_timer_reset,
7420       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7421     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7422       .type = ARM_CP_IO,
7423       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7424       .access = PL2_RW,
7425       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7426       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7427     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7429       .type = ARM_CP_IO | ARM_CP_ALIAS,
7430       .access = PL2_RW, .accessfn = e2h_access,
7431       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7432       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7433     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7435       .type = ARM_CP_IO | ARM_CP_ALIAS,
7436       .access = PL2_RW, .accessfn = e2h_access,
7437       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7438       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7439     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7440       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7441       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7442       .access = PL2_RW, .accessfn = e2h_access,
7443       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7444     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7445       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7446       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7447       .access = PL2_RW, .accessfn = e2h_access,
7448       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7449     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7450       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7451       .type = ARM_CP_IO | ARM_CP_ALIAS,
7452       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7453       .access = PL2_RW, .accessfn = e2h_access,
7454       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7455     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7456       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7457       .type = ARM_CP_IO | ARM_CP_ALIAS,
7458       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7459       .access = PL2_RW, .accessfn = e2h_access,
7460       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7461 #endif
7462     REGINFO_SENTINEL
7463 };
7464 
7465 #ifndef CONFIG_USER_ONLY
7466 static const ARMCPRegInfo ats1e1_reginfo[] = {
7467     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7469       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7470       .writefn = ats_write64 },
7471     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7472       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7473       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7474       .writefn = ats_write64 },
7475     REGINFO_SENTINEL
7476 };
7477 
7478 static const ARMCPRegInfo ats1cp_reginfo[] = {
7479     { .name = "ATS1CPRP",
7480       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7481       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7482       .writefn = ats_write },
7483     { .name = "ATS1CPWP",
7484       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7485       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7486       .writefn = ats_write },
7487     REGINFO_SENTINEL
7488 };
7489 #endif
7490 
7491 /*
7492  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7493  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7494  * is non-zero, which is never for ARMv7, optionally in ARMv8
7495  * and mandatorily for ARMv8.2 and up.
7496  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7497  * implementation is RAZ/WI we can ignore this detail, as we
7498  * do for ACTLR.
7499  */
7500 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7501     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7502       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7503       .access = PL1_RW, .accessfn = access_tacr,
7504       .type = ARM_CP_CONST, .resetvalue = 0 },
7505     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7506       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7507       .access = PL2_RW, .type = ARM_CP_CONST,
7508       .resetvalue = 0 },
7509     REGINFO_SENTINEL
7510 };
7511 
7512 void register_cp_regs_for_features(ARMCPU *cpu)
7513 {
7514     /* Register all the coprocessor registers based on feature bits */
7515     CPUARMState *env = &cpu->env;
7516     if (arm_feature(env, ARM_FEATURE_M)) {
7517         /* M profile has no coprocessor registers */
7518         return;
7519     }
7520 
7521     define_arm_cp_regs(cpu, cp_reginfo);
7522     if (!arm_feature(env, ARM_FEATURE_V8)) {
7523         /* Must go early as it is full of wildcards that may be
7524          * overridden by later definitions.
7525          */
7526         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7527     }
7528 
7529     if (arm_feature(env, ARM_FEATURE_V6)) {
7530         /* The ID registers all have impdef reset values */
7531         ARMCPRegInfo v6_idregs[] = {
7532             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7533               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7534               .access = PL1_R, .type = ARM_CP_CONST,
7535               .accessfn = access_aa32_tid3,
7536               .resetvalue = cpu->isar.id_pfr0 },
7537             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7538              * the value of the GIC field until after we define these regs.
7539              */
7540             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7541               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7542               .access = PL1_R, .type = ARM_CP_NO_RAW,
7543               .accessfn = access_aa32_tid3,
7544               .readfn = id_pfr1_read,
7545               .writefn = arm_cp_write_ignore },
7546             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7547               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7548               .access = PL1_R, .type = ARM_CP_CONST,
7549               .accessfn = access_aa32_tid3,
7550               .resetvalue = cpu->isar.id_dfr0 },
7551             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7552               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7553               .access = PL1_R, .type = ARM_CP_CONST,
7554               .accessfn = access_aa32_tid3,
7555               .resetvalue = cpu->id_afr0 },
7556             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7557               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7558               .access = PL1_R, .type = ARM_CP_CONST,
7559               .accessfn = access_aa32_tid3,
7560               .resetvalue = cpu->isar.id_mmfr0 },
7561             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7562               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7563               .access = PL1_R, .type = ARM_CP_CONST,
7564               .accessfn = access_aa32_tid3,
7565               .resetvalue = cpu->isar.id_mmfr1 },
7566             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7567               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7568               .access = PL1_R, .type = ARM_CP_CONST,
7569               .accessfn = access_aa32_tid3,
7570               .resetvalue = cpu->isar.id_mmfr2 },
7571             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7572               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7573               .access = PL1_R, .type = ARM_CP_CONST,
7574               .accessfn = access_aa32_tid3,
7575               .resetvalue = cpu->isar.id_mmfr3 },
7576             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7577               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7578               .access = PL1_R, .type = ARM_CP_CONST,
7579               .accessfn = access_aa32_tid3,
7580               .resetvalue = cpu->isar.id_isar0 },
7581             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7582               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7583               .access = PL1_R, .type = ARM_CP_CONST,
7584               .accessfn = access_aa32_tid3,
7585               .resetvalue = cpu->isar.id_isar1 },
7586             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7587               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7588               .access = PL1_R, .type = ARM_CP_CONST,
7589               .accessfn = access_aa32_tid3,
7590               .resetvalue = cpu->isar.id_isar2 },
7591             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7592               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7593               .access = PL1_R, .type = ARM_CP_CONST,
7594               .accessfn = access_aa32_tid3,
7595               .resetvalue = cpu->isar.id_isar3 },
7596             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7597               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7598               .access = PL1_R, .type = ARM_CP_CONST,
7599               .accessfn = access_aa32_tid3,
7600               .resetvalue = cpu->isar.id_isar4 },
7601             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7602               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7603               .access = PL1_R, .type = ARM_CP_CONST,
7604               .accessfn = access_aa32_tid3,
7605               .resetvalue = cpu->isar.id_isar5 },
7606             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7607               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7608               .access = PL1_R, .type = ARM_CP_CONST,
7609               .accessfn = access_aa32_tid3,
7610               .resetvalue = cpu->isar.id_mmfr4 },
7611             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7612               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7613               .access = PL1_R, .type = ARM_CP_CONST,
7614               .accessfn = access_aa32_tid3,
7615               .resetvalue = cpu->isar.id_isar6 },
7616             REGINFO_SENTINEL
7617         };
7618         define_arm_cp_regs(cpu, v6_idregs);
7619         define_arm_cp_regs(cpu, v6_cp_reginfo);
7620     } else {
7621         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7622     }
7623     if (arm_feature(env, ARM_FEATURE_V6K)) {
7624         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7625     }
7626     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7627         !arm_feature(env, ARM_FEATURE_PMSA)) {
7628         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7629     }
7630     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7631         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7632     }
7633     if (arm_feature(env, ARM_FEATURE_V7)) {
7634         ARMCPRegInfo clidr = {
7635             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7636             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7637             .access = PL1_R, .type = ARM_CP_CONST,
7638             .accessfn = access_aa64_tid2,
7639             .resetvalue = cpu->clidr
7640         };
7641         define_one_arm_cp_reg(cpu, &clidr);
7642         define_arm_cp_regs(cpu, v7_cp_reginfo);
7643         define_debug_regs(cpu);
7644         define_pmu_regs(cpu);
7645     } else {
7646         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7647     }
7648     if (arm_feature(env, ARM_FEATURE_V8)) {
7649         /* AArch64 ID registers, which all have impdef reset values.
7650          * Note that within the ID register ranges the unused slots
7651          * must all RAZ, not UNDEF; future architecture versions may
7652          * define new registers here.
7653          */
7654         ARMCPRegInfo v8_idregs[] = {
7655             /*
7656              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7657              * emulation because we don't know the right value for the
7658              * GIC field until after we define these regs.
7659              */
7660             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7661               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7662               .access = PL1_R,
7663 #ifdef CONFIG_USER_ONLY
7664               .type = ARM_CP_CONST,
7665               .resetvalue = cpu->isar.id_aa64pfr0
7666 #else
7667               .type = ARM_CP_NO_RAW,
7668               .accessfn = access_aa64_tid3,
7669               .readfn = id_aa64pfr0_read,
7670               .writefn = arm_cp_write_ignore
7671 #endif
7672             },
7673             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7674               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7675               .access = PL1_R, .type = ARM_CP_CONST,
7676               .accessfn = access_aa64_tid3,
7677               .resetvalue = cpu->isar.id_aa64pfr1},
7678             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7679               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7680               .access = PL1_R, .type = ARM_CP_CONST,
7681               .accessfn = access_aa64_tid3,
7682               .resetvalue = 0 },
7683             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7684               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7685               .access = PL1_R, .type = ARM_CP_CONST,
7686               .accessfn = access_aa64_tid3,
7687               .resetvalue = 0 },
7688             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7689               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7690               .access = PL1_R, .type = ARM_CP_CONST,
7691               .accessfn = access_aa64_tid3,
7692               .resetvalue = cpu->isar.id_aa64zfr0 },
7693             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7694               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7695               .access = PL1_R, .type = ARM_CP_CONST,
7696               .accessfn = access_aa64_tid3,
7697               .resetvalue = 0 },
7698             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7699               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7700               .access = PL1_R, .type = ARM_CP_CONST,
7701               .accessfn = access_aa64_tid3,
7702               .resetvalue = 0 },
7703             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7704               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7705               .access = PL1_R, .type = ARM_CP_CONST,
7706               .accessfn = access_aa64_tid3,
7707               .resetvalue = 0 },
7708             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7709               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7710               .access = PL1_R, .type = ARM_CP_CONST,
7711               .accessfn = access_aa64_tid3,
7712               .resetvalue = cpu->isar.id_aa64dfr0 },
7713             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7714               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7715               .access = PL1_R, .type = ARM_CP_CONST,
7716               .accessfn = access_aa64_tid3,
7717               .resetvalue = cpu->isar.id_aa64dfr1 },
7718             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7719               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7720               .access = PL1_R, .type = ARM_CP_CONST,
7721               .accessfn = access_aa64_tid3,
7722               .resetvalue = 0 },
7723             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7724               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7725               .access = PL1_R, .type = ARM_CP_CONST,
7726               .accessfn = access_aa64_tid3,
7727               .resetvalue = 0 },
7728             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7729               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7730               .access = PL1_R, .type = ARM_CP_CONST,
7731               .accessfn = access_aa64_tid3,
7732               .resetvalue = cpu->id_aa64afr0 },
7733             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7734               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7735               .access = PL1_R, .type = ARM_CP_CONST,
7736               .accessfn = access_aa64_tid3,
7737               .resetvalue = cpu->id_aa64afr1 },
7738             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7739               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7740               .access = PL1_R, .type = ARM_CP_CONST,
7741               .accessfn = access_aa64_tid3,
7742               .resetvalue = 0 },
7743             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7745               .access = PL1_R, .type = ARM_CP_CONST,
7746               .accessfn = access_aa64_tid3,
7747               .resetvalue = 0 },
7748             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7749               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7750               .access = PL1_R, .type = ARM_CP_CONST,
7751               .accessfn = access_aa64_tid3,
7752               .resetvalue = cpu->isar.id_aa64isar0 },
7753             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7754               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7755               .access = PL1_R, .type = ARM_CP_CONST,
7756               .accessfn = access_aa64_tid3,
7757               .resetvalue = cpu->isar.id_aa64isar1 },
7758             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7759               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7760               .access = PL1_R, .type = ARM_CP_CONST,
7761               .accessfn = access_aa64_tid3,
7762               .resetvalue = 0 },
7763             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7764               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7765               .access = PL1_R, .type = ARM_CP_CONST,
7766               .accessfn = access_aa64_tid3,
7767               .resetvalue = 0 },
7768             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7769               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7770               .access = PL1_R, .type = ARM_CP_CONST,
7771               .accessfn = access_aa64_tid3,
7772               .resetvalue = 0 },
7773             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7774               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7775               .access = PL1_R, .type = ARM_CP_CONST,
7776               .accessfn = access_aa64_tid3,
7777               .resetvalue = 0 },
7778             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7779               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7780               .access = PL1_R, .type = ARM_CP_CONST,
7781               .accessfn = access_aa64_tid3,
7782               .resetvalue = 0 },
7783             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7784               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7785               .access = PL1_R, .type = ARM_CP_CONST,
7786               .accessfn = access_aa64_tid3,
7787               .resetvalue = 0 },
7788             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7789               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7790               .access = PL1_R, .type = ARM_CP_CONST,
7791               .accessfn = access_aa64_tid3,
7792               .resetvalue = cpu->isar.id_aa64mmfr0 },
7793             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7794               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7795               .access = PL1_R, .type = ARM_CP_CONST,
7796               .accessfn = access_aa64_tid3,
7797               .resetvalue = cpu->isar.id_aa64mmfr1 },
7798             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7800               .access = PL1_R, .type = ARM_CP_CONST,
7801               .accessfn = access_aa64_tid3,
7802               .resetvalue = cpu->isar.id_aa64mmfr2 },
7803             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7805               .access = PL1_R, .type = ARM_CP_CONST,
7806               .accessfn = access_aa64_tid3,
7807               .resetvalue = 0 },
7808             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7809               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7810               .access = PL1_R, .type = ARM_CP_CONST,
7811               .accessfn = access_aa64_tid3,
7812               .resetvalue = 0 },
7813             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7814               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7815               .access = PL1_R, .type = ARM_CP_CONST,
7816               .accessfn = access_aa64_tid3,
7817               .resetvalue = 0 },
7818             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7819               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7820               .access = PL1_R, .type = ARM_CP_CONST,
7821               .accessfn = access_aa64_tid3,
7822               .resetvalue = 0 },
7823             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7825               .access = PL1_R, .type = ARM_CP_CONST,
7826               .accessfn = access_aa64_tid3,
7827               .resetvalue = 0 },
7828             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7829               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7830               .access = PL1_R, .type = ARM_CP_CONST,
7831               .accessfn = access_aa64_tid3,
7832               .resetvalue = cpu->isar.mvfr0 },
7833             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7834               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7835               .access = PL1_R, .type = ARM_CP_CONST,
7836               .accessfn = access_aa64_tid3,
7837               .resetvalue = cpu->isar.mvfr1 },
7838             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7839               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7840               .access = PL1_R, .type = ARM_CP_CONST,
7841               .accessfn = access_aa64_tid3,
7842               .resetvalue = cpu->isar.mvfr2 },
7843             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7845               .access = PL1_R, .type = ARM_CP_CONST,
7846               .accessfn = access_aa64_tid3,
7847               .resetvalue = 0 },
7848             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
7849               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7850               .access = PL1_R, .type = ARM_CP_CONST,
7851               .accessfn = access_aa64_tid3,
7852               .resetvalue = cpu->isar.id_pfr2 },
7853             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7854               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7855               .access = PL1_R, .type = ARM_CP_CONST,
7856               .accessfn = access_aa64_tid3,
7857               .resetvalue = 0 },
7858             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7859               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7860               .access = PL1_R, .type = ARM_CP_CONST,
7861               .accessfn = access_aa64_tid3,
7862               .resetvalue = 0 },
7863             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7865               .access = PL1_R, .type = ARM_CP_CONST,
7866               .accessfn = access_aa64_tid3,
7867               .resetvalue = 0 },
7868             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7869               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7870               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7871               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7872             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7873               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7874               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7875               .resetvalue = cpu->pmceid0 },
7876             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7877               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7878               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7879               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7880             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7881               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7882               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7883               .resetvalue = cpu->pmceid1 },
7884             REGINFO_SENTINEL
7885         };
7886 #ifdef CONFIG_USER_ONLY
7887         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7888             { .name = "ID_AA64PFR0_EL1",
7889               .exported_bits = 0x000f000f00ff0000,
7890               .fixed_bits    = 0x0000000000000011 },
7891             { .name = "ID_AA64PFR1_EL1",
7892               .exported_bits = 0x00000000000000f0 },
7893             { .name = "ID_AA64PFR*_EL1_RESERVED",
7894               .is_glob = true                     },
7895             { .name = "ID_AA64ZFR0_EL1"           },
7896             { .name = "ID_AA64MMFR0_EL1",
7897               .fixed_bits    = 0x00000000ff000000 },
7898             { .name = "ID_AA64MMFR1_EL1"          },
7899             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7900               .is_glob = true                     },
7901             { .name = "ID_AA64DFR0_EL1",
7902               .fixed_bits    = 0x0000000000000006 },
7903             { .name = "ID_AA64DFR1_EL1"           },
7904             { .name = "ID_AA64DFR*_EL1_RESERVED",
7905               .is_glob = true                     },
7906             { .name = "ID_AA64AFR*",
7907               .is_glob = true                     },
7908             { .name = "ID_AA64ISAR0_EL1",
7909               .exported_bits = 0x00fffffff0fffff0 },
7910             { .name = "ID_AA64ISAR1_EL1",
7911               .exported_bits = 0x000000f0ffffffff },
7912             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7913               .is_glob = true                     },
7914             REGUSERINFO_SENTINEL
7915         };
7916         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7917 #endif
7918         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7919         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7920             !arm_feature(env, ARM_FEATURE_EL2)) {
7921             ARMCPRegInfo rvbar = {
7922                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7923                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7924                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7925             };
7926             define_one_arm_cp_reg(cpu, &rvbar);
7927         }
7928         define_arm_cp_regs(cpu, v8_idregs);
7929         define_arm_cp_regs(cpu, v8_cp_reginfo);
7930     }
7931     if (arm_feature(env, ARM_FEATURE_EL2)) {
7932         uint64_t vmpidr_def = mpidr_read_val(env);
7933         ARMCPRegInfo vpidr_regs[] = {
7934             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7935               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7936               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7937               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7938               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7939             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7940               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7941               .access = PL2_RW, .resetvalue = cpu->midr,
7942               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7943             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7944               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7945               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7946               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7947               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7948             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7949               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7950               .access = PL2_RW,
7951               .resetvalue = vmpidr_def,
7952               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7953             REGINFO_SENTINEL
7954         };
7955         define_arm_cp_regs(cpu, vpidr_regs);
7956         define_arm_cp_regs(cpu, el2_cp_reginfo);
7957         if (arm_feature(env, ARM_FEATURE_V8)) {
7958             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7959         }
7960         if (cpu_isar_feature(aa64_sel2, cpu)) {
7961             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
7962         }
7963         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7964         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7965             ARMCPRegInfo rvbar = {
7966                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7967                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7968                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7969             };
7970             define_one_arm_cp_reg(cpu, &rvbar);
7971         }
7972     } else {
7973         /* If EL2 is missing but higher ELs are enabled, we need to
7974          * register the no_el2 reginfos.
7975          */
7976         if (arm_feature(env, ARM_FEATURE_EL3)) {
7977             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7978              * of MIDR_EL1 and MPIDR_EL1.
7979              */
7980             ARMCPRegInfo vpidr_regs[] = {
7981                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7982                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7983                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7984                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7985                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7986                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7987                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7988                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7989                   .type = ARM_CP_NO_RAW,
7990                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7991                 REGINFO_SENTINEL
7992             };
7993             define_arm_cp_regs(cpu, vpidr_regs);
7994             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7995             if (arm_feature(env, ARM_FEATURE_V8)) {
7996                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7997             }
7998         }
7999     }
8000     if (arm_feature(env, ARM_FEATURE_EL3)) {
8001         define_arm_cp_regs(cpu, el3_cp_reginfo);
8002         ARMCPRegInfo el3_regs[] = {
8003             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8004               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8005               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
8006             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8007               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8008               .access = PL3_RW,
8009               .raw_writefn = raw_write, .writefn = sctlr_write,
8010               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8011               .resetvalue = cpu->reset_sctlr },
8012             REGINFO_SENTINEL
8013         };
8014 
8015         define_arm_cp_regs(cpu, el3_regs);
8016     }
8017     /* The behaviour of NSACR is sufficiently various that we don't
8018      * try to describe it in a single reginfo:
8019      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8020      *     reads as constant 0xc00 from NS EL1 and NS EL2
8021      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8022      *  if v7 without EL3, register doesn't exist
8023      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8024      */
8025     if (arm_feature(env, ARM_FEATURE_EL3)) {
8026         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8027             ARMCPRegInfo nsacr = {
8028                 .name = "NSACR", .type = ARM_CP_CONST,
8029                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8030                 .access = PL1_RW, .accessfn = nsacr_access,
8031                 .resetvalue = 0xc00
8032             };
8033             define_one_arm_cp_reg(cpu, &nsacr);
8034         } else {
8035             ARMCPRegInfo nsacr = {
8036                 .name = "NSACR",
8037                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8038                 .access = PL3_RW | PL1_R,
8039                 .resetvalue = 0,
8040                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8041             };
8042             define_one_arm_cp_reg(cpu, &nsacr);
8043         }
8044     } else {
8045         if (arm_feature(env, ARM_FEATURE_V8)) {
8046             ARMCPRegInfo nsacr = {
8047                 .name = "NSACR", .type = ARM_CP_CONST,
8048                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8049                 .access = PL1_R,
8050                 .resetvalue = 0xc00
8051             };
8052             define_one_arm_cp_reg(cpu, &nsacr);
8053         }
8054     }
8055 
8056     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8057         if (arm_feature(env, ARM_FEATURE_V6)) {
8058             /* PMSAv6 not implemented */
8059             assert(arm_feature(env, ARM_FEATURE_V7));
8060             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8061             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8062         } else {
8063             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8064         }
8065     } else {
8066         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8067         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8068         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8069         if (cpu_isar_feature(aa32_hpd, cpu)) {
8070             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8071         }
8072     }
8073     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8074         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8075     }
8076     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8077         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8078     }
8079     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8080         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8081     }
8082     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8083         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8084     }
8085     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8086         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8087     }
8088     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8089         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8090     }
8091     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8092         define_arm_cp_regs(cpu, omap_cp_reginfo);
8093     }
8094     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8095         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8096     }
8097     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8098         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8099     }
8100     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8101         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8102     }
8103     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8104         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8105     }
8106     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8107         define_arm_cp_regs(cpu, jazelle_regs);
8108     }
8109     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
8110      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8111      * be read-only (ie write causes UNDEF exception).
8112      */
8113     {
8114         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8115             /* Pre-v8 MIDR space.
8116              * Note that the MIDR isn't a simple constant register because
8117              * of the TI925 behaviour where writes to another register can
8118              * cause the MIDR value to change.
8119              *
8120              * Unimplemented registers in the c15 0 0 0 space default to
8121              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8122              * and friends override accordingly.
