xref: /qemu/target/arm/helper.c (revision ebda3036)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "exec/helper-proto.h"
15 #include "qemu/main-loop.h"
16 #include "qemu/timer.h"
17 #include "qemu/bitops.h"
18 #include "qemu/crc32c.h"
19 #include "qemu/qemu-print.h"
20 #include "exec/exec-all.h"
21 #include <zlib.h> /* For crc32 */
22 #include "hw/irq.h"
23 #include "sysemu/cpu-timers.h"
24 #include "sysemu/kvm.h"
25 #include "sysemu/tcg.h"
26 #include "qapi/error.h"
27 #include "qemu/guest-random.h"
28 #ifdef CONFIG_TCG
29 #include "semihosting/common-semi.h"
30 #endif
31 #include "cpregs.h"
32 
33 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
34 
35 static void switch_mode(CPUARMState *env, int mode);
36 
37 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
38 {
39     assert(ri->fieldoffset);
40     if (cpreg_field_is_64bit(ri)) {
41         return CPREG_FIELD64(env, ri);
42     } else {
43         return CPREG_FIELD32(env, ri);
44     }
45 }
46 
47 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
48 {
49     assert(ri->fieldoffset);
50     if (cpreg_field_is_64bit(ri)) {
51         CPREG_FIELD64(env, ri) = value;
52     } else {
53         CPREG_FIELD32(env, ri) = value;
54     }
55 }
56 
57 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
58 {
59     return (char *)env + ri->fieldoffset;
60 }
61 
62 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
63 {
64     /* Raw read of a coprocessor register (as needed for migration, etc). */
65     if (ri->type & ARM_CP_CONST) {
66         return ri->resetvalue;
67     } else if (ri->raw_readfn) {
68         return ri->raw_readfn(env, ri);
69     } else if (ri->readfn) {
70         return ri->readfn(env, ri);
71     } else {
72         return raw_read(env, ri);
73     }
74 }
75 
76 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
77                              uint64_t v)
78 {
79     /*
80      * Raw write of a coprocessor register (as needed for migration, etc).
81      * Note that constant registers are treated as write-ignored; the
82      * caller should check for success by whether a readback gives the
83      * value written.
84      */
85     if (ri->type & ARM_CP_CONST) {
86         return;
87     } else if (ri->raw_writefn) {
88         ri->raw_writefn(env, ri, v);
89     } else if (ri->writefn) {
90         ri->writefn(env, ri, v);
91     } else {
92         raw_write(env, ri, v);
93     }
94 }
95 
96 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
97 {
98    /*
99     * Return true if the regdef would cause an assertion if you called
100     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
101     * program bug for it not to have the NO_RAW flag).
102     * NB that returning false here doesn't necessarily mean that calling
103     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
104     * read/write access functions which are safe for raw use" from "has
105     * read/write access functions which have side effects but has forgotten
106     * to provide raw access functions".
107     * The tests here line up with the conditions in read/write_raw_cp_reg()
108     * and assertions in raw_read()/raw_write().
109     */
110     if ((ri->type & ARM_CP_CONST) ||
111         ri->fieldoffset ||
112         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
113         return false;
114     }
115     return true;
116 }
117 
118 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
119 {
120     /* Write the coprocessor state from cpu->env to the (index,value) list. */
121     int i;
122     bool ok = true;
123 
124     for (i = 0; i < cpu->cpreg_array_len; i++) {
125         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
126         const ARMCPRegInfo *ri;
127         uint64_t newval;
128 
129         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
130         if (!ri) {
131             ok = false;
132             continue;
133         }
134         if (ri->type & ARM_CP_NO_RAW) {
135             continue;
136         }
137 
138         newval = read_raw_cp_reg(&cpu->env, ri);
139         if (kvm_sync) {
140             /*
141              * Only sync if the previous list->cpustate sync succeeded.
142              * Rather than tracking the success/failure state for every
143              * item in the list, we just recheck "does the raw write we must
144              * have made in write_list_to_cpustate() read back OK" here.
145              */
146             uint64_t oldval = cpu->cpreg_values[i];
147 
148             if (oldval == newval) {
149                 continue;
150             }
151 
152             write_raw_cp_reg(&cpu->env, ri, oldval);
153             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
154                 continue;
155             }
156 
157             write_raw_cp_reg(&cpu->env, ri, newval);
158         }
159         cpu->cpreg_values[i] = newval;
160     }
161     return ok;
162 }
163 
164 bool write_list_to_cpustate(ARMCPU *cpu)
165 {
166     int i;
167     bool ok = true;
168 
169     for (i = 0; i < cpu->cpreg_array_len; i++) {
170         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
171         uint64_t v = cpu->cpreg_values[i];
172         const ARMCPRegInfo *ri;
173 
174         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
175         if (!ri) {
176             ok = false;
177             continue;
178         }
179         if (ri->type & ARM_CP_NO_RAW) {
180             continue;
181         }
182         /*
183          * Write value and confirm it reads back as written
184          * (to catch read-only registers and partially read-only
185          * registers where the incoming migration value doesn't match)
186          */
187         write_raw_cp_reg(&cpu->env, ri, v);
188         if (read_raw_cp_reg(&cpu->env, ri) != v) {
189             ok = false;
190         }
191     }
192     return ok;
193 }
194 
195 static void add_cpreg_to_list(gpointer key, gpointer opaque)
196 {
197     ARMCPU *cpu = opaque;
198     uint32_t regidx = (uintptr_t)key;
199     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 
201     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
202         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
203         /* The value array need not be initialized at this point */
204         cpu->cpreg_array_len++;
205     }
206 }
207 
208 static void count_cpreg(gpointer key, gpointer opaque)
209 {
210     ARMCPU *cpu = opaque;
211     const ARMCPRegInfo *ri;
212 
213     ri = g_hash_table_lookup(cpu->cp_regs, key);
214 
215     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
216         cpu->cpreg_array_len++;
217     }
218 }
219 
220 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
221 {
222     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
223     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
224 
225     if (aidx > bidx) {
226         return 1;
227     }
228     if (aidx < bidx) {
229         return -1;
230     }
231     return 0;
232 }
233 
234 void init_cpreg_list(ARMCPU *cpu)
235 {
236     /*
237      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
238      * Note that we require cpreg_tuples[] to be sorted by key ID.
239      */
240     GList *keys;
241     int arraylen;
242 
243     keys = g_hash_table_get_keys(cpu->cp_regs);
244     keys = g_list_sort(keys, cpreg_key_compare);
245 
246     cpu->cpreg_array_len = 0;
247 
248     g_list_foreach(keys, count_cpreg, cpu);
249 
250     arraylen = cpu->cpreg_array_len;
251     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
252     cpu->cpreg_values = g_new(uint64_t, arraylen);
253     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
256     cpu->cpreg_array_len = 0;
257 
258     g_list_foreach(keys, add_cpreg_to_list, cpu);
259 
260     assert(cpu->cpreg_array_len == arraylen);
261 
262     g_list_free(keys);
263 }
264 
265 /*
266  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
267  */
268 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
269                                         const ARMCPRegInfo *ri,
270                                         bool isread)
271 {
272     if (!is_a64(env) && arm_current_el(env) == 3 &&
273         arm_is_secure_below_el3(env)) {
274         return CP_ACCESS_TRAP_UNCATEGORIZED;
275     }
276     return CP_ACCESS_OK;
277 }
278 
279 /*
280  * Some secure-only AArch32 registers trap to EL3 if used from
281  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
282  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
283  * We assume that the .access field is set to PL1_RW.
284  */
285 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
286                                             const ARMCPRegInfo *ri,
287                                             bool isread)
288 {
289     if (arm_current_el(env) == 3) {
290         return CP_ACCESS_OK;
291     }
292     if (arm_is_secure_below_el3(env)) {
293         if (env->cp15.scr_el3 & SCR_EEL2) {
294             return CP_ACCESS_TRAP_EL2;
295         }
296         return CP_ACCESS_TRAP_EL3;
297     }
298     /* This will be EL1 NS and EL2 NS, which just UNDEF */
299     return CP_ACCESS_TRAP_UNCATEGORIZED;
300 }
301 
302 /*
303  * Check for traps to performance monitor registers, which are controlled
304  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
305  */
306 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
307                                  bool isread)
308 {
309     int el = arm_current_el(env);
310     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
311 
312     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
313         return CP_ACCESS_TRAP_EL2;
314     }
315     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
316         return CP_ACCESS_TRAP_EL3;
317     }
318     return CP_ACCESS_OK;
319 }
320 
321 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
322 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
323                                       bool isread)
324 {
325     if (arm_current_el(env) == 1) {
326         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
327         if (arm_hcr_el2_eff(env) & trap) {
328             return CP_ACCESS_TRAP_EL2;
329         }
330     }
331     return CP_ACCESS_OK;
332 }
333 
334 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
335 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
336                                  bool isread)
337 {
338     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
339         return CP_ACCESS_TRAP_EL2;
340     }
341     return CP_ACCESS_OK;
342 }
343 
344 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
345 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
346                                   bool isread)
347 {
348     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
349         return CP_ACCESS_TRAP_EL2;
350     }
351     return CP_ACCESS_OK;
352 }
353 
354 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
355 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
356                                   bool isread)
357 {
358     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
359         return CP_ACCESS_TRAP_EL2;
360     }
361     return CP_ACCESS_OK;
362 }
363 
364 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
365 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
366                                     bool isread)
367 {
368     if (arm_current_el(env) == 1 &&
369         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
370         return CP_ACCESS_TRAP_EL2;
371     }
372     return CP_ACCESS_OK;
373 }
374 
375 #ifdef TARGET_AARCH64
376 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
377 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
378                                     bool isread)
379 {
380     if (arm_current_el(env) == 1 &&
381         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
382         return CP_ACCESS_TRAP_EL2;
383     }
384     return CP_ACCESS_OK;
385 }
386 #endif
387 
388 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
389 {
390     ARMCPU *cpu = env_archcpu(env);
391 
392     raw_write(env, ri, value);
393     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
394 }
395 
396 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
397 {
398     ARMCPU *cpu = env_archcpu(env);
399 
400     if (raw_read(env, ri) != value) {
401         /*
402          * Unlike real hardware the qemu TLB uses virtual addresses,
403          * not modified virtual addresses, so this causes a TLB flush.
404          */
405         tlb_flush(CPU(cpu));
406         raw_write(env, ri, value);
407     }
408 }
409 
410 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
411                              uint64_t value)
412 {
413     ARMCPU *cpu = env_archcpu(env);
414 
415     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
416         && !extended_addresses_enabled(env)) {
417         /*
418          * For VMSA (when not using the LPAE long descriptor page table
419          * format) this register includes the ASID, so do a TLB flush.
420          * For PMSA it is purely a process ID and no action is needed.
421          */
422         tlb_flush(CPU(cpu));
423     }
424     raw_write(env, ri, value);
425 }
426 
427 static int alle1_tlbmask(CPUARMState *env)
428 {
429     /*
430      * Note that the 'ALL' scope must invalidate both stage 1 and
431      * stage 2 translations, whereas most other scopes only invalidate
432      * stage 1 translations.
433      */
434     return (ARMMMUIdxBit_E10_1 |
435             ARMMMUIdxBit_E10_1_PAN |
436             ARMMMUIdxBit_E10_0 |
437             ARMMMUIdxBit_Stage2 |
438             ARMMMUIdxBit_Stage2_S);
439 }
440 
441 
442 /* IS variants of TLB operations must affect all cores */
443 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                              uint64_t value)
445 {
446     CPUState *cs = env_cpu(env);
447 
448     tlb_flush_all_cpus_synced(cs);
449 }
450 
451 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
452                              uint64_t value)
453 {
454     CPUState *cs = env_cpu(env);
455 
456     tlb_flush_all_cpus_synced(cs);
457 }
458 
459 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
460                              uint64_t value)
461 {
462     CPUState *cs = env_cpu(env);
463 
464     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
465 }
466 
467 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
468                              uint64_t value)
469 {
470     CPUState *cs = env_cpu(env);
471 
472     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
473 }
474 
475 /*
476  * Non-IS variants of TLB operations are upgraded to
477  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
478  * force broadcast of these operations.
479  */
480 static bool tlb_force_broadcast(CPUARMState *env)
481 {
482     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
483 }
484 
485 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
486                           uint64_t value)
487 {
488     /* Invalidate all (TLBIALL) */
489     CPUState *cs = env_cpu(env);
490 
491     if (tlb_force_broadcast(env)) {
492         tlb_flush_all_cpus_synced(cs);
493     } else {
494         tlb_flush(cs);
495     }
496 }
497 
498 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
499                           uint64_t value)
500 {
501     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
502     CPUState *cs = env_cpu(env);
503 
504     value &= TARGET_PAGE_MASK;
505     if (tlb_force_broadcast(env)) {
506         tlb_flush_page_all_cpus_synced(cs, value);
507     } else {
508         tlb_flush_page(cs, value);
509     }
510 }
511 
512 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
513                            uint64_t value)
514 {
515     /* Invalidate by ASID (TLBIASID) */
516     CPUState *cs = env_cpu(env);
517 
518     if (tlb_force_broadcast(env)) {
519         tlb_flush_all_cpus_synced(cs);
520     } else {
521         tlb_flush(cs);
522     }
523 }
524 
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526                            uint64_t value)
527 {
528     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529     CPUState *cs = env_cpu(env);
530 
531     value &= TARGET_PAGE_MASK;
532     if (tlb_force_broadcast(env)) {
533         tlb_flush_page_all_cpus_synced(cs, value);
534     } else {
535         tlb_flush_page(cs, value);
536     }
537 }
538 
539 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                                uint64_t value)
541 {
542     CPUState *cs = env_cpu(env);
543 
544     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
545 }
546 
547 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                                   uint64_t value)
549 {
550     CPUState *cs = env_cpu(env);
551 
552     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
553 }
554 
555 
556 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                               uint64_t value)
558 {
559     CPUState *cs = env_cpu(env);
560 
561     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
562 }
563 
564 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                                  uint64_t value)
566 {
567     CPUState *cs = env_cpu(env);
568 
569     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
570 }
571 
572 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                               uint64_t value)
574 {
575     CPUState *cs = env_cpu(env);
576     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
577 
578     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
579 }
580 
581 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                  uint64_t value)
583 {
584     CPUState *cs = env_cpu(env);
585     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
586 
587     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
588                                              ARMMMUIdxBit_E2);
589 }
590 
591 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                 uint64_t value)
593 {
594     CPUState *cs = env_cpu(env);
595     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
596 
597     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
598 }
599 
600 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                                 uint64_t value)
602 {
603     CPUState *cs = env_cpu(env);
604     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
605 
606     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
607 }
608 
609 static const ARMCPRegInfo cp_reginfo[] = {
610     /*
611      * Define the secure and non-secure FCSE identifier CP registers
612      * separately because there is no secure bank in V8 (no _EL3).  This allows
613      * the secure register to be properly reset and migrated. There is also no
614      * v8 EL1 version of the register so the non-secure instance stands alone.
615      */
616     { .name = "FCSEIDR",
617       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
618       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
619       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
620       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
621     { .name = "FCSEIDR_S",
622       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
623       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
624       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
625       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
626     /*
627      * Define the secure and non-secure context identifier CP registers
628      * separately because there is no secure bank in V8 (no _EL3).  This allows
629      * the secure register to be properly reset and migrated.  In the
630      * non-secure case, the 32-bit register will have reset and migration
631      * disabled during registration as it is handled by the 64-bit instance.
632      */
633     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
634       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
635       .access = PL1_RW, .accessfn = access_tvm_trvm,
636       .fgt = FGT_CONTEXTIDR_EL1,
637       .secure = ARM_CP_SECSTATE_NS,
638       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
639       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
640     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
641       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
642       .access = PL1_RW, .accessfn = access_tvm_trvm,
643       .secure = ARM_CP_SECSTATE_S,
644       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
645       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
646 };
647 
648 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
649     /*
650      * NB: Some of these registers exist in v8 but with more precise
651      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
652      */
653     /* MMU Domain access control / MPU write buffer control */
654     { .name = "DACR",
655       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
656       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
657       .writefn = dacr_write, .raw_writefn = raw_write,
658       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
659                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
660     /*
661      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
662      * For v6 and v5, these mappings are overly broad.
663      */
664     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
665       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
666     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
667       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
668     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
669       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
670     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
671       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
672     /* Cache maintenance ops; some of this space may be overridden later. */
673     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
674       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
675       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
676 };
677 
678 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
679     /*
680      * Not all pre-v6 cores implemented this WFI, so this is slightly
681      * over-broad.
682      */
683     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
684       .access = PL1_W, .type = ARM_CP_WFI },
685 };
686 
687 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
688     /*
689      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
690      * is UNPREDICTABLE; we choose to NOP as most implementations do).
691      */
692     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
693       .access = PL1_W, .type = ARM_CP_WFI },
694     /*
695      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
696      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
697      * OMAPCP will override this space.
698      */
699     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
700       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
701       .resetvalue = 0 },
702     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
703       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
704       .resetvalue = 0 },
705     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
706     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
707       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
708       .resetvalue = 0 },
709     /*
710      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
711      * implementing it as RAZ means the "debug architecture version" bits
712      * will read as a reserved value, which should cause Linux to not try
713      * to use the debug hardware.
714      */
715     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
716       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
717     /*
718      * MMU TLB control. Note that the wildcarding means we cover not just
719      * the unified TLB ops but also the dside/iside/inner-shareable variants.
720      */
721     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
722       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
723       .type = ARM_CP_NO_RAW },
724     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
725       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
726       .type = ARM_CP_NO_RAW },
727     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
728       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
729       .type = ARM_CP_NO_RAW },
730     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
731       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
732       .type = ARM_CP_NO_RAW },
733     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
734       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
736       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
737 };
738 
739 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
740                         uint64_t value)
741 {
742     uint32_t mask = 0;
743 
744     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
745     if (!arm_feature(env, ARM_FEATURE_V8)) {
746         /*
747          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
748          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
749          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
750          */
751         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
752             /* VFP coprocessor: cp10 & cp11 [23:20] */
753             mask |= R_CPACR_ASEDIS_MASK |
754                     R_CPACR_D32DIS_MASK |
755                     R_CPACR_CP11_MASK |
756                     R_CPACR_CP10_MASK;
757 
758             if (!arm_feature(env, ARM_FEATURE_NEON)) {
759                 /* ASEDIS [31] bit is RAO/WI */
760                 value |= R_CPACR_ASEDIS_MASK;
761             }
762 
763             /*
764              * VFPv3 and upwards with NEON implement 32 double precision
765              * registers (D0-D31).
766              */
767             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
768                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
769                 value |= R_CPACR_D32DIS_MASK;
770             }
771         }
772         value &= mask;
773     }
774 
775     /*
776      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
777      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
778      */
779     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
780         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
781         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
782         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
783     }
784 
785     env->cp15.cpacr_el1 = value;
786 }
787 
788 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
789 {
790     /*
791      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
792      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
793      */
794     uint64_t value = env->cp15.cpacr_el1;
795 
796     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
797         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
798         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
799     }
800     return value;
801 }
802 
803 
804 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
805 {
806     /*
807      * Call cpacr_write() so that we reset with the correct RAO bits set
808      * for our CPU features.
809      */
810     cpacr_write(env, ri, 0);
811 }
812 
813 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
814                                    bool isread)
815 {
816     if (arm_feature(env, ARM_FEATURE_V8)) {
817         /* Check if CPACR accesses are to be trapped to EL2 */
818         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
819             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
820             return CP_ACCESS_TRAP_EL2;
821         /* Check if CPACR accesses are to be trapped to EL3 */
822         } else if (arm_current_el(env) < 3 &&
823                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
824             return CP_ACCESS_TRAP_EL3;
825         }
826     }
827 
828     return CP_ACCESS_OK;
829 }
830 
831 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
832                                   bool isread)
833 {
834     /* Check if CPTR accesses are set to trap to EL3 */
835     if (arm_current_el(env) == 2 &&
836         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
837         return CP_ACCESS_TRAP_EL3;
838     }
839 
840     return CP_ACCESS_OK;
841 }
842 
843 static const ARMCPRegInfo v6_cp_reginfo[] = {
844     /* prefetch by MVA in v6, NOP in v7 */
845     { .name = "MVA_prefetch",
846       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
847       .access = PL1_W, .type = ARM_CP_NOP },
848     /*
849      * We need to break the TB after ISB to execute self-modifying code
850      * correctly and also to take any pending interrupts immediately.
851      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
852      */
853     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
854       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
855     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
856       .access = PL0_W, .type = ARM_CP_NOP },
857     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
858       .access = PL0_W, .type = ARM_CP_NOP },
859     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
860       .access = PL1_RW, .accessfn = access_tvm_trvm,
861       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
862                              offsetof(CPUARMState, cp15.ifar_ns) },
863       .resetvalue = 0, },
864     /*
865      * Watchpoint Fault Address Register : should actually only be present
866      * for 1136, 1176, 11MPCore.
867      */
868     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
869       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
870     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
871       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
872       .fgt = FGT_CPACR_EL1,
873       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
874       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
875 };
876 
877 typedef struct pm_event {
878     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
879     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
880     bool (*supported)(CPUARMState *);
881     /*
882      * Retrieve the current count of the underlying event. The programmed
883      * counters hold a difference from the return value from this function
884      */
885     uint64_t (*get_count)(CPUARMState *);
886     /*
887      * Return how many nanoseconds it will take (at a minimum) for count events
888      * to occur. A negative value indicates the counter will never overflow, or
889      * that the counter has otherwise arranged for the overflow bit to be set
890      * and the PMU interrupt to be raised on overflow.
891      */
892     int64_t (*ns_per_count)(uint64_t);
893 } pm_event;
894 
895 static bool event_always_supported(CPUARMState *env)
896 {
897     return true;
898 }
899 
900 static uint64_t swinc_get_count(CPUARMState *env)
901 {
902     /*
903      * SW_INCR events are written directly to the pmevcntr's by writes to
904      * PMSWINC, so there is no underlying count maintained by the PMU itself
905      */
906     return 0;
907 }
908 
909 static int64_t swinc_ns_per(uint64_t ignored)
910 {
911     return -1;
912 }
913 
914 /*
915  * Return the underlying cycle count for the PMU cycle counters. If we're in
916  * usermode, simply return 0.
917  */
918 static uint64_t cycles_get_count(CPUARMState *env)
919 {
920 #ifndef CONFIG_USER_ONLY
921     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
922                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
923 #else
924     return cpu_get_host_ticks();
925 #endif
926 }
927 
928 #ifndef CONFIG_USER_ONLY
929 static int64_t cycles_ns_per(uint64_t cycles)
930 {
931     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
932 }
933 
934 static bool instructions_supported(CPUARMState *env)
935 {
936     return icount_enabled() == 1; /* Precise instruction counting */
937 }
938 
939 static uint64_t instructions_get_count(CPUARMState *env)
940 {
941     return (uint64_t)icount_get_raw();
942 }
943 
944 static int64_t instructions_ns_per(uint64_t icount)
945 {
946     return icount_to_ns((int64_t)icount);
947 }
948 #endif
949 
950 static bool pmuv3p1_events_supported(CPUARMState *env)
951 {
952     /* For events which are supported in any v8.1 PMU */
953     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
954 }
955 
956 static bool pmuv3p4_events_supported(CPUARMState *env)
957 {
958     /* For events which are supported in any v8.1 PMU */
959     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
960 }
961 
962 static uint64_t zero_event_get_count(CPUARMState *env)
963 {
964     /* For events which on QEMU never fire, so their count is always zero */
965     return 0;
966 }
967 
968 static int64_t zero_event_ns_per(uint64_t cycles)
969 {
970     /* An event which never fires can never overflow */
971     return -1;
972 }
973 
974 static const pm_event pm_events[] = {
975     { .number = 0x000, /* SW_INCR */
976       .supported = event_always_supported,
977       .get_count = swinc_get_count,
978       .ns_per_count = swinc_ns_per,
979     },
980 #ifndef CONFIG_USER_ONLY
981     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
982       .supported = instructions_supported,
983       .get_count = instructions_get_count,
984       .ns_per_count = instructions_ns_per,
985     },
986     { .number = 0x011, /* CPU_CYCLES, Cycle */
987       .supported = event_always_supported,
988       .get_count = cycles_get_count,
989       .ns_per_count = cycles_ns_per,
990     },
991 #endif
992     { .number = 0x023, /* STALL_FRONTEND */
993       .supported = pmuv3p1_events_supported,
994       .get_count = zero_event_get_count,
995       .ns_per_count = zero_event_ns_per,
996     },
997     { .number = 0x024, /* STALL_BACKEND */
998       .supported = pmuv3p1_events_supported,
999       .get_count = zero_event_get_count,
1000       .ns_per_count = zero_event_ns_per,
1001     },
1002     { .number = 0x03c, /* STALL */
1003       .supported = pmuv3p4_events_supported,
1004       .get_count = zero_event_get_count,
1005       .ns_per_count = zero_event_ns_per,
1006     },
1007 };
1008 
1009 /*
1010  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1011  * events (i.e. the statistical profiling extension), this implementation
1012  * should first be updated to something sparse instead of the current
1013  * supported_event_map[] array.
1014  */
1015 #define MAX_EVENT_ID 0x3c
1016 #define UNSUPPORTED_EVENT UINT16_MAX
1017 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1018 
1019 /*
1020  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1021  * of ARM event numbers to indices in our pm_events array.
1022  *
1023  * Note: Events in the 0x40XX range are not currently supported.
1024  */
1025 void pmu_init(ARMCPU *cpu)
1026 {
1027     unsigned int i;
1028 
1029     /*
1030      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1031      * events to them
1032      */
1033     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1034         supported_event_map[i] = UNSUPPORTED_EVENT;
1035     }
1036     cpu->pmceid0 = 0;
1037     cpu->pmceid1 = 0;
1038 
1039     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1040         const pm_event *cnt = &pm_events[i];
1041         assert(cnt->number <= MAX_EVENT_ID);
1042         /* We do not currently support events in the 0x40xx range */
1043         assert(cnt->number <= 0x3f);
1044 
1045         if (cnt->supported(&cpu->env)) {
1046             supported_event_map[cnt->number] = i;
1047             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1048             if (cnt->number & 0x20) {
1049                 cpu->pmceid1 |= event_mask;
1050             } else {
1051                 cpu->pmceid0 |= event_mask;
1052             }
1053         }
1054     }
1055 }
1056 
1057 /*
1058  * Check at runtime whether a PMU event is supported for the current machine
1059  */
1060 static bool event_supported(uint16_t number)
1061 {
1062     if (number > MAX_EVENT_ID) {
1063         return false;
1064     }
1065     return supported_event_map[number] != UNSUPPORTED_EVENT;
1066 }
1067 
1068 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1069                                    bool isread)
1070 {
1071     /*
1072      * Performance monitor registers user accessibility is controlled
1073      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1074      * trapping to EL2 or EL3 for other accesses.