8123              */
8124             { .name = "MIDR",
8125               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8126               .access = PL1_R, .resetvalue = cpu->midr,
8127               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8128               .readfn = midr_read,
8129               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8130               .type = ARM_CP_OVERRIDE },
8131             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8132             { .name = "DUMMY",
8133               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8134               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8135             { .name = "DUMMY",
8136               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8137               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8138             { .name = "DUMMY",
8139               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8140               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8141             { .name = "DUMMY",
8142               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8143               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8144             { .name = "DUMMY",
8145               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8146               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8147             REGINFO_SENTINEL
8148         };
8149         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8150             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8151               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8152               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8153               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8154               .readfn = midr_read },
8155             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
8156             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8157               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8158               .access = PL1_R, .resetvalue = cpu->midr },
8159             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8160               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8161               .access = PL1_R, .resetvalue = cpu->midr },
8162             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8163               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8164               .access = PL1_R,
8165               .accessfn = access_aa64_tid1,
8166               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8167             REGINFO_SENTINEL
8168         };
8169         ARMCPRegInfo id_cp_reginfo[] = {
8170             /* These are common to v8 and pre-v8 */
8171             { .name = "CTR",
8172               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8173               .access = PL1_R, .accessfn = ctr_el0_access,
8174               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8175             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8176               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8177               .access = PL0_R, .accessfn = ctr_el0_access,
8178               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8179             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8180             { .name = "TCMTR",
8181               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8182               .access = PL1_R,
8183               .accessfn = access_aa32_tid1,
8184               .type = ARM_CP_CONST, .resetvalue = 0 },
8185             REGINFO_SENTINEL
8186         };
8187         /* TLBTR is specific to VMSA */
8188         ARMCPRegInfo id_tlbtr_reginfo = {
8189               .name = "TLBTR",
8190               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8191               .access = PL1_R,
8192               .accessfn = access_aa32_tid1,
8193               .type = ARM_CP_CONST, .resetvalue = 0,
8194         };
8195         /* MPUIR is specific to PMSA V6+ */
8196         ARMCPRegInfo id_mpuir_reginfo = {
8197               .name = "MPUIR",
8198               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8199               .access = PL1_R, .type = ARM_CP_CONST,
8200               .resetvalue = cpu->pmsav7_dregion << 8
8201         };
8202         ARMCPRegInfo crn0_wi_reginfo = {
8203             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8204             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8205             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8206         };
8207 #ifdef CONFIG_USER_ONLY
8208         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8209             { .name = "MIDR_EL1",
8210               .exported_bits = 0x00000000ffffffff },
8211             { .name = "REVIDR_EL1"                },
8212             REGUSERINFO_SENTINEL
8213         };
8214         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8215 #endif
8216         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8217             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8218             ARMCPRegInfo *r;
8219             /* Register the blanket "writes ignored" value first to cover the
8220              * whole space. Then update the specific ID registers to allow write
8221              * access, so that they ignore writes rather than causing them to
8222              * UNDEF.
8223              */
8224             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8225             for (r = id_pre_v8_midr_cp_reginfo;
8226                  r->type != ARM_CP_SENTINEL; r++) {
8227                 r->access = PL1_RW;
8228             }
8229             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
8230                 r->access = PL1_RW;
8231             }
8232             id_mpuir_reginfo.access = PL1_RW;
8233             id_tlbtr_reginfo.access = PL1_RW;
8234         }
8235         if (arm_feature(env, ARM_FEATURE_V8)) {
8236             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8237         } else {
8238             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8239         }
8240         define_arm_cp_regs(cpu, id_cp_reginfo);
8241         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8242             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8243         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8244             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8245         }
8246     }
8247 
8248     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
8249         ARMCPRegInfo mpidr_cp_reginfo[] = {
8250             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
8251               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
8252               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8253             REGINFO_SENTINEL
8254         };
8255 #ifdef CONFIG_USER_ONLY
8256         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8257             { .name = "MPIDR_EL1",
8258               .fixed_bits = 0x0000000080000000 },
8259             REGUSERINFO_SENTINEL
8260         };
8261         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8262 #endif
8263         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8264     }
8265 
8266     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8267         ARMCPRegInfo auxcr_reginfo[] = {
8268             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8269               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8270               .access = PL1_RW, .accessfn = access_tacr,
8271               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8272             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8273               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8274               .access = PL2_RW, .type = ARM_CP_CONST,
8275               .resetvalue = 0 },
8276             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8277               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8278               .access = PL3_RW, .type = ARM_CP_CONST,
8279               .resetvalue = 0 },
8280             REGINFO_SENTINEL
8281         };
8282         define_arm_cp_regs(cpu, auxcr_reginfo);
8283         if (cpu_isar_feature(aa32_ac2, cpu)) {
8284             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8285         }
8286     }
8287 
8288     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8289         /*
8290          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8291          * There are two flavours:
8292          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8293          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8294          *      32-bit register visible to AArch32 at a different encoding
8295          *      to the "flavour 1" register and with the bits rearranged to
8296          *      be able to squash a 64-bit address into the 32-bit view.
8297          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8298          * in future if we support AArch32-only configs of some of the
8299          * AArch64 cores we might need to add a specific feature flag
8300          * to indicate cores with "flavour 2" CBAR.
8301          */
8302         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8303             /* 32 bit view is [31:18] 0...0 [43:32]. */
8304             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8305                 | extract64(cpu->reset_cbar, 32, 12);
8306             ARMCPRegInfo cbar_reginfo[] = {
8307                 { .name = "CBAR",
8308                   .type = ARM_CP_CONST,
8309                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8310                   .access = PL1_R, .resetvalue = cbar32 },
8311                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8312                   .type = ARM_CP_CONST,
8313                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8314                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8315                 REGINFO_SENTINEL
8316             };
8317             /* We don't implement a r/w 64 bit CBAR currently */
8318             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8319             define_arm_cp_regs(cpu, cbar_reginfo);
8320         } else {
8321             ARMCPRegInfo cbar = {
8322                 .name = "CBAR",
8323                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8324                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8325                 .fieldoffset = offsetof(CPUARMState,
8326                                         cp15.c15_config_base_address)
8327             };
8328             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8329                 cbar.access = PL1_R;
8330                 cbar.fieldoffset = 0;
8331                 cbar.type = ARM_CP_CONST;
8332             }
8333             define_one_arm_cp_reg(cpu, &cbar);
8334         }
8335     }
8336 
8337     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8338         ARMCPRegInfo vbar_cp_reginfo[] = {
8339             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8340               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8341               .access = PL1_RW, .writefn = vbar_write,
8342               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8343                                      offsetof(CPUARMState, cp15.vbar_ns) },
8344               .resetvalue = 0 },
8345             REGINFO_SENTINEL
8346         };
8347         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8348     }
8349 
8350     /* Generic registers whose values depend on the implementation */
8351     {
8352         ARMCPRegInfo sctlr = {
8353             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8354             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8355             .access = PL1_RW, .accessfn = access_tvm_trvm,
8356             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8357                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8358             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8359             .raw_writefn = raw_write,
8360         };
8361         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8362             /* Normally we would always end the TB on an SCTLR write, but Linux
8363              * arch/arm/mach-pxa/sleep.S expects two instructions following
8364              * an MMU enable to execute from cache.  Imitate this behaviour.
8365              */
8366             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8367         }
8368         define_one_arm_cp_reg(cpu, &sctlr);
8369     }
8370 
8371     if (cpu_isar_feature(aa64_lor, cpu)) {
8372         define_arm_cp_regs(cpu, lor_reginfo);
8373     }
8374     if (cpu_isar_feature(aa64_pan, cpu)) {
8375         define_one_arm_cp_reg(cpu, &pan_reginfo);
8376     }
8377 #ifndef CONFIG_USER_ONLY
8378     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8379         define_arm_cp_regs(cpu, ats1e1_reginfo);
8380     }
8381     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8382         define_arm_cp_regs(cpu, ats1cp_reginfo);
8383     }
8384 #endif
8385     if (cpu_isar_feature(aa64_uao, cpu)) {
8386         define_one_arm_cp_reg(cpu, &uao_reginfo);
8387     }
8388 
8389     if (cpu_isar_feature(aa64_dit, cpu)) {
8390         define_one_arm_cp_reg(cpu, &dit_reginfo);
8391     }
8392     if (cpu_isar_feature(aa64_ssbs, cpu)) {
8393         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
8394     }
8395 
8396     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8397         define_arm_cp_regs(cpu, vhe_reginfo);
8398     }
8399 
8400     if (cpu_isar_feature(aa64_sve, cpu)) {
8401         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8402         if (arm_feature(env, ARM_FEATURE_EL2)) {
8403             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8404         } else {
8405             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8406         }
8407         if (arm_feature(env, ARM_FEATURE_EL3)) {
8408             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8409         }
8410     }
8411 
8412 #ifdef TARGET_AARCH64
8413     if (cpu_isar_feature(aa64_pauth, cpu)) {
8414         define_arm_cp_regs(cpu, pauth_reginfo);
8415     }
8416     if (cpu_isar_feature(aa64_rndr, cpu)) {
8417         define_arm_cp_regs(cpu, rndr_reginfo);
8418     }
8419     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
8420         define_arm_cp_regs(cpu, tlbirange_reginfo);
8421     }
8422     if (cpu_isar_feature(aa64_tlbios, cpu)) {
8423         define_arm_cp_regs(cpu, tlbios_reginfo);
8424     }
8425 #ifndef CONFIG_USER_ONLY
8426     /* Data Cache clean instructions up to PoP */
8427     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8428         define_one_arm_cp_reg(cpu, dcpop_reg);
8429 
8430         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8431             define_one_arm_cp_reg(cpu, dcpodp_reg);
8432         }
8433     }
8434 #endif /*CONFIG_USER_ONLY*/
8435 
8436     /*
8437      * If full MTE is enabled, add all of the system registers.
8438      * If only "instructions available at EL0" are enabled,
8439      * then define only a RAZ/WI version of PSTATE.TCO.
8440      */
8441     if (cpu_isar_feature(aa64_mte, cpu)) {
8442         define_arm_cp_regs(cpu, mte_reginfo);
8443         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8444     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8445         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8446         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8447     }
8448 #endif
8449 
8450     if (cpu_isar_feature(any_predinv, cpu)) {
8451         define_arm_cp_regs(cpu, predinv_reginfo);
8452     }
8453 
8454     if (cpu_isar_feature(any_ccidx, cpu)) {
8455         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8456     }
8457 
8458 #ifndef CONFIG_USER_ONLY
8459     /*
8460      * Register redirections and aliases must be done last,
8461      * after the registers from the other extensions have been defined.
8462      */
8463     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8464         define_arm_vh_e2h_redirects_aliases(cpu);
8465     }
8466 #endif
8467 }
8468 
8469 /* Sort alphabetically by type name, except for "any". */
8470 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8471 {
8472     ObjectClass *class_a = (ObjectClass *)a;
8473     ObjectClass *class_b = (ObjectClass *)b;
8474     const char *name_a, *name_b;
8475 
8476     name_a = object_class_get_name(class_a);
8477     name_b = object_class_get_name(class_b);
8478     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8479         return 1;
8480     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8481         return -1;
8482     } else {
8483         return strcmp(name_a, name_b);
8484     }
8485 }
8486 
8487 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8488 {
8489     ObjectClass *oc = data;
8490     const char *typename;
8491     char *name;
8492 
8493     typename = object_class_get_name(oc);
8494     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8495     qemu_printf("  %s\n", name);
8496     g_free(name);
8497 }
8498 
8499 void arm_cpu_list(void)
8500 {
8501     GSList *list;
8502 
8503     list = object_class_get_list(TYPE_ARM_CPU, false);
8504     list = g_slist_sort(list, arm_cpu_list_compare);
8505     qemu_printf("Available CPUs:\n");
8506     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8507     g_slist_free(list);
8508 }
8509 
8510 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8511 {
8512     ObjectClass *oc = data;
8513     CpuDefinitionInfoList **cpu_list = user_data;
8514     CpuDefinitionInfo *info;
8515     const char *typename;
8516 
8517     typename = object_class_get_name(oc);
8518     info = g_malloc0(sizeof(*info));
8519     info->name = g_strndup(typename,
8520                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8521     info->q_typename = g_strdup(typename);
8522 
8523     QAPI_LIST_PREPEND(*cpu_list, info);
8524 }
8525 
8526 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8527 {
8528     CpuDefinitionInfoList *cpu_list = NULL;
8529     GSList *list;
8530 
8531     list = object_class_get_list(TYPE_ARM_CPU, false);
8532     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8533     g_slist_free(list);
8534 
8535     return cpu_list;
8536 }
8537 
8538 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8539                                    void *opaque, int state, int secstate,
8540                                    int crm, int opc1, int opc2,
8541                                    const char *name)
8542 {
8543     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8544      * add a single reginfo struct to the hash table.
8545      */
8546     uint32_t *key = g_new(uint32_t, 1);
8547     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8548     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8549     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8550 
8551     r2->name = g_strdup(name);
8552     /* Reset the secure state to the specific incoming state.  This is
8553      * necessary as the register may have been defined with both states.
8554      */
8555     r2->secure = secstate;
8556 
8557     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8558         /* Register is banked (using both entries in array).
8559          * Overwriting fieldoffset as the array is only used to define
8560          * banked registers but later only fieldoffset is used.
8561          */
8562         r2->fieldoffset = r->bank_fieldoffsets[ns];
8563     }
8564 
8565     if (state == ARM_CP_STATE_AA32) {
8566         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8567             /* If the register is banked then we don't need to migrate or
8568              * reset the 32-bit instance in certain cases:
8569              *
8570              * 1) If the register has both 32-bit and 64-bit instances then we
8571              *    can count on the 64-bit instance taking care of the
8572              *    non-secure bank.
8573              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8574              *    taking care of the secure bank.  This requires that separate
8575              *    32 and 64-bit definitions are provided.
8576              */
8577             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8578                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8579                 r2->type |= ARM_CP_ALIAS;
8580             }
8581         } else if ((secstate != r->secure) && !ns) {
8582             /* The register is not banked so we only want to allow migration of
8583              * the non-secure instance.
8584              */
8585             r2->type |= ARM_CP_ALIAS;
8586         }
8587 
8588         if (r->state == ARM_CP_STATE_BOTH) {
8589             /* We assume it is a cp15 register if the .cp field is left unset.
8590              */
8591             if (r2->cp == 0) {
8592                 r2->cp = 15;
8593             }
8594 
8595 #ifdef HOST_WORDS_BIGENDIAN
8596             if (r2->fieldoffset) {
8597                 r2->fieldoffset += sizeof(uint32_t);
8598             }
8599 #endif
8600         }
8601     }
8602     if (state == ARM_CP_STATE_AA64) {
8603         /* To allow abbreviation of ARMCPRegInfo
8604          * definitions, we treat cp == 0 as equivalent to
8605          * the value for "standard guest-visible sysreg".
8606          * STATE_BOTH definitions are also always "standard
8607          * sysreg" in their AArch64 view (the .cp value may
8608          * be non-zero for the benefit of the AArch32 view).
8609          */
8610         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8611             r2->cp = CP_REG_ARM64_SYSREG_CP;
8612         }
8613         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8614                                   r2->opc0, opc1, opc2);
8615     } else {
8616         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8617     }
8618     if (opaque) {
8619         r2->opaque = opaque;
8620     }
8621     /* reginfo passed to helpers is correct for the actual access,
8622      * and is never ARM_CP_STATE_BOTH:
8623      */
8624     r2->state = state;
8625     /* Make sure reginfo passed to helpers for wildcarded regs
8626      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8627      */
8628     r2->crm = crm;
8629     r2->opc1 = opc1;
8630     r2->opc2 = opc2;
8631     /* By convention, for wildcarded registers only the first
8632      * entry is used for migration; the others are marked as
8633      * ALIAS so we don't try to transfer the register
8634      * multiple times. Special registers (ie NOP/WFI) are
8635      * never migratable and not even raw-accessible.
8636      */
8637     if ((r->type & ARM_CP_SPECIAL)) {
8638         r2->type |= ARM_CP_NO_RAW;
8639     }
8640     if (((r->crm == CP_ANY) && crm != 0) ||
8641         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8642         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8643         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8644     }
8645 
8646     /* Check that raw accesses are either forbidden or handled. Note that
8647      * we can't assert this earlier because the setup of fieldoffset for
8648      * banked registers has to be done first.
8649      */
8650     if (!(r2->type & ARM_CP_NO_RAW)) {
8651         assert(!raw_accessors_invalid(r2));
8652     }
8653 
8654     /* Overriding of an existing definition must be explicitly
8655      * requested.
8656      */
8657     if (!(r->type & ARM_CP_OVERRIDE)) {
8658         ARMCPRegInfo *oldreg;
8659         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8660         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8661             fprintf(stderr, "Register redefined: cp=%d %d bit "
8662                     "crn=%d crm=%d opc1=%d opc2=%d, "
8663                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8664                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8665                     oldreg->name, r2->name);
8666             g_assert_not_reached();
8667         }
8668     }
8669     g_hash_table_insert(cpu->cp_regs, key, r2);
8670 }
8671 
8672 
8673 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8674                                        const ARMCPRegInfo *r, void *opaque)
8675 {
8676     /* Define implementations of coprocessor registers.
8677      * We store these in a hashtable because typically
8678      * there are less than 150 registers in a space which
8679      * is 16*16*16*8*8 = 262144 in size.
8680      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8681      * If a register is defined twice then the second definition is
8682      * used, so this can be used to define some generic registers and
8683      * then override them with implementation specific variations.
8684      * At least one of the original and the second definition should
8685      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8686      * against accidental use.
8687      *
8688      * The state field defines whether the register is to be
8689      * visible in the AArch32 or AArch64 execution state. If the
8690      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8691      * reginfo structure for the AArch32 view, which sees the lower
8692      * 32 bits of the 64 bit register.
8693      *
8694      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8695      * be wildcarded. AArch64 registers are always considered to be 64
8696      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8697      * the register, if any.
8698      */
8699     int crm, opc1, opc2, state;
8700     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8701     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8702     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8703     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8704     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8705     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8706     /* 64 bit registers have only CRm and Opc1 fields */
8707     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8708     /* op0 only exists in the AArch64 encodings */
8709     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8710     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8711     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8712     /*
8713      * This API is only for Arm's system coprocessors (14 and 15) or
8714      * (M-profile or v7A-and-earlier only) for implementation defined
8715      * coprocessors in the range 0..7.  Our decode assumes this, since
8716      * 8..13 can be used for other insns including VFP and Neon. See
8717      * valid_cp() in translate.c.  Assert here that we haven't tried
8718      * to use an invalid coprocessor number.
8719      */
8720     switch (r->state) {
8721     case ARM_CP_STATE_BOTH:
8722         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8723         if (r->cp == 0) {
8724             break;
8725         }
8726         /* fall through */
8727     case ARM_CP_STATE_AA32:
8728         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8729             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8730             assert(r->cp >= 14 && r->cp <= 15);
8731         } else {
8732             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8733         }
8734         break;
8735     case ARM_CP_STATE_AA64:
8736         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8737         break;
8738     default:
8739         g_assert_not_reached();
8740     }
8741     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8742      * encodes a minimum access level for the register. We roll this
8743      * runtime check into our general permission check code, so check
8744      * here that the reginfo's specified permissions are strict enough
8745      * to encompass the generic architectural permission check.
8746      */
8747     if (r->state != ARM_CP_STATE_AA32) {
8748         int mask = 0;
8749         switch (r->opc1) {
8750         case 0:
8751             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8752             mask = PL0U_R | PL1_RW;
8753             break;
8754         case 1: case 2:
8755             /* min_EL EL1 */
8756             mask = PL1_RW;
8757             break;
8758         case 3:
8759             /* min_EL EL0 */
8760             mask = PL0_RW;
8761             break;
8762         case 4:
8763         case 5:
8764             /* min_EL EL2 */
8765             mask = PL2_RW;
8766             break;
8767         case 6:
8768             /* min_EL EL3 */
8769             mask = PL3_RW;
8770             break;
8771         case 7:
8772             /* min_EL EL1, secure mode only (we don't check the latter) */
8773             mask = PL1_RW;
8774             break;
8775         default:
8776             /* broken reginfo with out-of-range opc1 */
8777             assert(false);
8778             break;
8779         }
8780         /* assert our permissions are not too lax (stricter is fine) */
8781         assert((r->access & ~mask) == 0);
8782     }
8783 
8784     /* Check that the register definition has enough info to handle
8785      * reads and writes if they are permitted.
8786      */
8787     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8788         if (r->access & PL3_R) {
8789             assert((r->fieldoffset ||
8790                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8791                    r->readfn);
8792         }
8793         if (r->access & PL3_W) {
8794             assert((r->fieldoffset ||
8795                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8796                    r->writefn);
8797         }
8798     }
8799     /* Bad type field probably means missing sentinel at end of reg list */
8800     assert(cptype_valid(r->type));
8801     for (crm = crmmin; crm <= crmmax; crm++) {
8802         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8803             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8804                 for (state = ARM_CP_STATE_AA32;
8805                      state <= ARM_CP_STATE_AA64; state++) {
8806                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8807                         continue;
8808                     }
8809                     if (state == ARM_CP_STATE_AA32) {
8810                         /* Under AArch32 CP registers can be common
8811                          * (same for secure and non-secure world) or banked.
8812                          */
8813                         char *name;
8814 
8815                         switch (r->secure) {
8816                         case ARM_CP_SECSTATE_S:
8817                         case ARM_CP_SECSTATE_NS:
8818                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8819                                                    r->secure, crm, opc1, opc2,
8820                                                    r->name);
8821                             break;
8822                         default:
8823                             name = g_strdup_printf("%s_S", r->name);
8824                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8825                                                    ARM_CP_SECSTATE_S,
8826                                                    crm, opc1, opc2, name);
8827                             g_free(name);
8828                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8829                                                    ARM_CP_SECSTATE_NS,
8830                                                    crm, opc1, opc2, r->name);
8831                             break;
8832                         }
8833                     } else {
8834                         /* AArch64 registers get mapped to non-secure instance
8835                          * of AArch32 */
8836                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8837                                                ARM_CP_SECSTATE_NS,
8838                                                crm, opc1, opc2, r->name);
8839                     }
8840                 }
8841             }
8842         }
8843     }
8844 }
8845 
8846 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8847                                     const ARMCPRegInfo *regs, void *opaque)
8848 {
8849     /* Define a whole list of registers */
8850     const ARMCPRegInfo *r;
8851     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8852         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8853     }
8854 }
8855 
8856 /*
8857  * Modify ARMCPRegInfo for access from userspace.
8858  *
8859  * This is a data driven modification directed by
8860  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8861  * user-space cannot alter any values and dynamic values pertaining to
8862  * execution state are hidden from user space view anyway.
8863  */
8864 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8865 {
8866     const ARMCPRegUserSpaceInfo *m;
8867     ARMCPRegInfo *r;
8868 
8869     for (m = mods; m->name; m++) {
8870         GPatternSpec *pat = NULL;
8871         if (m->is_glob) {
8872             pat = g_pattern_spec_new(m->name);
8873         }
8874         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8875             if (pat && g_pattern_match_string(pat, r->name)) {
8876                 r->type = ARM_CP_CONST;
8877                 r->access = PL0U_R;
8878                 r->resetvalue = 0;
8879                 /* continue */
8880             } else if (strcmp(r->name, m->name) == 0) {
8881                 r->type = ARM_CP_CONST;
8882                 r->access = PL0U_R;
8883                 r->resetvalue &= m->exported_bits;
8884                 r->resetvalue |= m->fixed_bits;
8885                 break;
8886             }
8887         }
8888         if (pat) {
8889             g_pattern_spec_free(pat);
8890         }
8891     }
8892 }
8893 
8894 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8895 {
8896     return g_hash_table_lookup(cpregs, &encoded_cp);
8897 }
8898 
8899 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8900                          uint64_t value)
8901 {
8902     /* Helper coprocessor write function for write-ignore registers */
8903 }
8904 
8905 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8906 {
8907     /* Helper coprocessor write function for read-as-zero registers */
8908     return 0;
8909 }
8910 
8911 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8912 {
8913     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8914 }
8915 
8916 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8917 {
8918     /* Return true if it is not valid for us to switch to
8919      * this CPU mode (ie all the UNPREDICTABLE cases in
8920      * the ARM ARM CPSRWriteByInstr pseudocode).
8921      */
8922 
8923     /* Changes to or from Hyp via MSR and CPS are illegal. */
8924     if (write_type == CPSRWriteByInstr &&
8925         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8926          mode == ARM_CPU_MODE_HYP)) {
8927         return 1;
8928     }
8929 
8930     switch (mode) {
8931     case ARM_CPU_MODE_USR:
8932         return 0;
8933     case ARM_CPU_MODE_SYS:
8934     case ARM_CPU_MODE_SVC:
8935     case ARM_CPU_MODE_ABT:
8936     case ARM_CPU_MODE_UND:
8937     case ARM_CPU_MODE_IRQ:
8938     case ARM_CPU_MODE_FIQ:
8939         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8940          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8941          */
8942         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8943          * and CPS are treated as illegal mode changes.
8944          */
8945         if (write_type == CPSRWriteByInstr &&
8946             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8947             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8948             return 1;
8949         }
8950         return 0;
8951     case ARM_CPU_MODE_HYP:
8952         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
8953     case ARM_CPU_MODE_MON:
8954         return arm_current_el(env) < 3;
8955     default:
8956         return 1;
8957     }
8958 }
8959 
8960 uint32_t cpsr_read(CPUARMState *env)
8961 {
8962     int ZF;
8963     ZF = (env->ZF == 0);
8964     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8965         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8966         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8967         | ((env->condexec_bits & 0xfc) << 8)
8968         | (env->GE << 16) | (env->daif & CPSR_AIF);
8969 }
8970 
8971 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8972                 CPSRWriteType write_type)
8973 {
8974     uint32_t changed_daif;
8975     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
8976         (mask & (CPSR_M | CPSR_E | CPSR_IL));
8977 
8978     if (mask & CPSR_NZCV) {
8979         env->ZF = (~val) & CPSR_Z;
8980         env->NF = val;
8981         env->CF = (val >> 29) & 1;
8982         env->VF = (val << 3) & 0x80000000;
8983     }
8984     if (mask & CPSR_Q)
8985         env->QF = ((val & CPSR_Q) != 0);
8986     if (mask & CPSR_T)
8987         env->thumb = ((val & CPSR_T) != 0);
8988     if (mask & CPSR_IT_0_1) {
8989         env->condexec_bits &= ~3;
8990         env->condexec_bits |= (val >> 25) & 3;
8991     }
8992     if (mask & CPSR_IT_2_7) {
8993         env->condexec_bits &= 3;
8994         env->condexec_bits |= (val >> 8) & 0xfc;
8995     }
8996     if (mask & CPSR_GE) {
8997         env->GE = (val >> 16) & 0xf;
8998     }
8999 
9000     /* In a V7 implementation that includes the security extensions but does
9001      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9002      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9003      * bits respectively.
9004      *
9005      * In a V8 implementation, it is permitted for privileged software to
9006      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9007      */
9008     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9009         arm_feature(env, ARM_FEATURE_EL3) &&
9010         !arm_feature(env, ARM_FEATURE_EL2) &&
9011         !arm_is_secure(env)) {
9012 
9013         changed_daif = (env->daif ^ val) & mask;
9014 
9015         if (changed_daif & CPSR_A) {
9016             /* Check to see if we are allowed to change the masking of async
9017              * abort exceptions from a non-secure state.
9018              */
9019             if (!(env->cp15.scr_el3 & SCR_AW)) {
9020                 qemu_log_mask(LOG_GUEST_ERROR,
9021                               "Ignoring attempt to switch CPSR_A flag from "
9022                               "non-secure world with SCR.AW bit clear\n");
9023                 mask &= ~CPSR_A;
9024             }
9025         }
9026 
9027         if (changed_daif & CPSR_F) {
9028             /* Check to see if we are allowed to change the masking of FIQ
9029              * exceptions from a non-secure state.
9030              */
9031             if (!(env->cp15.scr_el3 & SCR_FW)) {
9032                 qemu_log_mask(LOG_GUEST_ERROR,
9033                               "Ignoring attempt to switch CPSR_F flag from "
9034                               "non-secure world with SCR.FW bit clear\n");
9035                 mask &= ~CPSR_F;
9036             }
9037 
9038             /* Check whether non-maskable FIQ (NMFI) support is enabled.
9039              * If this bit is set software is not allowed to mask
9040              * FIQs, but is allowed to set CPSR_F to 0.
9041              */
9042             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9043                 (val & CPSR_F)) {
9044                 qemu_log_mask(LOG_GUEST_ERROR,
9045                               "Ignoring attempt to enable CPSR_F flag "
9046                               "(non-maskable FIQ [NMFI] support enabled)\n");
9047                 mask &= ~CPSR_F;
9048             }
9049         }
9050     }
9051 
9052     env->daif &= ~(CPSR_AIF & mask);
9053     env->daif |= val & CPSR_AIF & mask;
9054 
9055     if (write_type != CPSRWriteRaw &&
9056         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9057         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9058             /* Note that we can only get here in USR mode if this is a
9059              * gdb stub write; for this case we follow the architectural
9060              * behaviour for guest writes in USR mode of ignoring an attempt
9061              * to switch mode. (Those are caught by translate.c for writes
9062              * triggered by guest instructions.)
9063              */
9064             mask &= ~CPSR_M;
9065         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9066             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9067              * v7, and has defined behaviour in v8:
9068              *  + leave CPSR.M untouched
9069              *  + allow changes to the other CPSR fields
9070              *  + set PSTATE.IL
9071              * For user changes via the GDB stub, we don't set PSTATE.IL,
9072              * as this would be unnecessarily harsh for a user error.
9073              */
9074             mask &= ~CPSR_M;
9075             if (write_type != CPSRWriteByGDBStub &&
9076                 arm_feature(env, ARM_FEATURE_V8)) {
9077                 mask |= CPSR_IL;
9078                 val |= CPSR_IL;
9079             }
9080             qemu_log_mask(LOG_GUEST_ERROR,
9081                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9082                           aarch32_mode_name(env->uncached_cpsr),
9083                           aarch32_mode_name(val));
9084         } else {
9085             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9086                           write_type == CPSRWriteExceptionReturn ?
9087                           "Exception return from AArch32" :
9088                           "AArch32 mode switch from",
9089                           aarch32_mode_name(env->uncached_cpsr),
9090                           aarch32_mode_name(val), env->regs[15]);
9091             switch_mode(env, val & CPSR_M);
9092         }
9093     }
9094     mask &= ~CACHED_CPSR_BITS;
9095     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9096     if (rebuild_hflags) {
9097         arm_rebuild_hflags(env);
9098     }
9099 }
9100 
9101 /* Sign/zero extend */
9102 uint32_t HELPER(sxtb16)(uint32_t x)
9103 {
9104     uint32_t res;
9105     res = (uint16_t)(int8_t)x;
9106     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9107     return res;
9108 }
9109 
9110 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9111 {
9112     /*
9113      * Take a division-by-zero exception if necessary; otherwise return
9114      * to get the usual non-trapping division behaviour (result of 0)
9115      */
9116     if (arm_feature(env, ARM_FEATURE_M)
9117         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9118         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9119     }
9120 }
9121 
9122 uint32_t HELPER(uxtb16)(uint32_t x)
9123 {
9124     uint32_t res;
9125     res = (uint16_t)(uint8_t)x;
9126     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
9127     return res;
9128 }
9129 
9130 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
9131 {
9132     if (den == 0) {
9133         handle_possible_div0_trap(env, GETPC());
9134         return 0;
9135     }
9136     if (num == INT_MIN && den == -1) {
9137         return INT_MIN;
9138     }
9139     return num / den;
9140 }
9141 
9142 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
9143 {
9144     if (den == 0) {
9145         handle_possible_div0_trap(env, GETPC());
9146         return 0;
9147     }
9148     return num / den;
9149 }
9150 
9151 uint32_t HELPER(rbit)(uint32_t x)
9152 {
9153     return revbit32(x);
9154 }
9155 
9156 #ifdef CONFIG_USER_ONLY
9157 
9158 static void switch_mode(CPUARMState *env, int mode)
9159 {
9160     ARMCPU *cpu = env_archcpu(env);
9161 
9162     if (mode != ARM_CPU_MODE_USR) {
9163         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
9164     }
9165 }
9166 
9167 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9168                                  uint32_t cur_el, bool secure)
9169 {
9170     return 1;
9171 }
9172 
9173 void aarch64_sync_64_to_32(CPUARMState *env)
9174 {
9175     g_assert_not_reached();
9176 }
9177 
9178 #else
9179 
9180 static void switch_mode(CPUARMState *env, int mode)
9181 {
9182     int old_mode;
9183     int i;
9184 
9185     old_mode = env->uncached_cpsr & CPSR_M;
9186     if (mode == old_mode)
9187         return;
9188 
9189     if (old_mode == ARM_CPU_MODE_FIQ) {
9190         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
9191         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
9192     } else if (mode == ARM_CPU_MODE_FIQ) {
9193         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
9194         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
9195     }
9196 
9197     i = bank_number(old_mode);
9198     env->banked_r13[i] = env->regs[13];
9199     env->banked_spsr[i] = env->spsr;
9200 
9201     i = bank_number(mode);
9202     env->regs[13] = env->banked_r13[i];
9203     env->spsr = env->banked_spsr[i];
9204 
9205     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
9206     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
9207 }
9208 
9209 /* Physical Interrupt Target EL Lookup Table
9210  *
9211  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
9212  *
9213  * The below multi-dimensional table is used for looking up the target
9214  * exception level given numerous condition criteria.  Specifically, the
9215  * target EL is based on SCR and HCR routing controls as well as the
9216  * currently executing EL and secure state.
9217  *
9218  *    Dimensions:
9219  *    target_el_table[2][2][2][2][2][4]
9220  *                    |  |  |  |  |  +--- Current EL
9221  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
9222  *                    |  |  |  +--------- HCR mask override
9223  *                    |  |  +------------ SCR exec state control
9224  *                    |  +--------------- SCR mask override
9225  *                    +------------------ 32-bit(0)/64-bit(1) EL3
9226  *
9227  *    The table values are as such:
9228  *    0-3 = EL0-EL3
9229  *     -1 = Cannot occur
9230  *
9231  * The ARM ARM target EL table includes entries indicating that an "exception
9232  * is not taken".  The two cases where this is applicable are:
9233  *    1) An exception is taken from EL3 but the SCR does not have the exception
9234  *    routed to EL3.
9235  *    2) An exception is taken from EL2 but the HCR does not have the exception
9236  *    routed to EL2.
9237  * In these two cases, the below table contain a target of EL1.  This value is
9238  * returned as it is expected that the consumer of the table data will check
9239  * for "target EL >= current EL" to ensure the exception is not taken.
9240  *
9241  *            SCR     HCR
9242  *         64  EA     AMO                 From
9243  *        BIT IRQ     IMO      Non-secure         Secure
9244  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9245  */
9246 static const int8_t target_el_table[2][2][2][2][2][4] = {
9247     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9248        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9249       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9250        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9251      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9252        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9253       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9254        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9255     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9256        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
9257       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
9258        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
9259      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9260        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9261       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
9262        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
9263 };
9264 
9265 /*
9266  * Determine the target EL for physical exceptions
9267  */
9268 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9269                                  uint32_t cur_el, bool secure)
9270 {
9271     CPUARMState *env = cs->env_ptr;
9272     bool rw;
9273     bool scr;
9274     bool hcr;
9275     int target_el;
9276     /* Is the highest EL AArch64? */
9277     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9278     uint64_t hcr_el2;
9279 
9280     if (arm_feature(env, ARM_FEATURE_EL3)) {
9281         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9282     } else {
9283         /* Either EL2 is the highest EL (and so the EL2 register width
9284          * is given by is64); or there is no EL2 or EL3, in which case
9285          * the value of 'rw' does not affect the table lookup anyway.
9286          */
9287         rw = is64;
9288     }
9289 
9290     hcr_el2 = arm_hcr_el2_eff(env);
9291     switch (excp_idx) {
9292     case EXCP_IRQ:
9293         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9294         hcr = hcr_el2 & HCR_IMO;
9295         break;
9296     case EXCP_FIQ:
9297         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9298         hcr = hcr_el2 & HCR_FMO;
9299         break;
9300     default:
9301         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9302         hcr = hcr_el2 & HCR_AMO;
9303         break;
9304     };
9305 
9306     /*
9307      * For these purposes, TGE and AMO/IMO/FMO both force the
9308      * interrupt to EL2.  Fold TGE into the bit extracted above.
9309      */
9310     hcr |= (hcr_el2 & HCR_TGE) != 0;
9311 
9312     /* Perform a table-lookup for the target EL given the current state */
9313     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9314 
9315     assert(target_el > 0);
9316 
9317     return target_el;
9318 }
9319 
9320 void arm_log_exception(CPUState *cs)
9321 {
9322     int idx = cs->exception_index;
9323 
9324     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9325         const char *exc = NULL;
9326         static const char * const excnames[] = {
9327             [EXCP_UDEF] = "Undefined Instruction",
9328             [EXCP_SWI] = "SVC",
9329             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9330             [EXCP_DATA_ABORT] = "Data Abort",
9331             [EXCP_IRQ] = "IRQ",
9332             [EXCP_FIQ] = "FIQ",
9333             [EXCP_BKPT] = "Breakpoint",
9334             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9335             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9336             [EXCP_HVC] = "Hypervisor Call",
9337             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9338             [EXCP_SMC] = "Secure Monitor Call",
9339             [EXCP_VIRQ] = "Virtual IRQ",
9340             [EXCP_VFIQ] = "Virtual FIQ",
9341             [EXCP_SEMIHOST] = "Semihosting call",
9342             [EXCP_NOCP] = "v7M NOCP UsageFault",
9343             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9344             [EXCP_STKOF] = "v8M STKOF UsageFault",
9345             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9346             [EXCP_LSERR] = "v8M LSERR UsageFault",
9347             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9348             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
9349         };
9350 
9351         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9352             exc = excnames[idx];
9353         }
9354         if (!exc) {
9355             exc = "unknown";
9356         }
9357         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
9358                       idx, exc, cs->cpu_index);
9359     }
9360 }
9361 
9362 /*
9363  * Function used to synchronize QEMU's AArch64 register set with AArch32
9364  * register set.  This is necessary when switching between AArch32 and AArch64
9365  * execution state.
9366  */
9367 void aarch64_sync_32_to_64(CPUARMState *env)
9368 {
9369     int i;
9370     uint32_t mode = env->uncached_cpsr & CPSR_M;
9371 
9372     /* We can blanket copy R[0:7] to X[0:7] */
9373     for (i = 0; i < 8; i++) {
9374         env->xregs[i] = env->regs[i];
9375     }
9376 
9377     /*
9378      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9379      * Otherwise, they come from the banked user regs.
9380      */
9381     if (mode == ARM_CPU_MODE_FIQ) {
9382         for (i = 8; i < 13; i++) {
9383             env->xregs[i] = env->usr_regs[i - 8];
9384         }
9385     } else {
9386         for (i = 8; i < 13; i++) {
9387             env->xregs[i] = env->regs[i];
9388         }
9389     }
9390 
9391     /*
9392      * Registers x13-x23 are the various mode SP and FP registers. Registers
9393      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9394      * from the mode banked register.
9395      */
9396     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9397         env->xregs[13] = env->regs[13];
9398         env->xregs[14] = env->regs[14];
9399     } else {
9400         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9401         /* HYP is an exception in that it is copied from r14 */
9402         if (mode == ARM_CPU_MODE_HYP) {
9403             env->xregs[14] = env->regs[14];
9404         } else {
9405             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9406         }
9407     }
9408 
9409     if (mode == ARM_CPU_MODE_HYP) {
9410         env->xregs[15] = env->regs[13];
9411     } else {
9412         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9413     }
9414 
9415     if (mode == ARM_CPU_MODE_IRQ) {
9416         env->xregs[16] = env->regs[14];
9417         env->xregs[17] = env->regs[13];
9418     } else {
9419         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9420         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9421     }
9422 
9423     if (mode == ARM_CPU_MODE_SVC) {
9424         env->xregs[18] = env->regs[14];
9425         env->xregs[19] = env->regs[13];
9426     } else {
9427         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9428         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9429     }
9430 
9431     if (mode == ARM_CPU_MODE_ABT) {
9432         env->xregs[20] = env->regs[14];
9433         env->xregs[21] = env->regs[13];
9434     } else {
9435         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9436         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9437     }
9438 
9439     if (mode == ARM_CPU_MODE_UND) {
9440         env->xregs[22] = env->regs[14];
9441         env->xregs[23] = env->regs[13];
9442     } else {
9443         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9444         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9445     }
9446 
9447     /*
9448      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9449      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9450      * FIQ bank for r8-r14.
9451      */
9452     if (mode == ARM_CPU_MODE_FIQ) {
9453         for (i = 24; i < 31; i++) {
9454             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9455         }
9456     } else {
9457         for (i = 24; i < 29; i++) {
9458             env->xregs[i] = env->fiq_regs[i - 24];
9459         }
9460         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9461         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9462     }
9463 
9464     env->pc = env->regs[15];
9465 }
9466 
9467 /*
9468  * Function used to synchronize QEMU's AArch32 register set with AArch64
9469  * register set.  This is necessary when switching between AArch32 and AArch64
9470  * execution state.
9471  */
9472 void aarch64_sync_64_to_32(CPUARMState *env)
9473 {
9474     int i;
9475     uint32_t mode = env->uncached_cpsr & CPSR_M;
9476 
9477     /* We can blanket copy X[0:7] to R[0:7] */
9478     for (i = 0; i < 8; i++) {
9479         env->regs[i] = env->xregs[i];
9480     }
9481 
9482     /*
9483      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9484      * Otherwise, we copy x8-x12 into the banked user regs.
9485      */
9486     if (mode == ARM_CPU_MODE_FIQ) {
9487         for (i = 8; i < 13; i++) {
9488             env->usr_regs[i - 8] = env->xregs[i];
9489         }
9490     } else {
9491         for (i = 8; i < 13; i++) {
9492             env->regs[i] = env->xregs[i];
9493         }
9494     }
9495 
9496     /*
9497      * Registers r13 & r14 depend on the current mode.
9498      * If we are in a given mode, we copy the corresponding x registers to r13
9499      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9500      * for the mode.
9501      */
9502     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9503         env->regs[13] = env->xregs[13];
9504         env->regs[14] = env->xregs[14];
9505     } else {
9506         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9507 
9508         /*
9509          * HYP is an exception in that it does not have its own banked r14 but
9510          * shares the USR r14
9511          */
9512         if (mode == ARM_CPU_MODE_HYP) {
9513             env->regs[14] = env->xregs[14];
9514         } else {
9515             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9516         }
9517     }
9518 
9519     if (mode == ARM_CPU_MODE_HYP) {
9520         env->regs[13] = env->xregs[15];
9521     } else {
9522         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9523     }
9524 
9525     if (mode == ARM_CPU_MODE_IRQ) {
9526         env->regs[14] = env->xregs[16];
9527         env->regs[13] = env->xregs[17];
9528     } else {
9529         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9530         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9531     }
9532 
9533     if (mode == ARM_CPU_MODE_SVC) {
9534         env->regs[14] = env->xregs[18];
9535         env->regs[13] = env->xregs[19];
9536     } else {
9537         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9538         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9539     }
9540 
9541     if (mode == ARM_CPU_MODE_ABT) {
9542         env->regs[14] = env->xregs[20];
9543         env->regs[13] = env->xregs[21];
9544     } else {
9545         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9546         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9547     }
9548 
9549     if (mode == ARM_CPU_MODE_UND) {
9550         env->regs[14] = env->xregs[22];
9551         env->regs[13] = env->xregs[23];
9552     } else {
9553         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9554         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9555     }
9556 
9557     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9558      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9559      * FIQ bank for r8-r14.
9560      */
9561     if (mode == ARM_CPU_MODE_FIQ) {
9562         for (i = 24; i < 31; i++) {
9563             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9564         }
9565     } else {
9566         for (i = 24; i < 29; i++) {
9567             env->fiq_regs[i - 24] = env->xregs[i];
9568         }
9569         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9570         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9571     }
9572 
9573     env->regs[15] = env->pc;
9574 }
9575 
9576 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9577                                    uint32_t mask, uint32_t offset,
9578                                    uint32_t newpc)
9579 {
9580     int new_el;
9581 
9582     /* Change the CPU state so as to actually take the exception. */
9583     switch_mode(env, new_mode);
9584 
9585     /*
9586      * For exceptions taken to AArch32 we must clear the SS bit in both
9587      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9588      */
9589     env->pstate &= ~PSTATE_SS;
9590     env->spsr = cpsr_read(env);
9591     /* Clear IT bits.  */
9592     env->condexec_bits = 0;
9593     /* Switch to the new mode, and to the correct instruction set.  */
9594     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9595 
9596     /* This must be after mode switching. */
9597     new_el = arm_current_el(env);
9598 
9599     /* Set new mode endianness */
9600     env->uncached_cpsr &= ~CPSR_E;
9601     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9602         env->uncached_cpsr |= CPSR_E;
9603     }
9604     /* J and IL must always be cleared for exception entry */
9605     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9606     env->daif |= mask;
9607 
9608     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
9609         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
9610             env->uncached_cpsr |= CPSR_SSBS;
9611         } else {
9612             env->uncached_cpsr &= ~CPSR_SSBS;
9613         }
9614     }
9615 
9616     if (new_mode == ARM_CPU_MODE_HYP) {
9617         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9618         env->elr_el[2] = env->regs[15];
9619     } else {
9620         /* CPSR.PAN is normally preserved preserved unless...  */
9621         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9622             switch (new_el) {
9623             case 3:
9624                 if (!arm_is_secure_below_el3(env)) {
9625                     /* ... the target is EL3, from non-secure state.  */
9626                     env->uncached_cpsr &= ~CPSR_PAN;
9627                     break;
9628                 }
9629                 /* ... the target is EL3, from secure state ... */
9630                 /* fall through */
9631             case 1:
9632                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9633                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9634                     env->uncached_cpsr |= CPSR_PAN;
9635                 }
9636                 break;
9637             }
9638         }
9639         /*
9640          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9641          * and we should just guard the thumb mode on V4
9642          */
9643         if (arm_feature(env, ARM_FEATURE_V4T)) {
9644             env->thumb =
9645                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9646         }
9647         env->regs[14] = env->regs[15] + offset;
9648     }
9649     env->regs[15] = newpc;
9650     arm_rebuild_hflags(env);
9651 }
9652 
9653 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9654 {
9655     /*
9656      * Handle exception entry to Hyp mode; this is sufficiently
9657      * different to entry to other AArch32 modes that we handle it
9658      * separately here.
9659      *
9660      * The vector table entry used is always the 0x14 Hyp mode entry point,
9661      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
9662      * The offset applied to the preferred return address is always zero
9663      * (see DDI0487C.a section G1.12.3).
9664      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9665      */
9666     uint32_t addr, mask;
9667     ARMCPU *cpu = ARM_CPU(cs);
9668     CPUARMState *env = &cpu->env;
9669 
9670     switch (cs->exception_index) {
9671     case EXCP_UDEF:
9672         addr = 0x04;
9673         break;
9674     case EXCP_SWI:
9675         addr = 0x08;
9676         break;
9677     case EXCP_BKPT:
9678         /* Fall through to prefetch abort.  */
9679     case EXCP_PREFETCH_ABORT:
9680         env->cp15.ifar_s = env->exception.vaddress;
9681         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9682                       (uint32_t)env->exception.vaddress);
9683         addr = 0x0c;
9684         break;
9685     case EXCP_DATA_ABORT:
9686         env->cp15.dfar_s = env->exception.vaddress;
9687         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9688                       (uint32_t)env->exception.vaddress);
9689         addr = 0x10;
9690         break;
9691     case EXCP_IRQ:
9692         addr = 0x18;
9693         break;
9694     case EXCP_FIQ:
9695         addr = 0x1c;
9696         break;
9697     case EXCP_HVC:
9698         addr = 0x08;
9699         break;
9700     case EXCP_HYP_TRAP:
9701         addr = 0x14;
9702         break;
9703     default:
9704         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9705     }
9706 
9707     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9708         if (!arm_feature(env, ARM_FEATURE_V8)) {
9709             /*
9710              * QEMU syndrome values are v8-style. v7 has the IL bit
9711              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9712              * If this is a v7 CPU, squash the IL bit in those cases.