1075      */
1076     int el = arm_current_el(env);
1077     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1078 
1079     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1080         return CP_ACCESS_TRAP;
1081     }
1082     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1083         return CP_ACCESS_TRAP_EL2;
1084     }
1085     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1086         return CP_ACCESS_TRAP_EL3;
1087     }
1088 
1089     return CP_ACCESS_OK;
1090 }
1091 
1092 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1093                                            const ARMCPRegInfo *ri,
1094                                            bool isread)
1095 {
1096     /* ER: event counter read trap control */
1097     if (arm_feature(env, ARM_FEATURE_V8)
1098         && arm_current_el(env) == 0
1099         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1100         && isread) {
1101         return CP_ACCESS_OK;
1102     }
1103 
1104     return pmreg_access(env, ri, isread);
1105 }
1106 
1107 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1108                                          const ARMCPRegInfo *ri,
1109                                          bool isread)
1110 {
1111     /* SW: software increment write trap control */
1112     if (arm_feature(env, ARM_FEATURE_V8)
1113         && arm_current_el(env) == 0
1114         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1115         && !isread) {
1116         return CP_ACCESS_OK;
1117     }
1118 
1119     return pmreg_access(env, ri, isread);
1120 }
1121 
1122 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1123                                         const ARMCPRegInfo *ri,
1124                                         bool isread)
1125 {
1126     /* ER: event counter read trap control */
1127     if (arm_feature(env, ARM_FEATURE_V8)
1128         && arm_current_el(env) == 0
1129         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1130         return CP_ACCESS_OK;
1131     }
1132 
1133     return pmreg_access(env, ri, isread);
1134 }
1135 
1136 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1137                                          const ARMCPRegInfo *ri,
1138                                          bool isread)
1139 {
1140     /* CR: cycle counter read trap control */
1141     if (arm_feature(env, ARM_FEATURE_V8)
1142         && arm_current_el(env) == 0
1143         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1144         && isread) {
1145         return CP_ACCESS_OK;
1146     }
1147 
1148     return pmreg_access(env, ri, isread);
1149 }
1150 
1151 /*
1152  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1153  * We use these to decide whether we need to wrap a write to MDCR_EL2
1154  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1155  */
1156 #define MDCR_EL2_PMU_ENABLE_BITS \
1157     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1158 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1159 
1160 /*
1161  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1162  * the current EL, security state, and register configuration.
1163  */
1164 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1165 {
1166     uint64_t filter;
1167     bool e, p, u, nsk, nsu, nsh, m;
1168     bool enabled, prohibited = false, filtered;
1169     bool secure = arm_is_secure(env);
1170     int el = arm_current_el(env);
1171     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1172     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1173 
1174     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1175         return false;
1176     }
1177 
1178     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1179             (counter < hpmn || counter == 31)) {
1180         e = env->cp15.c9_pmcr & PMCRE;
1181     } else {
1182         e = mdcr_el2 & MDCR_HPME;
1183     }
1184     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1185 
1186     /* Is event counting prohibited? */
1187     if (el == 2 && (counter < hpmn || counter == 31)) {
1188         prohibited = mdcr_el2 & MDCR_HPMD;
1189     }
1190     if (secure) {
1191         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1192     }
1193 
1194     if (counter == 31) {
1195         /*
1196          * The cycle counter defaults to running. PMCR.DP says "disable
1197          * the cycle counter when event counting is prohibited".
1198          * Some MDCR bits disable the cycle counter specifically.
1199          */
1200         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1201         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1202             if (secure) {
1203                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1204             }
1205             if (el == 2) {
1206                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1207             }
1208         }
1209     }
1210 
1211     if (counter == 31) {
1212         filter = env->cp15.pmccfiltr_el0;
1213     } else {
1214         filter = env->cp15.c14_pmevtyper[counter];
1215     }
1216 
1217     p   = filter & PMXEVTYPER_P;
1218     u   = filter & PMXEVTYPER_U;
1219     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1220     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1221     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1222     m   = arm_el_is_aa64(env, 1) &&
1223               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1224 
1225     if (el == 0) {
1226         filtered = secure ? u : u != nsu;
1227     } else if (el == 1) {
1228         filtered = secure ? p : p != nsk;
1229     } else if (el == 2) {
1230         filtered = !nsh;
1231     } else { /* EL3 */
1232         filtered = m != p;
1233     }
1234 
1235     if (counter != 31) {
1236         /*
1237          * If not checking PMCCNTR, ensure the counter is setup to an event we
1238          * support
1239          */
1240         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1241         if (!event_supported(event)) {
1242             return false;
1243         }
1244     }
1245 
1246     return enabled && !prohibited && !filtered;
1247 }
1248 
1249 static void pmu_update_irq(CPUARMState *env)
1250 {
1251     ARMCPU *cpu = env_archcpu(env);
1252     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1253             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1254 }
1255 
1256 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1257 {
1258     /*
1259      * Return true if the clock divider is enabled and the cycle counter
1260      * is supposed to tick only once every 64 clock cycles. This is
1261      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1262      * (64-bit) cycle counter PMCR.D has no effect.
1263      */
1264     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1265 }
1266 
1267 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1268 {
1269     /* Return true if the specified event counter is configured to be 64 bit */
1270 
1271     /* This isn't intended to be used with the cycle counter */
1272     assert(counter < 31);
1273 
1274     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1275         return false;
1276     }
1277 
1278     if (arm_feature(env, ARM_FEATURE_EL2)) {
1279         /*
1280          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1281          * current security state, so we don't use arm_mdcr_el2_eff() here.
1282          */
1283         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1284         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1285 
1286         if (hpmn != 0 && counter >= hpmn) {
1287             return hlp;
1288         }
1289     }
1290     return env->cp15.c9_pmcr & PMCRLP;
1291 }
1292 
1293 /*
1294  * Ensure c15_ccnt is the guest-visible count so that operations such as
1295  * enabling/disabling the counter or filtering, modifying the count itself,
1296  * etc. can be done logically. This is essentially a no-op if the counter is
1297  * not enabled at the time of the call.
1298  */
1299 static void pmccntr_op_start(CPUARMState *env)
1300 {
1301     uint64_t cycles = cycles_get_count(env);
1302 
1303     if (pmu_counter_enabled(env, 31)) {
1304         uint64_t eff_cycles = cycles;
1305         if (pmccntr_clockdiv_enabled(env)) {
1306             eff_cycles /= 64;
1307         }
1308 
1309         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1310 
1311         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1312                                  1ull << 63 : 1ull << 31;
1313         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1314             env->cp15.c9_pmovsr |= (1ULL << 31);
1315             pmu_update_irq(env);
1316         }
1317 
1318         env->cp15.c15_ccnt = new_pmccntr;
1319     }
1320     env->cp15.c15_ccnt_delta = cycles;
1321 }
1322 
1323 /*
1324  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1325  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1326  * pmccntr_op_start.
1327  */
1328 static void pmccntr_op_finish(CPUARMState *env)
1329 {
1330     if (pmu_counter_enabled(env, 31)) {
1331 #ifndef CONFIG_USER_ONLY
1332         /* Calculate when the counter will next overflow */
1333         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1334         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1335             remaining_cycles = (uint32_t)remaining_cycles;
1336         }
1337         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1338 
1339         if (overflow_in > 0) {
1340             int64_t overflow_at;
1341 
1342             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1343                                  overflow_in, &overflow_at)) {
1344                 ARMCPU *cpu = env_archcpu(env);
1345                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1346             }
1347         }
1348 #endif
1349 
1350         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1351         if (pmccntr_clockdiv_enabled(env)) {
1352             prev_cycles /= 64;
1353         }
1354         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1355     }
1356 }
1357 
1358 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1359 {
1360 
1361     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1362     uint64_t count = 0;
1363     if (event_supported(event)) {
1364         uint16_t event_idx = supported_event_map[event];
1365         count = pm_events[event_idx].get_count(env);
1366     }
1367 
1368     if (pmu_counter_enabled(env, counter)) {
1369         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1370         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1371             1ULL << 63 : 1ULL << 31;
1372 
1373         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1374             env->cp15.c9_pmovsr |= (1 << counter);
1375             pmu_update_irq(env);
1376         }
1377         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1378     }
1379     env->cp15.c14_pmevcntr_delta[counter] = count;
1380 }
1381 
1382 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1383 {
1384     if (pmu_counter_enabled(env, counter)) {
1385 #ifndef CONFIG_USER_ONLY
1386         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1387         uint16_t event_idx = supported_event_map[event];
1388         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1389         int64_t overflow_in;
1390 
1391         if (!pmevcntr_is_64_bit(env, counter)) {
1392             delta = (uint32_t)delta;
1393         }
1394         overflow_in = pm_events[event_idx].ns_per_count(delta);
1395 
1396         if (overflow_in > 0) {
1397             int64_t overflow_at;
1398 
1399             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1400                                  overflow_in, &overflow_at)) {
1401                 ARMCPU *cpu = env_archcpu(env);
1402                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1403             }
1404         }
1405 #endif
1406 
1407         env->cp15.c14_pmevcntr_delta[counter] -=
1408             env->cp15.c14_pmevcntr[counter];
1409     }
1410 }
1411 
1412 void pmu_op_start(CPUARMState *env)
1413 {
1414     unsigned int i;
1415     pmccntr_op_start(env);
1416     for (i = 0; i < pmu_num_counters(env); i++) {
1417         pmevcntr_op_start(env, i);
1418     }
1419 }
1420 
1421 void pmu_op_finish(CPUARMState *env)
1422 {
1423     unsigned int i;
1424     pmccntr_op_finish(env);
1425     for (i = 0; i < pmu_num_counters(env); i++) {
1426         pmevcntr_op_finish(env, i);
1427     }
1428 }
1429 
1430 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1431 {
1432     pmu_op_start(&cpu->env);
1433 }
1434 
1435 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1436 {
1437     pmu_op_finish(&cpu->env);
1438 }
1439 
1440 void arm_pmu_timer_cb(void *opaque)
1441 {
1442     ARMCPU *cpu = opaque;
1443 
1444     /*
1445      * Update all the counter values based on the current underlying counts,
1446      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1447      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1448      * counter may expire.
1449      */
1450     pmu_op_start(&cpu->env);
1451     pmu_op_finish(&cpu->env);
1452 }
1453 
1454 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1455                        uint64_t value)
1456 {
1457     pmu_op_start(env);
1458 
1459     if (value & PMCRC) {
1460         /* The counter has been reset */
1461         env->cp15.c15_ccnt = 0;
1462     }
1463 
1464     if (value & PMCRP) {
1465         unsigned int i;
1466         for (i = 0; i < pmu_num_counters(env); i++) {
1467             env->cp15.c14_pmevcntr[i] = 0;
1468         }
1469     }
1470 
1471     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1472     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1473 
1474     pmu_op_finish(env);
1475 }
1476 
1477 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1478                           uint64_t value)
1479 {
1480     unsigned int i;
1481     uint64_t overflow_mask, new_pmswinc;
1482 
1483     for (i = 0; i < pmu_num_counters(env); i++) {
1484         /* Increment a counter's count iff: */
1485         if ((value & (1 << i)) && /* counter's bit is set */
1486                 /* counter is enabled and not filtered */
1487                 pmu_counter_enabled(env, i) &&
1488                 /* counter is SW_INCR */
1489                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1490             pmevcntr_op_start(env, i);
1491 
1492             /*
1493              * Detect if this write causes an overflow since we can't predict
1494              * PMSWINC overflows like we can for other events
1495              */
1496             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1497 
1498             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1499                 1ULL << 63 : 1ULL << 31;
1500 
1501             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1502                 env->cp15.c9_pmovsr |= (1 << i);
1503                 pmu_update_irq(env);
1504             }
1505 
1506             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1507 
1508             pmevcntr_op_finish(env, i);
1509         }
1510     }
1511 }
1512 
1513 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1514 {
1515     uint64_t ret;
1516     pmccntr_op_start(env);
1517     ret = env->cp15.c15_ccnt;
1518     pmccntr_op_finish(env);
1519     return ret;
1520 }
1521 
1522 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1523                          uint64_t value)
1524 {
1525     /*
1526      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1527      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1528      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1529      * accessed.
1530      */
1531     env->cp15.c9_pmselr = value & 0x1f;
1532 }
1533 
1534 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1535                         uint64_t value)
1536 {
1537     pmccntr_op_start(env);
1538     env->cp15.c15_ccnt = value;
1539     pmccntr_op_finish(env);
1540 }
1541 
1542 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1543                             uint64_t value)
1544 {
1545     uint64_t cur_val = pmccntr_read(env, NULL);
1546 
1547     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1548 }
1549 
1550 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1551                             uint64_t value)
1552 {
1553     pmccntr_op_start(env);
1554     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1555     pmccntr_op_finish(env);
1556 }
1557 
1558 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1559                             uint64_t value)
1560 {
1561     pmccntr_op_start(env);
1562     /* M is not accessible from AArch32 */
1563     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1564         (value & PMCCFILTR);
1565     pmccntr_op_finish(env);
1566 }
1567 
1568 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1569 {
1570     /* M is not visible in AArch32 */
1571     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1572 }
1573 
1574 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1575                             uint64_t value)
1576 {
1577     pmu_op_start(env);
1578     value &= pmu_counter_mask(env);
1579     env->cp15.c9_pmcnten |= value;
1580     pmu_op_finish(env);
1581 }
1582 
1583 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1584                              uint64_t value)
1585 {
1586     pmu_op_start(env);
1587     value &= pmu_counter_mask(env);
1588     env->cp15.c9_pmcnten &= ~value;
1589     pmu_op_finish(env);
1590 }
1591 
1592 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1593                          uint64_t value)
1594 {
1595     value &= pmu_counter_mask(env);
1596     env->cp15.c9_pmovsr &= ~value;
1597     pmu_update_irq(env);
1598 }
1599 
1600 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1601                          uint64_t value)
1602 {
1603     value &= pmu_counter_mask(env);
1604     env->cp15.c9_pmovsr |= value;
1605     pmu_update_irq(env);
1606 }
1607 
1608 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1609                              uint64_t value, const uint8_t counter)
1610 {
1611     if (counter == 31) {
1612         pmccfiltr_write(env, ri, value);
1613     } else if (counter < pmu_num_counters(env)) {
1614         pmevcntr_op_start(env, counter);
1615 
1616         /*
1617          * If this counter's event type is changing, store the current
1618          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1619          * pmevcntr_op_finish has the correct baseline when it converts back to
1620          * a delta.
1621          */
1622         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1623             PMXEVTYPER_EVTCOUNT;
1624         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1625         if (old_event != new_event) {
1626             uint64_t count = 0;
1627             if (event_supported(new_event)) {
1628                 uint16_t event_idx = supported_event_map[new_event];
1629                 count = pm_events[event_idx].get_count(env);
1630             }
1631             env->cp15.c14_pmevcntr_delta[counter] = count;
1632         }
1633 
1634         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1635         pmevcntr_op_finish(env, counter);
1636     }
1637     /*
1638      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1639      * PMSELR value is equal to or greater than the number of implemented
1640      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1641      */
1642 }
1643 
1644 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1645                                const uint8_t counter)
1646 {
1647     if (counter == 31) {
1648         return env->cp15.pmccfiltr_el0;
1649     } else if (counter < pmu_num_counters(env)) {
1650         return env->cp15.c14_pmevtyper[counter];
1651     } else {
1652       /*
1653        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1654        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1655        */
1656         return 0;
1657     }
1658 }
1659 
1660 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1661                               uint64_t value)
1662 {
1663     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1664     pmevtyper_write(env, ri, value, counter);
1665 }
1666 
1667 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1668                                uint64_t value)
1669 {
1670     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1671     env->cp15.c14_pmevtyper[counter] = value;
1672 
1673     /*
1674      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1675      * pmu_op_finish calls when loading saved state for a migration. Because
1676      * we're potentially updating the type of event here, the value written to
1677      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1678      * different counter type. Therefore, we need to set this value to the
1679      * current count for the counter type we're writing so that pmu_op_finish
1680      * has the correct count for its calculation.
1681      */
1682     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1683     if (event_supported(event)) {
1684         uint16_t event_idx = supported_event_map[event];
1685         env->cp15.c14_pmevcntr_delta[counter] =
1686             pm_events[event_idx].get_count(env);
1687     }
1688 }
1689 
1690 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1691 {
1692     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1693     return pmevtyper_read(env, ri, counter);
1694 }
1695 
1696 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1697                              uint64_t value)
1698 {
1699     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1700 }
1701 
1702 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1703 {
1704     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1705 }
1706 
1707 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708                              uint64_t value, uint8_t counter)
1709 {
1710     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1711         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1712         value &= MAKE_64BIT_MASK(0, 32);
1713     }
1714     if (counter < pmu_num_counters(env)) {
1715         pmevcntr_op_start(env, counter);
1716         env->cp15.c14_pmevcntr[counter] = value;
1717         pmevcntr_op_finish(env, counter);
1718     }
1719     /*
1720      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1721      * are CONSTRAINED UNPREDICTABLE.
1722      */
1723 }
1724 
1725 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1726                               uint8_t counter)
1727 {
1728     if (counter < pmu_num_counters(env)) {
1729         uint64_t ret;
1730         pmevcntr_op_start(env, counter);
1731         ret = env->cp15.c14_pmevcntr[counter];
1732         pmevcntr_op_finish(env, counter);
1733         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1734             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1735             ret &= MAKE_64BIT_MASK(0, 32);
1736         }
1737         return ret;
1738     } else {
1739       /*
1740        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1741        * are CONSTRAINED UNPREDICTABLE.
1742        */
1743         return 0;
1744     }
1745 }
1746 
1747 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value)
1749 {
1750     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1751     pmevcntr_write(env, ri, value, counter);
1752 }
1753 
1754 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1755 {
1756     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1757     return pmevcntr_read(env, ri, counter);
1758 }
1759 
1760 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1761                              uint64_t value)
1762 {
1763     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1764     assert(counter < pmu_num_counters(env));
1765     env->cp15.c14_pmevcntr[counter] = value;
1766     pmevcntr_write(env, ri, value, counter);
1767 }
1768 
1769 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1772     assert(counter < pmu_num_counters(env));
1773     return env->cp15.c14_pmevcntr[counter];
1774 }
1775 
1776 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1777                              uint64_t value)
1778 {
1779     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1780 }
1781 
1782 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1783 {
1784     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1785 }
1786 
1787 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                             uint64_t value)
1789 {
1790     if (arm_feature(env, ARM_FEATURE_V8)) {
1791         env->cp15.c9_pmuserenr = value & 0xf;
1792     } else {
1793         env->cp15.c9_pmuserenr = value & 1;
1794     }
1795 }
1796 
1797 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              uint64_t value)
1799 {
1800     /* We have no event counters so only the C bit can be changed */
1801     value &= pmu_counter_mask(env);
1802     env->cp15.c9_pminten |= value;
1803     pmu_update_irq(env);
1804 }
1805 
1806 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     value &= pmu_counter_mask(env);
1810     env->cp15.c9_pminten &= ~value;
1811     pmu_update_irq(env);
1812 }
1813 
1814 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                        uint64_t value)
1816 {
1817     /*
1818      * Note that even though the AArch64 view of this register has bits
1819      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1820      * architectural requirements for bits which are RES0 only in some
1821      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1822      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1823      */
1824     raw_write(env, ri, value & ~0x1FULL);
1825 }
1826 
1827 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1828 {
1829     /* Begin with base v8.0 state.  */
1830     uint64_t valid_mask = 0x3fff;
1831     ARMCPU *cpu = env_archcpu(env);
1832     uint64_t changed;
1833 
1834     /*
1835      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1836      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1837      * Instead, choose the format based on the mode of EL3.
1838      */
1839     if (arm_el_is_aa64(env, 3)) {
1840         value |= SCR_FW | SCR_AW;      /* RES1 */
1841         valid_mask &= ~SCR_NET;        /* RES0 */
1842 
1843         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1844             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1845             value |= SCR_RW;           /* RAO/WI */
1846         }
1847         if (cpu_isar_feature(aa64_ras, cpu)) {
1848             valid_mask |= SCR_TERR;
1849         }
1850         if (cpu_isar_feature(aa64_lor, cpu)) {
1851             valid_mask |= SCR_TLOR;
1852         }
1853         if (cpu_isar_feature(aa64_pauth, cpu)) {
1854             valid_mask |= SCR_API | SCR_APK;
1855         }
1856         if (cpu_isar_feature(aa64_sel2, cpu)) {
1857             valid_mask |= SCR_EEL2;
1858         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1859             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1860             value |= SCR_NS;
1861         }
1862         if (cpu_isar_feature(aa64_mte, cpu)) {
1863             valid_mask |= SCR_ATA;
1864         }
1865         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1866             valid_mask |= SCR_ENSCXT;
1867         }
1868         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1869             valid_mask |= SCR_EASE | SCR_NMEA;
1870         }
1871         if (cpu_isar_feature(aa64_sme, cpu)) {
1872             valid_mask |= SCR_ENTP2;
1873         }
1874         if (cpu_isar_feature(aa64_hcx, cpu)) {
1875             valid_mask |= SCR_HXEN;
1876         }
1877         if (cpu_isar_feature(aa64_fgt, cpu)) {
1878             valid_mask |= SCR_FGTEN;
1879         }
1880         if (cpu_isar_feature(aa64_rme, cpu)) {
1881             valid_mask |= SCR_NSE | SCR_GPF;
1882         }
1883     } else {
1884         valid_mask &= ~(SCR_RW | SCR_ST);
1885         if (cpu_isar_feature(aa32_ras, cpu)) {
1886             valid_mask |= SCR_TERR;
1887         }
1888     }
1889 
1890     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891         valid_mask &= ~SCR_HCE;
1892 
1893         /*
1894          * On ARMv7, SMD (or SCD as it is called in v7) is only
1895          * supported if EL2 exists. The bit is UNK/SBZP when
1896          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1897          * when EL2 is unavailable.
1898          * On ARMv8, this bit is always available.
1899          */
1900         if (arm_feature(env, ARM_FEATURE_V7) &&
1901             !arm_feature(env, ARM_FEATURE_V8)) {
1902             valid_mask &= ~SCR_SMD;
1903         }
1904     }
1905 
1906     /* Clear all-context RES0 bits.  */
1907     value &= valid_mask;
1908     changed = env->cp15.scr_el3 ^ value;
1909     env->cp15.scr_el3 = value;
1910 
1911     /*
1912      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1913      * we must invalidate all TLBs below EL3.
1914      */
1915     if (changed & (SCR_NS | SCR_NSE)) {
1916         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1917                                            ARMMMUIdxBit_E20_0 |
1918                                            ARMMMUIdxBit_E10_1 |
1919                                            ARMMMUIdxBit_E20_2 |
1920                                            ARMMMUIdxBit_E10_1_PAN |
1921                                            ARMMMUIdxBit_E20_2_PAN |
1922                                            ARMMMUIdxBit_E2));
1923     }
1924 }
1925 
1926 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1927 {
1928     /*
1929      * scr_write will set the RES1 bits on an AArch64-only CPU.
1930      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1931      */
1932     scr_write(env, ri, 0);
1933 }
1934 
1935 static CPAccessResult access_tid4(CPUARMState *env,
1936                                   const ARMCPRegInfo *ri,
1937                                   bool isread)
1938 {
1939     if (arm_current_el(env) == 1 &&
1940         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1941         return CP_ACCESS_TRAP_EL2;
1942     }
1943 
1944     return CP_ACCESS_OK;
1945 }
1946 
1947 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 {
1949     ARMCPU *cpu = env_archcpu(env);
1950 
1951     /*
1952      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1953      * bank
1954      */
1955     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1956                                         ri->secure & ARM_CP_SECSTATE_S);
1957 
1958     return cpu->ccsidr[index];
1959 }
1960 
1961 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1962                          uint64_t value)
1963 {
1964     raw_write(env, ri, value & 0xf);
1965 }
1966 
1967 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 {
1969     CPUState *cs = env_cpu(env);
1970     bool el1 = arm_current_el(env) == 1;
1971     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1972     uint64_t ret = 0;
1973 
1974     if (hcr_el2 & HCR_IMO) {
1975         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1976             ret |= CPSR_I;
1977         }
1978     } else {
1979         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1980             ret |= CPSR_I;
1981         }
1982     }
1983 
1984     if (hcr_el2 & HCR_FMO) {
1985         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1986             ret |= CPSR_F;
1987         }
1988     } else {
1989         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1990             ret |= CPSR_F;
1991         }
1992     }
1993 
1994     if (hcr_el2 & HCR_AMO) {
1995         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1996             ret |= CPSR_A;
1997         }
1998     }
1999 
2000     return ret;
2001 }
2002 
2003 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2004                                        bool isread)
2005 {
2006     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2007         return CP_ACCESS_TRAP_EL2;
2008     }
2009 
2010     return CP_ACCESS_OK;
2011 }
2012 
2013 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2014                                        bool isread)
2015 {
2016     if (arm_feature(env, ARM_FEATURE_V8)) {
2017         return access_aa64_tid1(env, ri, isread);
2018     }
2019 
2020     return CP_ACCESS_OK;
2021 }
2022 
2023 static const ARMCPRegInfo v7_cp_reginfo[] = {
2024     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2025     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2026       .access = PL1_W, .type = ARM_CP_NOP },
2027     /*
2028      * Performance monitors are implementation defined in v7,
2029      * but with an ARM recommended set of registers, which we
2030      * follow.