9713              */
9714             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9715                 (cs->exception_index == EXCP_DATA_ABORT &&
9716                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9717                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9718                 env->exception.syndrome &= ~ARM_EL_IL;
9719             }
9720         }
9721         env->cp15.esr_el[2] = env->exception.syndrome;
9722     }
9723 
9724     if (arm_current_el(env) != 2 && addr < 0x14) {
9725         addr = 0x14;
9726     }
9727 
9728     mask = 0;
9729     if (!(env->cp15.scr_el3 & SCR_EA)) {
9730         mask |= CPSR_A;
9731     }
9732     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9733         mask |= CPSR_I;
9734     }
9735     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9736         mask |= CPSR_F;
9737     }
9738 
9739     addr += env->cp15.hvbar;
9740 
9741     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9742 }
9743 
9744 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9745 {
9746     ARMCPU *cpu = ARM_CPU(cs);
9747     CPUARMState *env = &cpu->env;
9748     uint32_t addr;
9749     uint32_t mask;
9750     int new_mode;
9751     uint32_t offset;
9752     uint32_t moe;
9753 
9754     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9755     switch (syn_get_ec(env->exception.syndrome)) {
9756     case EC_BREAKPOINT:
9757     case EC_BREAKPOINT_SAME_EL:
9758         moe = 1;
9759         break;
9760     case EC_WATCHPOINT:
9761     case EC_WATCHPOINT_SAME_EL:
9762         moe = 10;
9763         break;
9764     case EC_AA32_BKPT:
9765         moe = 3;
9766         break;
9767     case EC_VECTORCATCH:
9768         moe = 5;
9769         break;
9770     default:
9771         moe = 0;
9772         break;
9773     }
9774 
9775     if (moe) {
9776         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9777     }
9778 
9779     if (env->exception.target_el == 2) {
9780         arm_cpu_do_interrupt_aarch32_hyp(cs);
9781         return;
9782     }
9783 
9784     switch (cs->exception_index) {
9785     case EXCP_UDEF:
9786         new_mode = ARM_CPU_MODE_UND;
9787         addr = 0x04;
9788         mask = CPSR_I;
9789         if (env->thumb)
9790             offset = 2;
9791         else
9792             offset = 4;
9793         break;
9794     case EXCP_SWI:
9795         new_mode = ARM_CPU_MODE_SVC;
9796         addr = 0x08;
9797         mask = CPSR_I;
9798         /* The PC already points to the next instruction.  */
9799         offset = 0;
9800         break;
9801     case EXCP_BKPT:
9802         /* Fall through to prefetch abort.  */
9803     case EXCP_PREFETCH_ABORT:
9804         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9805         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9806         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9807                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9808         new_mode = ARM_CPU_MODE_ABT;
9809         addr = 0x0c;
9810         mask = CPSR_A | CPSR_I;
9811         offset = 4;
9812         break;
9813     case EXCP_DATA_ABORT:
9814         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9815         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9816         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9817                       env->exception.fsr,
9818                       (uint32_t)env->exception.vaddress);
9819         new_mode = ARM_CPU_MODE_ABT;
9820         addr = 0x10;
9821         mask = CPSR_A | CPSR_I;
9822         offset = 8;
9823         break;
9824     case EXCP_IRQ:
9825         new_mode = ARM_CPU_MODE_IRQ;
9826         addr = 0x18;
9827         /* Disable IRQ and imprecise data aborts.  */
9828         mask = CPSR_A | CPSR_I;
9829         offset = 4;
9830         if (env->cp15.scr_el3 & SCR_IRQ) {
9831             /* IRQ routed to monitor mode */
9832             new_mode = ARM_CPU_MODE_MON;
9833             mask |= CPSR_F;
9834         }
9835         break;
9836     case EXCP_FIQ:
9837         new_mode = ARM_CPU_MODE_FIQ;
9838         addr = 0x1c;
9839         /* Disable FIQ, IRQ and imprecise data aborts.  */
9840         mask = CPSR_A | CPSR_I | CPSR_F;
9841         if (env->cp15.scr_el3 & SCR_FIQ) {
9842             /* FIQ routed to monitor mode */
9843             new_mode = ARM_CPU_MODE_MON;
9844         }
9845         offset = 4;
9846         break;
9847     case EXCP_VIRQ:
9848         new_mode = ARM_CPU_MODE_IRQ;
9849         addr = 0x18;
9850         /* Disable IRQ and imprecise data aborts.  */
9851         mask = CPSR_A | CPSR_I;
9852         offset = 4;
9853         break;
9854     case EXCP_VFIQ:
9855         new_mode = ARM_CPU_MODE_FIQ;
9856         addr = 0x1c;
9857         /* Disable FIQ, IRQ and imprecise data aborts.  */
9858         mask = CPSR_A | CPSR_I | CPSR_F;
9859         offset = 4;
9860         break;
9861     case EXCP_SMC:
9862         new_mode = ARM_CPU_MODE_MON;
9863         addr = 0x08;
9864         mask = CPSR_A | CPSR_I | CPSR_F;
9865         offset = 0;
9866         break;
9867     default:
9868         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9869         return; /* Never happens.  Keep compiler happy.  */
9870     }
9871 
9872     if (new_mode == ARM_CPU_MODE_MON) {
9873         addr += env->cp15.mvbar;
9874     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9875         /* High vectors. When enabled, base address cannot be remapped. */
9876         addr += 0xffff0000;
9877     } else {
9878         /* ARM v7 architectures provide a vector base address register to remap
9879          * the interrupt vector table.
9880          * This register is only followed in non-monitor mode, and is banked.
9881          * Note: only bits 31:5 are valid.
9882          */
9883         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9884     }
9885 
9886     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9887         env->cp15.scr_el3 &= ~SCR_NS;
9888     }
9889 
9890     take_aarch32_exception(env, new_mode, mask, offset, addr);
9891 }
9892 
9893 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9894 {
9895     /*
9896      * Return the register number of the AArch64 view of the AArch32
9897      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9898      * be that of the AArch32 mode the exception came from.
9899      */
9900     int mode = env->uncached_cpsr & CPSR_M;
9901 
9902     switch (aarch32_reg) {
9903     case 0 ... 7:
9904         return aarch32_reg;
9905     case 8 ... 12:
9906         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9907     case 13:
9908         switch (mode) {
9909         case ARM_CPU_MODE_USR:
9910         case ARM_CPU_MODE_SYS:
9911             return 13;
9912         case ARM_CPU_MODE_HYP:
9913             return 15;
9914         case ARM_CPU_MODE_IRQ:
9915             return 17;
9916         case ARM_CPU_MODE_SVC:
9917             return 19;
9918         case ARM_CPU_MODE_ABT:
9919             return 21;
9920         case ARM_CPU_MODE_UND:
9921             return 23;
9922         case ARM_CPU_MODE_FIQ:
9923             return 29;
9924         default:
9925             g_assert_not_reached();
9926         }
9927     case 14:
9928         switch (mode) {
9929         case ARM_CPU_MODE_USR:
9930         case ARM_CPU_MODE_SYS:
9931         case ARM_CPU_MODE_HYP:
9932             return 14;
9933         case ARM_CPU_MODE_IRQ:
9934             return 16;
9935         case ARM_CPU_MODE_SVC:
9936             return 18;
9937         case ARM_CPU_MODE_ABT:
9938             return 20;
9939         case ARM_CPU_MODE_UND:
9940             return 22;
9941         case ARM_CPU_MODE_FIQ:
9942             return 30;
9943         default:
9944             g_assert_not_reached();
9945         }
9946     case 15:
9947         return 31;
9948     default:
9949         g_assert_not_reached();
9950     }
9951 }
9952 
9953 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
9954 {
9955     uint32_t ret = cpsr_read(env);
9956 
9957     /* Move DIT to the correct location for SPSR_ELx */
9958     if (ret & CPSR_DIT) {
9959         ret &= ~CPSR_DIT;
9960         ret |= PSTATE_DIT;
9961     }
9962     /* Merge PSTATE.SS into SPSR_ELx */
9963     ret |= env->pstate & PSTATE_SS;
9964 
9965     return ret;
9966 }
9967 
9968 /* Handle exception entry to a target EL which is using AArch64 */
9969 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9970 {
9971     ARMCPU *cpu = ARM_CPU(cs);
9972     CPUARMState *env = &cpu->env;
9973     unsigned int new_el = env->exception.target_el;
9974     target_ulong addr = env->cp15.vbar_el[new_el];
9975     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9976     unsigned int old_mode;
9977     unsigned int cur_el = arm_current_el(env);
9978     int rt;
9979 
9980     /*
9981      * Note that new_el can never be 0.  If cur_el is 0, then
9982      * el0_a64 is is_a64(), else el0_a64 is ignored.
9983      */
9984     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9985 
9986     if (cur_el < new_el) {
9987         /* Entry vector offset depends on whether the implemented EL
9988          * immediately lower than the target level is using AArch32 or AArch64
9989          */
9990         bool is_aa64;
9991         uint64_t hcr;
9992 
9993         switch (new_el) {
9994         case 3:
9995             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9996             break;
9997         case 2:
9998             hcr = arm_hcr_el2_eff(env);
9999             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10000                 is_aa64 = (hcr & HCR_RW) != 0;
10001                 break;
10002             }
10003             /* fall through */
10004         case 1:
10005             is_aa64 = is_a64(env);
10006             break;
10007         default:
10008             g_assert_not_reached();
10009         }
10010 
10011         if (is_aa64) {
10012             addr += 0x400;
10013         } else {
10014             addr += 0x600;
10015         }
10016     } else if (pstate_read(env) & PSTATE_SP) {
10017         addr += 0x200;
10018     }
10019 
10020     switch (cs->exception_index) {
10021     case EXCP_PREFETCH_ABORT:
10022     case EXCP_DATA_ABORT:
10023         env->cp15.far_el[new_el] = env->exception.vaddress;
10024         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10025                       env->cp15.far_el[new_el]);
10026         /* fall through */
10027     case EXCP_BKPT:
10028     case EXCP_UDEF:
10029     case EXCP_SWI:
10030     case EXCP_HVC:
10031     case EXCP_HYP_TRAP:
10032     case EXCP_SMC:
10033         switch (syn_get_ec(env->exception.syndrome)) {
10034         case EC_ADVSIMDFPACCESSTRAP:
10035             /*
10036              * QEMU internal FP/SIMD syndromes from AArch32 include the
10037              * TA and coproc fields which are only exposed if the exception
10038              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10039              * AArch64 format syndrome.
10040              */
10041             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10042             break;
10043         case EC_CP14RTTRAP:
10044         case EC_CP15RTTRAP:
10045         case EC_CP14DTTRAP:
10046             /*
10047              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
10048              * the raw register field from the insn; when taking this to
10049              * AArch64 we must convert it to the AArch64 view of the register
10050              * number. Notice that we read a 4-bit AArch32 register number and
10051              * write back a 5-bit AArch64 one.
10052              */
10053             rt = extract32(env->exception.syndrome, 5, 4);
10054             rt = aarch64_regnum(env, rt);
10055             env->exception.syndrome = deposit32(env->exception.syndrome,
10056                                                 5, 5, rt);
10057             break;
10058         case EC_CP15RRTTRAP:
10059         case EC_CP14RRTTRAP:
10060             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
10061             rt = extract32(env->exception.syndrome, 5, 4);
10062             rt = aarch64_regnum(env, rt);
10063             env->exception.syndrome = deposit32(env->exception.syndrome,
10064                                                 5, 5, rt);
10065             rt = extract32(env->exception.syndrome, 10, 4);
10066             rt = aarch64_regnum(env, rt);
10067             env->exception.syndrome = deposit32(env->exception.syndrome,
10068                                                 10, 5, rt);
10069             break;
10070         }
10071         env->cp15.esr_el[new_el] = env->exception.syndrome;
10072         break;
10073     case EXCP_IRQ:
10074     case EXCP_VIRQ:
10075         addr += 0x80;
10076         break;
10077     case EXCP_FIQ:
10078     case EXCP_VFIQ:
10079         addr += 0x100;
10080         break;
10081     default:
10082         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10083     }
10084 
10085     if (is_a64(env)) {
10086         old_mode = pstate_read(env);
10087         aarch64_save_sp(env, arm_current_el(env));
10088         env->elr_el[new_el] = env->pc;
10089     } else {
10090         old_mode = cpsr_read_for_spsr_elx(env);
10091         env->elr_el[new_el] = env->regs[15];
10092 
10093         aarch64_sync_32_to_64(env);
10094 
10095         env->condexec_bits = 0;
10096     }
10097     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
10098 
10099     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
10100                   env->elr_el[new_el]);
10101 
10102     if (cpu_isar_feature(aa64_pan, cpu)) {
10103         /* The value of PSTATE.PAN is normally preserved, except when ... */
10104         new_mode |= old_mode & PSTATE_PAN;
10105         switch (new_el) {
10106         case 2:
10107             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
10108             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
10109                 != (HCR_E2H | HCR_TGE)) {
10110                 break;
10111             }
10112             /* fall through */
10113         case 1:
10114             /* ... the target is EL1 ... */
10115             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
10116             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
10117                 new_mode |= PSTATE_PAN;
10118             }
10119             break;
10120         }
10121     }
10122     if (cpu_isar_feature(aa64_mte, cpu)) {
10123         new_mode |= PSTATE_TCO;
10124     }
10125 
10126     if (cpu_isar_feature(aa64_ssbs, cpu)) {
10127         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
10128             new_mode |= PSTATE_SSBS;
10129         } else {
10130             new_mode &= ~PSTATE_SSBS;
10131         }
10132     }
10133 
10134     pstate_write(env, PSTATE_DAIF | new_mode);
10135     env->aarch64 = 1;
10136     aarch64_restore_sp(env, new_el);
10137     helper_rebuild_hflags_a64(env, new_el);
10138 
10139     env->pc = addr;
10140 
10141     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
10142                   new_el, env->pc, pstate_read(env));
10143 }
10144 
10145 /*
10146  * Do semihosting call and set the appropriate return value. All the
10147  * permission and validity checks have been done at translate time.
10148  *
10149  * We only see semihosting exceptions in TCG only as they are not
10150  * trapped to the hypervisor in KVM.
10151  */
10152 #ifdef CONFIG_TCG
10153 static void handle_semihosting(CPUState *cs)
10154 {
10155     ARMCPU *cpu = ARM_CPU(cs);
10156     CPUARMState *env = &cpu->env;
10157 
10158     if (is_a64(env)) {
10159         qemu_log_mask(CPU_LOG_INT,
10160                       "...handling as semihosting call 0x%" PRIx64 "\n",
10161                       env->xregs[0]);
10162         env->xregs[0] = do_common_semihosting(cs);
10163         env->pc += 4;
10164     } else {
10165         qemu_log_mask(CPU_LOG_INT,
10166                       "...handling as semihosting call 0x%x\n",
10167                       env->regs[0]);
10168         env->regs[0] = do_common_semihosting(cs);
10169         env->regs[15] += env->thumb ? 2 : 4;
10170     }
10171 }
10172 #endif
10173 
10174 /* Handle a CPU exception for A and R profile CPUs.
10175  * Do any appropriate logging, handle PSCI calls, and then hand off
10176  * to the AArch64-entry or AArch32-entry function depending on the
10177  * target exception level's register width.
10178  *
10179  * Note: this is used for both TCG (as the do_interrupt tcg op),
10180  *       and KVM to re-inject guest debug exceptions, and to
10181  *       inject a Synchronous-External-Abort.
10182  */
10183 void arm_cpu_do_interrupt(CPUState *cs)
10184 {
10185     ARMCPU *cpu = ARM_CPU(cs);
10186     CPUARMState *env = &cpu->env;
10187     unsigned int new_el = env->exception.target_el;
10188 
10189     assert(!arm_feature(env, ARM_FEATURE_M));
10190 
10191     arm_log_exception(cs);
10192     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
10193                   new_el);
10194     if (qemu_loglevel_mask(CPU_LOG_INT)
10195         && !excp_is_internal(cs->exception_index)) {
10196         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
10197                       syn_get_ec(env->exception.syndrome),
10198                       env->exception.syndrome);
10199     }
10200 
10201     if (arm_is_psci_call(cpu, cs->exception_index)) {
10202         arm_handle_psci_call(cpu);
10203         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
10204         return;
10205     }
10206 
10207     /*
10208      * Semihosting semantics depend on the register width of the code
10209      * that caused the exception, not the target exception level, so
10210      * must be handled here.
10211      */
10212 #ifdef CONFIG_TCG
10213     if (cs->exception_index == EXCP_SEMIHOST) {
10214         handle_semihosting(cs);
10215         return;
10216     }
10217 #endif
10218 
10219     /* Hooks may change global state so BQL should be held, also the
10220      * BQL needs to be held for any modification of
10221      * cs->interrupt_request.
10222      */
10223     g_assert(qemu_mutex_iothread_locked());
10224 
10225     arm_call_pre_el_change_hook(cpu);
10226 
10227     assert(!excp_is_internal(cs->exception_index));
10228     if (arm_el_is_aa64(env, new_el)) {
10229         arm_cpu_do_interrupt_aarch64(cs);
10230     } else {
10231         arm_cpu_do_interrupt_aarch32(cs);
10232     }
10233 
10234     arm_call_el_change_hook(cpu);
10235 
10236     if (!kvm_enabled()) {
10237         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
10238     }
10239 }
10240 #endif /* !CONFIG_USER_ONLY */
10241 
10242 uint64_t arm_sctlr(CPUARMState *env, int el)
10243 {
10244     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
10245     if (el == 0) {
10246         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
10247         el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0)
10248              ? 2 : 1;
10249     }
10250     return env->cp15.sctlr_el[el];
10251 }
10252 
10253 /* Return the SCTLR value which controls this address translation regime */
10254 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
10255 {
10256     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
10257 }
10258 
10259 #ifndef CONFIG_USER_ONLY
10260 
10261 /* Return true if the specified stage of address translation is disabled */
10262 static inline bool regime_translation_disabled(CPUARMState *env,
10263                                                ARMMMUIdx mmu_idx)
10264 {
10265     uint64_t hcr_el2;
10266 
10267     if (arm_feature(env, ARM_FEATURE_M)) {
10268         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
10269                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
10270         case R_V7M_MPU_CTRL_ENABLE_MASK:
10271             /* Enabled, but not for HardFault and NMI */
10272             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
10273         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
10274             /* Enabled for all cases */
10275             return false;
10276         case 0:
10277         default:
10278             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
10279              * we warned about that in armv7m_nvic.c when the guest set it.
10280              */
10281             return true;
10282         }
10283     }
10284 
10285     hcr_el2 = arm_hcr_el2_eff(env);
10286 
10287     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
10288         /* HCR.DC means HCR.VM behaves as 1 */
10289         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10290     }
10291 
10292     if (hcr_el2 & HCR_TGE) {
10293         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10294         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10295             return true;
10296         }
10297     }
10298 
10299     if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10300         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10301         return true;
10302     }
10303 
10304     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10305 }
10306 
10307 static inline bool regime_translation_big_endian(CPUARMState *env,
10308                                                  ARMMMUIdx mmu_idx)
10309 {
10310     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10311 }
10312 
10313 /* Return the TTBR associated with this translation regime */
10314 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10315                                    int ttbrn)
10316 {
10317     if (mmu_idx == ARMMMUIdx_Stage2) {
10318         return env->cp15.vttbr_el2;
10319     }
10320     if (mmu_idx == ARMMMUIdx_Stage2_S) {
10321         return env->cp15.vsttbr_el2;
10322     }
10323     if (ttbrn == 0) {
10324         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10325     } else {
10326         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10327     }
10328 }
10329 
10330 #endif /* !CONFIG_USER_ONLY */
10331 
10332 /* Convert a possible stage1+2 MMU index into the appropriate
10333  * stage 1 MMU index
10334  */
10335 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10336 {
10337     switch (mmu_idx) {
10338     case ARMMMUIdx_SE10_0:
10339         return ARMMMUIdx_Stage1_SE0;
10340     case ARMMMUIdx_SE10_1:
10341         return ARMMMUIdx_Stage1_SE1;
10342     case ARMMMUIdx_SE10_1_PAN:
10343         return ARMMMUIdx_Stage1_SE1_PAN;
10344     case ARMMMUIdx_E10_0:
10345         return ARMMMUIdx_Stage1_E0;
10346     case ARMMMUIdx_E10_1:
10347         return ARMMMUIdx_Stage1_E1;
10348     case ARMMMUIdx_E10_1_PAN:
10349         return ARMMMUIdx_Stage1_E1_PAN;
10350     default:
10351         return mmu_idx;
10352     }
10353 }
10354 
10355 /* Return true if the translation regime is using LPAE format page tables */
10356 static inline bool regime_using_lpae_format(CPUARMState *env,
10357                                             ARMMMUIdx mmu_idx)
10358 {
10359     int el = regime_el(env, mmu_idx);
10360     if (el == 2 || arm_el_is_aa64(env, el)) {
10361         return true;
10362     }
10363     if (arm_feature(env, ARM_FEATURE_LPAE)
10364         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10365         return true;
10366     }
10367     return false;
10368 }
10369 
10370 /* Returns true if the stage 1 translation regime is using LPAE format page
10371  * tables. Used when raising alignment exceptions, whose FSR changes depending
10372  * on whether the long or short descriptor format is in use. */
10373 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10374 {
10375     mmu_idx = stage_1_mmu_idx(mmu_idx);
10376 
10377     return regime_using_lpae_format(env, mmu_idx);
10378 }
10379 
10380 #ifndef CONFIG_USER_ONLY
10381 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10382 {
10383     switch (mmu_idx) {
10384     case ARMMMUIdx_SE10_0:
10385     case ARMMMUIdx_E20_0:
10386     case ARMMMUIdx_SE20_0:
10387     case ARMMMUIdx_Stage1_E0:
10388     case ARMMMUIdx_Stage1_SE0:
10389     case ARMMMUIdx_MUser:
10390     case ARMMMUIdx_MSUser:
10391     case ARMMMUIdx_MUserNegPri:
10392     case ARMMMUIdx_MSUserNegPri:
10393         return true;
10394     default:
10395         return false;
10396     case ARMMMUIdx_E10_0:
10397     case ARMMMUIdx_E10_1:
10398     case ARMMMUIdx_E10_1_PAN:
10399         g_assert_not_reached();
10400     }
10401 }
10402 
10403 /* Translate section/page access permissions to page
10404  * R/W protection flags
10405  *
10406  * @env:         CPUARMState
10407  * @mmu_idx:     MMU index indicating required translation regime
10408  * @ap:          The 3-bit access permissions (AP[2:0])
10409  * @domain_prot: The 2-bit domain access permissions
10410  */
10411 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10412                                 int ap, int domain_prot)
10413 {
10414     bool is_user = regime_is_user(env, mmu_idx);
10415 
10416     if (domain_prot == 3) {
10417         return PAGE_READ | PAGE_WRITE;
10418     }
10419 
10420     switch (ap) {
10421     case 0:
10422         if (arm_feature(env, ARM_FEATURE_V7)) {
10423             return 0;
10424         }
10425         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10426         case SCTLR_S:
10427             return is_user ? 0 : PAGE_READ;
10428         case SCTLR_R:
10429             return PAGE_READ;
10430         default:
10431             return 0;
10432         }
10433     case 1:
10434         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10435     case 2:
10436         if (is_user) {
10437             return PAGE_READ;
10438         } else {
10439             return PAGE_READ | PAGE_WRITE;
10440         }
10441     case 3:
10442         return PAGE_READ | PAGE_WRITE;
10443     case 4: /* Reserved.  */
10444         return 0;
10445     case 5:
10446         return is_user ? 0 : PAGE_READ;
10447     case 6:
10448         return PAGE_READ;
10449     case 7:
10450         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10451             return 0;
10452         }
10453         return PAGE_READ;
10454     default:
10455         g_assert_not_reached();
10456     }
10457 }
10458 
10459 /* Translate section/page access permissions to page
10460  * R/W protection flags.
10461  *
10462  * @ap:      The 2-bit simple AP (AP[2:1])
10463  * @is_user: TRUE if accessing from PL0
10464  */
10465 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10466 {
10467     switch (ap) {
10468     case 0:
10469         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10470     case 1:
10471         return PAGE_READ | PAGE_WRITE;
10472     case 2:
10473         return is_user ? 0 : PAGE_READ;
10474     case 3:
10475         return PAGE_READ;
10476     default:
10477         g_assert_not_reached();
10478     }
10479 }
10480 
10481 static inline int
10482 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10483 {
10484     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10485 }
10486 
10487 /* Translate S2 section/page access permissions to protection flags
10488  *
10489  * @env:     CPUARMState
10490  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10491  * @xn:      XN (execute-never) bits
10492  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10493  */
10494 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10495 {
10496     int prot = 0;
10497 
10498     if (s2ap & 1) {
10499         prot |= PAGE_READ;
10500     }
10501     if (s2ap & 2) {
10502         prot |= PAGE_WRITE;
10503     }
10504 
10505     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10506         switch (xn) {
10507         case 0:
10508             prot |= PAGE_EXEC;
10509             break;
10510         case 1:
10511             if (s1_is_el0) {
10512                 prot |= PAGE_EXEC;
10513             }
10514             break;
10515         case 2:
10516             break;
10517         case 3:
10518             if (!s1_is_el0) {
10519                 prot |= PAGE_EXEC;
10520             }
10521             break;
10522         default:
10523             g_assert_not_reached();
10524         }
10525     } else {
10526         if (!extract32(xn, 1, 1)) {
10527             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10528                 prot |= PAGE_EXEC;
10529             }
10530         }
10531     }
10532     return prot;
10533 }
10534 
10535 /* Translate section/page access permissions to protection flags
10536  *
10537  * @env:     CPUARMState
10538  * @mmu_idx: MMU index indicating required translation regime
10539  * @is_aa64: TRUE if AArch64
10540  * @ap:      The 2-bit simple AP (AP[2:1])
10541  * @ns:      NS (non-secure) bit
10542  * @xn:      XN (execute-never) bit
10543  * @pxn:     PXN (privileged execute-never) bit
10544  */
10545 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10546                       int ap, int ns, int xn, int pxn)
10547 {
10548     bool is_user = regime_is_user(env, mmu_idx);
10549     int prot_rw, user_rw;
10550     bool have_wxn;
10551     int wxn = 0;
10552 
10553     assert(mmu_idx != ARMMMUIdx_Stage2);
10554     assert(mmu_idx != ARMMMUIdx_Stage2_S);
10555 
10556     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10557     if (is_user) {
10558         prot_rw = user_rw;
10559     } else {
10560         if (user_rw && regime_is_pan(env, mmu_idx)) {
10561             /* PAN forbids data accesses but doesn't affect insn fetch */
10562             prot_rw = 0;
10563         } else {
10564             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10565         }
10566     }
10567 
10568     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10569         return prot_rw;
10570     }
10571 
10572     /* TODO have_wxn should be replaced with
10573      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10574      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10575      * compatible processors have EL2, which is required for [U]WXN.
10576      */
10577     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10578 
10579     if (have_wxn) {
10580         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10581     }
10582 
10583     if (is_aa64) {
10584         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10585             xn = pxn || (user_rw & PAGE_WRITE);
10586         }
10587     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10588         switch (regime_el(env, mmu_idx)) {
10589         case 1:
10590         case 3:
10591             if (is_user) {
10592                 xn = xn || !(user_rw & PAGE_READ);
10593             } else {
10594                 int uwxn = 0;
10595                 if (have_wxn) {
10596                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10597                 }
10598                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10599                      (uwxn && (user_rw & PAGE_WRITE));
10600             }
10601             break;
10602         case 2:
10603             break;
10604         }
10605     } else {
10606         xn = wxn = 0;
10607     }
10608 
10609     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10610         return prot_rw;
10611     }
10612     return prot_rw | PAGE_EXEC;
10613 }
10614 
10615 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10616                                      uint32_t *table, uint32_t address)
10617 {
10618     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10619     TCR *tcr = regime_tcr(env, mmu_idx);
10620 
10621     if (address & tcr->mask) {
10622         if (tcr->raw_tcr & TTBCR_PD1) {
10623             /* Translation table walk disabled for TTBR1 */
10624             return false;
10625         }
10626         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10627     } else {
10628         if (tcr->raw_tcr & TTBCR_PD0) {
10629             /* Translation table walk disabled for TTBR0 */
10630             return false;
10631         }
10632         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10633     }
10634     *table |= (address >> 18) & 0x3ffc;
10635     return true;
10636 }
10637 
10638 /* Translate a S1 pagetable walk through S2 if needed.  */
10639 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10640                                hwaddr addr, bool *is_secure,
10641                                ARMMMUFaultInfo *fi)
10642 {
10643     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10644         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10645         target_ulong s2size;
10646         hwaddr s2pa;
10647         int s2prot;
10648         int ret;
10649         ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
10650                                           : ARMMMUIdx_Stage2;
10651         ARMCacheAttrs cacheattrs = {};
10652         MemTxAttrs txattrs = {};
10653 
10654         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
10655                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10656                                  &cacheattrs);
10657         if (ret) {
10658             assert(fi->type != ARMFault_None);
10659             fi->s2addr = addr;
10660             fi->stage2 = true;
10661             fi->s1ptw = true;
10662             fi->s1ns = !*is_secure;
10663             return ~0;
10664         }
10665         if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
10666             (cacheattrs.attrs & 0xf0) == 0) {
10667             /*
10668              * PTW set and S1 walk touched S2 Device memory:
10669              * generate Permission fault.
10670              */
10671             fi->type = ARMFault_Permission;
10672             fi->s2addr = addr;
10673             fi->stage2 = true;
10674             fi->s1ptw = true;
10675             fi->s1ns = !*is_secure;
10676             return ~0;
10677         }
10678 
10679         if (arm_is_secure_below_el3(env)) {
10680             /* Check if page table walk is to secure or non-secure PA space. */
10681             if (*is_secure) {
10682                 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
10683             } else {
10684                 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
10685             }
10686         } else {
10687             assert(!*is_secure);
10688         }
10689 
10690         addr = s2pa;
10691     }
10692     return addr;
10693 }
10694 
10695 /* All loads done in the course of a page table walk go through here. */
10696 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10697                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10698 {
10699     ARMCPU *cpu = ARM_CPU(cs);
10700     CPUARMState *env = &cpu->env;
10701     MemTxAttrs attrs = {};
10702     MemTxResult result = MEMTX_OK;
10703     AddressSpace *as;
10704     uint32_t data;
10705 
10706     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10707     attrs.secure = is_secure;
10708     as = arm_addressspace(cs, attrs);
10709     if (fi->s1ptw) {
10710         return 0;
10711     }
10712     if (regime_translation_big_endian(env, mmu_idx)) {
10713         data = address_space_ldl_be(as, addr, attrs, &result);
10714     } else {
10715         data = address_space_ldl_le(as, addr, attrs, &result);
10716     }
10717     if (result == MEMTX_OK) {
10718         return data;
10719     }
10720     fi->type = ARMFault_SyncExternalOnWalk;
10721     fi->ea = arm_extabort_type(result);
10722     return 0;
10723 }
10724 
10725 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10726                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10727 {
10728     ARMCPU *cpu = ARM_CPU(cs);
10729     CPUARMState *env = &cpu->env;
10730     MemTxAttrs attrs = {};
10731     MemTxResult result = MEMTX_OK;
10732     AddressSpace *as;
10733     uint64_t data;
10734 
10735     addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
10736     attrs.secure = is_secure;
10737     as = arm_addressspace(cs, attrs);
10738     if (fi->s1ptw) {
10739         return 0;
10740     }
10741     if (regime_translation_big_endian(env, mmu_idx)) {
10742         data = address_space_ldq_be(as, addr, attrs, &result);
10743     } else {
10744         data = address_space_ldq_le(as, addr, attrs, &result);
10745     }
10746     if (result == MEMTX_OK) {
10747         return data;
10748     }
10749     fi->type = ARMFault_SyncExternalOnWalk;
10750     fi->ea = arm_extabort_type(result);
10751     return 0;
10752 }
10753 
10754 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10755                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10756                              hwaddr *phys_ptr, int *prot,
10757                              target_ulong *page_size,
10758                              ARMMMUFaultInfo *fi)
10759 {
10760     CPUState *cs = env_cpu(env);
10761     int level = 1;
10762     uint32_t table;
10763     uint32_t desc;
10764     int type;
10765     int ap;
10766     int domain = 0;
10767     int domain_prot;
10768     hwaddr phys_addr;
10769     uint32_t dacr;
10770 
10771     /* Pagetable walk.  */
10772     /* Lookup l1 descriptor.  */
10773     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10774         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10775         fi->type = ARMFault_Translation;
10776         goto do_fault;
10777     }
10778     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10779                        mmu_idx, fi);
10780     if (fi->type != ARMFault_None) {
10781         goto do_fault;
10782     }
10783     type = (desc & 3);
10784     domain = (desc >> 5) & 0x0f;
10785     if (regime_el(env, mmu_idx) == 1) {
10786         dacr = env->cp15.dacr_ns;
10787     } else {
10788         dacr = env->cp15.dacr_s;
10789     }
10790     domain_prot = (dacr >> (domain * 2)) & 3;
10791     if (type == 0) {
10792         /* Section translation fault.  */
10793         fi->type = ARMFault_Translation;
10794         goto do_fault;
10795     }
10796     if (type != 2) {
10797         level = 2;
10798     }
10799     if (domain_prot == 0 || domain_prot == 2) {
10800         fi->type = ARMFault_Domain;
10801         goto do_fault;
10802     }
10803     if (type == 2) {
10804         /* 1Mb section.  */
10805         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10806         ap = (desc >> 10) & 3;
10807         *page_size = 1024 * 1024;
10808     } else {
10809         /* Lookup l2 entry.  */
10810         if (type == 1) {
10811             /* Coarse pagetable.  */
10812             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10813         } else {
10814             /* Fine pagetable.  */
10815             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10816         }
10817         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10818                            mmu_idx, fi);
10819         if (fi->type != ARMFault_None) {
10820             goto do_fault;
10821         }
10822         switch (desc & 3) {
10823         case 0: /* Page translation fault.  */
10824             fi->type = ARMFault_Translation;
10825             goto do_fault;
10826         case 1: /* 64k page.  */
10827             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10828             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10829             *page_size = 0x10000;
10830             break;
10831         case 2: /* 4k page.  */
10832             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10833             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10834             *page_size = 0x1000;
10835             break;
10836         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10837             if (type == 1) {
10838                 /* ARMv6/XScale extended small page format */
10839                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10840                     || arm_feature(env, ARM_FEATURE_V6)) {
10841                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10842                     *page_size = 0x1000;
10843                 } else {
10844                     /* UNPREDICTABLE in ARMv5; we choose to take a
10845                      * page translation fault.
10846                      */
10847                     fi->type = ARMFault_Translation;
10848                     goto do_fault;
10849                 }
10850             } else {
10851                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10852                 *page_size = 0x400;
10853             }
10854             ap = (desc >> 4) & 3;
10855             break;
10856         default:
10857             /* Never happens, but compiler isn't smart enough to tell.  */
10858             abort();
10859         }
10860     }
10861     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10862     *prot |= *prot ? PAGE_EXEC : 0;
10863     if (!(*prot & (1 << access_type))) {
10864         /* Access permission fault.  */
10865         fi->type = ARMFault_Permission;
10866         goto do_fault;
10867     }
10868     *phys_ptr = phys_addr;
10869     return false;
10870 do_fault:
10871     fi->domain = domain;
10872     fi->level = level;
10873     return true;
10874 }
10875 
10876 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10877                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10878                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10879                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10880 {
10881     CPUState *cs = env_cpu(env);
10882     ARMCPU *cpu = env_archcpu(env);
10883     int level = 1;
10884     uint32_t table;
10885     uint32_t desc;
10886     uint32_t xn;
10887     uint32_t pxn = 0;
10888     int type;
10889     int ap;
10890     int domain = 0;
10891     int domain_prot;
10892     hwaddr phys_addr;
10893     uint32_t dacr;
10894     bool ns;
10895 
10896     /* Pagetable walk.  */
10897     /* Lookup l1 descriptor.  */
10898     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10899         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10900         fi->type = ARMFault_Translation;
10901         goto do_fault;
10902     }
10903     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10904                        mmu_idx, fi);
10905     if (fi->type != ARMFault_None) {
10906         goto do_fault;
10907     }
10908     type = (desc & 3);
10909     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10910         /* Section translation fault, or attempt to use the encoding
10911          * which is Reserved on implementations without PXN.
10912          */
10913         fi->type = ARMFault_Translation;
10914         goto do_fault;
10915     }
10916     if ((type == 1) || !(desc & (1 << 18))) {
10917         /* Page or Section.  */
10918         domain = (desc >> 5) & 0x0f;
10919     }
10920     if (regime_el(env, mmu_idx) == 1) {
10921         dacr = env->cp15.dacr_ns;
10922     } else {
10923         dacr = env->cp15.dacr_s;
10924     }
10925     if (type == 1) {
10926         level = 2;
10927     }
10928     domain_prot = (dacr >> (domain * 2)) & 3;
10929     if (domain_prot == 0 || domain_prot == 2) {
10930         /* Section or Page domain fault */
10931         fi->type = ARMFault_Domain;
10932         goto do_fault;
10933     }
10934     if (type != 1) {
10935         if (desc & (1 << 18)) {
10936             /* Supersection.  */
10937             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10938             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10939             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10940             *page_size = 0x1000000;
10941         } else {
10942             /* Section.  */
10943             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10944             *page_size = 0x100000;
10945         }
10946         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10947         xn = desc & (1 << 4);
10948         pxn = desc & 1;
10949         ns = extract32(desc, 19, 1);
10950     } else {
10951         if (cpu_isar_feature(aa32_pxn, cpu)) {
10952             pxn = (desc >> 2) & 1;
10953         }
10954         ns = extract32(desc, 3, 1);
10955         /* Lookup l2 entry.  */
10956         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10957         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10958                            mmu_idx, fi);
10959         if (fi->type != ARMFault_None) {
10960             goto do_fault;
10961         }
10962         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10963         switch (desc & 3) {
10964         case 0: /* Page translation fault.  */
10965             fi->type = ARMFault_Translation;
10966             goto do_fault;
10967         case 1: /* 64k page.  */
10968             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10969             xn = desc & (1 << 15);
10970             *page_size = 0x10000;
10971             break;
10972         case 2: case 3: /* 4k page.  */
10973             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10974             xn = desc & 1;
10975             *page_size = 0x1000;
10976             break;
10977         default:
10978             /* Never happens, but compiler isn't smart enough to tell.  */
10979             abort();
10980         }
10981     }
10982     if (domain_prot == 3) {
10983         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10984     } else {
10985         if (pxn && !regime_is_user(env, mmu_idx)) {
10986             xn = 1;
10987         }
10988         if (xn && access_type == MMU_INST_FETCH) {
10989             fi->type = ARMFault_Permission;
10990             goto do_fault;
10991         }
10992 
10993         if (arm_feature(env, ARM_FEATURE_V6K) &&
10994                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10995             /* The simplified model uses AP[0] as an access control bit.  */
10996             if ((ap & 1) == 0) {
10997                 /* Access flag fault.  */
10998                 fi->type = ARMFault_AccessFlag;
10999                 goto do_fault;
11000             }
11001             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
11002         } else {
11003             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
11004         }
11005         if (*prot && !xn) {
11006             *prot |= PAGE_EXEC;
11007         }
11008         if (!(*prot & (1 << access_type))) {
11009             /* Access permission fault.  */
11010             fi->type = ARMFault_Permission;
11011             goto do_fault;
11012         }
11013     }
11014     if (ns) {
11015         /* The NS bit will (as required by the architecture) have no effect if
11016          * the CPU doesn't support TZ or this is a non-secure translation
11017          * regime, because the attribute will already be non-secure.
11018          */
11019         attrs->secure = false;
11020     }
11021     *phys_ptr = phys_addr;
11022     return false;
11023 do_fault:
11024     fi->domain = domain;
11025     fi->level = level;
11026     return true;
11027 }
11028 
11029 /*
11030  * check_s2_mmu_setup
11031  * @cpu:        ARMCPU
11032  * @is_aa64:    True if the translation regime is in AArch64 state
11033  * @startlevel: Suggested starting level
11034  * @inputsize:  Bitsize of IPAs
11035  * @stride:     Page-table stride (See the ARM ARM)
11036  *
11037  * Returns true if the suggested S2 translation parameters are OK and
11038  * false otherwise.
11039  */
11040 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
11041                                int inputsize, int stride)
11042 {
11043     const int grainsize = stride + 3;
11044     int startsizecheck;
11045 
11046     /* Negative levels are never allowed.  */
11047     if (level < 0) {
11048         return false;
11049     }
11050 
11051     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
11052     if (startsizecheck < 1 || startsizecheck > stride + 4) {
11053         return false;
11054     }
11055 
11056     if (is_aa64) {
11057         CPUARMState *env = &cpu->env;
11058         unsigned int pamax = arm_pamax(cpu);
11059 
11060         switch (stride) {
11061         case 13: /* 64KB Pages.  */
11062             if (level == 0 || (level == 1 && pamax <= 42)) {
11063                 return false;
11064             }
11065             break;
11066         case 11: /* 16KB Pages.  */
11067             if (level == 0 || (level == 1 && pamax <= 40)) {
11068                 return false;
11069             }
11070             break;
11071         case 9: /* 4KB Pages.  */
11072             if (level == 0 && pamax <= 42) {
11073                 return false;
11074             }
11075             break;
11076         default:
11077             g_assert_not_reached();
11078         }
11079 
11080         /* Inputsize checks.  */
11081         if (inputsize > pamax &&
11082             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
11083             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
11084             return false;
11085         }
11086     } else {
11087         /* AArch32 only supports 4KB pages. Assert on that.  */
11088         assert(stride == 9);
11089 
11090         if (level == 0) {
11091             return false;
11092         }
11093     }
11094     return true;
11095 }
11096 
11097 /* Translate from the 4-bit stage 2 representation of
11098  * memory attributes (without cache-allocation hints) to
11099  * the 8-bit representation of the stage 1 MAIR registers
11100  * (which includes allocation hints).
11101  *
11102  * ref: shared/translation/attrs/S2AttrDecode()
11103  *      .../S2ConvertAttrsHints()
11104  */
11105 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
11106 {
11107     uint8_t hiattr = extract32(s2attrs, 2, 2);
11108     uint8_t loattr = extract32(s2attrs, 0, 2);
11109     uint8_t hihint = 0, lohint = 0;
11110 
11111     if (hiattr != 0) { /* normal memory */
11112         if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
11113             hiattr = loattr = 1; /* non-cacheable */
11114         } else {
11115             if (hiattr != 1) { /* Write-through or write-back */
11116                 hihint = 3; /* RW allocate */
11117             }
11118             if (loattr != 1) { /* Write-through or write-back */
11119                 lohint = 3; /* RW allocate */
11120             }
11121         }
11122     }
11123 
11124     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
11125 }
11126 #endif /* !CONFIG_USER_ONLY */
11127 
11128 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11129 {
11130     if (regime_has_2_ranges(mmu_idx)) {
11131         return extract64(tcr, 37, 2);
11132     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11133         return 0; /* VTCR_EL2 */
11134     } else {
11135         /* Replicate the single TBI bit so we always have 2 bits.  */
11136         return extract32(tcr, 20, 1) * 3;
11137     }
11138 }
11139 
11140 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11141 {
11142     if (regime_has_2_ranges(mmu_idx)) {
11143         return extract64(tcr, 51, 2);
11144     } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11145         return 0; /* VTCR_EL2 */
11146     } else {
11147         /* Replicate the single TBID bit so we always have 2 bits.  */
11148         return extract32(tcr, 29, 1) * 3;
11149     }
11150 }
11151 
11152 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11153 {
11154     if (regime_has_2_ranges(mmu_idx)) {
11155         return extract64(tcr, 57, 2);
11156     } else {
11157         /* Replicate the single TCMA bit so we always have 2 bits.  */
11158         return extract32(tcr, 30, 1) * 3;
11159     }
11160 }
11161 
11162 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11163                                    ARMMMUIdx mmu_idx, bool data)
11164 {
11165     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11166     bool epd, hpd, using16k, using64k;
11167     int select, tsz, tbi, max_tsz;
11168 
11169     if (!regime_has_2_ranges(mmu_idx)) {
11170         select = 0;
11171         tsz = extract32(tcr, 0, 6);
11172         using64k = extract32(tcr, 14, 1);
11173         using16k = extract32(tcr, 15, 1);
11174         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11175             /* VTCR_EL2 */
11176             hpd = false;
11177         } else {
11178             hpd = extract32(tcr, 24, 1);
11179         }
11180         epd = false;
11181     } else {
11182         /*
11183          * Bit 55 is always between the two regions, and is canonical for
11184          * determining if address tagging is enabled.
11185          */
11186         select = extract64(va, 55, 1);
11187         if (!select) {
11188             tsz = extract32(tcr, 0, 6);
11189             epd = extract32(tcr, 7, 1);
11190             using64k = extract32(tcr, 14, 1);
11191             using16k = extract32(tcr, 15, 1);
11192             hpd = extract64(tcr, 41, 1);
11193         } else {
11194             int tg = extract32(tcr, 30, 2);
11195             using16k = tg == 1;
11196             using64k = tg == 3;
11197             tsz = extract32(tcr, 16, 6);
11198             epd = extract32(tcr, 23, 1);
11199             hpd = extract64(tcr, 42, 1);
11200         }
11201     }
11202 
11203     if (cpu_isar_feature(aa64_st, env_archcpu(env))) {
11204         max_tsz = 48 - using64k;
11205     } else {
11206         max_tsz = 39;
11207     }
11208 
11209     tsz = MIN(tsz, max_tsz);
11210     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
11211 
11212     /* Present TBI as a composite with TBID.  */
11213     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11214     if (!data) {
11215         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11216     }
11217     tbi = (tbi >> select) & 1;
11218 
11219     return (ARMVAParameters) {
11220         .tsz = tsz,
11221         .select = select,
11222         .tbi = tbi,
11223         .epd = epd,
11224         .hpd = hpd,
11225         .using16k = using16k,
11226         .using64k = using64k,
11227     };
11228 }
11229 
11230 #ifndef CONFIG_USER_ONLY
11231 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
11232                                           ARMMMUIdx mmu_idx)
11233 {
11234     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
11235     uint32_t el = regime_el(env, mmu_idx);
11236     int select, tsz;
11237     bool epd, hpd;
11238 
11239     assert(mmu_idx != ARMMMUIdx_Stage2_S);
11240 
11241     if (mmu_idx == ARMMMUIdx_Stage2) {
11242         /* VTCR */
11243         bool sext = extract32(tcr, 4, 1);
11244         bool sign = extract32(tcr, 3, 1);
11245 
11246         /*
11247          * If the sign-extend bit is not the same as t0sz[3], the result
11248          * is unpredictable. Flag this as a guest error.