2031      *
2032      * Performance registers fall into three categories:
2033      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2034      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2035      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2036      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2037      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2038      */
2039     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2040       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2041       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2042       .writefn = pmcntenset_write,
2043       .accessfn = pmreg_access,
2044       .fgt = FGT_PMCNTEN,
2045       .raw_writefn = raw_write },
2046     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2047       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2048       .access = PL0_RW, .accessfn = pmreg_access,
2049       .fgt = FGT_PMCNTEN,
2050       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2051       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2052     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2053       .access = PL0_RW,
2054       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2055       .accessfn = pmreg_access,
2056       .fgt = FGT_PMCNTEN,
2057       .writefn = pmcntenclr_write,
2058       .type = ARM_CP_ALIAS | ARM_CP_IO },
2059     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2060       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2061       .access = PL0_RW, .accessfn = pmreg_access,
2062       .fgt = FGT_PMCNTEN,
2063       .type = ARM_CP_ALIAS | ARM_CP_IO,
2064       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2065       .writefn = pmcntenclr_write },
2066     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2067       .access = PL0_RW, .type = ARM_CP_IO,
2068       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2069       .accessfn = pmreg_access,
2070       .fgt = FGT_PMOVS,
2071       .writefn = pmovsr_write,
2072       .raw_writefn = raw_write },
2073     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2074       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2075       .access = PL0_RW, .accessfn = pmreg_access,
2076       .fgt = FGT_PMOVS,
2077       .type = ARM_CP_ALIAS | ARM_CP_IO,
2078       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2079       .writefn = pmovsr_write,
2080       .raw_writefn = raw_write },
2081     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2082       .access = PL0_W, .accessfn = pmreg_access_swinc,
2083       .fgt = FGT_PMSWINC_EL0,
2084       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2085       .writefn = pmswinc_write },
2086     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2087       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2088       .access = PL0_W, .accessfn = pmreg_access_swinc,
2089       .fgt = FGT_PMSWINC_EL0,
2090       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2091       .writefn = pmswinc_write },
2092     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2093       .access = PL0_RW, .type = ARM_CP_ALIAS,
2094       .fgt = FGT_PMSELR_EL0,
2095       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2096       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2097       .raw_writefn = raw_write},
2098     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2099       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2100       .access = PL0_RW, .accessfn = pmreg_access_selr,
2101       .fgt = FGT_PMSELR_EL0,
2102       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2103       .writefn = pmselr_write, .raw_writefn = raw_write, },
2104     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2105       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2106       .fgt = FGT_PMCCNTR_EL0,
2107       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2108       .accessfn = pmreg_access_ccntr },
2109     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2110       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2111       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2112       .fgt = FGT_PMCCNTR_EL0,
2113       .type = ARM_CP_IO,
2114       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2115       .readfn = pmccntr_read, .writefn = pmccntr_write,
2116       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2117     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2118       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2119       .access = PL0_RW, .accessfn = pmreg_access,
2120       .fgt = FGT_PMCCFILTR_EL0,
2121       .type = ARM_CP_ALIAS | ARM_CP_IO,
2122       .resetvalue = 0, },
2123     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2124       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2125       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2126       .access = PL0_RW, .accessfn = pmreg_access,
2127       .fgt = FGT_PMCCFILTR_EL0,
2128       .type = ARM_CP_IO,
2129       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2130       .resetvalue = 0, },
2131     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2132       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2133       .accessfn = pmreg_access,
2134       .fgt = FGT_PMEVTYPERN_EL0,
2135       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2136     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2137       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2138       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = pmreg_access,
2140       .fgt = FGT_PMEVTYPERN_EL0,
2141       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2142     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2143       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2144       .accessfn = pmreg_access_xevcntr,
2145       .fgt = FGT_PMEVCNTRN_EL0,
2146       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2147     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2148       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2149       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2150       .accessfn = pmreg_access_xevcntr,
2151       .fgt = FGT_PMEVCNTRN_EL0,
2152       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2153     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2154       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2155       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2156       .resetvalue = 0,
2157       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2158     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2160       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2161       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2162       .resetvalue = 0,
2163       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2164     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2165       .access = PL1_RW, .accessfn = access_tpm,
2166       .fgt = FGT_PMINTEN,
2167       .type = ARM_CP_ALIAS | ARM_CP_IO,
2168       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2169       .resetvalue = 0,
2170       .writefn = pmintenset_write, .raw_writefn = raw_write },
2171     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2172       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2173       .access = PL1_RW, .accessfn = access_tpm,
2174       .fgt = FGT_PMINTEN,
2175       .type = ARM_CP_IO,
2176       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2177       .writefn = pmintenset_write, .raw_writefn = raw_write,
2178       .resetvalue = 0x0 },
2179     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2180       .access = PL1_RW, .accessfn = access_tpm,
2181       .fgt = FGT_PMINTEN,
2182       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2183       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2184       .writefn = pmintenclr_write, },
2185     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2186       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2187       .access = PL1_RW, .accessfn = access_tpm,
2188       .fgt = FGT_PMINTEN,
2189       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2190       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2191       .writefn = pmintenclr_write },
2192     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2193       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2194       .access = PL1_R,
2195       .accessfn = access_tid4,
2196       .fgt = FGT_CCSIDR_EL1,
2197       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2198     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2199       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2200       .access = PL1_RW,
2201       .accessfn = access_tid4,
2202       .fgt = FGT_CSSELR_EL1,
2203       .writefn = csselr_write, .resetvalue = 0,
2204       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2205                              offsetof(CPUARMState, cp15.csselr_ns) } },
2206     /*
2207      * Auxiliary ID register: this actually has an IMPDEF value but for now
2208      * just RAZ for all cores:
2209      */
2210     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2211       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2212       .access = PL1_R, .type = ARM_CP_CONST,
2213       .accessfn = access_aa64_tid1,
2214       .fgt = FGT_AIDR_EL1,
2215       .resetvalue = 0 },
2216     /*
2217      * Auxiliary fault status registers: these also are IMPDEF, and we
2218      * choose to RAZ/WI for all cores.
2219      */
2220     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2221       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2222       .access = PL1_RW, .accessfn = access_tvm_trvm,
2223       .fgt = FGT_AFSR0_EL1,
2224       .type = ARM_CP_CONST, .resetvalue = 0 },
2225     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2226       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2227       .access = PL1_RW, .accessfn = access_tvm_trvm,
2228       .fgt = FGT_AFSR1_EL1,
2229       .type = ARM_CP_CONST, .resetvalue = 0 },
2230     /*
2231      * MAIR can just read-as-written because we don't implement caches
2232      * and so don't need to care about memory attributes.
2233      */
2234     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2235       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2236       .access = PL1_RW, .accessfn = access_tvm_trvm,
2237       .fgt = FGT_MAIR_EL1,
2238       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2239       .resetvalue = 0 },
2240     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2241       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2242       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2243       .resetvalue = 0 },
2244     /*
2245      * For non-long-descriptor page tables these are PRRR and NMRR;
2246      * regardless they still act as reads-as-written for QEMU.
2247      */
2248      /*
2249       * MAIR0/1 are defined separately from their 64-bit counterpart which
2250       * allows them to assign the correct fieldoffset based on the endianness
2251       * handled in the field definitions.
2252       */
2253     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2254       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2255       .access = PL1_RW, .accessfn = access_tvm_trvm,
2256       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2257                              offsetof(CPUARMState, cp15.mair0_ns) },
2258       .resetfn = arm_cp_reset_ignore },
2259     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2260       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2261       .access = PL1_RW, .accessfn = access_tvm_trvm,
2262       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2263                              offsetof(CPUARMState, cp15.mair1_ns) },
2264       .resetfn = arm_cp_reset_ignore },
2265     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2266       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2267       .fgt = FGT_ISR_EL1,
2268       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2269     /* 32 bit ITLB invalidates */
2270     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2271       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2272       .writefn = tlbiall_write },
2273     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2274       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2275       .writefn = tlbimva_write },
2276     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2277       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2278       .writefn = tlbiasid_write },
2279     /* 32 bit DTLB invalidates */
2280     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2281       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2282       .writefn = tlbiall_write },
2283     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2284       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2285       .writefn = tlbimva_write },
2286     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2287       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2288       .writefn = tlbiasid_write },
2289     /* 32 bit TLB invalidates */
2290     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2291       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2292       .writefn = tlbiall_write },
2293     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2294       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2295       .writefn = tlbimva_write },
2296     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2297       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2298       .writefn = tlbiasid_write },
2299     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2300       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2301       .writefn = tlbimvaa_write },
2302 };
2303 
2304 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2305     /* 32 bit TLB invalidates, Inner Shareable */
2306     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2307       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2308       .writefn = tlbiall_is_write },
2309     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2310       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2311       .writefn = tlbimva_is_write },
2312     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2313       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2314       .writefn = tlbiasid_is_write },
2315     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2316       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2317       .writefn = tlbimvaa_is_write },
2318 };
2319 
2320 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2321     /* PMOVSSET is not implemented in v7 before v7ve */
2322     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2323       .access = PL0_RW, .accessfn = pmreg_access,
2324       .fgt = FGT_PMOVS,
2325       .type = ARM_CP_ALIAS | ARM_CP_IO,
2326       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2327       .writefn = pmovsset_write,
2328       .raw_writefn = raw_write },
2329     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2331       .access = PL0_RW, .accessfn = pmreg_access,
2332       .fgt = FGT_PMOVS,
2333       .type = ARM_CP_ALIAS | ARM_CP_IO,
2334       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2335       .writefn = pmovsset_write,
2336       .raw_writefn = raw_write },
2337 };
2338 
2339 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2340                         uint64_t value)
2341 {
2342     value &= 1;
2343     env->teecr = value;
2344 }
2345 
2346 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2347                                    bool isread)
2348 {
2349     /*
2350      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2351      * at all, so we don't need to check whether we're v8A.
2352      */
2353     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2354         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2355         return CP_ACCESS_TRAP_EL2;
2356     }
2357     return CP_ACCESS_OK;
2358 }
2359 
2360 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2361                                     bool isread)
2362 {
2363     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2364         return CP_ACCESS_TRAP;
2365     }
2366     return teecr_access(env, ri, isread);
2367 }
2368 
2369 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2370     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2371       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2372       .resetvalue = 0,
2373       .writefn = teecr_write, .accessfn = teecr_access },
2374     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2375       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2376       .accessfn = teehbr_access, .resetvalue = 0 },
2377 };
2378 
2379 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2380     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2381       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2382       .access = PL0_RW,
2383       .fgt = FGT_TPIDR_EL0,
2384       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2385     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2386       .access = PL0_RW,
2387       .fgt = FGT_TPIDR_EL0,
2388       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2389                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2390       .resetfn = arm_cp_reset_ignore },
2391     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2392       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2393       .access = PL0_R | PL1_W,
2394       .fgt = FGT_TPIDRRO_EL0,
2395       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2396       .resetvalue = 0},
2397     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2398       .access = PL0_R | PL1_W,
2399       .fgt = FGT_TPIDRRO_EL0,
2400       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2401                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2402       .resetfn = arm_cp_reset_ignore },
2403     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2404       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2405       .access = PL1_RW,
2406       .fgt = FGT_TPIDR_EL1,
2407       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2408     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2409       .access = PL1_RW,
2410       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2411                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2412       .resetvalue = 0 },
2413 };
2414 
2415 #ifndef CONFIG_USER_ONLY
2416 
2417 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2418                                        bool isread)
2419 {
2420     /*
2421      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2422      * Writable only at the highest implemented exception level.
2423      */
2424     int el = arm_current_el(env);
2425     uint64_t hcr;
2426     uint32_t cntkctl;
2427 
2428     switch (el) {
2429     case 0:
2430         hcr = arm_hcr_el2_eff(env);
2431         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2432             cntkctl = env->cp15.cnthctl_el2;
2433         } else {
2434             cntkctl = env->cp15.c14_cntkctl;
2435         }
2436         if (!extract32(cntkctl, 0, 2)) {
2437             return CP_ACCESS_TRAP;
2438         }
2439         break;
2440     case 1:
2441         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2442             arm_is_secure_below_el3(env)) {
2443             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2444             return CP_ACCESS_TRAP_UNCATEGORIZED;
2445         }
2446         break;
2447     case 2:
2448     case 3:
2449         break;
2450     }
2451 
2452     if (!isread && el < arm_highest_el(env)) {
2453         return CP_ACCESS_TRAP_UNCATEGORIZED;
2454     }
2455 
2456     return CP_ACCESS_OK;
2457 }
2458 
2459 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2460                                         bool isread)
2461 {
2462     unsigned int cur_el = arm_current_el(env);
2463     bool has_el2 = arm_is_el2_enabled(env);
2464     uint64_t hcr = arm_hcr_el2_eff(env);
2465 
2466     switch (cur_el) {
2467     case 0:
2468         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2469         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2470             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2471                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2472         }
2473 
2474         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2475         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2476             return CP_ACCESS_TRAP;
2477         }
2478 
2479         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2480         if (hcr & HCR_E2H) {
2481             if (timeridx == GTIMER_PHYS &&
2482                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2483                 return CP_ACCESS_TRAP_EL2;
2484             }
2485         } else {
2486             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2487             if (has_el2 && timeridx == GTIMER_PHYS &&
2488                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2489                 return CP_ACCESS_TRAP_EL2;
2490             }
2491         }
2492         break;
2493 
2494     case 1:
2495         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2496         if (has_el2 && timeridx == GTIMER_PHYS &&
2497             (hcr & HCR_E2H
2498              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2499              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2500             return CP_ACCESS_TRAP_EL2;
2501         }
2502         break;
2503     }
2504     return CP_ACCESS_OK;
2505 }
2506 
2507 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2508                                       bool isread)
2509 {
2510     unsigned int cur_el = arm_current_el(env);
2511     bool has_el2 = arm_is_el2_enabled(env);
2512     uint64_t hcr = arm_hcr_el2_eff(env);
2513 
2514     switch (cur_el) {
2515     case 0:
2516         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2517             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2518             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2519                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2520         }
2521 
2522         /*
2523          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2524          * EL0 if EL0[PV]TEN is zero.
2525          */
2526         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2527             return CP_ACCESS_TRAP;
2528         }
2529         /* fall through */
2530 
2531     case 1:
2532         if (has_el2 && timeridx == GTIMER_PHYS) {
2533             if (hcr & HCR_E2H) {
2534                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2535                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2536                     return CP_ACCESS_TRAP_EL2;
2537                 }
2538             } else {
2539                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2540                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2541                     return CP_ACCESS_TRAP_EL2;
2542                 }
2543             }
2544         }
2545         break;
2546     }
2547     return CP_ACCESS_OK;
2548 }
2549 
2550 static CPAccessResult gt_pct_access(CPUARMState *env,
2551                                     const ARMCPRegInfo *ri,
2552                                     bool isread)
2553 {
2554     return gt_counter_access(env, GTIMER_PHYS, isread);
2555 }
2556 
2557 static CPAccessResult gt_vct_access(CPUARMState *env,
2558                                     const ARMCPRegInfo *ri,
2559                                     bool isread)
2560 {
2561     return gt_counter_access(env, GTIMER_VIRT, isread);
2562 }
2563 
2564 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2565                                        bool isread)
2566 {
2567     return gt_timer_access(env, GTIMER_PHYS, isread);
2568 }
2569 
2570 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2571                                        bool isread)
2572 {
2573     return gt_timer_access(env, GTIMER_VIRT, isread);
2574 }
2575 
2576 static CPAccessResult gt_stimer_access(CPUARMState *env,
2577                                        const ARMCPRegInfo *ri,
2578                                        bool isread)
2579 {
2580     /*
2581      * The AArch64 register view of the secure physical timer is
2582      * always accessible from EL3, and configurably accessible from
2583      * Secure EL1.
2584      */
2585     switch (arm_current_el(env)) {
2586     case 1:
2587         if (!arm_is_secure(env)) {
2588             return CP_ACCESS_TRAP;
2589         }
2590         if (!(env->cp15.scr_el3 & SCR_ST)) {
2591             return CP_ACCESS_TRAP_EL3;
2592         }
2593         return CP_ACCESS_OK;
2594     case 0:
2595     case 2:
2596         return CP_ACCESS_TRAP;
2597     case 3:
2598         return CP_ACCESS_OK;
2599     default:
2600         g_assert_not_reached();
2601     }
2602 }
2603 
2604 static uint64_t gt_get_countervalue(CPUARMState *env)
2605 {
2606     ARMCPU *cpu = env_archcpu(env);
2607 
2608     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2609 }
2610 
2611 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2612 {
2613     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2614 
2615     if (gt->ctl & 1) {
2616         /*
2617          * Timer enabled: calculate and set current ISTATUS, irq, and
2618          * reset timer to when ISTATUS next has to change
2619          */
2620         uint64_t offset = timeridx == GTIMER_VIRT ?
2621                                       cpu->env.cp15.cntvoff_el2 : 0;
2622         uint64_t count = gt_get_countervalue(&cpu->env);
2623         /* Note that this must be unsigned 64 bit arithmetic: */
2624         int istatus = count - offset >= gt->cval;
2625         uint64_t nexttick;
2626         int irqstate;
2627 
2628         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2629 
2630         irqstate = (istatus && !(gt->ctl & 2));
2631         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2632 
2633         if (istatus) {
2634             /* Next transition is when count rolls back over to zero */
2635             nexttick = UINT64_MAX;
2636         } else {
2637             /* Next transition is when we hit cval */
2638             nexttick = gt->cval + offset;
2639         }
2640         /*
2641          * Note that the desired next expiry time might be beyond the
2642          * signed-64-bit range of a QEMUTimer -- in this case we just
2643          * set the timer for as far in the future as possible. When the
2644          * timer expires we will reset the timer for any remaining period.
2645          */
2646         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2647             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2648         } else {
2649             timer_mod(cpu->gt_timer[timeridx], nexttick);
2650         }
2651         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2652     } else {
2653         /* Timer disabled: ISTATUS and timer output always clear */
2654         gt->ctl &= ~4;
2655         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2656         timer_del(cpu->gt_timer[timeridx]);
2657         trace_arm_gt_recalc_disabled(timeridx);
2658     }
2659 }
2660 
2661 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2662                            int timeridx)
2663 {
2664     ARMCPU *cpu = env_archcpu(env);
2665 
2666     timer_del(cpu->gt_timer[timeridx]);
2667 }
2668 
2669 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2670 {
2671     return gt_get_countervalue(env);
2672 }
2673 
2674 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2675 {
2676     uint64_t hcr;
2677 
2678     switch (arm_current_el(env)) {
2679     case 2:
2680         hcr = arm_hcr_el2_eff(env);
2681         if (hcr & HCR_E2H) {
2682             return 0;
2683         }
2684         break;
2685     case 0:
2686         hcr = arm_hcr_el2_eff(env);
2687         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2688             return 0;
2689         }
2690         break;
2691     }
2692 
2693     return env->cp15.cntvoff_el2;
2694 }
2695 
2696 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2697 {
2698     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2699 }
2700 
2701 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2702                           int timeridx,
2703                           uint64_t value)
2704 {
2705     trace_arm_gt_cval_write(timeridx, value);
2706     env->cp15.c14_timer[timeridx].cval = value;
2707     gt_recalc_timer(env_archcpu(env), timeridx);
2708 }
2709 
2710 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2711                              int timeridx)
2712 {
2713     uint64_t offset = 0;
2714 
2715     switch (timeridx) {
2716     case GTIMER_VIRT:
2717     case GTIMER_HYPVIRT:
2718         offset = gt_virt_cnt_offset(env);
2719         break;
2720     }
2721 
2722     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2723                       (gt_get_countervalue(env) - offset));
2724 }
2725 
2726 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2727                           int timeridx,
2728                           uint64_t value)
2729 {
2730     uint64_t offset = 0;
2731 
2732     switch (timeridx) {
2733     case GTIMER_VIRT:
2734     case GTIMER_HYPVIRT:
2735         offset = gt_virt_cnt_offset(env);
2736         break;
2737     }
2738 
2739     trace_arm_gt_tval_write(timeridx, value);
2740     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2741                                          sextract64(value, 0, 32);
2742     gt_recalc_timer(env_archcpu(env), timeridx);
2743 }
2744 
2745 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2746                          int timeridx,
2747                          uint64_t value)
2748 {
2749     ARMCPU *cpu = env_archcpu(env);
2750     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2751 
2752     trace_arm_gt_ctl_write(timeridx, value);
2753     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2754     if ((oldval ^ value) & 1) {
2755         /* Enable toggled */
2756         gt_recalc_timer(cpu, timeridx);
2757     } else if ((oldval ^ value) & 2) {
2758         /*
2759          * IMASK toggled: don't need to recalculate,
2760          * just set the interrupt line based on ISTATUS
2761          */
2762         int irqstate = (oldval & 4) && !(value & 2);
2763 
2764         trace_arm_gt_imask_toggle(timeridx, irqstate);
2765         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2766     }
2767 }
2768 
2769 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2770 {
2771     gt_timer_reset(env, ri, GTIMER_PHYS);
2772 }
2773 
2774 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2775                                uint64_t value)
2776 {
2777     gt_cval_write(env, ri, GTIMER_PHYS, value);
2778 }
2779 
2780 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2781 {
2782     return gt_tval_read(env, ri, GTIMER_PHYS);
2783 }
2784 
2785 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2786                                uint64_t value)
2787 {
2788     gt_tval_write(env, ri, GTIMER_PHYS, value);
2789 }
2790 
2791 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2792                               uint64_t value)
2793 {
2794     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2795 }
2796 
2797 static int gt_phys_redir_timeridx(CPUARMState *env)
2798 {
2799     switch (arm_mmu_idx(env)) {
2800     case ARMMMUIdx_E20_0:
2801     case ARMMMUIdx_E20_2:
2802     case ARMMMUIdx_E20_2_PAN:
2803         return GTIMER_HYP;
2804     default:
2805         return GTIMER_PHYS;
2806     }
2807 }
2808 
2809 static int gt_virt_redir_timeridx(CPUARMState *env)
2810 {
2811     switch (arm_mmu_idx(env)) {
2812     case ARMMMUIdx_E20_0:
2813     case ARMMMUIdx_E20_2:
2814     case ARMMMUIdx_E20_2_PAN:
2815         return GTIMER_HYPVIRT;
2816     default:
2817         return GTIMER_VIRT;
2818     }
2819 }
2820 
2821 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2822                                         const ARMCPRegInfo *ri)
2823 {
2824     int timeridx = gt_phys_redir_timeridx(env);
2825     return env->cp15.c14_timer[timeridx].cval;
2826 }
2827 
2828 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2829                                      uint64_t value)
2830 {
2831     int timeridx = gt_phys_redir_timeridx(env);
2832     gt_cval_write(env, ri, timeridx, value);
2833 }
2834 
2835 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2836                                         const ARMCPRegInfo *ri)
2837 {
2838     int timeridx = gt_phys_redir_timeridx(env);
2839     return gt_tval_read(env, ri, timeridx);
2840 }
2841 
2842 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2843                                      uint64_t value)
2844 {
2845     int timeridx = gt_phys_redir_timeridx(env);
2846     gt_tval_write(env, ri, timeridx, value);
2847 }
2848 
2849 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2850                                        const ARMCPRegInfo *ri)
2851 {
2852     int timeridx = gt_phys_redir_timeridx(env);
2853     return env->cp15.c14_timer[timeridx].ctl;
2854 }
2855 
2856 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                                     uint64_t value)
2858 {
2859     int timeridx = gt_phys_redir_timeridx(env);
2860     gt_ctl_write(env, ri, timeridx, value);
2861 }
2862 
2863 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2864 {
2865     gt_timer_reset(env, ri, GTIMER_VIRT);
2866 }
2867 
2868 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2869                                uint64_t value)
2870 {
2871     gt_cval_write(env, ri, GTIMER_VIRT, value);
2872 }
2873 
2874 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876     return gt_tval_read(env, ri, GTIMER_VIRT);
2877 }
2878 
2879 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2880                                uint64_t value)
2881 {
2882     gt_tval_write(env, ri, GTIMER_VIRT, value);
2883 }
2884 
2885 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2886                               uint64_t value)
2887 {
2888     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2889 }
2890 
2891 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2892                               uint64_t value)
2893 {
2894     ARMCPU *cpu = env_archcpu(env);
2895 
2896     trace_arm_gt_cntvoff_write(value);
2897     raw_write(env, ri, value);
2898     gt_recalc_timer(cpu, GTIMER_VIRT);
2899 }
2900 
2901 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2902                                         const ARMCPRegInfo *ri)
2903 {
2904     int timeridx = gt_virt_redir_timeridx(env);
2905     return env->cp15.c14_timer[timeridx].cval;
2906 }
2907 
2908 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2909                                      uint64_t value)
2910 {
2911     int timeridx = gt_virt_redir_timeridx(env);
2912     gt_cval_write(env, ri, timeridx, value);
2913 }
2914 
2915 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2916                                         const ARMCPRegInfo *ri)
2917 {
2918     int timeridx = gt_virt_redir_timeridx(env);
2919     return gt_tval_read(env, ri, timeridx);
2920 }
2921 
2922 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                                      uint64_t value)
2924 {
2925     int timeridx = gt_virt_redir_timeridx(env);
2926     gt_tval_write(env, ri, timeridx, value);
2927 }
2928 
2929 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2930                                        const ARMCPRegInfo *ri)
2931 {
2932     int timeridx = gt_virt_redir_timeridx(env);
2933     return env->cp15.c14_timer[timeridx].ctl;
2934 }
2935 
2936 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937                                     uint64_t value)
2938 {
2939     int timeridx = gt_virt_redir_timeridx(env);
2940     gt_ctl_write(env, ri, timeridx, value);
2941 }
2942 
2943 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2944 {
2945     gt_timer_reset(env, ri, GTIMER_HYP);
2946 }
2947 
2948 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                               uint64_t value)
2950 {
2951     gt_cval_write(env, ri, GTIMER_HYP, value);
2952 }
2953 
2954 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956     return gt_tval_read(env, ri, GTIMER_HYP);
2957 }
2958 
2959 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2960                               uint64_t value)
2961 {
2962     gt_tval_write(env, ri, GTIMER_HYP, value);
2963 }
2964 
2965 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                               uint64_t value)
2967 {
2968     gt_ctl_write(env, ri, GTIMER_HYP, value);
2969 }
2970 
2971 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973     gt_timer_reset(env, ri, GTIMER_SEC);
2974 }
2975 
2976 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977                               uint64_t value)
2978 {
2979     gt_cval_write(env, ri, GTIMER_SEC, value);
2980 }
2981 
2982 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984     return gt_tval_read(env, ri, GTIMER_SEC);
2985 }
2986 
2987 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_tval_write(env, ri, GTIMER_SEC, value);
2991 }
2992 
2993 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994                               uint64_t value)
2995 {
2996     gt_ctl_write(env, ri, GTIMER_SEC, value);
2997 }
2998 
2999 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3002 }
3003 
3004 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                              uint64_t value)
3006 {
3007     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3008 }
3009 
3010 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3013 }
3014 
3015 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                              uint64_t value)
3017 {
3018     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3019 }
3020 
3021 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022                             uint64_t value)
3023 {
3024     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3025 }
3026 
3027 void arm_gt_ptimer_cb(void *opaque)
3028 {
3029     ARMCPU *cpu = opaque;
3030 
3031     gt_recalc_timer(cpu, GTIMER_PHYS);
3032 }
3033 
3034 void arm_gt_vtimer_cb(void *opaque)
3035 {
3036     ARMCPU *cpu = opaque;
3037 
3038     gt_recalc_timer(cpu, GTIMER_VIRT);
3039 }
3040 
3041 void arm_gt_htimer_cb(void *opaque)
3042 {
3043     ARMCPU *cpu = opaque;
3044 
3045     gt_recalc_timer(cpu, GTIMER_HYP);
3046 }
3047 
3048 void arm_gt_stimer_cb(void *opaque)
3049 {
3050     ARMCPU *cpu = opaque;
3051 
3052     gt_recalc_timer(cpu, GTIMER_SEC);
3053 }
3054 
3055 void arm_gt_hvtimer_cb(void *opaque)
3056 {
3057     ARMCPU *cpu = opaque;
3058 
3059     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3060 }
3061 
3062 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3063 {
3064     ARMCPU *cpu = env_archcpu(env);
3065 
3066     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3067 }
3068 
3069 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3070     /*
3071      * Note that CNTFRQ is purely reads-as-written for the benefit
3072      * of software; writing it doesn't actually change the timer frequency.
3073      * Our reset value matches the fixed frequency we implement the timer at.
3074      */
3075     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3076       .type = ARM_CP_ALIAS,
3077       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3078       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3079     },
3080     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3082       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3083       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3084       .resetfn = arm_gt_cntfrq_reset,
3085     },
3086     /* overall control: mostly access permissions */
3087     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3088       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3089       .access = PL1_RW,
3090       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3091       .resetvalue = 0,
3092     },
3093     /* per-timer control */
3094     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3095       .secure = ARM_CP_SECSTATE_NS,
3096       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3097       .accessfn = gt_ptimer_access,
3098       .fieldoffset = offsetoflow32(CPUARMState,
3099                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3100       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3101       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3102     },
3103     { .name = "CNTP_CTL_S",
3104       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3105       .secure = ARM_CP_SECSTATE_S,
3106       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3107       .accessfn = gt_ptimer_access,
3108       .fieldoffset = offsetoflow32(CPUARMState,
3109                                    cp15.c14_timer[GTIMER_SEC].ctl),
3110       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3111     },
3112     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3113       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3114       .type = ARM_CP_IO, .access = PL0_RW,
3115       .accessfn = gt_ptimer_access,
3116       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3117       .resetvalue = 0,
3118       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3119       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3120     },
3121     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3122       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3123       .accessfn = gt_vtimer_access,
3124       .fieldoffset = offsetoflow32(CPUARMState,
3125                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3126       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3127       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3128     },
3129     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3130       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3131       .type = ARM_CP_IO, .access = PL0_RW,
3132       .accessfn = gt_vtimer_access,
3133       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3134       .resetvalue = 0,
3135       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3136       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3137     },
3138     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3139     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3140       .secure = ARM_CP_SECSTATE_NS,
3141       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3142       .accessfn = gt_ptimer_access,
3143       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3144     },
3145     { .name = "CNTP_TVAL_S",
3146       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3147       .secure = ARM_CP_SECSTATE_S,
3148       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3149       .accessfn = gt_ptimer_access,
3150       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3151     },
3152     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3153       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3154       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3155       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3156       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3157     },
3158     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3159       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access,
3161       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3162     },
3163     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3164       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3165       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3166       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3167       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3168     },
3169     /* The counter itself */
3170     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3171       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3172       .accessfn = gt_pct_access,
3173       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3174     },
3175     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3176       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3177       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3178       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3179     },
3180     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3181       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3182       .accessfn = gt_vct_access,
3183       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3184     },
3185     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3186       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3187       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3188       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3189     },
3190     /* Comparison value, indicating when the timer goes off */
3191     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3192       .secure = ARM_CP_SECSTATE_NS,
3193       .access = PL0_RW,
3194       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3195       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3196       .accessfn = gt_ptimer_access,
3197       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3198       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3199     },
3200     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3201       .secure = ARM_CP_SECSTATE_S,
3202       .access = PL0_RW,
3203       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3204       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3205       .accessfn = gt_ptimer_access,
3206       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3207     },
3208     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3209       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3210       .access = PL0_RW,
3211       .type = ARM_CP_IO,
3212       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3213       .resetvalue = 0, .accessfn = gt_ptimer_access,
3214       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3215       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3216     },
3217     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3218       .access = PL0_RW,
3219       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3221       .accessfn = gt_vtimer_access,
3222       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3223       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3224     },
3225     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3226       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3227       .access = PL0_RW,
3228       .type = ARM_CP_IO,
3229       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3230       .resetvalue = 0, .accessfn = gt_vtimer_access,
3231       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3232       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3233     },
3234     /*
3235      * Secure timer -- this is actually restricted to only EL3
3236      * and configurably Secure-EL1 via the accessfn.
3237      */
3238     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3239       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3240       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3241       .accessfn = gt_stimer_access,
3242       .readfn = gt_sec_tval_read,
3243       .writefn = gt_sec_tval_write,
3244       .resetfn = gt_sec_timer_reset,
3245     },
3246     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3247       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3248       .type = ARM_CP_IO, .access = PL1_RW,
3249       .accessfn = gt_stimer_access,
3250       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3251       .resetvalue = 0,
3252       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3253     },
3254     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3255       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3256       .type = ARM_CP_IO, .access = PL1_RW,
3257       .accessfn = gt_stimer_access,
3258       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3259       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3260     },
3261 };
3262 
3263 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3264                                  bool isread)
3265 {
3266     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3267         return CP_ACCESS_TRAP;
3268     }
3269     return CP_ACCESS_OK;
3270 }
3271 
3272 #else
3273 
3274 /*
3275  * In user-mode most of the generic timer registers are inaccessible
3276  * however modern kernels (4.12+) allow access to cntvct_el0
3277  */
3278 
3279 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3280 {
3281     ARMCPU *cpu = env_archcpu(env);
3282 
3283     /*
3284      * Currently we have no support for QEMUTimer in linux-user so we
3285      * can't call gt_get_countervalue(env), instead we directly
3286      * call the lower level functions.
3287      */
3288     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3289 }
3290 
3291 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3292     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3293       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3294       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3295       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3296       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3297     },
3298     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3299       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3300       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3301       .readfn = gt_virt_cnt_read,
3302     },
3303 };
3304 
3305 #endif
3306 
3307 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3308 {
3309     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3310         raw_write(env, ri, value);
3311     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3312         raw_write(env, ri, value & 0xfffff6ff);
3313     } else {
3314         raw_write(env, ri, value & 0xfffff1ff);
3315     }
3316 }
3317 
3318 #ifndef CONFIG_USER_ONLY
3319 /* get_phys_addr() isn't present for user-mode-only targets */
3320 
3321 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322                                  bool isread)
3323 {
3324     if (ri->opc2 & 4) {
3325         /*
3326          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3327          * Secure EL1 (which can only happen if EL3 is AArch64).
3328          * They are simply UNDEF if executed from NS EL1.
3329          * They function normally from EL2 or EL3.
3330          */
3331         if (arm_current_el(env) == 1) {
3332             if (arm_is_secure_below_el3(env)) {
3333                 if (env->cp15.scr_el3 & SCR_EEL2) {
3334                     return CP_ACCESS_TRAP_EL2;
3335                 }
3336                 return CP_ACCESS_TRAP_EL3;
3337             }
3338             return CP_ACCESS_TRAP_UNCATEGORIZED;
3339         }
3340     }
3341     return CP_ACCESS_OK;
3342 }
3343 
3344 #ifdef CONFIG_TCG
3345 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3346                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3347                              bool is_secure)
3348 {
3349     bool ret;
3350     uint64_t par64;
3351     bool format64 = false;
3352     ARMMMUFaultInfo fi = {};
3353     GetPhysAddrResult res = {};
3354 
3355     ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx,
3356                                     is_secure, &res, &fi);
3357 
3358     /*
3359      * ATS operations only do S1 or S1+S2 translations, so we never
3360      * have to deal with the ARMCacheAttrs format for S2 only.
3361      */
3362     assert(!res.cacheattrs.is_s2_format);
3363 
3364     if (ret) {
3365         /*
3366          * Some kinds of translation fault must cause exceptions rather
3367          * than being reported in the PAR.
3368          */
3369         int current_el = arm_current_el(env);
3370         int target_el;
3371         uint32_t syn, fsr, fsc;
3372         bool take_exc = false;
3373 
3374         if (fi.s1ptw && current_el == 1
3375             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3376             /*
3377              * Synchronous stage 2 fault on an access made as part of the
3378              * translation table walk for AT S1E0* or AT S1E1* insn
3379              * executed from NS EL1. If this is a synchronous external abort
3380              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3381              * to EL3. Otherwise the fault is taken as an exception to EL2,
3382              * and HPFAR_EL2 holds the faulting IPA.
3383              */
3384             if (fi.type == ARMFault_SyncExternalOnWalk &&
3385                 (env->cp15.scr_el3 & SCR_EA)) {
3386                 target_el = 3;
3387             } else {
3388                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3389                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3390                     env->cp15.hpfar_el2 |= HPFAR_NS;
3391                 }
3392                 target_el = 2;
3393             }
3394             take_exc = true;
3395         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3396             /*
3397              * Synchronous external aborts during a translation table walk
3398              * are taken as Data Abort exceptions.
3399              */
3400             if (fi.stage2) {
3401                 if (current_el == 3) {
3402                     target_el = 3;
3403                 } else {
3404                     target_el = 2;
3405                 }
3406             } else {
3407                 target_el = exception_target_el(env);
3408             }
3409             take_exc = true;
3410         }
3411 
3412         if (take_exc) {
3413             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3414             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3415                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3416                 fsr = arm_fi_to_lfsc(&fi);
3417                 fsc = extract32(fsr, 0, 6);
3418             } else {
3419                 fsr = arm_fi_to_sfsc(&fi);
3420                 fsc = 0x3f;
3421             }
3422             /*
3423              * Report exception with ESR indicating a fault due to a
3424              * translation table walk for a cache maintenance instruction.
3425              */
3426             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3427                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3428             env->exception.vaddress = value;
3429             env->exception.fsr = fsr;
3430             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3431         }
3432     }
3433 
3434     if (is_a64(env)) {
3435         format64 = true;
3436     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3437         /*
3438          * ATS1Cxx:
3439          * * TTBCR.EAE determines whether the result is returned using the
3440          *   32-bit or the 64-bit PAR format
3441          * * Instructions executed in Hyp mode always use the 64bit format
3442          *
3443          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3444          * * The Non-secure TTBCR.EAE bit is set to 1
3445          * * The implementation includes EL2, and the value of HCR.VM is 1
3446          *
3447          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3448          *
3449          * ATS1Hx always uses the 64bit format.
3450          */
3451         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3452 
3453         if (arm_feature(env, ARM_FEATURE_EL2)) {
3454             if (mmu_idx == ARMMMUIdx_E10_0 ||
3455                 mmu_idx == ARMMMUIdx_E10_1 ||
3456                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3457                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3458             } else {
3459                 format64 |= arm_current_el(env) == 2;
3460             }
3461         }
3462     }
3463 
3464     if (format64) {
3465         /* Create a 64-bit PAR */
3466         par64 = (1 << 11); /* LPAE bit always set */
3467         if (!ret) {
3468             par64 |= res.f.phys_addr & ~0xfffULL;
3469             if (!res.f.attrs.secure) {
3470                 par64 |= (1 << 9); /* NS */
3471             }
3472             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3473             par64 |= res.cacheattrs.shareability << 7; /* SH */
3474         } else {
3475             uint32_t fsr = arm_fi_to_lfsc(&fi);
3476 
3477             par64 |= 1; /* F */
3478             par64 |= (fsr & 0x3f) << 1; /* FS */
3479             if (fi.stage2) {
3480                 par64 |= (1 << 9); /* S */
3481             }
3482             if (fi.s1ptw) {
3483                 par64 |= (1 << 8); /* PTW */
3484             }
3485         }
3486     } else {
3487         /*
3488          * fsr is a DFSR/IFSR value for the short descriptor
3489          * translation table format (with WnR always clear).
3490          * Convert it to a 32-bit PAR.
3491          */
3492         if (!ret) {
3493             /* We do not set any attribute bits in the PAR */
3494             if (res.f.lg_page_size == 24
3495                 && arm_feature(env, ARM_FEATURE_V7)) {
3496                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3497             } else {
3498                 par64 = res.f.phys_addr & 0xfffff000;
3499             }
3500             if (!res.f.attrs.secure) {
3501                 par64 |= (1 << 9); /* NS */
3502             }
3503         } else {
3504             uint32_t fsr = arm_fi_to_sfsc(&fi);
3505 
3506             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3507                     ((fsr & 0xf) << 1) | 1;
3508         }
3509     }
3510     return par64;
3511 }
3512 #endif /* CONFIG_TCG */
3513 
3514 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3515 {
3516 #ifdef CONFIG_TCG
3517     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3518     uint64_t par64;
3519     ARMMMUIdx mmu_idx;
3520     int el = arm_current_el(env);
3521     bool secure = arm_is_secure_below_el3(env);
3522 
3523     switch (ri->opc2 & 6) {
3524     case 0:
3525         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3526         switch (el) {
3527         case 3:
3528             mmu_idx = ARMMMUIdx_E3;
3529             secure = true;
3530             break;
3531         case 2:
3532             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3533             /* fall through */
3534         case 1:
3535             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3536                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3537             } else {
3538                 mmu_idx = ARMMMUIdx_Stage1_E1;
3539             }
3540             break;
3541         default:
3542             g_assert_not_reached();
3543         }
3544         break;
3545     case 2:
3546         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3547         switch (el) {
3548         case 3:
3549             mmu_idx = ARMMMUIdx_E10_0;
3550             secure = true;
3551             break;
3552         case 2:
3553             g_assert(!secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3554             mmu_idx = ARMMMUIdx_Stage1_E0;
3555             break;
3556         case 1:
3557             mmu_idx = ARMMMUIdx_Stage1_E0;
3558             break;
3559         default:
3560             g_assert_not_reached();
3561         }
3562         break;
3563     case 4:
3564         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3565         mmu_idx = ARMMMUIdx_E10_1;
3566         secure = false;
3567         break;
3568     case 6:
3569         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3570         mmu_idx = ARMMMUIdx_E10_0;
3571         secure = false;
3572         break;
3573     default:
3574         g_assert_not_reached();
3575     }
3576 
3577     par64 = do_ats_write(env, value, access_type, mmu_idx, secure);
3578 
3579     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3580 #else
3581     /* Handled by hardware accelerator. */
3582     g_assert_not_reached();
3583 #endif /* CONFIG_TCG */
3584 }
3585 
3586 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3587                         uint64_t value)
3588 {
3589 #ifdef CONFIG_TCG
3590     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3591     uint64_t par64;
3592 
3593     /* There is no SecureEL2 for AArch32. */
3594     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false);
3595 
3596     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3597 #else
3598     /* Handled by hardware accelerator. */
3599     g_assert_not_reached();
3600 #endif /* CONFIG_TCG */
3601 }
3602 
3603 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3604                                      bool isread)
3605 {
3606     if (arm_current_el(env) == 3 &&
3607         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3608         return CP_ACCESS_TRAP;
3609     }
3610     return CP_ACCESS_OK;
3611 }
3612 
3613 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3614                         uint64_t value)
3615 {
3616 #ifdef CONFIG_TCG
3617     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3618     ARMMMUIdx mmu_idx;
3619     int secure = arm_is_secure_below_el3(env);
3620     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3621     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3622 
3623     switch (ri->opc2 & 6) {
3624     case 0:
3625         switch (ri->opc1) {
3626         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3627             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3628                 mmu_idx = regime_e20 ?
3629                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3630             } else {
3631                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3632             }
3633             break;
3634         case 4: /* AT S1E2R, AT S1E2W */
3635             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3636             break;
3637         case 6: /* AT S1E3R, AT S1E3W */
3638             mmu_idx = ARMMMUIdx_E3;
3639             secure = true;
3640             break;
3641         default:
3642             g_assert_not_reached();
3643         }
3644         break;
3645     case 2: /* AT S1E0R, AT S1E0W */
3646         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3647         break;
3648     case 4: /* AT S12E1R, AT S12E1W */
3649         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3650         break;
3651     case 6: /* AT S12E0R, AT S12E0W */
3652         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3653         break;
3654     default:
3655         g_assert_not_reached();
3656     }
3657 
3658     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3659                                        mmu_idx, secure);
3660 #else
3661     /* Handled by hardware accelerator. */
3662     g_assert_not_reached();
3663 #endif /* CONFIG_TCG */
3664 }
3665 #endif
3666 
3667 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3668     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3669       .access = PL1_RW, .resetvalue = 0,
3670       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3671                              offsetoflow32(CPUARMState, cp15.par_ns) },
3672       .writefn = par_write },
3673 #ifndef CONFIG_USER_ONLY
3674     /* This underdecoding is safe because the reginfo is NO_RAW. */
3675     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3676       .access = PL1_W, .accessfn = ats_access,
3677       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3678 #endif
3679 };
3680 
3681 /* Return basic MPU access permission bits.  */
3682 static uint32_t simple_mpu_ap_bits(uint32_t val)
3683 {
3684     uint32_t ret;
3685     uint32_t mask;
3686     int i;
3687     ret = 0;
3688     mask = 3;
3689     for (i = 0; i < 16; i += 2) {
3690         ret |= (val >> i) & mask;
3691         mask <<= 2;
3692     }
3693     return ret;
3694 }
3695 
3696 /* Pad basic MPU access permission bits to extended format.  */
3697 static uint32_t extended_mpu_ap_bits(uint32_t val)
3698 {
3699     uint32_t ret;
3700     uint32_t mask;
3701     int i;
3702     ret = 0;
3703     mask = 3;
3704     for (i = 0; i < 16; i += 2) {
3705         ret |= (val & mask) << i;
3706         mask <<= 2;
3707     }
3708     return ret;
3709 }
3710 
3711 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3712                                  uint64_t value)
3713 {
3714     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3715 }
3716 
3717 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3718 {
3719     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3720 }
3721 
3722 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3723                                  uint64_t value)
3724 {
3725     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3726 }
3727 
3728 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3729 {
3730     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3731 }
3732 
3733 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3734 {
3735     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3736 
3737     if (!u32p) {
3738         return 0;
3739     }
3740 
3741     u32p += env->pmsav7.rnr[M_REG_NS];
3742     return *u32p;
3743 }
3744 
3745 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3746                          uint64_t value)
3747 {
3748     ARMCPU *cpu = env_archcpu(env);
3749     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3750 
3751     if (!u32p) {
3752         return;
3753     }
3754 
3755     u32p += env->pmsav7.rnr[M_REG_NS];
3756     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3757     *u32p = value;
3758 }
3759 
3760 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761                               uint64_t value)
3762 {
3763     ARMCPU *cpu = env_archcpu(env);
3764     uint32_t nrgs = cpu->pmsav7_dregion;
3765 
3766     if (value >= nrgs) {
3767         qemu_log_mask(LOG_GUEST_ERROR,
3768                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3769                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3770         return;
3771     }
3772 
3773     raw_write(env, ri, value);
3774 }
3775 
3776 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3777                           uint64_t value)
3778 {
3779     ARMCPU *cpu = env_archcpu(env);
3780 
3781     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3782     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3783 }
3784 
3785 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3786 {
3787     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3788 }
3789 
3790 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3791                           uint64_t value)
3792 {
3793     ARMCPU *cpu = env_archcpu(env);
3794 
3795     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3796     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3797 }
3798 
3799 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3800 {
3801     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3802 }
3803 
3804 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                            uint64_t value)
3806 {
3807     ARMCPU *cpu = env_archcpu(env);
3808 
3809     /*
3810      * Ignore writes that would select not implemented region.
3811      * This is architecturally UNPREDICTABLE.
3812      */
3813     if (value >= cpu->pmsav7_dregion) {
3814         return;
3815     }
3816 
3817     env->pmsav7.rnr[M_REG_NS] = value;
3818 }
3819 
3820 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821                           uint64_t value)
3822 {
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3827 }
3828 
3829 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3832 }
3833 
3834 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                           uint64_t value)
3836 {
3837     ARMCPU *cpu = env_archcpu(env);
3838 
3839     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3841 }
3842 
3843 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3846 }
3847 
3848 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                           uint64_t value)
3850 {
3851     uint32_t n;
3852     uint32_t bit;
3853     ARMCPU *cpu = env_archcpu(env);
3854 
3855     /* Ignore writes to unimplemented regions */
3856     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3857     value &= MAKE_64BIT_MASK(0, rmax);
3858 
3859     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3860 
3861     /* Register alias is only valid for first 32 indexes */
3862     for (n = 0; n < rmax; ++n) {
3863         bit = extract32(value, n, 1);
3864         env->pmsav8.hprlar[n] = deposit32(
3865                     env->pmsav8.hprlar[n], 0, 1, bit);
3866     }
3867 }
3868 
3869 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3870 {
3871     uint32_t n;
3872     uint32_t result = 0x0;
3873     ARMCPU *cpu = env_archcpu(env);
3874 
3875     /* Register alias is only valid for first 32 indexes */
3876     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3877         if (env->pmsav8.hprlar[n] & 0x1) {
3878             result |= (0x1 << n);
3879         }
3880     }
3881     return result;
3882 }
3883 
3884 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885                            uint64_t value)
3886 {
3887     ARMCPU *cpu = env_archcpu(env);
3888 
3889     /*
3890      * Ignore writes that would select not implemented region.
3891      * This is architecturally UNPREDICTABLE.
3892      */
3893     if (value >= cpu->pmsav8r_hdregion) {
3894         return;
3895     }
3896 
3897     env->pmsav8.hprselr = value;
3898 }
3899 
3900 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3901                           uint64_t value)
3902 {
3903     ARMCPU *cpu = env_archcpu(env);
3904     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3905                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3906 
3907     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3908 
3909     if (ri->opc1 & 4) {
3910         if (index >= cpu->pmsav8r_hdregion) {
3911             return;
3912         }
3913         if (ri->opc2 & 0x1) {
3914             env->pmsav8.hprlar[index] = value;
3915         } else {
3916             env->pmsav8.hprbar[index] = value;
3917         }
3918     } else {
3919         if (index >= cpu->pmsav7_dregion) {
3920             return;
3921         }
3922         if (ri->opc2 & 0x1) {
3923             env->pmsav8.rlar[M_REG_NS][index] = value;
3924         } else {
3925             env->pmsav8.rbar[M_REG_NS][index] = value;
3926         }
3927     }
3928 }
3929 
3930 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3931 {
3932     ARMCPU *cpu = env_archcpu(env);
3933     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3934                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3935 
3936     if (ri->opc1 & 4) {
3937         if (index >= cpu->pmsav8r_hdregion) {
3938             return 0x0;
3939         }
3940         if (ri->opc2 & 0x1) {
3941             return env->pmsav8.hprlar[index];
3942         } else {
3943             return env->pmsav8.hprbar[index];
3944         }
3945     } else {
3946         if (index >= cpu->pmsav7_dregion) {
3947             return 0x0;
3948         }
3949         if (ri->opc2 & 0x1) {
3950             return env->pmsav8.rlar[M_REG_NS][index];
3951         } else {
3952             return env->pmsav8.rbar[M_REG_NS][index];
3953         }
3954     }
3955 }
3956 
3957 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
3958     { .name = "PRBAR",
3959       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
3960       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3961       .accessfn = access_tvm_trvm,
3962       .readfn = prbar_read, .writefn = prbar_write },
3963     { .name = "PRLAR",
3964       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
3965       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3966       .accessfn = access_tvm_trvm,
3967       .readfn = prlar_read, .writefn = prlar_write },
3968     { .name = "PRSELR", .resetvalue = 0,
3969       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
3970       .access = PL1_RW, .accessfn = access_tvm_trvm,
3971       .writefn = prselr_write,
3972       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
3973     { .name = "HPRBAR", .resetvalue = 0,
3974       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
3975       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3976       .readfn = hprbar_read, .writefn = hprbar_write },
3977     { .name = "HPRLAR",
3978       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
3979       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3980       .readfn = hprlar_read, .writefn = hprlar_write },
3981     { .name = "HPRSELR", .resetvalue = 0,
3982       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
3983       .access = PL2_RW,
3984       .writefn = hprselr_write,
3985       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
3986     { .name = "HPRENR",
3987       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
3988       .access = PL2_RW, .type = ARM_CP_NO_RAW,
3989       .readfn = hprenr_read, .writefn = hprenr_write },
3990 };
3991 
3992 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3993     /*
3994      * Reset for all these registers is handled in arm_cpu_reset(),
3995      * because the PMSAv7 is also used by M-profile CPUs, which do
3996      * not register cpregs but still need the state to be reset.