11249          */
11250         if (sign != sext) {
11251             qemu_log_mask(LOG_GUEST_ERROR,
11252                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
11253         }
11254         tsz = sextract32(tcr, 0, 4) + 8;
11255         select = 0;
11256         hpd = false;
11257         epd = false;
11258     } else if (el == 2) {
11259         /* HTCR */
11260         tsz = extract32(tcr, 0, 3);
11261         select = 0;
11262         hpd = extract64(tcr, 24, 1);
11263         epd = false;
11264     } else {
11265         int t0sz = extract32(tcr, 0, 3);
11266         int t1sz = extract32(tcr, 16, 3);
11267 
11268         if (t1sz == 0) {
11269             select = va > (0xffffffffu >> t0sz);
11270         } else {
11271             /* Note that we will detect errors later.  */
11272             select = va >= ~(0xffffffffu >> t1sz);
11273         }
11274         if (!select) {
11275             tsz = t0sz;
11276             epd = extract32(tcr, 7, 1);
11277             hpd = extract64(tcr, 41, 1);
11278         } else {
11279             tsz = t1sz;
11280             epd = extract32(tcr, 23, 1);
11281             hpd = extract64(tcr, 42, 1);
11282         }
11283         /* For aarch32, hpd0 is not enabled without t2e as well.  */
11284         hpd &= extract32(tcr, 6, 1);
11285     }
11286 
11287     return (ARMVAParameters) {
11288         .tsz = tsz,
11289         .select = select,
11290         .epd = epd,
11291         .hpd = hpd,
11292     };
11293 }
11294 
11295 /**
11296  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
11297  *
11298  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11299  * prot and page_size may not be filled in, and the populated fsr value provides
11300  * information on why the translation aborted, in the format of a long-format
11301  * DFSR/IFSR fault register, with the following caveats:
11302  *  * the WnR bit is never set (the caller must do this).
11303  *
11304  * @env: CPUARMState
11305  * @address: virtual address to get physical address for
11306  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
11307  * @mmu_idx: MMU index indicating required translation regime
11308  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
11309  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
11310  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
11311  * @phys_ptr: set to the physical address corresponding to the virtual address
11312  * @attrs: set to the memory transaction attributes to use
11313  * @prot: set to the permissions for the page containing phys_ptr
11314  * @page_size_ptr: set to the size of the page containing phys_ptr
11315  * @fi: set to fault info if the translation fails
11316  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11317  */
11318 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
11319                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
11320                                bool s1_is_el0,
11321                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
11322                                target_ulong *page_size_ptr,
11323                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11324 {
11325     ARMCPU *cpu = env_archcpu(env);
11326     CPUState *cs = CPU(cpu);
11327     /* Read an LPAE long-descriptor translation table. */
11328     ARMFaultType fault_type = ARMFault_Translation;
11329     uint32_t level;
11330     ARMVAParameters param;
11331     uint64_t ttbr;
11332     hwaddr descaddr, indexmask, indexmask_grainsize;
11333     uint32_t tableattrs;
11334     target_ulong page_size;
11335     uint32_t attrs;
11336     int32_t stride;
11337     int addrsize, inputsize;
11338     TCR *tcr = regime_tcr(env, mmu_idx);
11339     int ap, ns, xn, pxn;
11340     uint32_t el = regime_el(env, mmu_idx);
11341     uint64_t descaddrmask;
11342     bool aarch64 = arm_el_is_aa64(env, el);
11343     bool guarded = false;
11344 
11345     /* TODO: This code does not support shareability levels. */
11346     if (aarch64) {
11347         param = aa64_va_parameters(env, address, mmu_idx,
11348                                    access_type != MMU_INST_FETCH);
11349         level = 0;
11350         addrsize = 64 - 8 * param.tbi;
11351         inputsize = 64 - param.tsz;
11352     } else {
11353         param = aa32_va_parameters(env, address, mmu_idx);
11354         level = 1;
11355         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11356         inputsize = addrsize - param.tsz;
11357     }
11358 
11359     /*
11360      * We determined the region when collecting the parameters, but we
11361      * have not yet validated that the address is valid for the region.
11362      * Extract the top bits and verify that they all match select.
11363      *
11364      * For aa32, if inputsize == addrsize, then we have selected the
11365      * region by exclusion in aa32_va_parameters and there is no more
11366      * validation to do here.
11367      */
11368     if (inputsize < addrsize) {
11369         target_ulong top_bits = sextract64(address, inputsize,
11370                                            addrsize - inputsize);
11371         if (-top_bits != param.select) {
11372             /* The gap between the two regions is a Translation fault */
11373             fault_type = ARMFault_Translation;
11374             goto do_fault;
11375         }
11376     }
11377 
11378     if (param.using64k) {
11379         stride = 13;
11380     } else if (param.using16k) {
11381         stride = 11;
11382     } else {
11383         stride = 9;
11384     }
11385 
11386     /* Note that QEMU ignores shareability and cacheability attributes,
11387      * so we don't need to do anything with the SH, ORGN, IRGN fields
11388      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11389      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11390      * implement any ASID-like capability so we can ignore it (instead
11391      * we will always flush the TLB any time the ASID is changed).
11392      */
11393     ttbr = regime_ttbr(env, mmu_idx, param.select);
11394 
11395     /* Here we should have set up all the parameters for the translation:
11396      * inputsize, ttbr, epd, stride, tbi
11397      */
11398 
11399     if (param.epd) {
11400         /* Translation table walk disabled => Translation fault on TLB miss
11401          * Note: This is always 0 on 64-bit EL2 and EL3.
11402          */
11403         goto do_fault;
11404     }
11405 
11406     if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
11407         /* The starting level depends on the virtual address size (which can
11408          * be up to 48 bits) and the translation granule size. It indicates
11409          * the number of strides (stride bits at a time) needed to
11410          * consume the bits of the input address. In the pseudocode this is:
11411          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11412          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11413          * our 'stride + 3' and 'stride' is our 'stride'.
11414          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11415          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11416          * = 4 - (inputsize - 4) / stride;
11417          */
11418         level = 4 - (inputsize - 4) / stride;
11419     } else {
11420         /* For stage 2 translations the starting level is specified by the
11421          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11422          */
11423         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11424         uint32_t startlevel;
11425         bool ok;
11426 
11427         if (!aarch64 || stride == 9) {
11428             /* AArch32 or 4KB pages */
11429             startlevel = 2 - sl0;
11430 
11431             if (cpu_isar_feature(aa64_st, cpu)) {
11432                 startlevel &= 3;
11433             }
11434         } else {
11435             /* 16KB or 64KB pages */
11436             startlevel = 3 - sl0;
11437         }
11438 
11439         /* Check that the starting level is valid. */
11440         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11441                                 inputsize, stride);
11442         if (!ok) {
11443             fault_type = ARMFault_Translation;
11444             goto do_fault;
11445         }
11446         level = startlevel;
11447     }
11448 
11449     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11450     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11451 
11452     /* Now we can extract the actual base address from the TTBR */
11453     descaddr = extract64(ttbr, 0, 48);
11454     /*
11455      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11456      * and also to mask out CnP (bit 0) which could validly be non-zero.
11457      */
11458     descaddr &= ~indexmask;
11459 
11460     /* The address field in the descriptor goes up to bit 39 for ARMv7
11461      * but up to bit 47 for ARMv8, but we use the descaddrmask
11462      * up to bit 39 for AArch32, because we don't need other bits in that case
11463      * to construct next descriptor address (anyway they should be all zeroes).
11464      */
11465     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11466                    ~indexmask_grainsize;
11467 
11468     /* Secure accesses start with the page table in secure memory and
11469      * can be downgraded to non-secure at any step. Non-secure accesses
11470      * remain non-secure. We implement this by just ORing in the NSTable/NS
11471      * bits at each step.
11472      */
11473     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11474     for (;;) {
11475         uint64_t descriptor;
11476         bool nstable;
11477 
11478         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11479         descaddr &= ~7ULL;
11480         nstable = extract32(tableattrs, 4, 1);
11481         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11482         if (fi->type != ARMFault_None) {
11483             goto do_fault;
11484         }
11485 
11486         if (!(descriptor & 1) ||
11487             (!(descriptor & 2) && (level == 3))) {
11488             /* Invalid, or the Reserved level 3 encoding */
11489             goto do_fault;
11490         }
11491         descaddr = descriptor & descaddrmask;
11492 
11493         if ((descriptor & 2) && (level < 3)) {
11494             /* Table entry. The top five bits are attributes which may
11495              * propagate down through lower levels of the table (and
11496              * which are all arranged so that 0 means "no effect", so
11497              * we can gather them up by ORing in the bits at each level).
11498              */
11499             tableattrs |= extract64(descriptor, 59, 5);
11500             level++;
11501             indexmask = indexmask_grainsize;
11502             continue;
11503         }
11504         /* Block entry at level 1 or 2, or page entry at level 3.
11505          * These are basically the same thing, although the number
11506          * of bits we pull in from the vaddr varies.
11507          */
11508         page_size = (1ULL << ((stride * (4 - level)) + 3));
11509         descaddr |= (address & (page_size - 1));
11510         /* Extract attributes from the descriptor */
11511         attrs = extract64(descriptor, 2, 10)
11512             | (extract64(descriptor, 52, 12) << 10);
11513 
11514         if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11515             /* Stage 2 table descriptors do not include any attribute fields */
11516             break;
11517         }
11518         /* Merge in attributes from table descriptors */
11519         attrs |= nstable << 3; /* NS */
11520         guarded = extract64(descriptor, 50, 1);  /* GP */
11521         if (param.hpd) {
11522             /* HPD disables all the table attributes except NSTable.  */
11523             break;
11524         }
11525         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11526         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11527          * means "force PL1 access only", which means forcing AP[1] to 0.
11528          */
11529         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11530         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11531         break;
11532     }
11533     /* Here descaddr is the final physical address, and attributes
11534      * are all in attrs.
11535      */
11536     fault_type = ARMFault_AccessFlag;
11537     if ((attrs & (1 << 8)) == 0) {
11538         /* Access flag */
11539         goto do_fault;
11540     }
11541 
11542     ap = extract32(attrs, 4, 2);
11543 
11544     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11545         ns = mmu_idx == ARMMMUIdx_Stage2;
11546         xn = extract32(attrs, 11, 2);
11547         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11548     } else {
11549         ns = extract32(attrs, 3, 1);
11550         xn = extract32(attrs, 12, 1);
11551         pxn = extract32(attrs, 11, 1);
11552         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11553     }
11554 
11555     fault_type = ARMFault_Permission;
11556     if (!(*prot & (1 << access_type))) {
11557         goto do_fault;
11558     }
11559 
11560     if (ns) {
11561         /* The NS bit will (as required by the architecture) have no effect if
11562          * the CPU doesn't support TZ or this is a non-secure translation
11563          * regime, because the attribute will already be non-secure.
11564          */
11565         txattrs->secure = false;
11566     }
11567     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11568     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11569         arm_tlb_bti_gp(txattrs) = true;
11570     }
11571 
11572     if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
11573         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11574     } else {
11575         /* Index into MAIR registers for cache attributes */
11576         uint8_t attrindx = extract32(attrs, 0, 3);
11577         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11578         assert(attrindx <= 7);
11579         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11580     }
11581     cacheattrs->shareability = extract32(attrs, 6, 2);
11582 
11583     *phys_ptr = descaddr;
11584     *page_size_ptr = page_size;
11585     return false;
11586 
11587 do_fault:
11588     fi->type = fault_type;
11589     fi->level = level;
11590     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11591     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
11592                                mmu_idx == ARMMMUIdx_Stage2_S);
11593     fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
11594     return true;
11595 }
11596 
11597 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11598                                                 ARMMMUIdx mmu_idx,
11599                                                 int32_t address, int *prot)
11600 {
11601     if (!arm_feature(env, ARM_FEATURE_M)) {
11602         *prot = PAGE_READ | PAGE_WRITE;
11603         switch (address) {
11604         case 0xF0000000 ... 0xFFFFFFFF:
11605             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11606                 /* hivecs execing is ok */
11607                 *prot |= PAGE_EXEC;
11608             }
11609             break;
11610         case 0x00000000 ... 0x7FFFFFFF:
11611             *prot |= PAGE_EXEC;
11612             break;
11613         }
11614     } else {
11615         /* Default system address map for M profile cores.
11616          * The architecture specifies which regions are execute-never;
11617          * at the MPU level no other checks are defined.
11618          */
11619         switch (address) {
11620         case 0x00000000 ... 0x1fffffff: /* ROM */
11621         case 0x20000000 ... 0x3fffffff: /* SRAM */
11622         case 0x60000000 ... 0x7fffffff: /* RAM */
11623         case 0x80000000 ... 0x9fffffff: /* RAM */
11624             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11625             break;
11626         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11627         case 0xa0000000 ... 0xbfffffff: /* Device */
11628         case 0xc0000000 ... 0xdfffffff: /* Device */
11629         case 0xe0000000 ... 0xffffffff: /* System */
11630             *prot = PAGE_READ | PAGE_WRITE;
11631             break;
11632         default:
11633             g_assert_not_reached();
11634         }
11635     }
11636 }
11637 
11638 static bool pmsav7_use_background_region(ARMCPU *cpu,
11639                                          ARMMMUIdx mmu_idx, bool is_user)
11640 {
11641     /* Return true if we should use the default memory map as a
11642      * "background" region if there are no hits against any MPU regions.
11643      */
11644     CPUARMState *env = &cpu->env;
11645 
11646     if (is_user) {
11647         return false;
11648     }
11649 
11650     if (arm_feature(env, ARM_FEATURE_M)) {
11651         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11652             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11653     } else {
11654         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11655     }
11656 }
11657 
11658 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11659 {
11660     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11661     return arm_feature(env, ARM_FEATURE_M) &&
11662         extract32(address, 20, 12) == 0xe00;
11663 }
11664 
11665 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11666 {
11667     /* True if address is in the M profile system region
11668      * 0xe0000000 - 0xffffffff
11669      */
11670     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11671 }
11672 
11673 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11674                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11675                                  hwaddr *phys_ptr, int *prot,
11676                                  target_ulong *page_size,
11677                                  ARMMMUFaultInfo *fi)
11678 {
11679     ARMCPU *cpu = env_archcpu(env);
11680     int n;
11681     bool is_user = regime_is_user(env, mmu_idx);
11682 
11683     *phys_ptr = address;
11684     *page_size = TARGET_PAGE_SIZE;
11685     *prot = 0;
11686 
11687     if (regime_translation_disabled(env, mmu_idx) ||
11688         m_is_ppb_region(env, address)) {
11689         /* MPU disabled or M profile PPB access: use default memory map.
11690          * The other case which uses the default memory map in the
11691          * v7M ARM ARM pseudocode is exception vector reads from the vector
11692          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11693          * which always does a direct read using address_space_ldl(), rather
11694          * than going via this function, so we don't need to check that here.
11695          */
11696         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11697     } else { /* MPU enabled */
11698         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11699             /* region search */
11700             uint32_t base = env->pmsav7.drbar[n];
11701             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11702             uint32_t rmask;
11703             bool srdis = false;
11704 
11705             if (!(env->pmsav7.drsr[n] & 0x1)) {
11706                 continue;
11707             }
11708 
11709             if (!rsize) {
11710                 qemu_log_mask(LOG_GUEST_ERROR,
11711                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11712                 continue;
11713             }
11714             rsize++;
11715             rmask = (1ull << rsize) - 1;
11716 
11717             if (base & rmask) {
11718                 qemu_log_mask(LOG_GUEST_ERROR,
11719                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11720                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11721                               n, base, rmask);
11722                 continue;
11723             }
11724 
11725             if (address < base || address > base + rmask) {
11726                 /*
11727                  * Address not in this region. We must check whether the
11728                  * region covers addresses in the same page as our address.
11729                  * In that case we must not report a size that covers the
11730                  * whole page for a subsequent hit against a different MPU
11731                  * region or the background region, because it would result in
11732                  * incorrect TLB hits for subsequent accesses to addresses that
11733                  * are in this MPU region.
11734                  */
11735                 if (ranges_overlap(base, rmask,
11736                                    address & TARGET_PAGE_MASK,
11737                                    TARGET_PAGE_SIZE)) {
11738                     *page_size = 1;
11739                 }
11740                 continue;
11741             }
11742 
11743             /* Region matched */
11744 
11745             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11746                 int i, snd;
11747                 uint32_t srdis_mask;
11748 
11749                 rsize -= 3; /* sub region size (power of 2) */
11750                 snd = ((address - base) >> rsize) & 0x7;
11751                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11752 
11753                 srdis_mask = srdis ? 0x3 : 0x0;
11754                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11755                     /* This will check in groups of 2, 4 and then 8, whether
11756                      * the subregion bits are consistent. rsize is incremented
11757                      * back up to give the region size, considering consistent
11758                      * adjacent subregions as one region. Stop testing if rsize
11759                      * is already big enough for an entire QEMU page.
11760                      */
11761                     int snd_rounded = snd & ~(i - 1);
11762                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11763                                                      snd_rounded + 8, i);
11764                     if (srdis_mask ^ srdis_multi) {
11765                         break;
11766                     }
11767                     srdis_mask = (srdis_mask << i) | srdis_mask;
11768                     rsize++;
11769                 }
11770             }
11771             if (srdis) {
11772                 continue;
11773             }
11774             if (rsize < TARGET_PAGE_BITS) {
11775                 *page_size = 1 << rsize;
11776             }
11777             break;
11778         }
11779 
11780         if (n == -1) { /* no hits */
11781             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11782                 /* background fault */
11783                 fi->type = ARMFault_Background;
11784                 return true;
11785             }
11786             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11787         } else { /* a MPU hit! */
11788             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11789             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11790 
11791             if (m_is_system_region(env, address)) {
11792                 /* System space is always execute never */
11793                 xn = 1;
11794             }
11795 
11796             if (is_user) { /* User mode AP bit decoding */
11797                 switch (ap) {
11798                 case 0:
11799                 case 1:
11800                 case 5:
11801                     break; /* no access */
11802                 case 3:
11803                     *prot |= PAGE_WRITE;
11804                     /* fall through */
11805                 case 2:
11806                 case 6:
11807                     *prot |= PAGE_READ | PAGE_EXEC;
11808                     break;
11809                 case 7:
11810                     /* for v7M, same as 6; for R profile a reserved value */
11811                     if (arm_feature(env, ARM_FEATURE_M)) {
11812                         *prot |= PAGE_READ | PAGE_EXEC;
11813                         break;
11814                     }
11815                     /* fall through */
11816                 default:
11817                     qemu_log_mask(LOG_GUEST_ERROR,
11818                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11819                                   PRIx32 "\n", n, ap);
11820                 }
11821             } else { /* Priv. mode AP bits decoding */
11822                 switch (ap) {
11823                 case 0:
11824                     break; /* no access */
11825                 case 1:
11826                 case 2:
11827                 case 3:
11828                     *prot |= PAGE_WRITE;
11829                     /* fall through */
11830                 case 5:
11831                 case 6:
11832                     *prot |= PAGE_READ | PAGE_EXEC;
11833                     break;
11834                 case 7:
11835                     /* for v7M, same as 6; for R profile a reserved value */
11836                     if (arm_feature(env, ARM_FEATURE_M)) {
11837                         *prot |= PAGE_READ | PAGE_EXEC;
11838                         break;
11839                     }
11840                     /* fall through */
11841                 default:
11842                     qemu_log_mask(LOG_GUEST_ERROR,
11843                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11844                                   PRIx32 "\n", n, ap);
11845                 }
11846             }
11847 
11848             /* execute never */
11849             if (xn) {
11850                 *prot &= ~PAGE_EXEC;
11851             }
11852         }
11853     }
11854 
11855     fi->type = ARMFault_Permission;
11856     fi->level = 1;
11857     return !(*prot & (1 << access_type));
11858 }
11859 
11860 static bool v8m_is_sau_exempt(CPUARMState *env,
11861                               uint32_t address, MMUAccessType access_type)
11862 {
11863     /* The architecture specifies that certain address ranges are
11864      * exempt from v8M SAU/IDAU checks.
11865      */
11866     return
11867         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11868         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11869         (address >= 0xe000e000 && address <= 0xe000efff) ||
11870         (address >= 0xe002e000 && address <= 0xe002efff) ||
11871         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11872         (address >= 0xe00ff000 && address <= 0xe00fffff);
11873 }
11874 
11875 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11876                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11877                                 V8M_SAttributes *sattrs)
11878 {
11879     /* Look up the security attributes for this address. Compare the
11880      * pseudocode SecurityCheck() function.
11881      * We assume the caller has zero-initialized *sattrs.
11882      */
11883     ARMCPU *cpu = env_archcpu(env);
11884     int r;
11885     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11886     int idau_region = IREGION_NOTVALID;
11887     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11888     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11889 
11890     if (cpu->idau) {
11891         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11892         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11893 
11894         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11895                    &idau_nsc);
11896     }
11897 
11898     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11899         /* 0xf0000000..0xffffffff is always S for insn fetches */
11900         return;
11901     }
11902 
11903     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11904         sattrs->ns = !regime_is_secure(env, mmu_idx);
11905         return;
11906     }
11907 
11908     if (idau_region != IREGION_NOTVALID) {
11909         sattrs->irvalid = true;
11910         sattrs->iregion = idau_region;
11911     }
11912 
11913     switch (env->sau.ctrl & 3) {
11914     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11915         break;
11916     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11917         sattrs->ns = true;
11918         break;
11919     default: /* SAU.ENABLE == 1 */
11920         for (r = 0; r < cpu->sau_sregion; r++) {
11921             if (env->sau.rlar[r] & 1) {
11922                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11923                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11924 
11925                 if (base <= address && limit >= address) {
11926                     if (base > addr_page_base || limit < addr_page_limit) {
11927                         sattrs->subpage = true;
11928                     }
11929                     if (sattrs->srvalid) {
11930                         /* If we hit in more than one region then we must report
11931                          * as Secure, not NS-Callable, with no valid region
11932                          * number info.
11933                          */
11934                         sattrs->ns = false;
11935                         sattrs->nsc = false;
11936                         sattrs->sregion = 0;
11937                         sattrs->srvalid = false;
11938                         break;
11939                     } else {
11940                         if (env->sau.rlar[r] & 2) {
11941                             sattrs->nsc = true;
11942                         } else {
11943                             sattrs->ns = true;
11944                         }
11945                         sattrs->srvalid = true;
11946                         sattrs->sregion = r;
11947                     }
11948                 } else {
11949                     /*
11950                      * Address not in this region. We must check whether the
11951                      * region covers addresses in the same page as our address.
11952                      * In that case we must not report a size that covers the
11953                      * whole page for a subsequent hit against a different MPU
11954                      * region or the background region, because it would result
11955                      * in incorrect TLB hits for subsequent accesses to
11956                      * addresses that are in this MPU region.
11957                      */
11958                     if (limit >= base &&
11959                         ranges_overlap(base, limit - base + 1,
11960                                        addr_page_base,
11961                                        TARGET_PAGE_SIZE)) {
11962                         sattrs->subpage = true;
11963                     }
11964                 }
11965             }
11966         }
11967         break;
11968     }
11969 
11970     /*
11971      * The IDAU will override the SAU lookup results if it specifies
11972      * higher security than the SAU does.