3997      */
3998     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3999       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4000       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4001       .readfn = pmsav7_read, .writefn = pmsav7_write,
4002       .resetfn = arm_cp_reset_ignore },
4003     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4004       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4006       .readfn = pmsav7_read, .writefn = pmsav7_write,
4007       .resetfn = arm_cp_reset_ignore },
4008     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4009       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4011       .readfn = pmsav7_read, .writefn = pmsav7_write,
4012       .resetfn = arm_cp_reset_ignore },
4013     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4014       .access = PL1_RW,
4015       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4016       .writefn = pmsav7_rgnr_write,
4017       .resetfn = arm_cp_reset_ignore },
4018 };
4019 
4020 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4021     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4022       .access = PL1_RW, .type = ARM_CP_ALIAS,
4023       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4024       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4025     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4026       .access = PL1_RW, .type = ARM_CP_ALIAS,
4027       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4028       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4029     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4030       .access = PL1_RW,
4031       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4032       .resetvalue = 0, },
4033     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4034       .access = PL1_RW,
4035       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4036       .resetvalue = 0, },
4037     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4038       .access = PL1_RW,
4039       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4040     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4041       .access = PL1_RW,
4042       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4043     /* Protection region base and size registers */
4044     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4045       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4047     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4048       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4049       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4050     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4051       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4052       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4053     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4054       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4056     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4057       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4059     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4060       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4061       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4062     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4063       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4064       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4065     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4066       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4067       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4068 };
4069 
4070 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4071                              uint64_t value)
4072 {
4073     ARMCPU *cpu = env_archcpu(env);
4074 
4075     if (!arm_feature(env, ARM_FEATURE_V8)) {
4076         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4077             /*
4078              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4079              * using Long-descriptor translation table format
4080              */
4081             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4082         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4083             /*
4084              * In an implementation that includes the Security Extensions
4085              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4086              * Short-descriptor translation table format.
4087              */
4088             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4089         } else {
4090             value &= TTBCR_N;
4091         }
4092     }
4093 
4094     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4095         /*
4096          * With LPAE the TTBCR could result in a change of ASID
4097          * via the TTBCR.A1 bit, so do a TLB flush.
4098          */
4099         tlb_flush(CPU(cpu));
4100     }
4101     raw_write(env, ri, value);
4102 }
4103 
4104 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4105                                uint64_t value)
4106 {
4107     ARMCPU *cpu = env_archcpu(env);
4108 
4109     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4110     tlb_flush(CPU(cpu));
4111     raw_write(env, ri, value);
4112 }
4113 
4114 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                             uint64_t value)
4116 {
4117     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4118     if (cpreg_field_is_64bit(ri) &&
4119         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4120         ARMCPU *cpu = env_archcpu(env);
4121         tlb_flush(CPU(cpu));
4122     }
4123     raw_write(env, ri, value);
4124 }
4125 
4126 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4127                                     uint64_t value)
4128 {
4129     /*
4130      * If we are running with E2&0 regime, then an ASID is active.
4131      * Flush if that might be changing.  Note we're not checking
4132      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4133      * holds the active ASID, only checking the field that might.
4134      */
4135     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4136         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4137         uint16_t mask = ARMMMUIdxBit_E20_2 |
4138                         ARMMMUIdxBit_E20_2_PAN |
4139                         ARMMMUIdxBit_E20_0;
4140         tlb_flush_by_mmuidx(env_cpu(env), mask);
4141     }
4142     raw_write(env, ri, value);
4143 }
4144 
4145 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4146                         uint64_t value)
4147 {
4148     ARMCPU *cpu = env_archcpu(env);
4149     CPUState *cs = CPU(cpu);
4150 
4151     /*
4152      * A change in VMID to the stage2 page table (Stage2) invalidates
4153      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4154      */
4155     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4156         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4157     }
4158     raw_write(env, ri, value);
4159 }
4160 
4161 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4162     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4163       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4164       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4165                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4166     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4167       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4168       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4169                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4170     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4171       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4172       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4173                              offsetof(CPUARMState, cp15.dfar_ns) } },
4174     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4175       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4176       .access = PL1_RW, .accessfn = access_tvm_trvm,
4177       .fgt = FGT_FAR_EL1,
4178       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4179       .resetvalue = 0, },
4180 };
4181 
4182 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4183     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4184       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4185       .access = PL1_RW, .accessfn = access_tvm_trvm,
4186       .fgt = FGT_ESR_EL1,
4187       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4188     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4189       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4190       .access = PL1_RW, .accessfn = access_tvm_trvm,
4191       .fgt = FGT_TTBR0_EL1,
4192       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4193       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4194                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4195     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4196       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4197       .access = PL1_RW, .accessfn = access_tvm_trvm,
4198       .fgt = FGT_TTBR1_EL1,
4199       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4200       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4201                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4202     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4204       .access = PL1_RW, .accessfn = access_tvm_trvm,
4205       .fgt = FGT_TCR_EL1,
4206       .writefn = vmsa_tcr_el12_write,
4207       .raw_writefn = raw_write,
4208       .resetvalue = 0,
4209       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4210     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4211       .access = PL1_RW, .accessfn = access_tvm_trvm,
4212       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4213       .raw_writefn = raw_write,
4214       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4215                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4216 };
4217 
4218 /*
4219  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4220  * qemu tlbs nor adjusting cached masks.
4221  */
4222 static const ARMCPRegInfo ttbcr2_reginfo = {
4223     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4224     .access = PL1_RW, .accessfn = access_tvm_trvm,
4225     .type = ARM_CP_ALIAS,
4226     .bank_fieldoffsets = {
4227         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4228         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4229     },
4230 };
4231 
4232 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4233                                 uint64_t value)
4234 {
4235     env->cp15.c15_ticonfig = value & 0xe7;
4236     /* The OS_TYPE bit in this register changes the reported CPUID! */
4237     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4238         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4239 }
4240 
4241 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4242                                 uint64_t value)
4243 {
4244     env->cp15.c15_threadid = value & 0xffff;
4245 }
4246 
4247 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4248                            uint64_t value)
4249 {
4250     /* Wait-for-interrupt (deprecated) */
4251     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4252 }
4253 
4254 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4255                                   uint64_t value)
4256 {
4257     /*
4258      * On OMAP there are registers indicating the max/min index of dcache lines
4259      * containing a dirty line; cache flush operations have to reset these.
4260      */
4261     env->cp15.c15_i_max = 0x000;
4262     env->cp15.c15_i_min = 0xff0;
4263 }
4264 
4265 static const ARMCPRegInfo omap_cp_reginfo[] = {
4266     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4267       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4268       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4269       .resetvalue = 0, },
4270     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4271       .access = PL1_RW, .type = ARM_CP_NOP },
4272     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4273       .access = PL1_RW,
4274       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4275       .writefn = omap_ticonfig_write },
4276     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4277       .access = PL1_RW,
4278       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4279     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4280       .access = PL1_RW, .resetvalue = 0xff0,
4281       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4282     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4283       .access = PL1_RW,
4284       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4285       .writefn = omap_threadid_write },
4286     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4287       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4288       .type = ARM_CP_NO_RAW,
4289       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4290     /*
4291      * TODO: Peripheral port remap register:
4292      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4293      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4294      * when MMU is off.
4295      */
4296     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4297       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4298       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4299       .writefn = omap_cachemaint_write },
4300     { .name = "C9", .cp = 15, .crn = 9,
4301       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4302       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4303 };
4304 
4305 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4306                               uint64_t value)
4307 {
4308     env->cp15.c15_cpar = value & 0x3fff;
4309 }
4310 
4311 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4312     { .name = "XSCALE_CPAR",
4313       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4314       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4315       .writefn = xscale_cpar_write, },
4316     { .name = "XSCALE_AUXCR",
4317       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4318       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4319       .resetvalue = 0, },
4320     /*
4321      * XScale specific cache-lockdown: since we have no cache we NOP these
4322      * and hope the guest does not really rely on cache behaviour.
4323      */
4324     { .name = "XSCALE_LOCK_ICACHE_LINE",
4325       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4326       .access = PL1_W, .type = ARM_CP_NOP },
4327     { .name = "XSCALE_UNLOCK_ICACHE",
4328       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4329       .access = PL1_W, .type = ARM_CP_NOP },
4330     { .name = "XSCALE_DCACHE_LOCK",
4331       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4332       .access = PL1_RW, .type = ARM_CP_NOP },
4333     { .name = "XSCALE_UNLOCK_DCACHE",
4334       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4335       .access = PL1_W, .type = ARM_CP_NOP },
4336 };
4337 
4338 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4339     /*
4340      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4341      * implementation of this implementation-defined space.
4342      * Ideally this should eventually disappear in favour of actually
4343      * implementing the correct behaviour for all cores.
4344      */
4345     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4346       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4347       .access = PL1_RW,
4348       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4349       .resetvalue = 0 },
4350 };
4351 
4352 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4353     /* Cache status: RAZ because we have no cache so it's always clean */
4354     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4355       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4356       .resetvalue = 0 },
4357 };
4358 
4359 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4360     /* We never have a block transfer operation in progress */
4361     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4362       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4363       .resetvalue = 0 },
4364     /* The cache ops themselves: these all NOP for QEMU */
4365     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4366       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4367     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4368       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4369     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4370       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4371     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4372       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4373     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4374       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4375     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4376       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4377 };
4378 
4379 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4380     /*
4381      * The cache test-and-clean instructions always return (1 << 30)
4382      * to indicate that there are no dirty cache lines.
4383      */
4384     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4385       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4386       .resetvalue = (1 << 30) },
4387     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4388       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4389       .resetvalue = (1 << 30) },
4390 };
4391 
4392 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4393     /* Ignore ReadBuffer accesses */
4394     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4395       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4396       .access = PL1_RW, .resetvalue = 0,
4397       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4398 };
4399 
4400 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4401 {
4402     unsigned int cur_el = arm_current_el(env);
4403 
4404     if (arm_is_el2_enabled(env) && cur_el == 1) {
4405         return env->cp15.vpidr_el2;
4406     }
4407     return raw_read(env, ri);
4408 }
4409 
4410 static uint64_t mpidr_read_val(CPUARMState *env)
4411 {
4412     ARMCPU *cpu = env_archcpu(env);
4413     uint64_t mpidr = cpu->mp_affinity;
4414 
4415     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4416         mpidr |= (1U << 31);
4417         /*
4418          * Cores which are uniprocessor (non-coherent)
4419          * but still implement the MP extensions set
4420          * bit 30. (For instance, Cortex-R5).
4421          */
4422         if (cpu->mp_is_up) {
4423             mpidr |= (1u << 30);
4424         }
4425     }
4426     return mpidr;
4427 }
4428 
4429 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4430 {
4431     unsigned int cur_el = arm_current_el(env);
4432 
4433     if (arm_is_el2_enabled(env) && cur_el == 1) {
4434         return env->cp15.vmpidr_el2;
4435     }
4436     return mpidr_read_val(env);
4437 }
4438 
4439 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4440     /* NOP AMAIR0/1 */
4441     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4442       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4443       .access = PL1_RW, .accessfn = access_tvm_trvm,
4444       .fgt = FGT_AMAIR_EL1,
4445       .type = ARM_CP_CONST, .resetvalue = 0 },
4446     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4447     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4448       .access = PL1_RW, .accessfn = access_tvm_trvm,
4449       .type = ARM_CP_CONST, .resetvalue = 0 },
4450     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4451       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4452       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4453                              offsetof(CPUARMState, cp15.par_ns)} },
4454     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4455       .access = PL1_RW, .accessfn = access_tvm_trvm,
4456       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4457       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4458                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4459       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4460     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4461       .access = PL1_RW, .accessfn = access_tvm_trvm,
4462       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4463       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4464                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4465       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4466 };
4467 
4468 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4469 {
4470     return vfp_get_fpcr(env);
4471 }
4472 
4473 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4474                             uint64_t value)
4475 {
4476     vfp_set_fpcr(env, value);
4477 }
4478 
4479 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4480 {
4481     return vfp_get_fpsr(env);
4482 }
4483 
4484 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4485                             uint64_t value)
4486 {
4487     vfp_set_fpsr(env, value);
4488 }
4489 
4490 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4491                                        bool isread)
4492 {
4493     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4494         return CP_ACCESS_TRAP;
4495     }
4496     return CP_ACCESS_OK;
4497 }
4498 
4499 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4500                             uint64_t value)
4501 {
4502     env->daif = value & PSTATE_DAIF;
4503 }
4504 
4505 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4506 {
4507     return env->pstate & PSTATE_PAN;
4508 }
4509 
4510 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4511                            uint64_t value)
4512 {
4513     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4514 }
4515 
4516 static const ARMCPRegInfo pan_reginfo = {
4517     .name = "PAN", .state = ARM_CP_STATE_AA64,
4518     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4519     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4520     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4521 };
4522 
4523 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 {
4525     return env->pstate & PSTATE_UAO;
4526 }
4527 
4528 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529                            uint64_t value)
4530 {
4531     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4532 }
4533 
4534 static const ARMCPRegInfo uao_reginfo = {
4535     .name = "UAO", .state = ARM_CP_STATE_AA64,
4536     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4537     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4538     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4539 };
4540 
4541 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4542 {
4543     return env->pstate & PSTATE_DIT;
4544 }
4545 
4546 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4547                            uint64_t value)
4548 {
4549     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4550 }
4551 
4552 static const ARMCPRegInfo dit_reginfo = {
4553     .name = "DIT", .state = ARM_CP_STATE_AA64,
4554     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4555     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4556     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4557 };
4558 
4559 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4560 {
4561     return env->pstate & PSTATE_SSBS;
4562 }
4563 
4564 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4565                            uint64_t value)
4566 {
4567     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4568 }
4569 
4570 static const ARMCPRegInfo ssbs_reginfo = {
4571     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4572     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4573     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4574     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4575 };
4576 
4577 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4578                                               const ARMCPRegInfo *ri,
4579                                               bool isread)
4580 {
4581     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4582     switch (arm_current_el(env)) {
4583     case 0:
4584         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4585         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4586             return CP_ACCESS_TRAP;
4587         }
4588         /* fall through */
4589     case 1:
4590         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4591         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4592             return CP_ACCESS_TRAP_EL2;
4593         }
4594         break;
4595     }
4596     return CP_ACCESS_OK;
4597 }
4598 
4599 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4600 {
4601     /* Cache invalidate/clean to Point of Unification... */
4602     switch (arm_current_el(env)) {
4603     case 0:
4604         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4605         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4606             return CP_ACCESS_TRAP;
4607         }
4608         /* fall through */
4609     case 1:
4610         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4611         if (arm_hcr_el2_eff(env) & hcrflags) {
4612             return CP_ACCESS_TRAP_EL2;
4613         }
4614         break;
4615     }
4616     return CP_ACCESS_OK;
4617 }
4618 
4619 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4620                                    bool isread)
4621 {
4622     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4623 }
4624 
4625 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4626                                   bool isread)
4627 {
4628     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4629 }
4630 
4631 /*
4632  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4633  * Page D4-1736 (DDI0487A.b)
4634  */
4635 
4636 static int vae1_tlbmask(CPUARMState *env)
4637 {
4638     uint64_t hcr = arm_hcr_el2_eff(env);
4639     uint16_t mask;
4640 
4641     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4642         mask = ARMMMUIdxBit_E20_2 |
4643                ARMMMUIdxBit_E20_2_PAN |
4644                ARMMMUIdxBit_E20_0;
4645     } else {
4646         mask = ARMMMUIdxBit_E10_1 |
4647                ARMMMUIdxBit_E10_1_PAN |
4648                ARMMMUIdxBit_E10_0;
4649     }
4650     return mask;
4651 }
4652 
4653 /* Return 56 if TBI is enabled, 64 otherwise. */
4654 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4655                               uint64_t addr)
4656 {
4657     uint64_t tcr = regime_tcr(env, mmu_idx);
4658     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4659     int select = extract64(addr, 55, 1);
4660 
4661     return (tbi >> select) & 1 ? 56 : 64;
4662 }
4663 
4664 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4665 {
4666     uint64_t hcr = arm_hcr_el2_eff(env);
4667     ARMMMUIdx mmu_idx;
4668 
4669     /* Only the regime of the mmu_idx below is significant. */
4670     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4671         mmu_idx = ARMMMUIdx_E20_0;
4672     } else {
4673         mmu_idx = ARMMMUIdx_E10_0;
4674     }
4675 
4676     return tlbbits_for_regime(env, mmu_idx, addr);
4677 }
4678 
4679 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                                       uint64_t value)
4681 {
4682     CPUState *cs = env_cpu(env);
4683     int mask = vae1_tlbmask(env);
4684 
4685     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4686 }
4687 
4688 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4689                                     uint64_t value)
4690 {
4691     CPUState *cs = env_cpu(env);
4692     int mask = vae1_tlbmask(env);
4693 
4694     if (tlb_force_broadcast(env)) {
4695         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4696     } else {
4697         tlb_flush_by_mmuidx(cs, mask);
4698     }
4699 }
4700 
4701 static int e2_tlbmask(CPUARMState *env)
4702 {
4703     return (ARMMMUIdxBit_E20_0 |
4704             ARMMMUIdxBit_E20_2 |
4705             ARMMMUIdxBit_E20_2_PAN |
4706             ARMMMUIdxBit_E2);
4707 }
4708 
4709 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4710                                   uint64_t value)
4711 {
4712     CPUState *cs = env_cpu(env);
4713     int mask = alle1_tlbmask(env);
4714 
4715     tlb_flush_by_mmuidx(cs, mask);
4716 }
4717 
4718 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4719                                   uint64_t value)
4720 {
4721     CPUState *cs = env_cpu(env);
4722     int mask = e2_tlbmask(env);
4723 
4724     tlb_flush_by_mmuidx(cs, mask);
4725 }
4726 
4727 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4728                                   uint64_t value)
4729 {
4730     ARMCPU *cpu = env_archcpu(env);
4731     CPUState *cs = CPU(cpu);
4732 
4733     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4734 }
4735 
4736 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4737                                     uint64_t value)
4738 {
4739     CPUState *cs = env_cpu(env);
4740     int mask = alle1_tlbmask(env);
4741 
4742     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4743 }
4744 
4745 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4746                                     uint64_t value)
4747 {
4748     CPUState *cs = env_cpu(env);
4749     int mask = e2_tlbmask(env);
4750 
4751     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4752 }
4753 
4754 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4755                                     uint64_t value)
4756 {
4757     CPUState *cs = env_cpu(env);
4758 
4759     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4760 }
4761 
4762 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4763                                  uint64_t value)
4764 {
4765     /*
4766      * Invalidate by VA, EL2
4767      * Currently handles both VAE2 and VALE2, since we don't support
4768      * flush-last-level-only.
4769      */
4770     CPUState *cs = env_cpu(env);
4771     int mask = e2_tlbmask(env);
4772     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4773 
4774     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4775 }
4776 
4777 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4778                                  uint64_t value)
4779 {
4780     /*
4781      * Invalidate by VA, EL3
4782      * Currently handles both VAE3 and VALE3, since we don't support
4783      * flush-last-level-only.
4784      */
4785     ARMCPU *cpu = env_archcpu(env);
4786     CPUState *cs = CPU(cpu);
4787     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4788 
4789     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4790 }
4791 
4792 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4793                                    uint64_t value)
4794 {
4795     CPUState *cs = env_cpu(env);
4796     int mask = vae1_tlbmask(env);
4797     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4798     int bits = vae1_tlbbits(env, pageaddr);
4799 
4800     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4801 }
4802 
4803 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4804                                  uint64_t value)
4805 {
4806     /*
4807      * Invalidate by VA, EL1&0 (AArch64 version).
4808      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4809      * since we don't support flush-for-specific-ASID-only or
4810      * flush-last-level-only.
4811      */
4812     CPUState *cs = env_cpu(env);
4813     int mask = vae1_tlbmask(env);
4814     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4815     int bits = vae1_tlbbits(env, pageaddr);
4816 
4817     if (tlb_force_broadcast(env)) {
4818         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4819     } else {
4820         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4821     }
4822 }
4823 
4824 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4825                                    uint64_t value)
4826 {
4827     CPUState *cs = env_cpu(env);
4828     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4829     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4830 
4831     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4832                                                   ARMMMUIdxBit_E2, bits);
4833 }
4834 
4835 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4836                                    uint64_t value)
4837 {
4838     CPUState *cs = env_cpu(env);
4839     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4840     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4841 
4842     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4843                                                   ARMMMUIdxBit_E3, bits);
4844 }
4845 
4846 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4847 {
4848     /*
4849      * The MSB of value is the NS field, which only applies if SEL2
4850      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4851      */
4852     return (value >= 0
4853             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4854             && arm_is_secure_below_el3(env)
4855             ? ARMMMUIdxBit_Stage2_S
4856             : ARMMMUIdxBit_Stage2);
4857 }
4858 
4859 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4860                                     uint64_t value)
4861 {
4862     CPUState *cs = env_cpu(env);
4863     int mask = ipas2e1_tlbmask(env, value);
4864     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4865 
4866     if (tlb_force_broadcast(env)) {
4867         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4868     } else {
4869         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4870     }
4871 }
4872 
4873 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4874                                       uint64_t value)
4875 {
4876     CPUState *cs = env_cpu(env);
4877     int mask = ipas2e1_tlbmask(env, value);
4878     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4879 
4880     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4881 }
4882 
4883 #ifdef TARGET_AARCH64
4884 typedef struct {
4885     uint64_t base;
4886     uint64_t length;
4887 } TLBIRange;
4888 
4889 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4890 {
4891     /*
4892      * Note that the TLBI range TG field encoding differs from both
4893      * TG0 and TG1 encodings.
4894      */
4895     switch (tg) {
4896     case 1:
4897         return Gran4K;
4898     case 2:
4899         return Gran16K;
4900     case 3:
4901         return Gran64K;
4902     default:
4903         return GranInvalid;
4904     }
4905 }
4906 
4907 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4908                                      uint64_t value)
4909 {
4910     unsigned int page_size_granule, page_shift, num, scale, exponent;
4911     /* Extract one bit to represent the va selector in use. */
4912     uint64_t select = sextract64(value, 36, 1);
4913     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4914     TLBIRange ret = { };
4915     ARMGranuleSize gran;
4916 
4917     page_size_granule = extract64(value, 46, 2);
4918     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4919 
4920     /* The granule encoded in value must match the granule in use. */
4921     if (gran != param.gran) {
4922         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
4923                       page_size_granule);
4924         return ret;
4925     }
4926 
4927     page_shift = arm_granule_bits(gran);
4928     num = extract64(value, 39, 5);
4929     scale = extract64(value, 44, 2);
4930     exponent = (5 * scale) + 1;
4931 
4932     ret.length = (num + 1) << (exponent + page_shift);
4933 
4934     if (param.select) {
4935         ret.base = sextract64(value, 0, 37);
4936     } else {
4937         ret.base = extract64(value, 0, 37);
4938     }
4939     if (param.ds) {
4940         /*
4941          * With DS=1, BaseADDR is always shifted 16 so that it is able
4942          * to address all 52 va bits.  The input address is perforce
4943          * aligned on a 64k boundary regardless of translation granule.
4944          */
4945         page_shift = 16;
4946     }
4947     ret.base <<= page_shift;
4948 
4949     return ret;
4950 }
4951 
4952 static void do_rvae_write(CPUARMState *env, uint64_t value,
4953                           int idxmap, bool synced)
4954 {
4955     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
4956     TLBIRange range;
4957     int bits;
4958 
4959     range = tlbi_aa64_get_range(env, one_idx, value);
4960     bits = tlbbits_for_regime(env, one_idx, range.base);
4961 
4962     if (synced) {
4963         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
4964                                                   range.base,
4965                                                   range.length,
4966                                                   idxmap,
4967                                                   bits);
4968     } else {
4969         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
4970                                   range.length, idxmap, bits);
4971     }
4972 }
4973 
4974 static void tlbi_aa64_rvae1_write(CPUARMState *env,
4975                                   const ARMCPRegInfo *ri,
4976                                   uint64_t value)
4977 {
4978     /*
4979      * Invalidate by VA range, EL1&0.
4980      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
4981      * since we don't support flush-for-specific-ASID-only or
4982      * flush-last-level-only.
4983      */
4984 
4985     do_rvae_write(env, value, vae1_tlbmask(env),
4986                   tlb_force_broadcast(env));
4987 }
4988 
4989 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
4990                                     const ARMCPRegInfo *ri,
4991                                     uint64_t value)
4992 {
4993     /*
4994      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
4995      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
4996      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
4997      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
4998      * shareable specific flushes.
4999      */
5000 
5001     do_rvae_write(env, value, vae1_tlbmask(env), true);
5002 }
5003 
5004 static int vae2_tlbmask(CPUARMState *env)
5005 {
5006     return ARMMMUIdxBit_E2;
5007 }
5008 
5009 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5010                                   const ARMCPRegInfo *ri,
5011                                   uint64_t value)
5012 {
5013     /*
5014      * Invalidate by VA range, EL2.
5015      * Currently handles all of RVAE2 and RVALE2,
5016      * since we don't support flush-for-specific-ASID-only or
5017      * flush-last-level-only.
5018      */
5019 
5020     do_rvae_write(env, value, vae2_tlbmask(env),
5021                   tlb_force_broadcast(env));
5022 
5023 
5024 }
5025 
5026 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5027                                     const ARMCPRegInfo *ri,
5028                                     uint64_t value)
5029 {
5030     /*
5031      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5032      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5033      * since we don't support flush-for-specific-ASID-only,
5034      * flush-last-level-only or inner/outer shareable specific flushes.
5035      */
5036 
5037     do_rvae_write(env, value, vae2_tlbmask(env), true);
5038 
5039 }
5040 
5041 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5042                                   const ARMCPRegInfo *ri,
5043                                   uint64_t value)
5044 {
5045     /*
5046      * Invalidate by VA range, EL3.
5047      * Currently handles all of RVAE3 and RVALE3,
5048      * since we don't support flush-for-specific-ASID-only or
5049      * flush-last-level-only.
5050      */
5051 
5052     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5053 }
5054 
5055 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5056                                     const ARMCPRegInfo *ri,
5057                                     uint64_t value)
5058 {
5059     /*
5060      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5061      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5062      * since we don't support flush-for-specific-ASID-only,
5063      * flush-last-level-only or inner/outer specific flushes.
5064      */
5065 
5066     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5067 }
5068 
5069 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5070                                      uint64_t value)
5071 {
5072     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5073                   tlb_force_broadcast(env));
5074 }
5075 
5076 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5077                                        const ARMCPRegInfo *ri,
5078                                        uint64_t value)
5079 {
5080     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5081 }
5082 #endif
5083 
5084 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5085                                       bool isread)
5086 {
5087     int cur_el = arm_current_el(env);
5088 
5089     if (cur_el < 2) {
5090         uint64_t hcr = arm_hcr_el2_eff(env);
5091 
5092         if (cur_el == 0) {
5093             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5094                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5095                     return CP_ACCESS_TRAP_EL2;
5096                 }
5097             } else {
5098                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5099                     return CP_ACCESS_TRAP;
5100                 }
5101                 if (hcr & HCR_TDZ) {
5102                     return CP_ACCESS_TRAP_EL2;
5103                 }
5104             }
5105         } else if (hcr & HCR_TDZ) {
5106             return CP_ACCESS_TRAP_EL2;
5107         }
5108     }
5109     return CP_ACCESS_OK;
5110 }
5111 
5112 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5113 {
5114     ARMCPU *cpu = env_archcpu(env);
5115     int dzp_bit = 1 << 4;
5116 
5117     /* DZP indicates whether DC ZVA access is allowed */
5118     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5119         dzp_bit = 0;
5120     }
5121     return cpu->dcz_blocksize | dzp_bit;
5122 }
5123 
5124 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5125                                     bool isread)
5126 {
5127     if (!(env->pstate & PSTATE_SP)) {
5128         /*
5129          * Access to SP_EL0 is undefined if it's being used as
5130          * the stack pointer.
5131          */
5132         return CP_ACCESS_TRAP_UNCATEGORIZED;
5133     }
5134     return CP_ACCESS_OK;
5135 }
5136 
5137 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5138 {
5139     return env->pstate & PSTATE_SP;
5140 }
5141 
5142 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5143 {
5144     update_spsel(env, val);
5145 }
5146 
5147 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5148                         uint64_t value)
5149 {
5150     ARMCPU *cpu = env_archcpu(env);
5151 
5152     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5153         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5154         value &= ~SCTLR_M;
5155     }
5156 
5157     /* ??? Lots of these bits are not implemented.  */
5158 
5159     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5160         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5161             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5162         } else {
5163             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5164                        SCTLR_ATA0 | SCTLR_ATA);
5165         }
5166     }
5167 
5168     if (raw_read(env, ri) == value) {
5169         /*
5170          * Skip the TLB flush if nothing actually changed; Linux likes
5171          * to do a lot of pointless SCTLR writes.
5172          */
5173         return;
5174     }
5175 
5176     raw_write(env, ri, value);
5177 
5178     /* This may enable/disable the MMU, so do a TLB flush.  */
5179     tlb_flush(CPU(cpu));
5180 
5181     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5182         /*
5183          * Normally we would always end the TB on an SCTLR write; see the
5184          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5185          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5186          * of hflags from the translator, so do it here.
5187          */
5188         arm_rebuild_hflags(env);
5189     }
5190 }
5191 
5192 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5193                            uint64_t value)
5194 {
5195     /*
5196      * Some MDCR_EL3 bits affect whether PMU counters are running:
5197      * if we are trying to change any of those then we must
5198      * bracket this update with PMU start/finish calls.
5199      */
5200     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5201 
5202     if (pmu_op) {
5203         pmu_op_start(env);
5204     }
5205     env->cp15.mdcr_el3 = value;
5206     if (pmu_op) {
5207         pmu_op_finish(env);
5208     }
5209 }
5210 
5211 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5212                        uint64_t value)
5213 {
5214     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5215     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5216 }
5217 
5218 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5219                            uint64_t value)
5220 {
5221     /*
5222      * Some MDCR_EL2 bits affect whether PMU counters are running:
5223      * if we are trying to change any of those then we must
5224      * bracket this update with PMU start/finish calls.
5225      */
5226     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5227 
5228     if (pmu_op) {
5229         pmu_op_start(env);
5230     }
5231     env->cp15.mdcr_el2 = value;
5232     if (pmu_op) {
5233         pmu_op_finish(env);
5234     }
5235 }
5236 
5237 #ifdef CONFIG_USER_ONLY
5238 /*
5239  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5240  * code to get around W^X restrictions, where one region is writable and the
5241  * other is executable.
5242  *
5243  * Since the executable region is never written to we cannot detect code
5244  * changes when running in user mode, and rely on the emulated JIT telling us
5245  * that the code has changed by executing this instruction.
5246  */
5247 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5248                           uint64_t value)
5249 {
5250     uint64_t icache_line_mask, start_address, end_address;
5251     const ARMCPU *cpu;
5252 
5253     cpu = env_archcpu(env);
5254 
5255     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5256     start_address = value & ~icache_line_mask;
5257     end_address = value | icache_line_mask;
5258 
5259     mmap_lock();
5260 
5261     tb_invalidate_phys_range(start_address, end_address);
5262 
5263     mmap_unlock();
5264 }
5265 #endif
5266 
5267 static const ARMCPRegInfo v8_cp_reginfo[] = {
5268     /*
5269      * Minimal set of EL0-visible registers. This will need to be expanded
5270      * significantly for system emulation of AArch64 CPUs.
5271      */
5272     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5273       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5274       .access = PL0_RW, .type = ARM_CP_NZCV },
5275     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5276       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5277       .type = ARM_CP_NO_RAW,
5278       .access = PL0_RW, .accessfn = aa64_daif_access,
5279       .fieldoffset = offsetof(CPUARMState, daif),
5280       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5281     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5282       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5283       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5284       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5285     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5286       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5287       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5288       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5289     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5290       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5291       .access = PL0_R, .type = ARM_CP_NO_RAW,
5292       .fgt = FGT_DCZID_EL0,
5293       .readfn = aa64_dczid_read },
5294     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5295       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5296       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5297 #ifndef CONFIG_USER_ONLY
5298       /* Avoid overhead of an access check that always passes in user-mode */
5299       .accessfn = aa64_zva_access,
5300       .fgt = FGT_DCZVA,
5301 #endif
5302     },
5303     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5304       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5305       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5306     /*
5307      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5308      * don't emulate caches.
5309      */
5310     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5311       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5312       .access = PL1_W, .type = ARM_CP_NOP,
5313       .fgt = FGT_ICIALLUIS,
5314       .accessfn = access_ticab },
5315     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5316       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5317       .access = PL1_W, .type = ARM_CP_NOP,
5318       .fgt = FGT_ICIALLU,
5319       .accessfn = access_tocu },
5320     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5321       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5322       .access = PL0_W,
5323       .fgt = FGT_ICIVAU,
5324       .accessfn = access_tocu,
5325 #ifdef CONFIG_USER_ONLY
5326       .type = ARM_CP_NO_RAW,
5327       .writefn = ic_ivau_write
5328 #else
5329       .type = ARM_CP_NOP
5330 #endif
5331     },
5332     /* Cache ops: all NOPs since we don't emulate caches */
5333     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5334       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5335       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5336       .fgt = FGT_DCIVAC,
5337       .type = ARM_CP_NOP },
5338     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5339       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5340       .fgt = FGT_DCISW,
5341       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5342     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5343       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5344       .access = PL0_W, .type = ARM_CP_NOP,
5345       .fgt = FGT_DCCVAC,
5346       .accessfn = aa64_cacheop_poc_access },
5347     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5348       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5349       .fgt = FGT_DCCSW,
5350       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5351     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5352       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5353       .access = PL0_W, .type = ARM_CP_NOP,
5354       .fgt = FGT_DCCVAU,
5355       .accessfn = access_tocu },
5356     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5357       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5358       .access = PL0_W, .type = ARM_CP_NOP,
5359       .fgt = FGT_DCCIVAC,
5360       .accessfn = aa64_cacheop_poc_access },
5361     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5362       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5363       .fgt = FGT_DCCISW,
5364       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5365     /* TLBI operations */
5366     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5367       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5368       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5369       .fgt = FGT_TLBIVMALLE1IS,
5370       .writefn = tlbi_aa64_vmalle1is_write },
5371     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5372       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5373       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5374       .fgt = FGT_TLBIVAE1IS,
5375       .writefn = tlbi_aa64_vae1is_write },
5376     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5377       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5378       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5379       .fgt = FGT_TLBIASIDE1IS,
5380       .writefn = tlbi_aa64_vmalle1is_write },
5381     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5382       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5383       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5384       .fgt = FGT_TLBIVAAE1IS,
5385       .writefn = tlbi_aa64_vae1is_write },
5386     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5387       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5388       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5389       .fgt = FGT_TLBIVALE1IS,
5390       .writefn = tlbi_aa64_vae1is_write },
5391     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5392       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5393       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5394       .fgt = FGT_TLBIVAALE1IS,
5395       .writefn = tlbi_aa64_vae1is_write },
5396     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5397       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5398       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5399       .fgt = FGT_TLBIVMALLE1,
5400       .writefn = tlbi_aa64_vmalle1_write },
5401     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5402       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5403       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5404       .fgt = FGT_TLBIVAE1,
5405       .writefn = tlbi_aa64_vae1_write },
5406     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5408       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5409       .fgt = FGT_TLBIASIDE1,
5410       .writefn = tlbi_aa64_vmalle1_write },
5411     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5412       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5413       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5414       .fgt = FGT_TLBIVAAE1,
5415       .writefn = tlbi_aa64_vae1_write },
5416     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5417       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5418       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5419       .fgt = FGT_TLBIVALE1,
5420       .writefn = tlbi_aa64_vae1_write },
5421     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5422       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5423       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5424       .fgt = FGT_TLBIVAALE1,
5425       .writefn = tlbi_aa64_vae1_write },
5426     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5427       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5428       .access = PL2_W, .type = ARM_CP_NO_RAW,
5429       .writefn = tlbi_aa64_ipas2e1is_write },
5430     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5431       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5432       .access = PL2_W, .type = ARM_CP_NO_RAW,
5433       .writefn = tlbi_aa64_ipas2e1is_write },
5434     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5435       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5436       .access = PL2_W, .type = ARM_CP_NO_RAW,
5437       .writefn = tlbi_aa64_alle1is_write },
5438     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5439       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5440       .access = PL2_W, .type = ARM_CP_NO_RAW,
5441       .writefn = tlbi_aa64_alle1is_write },
5442     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5443       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5444       .access = PL2_W, .type = ARM_CP_NO_RAW,
5445       .writefn = tlbi_aa64_ipas2e1_write },
5446     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5447       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5448       .access = PL2_W, .type = ARM_CP_NO_RAW,
5449       .writefn = tlbi_aa64_ipas2e1_write },
5450     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5452       .access = PL2_W, .type = ARM_CP_NO_RAW,
5453       .writefn = tlbi_aa64_alle1_write },
5454     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5455       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5456       .access = PL2_W, .type = ARM_CP_NO_RAW,
5457       .writefn = tlbi_aa64_alle1is_write },
5458 #ifndef CONFIG_USER_ONLY
5459     /* 64 bit address translation operations */
5460     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5462       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5463       .fgt = FGT_ATS1E1R,
5464       .writefn = ats_write64 },
5465     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5466       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5467       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5468       .fgt = FGT_ATS1E1W,
5469       .writefn = ats_write64 },
5470     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5471       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5472       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5473       .fgt = FGT_ATS1E0R,
5474       .writefn = ats_write64 },
5475     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5476       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5477       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5478       .fgt = FGT_ATS1E0W,
5479       .writefn = ats_write64 },
5480     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5482       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5483       .writefn = ats_write64 },
5484     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5485       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5486       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5487       .writefn = ats_write64 },
5488     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5489       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5490       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5491       .writefn = ats_write64 },
5492     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5493       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5494       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5495       .writefn = ats_write64 },
5496     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5497     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5498       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5499       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5500       .writefn = ats_write64 },
5501     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5502       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5503       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5504       .writefn = ats_write64 },
5505     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5506       .type = ARM_CP_ALIAS,
5507       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5508       .access = PL1_RW, .resetvalue = 0,
5509       .fgt = FGT_PAR_EL1,
5510       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5511       .writefn = par_write },
5512 #endif
5513     /* TLB invalidate last level of translation table walk */
5514     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5515       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5516       .writefn = tlbimva_is_write },
5517     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5518       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5519       .writefn = tlbimvaa_is_write },
5520     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5521       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5522       .writefn = tlbimva_write },
5523     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5524       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5525       .writefn = tlbimvaa_write },
5526     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5527       .type = ARM_CP_NO_RAW, .access = PL2_W,
5528       .writefn = tlbimva_hyp_write },
5529     { .name = "TLBIMVALHIS",
5530       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5531       .type = ARM_CP_NO_RAW, .access = PL2_W,
5532       .writefn = tlbimva_hyp_is_write },
5533     { .name = "TLBIIPAS2",
5534       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5535       .type = ARM_CP_NO_RAW, .access = PL2_W,
5536       .writefn = tlbiipas2_hyp_write },
5537     { .name = "TLBIIPAS2IS",
5538       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5539       .type = ARM_CP_NO_RAW, .access = PL2_W,
5540       .writefn = tlbiipas2is_hyp_write },
5541     { .name = "TLBIIPAS2L",
5542       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5543       .type = ARM_CP_NO_RAW, .access = PL2_W,
5544       .writefn = tlbiipas2_hyp_write },
5545     { .name = "TLBIIPAS2LIS",
5546       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5547       .type = ARM_CP_NO_RAW, .access = PL2_W,
5548       .writefn = tlbiipas2is_hyp_write },
5549     /* 32 bit cache operations */
5550     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5551       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5552     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5553       .type = ARM_CP_NOP, .access = PL1_W },
5554     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5555       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5556     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5557       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5558     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5559       .type = ARM_CP_NOP, .access = PL1_W },
5560     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5561       .type = ARM_CP_NOP, .access = PL1_W },
5562     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5563       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5564     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5565       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5566     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5567       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5568     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5569       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5570     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5571       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5572     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5573       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5574     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5575       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5576     /* MMU Domain access control / MPU write buffer control */
5577     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5578       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5579       .writefn = dacr_write, .raw_writefn = raw_write,
5580       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5581                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5582     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5583       .type = ARM_CP_ALIAS,
5584       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5585       .access = PL1_RW,
5586       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5587     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5588       .type = ARM_CP_ALIAS,
5589       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5590       .access = PL1_RW,
5591       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5592     /*
5593      * We rely on the access checks not allowing the guest to write to the
5594      * state field when SPSel indicates that it's being used as the stack
5595      * pointer.
5596      */
5597     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5598       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5599       .access = PL1_RW, .accessfn = sp_el0_access,
5600       .type = ARM_CP_ALIAS,
5601       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5602     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5603       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5604       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5605       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5606     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5608       .type = ARM_CP_NO_RAW,
5609       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5610     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5611       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5612       .access = PL2_RW,
5613       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5614       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5615     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5616       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5617       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5618       .writefn = dacr_write, .raw_writefn = raw_write,
5619       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5620     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5621       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5622       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5623       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5624     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5625       .type = ARM_CP_ALIAS,
5626       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5627       .access = PL2_RW,
5628       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5629     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5630       .type = ARM_CP_ALIAS,
5631       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5632       .access = PL2_RW,
5633       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5634     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5635       .type = ARM_CP_ALIAS,
5636       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5637       .access = PL2_RW,
5638       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5639     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5640       .type = ARM_CP_ALIAS,
5641       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5642       .access = PL2_RW,
5643       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5644     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5645       .type = ARM_CP_IO,
5646       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5647       .resetvalue = 0,
5648       .access = PL3_RW,
5649       .writefn = mdcr_el3_write,
5650       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5651     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5652       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5653       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5654       .writefn = sdcr_write,
5655       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5656 };
5657 
5658 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5659 {
5660     ARMCPU *cpu = env_archcpu(env);
5661 
5662     if (arm_feature(env, ARM_FEATURE_V8)) {
5663         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5664     } else {
5665         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5666     }
5667 
5668     if (arm_feature(env, ARM_FEATURE_EL3)) {
5669         valid_mask &= ~HCR_HCD;
5670     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5671         /*
5672          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5673          * However, if we're using the SMC PSCI conduit then QEMU is
5674          * effectively acting like EL3 firmware and so the guest at
5675          * EL2 should retain the ability to prevent EL1 from being
5676          * able to make SMC calls into the ersatz firmware, so in
5677          * that case HCR.TSC should be read/write.
5678          */
5679         valid_mask &= ~HCR_TSC;
5680     }
5681 
5682     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5683         if (cpu_isar_feature(aa64_vh, cpu)) {
5684             valid_mask |= HCR_E2H;
5685         }
5686         if (cpu_isar_feature(aa64_ras, cpu)) {
5687             valid_mask |= HCR_TERR | HCR_TEA;
5688         }
5689         if (cpu_isar_feature(aa64_lor, cpu)) {
5690             valid_mask |= HCR_TLOR;
5691         }
5692         if (cpu_isar_feature(aa64_pauth, cpu)) {
5693             valid_mask |= HCR_API | HCR_APK;
5694         }
5695         if (cpu_isar_feature(aa64_mte, cpu)) {
5696             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5697         }
5698         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5699             valid_mask |= HCR_ENSCXT;
5700         }
5701         if (cpu_isar_feature(aa64_fwb, cpu)) {
5702             valid_mask |= HCR_FWB;
5703         }
5704         if (cpu_isar_feature(aa64_rme, cpu)) {
5705             valid_mask |= HCR_GPF;
5706         }
5707     }
5708 
5709     if (cpu_isar_feature(any_evt, cpu)) {
5710         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5711     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5712         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5713     }
5714 
5715     /* Clear RES0 bits.  */
5716     value &= valid_mask;
5717 
5718     /*
5719      * These bits change the MMU setup:
5720      * HCR_VM enables stage 2 translation
5721      * HCR_PTW forbids certain page-table setups
5722      * HCR_DC disables stage1 and enables stage2 translation
5723      * HCR_DCT enables tagging on (disabled) stage1 translation
5724      * HCR_FWB changes the interpretation of stage2 descriptor bits
5725      */
5726     if ((env->cp15.hcr_el2 ^ value) &
5727         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5728         tlb_flush(CPU(cpu));
5729     }
5730     env->cp15.hcr_el2 = value;
5731 
5732     /*
5733      * Updates to VI and VF require us to update the status of
5734      * virtual interrupts, which are the logical OR of these bits
5735      * and the state of the input lines from the GIC. (This requires
5736      * that we have the iothread lock, which is done by marking the
5737      * reginfo structs as ARM_CP_IO.)
5738      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5739      * possible for it to be taken immediately, because VIRQ and
5740      * VFIQ are masked unless running at EL0 or EL1, and HCR
5741      * can only be written at EL2.
5742      */
5743     g_assert(qemu_mutex_iothread_locked());
5744     arm_cpu_update_virq(cpu);
5745     arm_cpu_update_vfiq(cpu);
5746     arm_cpu_update_vserr(cpu);
5747 }
5748 
5749 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5750 {
5751     do_hcr_write(env, value, 0);
5752 }
5753 
5754 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5755                           uint64_t value)
5756 {
5757     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5758     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5759     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5760 }
5761 
5762 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5763                          uint64_t value)
5764 {
5765     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5766     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5767     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5768 }
5769 
5770 /*
5771  * Return the effective value of HCR_EL2, at the given security state.
5772  * Bits that are not included here:
5773  * RW       (read from SCR_EL3.RW as needed)
5774  */
5775 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure)
5776 {
5777     uint64_t ret = env->cp15.hcr_el2;
5778 
5779     if (!arm_is_el2_enabled_secstate(env, secure)) {
5780         /*
5781          * "This register has no effect if EL2 is not enabled in the
5782          * current Security state".  This is ARMv8.4-SecEL2 speak for
5783          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5784          *
5785          * Prior to that, the language was "In an implementation that
5786          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5787          * as if this field is 0 for all purposes other than a direct
5788          * read or write access of HCR_EL2".  With lots of enumeration
5789          * on a per-field basis.  In current QEMU, this is condition
5790          * is arm_is_secure_below_el3.
5791          *
5792          * Since the v8.4 language applies to the entire register, and
5793          * appears to be backward compatible, use that.
5794          */
5795         return 0;
5796     }
5797 
5798     /*
5799      * For a cpu that supports both aarch64 and aarch32, we can set bits
5800      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5801      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5802      */
5803     if (!arm_el_is_aa64(env, 2)) {
5804         uint64_t aa32_valid;
5805 
5806         /*
5807          * These bits are up-to-date as of ARMv8.6.
5808          * For HCR, it's easiest to list just the 2 bits that are invalid.
5809          * For HCR2, list those that are valid.
5810          */
5811         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5812         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5813                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5814         ret &= aa32_valid;
5815     }
5816 
5817     if (ret & HCR_TGE) {
5818         /* These bits are up-to-date as of ARMv8.6.  */
5819         if (ret & HCR_E2H) {
5820             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5821                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5822                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5823                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5824                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5825                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5826         } else {
5827             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5828         }
5829         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5830                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5831                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5832                  HCR_TLOR);
5833     }
5834 
5835     return ret;
5836 }
5837 
5838 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5839 {
5840     if (arm_feature(env, ARM_FEATURE_M)) {
5841         return 0;
5842     }
5843     return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env));
5844 }
5845 
5846 /*
5847  * Corresponds to ARM pseudocode function ELIsInHost().
5848  */
5849 bool el_is_in_host(CPUARMState *env, int el)
5850 {
5851     uint64_t mask;
5852 
5853     /*
5854      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5855      * Perform the simplest bit tests first, and validate EL2 afterward.
5856      */
5857     if (el & 1) {
5858         return false; /* EL1 or EL3 */
5859     }
5860 
5861     /*
5862      * Note that hcr_write() checks isar_feature_aa64_vh(),
5863      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5864      */
5865     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5866     if ((env->cp15.hcr_el2 & mask) != mask) {
5867         return false;
5868     }
5869 
5870     /* TGE and/or E2H set: double check those bits are currently legal. */
5871     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5872 }
5873 
5874 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5875                        uint64_t value)
5876 {
5877     uint64_t valid_mask = 0;
5878 
5879     /* No features adding bits to HCRX are implemented. */
5880 
5881     /* Clear RES0 bits.  */
5882     env->cp15.hcrx_el2 = value & valid_mask;
5883 }
5884 
5885 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5886                                   bool isread)
5887 {
5888     if (arm_current_el(env) < 3
5889         && arm_feature(env, ARM_FEATURE_EL3)
5890         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5891         return CP_ACCESS_TRAP_EL3;
5892     }
5893     return CP_ACCESS_OK;
5894 }
5895 
5896 static const ARMCPRegInfo hcrx_el2_reginfo = {
5897     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5898     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5899     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5900     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5901 };
5902 
5903 /* Return the effective value of HCRX_EL2.  */
5904 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5905 {
5906     /*
5907      * The bits in this register behave as 0 for all purposes other than
5908      * direct reads of the register if:
5909      *   - EL2 is not enabled in the current security state,
5910      *   - SCR_EL3.HXEn is 0.
5911      */
5912     if (!arm_is_el2_enabled(env)
5913         || (arm_feature(env, ARM_FEATURE_EL3)
5914             && !(env->cp15.scr_el3 & SCR_HXEN))) {
5915         return 0;
5916     }
5917     return env->cp15.hcrx_el2;
5918 }
5919 
5920 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5921                            uint64_t value)
5922 {
5923     /*
5924      * For A-profile AArch32 EL3, if NSACR.CP10
5925      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5926      */
5927     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5928         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5929         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5930         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
5931     }
5932     env->cp15.cptr_el[2] = value;
5933 }
5934 
5935 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5936 {
5937     /*
5938      * For A-profile AArch32 EL3, if NSACR.CP10
5939      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5940      */
5941     uint64_t value = env->cp15.cptr_el[2];
5942 
5943     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5944         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5945         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
5946     }
5947     return value;
5948 }
5949 
5950 static const ARMCPRegInfo el2_cp_reginfo[] = {
5951     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5952       .type = ARM_CP_IO,
5953       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5954       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5955       .writefn = hcr_write, .raw_writefn = raw_write },
5956     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5957       .type = ARM_CP_ALIAS | ARM_CP_IO,
5958       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5959       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5960       .writefn = hcr_writelow },
5961     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5962       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5963       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5964     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5965       .type = ARM_CP_ALIAS,
5966       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5967       .access = PL2_RW,
5968       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5969     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5970       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5971       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5972     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5973       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5974       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5975     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5976       .type = ARM_CP_ALIAS,
5977       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5978       .access = PL2_RW,
5979       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5980     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5981       .type = ARM_CP_ALIAS,
5982       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5983       .access = PL2_RW,
5984       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5985     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5986       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5987       .access = PL2_RW, .writefn = vbar_write,
5988       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5989       .resetvalue = 0 },
5990     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5991       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5992       .access = PL3_RW, .type = ARM_CP_ALIAS,
5993       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5994     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5995       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5996       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5997       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5998       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5999     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6000       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6001       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6002       .resetvalue = 0 },
6003     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6004       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6005       .access = PL2_RW, .type = ARM_CP_ALIAS,
6006       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6007     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6008       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6009       .access = PL2_RW, .type = ARM_CP_CONST,
6010       .resetvalue = 0 },
6011     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6012     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6013       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6014       .access = PL2_RW, .type = ARM_CP_CONST,
6015       .resetvalue = 0 },
6016     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6017       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6018       .access = PL2_RW, .type = ARM_CP_CONST,
6019       .resetvalue = 0 },
6020     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6021       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6022       .access = PL2_RW, .type = ARM_CP_CONST,
6023       .resetvalue = 0 },
6024     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6025       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6026       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6027       .raw_writefn = raw_write,
6028       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6029     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6030       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6031       .type = ARM_CP_ALIAS,
6032       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6033       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6034     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6035       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6036       .access = PL2_RW,
6037       /* no .writefn needed as this can't cause an ASID change */
6038       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6039     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6040       .cp = 15, .opc1 = 6, .crm = 2,
6041       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6042       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6043       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6044       .writefn = vttbr_write, .raw_writefn = raw_write },
6045     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6046       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6047       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6048       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6049     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6050       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6051       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6052       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6053     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6054       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6055       .access = PL2_RW, .resetvalue = 0,
6056       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6057     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6058       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6059       .access = PL2_RW, .resetvalue = 0,
6060       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6061       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6062     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6063       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6064       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6065     { .name = "TLBIALLNSNH",
6066       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6067       .type = ARM_CP_NO_RAW, .access = PL2_W,
6068       .writefn = tlbiall_nsnh_write },
6069     { .name = "TLBIALLNSNHIS",
6070       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6071       .type = ARM_CP_NO_RAW, .access = PL2_W,
6072       .writefn = tlbiall_nsnh_is_write },
6073     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6074       .type = ARM_CP_NO_RAW, .access = PL2_W,
6075       .writefn = tlbiall_hyp_write },
6076     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6077       .type = ARM_CP_NO_RAW, .access = PL2_W,
6078       .writefn = tlbiall_hyp_is_write },
6079     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6080       .type = ARM_CP_NO_RAW, .access = PL2_W,
6081       .writefn = tlbimva_hyp_write },
6082     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6083       .type = ARM_CP_NO_RAW, .access = PL2_W,
6084       .writefn = tlbimva_hyp_is_write },
6085     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6086       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6087       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6088       .writefn = tlbi_aa64_alle2_write },
6089     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6090       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6091       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6092       .writefn = tlbi_aa64_vae2_write },
6093     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6094       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6095       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6096       .writefn = tlbi_aa64_vae2_write },
6097     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6098       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6099       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6100       .writefn = tlbi_aa64_alle2is_write },
6101     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6102       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6103       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6104       .writefn = tlbi_aa64_vae2is_write },
6105     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6106       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6107       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6108       .writefn = tlbi_aa64_vae2is_write },
6109 #ifndef CONFIG_USER_ONLY
6110     /*
6111      * Unlike the other EL2-related AT operations, these must
6112      * UNDEF from EL3 if EL2 is not implemented, which is why we
6113      * define them here rather than with the rest of the AT ops.