11973      */
11974     if (!idau_ns) {
11975         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11976             sattrs->ns = false;
11977             sattrs->nsc = idau_nsc;
11978         }
11979     }
11980 }
11981 
11982 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11983                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11984                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11985                               int *prot, bool *is_subpage,
11986                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11987 {
11988     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11989      * that a full phys-to-virt translation does).
11990      * mregion is (if not NULL) set to the region number which matched,
11991      * or -1 if no region number is returned (MPU off, address did not
11992      * hit a region, address hit in multiple regions).
11993      * We set is_subpage to true if the region hit doesn't cover the
11994      * entire TARGET_PAGE the address is within.
11995      */
11996     ARMCPU *cpu = env_archcpu(env);
11997     bool is_user = regime_is_user(env, mmu_idx);
11998     uint32_t secure = regime_is_secure(env, mmu_idx);
11999     int n;
12000     int matchregion = -1;
12001     bool hit = false;
12002     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
12003     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
12004 
12005     *is_subpage = false;
12006     *phys_ptr = address;
12007     *prot = 0;
12008     if (mregion) {
12009         *mregion = -1;
12010     }
12011 
12012     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
12013      * was an exception vector read from the vector table (which is always
12014      * done using the default system address map), because those accesses
12015      * are done in arm_v7m_load_vector(), which always does a direct
12016      * read using address_space_ldl(), rather than going via this function.
12017      */
12018     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
12019         hit = true;
12020     } else if (m_is_ppb_region(env, address)) {
12021         hit = true;
12022     } else {
12023         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
12024             hit = true;
12025         }
12026 
12027         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
12028             /* region search */
12029             /* Note that the base address is bits [31:5] from the register
12030              * with bits [4:0] all zeroes, but the limit address is bits
12031              * [31:5] from the register with bits [4:0] all ones.
12032              */
12033             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
12034             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
12035 
12036             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
12037                 /* Region disabled */
12038                 continue;
12039             }
12040 
12041             if (address < base || address > limit) {
12042                 /*
12043                  * Address not in this region. We must check whether the
12044                  * region covers addresses in the same page as our address.
12045                  * In that case we must not report a size that covers the
12046                  * whole page for a subsequent hit against a different MPU
12047                  * region or the background region, because it would result in
12048                  * incorrect TLB hits for subsequent accesses to addresses that
12049                  * are in this MPU region.
12050                  */
12051                 if (limit >= base &&
12052                     ranges_overlap(base, limit - base + 1,
12053                                    addr_page_base,
12054                                    TARGET_PAGE_SIZE)) {
12055                     *is_subpage = true;
12056                 }
12057                 continue;
12058             }
12059 
12060             if (base > addr_page_base || limit < addr_page_limit) {
12061                 *is_subpage = true;
12062             }
12063 
12064             if (matchregion != -1) {
12065                 /* Multiple regions match -- always a failure (unlike
12066                  * PMSAv7 where highest-numbered-region wins)
12067                  */
12068                 fi->type = ARMFault_Permission;
12069                 fi->level = 1;
12070                 return true;
12071             }
12072 
12073             matchregion = n;
12074             hit = true;
12075         }
12076     }
12077 
12078     if (!hit) {
12079         /* background fault */
12080         fi->type = ARMFault_Background;
12081         return true;
12082     }
12083 
12084     if (matchregion == -1) {
12085         /* hit using the background region */
12086         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
12087     } else {
12088         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
12089         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
12090         bool pxn = false;
12091 
12092         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
12093             pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
12094         }
12095 
12096         if (m_is_system_region(env, address)) {
12097             /* System space is always execute never */
12098             xn = 1;
12099         }
12100 
12101         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
12102         if (*prot && !xn && !(pxn && !is_user)) {
12103             *prot |= PAGE_EXEC;
12104         }
12105         /* We don't need to look the attribute up in the MAIR0/MAIR1
12106          * registers because that only tells us about cacheability.
12107          */
12108         if (mregion) {
12109             *mregion = matchregion;
12110         }
12111     }
12112 
12113     fi->type = ARMFault_Permission;
12114     fi->level = 1;
12115     return !(*prot & (1 << access_type));
12116 }
12117 
12118 
12119 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
12120                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12121                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
12122                                  int *prot, target_ulong *page_size,
12123                                  ARMMMUFaultInfo *fi)
12124 {
12125     uint32_t secure = regime_is_secure(env, mmu_idx);
12126     V8M_SAttributes sattrs = {};
12127     bool ret;
12128     bool mpu_is_subpage;
12129 
12130     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12131         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
12132         if (access_type == MMU_INST_FETCH) {
12133             /* Instruction fetches always use the MMU bank and the
12134              * transaction attribute determined by the fetch address,
12135              * regardless of CPU state. This is painful for QEMU
12136              * to handle, because it would mean we need to encode
12137              * into the mmu_idx not just the (user, negpri) information
12138              * for the current security state but also that for the
12139              * other security state, which would balloon the number
12140              * of mmu_idx values needed alarmingly.
12141              * Fortunately we can avoid this because it's not actually
12142              * possible to arbitrarily execute code from memory with
12143              * the wrong security attribute: it will always generate
12144              * an exception of some kind or another, apart from the
12145              * special case of an NS CPU executing an SG instruction
12146              * in S&NSC memory. So we always just fail the translation
12147              * here and sort things out in the exception handler
12148              * (including possibly emulating an SG instruction).
12149              */
12150             if (sattrs.ns != !secure) {
12151                 if (sattrs.nsc) {
12152                     fi->type = ARMFault_QEMU_NSCExec;
12153                 } else {
12154                     fi->type = ARMFault_QEMU_SFault;
12155                 }
12156                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12157                 *phys_ptr = address;
12158                 *prot = 0;
12159                 return true;
12160             }
12161         } else {
12162             /* For data accesses we always use the MMU bank indicated
12163              * by the current CPU state, but the security attributes
12164              * might downgrade a secure access to nonsecure.
12165              */
12166             if (sattrs.ns) {
12167                 txattrs->secure = false;
12168             } else if (!secure) {
12169                 /* NS access to S memory must fault.
12170                  * Architecturally we should first check whether the
12171                  * MPU information for this address indicates that we
12172                  * are doing an unaligned access to Device memory, which
12173                  * should generate a UsageFault instead. QEMU does not
12174                  * currently check for that kind of unaligned access though.
12175                  * If we added it we would need to do so as a special case
12176                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
12177                  */
12178                 fi->type = ARMFault_QEMU_SFault;
12179                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
12180                 *phys_ptr = address;
12181                 *prot = 0;
12182                 return true;
12183             }
12184         }
12185     }
12186 
12187     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
12188                             txattrs, prot, &mpu_is_subpage, fi, NULL);
12189     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
12190     return ret;
12191 }
12192 
12193 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
12194                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
12195                                  hwaddr *phys_ptr, int *prot,
12196                                  ARMMMUFaultInfo *fi)
12197 {
12198     int n;
12199     uint32_t mask;
12200     uint32_t base;
12201     bool is_user = regime_is_user(env, mmu_idx);
12202 
12203     if (regime_translation_disabled(env, mmu_idx)) {
12204         /* MPU disabled.  */
12205         *phys_ptr = address;
12206         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12207         return false;
12208     }
12209 
12210     *phys_ptr = address;
12211     for (n = 7; n >= 0; n--) {
12212         base = env->cp15.c6_region[n];
12213         if ((base & 1) == 0) {
12214             continue;
12215         }
12216         mask = 1 << ((base >> 1) & 0x1f);
12217         /* Keep this shift separate from the above to avoid an
12218            (undefined) << 32.  */
12219         mask = (mask << 1) - 1;
12220         if (((base ^ address) & ~mask) == 0) {
12221             break;
12222         }
12223     }
12224     if (n < 0) {
12225         fi->type = ARMFault_Background;
12226         return true;
12227     }
12228 
12229     if (access_type == MMU_INST_FETCH) {
12230         mask = env->cp15.pmsav5_insn_ap;
12231     } else {
12232         mask = env->cp15.pmsav5_data_ap;
12233     }
12234     mask = (mask >> (n * 4)) & 0xf;
12235     switch (mask) {
12236     case 0:
12237         fi->type = ARMFault_Permission;
12238         fi->level = 1;
12239         return true;
12240     case 1:
12241         if (is_user) {
12242             fi->type = ARMFault_Permission;
12243             fi->level = 1;
12244             return true;
12245         }
12246         *prot = PAGE_READ | PAGE_WRITE;
12247         break;
12248     case 2:
12249         *prot = PAGE_READ;
12250         if (!is_user) {
12251             *prot |= PAGE_WRITE;
12252         }
12253         break;
12254     case 3:
12255         *prot = PAGE_READ | PAGE_WRITE;
12256         break;
12257     case 5:
12258         if (is_user) {
12259             fi->type = ARMFault_Permission;
12260             fi->level = 1;
12261             return true;
12262         }
12263         *prot = PAGE_READ;
12264         break;
12265     case 6:
12266         *prot = PAGE_READ;
12267         break;
12268     default:
12269         /* Bad permission.  */
12270         fi->type = ARMFault_Permission;
12271         fi->level = 1;
12272         return true;
12273     }
12274     *prot |= PAGE_EXEC;
12275     return false;
12276 }
12277 
12278 /* Combine either inner or outer cacheability attributes for normal
12279  * memory, according to table D4-42 and pseudocode procedure
12280  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
12281  *
12282  * NB: only stage 1 includes allocation hints (RW bits), leading to
12283  * some asymmetry.
12284  */
12285 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
12286 {
12287     if (s1 == 4 || s2 == 4) {
12288         /* non-cacheable has precedence */
12289         return 4;
12290     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
12291         /* stage 1 write-through takes precedence */
12292         return s1;
12293     } else if (extract32(s2, 2, 2) == 2) {
12294         /* stage 2 write-through takes precedence, but the allocation hint
12295          * is still taken from stage 1
12296          */
12297         return (2 << 2) | extract32(s1, 0, 2);
12298     } else { /* write-back */
12299         return s1;
12300     }
12301 }
12302 
12303 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
12304  * and CombineS1S2Desc()
12305  *
12306  * @s1:      Attributes from stage 1 walk
12307  * @s2:      Attributes from stage 2 walk
12308  */
12309 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
12310 {
12311     uint8_t s1lo, s2lo, s1hi, s2hi;
12312     ARMCacheAttrs ret;
12313     bool tagged = false;
12314 
12315     if (s1.attrs == 0xf0) {
12316         tagged = true;
12317         s1.attrs = 0xff;
12318     }
12319 
12320     s1lo = extract32(s1.attrs, 0, 4);
12321     s2lo = extract32(s2.attrs, 0, 4);
12322     s1hi = extract32(s1.attrs, 4, 4);
12323     s2hi = extract32(s2.attrs, 4, 4);
12324 
12325     /* Combine shareability attributes (table D4-43) */
12326     if (s1.shareability == 2 || s2.shareability == 2) {
12327         /* if either are outer-shareable, the result is outer-shareable */
12328         ret.shareability = 2;
12329     } else if (s1.shareability == 3 || s2.shareability == 3) {
12330         /* if either are inner-shareable, the result is inner-shareable */
12331         ret.shareability = 3;
12332     } else {
12333         /* both non-shareable */
12334         ret.shareability = 0;
12335     }
12336 
12337     /* Combine memory type and cacheability attributes */
12338     if (s1hi == 0 || s2hi == 0) {
12339         /* Device has precedence over normal */
12340         if (s1lo == 0 || s2lo == 0) {
12341             /* nGnRnE has precedence over anything */
12342             ret.attrs = 0;
12343         } else if (s1lo == 4 || s2lo == 4) {
12344             /* non-Reordering has precedence over Reordering */
12345             ret.attrs = 4;  /* nGnRE */
12346         } else if (s1lo == 8 || s2lo == 8) {
12347             /* non-Gathering has precedence over Gathering */
12348             ret.attrs = 8;  /* nGRE */
12349         } else {
12350             ret.attrs = 0xc; /* GRE */
12351         }
12352 
12353         /* Any location for which the resultant memory type is any
12354          * type of Device memory is always treated as Outer Shareable.
12355          */
12356         ret.shareability = 2;
12357     } else { /* Normal memory */
12358         /* Outer/inner cacheability combine independently */
12359         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12360                   | combine_cacheattr_nibble(s1lo, s2lo);
12361 
12362         if (ret.attrs == 0x44) {
12363             /* Any location for which the resultant memory type is Normal
12364              * Inner Non-cacheable, Outer Non-cacheable is always treated
12365              * as Outer Shareable.
12366              */
12367             ret.shareability = 2;
12368         }
12369     }
12370 
12371     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12372     if (tagged && ret.attrs == 0xff) {
12373         ret.attrs = 0xf0;
12374     }
12375 
12376     return ret;
12377 }
12378 
12379 
12380 /* get_phys_addr - get the physical address for this virtual address
12381  *
12382  * Find the physical address corresponding to the given virtual address,
12383  * by doing a translation table walk on MMU based systems or using the
12384  * MPU state on MPU based systems.
12385  *
12386  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12387  * prot and page_size may not be filled in, and the populated fsr value provides
12388  * information on why the translation aborted, in the format of a
12389  * DFSR/IFSR fault register, with the following caveats:
12390  *  * we honour the short vs long DFSR format differences.
12391  *  * the WnR bit is never set (the caller must do this).
12392  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12393  *    value.
12394  *
12395  * @env: CPUARMState
12396  * @address: virtual address to get physical address for
12397  * @access_type: 0 for read, 1 for write, 2 for execute
12398  * @mmu_idx: MMU index indicating required translation regime
12399  * @phys_ptr: set to the physical address corresponding to the virtual address
12400  * @attrs: set to the memory transaction attributes to use
12401  * @prot: set to the permissions for the page containing phys_ptr
12402  * @page_size: set to the size of the page containing phys_ptr
12403  * @fi: set to fault info if the translation fails
12404  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12405  */
12406 bool get_phys_addr(CPUARMState *env, target_ulong address,
12407                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12408                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12409                    target_ulong *page_size,
12410                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12411 {
12412     ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);
12413 
12414     if (mmu_idx != s1_mmu_idx) {
12415         /* Call ourselves recursively to do the stage 1 and then stage 2
12416          * translations if mmu_idx is a two-stage regime.
12417          */
12418         if (arm_feature(env, ARM_FEATURE_EL2)) {
12419             hwaddr ipa;
12420             int s2_prot;
12421             int ret;
12422             ARMCacheAttrs cacheattrs2 = {};
12423             ARMMMUIdx s2_mmu_idx;
12424             bool is_el0;
12425 
12426             ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
12427                                 attrs, prot, page_size, fi, cacheattrs);
12428 
12429             /* If S1 fails or S2 is disabled, return early.  */
12430             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12431                 *phys_ptr = ipa;
12432                 return ret;
12433             }
12434 
12435             s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
12436             is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;
12437 
12438             /* S1 is done. Now do S2 translation.  */
12439             ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
12440                                      phys_ptr, attrs, &s2_prot,
12441                                      page_size, fi, &cacheattrs2);
12442             fi->s2addr = ipa;
12443             /* Combine the S1 and S2 perms.  */
12444             *prot &= s2_prot;
12445 
12446             /* If S2 fails, return early.  */
12447             if (ret) {
12448                 return ret;
12449             }
12450 
12451             /* Combine the S1 and S2 cache attributes. */
12452             if (arm_hcr_el2_eff(env) & HCR_DC) {
12453                 /*
12454                  * HCR.DC forces the first stage attributes to
12455                  *  Normal Non-Shareable,
12456                  *  Inner Write-Back Read-Allocate Write-Allocate,
12457                  *  Outer Write-Back Read-Allocate Write-Allocate.
12458                  * Do not overwrite Tagged within attrs.
12459                  */
12460                 if (cacheattrs->attrs != 0xf0) {
12461                     cacheattrs->attrs = 0xff;
12462                 }
12463                 cacheattrs->shareability = 0;
12464             }
12465             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12466 
12467             /* Check if IPA translates to secure or non-secure PA space. */
12468             if (arm_is_secure_below_el3(env)) {
12469                 if (attrs->secure) {
12470                     attrs->secure =
12471                         !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
12472                 } else {
12473                     attrs->secure =
12474                         !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
12475                         || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA));
12476                 }
12477             }
12478             return 0;
12479         } else {
12480             /*
12481              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12482              */
12483             mmu_idx = stage_1_mmu_idx(mmu_idx);
12484         }
12485     }
12486 
12487     /* The page table entries may downgrade secure to non-secure, but
12488      * cannot upgrade an non-secure translation regime's attributes
12489      * to secure.
12490      */
12491     attrs->secure = regime_is_secure(env, mmu_idx);
12492     attrs->user = regime_is_user(env, mmu_idx);
12493 
12494     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12495      * In v7 and earlier it affects all stage 1 translations.
12496      */
12497     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12498         && !arm_feature(env, ARM_FEATURE_V8)) {
12499         if (regime_el(env, mmu_idx) == 3) {
12500             address += env->cp15.fcseidr_s;
12501         } else {
12502             address += env->cp15.fcseidr_ns;
12503         }
12504     }
12505 
12506     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12507         bool ret;
12508         *page_size = TARGET_PAGE_SIZE;
12509 
12510         if (arm_feature(env, ARM_FEATURE_V8)) {
12511             /* PMSAv8 */
12512             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12513                                        phys_ptr, attrs, prot, page_size, fi);
12514         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12515             /* PMSAv7 */
12516             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12517                                        phys_ptr, prot, page_size, fi);
12518         } else {
12519             /* Pre-v7 MPU */
12520             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12521                                        phys_ptr, prot, fi);
12522         }
12523         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12524                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12525                       access_type == MMU_DATA_LOAD ? "reading" :
12526                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12527                       (uint32_t)address, mmu_idx,
12528                       ret ? "Miss" : "Hit",
12529                       *prot & PAGE_READ ? 'r' : '-',
12530                       *prot & PAGE_WRITE ? 'w' : '-',
12531                       *prot & PAGE_EXEC ? 'x' : '-');
12532 
12533         return ret;
12534     }
12535 
12536     /* Definitely a real MMU, not an MPU */
12537 
12538     if (regime_translation_disabled(env, mmu_idx)) {
12539         uint64_t hcr;
12540         uint8_t memattr;
12541 
12542         /*
12543          * MMU disabled.  S1 addresses within aa64 translation regimes are
12544          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12545          */
12546         if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
12547             int r_el = regime_el(env, mmu_idx);
12548             if (arm_el_is_aa64(env, r_el)) {
12549                 int pamax = arm_pamax(env_archcpu(env));
12550                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12551                 int addrtop, tbi;
12552 
12553                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12554                 if (access_type == MMU_INST_FETCH) {
12555                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12556                 }
12557                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12558                 addrtop = (tbi ? 55 : 63);
12559 
12560                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12561                     fi->type = ARMFault_AddressSize;
12562                     fi->level = 0;
12563                     fi->stage2 = false;
12564                     return 1;
12565                 }
12566 
12567                 /*
12568                  * When TBI is disabled, we've just validated that all of the
12569                  * bits above PAMax are zero, so logically we only need to
12570                  * clear the top byte for TBI.  But it's clearer to follow
12571                  * the pseudocode set of addrdesc.paddress.
12572                  */
12573                 address = extract64(address, 0, 52);
12574             }
12575         }
12576         *phys_ptr = address;
12577         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12578         *page_size = TARGET_PAGE_SIZE;
12579 
12580         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12581         hcr = arm_hcr_el2_eff(env);
12582         cacheattrs->shareability = 0;
12583         if (hcr & HCR_DC) {
12584             if (hcr & HCR_DCT) {
12585                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12586             } else {
12587                 memattr = 0xff;  /* Normal, WB, RWA */
12588             }
12589         } else if (access_type == MMU_INST_FETCH) {
12590             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12591                 memattr = 0xee;  /* Normal, WT, RA, NT */
12592             } else {
12593                 memattr = 0x44;  /* Normal, NC, No */
12594             }
12595             cacheattrs->shareability = 2; /* outer sharable */
12596         } else {
12597             memattr = 0x00;      /* Device, nGnRnE */
12598         }
12599         cacheattrs->attrs = memattr;
12600         return 0;
12601     }
12602 
12603     if (regime_using_lpae_format(env, mmu_idx)) {
12604         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12605                                   phys_ptr, attrs, prot, page_size,
12606                                   fi, cacheattrs);
12607     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12608         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12609                                 phys_ptr, attrs, prot, page_size, fi);
12610     } else {
12611         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12612                                     phys_ptr, prot, page_size, fi);
12613     }
12614 }
12615 
12616 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12617                                          MemTxAttrs *attrs)
12618 {
12619     ARMCPU *cpu = ARM_CPU(cs);
12620     CPUARMState *env = &cpu->env;
12621     hwaddr phys_addr;
12622     target_ulong page_size;
12623     int prot;
12624     bool ret;
12625     ARMMMUFaultInfo fi = {};
12626     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12627     ARMCacheAttrs cacheattrs = {};
12628 
12629     *attrs = (MemTxAttrs) {};
12630 
12631     ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
12632                         attrs, &prot, &page_size, &fi, &cacheattrs);
12633 
12634     if (ret) {
12635         return -1;
12636     }
12637     return phys_addr;
12638 }
12639 
12640 #endif
12641 
12642 /* Note that signed overflow is undefined in C.  The following routines are
12643    careful to use unsigned types where modulo arithmetic is required.