6114      */
6115     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6116       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6117       .access = PL2_W, .accessfn = at_s1e2_access,
6118       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6119       .writefn = ats_write64 },
6120     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6121       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6122       .access = PL2_W, .accessfn = at_s1e2_access,
6123       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6124       .writefn = ats_write64 },
6125     /*
6126      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6127      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6128      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6129      * to behave as if SCR.NS was 1.
6130      */
6131     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6132       .access = PL2_W,
6133       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6134     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6135       .access = PL2_W,
6136       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6137     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6138       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6139       /*
6140        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6141        * reset values as IMPDEF. We choose to reset to 3 to comply with
6142        * both ARMv7 and ARMv8.
6143        */
6144       .access = PL2_RW, .resetvalue = 3,
6145       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6146     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6147       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6148       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6149       .writefn = gt_cntvoff_write,
6150       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6151     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6152       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6153       .writefn = gt_cntvoff_write,
6154       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6155     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6156       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6157       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6158       .type = ARM_CP_IO, .access = PL2_RW,
6159       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6160     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6161       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6162       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6163       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6164     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6165       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6166       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6167       .resetfn = gt_hyp_timer_reset,
6168       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6169     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6170       .type = ARM_CP_IO,
6171       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6172       .access = PL2_RW,
6173       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6174       .resetvalue = 0,
6175       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6176 #endif
6177     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6178       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6179       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6180       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6181     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6182       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6183       .access = PL2_RW,
6184       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6185     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6186       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6187       .access = PL2_RW,
6188       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6189 };
6190 
6191 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6192     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6193       .type = ARM_CP_ALIAS | ARM_CP_IO,
6194       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6195       .access = PL2_RW,
6196       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6197       .writefn = hcr_writehigh },
6198 };
6199 
6200 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6201                                   bool isread)
6202 {
6203     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6204         return CP_ACCESS_OK;
6205     }
6206     return CP_ACCESS_TRAP_UNCATEGORIZED;
6207 }
6208 
6209 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6210     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6211       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6212       .access = PL2_RW, .accessfn = sel2_access,
6213       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6214     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6215       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6216       .access = PL2_RW, .accessfn = sel2_access,
6217       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6218 };
6219 
6220 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6221                                    bool isread)
6222 {
6223     /*
6224      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6225      * At Secure EL1 it traps to EL3 or EL2.
6226      */
6227     if (arm_current_el(env) == 3) {
6228         return CP_ACCESS_OK;
6229     }
6230     if (arm_is_secure_below_el3(env)) {
6231         if (env->cp15.scr_el3 & SCR_EEL2) {
6232             return CP_ACCESS_TRAP_EL2;
6233         }
6234         return CP_ACCESS_TRAP_EL3;
6235     }
6236     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6237     if (isread) {
6238         return CP_ACCESS_OK;
6239     }
6240     return CP_ACCESS_TRAP_UNCATEGORIZED;
6241 }
6242 
6243 static const ARMCPRegInfo el3_cp_reginfo[] = {
6244     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6245       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6246       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6247       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6248     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6249       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6250       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6251       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6252       .writefn = scr_write, .raw_writefn = raw_write },
6253     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6254       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6255       .access = PL3_RW, .resetvalue = 0,
6256       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6257     { .name = "SDER",
6258       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6259       .access = PL3_RW, .resetvalue = 0,
6260       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6261     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6262       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6263       .writefn = vbar_write, .resetvalue = 0,
6264       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6265     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6266       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6267       .access = PL3_RW, .resetvalue = 0,
6268       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6269     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6270       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6271       .access = PL3_RW,
6272       /* no .writefn needed as this can't cause an ASID change */
6273       .resetvalue = 0,
6274       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6275     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6276       .type = ARM_CP_ALIAS,
6277       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6278       .access = PL3_RW,
6279       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6280     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6281       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6282       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6283     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6284       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6285       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6286     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6287       .type = ARM_CP_ALIAS,
6288       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6289       .access = PL3_RW,
6290       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6291     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6292       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6293       .access = PL3_RW, .writefn = vbar_write,
6294       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6295       .resetvalue = 0 },
6296     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6297       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6298       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6299       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6300     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6301       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6302       .access = PL3_RW, .resetvalue = 0,
6303       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6304     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6305       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6306       .access = PL3_RW, .type = ARM_CP_CONST,
6307       .resetvalue = 0 },
6308     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6309       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6310       .access = PL3_RW, .type = ARM_CP_CONST,
6311       .resetvalue = 0 },
6312     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6313       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6314       .access = PL3_RW, .type = ARM_CP_CONST,
6315       .resetvalue = 0 },
6316     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6317       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6318       .access = PL3_W, .type = ARM_CP_NO_RAW,
6319       .writefn = tlbi_aa64_alle3is_write },
6320     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6321       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6322       .access = PL3_W, .type = ARM_CP_NO_RAW,
6323       .writefn = tlbi_aa64_vae3is_write },
6324     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6325       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6326       .access = PL3_W, .type = ARM_CP_NO_RAW,
6327       .writefn = tlbi_aa64_vae3is_write },
6328     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6329       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6330       .access = PL3_W, .type = ARM_CP_NO_RAW,
6331       .writefn = tlbi_aa64_alle3_write },
6332     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6333       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6334       .access = PL3_W, .type = ARM_CP_NO_RAW,
6335       .writefn = tlbi_aa64_vae3_write },
6336     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6337       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6338       .access = PL3_W, .type = ARM_CP_NO_RAW,
6339       .writefn = tlbi_aa64_vae3_write },
6340 };
6341 
6342 #ifndef CONFIG_USER_ONLY
6343 /* Test if system register redirection is to occur in the current state.  */
6344 static bool redirect_for_e2h(CPUARMState *env)
6345 {
6346     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6347 }
6348 
6349 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6350 {
6351     CPReadFn *readfn;
6352 
6353     if (redirect_for_e2h(env)) {
6354         /* Switch to the saved EL2 version of the register.  */
6355         ri = ri->opaque;
6356         readfn = ri->readfn;
6357     } else {
6358         readfn = ri->orig_readfn;
6359     }
6360     if (readfn == NULL) {
6361         readfn = raw_read;
6362     }
6363     return readfn(env, ri);
6364 }
6365 
6366 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6367                           uint64_t value)
6368 {
6369     CPWriteFn *writefn;
6370 
6371     if (redirect_for_e2h(env)) {
6372         /* Switch to the saved EL2 version of the register.  */
6373         ri = ri->opaque;
6374         writefn = ri->writefn;
6375     } else {
6376         writefn = ri->orig_writefn;
6377     }
6378     if (writefn == NULL) {
6379         writefn = raw_write;
6380     }
6381     writefn(env, ri, value);
6382 }
6383 
6384 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6385 {
6386     struct E2HAlias {
6387         uint32_t src_key, dst_key, new_key;
6388         const char *src_name, *dst_name, *new_name;
6389         bool (*feature)(const ARMISARegisters *id);
6390     };
6391 
6392 #define K(op0, op1, crn, crm, op2) \
6393     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6394 
6395     static const struct E2HAlias aliases[] = {
6396         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6397           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6398         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6399           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6400         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6401           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6402         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6403           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6404         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6405           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6406         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6407           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6408         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6409           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6410         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6411           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6412         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6413           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6414         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6415           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6416         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6417           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6418         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6419           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6420         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6421           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6422         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6423           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6424         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6425           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6426         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6427           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6428 
6429         /*
6430          * Note that redirection of ZCR is mentioned in the description
6431          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6432          * not in the summary table.
6433          */
6434         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6435           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6436         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6437           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6438 
6439         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6440           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6441 
6442         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6443           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6444           isar_feature_aa64_scxtnum },
6445 
6446         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6447         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6448     };
6449 #undef K
6450 
6451     size_t i;
6452 
6453     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6454         const struct E2HAlias *a = &aliases[i];
6455         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6456         bool ok;
6457 
6458         if (a->feature && !a->feature(&cpu->isar)) {
6459             continue;
6460         }
6461 
6462         src_reg = g_hash_table_lookup(cpu->cp_regs,
6463                                       (gpointer)(uintptr_t)a->src_key);
6464         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6465                                       (gpointer)(uintptr_t)a->dst_key);
6466         g_assert(src_reg != NULL);
6467         g_assert(dst_reg != NULL);
6468 
6469         /* Cross-compare names to detect typos in the keys.  */
6470         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6471         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6472 
6473         /* None of the core system registers use opaque; we will.  */
6474         g_assert(src_reg->opaque == NULL);
6475 
6476         /* Create alias before redirection so we dup the right data. */
6477         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6478 
6479         new_reg->name = a->new_name;
6480         new_reg->type |= ARM_CP_ALIAS;
6481         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6482         new_reg->access &= PL2_RW | PL3_RW;
6483 
6484         ok = g_hash_table_insert(cpu->cp_regs,
6485                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6486         g_assert(ok);
6487 
6488         src_reg->opaque = dst_reg;
6489         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6490         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6491         if (!src_reg->raw_readfn) {
6492             src_reg->raw_readfn = raw_read;
6493         }
6494         if (!src_reg->raw_writefn) {
6495             src_reg->raw_writefn = raw_write;
6496         }
6497         src_reg->readfn = el2_e2h_read;
6498         src_reg->writefn = el2_e2h_write;
6499     }
6500 }
6501 #endif
6502 
6503 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6504                                      bool isread)
6505 {
6506     int cur_el = arm_current_el(env);
6507 
6508     if (cur_el < 2) {
6509         uint64_t hcr = arm_hcr_el2_eff(env);
6510 
6511         if (cur_el == 0) {
6512             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6513                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6514                     return CP_ACCESS_TRAP_EL2;
6515                 }
6516             } else {
6517                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6518                     return CP_ACCESS_TRAP;
6519                 }
6520                 if (hcr & HCR_TID2) {
6521                     return CP_ACCESS_TRAP_EL2;
6522                 }
6523             }
6524         } else if (hcr & HCR_TID2) {
6525             return CP_ACCESS_TRAP_EL2;
6526         }
6527     }
6528 
6529     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6530         return CP_ACCESS_TRAP_EL2;
6531     }
6532 
6533     return CP_ACCESS_OK;
6534 }
6535 
6536 /*
6537  * Check for traps to RAS registers, which are controlled
6538  * by HCR_EL2.TERR and SCR_EL3.TERR.
6539  */
6540 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6541                                   bool isread)
6542 {
6543     int el = arm_current_el(env);
6544 
6545     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6546         return CP_ACCESS_TRAP_EL2;
6547     }
6548     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6549         return CP_ACCESS_TRAP_EL3;
6550     }
6551     return CP_ACCESS_OK;
6552 }
6553 
6554 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6555 {
6556     int el = arm_current_el(env);
6557 
6558     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6559         return env->cp15.vdisr_el2;
6560     }
6561     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6562         return 0; /* RAZ/WI */
6563     }
6564     return env->cp15.disr_el1;
6565 }
6566 
6567 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6568 {
6569     int el = arm_current_el(env);
6570 
6571     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6572         env->cp15.vdisr_el2 = val;
6573         return;
6574     }
6575     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6576         return; /* RAZ/WI */
6577     }
6578     env->cp15.disr_el1 = val;
6579 }
6580 
6581 /*
6582  * Minimal RAS implementation with no Error Records.
6583  * Which means that all of the Error Record registers:
6584  *   ERXADDR_EL1
6585  *   ERXCTLR_EL1
6586  *   ERXFR_EL1
6587  *   ERXMISC0_EL1
6588  *   ERXMISC1_EL1
6589  *   ERXMISC2_EL1
6590  *   ERXMISC3_EL1
6591  *   ERXPFGCDN_EL1  (RASv1p1)
6592  *   ERXPFGCTL_EL1  (RASv1p1)
6593  *   ERXPFGF_EL1    (RASv1p1)
6594  *   ERXSTATUS_EL1
6595  * and
6596  *   ERRSELR_EL1
6597  * may generate UNDEFINED, which is the effect we get by not
6598  * listing them at all.
6599  *
6600  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6601  * is higher priority than FGT-to-EL2 so we do not need to list them
6602  * in order to check for an FGT.
6603  */
6604 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6605     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6606       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6607       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6608       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6609     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6610       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6611       .access = PL1_R, .accessfn = access_terr,
6612       .fgt = FGT_ERRIDR_EL1,
6613       .type = ARM_CP_CONST, .resetvalue = 0 },
6614     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6615       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6616       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6617     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6618       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6619       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6620 };
6621 
6622 /*
6623  * Return the exception level to which exceptions should be taken
6624  * via SVEAccessTrap.  This excludes the check for whether the exception
6625  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6626  * be found by testing 0 < fp_exception_el < sve_exception_el.
6627  *
6628  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6629  * pseudocode does *not* separate out the FP trap checks, but has them
6630  * all in one function.
6631  */
6632 int sve_exception_el(CPUARMState *env, int el)
6633 {
6634 #ifndef CONFIG_USER_ONLY
6635     if (el <= 1 && !el_is_in_host(env, el)) {
6636         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6637         case 1:
6638             if (el != 0) {
6639                 break;
6640             }
6641             /* fall through */
6642         case 0:
6643         case 2:
6644             return 1;
6645         }
6646     }
6647 
6648     if (el <= 2 && arm_is_el2_enabled(env)) {
6649         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6650         if (env->cp15.hcr_el2 & HCR_E2H) {
6651             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6652             case 1:
6653                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6654                     break;
6655                 }
6656                 /* fall through */
6657             case 0:
6658             case 2:
6659                 return 2;
6660             }
6661         } else {
6662             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6663                 return 2;
6664             }
6665         }
6666     }
6667 
6668     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6669     if (arm_feature(env, ARM_FEATURE_EL3)
6670         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6671         return 3;
6672     }
6673 #endif
6674     return 0;
6675 }
6676 
6677 /*
6678  * Return the exception level to which exceptions should be taken for SME.
6679  * C.f. the ARM pseudocode function CheckSMEAccess.
6680  */
6681 int sme_exception_el(CPUARMState *env, int el)
6682 {
6683 #ifndef CONFIG_USER_ONLY
6684     if (el <= 1 && !el_is_in_host(env, el)) {
6685         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6686         case 1:
6687             if (el != 0) {
6688                 break;
6689             }
6690             /* fall through */
6691         case 0:
6692         case 2:
6693             return 1;
6694         }
6695     }
6696 
6697     if (el <= 2 && arm_is_el2_enabled(env)) {
6698         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6699         if (env->cp15.hcr_el2 & HCR_E2H) {
6700             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6701             case 1:
6702                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6703                     break;
6704                 }
6705                 /* fall through */
6706             case 0:
6707             case 2:
6708                 return 2;
6709             }
6710         } else {
6711             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6712                 return 2;
6713             }
6714         }
6715     }
6716 
6717     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6718     if (arm_feature(env, ARM_FEATURE_EL3)
6719         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6720         return 3;
6721     }
6722 #endif
6723     return 0;
6724 }
6725 
6726 /*
6727  * Given that SVE is enabled, return the vector length for EL.
6728  */
6729 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6730 {
6731     ARMCPU *cpu = env_archcpu(env);
6732     uint64_t *cr = env->vfp.zcr_el;
6733     uint32_t map = cpu->sve_vq.map;
6734     uint32_t len = ARM_MAX_VQ - 1;
6735 
6736     if (sm) {
6737         cr = env->vfp.smcr_el;
6738         map = cpu->sme_vq.map;
6739     }
6740 
6741     if (el <= 1 && !el_is_in_host(env, el)) {
6742         len = MIN(len, 0xf & (uint32_t)cr[1]);
6743     }
6744     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6745         len = MIN(len, 0xf & (uint32_t)cr[2]);
6746     }
6747     if (arm_feature(env, ARM_FEATURE_EL3)) {
6748         len = MIN(len, 0xf & (uint32_t)cr[3]);
6749     }
6750 
6751     map &= MAKE_64BIT_MASK(0, len + 1);
6752     if (map != 0) {
6753         return 31 - clz32(map);
6754     }
6755 
6756     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6757     assert(sm);
6758     return ctz32(cpu->sme_vq.map);
6759 }
6760 
6761 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6762 {
6763     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6764 }
6765 
6766 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6767                       uint64_t value)
6768 {
6769     int cur_el = arm_current_el(env);
6770     int old_len = sve_vqm1_for_el(env, cur_el);
6771     int new_len;
6772 
6773     /* Bits other than [3:0] are RAZ/WI.  */
6774     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6775     raw_write(env, ri, value & 0xf);
6776 
6777     /*
6778      * Because we arrived here, we know both FP and SVE are enabled;
6779      * otherwise we would have trapped access to the ZCR_ELn register.
6780      */
6781     new_len = sve_vqm1_for_el(env, cur_el);
6782     if (new_len < old_len) {
6783         aarch64_sve_narrow_vq(env, new_len + 1);
6784     }
6785 }
6786 
6787 static const ARMCPRegInfo zcr_reginfo[] = {
6788     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6789       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6790       .access = PL1_RW, .type = ARM_CP_SVE,
6791       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6792       .writefn = zcr_write, .raw_writefn = raw_write },
6793     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6794       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6795       .access = PL2_RW, .type = ARM_CP_SVE,
6796       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6797       .writefn = zcr_write, .raw_writefn = raw_write },
6798     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6799       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6800       .access = PL3_RW, .type = ARM_CP_SVE,
6801       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6802       .writefn = zcr_write, .raw_writefn = raw_write },
6803 };
6804 
6805 #ifdef TARGET_AARCH64
6806 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6807                                     bool isread)
6808 {
6809     int el = arm_current_el(env);
6810 
6811     if (el == 0) {
6812         uint64_t sctlr = arm_sctlr(env, el);
6813         if (!(sctlr & SCTLR_EnTP2)) {
6814             return CP_ACCESS_TRAP;
6815         }
6816     }
6817     /* TODO: FEAT_FGT */
6818     if (el < 3
6819         && arm_feature(env, ARM_FEATURE_EL3)
6820         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6821         return CP_ACCESS_TRAP_EL3;
6822     }
6823     return CP_ACCESS_OK;
6824 }
6825 
6826 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6827                                  bool isread)
6828 {
6829     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6830     if (arm_current_el(env) < 3
6831         && arm_feature(env, ARM_FEATURE_EL3)
6832         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6833         return CP_ACCESS_TRAP_EL3;
6834     }
6835     return CP_ACCESS_OK;
6836 }
6837 
6838 /* ResetSVEState */
6839 static void arm_reset_sve_state(CPUARMState *env)
6840 {
6841     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6842     /* Recall that FFR is stored as pregs[16]. */
6843     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6844     vfp_set_fpcr(env, 0x0800009f);
6845 }
6846 
6847 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6848 {
6849     uint64_t change = (env->svcr ^ new) & mask;
6850 
6851     if (change == 0) {
6852         return;
6853     }
6854     env->svcr ^= change;
6855 
6856     if (change & R_SVCR_SM_MASK) {
6857         arm_reset_sve_state(env);
6858     }
6859 
6860     /*
6861      * ResetSMEState.
6862      *
6863      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6864      * on enable: while disabled, the storage is inaccessible and the
6865      * value does not matter.  We're not saving the storage in vmstate
6866      * when disabled either.
6867      */
6868     if (change & new & R_SVCR_ZA_MASK) {
6869         memset(env->zarray, 0, sizeof(env->zarray));
6870     }
6871 
6872     if (tcg_enabled()) {
6873         arm_rebuild_hflags(env);
6874     }
6875 }
6876 
6877 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6878                        uint64_t value)
6879 {
6880     aarch64_set_svcr(env, value, -1);
6881 }
6882 
6883 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6884                        uint64_t value)
6885 {
6886     int cur_el = arm_current_el(env);
6887     int old_len = sve_vqm1_for_el(env, cur_el);
6888     int new_len;
6889 
6890     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6891     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6892     raw_write(env, ri, value);
6893 
6894     /*
6895      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6896      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6897      * current values for simplicity.  But for QEMU internals, we must still
6898      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6899      * above aarch64_sve_narrow_vq.
6900      */
6901     new_len = sve_vqm1_for_el(env, cur_el);
6902     if (new_len < old_len) {
6903         aarch64_sve_narrow_vq(env, new_len + 1);
6904     }
6905 }
6906 
6907 static const ARMCPRegInfo sme_reginfo[] = {
6908     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
6909       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
6910       .access = PL0_RW, .accessfn = access_tpidr2,
6911       .fgt = FGT_NTPIDR2_EL0,
6912       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
6913     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
6914       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
6915       .access = PL0_RW, .type = ARM_CP_SME,
6916       .fieldoffset = offsetof(CPUARMState, svcr),
6917       .writefn = svcr_write, .raw_writefn = raw_write },
6918     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
6919       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
6920       .access = PL1_RW, .type = ARM_CP_SME,
6921       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
6922       .writefn = smcr_write, .raw_writefn = raw_write },
6923     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
6924       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
6925       .access = PL2_RW, .type = ARM_CP_SME,
6926       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
6927       .writefn = smcr_write, .raw_writefn = raw_write },
6928     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
6929       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
6930       .access = PL3_RW, .type = ARM_CP_SME,
6931       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
6932       .writefn = smcr_write, .raw_writefn = raw_write },
6933     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
6934       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
6935       .access = PL1_R, .accessfn = access_aa64_tid1,
6936       /*
6937        * IMPLEMENTOR = 0 (software)
6938        * REVISION    = 0 (implementation defined)
6939        * SMPS        = 0 (no streaming execution priority in QEMU)
6940        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
6941        */
6942       .type = ARM_CP_CONST, .resetvalue = 0, },
6943     /*
6944      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
6945      */
6946     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
6947       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
6948       .access = PL1_RW, .accessfn = access_esm,
6949       .fgt = FGT_NSMPRI_EL1,
6950       .type = ARM_CP_CONST, .resetvalue = 0 },
6951     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
6952       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
6953       .access = PL2_RW, .accessfn = access_esm,
6954       .type = ARM_CP_CONST, .resetvalue = 0 },
6955 };
6956 
6957 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
6958                                   uint64_t value)
6959 {
6960     CPUState *cs = env_cpu(env);
6961 
6962     tlb_flush(cs);
6963 }
6964 
6965 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6966                         uint64_t value)
6967 {
6968     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
6969     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
6970         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
6971         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
6972 
6973     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
6974 }
6975 
6976 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
6977 {
6978     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
6979                                      env_archcpu(env)->reset_l0gptsz);
6980 }
6981 
6982 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
6983                                     uint64_t value)
6984 {
6985     CPUState *cs = env_cpu(env);
6986 
6987     tlb_flush_all_cpus_synced(cs);
6988 }
6989 
6990 static const ARMCPRegInfo rme_reginfo[] = {
6991     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
6992       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
6993       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
6994       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
6995     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
6996       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
6997       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
6998     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
6999       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7000       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7001     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7002       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7003       .access = PL3_W, .type = ARM_CP_NO_RAW,
7004       .writefn = tlbi_aa64_paall_write },
7005     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7006       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7007       .access = PL3_W, .type = ARM_CP_NO_RAW,
7008       .writefn = tlbi_aa64_paallos_write },
7009     /*
7010      * QEMU does not have a way to invalidate by physical address, thus
7011      * invalidating a range of physical addresses is accomplished by
7012      * flushing all tlb entries in the outer shareable domain,
7013      * just like PAALLOS.
7014      */
7015     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7016       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7017       .access = PL3_W, .type = ARM_CP_NO_RAW,
7018       .writefn = tlbi_aa64_paallos_write },
7019     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7020       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7021       .access = PL3_W, .type = ARM_CP_NO_RAW,
7022       .writefn = tlbi_aa64_paallos_write },
7023     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7024       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7025       .access = PL3_W, .type = ARM_CP_NOP },
7026 };
7027 
7028 static const ARMCPRegInfo rme_mte_reginfo[] = {
7029     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7030       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7031       .access = PL3_W, .type = ARM_CP_NOP },
7032 };
7033 #endif /* TARGET_AARCH64 */
7034 
7035 static void define_pmu_regs(ARMCPU *cpu)
7036 {
7037     /*
7038      * v7 performance monitor control register: same implementor
7039      * field as main ID register, and we implement four counters in
7040      * addition to the cycle count register.