12644    Failure to do so _will_ break on newer gcc.  */
12645 
12646 /* Signed saturating arithmetic.  */
12647 
12648 /* Perform 16-bit signed saturating addition.  */
12649 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12650 {
12651     uint16_t res;
12652 
12653     res = a + b;
12654     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12655         if (a & 0x8000)
12656             res = 0x8000;
12657         else
12658             res = 0x7fff;
12659     }
12660     return res;
12661 }
12662 
12663 /* Perform 8-bit signed saturating addition.  */
12664 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12665 {
12666     uint8_t res;
12667 
12668     res = a + b;
12669     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12670         if (a & 0x80)
12671             res = 0x80;
12672         else
12673             res = 0x7f;
12674     }
12675     return res;
12676 }
12677 
12678 /* Perform 16-bit signed saturating subtraction.  */
12679 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12680 {
12681     uint16_t res;
12682 
12683     res = a - b;
12684     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12685         if (a & 0x8000)
12686             res = 0x8000;
12687         else
12688             res = 0x7fff;
12689     }
12690     return res;
12691 }
12692 
12693 /* Perform 8-bit signed saturating subtraction.  */
12694 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12695 {
12696     uint8_t res;
12697 
12698     res = a - b;
12699     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12700         if (a & 0x80)
12701             res = 0x80;
12702         else
12703             res = 0x7f;
12704     }
12705     return res;
12706 }
12707 
12708 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12709 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12710 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12711 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12712 #define PFX q
12713 
12714 #include "op_addsub.h"
12715 
12716 /* Unsigned saturating arithmetic.  */
12717 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12718 {
12719     uint16_t res;
12720     res = a + b;
12721     if (res < a)
12722         res = 0xffff;
12723     return res;
12724 }
12725 
12726 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12727 {
12728     if (a > b)
12729         return a - b;
12730     else
12731         return 0;
12732 }
12733 
12734 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12735 {
12736     uint8_t res;
12737     res = a + b;
12738     if (res < a)
12739         res = 0xff;
12740     return res;
12741 }
12742 
12743 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12744 {
12745     if (a > b)
12746         return a - b;
12747     else
12748         return 0;
12749 }
12750 
12751 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12752 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12753 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12754 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12755 #define PFX uq
12756 
12757 #include "op_addsub.h"
12758 
12759 /* Signed modulo arithmetic.  */
12760 #define SARITH16(a, b, n, op) do { \
12761     int32_t sum; \
12762     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12763     RESULT(sum, n, 16); \
12764     if (sum >= 0) \
12765         ge |= 3 << (n * 2); \
12766     } while(0)
12767 
12768 #define SARITH8(a, b, n, op) do { \
12769     int32_t sum; \
12770     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12771     RESULT(sum, n, 8); \
12772     if (sum >= 0) \
12773         ge |= 1 << n; \
12774     } while(0)
12775 
12776 
12777 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12778 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12779 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12780 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12781 #define PFX s
12782 #define ARITH_GE
12783 
12784 #include "op_addsub.h"
12785 
12786 /* Unsigned modulo arithmetic.  */
12787 #define ADD16(a, b, n) do { \
12788     uint32_t sum; \
12789     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12790     RESULT(sum, n, 16); \
12791     if ((sum >> 16) == 1) \
12792         ge |= 3 << (n * 2); \
12793     } while(0)
12794 
12795 #define ADD8(a, b, n) do { \
12796     uint32_t sum; \
12797     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12798     RESULT(sum, n, 8); \
12799     if ((sum >> 8) == 1) \
12800         ge |= 1 << n; \
12801     } while(0)
12802 
12803 #define SUB16(a, b, n) do { \
12804     uint32_t sum; \
12805     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12806     RESULT(sum, n, 16); \
12807     if ((sum >> 16) == 0) \
12808         ge |= 3 << (n * 2); \
12809     } while(0)
12810 
12811 #define SUB8(a, b, n) do { \
12812     uint32_t sum; \
12813     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12814     RESULT(sum, n, 8); \
12815     if ((sum >> 8) == 0) \
12816         ge |= 1 << n; \
12817     } while(0)
12818 
12819 #define PFX u
12820 #define ARITH_GE
12821 
12822 #include "op_addsub.h"
12823 
12824 /* Halved signed arithmetic.  */
12825 #define ADD16(a, b, n) \
12826   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12827 #define SUB16(a, b, n) \
12828   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12829 #define ADD8(a, b, n) \
12830   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12831 #define SUB8(a, b, n) \
12832   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12833 #define PFX sh
12834 
12835 #include "op_addsub.h"
12836 
12837 /* Halved unsigned arithmetic.  */
12838 #define ADD16(a, b, n) \
12839   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12840 #define SUB16(a, b, n) \
12841   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12842 #define ADD8(a, b, n) \
12843   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12844 #define SUB8(a, b, n) \
12845   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12846 #define PFX uh
12847 
12848 #include "op_addsub.h"
12849 
12850 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12851 {
12852     if (a > b)
12853         return a - b;
12854     else
12855         return b - a;
12856 }
12857 
12858 /* Unsigned sum of absolute byte differences.  */
12859 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12860 {
12861     uint32_t sum;
12862     sum = do_usad(a, b);
12863     sum += do_usad(a >> 8, b >> 8);
12864     sum += do_usad(a >> 16, b >> 16);
12865     sum += do_usad(a >> 24, b >> 24);
12866     return sum;
12867 }
12868 
12869 /* For ARMv6 SEL instruction.  */
12870 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12871 {
12872     uint32_t mask;
12873 
12874     mask = 0;
12875     if (flags & 1)
12876         mask |= 0xff;
12877     if (flags & 2)
12878         mask |= 0xff00;
12879     if (flags & 4)
12880         mask |= 0xff0000;
12881     if (flags & 8)
12882         mask |= 0xff000000;
12883     return (a & mask) | (b & ~mask);
12884 }
12885 
12886 /* CRC helpers.
12887  * The upper bytes of val (above the number specified by 'bytes') must have
12888  * been zeroed out by the caller.
12889  */
12890 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12891 {
12892     uint8_t buf[4];
12893 
12894     stl_le_p(buf, val);
12895 
12896     /* zlib crc32 converts the accumulator and output to one's complement.  */
12897     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12898 }
12899 
12900 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12901 {
12902     uint8_t buf[4];
12903 
12904     stl_le_p(buf, val);
12905 
12906     /* Linux crc32c converts the output to one's complement.  */
12907     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12908 }
12909 
12910 /* Return the exception level to which FP-disabled exceptions should
12911  * be taken, or 0 if FP is enabled.
12912  */
12913 int fp_exception_el(CPUARMState *env, int cur_el)
12914 {
12915 #ifndef CONFIG_USER_ONLY
12916     /* CPACR and the CPTR registers don't exist before v6, so FP is
12917      * always accessible
12918      */
12919     if (!arm_feature(env, ARM_FEATURE_V6)) {
12920         return 0;
12921     }
12922 
12923     if (arm_feature(env, ARM_FEATURE_M)) {
12924         /* CPACR can cause a NOCP UsageFault taken to current security state */
12925         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12926             return 1;
12927         }
12928 
12929         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12930             if (!extract32(env->v7m.nsacr, 10, 1)) {
12931                 /* FP insns cause a NOCP UsageFault taken to Secure */
12932                 return 3;
12933             }
12934         }
12935 
12936         return 0;
12937     }
12938 
12939     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12940      * 0, 2 : trap EL0 and EL1/PL1 accesses
12941      * 1    : trap only EL0 accesses
12942      * 3    : trap no accesses
12943      * This register is ignored if E2H+TGE are both set.
12944      */
12945     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12946         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12947 
12948         switch (fpen) {
12949         case 0:
12950         case 2:
12951             if (cur_el == 0 || cur_el == 1) {
12952                 /* Trap to PL1, which might be EL1 or EL3 */
12953                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12954                     return 3;
12955                 }
12956                 return 1;
12957             }
12958             if (cur_el == 3 && !is_a64(env)) {
12959                 /* Secure PL1 running at EL3 */
12960                 return 3;
12961             }
12962             break;
12963         case 1:
12964             if (cur_el == 0) {
12965                 return 1;
12966             }
12967             break;
12968         case 3:
12969             break;
12970         }
12971     }
12972 
12973     /*
12974      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12975      * to control non-secure access to the FPU. It doesn't have any
12976      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12977      */
12978     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12979          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12980         if (!extract32(env->cp15.nsacr, 10, 1)) {
12981             /* FP insns act as UNDEF */
12982             return cur_el == 2 ? 2 : 1;
12983         }
12984     }
12985 
12986     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12987      * check because zero bits in the registers mean "don't trap".
12988      */
12989 
12990     /* CPTR_EL2 : present in v7VE or v8 */
12991     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12992         && arm_is_el2_enabled(env)) {
12993         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12994         return 2;
12995     }
12996 
12997     /* CPTR_EL3 : present in v8 */
12998     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12999         /* Trap all FP ops to EL3 */
13000         return 3;
13001     }
13002 #endif
13003     return 0;
13004 }
13005 
13006 /* Return the exception level we're running at if this is our mmu_idx */
13007 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
13008 {
13009     if (mmu_idx & ARM_MMU_IDX_M) {
13010         return mmu_idx & ARM_MMU_IDX_M_PRIV;
13011     }
13012 
13013     switch (mmu_idx) {
13014     case ARMMMUIdx_E10_0:
13015     case ARMMMUIdx_E20_0:
13016     case ARMMMUIdx_SE10_0:
13017     case ARMMMUIdx_SE20_0:
13018         return 0;
13019     case ARMMMUIdx_E10_1:
13020     case ARMMMUIdx_E10_1_PAN:
13021     case ARMMMUIdx_SE10_1:
13022     case ARMMMUIdx_SE10_1_PAN:
13023         return 1;
13024     case ARMMMUIdx_E2:
13025     case ARMMMUIdx_E20_2:
13026     case ARMMMUIdx_E20_2_PAN:
13027     case ARMMMUIdx_SE2:
13028     case ARMMMUIdx_SE20_2:
13029     case ARMMMUIdx_SE20_2_PAN:
13030         return 2;
13031     case ARMMMUIdx_SE3:
13032         return 3;
13033     default:
13034         g_assert_not_reached();
13035     }
13036 }
13037 
13038 #ifndef CONFIG_TCG
13039 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13040 {
13041     g_assert_not_reached();
13042 }
13043 #endif
13044 
13045 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
13046 {
13047     ARMMMUIdx idx;
13048     uint64_t hcr;
13049 
13050     if (arm_feature(env, ARM_FEATURE_M)) {
13051         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13052     }
13053 
13054     /* See ARM pseudo-function ELIsInHost.  */
13055     switch (el) {
13056     case 0:
13057         hcr = arm_hcr_el2_eff(env);
13058         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
13059             idx = ARMMMUIdx_E20_0;
13060         } else {
13061             idx = ARMMMUIdx_E10_0;
13062         }
13063         break;
13064     case 1:
13065         if (env->pstate & PSTATE_PAN) {
13066             idx = ARMMMUIdx_E10_1_PAN;
13067         } else {
13068             idx = ARMMMUIdx_E10_1;
13069         }
13070         break;
13071     case 2:
13072         /* Note that TGE does not apply at EL2.  */
13073         if (arm_hcr_el2_eff(env) & HCR_E2H) {
13074             if (env->pstate & PSTATE_PAN) {
13075                 idx = ARMMMUIdx_E20_2_PAN;
13076             } else {
13077                 idx = ARMMMUIdx_E20_2;
13078             }
13079         } else {
13080             idx = ARMMMUIdx_E2;
13081         }
13082         break;
13083     case 3:
13084         return ARMMMUIdx_SE3;
13085     default:
13086         g_assert_not_reached();
13087     }
13088 
13089     if (arm_is_secure_below_el3(env)) {
13090         idx &= ~ARM_MMU_IDX_A_NS;
13091     }
13092 
13093     return idx;
13094 }
13095 
13096 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13097 {
13098     return arm_mmu_idx_el(env, arm_current_el(env));
13099 }
13100 
13101 #ifndef CONFIG_USER_ONLY
13102 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13103 {
13104     return stage_1_mmu_idx(arm_mmu_idx(env));
13105 }
13106 #endif
13107 
13108 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
13109                                            ARMMMUIdx mmu_idx,
13110                                            CPUARMTBFlags flags)
13111 {
13112     DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
13113     DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13114 
13115     if (arm_singlestep_active(env)) {
13116         DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
13117     }
13118     return flags;
13119 }
13120 
13121 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
13122                                               ARMMMUIdx mmu_idx,
13123                                               CPUARMTBFlags flags)
13124 {
13125     bool sctlr_b = arm_sctlr_b(env);
13126 
13127     if (sctlr_b) {
13128         DP_TBFLAG_A32(flags, SCTLR__B, 1);
13129     }
13130     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
13131         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13132     }
13133     DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
13134 
13135     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13136 }
13137 
13138 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
13139                                         ARMMMUIdx mmu_idx)
13140 {
13141     CPUARMTBFlags flags = {};
13142     uint32_t ccr = env->v7m.ccr[env->v7m.secure];
13143 
13144     /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
13145     if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
13146         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13147     }
13148 
13149     if (arm_v7m_is_handler_mode(env)) {
13150         DP_TBFLAG_M32(flags, HANDLER, 1);
13151     }
13152 
13153     /*
13154      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
13155      * is suppressing them because the requested execution priority
13156      * is less than 0.
13157      */
13158     if (arm_feature(env, ARM_FEATURE_V8) &&
13159         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
13160           (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
13161         DP_TBFLAG_M32(flags, STACKCHECK, 1);
13162     }
13163 
13164     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13165 }
13166 
13167 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env)
13168 {
13169     CPUARMTBFlags flags = {};
13170 
13171     DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env));
13172     return flags;
13173 }
13174 
13175 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
13176                                         ARMMMUIdx mmu_idx)
13177 {
13178     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13179     int el = arm_current_el(env);
13180 
13181     if (arm_sctlr(env, el) & SCTLR_A) {
13182         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13183     }
13184 
13185     if (arm_el_is_aa64(env, 1)) {
13186         DP_TBFLAG_A32(flags, VFPEN, 1);
13187     }
13188 
13189     if (el < 2 && env->cp15.hstr_el2 &&
13190         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
13191         DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
13192     }
13193 
13194     if (env->uncached_cpsr & CPSR_IL) {
13195         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13196     }
13197 
13198     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
13199 }
13200 
13201 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
13202                                         ARMMMUIdx mmu_idx)
13203 {
13204     CPUARMTBFlags flags = rebuild_hflags_aprofile(env);
13205     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13206     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
13207     uint64_t sctlr;
13208     int tbii, tbid;
13209 
13210     DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
13211 
13212     /* Get control bits for tagged addresses.  */
13213     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
13214     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
13215 
13216     DP_TBFLAG_A64(flags, TBII, tbii);
13217     DP_TBFLAG_A64(flags, TBID, tbid);
13218 
13219     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
13220         int sve_el = sve_exception_el(env, el);
13221         uint32_t zcr_len;
13222 
13223         /*
13224          * If SVE is disabled, but FP is enabled,
13225          * then the effective len is 0.
13226          */
13227         if (sve_el != 0 && fp_el == 0) {
13228             zcr_len = 0;
13229         } else {
13230             zcr_len = sve_zcr_len_for_el(env, el);
13231         }
13232         DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
13233         DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len);
13234     }
13235 
13236     sctlr = regime_sctlr(env, stage1);
13237 
13238     if (sctlr & SCTLR_A) {
13239         DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
13240     }
13241 
13242     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
13243         DP_TBFLAG_ANY(flags, BE_DATA, 1);
13244     }
13245 
13246     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
13247         /*
13248          * In order to save space in flags, we record only whether
13249          * pauth is "inactive", meaning all insns are implemented as
13250          * a nop, or "active" when some action must be performed.
13251          * The decision of which action to take is left to a helper.
13252          */
13253         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13254             DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
13255         }
13256     }
13257 
13258     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13259         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13260         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13261             DP_TBFLAG_A64(flags, BT, 1);
13262         }
13263     }
13264 
13265     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
13266     if (!(env->pstate & PSTATE_UAO)) {
13267         switch (mmu_idx) {
13268         case ARMMMUIdx_E10_1:
13269         case ARMMMUIdx_E10_1_PAN:
13270         case ARMMMUIdx_SE10_1:
13271         case ARMMMUIdx_SE10_1_PAN:
13272             /* TODO: ARMv8.3-NV */
13273             DP_TBFLAG_A64(flags, UNPRIV, 1);
13274             break;
13275         case ARMMMUIdx_E20_2:
13276         case ARMMMUIdx_E20_2_PAN:
13277         case ARMMMUIdx_SE20_2:
13278         case ARMMMUIdx_SE20_2_PAN:
13279             /*
13280              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
13281              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
13282              */
13283             if (env->cp15.hcr_el2 & HCR_TGE) {
13284                 DP_TBFLAG_A64(flags, UNPRIV, 1);
13285             }
13286             break;
13287         default:
13288             break;
13289         }
13290     }
13291 
13292     if (env->pstate & PSTATE_IL) {
13293         DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
13294     }
13295 
13296     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
13297         /*
13298          * Set MTE_ACTIVE if any access may be Checked, and leave clear
13299          * if all accesses must be Unchecked:
13300          * 1) If no TBI, then there are no tags in the address to check,
13301          * 2) If Tag Check Override, then all accesses are Unchecked,
13302          * 3) If Tag Check Fail == 0, then Checked access have no effect,
13303          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
13304          */
13305         if (allocation_tag_access_enabled(env, el, sctlr)) {
13306             DP_TBFLAG_A64(flags, ATA, 1);
13307             if (tbid
13308                 && !(env->pstate & PSTATE_TCO)
13309                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
13310                 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
13311             }
13312         }
13313         /* And again for unprivileged accesses, if required.  */
13314         if (EX_TBFLAG_A64(flags, UNPRIV)
13315             && tbid
13316             && !(env->pstate & PSTATE_TCO)
13317             && (sctlr & SCTLR_TCF0)
13318             && allocation_tag_access_enabled(env, 0, sctlr)) {
13319             DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
13320         }
13321         /* Cache TCMA as well as TBI. */
13322         DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
13323     }
13324 
13325     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
13326 }
13327 
13328 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
13329 {
13330     int el = arm_current_el(env);
13331     int fp_el = fp_exception_el(env, el);
13332     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13333 
13334     if (is_a64(env)) {
13335         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13336     } else if (arm_feature(env, ARM_FEATURE_M)) {
13337         return rebuild_hflags_m32(env, fp_el, mmu_idx);
13338     } else {
13339         return rebuild_hflags_a32(env, fp_el, mmu_idx);
13340     }
13341 }
13342 
13343 void arm_rebuild_hflags(CPUARMState *env)
13344 {
13345     env->hflags = rebuild_hflags_internal(env);
13346 }
13347 
13348 /*
13349  * If we have triggered a EL state change we can't rely on the
13350  * translator having passed it to us, we need to recompute.
13351  */
13352 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
13353 {
13354     int el = arm_current_el(env);
13355     int fp_el = fp_exception_el(env, el);
13356     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13357 
13358     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13359 }
13360 
13361 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
13362 {
13363     int fp_el = fp_exception_el(env, el);
13364     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13365 
13366     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
13367 }
13368 
13369 /*
13370  * If we have triggered a EL state change we can't rely on the
13371  * translator having passed it to us, we need to recompute.
13372  */
13373 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
13374 {
13375     int el = arm_current_el(env);
13376     int fp_el = fp_exception_el(env, el);
13377     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13378     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13379 }
13380 
13381 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
13382 {
13383     int fp_el = fp_exception_el(env, el);
13384     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13385 
13386     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13387 }
13388 
13389 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13390 {
13391     int fp_el = fp_exception_el(env, el);
13392     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13393 
13394     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13395 }
13396 
13397 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13398 {
13399 #ifdef CONFIG_DEBUG_TCG
13400     CPUARMTBFlags c = env->hflags;
13401     CPUARMTBFlags r = rebuild_hflags_internal(env);
13402 
13403     if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
13404         fprintf(stderr, "TCG hflags mismatch "
13405                         "(current:(0x%08x,0x" TARGET_FMT_lx ")"
13406                         " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
13407                 c.flags, c.flags2, r.flags, r.flags2);
13408         abort();
13409     }
13410 #endif
13411 }
13412 
13413 static bool mve_no_pred(CPUARMState *env)
13414 {
13415     /*
13416      * Return true if there is definitely no predication of MVE
13417      * instructions by VPR or LTPSIZE. (Returning false even if there
13418      * isn't any predication is OK; generated code will just be
13419      * a little worse.)
13420      * If the CPU does not implement MVE then this TB flag is always 0.
13421      *
13422      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
13423      * logic in gen_update_fp_context() needs to be updated to match.
13424      *
13425      * We do not include the effect of the ECI bits here -- they are
13426      * tracked in other TB flags. This simplifies the logic for
13427      * "when did we emit code that changes the MVE_NO_PRED TB flag
13428      * and thus need to end the TB?".
13429      */
13430     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
13431         return false;
13432     }
13433     if (env->v7m.vpr) {
13434         return false;
13435     }
13436     if (env->v7m.ltpsize < 4) {
13437         return false;
13438     }
13439     return true;
13440 }
13441 
13442 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13443                           target_ulong *cs_base, uint32_t *pflags)
13444 {
13445     CPUARMTBFlags flags;
13446 
13447     assert_hflags_rebuild_correctly(env);
13448     flags = env->hflags;
13449 
13450     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
13451         *pc = env->pc;
13452         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13453             DP_TBFLAG_A64(flags, BTYPE, env->btype);
13454         }
13455     } else {
13456         *pc = env->regs[15];
13457 
13458         if (arm_feature(env, ARM_FEATURE_M)) {
13459             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13460                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13461                 != env->v7m.secure) {
13462                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
13463             }
13464 
13465             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13466                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13467                  (env->v7m.secure &&
13468                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13469                 /*
13470                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13471                  * active FP context; we must create a new FP context before
13472                  * executing any FP insn.
13473                  */
13474                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
13475             }
13476 
13477             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13478             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13479                 DP_TBFLAG_M32(flags, LSPACT, 1);
13480             }
13481 
13482             if (mve_no_pred(env)) {
13483                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
13484             }
13485         } else {
13486             /*
13487              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13488              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13489              */
13490             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13491                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
13492             } else {
13493                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
13494                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
13495             }
13496             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13497                 DP_TBFLAG_A32(flags, VFPEN, 1);
13498             }
13499         }
13500 
13501         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
13502         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
13503     }
13504 
13505     /*
13506      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13507      * states defined in the ARM ARM for software singlestep:
13508      *  SS_ACTIVE   PSTATE.SS   State
13509      *     0            x       Inactive (the TB flag for SS is always 0)
13510      *     1            0       Active-pending
13511      *     1            1       Active-not-pending
13512      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
13513      */
13514     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
13515         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
13516     }
13517 
13518     *pflags = flags.flags;
13519     *cs_base = flags.flags2;
13520 }
13521 
13522 #ifdef TARGET_AARCH64
13523 /*
13524  * The manual says that when SVE is enabled and VQ is widened the
13525  * implementation is allowed to zero the previously inaccessible
13526  * portion of the registers.  The corollary to that is that when
13527  * SVE is enabled and VQ is narrowed we are also allowed to zero
13528  * the now inaccessible portion of the registers.
13529  *
13530  * The intent of this is that no predicate bit beyond VQ is ever set.
13531  * Which means that some operations on predicate registers themselves
13532  * may operate on full uint64_t or even unrolled across the maximum
13533  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13534  * may well be cheaper than conditionals to restrict the operation
13535  * to the relevant portion of a uint16_t[16].
13536  */
13537 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13538 {
13539     int i, j;
13540     uint64_t pmask;
13541 
13542     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13543     assert(vq <= env_archcpu(env)->sve_max_vq);
13544 
13545     /* Zap the high bits of the zregs.  */
13546     for (i = 0; i < 32; i++) {
13547         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13548     }
13549 
13550     /* Zap the high bits of the pregs and ffr.  */
13551     pmask = 0;
13552     if (vq & 3) {
13553         pmask = ~(-1ULL << (16 * (vq & 3)));
13554     }
13555     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13556         for (i = 0; i < 17; ++i) {
13557             env->vfp.pregs[i].p[j] &= pmask;
13558         }
13559         pmask = 0;
13560     }
13561 }
13562 
13563 /*
13564  * Notice a change in SVE vector size when changing EL.
13565  */
13566 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13567                            int new_el, bool el0_a64)
13568 {
13569     ARMCPU *cpu = env_archcpu(env);
13570     int old_len, new_len;
13571     bool old_a64, new_a64;
13572 
13573     /* Nothing to do if no SVE.  */
13574     if (!cpu_isar_feature(aa64_sve, cpu)) {
13575         return;
13576     }
13577 
13578     /* Nothing to do if FP is disabled in either EL.  */
13579     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13580         return;
13581     }
13582 
13583     /*
13584      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13585      * at ELx, or not available because the EL is in AArch32 state, then
13586      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13587      * has an effective value of 0".
13588      *
13589      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13590      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13591      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13592      * we already have the correct register contents when encountering the
13593      * vq0->vq0 transition between EL0->EL1.
13594      */
13595     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13596     old_len = (old_a64 && !sve_exception_el(env, old_el)
13597                ? sve_zcr_len_for_el(env, old_el) : 0);
13598     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13599     new_len = (new_a64 && !sve_exception_el(env, new_el)
13600                ? sve_zcr_len_for_el(env, new_el) : 0);
13601 
13602     /* When changing vector length, clear inaccessible state.  */
13603     if (new_len < old_len) {
13604         aarch64_sve_narrow_vq(env, new_len + 1);
13605     }
13606 }
13607 #endif
13608