7041      */
7042     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7043     ARMCPRegInfo pmcr = {
7044         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7045         .access = PL0_RW,
7046         .fgt = FGT_PMCR_EL0,
7047         .type = ARM_CP_IO | ARM_CP_ALIAS,
7048         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7049         .accessfn = pmreg_access, .writefn = pmcr_write,
7050         .raw_writefn = raw_write,
7051     };
7052     ARMCPRegInfo pmcr64 = {
7053         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7054         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7055         .access = PL0_RW, .accessfn = pmreg_access,
7056         .fgt = FGT_PMCR_EL0,
7057         .type = ARM_CP_IO,
7058         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7059         .resetvalue = cpu->isar.reset_pmcr_el0,
7060         .writefn = pmcr_write, .raw_writefn = raw_write,
7061     };
7062 
7063     define_one_arm_cp_reg(cpu, &pmcr);
7064     define_one_arm_cp_reg(cpu, &pmcr64);
7065     for (i = 0; i < pmcrn; i++) {
7066         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7067         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7068         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7069         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7070         ARMCPRegInfo pmev_regs[] = {
7071             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7072               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7073               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7074               .fgt = FGT_PMEVCNTRN_EL0,
7075               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7076               .accessfn = pmreg_access_xevcntr },
7077             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7078               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7079               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7080               .type = ARM_CP_IO,
7081               .fgt = FGT_PMEVCNTRN_EL0,
7082               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7083               .raw_readfn = pmevcntr_rawread,
7084               .raw_writefn = pmevcntr_rawwrite },
7085             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7086               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7087               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7088               .fgt = FGT_PMEVTYPERN_EL0,
7089               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7090               .accessfn = pmreg_access },
7091             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7092               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7093               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7094               .fgt = FGT_PMEVTYPERN_EL0,
7095               .type = ARM_CP_IO,
7096               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7097               .raw_writefn = pmevtyper_rawwrite },
7098         };
7099         define_arm_cp_regs(cpu, pmev_regs);
7100         g_free(pmevcntr_name);
7101         g_free(pmevcntr_el0_name);
7102         g_free(pmevtyper_name);
7103         g_free(pmevtyper_el0_name);
7104     }
7105     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7106         ARMCPRegInfo v81_pmu_regs[] = {
7107             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7108               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7109               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7110               .fgt = FGT_PMCEIDN_EL0,
7111               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7112             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7113               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7114               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7115               .fgt = FGT_PMCEIDN_EL0,
7116               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7117         };
7118         define_arm_cp_regs(cpu, v81_pmu_regs);
7119     }
7120     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7121         static const ARMCPRegInfo v84_pmmir = {
7122             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7123             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7124             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7125             .fgt = FGT_PMMIR_EL1,
7126             .resetvalue = 0
7127         };
7128         define_one_arm_cp_reg(cpu, &v84_pmmir);
7129     }
7130 }
7131 
7132 #ifndef CONFIG_USER_ONLY
7133 /*
7134  * We don't know until after realize whether there's a GICv3
7135  * attached, and that is what registers the gicv3 sysregs.
7136  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7137  * at runtime.
7138  */
7139 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7140 {
7141     ARMCPU *cpu = env_archcpu(env);
7142     uint64_t pfr1 = cpu->isar.id_pfr1;
7143 
7144     if (env->gicv3state) {
7145         pfr1 |= 1 << 28;
7146     }
7147     return pfr1;
7148 }
7149 
7150 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7151 {
7152     ARMCPU *cpu = env_archcpu(env);
7153     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7154 
7155     if (env->gicv3state) {
7156         pfr0 |= 1 << 24;
7157     }
7158     return pfr0;
7159 }
7160 #endif
7161 
7162 /*
7163  * Shared logic between LORID and the rest of the LOR* registers.
7164  * Secure state exclusion has already been dealt with.
7165  */
7166 static CPAccessResult access_lor_ns(CPUARMState *env,
7167                                     const ARMCPRegInfo *ri, bool isread)
7168 {
7169     int el = arm_current_el(env);
7170 
7171     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7172         return CP_ACCESS_TRAP_EL2;
7173     }
7174     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7175         return CP_ACCESS_TRAP_EL3;
7176     }
7177     return CP_ACCESS_OK;
7178 }
7179 
7180 static CPAccessResult access_lor_other(CPUARMState *env,
7181                                        const ARMCPRegInfo *ri, bool isread)
7182 {
7183     if (arm_is_secure_below_el3(env)) {
7184         /* Access denied in secure mode.  */
7185         return CP_ACCESS_TRAP;
7186     }
7187     return access_lor_ns(env, ri, isread);
7188 }
7189 
7190 /*
7191  * A trivial implementation of ARMv8.1-LOR leaves all of these
7192  * registers fixed at 0, which indicates that there are zero
7193  * supported Limited Ordering regions.
7194  */
7195 static const ARMCPRegInfo lor_reginfo[] = {
7196     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7197       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7198       .access = PL1_RW, .accessfn = access_lor_other,
7199       .fgt = FGT_LORSA_EL1,
7200       .type = ARM_CP_CONST, .resetvalue = 0 },
7201     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7202       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7203       .access = PL1_RW, .accessfn = access_lor_other,
7204       .fgt = FGT_LOREA_EL1,
7205       .type = ARM_CP_CONST, .resetvalue = 0 },
7206     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7207       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7208       .access = PL1_RW, .accessfn = access_lor_other,
7209       .fgt = FGT_LORN_EL1,
7210       .type = ARM_CP_CONST, .resetvalue = 0 },
7211     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7212       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7213       .access = PL1_RW, .accessfn = access_lor_other,
7214       .fgt = FGT_LORC_EL1,
7215       .type = ARM_CP_CONST, .resetvalue = 0 },
7216     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7217       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7218       .access = PL1_R, .accessfn = access_lor_ns,
7219       .fgt = FGT_LORID_EL1,
7220       .type = ARM_CP_CONST, .resetvalue = 0 },
7221 };
7222 
7223 #ifdef TARGET_AARCH64
7224 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7225                                    bool isread)
7226 {
7227     int el = arm_current_el(env);
7228 
7229     if (el < 2 &&
7230         arm_is_el2_enabled(env) &&
7231         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7232         return CP_ACCESS_TRAP_EL2;
7233     }
7234     if (el < 3 &&
7235         arm_feature(env, ARM_FEATURE_EL3) &&
7236         !(env->cp15.scr_el3 & SCR_APK)) {
7237         return CP_ACCESS_TRAP_EL3;
7238     }
7239     return CP_ACCESS_OK;
7240 }
7241 
7242 static const ARMCPRegInfo pauth_reginfo[] = {
7243     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7244       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7245       .access = PL1_RW, .accessfn = access_pauth,
7246       .fgt = FGT_APDAKEY,
7247       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7248     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7249       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7250       .access = PL1_RW, .accessfn = access_pauth,
7251       .fgt = FGT_APDAKEY,
7252       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7253     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7254       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7255       .access = PL1_RW, .accessfn = access_pauth,
7256       .fgt = FGT_APDBKEY,
7257       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7258     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7259       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7260       .access = PL1_RW, .accessfn = access_pauth,
7261       .fgt = FGT_APDBKEY,
7262       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7263     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7264       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7265       .access = PL1_RW, .accessfn = access_pauth,
7266       .fgt = FGT_APGAKEY,
7267       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7268     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7269       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7270       .access = PL1_RW, .accessfn = access_pauth,
7271       .fgt = FGT_APGAKEY,
7272       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7273     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7274       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7275       .access = PL1_RW, .accessfn = access_pauth,
7276       .fgt = FGT_APIAKEY,
7277       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7278     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7279       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7280       .access = PL1_RW, .accessfn = access_pauth,
7281       .fgt = FGT_APIAKEY,
7282       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7283     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7284       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7285       .access = PL1_RW, .accessfn = access_pauth,
7286       .fgt = FGT_APIBKEY,
7287       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7288     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7289       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7290       .access = PL1_RW, .accessfn = access_pauth,
7291       .fgt = FGT_APIBKEY,
7292       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7293 };
7294 
7295 static const ARMCPRegInfo tlbirange_reginfo[] = {
7296     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7297       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7298       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7299       .fgt = FGT_TLBIRVAE1IS,
7300       .writefn = tlbi_aa64_rvae1is_write },
7301     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7302       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7303       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7304       .fgt = FGT_TLBIRVAAE1IS,
7305       .writefn = tlbi_aa64_rvae1is_write },
7306    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7307       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7308       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7309       .fgt = FGT_TLBIRVALE1IS,
7310       .writefn = tlbi_aa64_rvae1is_write },
7311     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7312       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7313       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7314       .fgt = FGT_TLBIRVAALE1IS,
7315       .writefn = tlbi_aa64_rvae1is_write },
7316     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7317       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7318       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7319       .fgt = FGT_TLBIRVAE1OS,
7320       .writefn = tlbi_aa64_rvae1is_write },
7321     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7322       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7323       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7324       .fgt = FGT_TLBIRVAAE1OS,
7325       .writefn = tlbi_aa64_rvae1is_write },
7326    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7327       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7328       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7329       .fgt = FGT_TLBIRVALE1OS,
7330       .writefn = tlbi_aa64_rvae1is_write },
7331     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7332       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7333       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7334       .fgt = FGT_TLBIRVAALE1OS,
7335       .writefn = tlbi_aa64_rvae1is_write },
7336     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7337       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7338       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7339       .fgt = FGT_TLBIRVAE1,
7340       .writefn = tlbi_aa64_rvae1_write },
7341     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7342       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7343       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7344       .fgt = FGT_TLBIRVAAE1,
7345       .writefn = tlbi_aa64_rvae1_write },
7346    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7347       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7348       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7349       .fgt = FGT_TLBIRVALE1,
7350       .writefn = tlbi_aa64_rvae1_write },
7351     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7352       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7353       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7354       .fgt = FGT_TLBIRVAALE1,
7355       .writefn = tlbi_aa64_rvae1_write },
7356     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7357       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7358       .access = PL2_W, .type = ARM_CP_NO_RAW,
7359       .writefn = tlbi_aa64_ripas2e1is_write },
7360     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7361       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7362       .access = PL2_W, .type = ARM_CP_NO_RAW,
7363       .writefn = tlbi_aa64_ripas2e1is_write },
7364     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7365       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7366       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7367       .writefn = tlbi_aa64_rvae2is_write },
7368    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7369       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7370       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7371       .writefn = tlbi_aa64_rvae2is_write },
7372     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7373       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7374       .access = PL2_W, .type = ARM_CP_NO_RAW,
7375       .writefn = tlbi_aa64_ripas2e1_write },
7376     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7377       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7378       .access = PL2_W, .type = ARM_CP_NO_RAW,
7379       .writefn = tlbi_aa64_ripas2e1_write },
7380    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7381       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7382       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7383       .writefn = tlbi_aa64_rvae2is_write },
7384    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7385       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7386       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7387       .writefn = tlbi_aa64_rvae2is_write },
7388     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7389       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7390       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7391       .writefn = tlbi_aa64_rvae2_write },
7392    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7393       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7394       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7395       .writefn = tlbi_aa64_rvae2_write },
7396    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7397       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7398       .access = PL3_W, .type = ARM_CP_NO_RAW,
7399       .writefn = tlbi_aa64_rvae3is_write },
7400    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7401       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7402       .access = PL3_W, .type = ARM_CP_NO_RAW,
7403       .writefn = tlbi_aa64_rvae3is_write },
7404    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7405       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7406       .access = PL3_W, .type = ARM_CP_NO_RAW,
7407       .writefn = tlbi_aa64_rvae3is_write },
7408    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7409       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7410       .access = PL3_W, .type = ARM_CP_NO_RAW,
7411       .writefn = tlbi_aa64_rvae3is_write },
7412    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7414       .access = PL3_W, .type = ARM_CP_NO_RAW,
7415       .writefn = tlbi_aa64_rvae3_write },
7416    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7417       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7418       .access = PL3_W, .type = ARM_CP_NO_RAW,
7419       .writefn = tlbi_aa64_rvae3_write },
7420 };
7421 
7422 static const ARMCPRegInfo tlbios_reginfo[] = {
7423     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7424       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7425       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7426       .fgt = FGT_TLBIVMALLE1OS,
7427       .writefn = tlbi_aa64_vmalle1is_write },
7428     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7429       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7430       .fgt = FGT_TLBIVAE1OS,
7431       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7432       .writefn = tlbi_aa64_vae1is_write },
7433     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7434       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7435       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7436       .fgt = FGT_TLBIASIDE1OS,
7437       .writefn = tlbi_aa64_vmalle1is_write },
7438     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7439       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7440       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7441       .fgt = FGT_TLBIVAAE1OS,
7442       .writefn = tlbi_aa64_vae1is_write },
7443     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7444       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7445       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7446       .fgt = FGT_TLBIVALE1OS,
7447       .writefn = tlbi_aa64_vae1is_write },
7448     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7449       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7450       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7451       .fgt = FGT_TLBIVAALE1OS,
7452       .writefn = tlbi_aa64_vae1is_write },
7453     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7454       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7455       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7456       .writefn = tlbi_aa64_alle2is_write },
7457     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7458       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7459       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7460       .writefn = tlbi_aa64_vae2is_write },
7461    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7462       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7463       .access = PL2_W, .type = ARM_CP_NO_RAW,
7464       .writefn = tlbi_aa64_alle1is_write },
7465     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7466       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7467       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7468       .writefn = tlbi_aa64_vae2is_write },
7469     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7470       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7471       .access = PL2_W, .type = ARM_CP_NO_RAW,
7472       .writefn = tlbi_aa64_alle1is_write },
7473     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7474       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7475       .access = PL2_W, .type = ARM_CP_NOP },
7476     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7477       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7478       .access = PL2_W, .type = ARM_CP_NOP },
7479     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7480       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7481       .access = PL2_W, .type = ARM_CP_NOP },
7482     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7483       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7484       .access = PL2_W, .type = ARM_CP_NOP },
7485     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7486       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7487       .access = PL3_W, .type = ARM_CP_NO_RAW,
7488       .writefn = tlbi_aa64_alle3is_write },
7489     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7490       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7491       .access = PL3_W, .type = ARM_CP_NO_RAW,
7492       .writefn = tlbi_aa64_vae3is_write },
7493     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7494       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7495       .access = PL3_W, .type = ARM_CP_NO_RAW,
7496       .writefn = tlbi_aa64_vae3is_write },
7497 };
7498 
7499 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7500 {
7501     Error *err = NULL;
7502     uint64_t ret;
7503 
7504     /* Success sets NZCV = 0000.  */
7505     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7506 
7507     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7508         /*
7509          * ??? Failed, for unknown reasons in the crypto subsystem.
7510          * The best we can do is log the reason and return the
7511          * timed-out indication to the guest.  There is no reason
7512          * we know to expect this failure to be transitory, so the
7513          * guest may well hang retrying the operation.
7514          */
7515         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7516                       ri->name, error_get_pretty(err));
7517         error_free(err);
7518 
7519         env->ZF = 0; /* NZCF = 0100 */
7520         return 0;
7521     }
7522     return ret;
7523 }
7524 
7525 /* We do not support re-seeding, so the two registers operate the same.  */
7526 static const ARMCPRegInfo rndr_reginfo[] = {
7527     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7528       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7529       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7530       .access = PL0_R, .readfn = rndr_readfn },
7531     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7532       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7533       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7534       .access = PL0_R, .readfn = rndr_readfn },
7535 };
7536 
7537 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7538                           uint64_t value)
7539 {
7540     ARMCPU *cpu = env_archcpu(env);
7541     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7542     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7543     uint64_t vaddr_in = (uint64_t) value;
7544     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7545     void *haddr;
7546     int mem_idx = cpu_mmu_index(env, false);
7547 
7548     /* This won't be crossing page boundaries */
7549     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7550     if (haddr) {
7551 #ifndef CONFIG_USER_ONLY
7552 
7553         ram_addr_t offset;
7554         MemoryRegion *mr;
7555 
7556         /* RCU lock is already being held */
7557         mr = memory_region_from_host(haddr, &offset);
7558 
7559         if (mr) {
7560             memory_region_writeback(mr, offset, dline_size);
7561         }
7562 #endif /*CONFIG_USER_ONLY*/
7563     }
7564 }
7565 
7566 static const ARMCPRegInfo dcpop_reg[] = {
7567     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7568       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7569       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7570       .fgt = FGT_DCCVAP,
7571       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7572 };
7573 
7574 static const ARMCPRegInfo dcpodp_reg[] = {
7575     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7576       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7577       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7578       .fgt = FGT_DCCVADP,
7579       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7580 };
7581 
7582 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7583                                        bool isread)
7584 {
7585     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7586         return CP_ACCESS_TRAP_EL2;
7587     }
7588 
7589     return CP_ACCESS_OK;
7590 }
7591 
7592 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7593                                  bool isread)
7594 {
7595     int el = arm_current_el(env);
7596 
7597     if (el < 2 && arm_is_el2_enabled(env)) {
7598         uint64_t hcr = arm_hcr_el2_eff(env);
7599         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7600             return CP_ACCESS_TRAP_EL2;
7601         }
7602     }
7603     if (el < 3 &&
7604         arm_feature(env, ARM_FEATURE_EL3) &&
7605         !(env->cp15.scr_el3 & SCR_ATA)) {
7606         return CP_ACCESS_TRAP_EL3;
7607     }
7608     return CP_ACCESS_OK;
7609 }
7610 
7611 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7612 {
7613     return env->pstate & PSTATE_TCO;
7614 }
7615 
7616 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7617 {
7618     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7619 }
7620 
7621 static const ARMCPRegInfo mte_reginfo[] = {
7622     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7623       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7624       .access = PL1_RW, .accessfn = access_mte,
7625       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7626     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7627       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7628       .access = PL1_RW, .accessfn = access_mte,
7629       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7630     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7631       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7632       .access = PL2_RW, .accessfn = access_mte,
7633       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7634     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7635       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7636       .access = PL3_RW,
7637       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7638     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7639       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7640       .access = PL1_RW, .accessfn = access_mte,
7641       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7642     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7643       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7644       .access = PL1_RW, .accessfn = access_mte,
7645       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7646     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
7647       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
7648       .access = PL1_R, .accessfn = access_aa64_tid5,
7649       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
7650     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7651       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7652       .type = ARM_CP_NO_RAW,
7653       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7654     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7655       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7656       .type = ARM_CP_NOP, .access = PL1_W,
7657       .fgt = FGT_DCIVAC,
7658       .accessfn = aa64_cacheop_poc_access },
7659     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7660       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7661       .fgt = FGT_DCISW,
7662       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7663     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7664       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7665       .type = ARM_CP_NOP, .access = PL1_W,
7666       .fgt = FGT_DCIVAC,
7667       .accessfn = aa64_cacheop_poc_access },
7668     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7669       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7670       .fgt = FGT_DCISW,
7671       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7672     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7673       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7674       .fgt = FGT_DCCSW,
7675       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7676     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7677       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7678       .fgt = FGT_DCCSW,
7679       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7680     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7681       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7682       .fgt = FGT_DCCISW,
7683       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7684     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7685       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7686       .fgt = FGT_DCCISW,
7687       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7688 };
7689 
7690 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7691     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7692       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7693       .type = ARM_CP_CONST, .access = PL0_RW, },
7694 };
7695 
7696 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7697     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7698       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7699       .type = ARM_CP_NOP, .access = PL0_W,
7700       .fgt = FGT_DCCVAC,
7701       .accessfn = aa64_cacheop_poc_access },
7702     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7703       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7704       .type = ARM_CP_NOP, .access = PL0_W,
7705       .fgt = FGT_DCCVAC,
7706       .accessfn = aa64_cacheop_poc_access },
7707     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7708       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7709       .type = ARM_CP_NOP, .access = PL0_W,
7710       .fgt = FGT_DCCVAP,
7711       .accessfn = aa64_cacheop_poc_access },
7712     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7713       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7714       .type = ARM_CP_NOP, .access = PL0_W,
7715       .fgt = FGT_DCCVAP,
7716       .accessfn = aa64_cacheop_poc_access },
7717     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7718       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7719       .type = ARM_CP_NOP, .access = PL0_W,
7720       .fgt = FGT_DCCVADP,
7721       .accessfn = aa64_cacheop_poc_access },
7722     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7723       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7724       .type = ARM_CP_NOP, .access = PL0_W,
7725       .fgt = FGT_DCCVADP,
7726       .accessfn = aa64_cacheop_poc_access },
7727     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7728       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7729       .type = ARM_CP_NOP, .access = PL0_W,
7730       .fgt = FGT_DCCIVAC,
7731       .accessfn = aa64_cacheop_poc_access },
7732     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7733       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7734       .type = ARM_CP_NOP, .access = PL0_W,
7735       .fgt = FGT_DCCIVAC,
7736       .accessfn = aa64_cacheop_poc_access },
7737     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7738       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7739       .access = PL0_W, .type = ARM_CP_DC_GVA,
7740 #ifndef CONFIG_USER_ONLY
7741       /* Avoid overhead of an access check that always passes in user-mode */
7742       .accessfn = aa64_zva_access,
7743       .fgt = FGT_DCZVA,
7744 #endif
7745     },
7746     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7747       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7748       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7749 #ifndef CONFIG_USER_ONLY
7750       /* Avoid overhead of an access check that always passes in user-mode */
7751       .accessfn = aa64_zva_access,
7752       .fgt = FGT_DCZVA,
7753 #endif
7754     },
7755 };
7756 
7757 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7758                                      bool isread)
7759 {
7760     uint64_t hcr = arm_hcr_el2_eff(env);
7761     int el = arm_current_el(env);
7762 
7763     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7764         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7765             if (hcr & HCR_TGE) {
7766                 return CP_ACCESS_TRAP_EL2;
7767             }
7768             return CP_ACCESS_TRAP;
7769         }
7770     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7771         return CP_ACCESS_TRAP_EL2;
7772     }
7773     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7774         return CP_ACCESS_TRAP_EL2;
7775     }
7776     if (el < 3
7777         && arm_feature(env, ARM_FEATURE_EL3)
7778         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7779         return CP_ACCESS_TRAP_EL3;
7780     }
7781     return CP_ACCESS_OK;
7782 }
7783 
7784 static const ARMCPRegInfo scxtnum_reginfo[] = {
7785     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7786       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7787       .access = PL0_RW, .accessfn = access_scxtnum,
7788       .fgt = FGT_SCXTNUM_EL0,
7789       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7790     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7791       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7792       .access = PL1_RW, .accessfn = access_scxtnum,
7793       .fgt = FGT_SCXTNUM_EL1,
7794       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7795     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7796       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7797       .access = PL2_RW, .accessfn = access_scxtnum,
7798       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7799     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7800       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7801       .access = PL3_RW,
7802       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7803 };
7804 
7805 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7806                                  bool isread)
7807 {
7808     if (arm_current_el(env) == 2 &&
7809         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7810         return CP_ACCESS_TRAP_EL3;
7811     }
7812     return CP_ACCESS_OK;
7813 }
7814 
7815 static const ARMCPRegInfo fgt_reginfo[] = {
7816     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7817       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7818       .access = PL2_RW, .accessfn = access_fgt,
7819       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7820     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7821       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7822       .access = PL2_RW, .accessfn = access_fgt,
7823       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7824     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7825       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7826       .access = PL2_RW, .accessfn = access_fgt,
7827       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7828     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7829       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7830       .access = PL2_RW, .accessfn = access_fgt,
7831       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7832     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7833       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7834       .access = PL2_RW, .accessfn = access_fgt,
7835       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7836 };
7837 #endif /* TARGET_AARCH64 */
7838 
7839 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7840                                      bool isread)
7841 {
7842     int el = arm_current_el(env);
7843 
7844     if (el == 0) {
7845         uint64_t sctlr = arm_sctlr(env, el);
7846         if (!(sctlr & SCTLR_EnRCTX)) {
7847             return CP_ACCESS_TRAP;
7848         }
7849     } else if (el == 1) {
7850         uint64_t hcr = arm_hcr_el2_eff(env);
7851         if (hcr & HCR_NV) {
7852             return CP_ACCESS_TRAP_EL2;
7853         }
7854     }
7855     return CP_ACCESS_OK;
7856 }
7857 
7858 static const ARMCPRegInfo predinv_reginfo[] = {
7859     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7860       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7861       .fgt = FGT_CFPRCTX,
7862       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7863     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7864       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7865       .fgt = FGT_DVPRCTX,
7866       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7867     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7868       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7869       .fgt = FGT_CPPRCTX,
7870       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7871     /*
7872      * Note the AArch32 opcodes have a different OPC1.
7873      */
7874     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7875       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7876       .fgt = FGT_CFPRCTX,
7877       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7878     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7879       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7880       .fgt = FGT_DVPRCTX,
7881       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7882     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7883       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7884       .fgt = FGT_CPPRCTX,
7885       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7886 };
7887 
7888 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7889 {
7890     /* Read the high 32 bits of the current CCSIDR */
7891     return extract64(ccsidr_read(env, ri), 32, 32);
7892 }
7893 
7894 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7895     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7896       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7897       .access = PL1_R,
7898       .accessfn = access_tid4,
7899       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7900 };
7901 
7902 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7903                                        bool isread)
7904 {
7905     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7906         return CP_ACCESS_TRAP_EL2;
7907     }
7908 
7909     return CP_ACCESS_OK;
7910 }
7911 
7912 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7913                                        bool isread)
7914 {
7915     if (arm_feature(env, ARM_FEATURE_V8)) {
7916         return access_aa64_tid3(env, ri, isread);
7917     }
7918 
7919     return CP_ACCESS_OK;
7920 }
7921 
7922 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7923                                      bool isread)
7924 {
7925     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7926         return CP_ACCESS_TRAP_EL2;
7927     }
7928 
7929     return CP_ACCESS_OK;
7930 }
7931 
7932 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
7933                                         const ARMCPRegInfo *ri, bool isread)
7934 {
7935     /*
7936      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
7937      * in v7A, not in v8A.
7938      */
7939     if (!arm_feature(env, ARM_FEATURE_V8) &&
7940         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
7941         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
7942         return CP_ACCESS_TRAP_EL2;
7943     }
7944     return CP_ACCESS_OK;
7945 }
7946 
7947 static const ARMCPRegInfo jazelle_regs[] = {
7948     { .name = "JIDR",
7949       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7950       .access = PL1_R, .accessfn = access_jazelle,
7951       .type = ARM_CP_CONST, .resetvalue = 0 },
7952     { .name = "JOSCR",
7953       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7954       .accessfn = access_joscr_jmcr,
7955       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7956     { .name = "JMCR",
7957       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7958       .accessfn = access_joscr_jmcr,
7959       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7960 };
7961 
7962 static const ARMCPRegInfo contextidr_el2 = {
7963     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7964     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7965     .access = PL2_RW,
7966     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
7967 };
7968 
7969 static const ARMCPRegInfo vhe_reginfo[] = {
7970     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7971       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7972       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7973       .raw_writefn = raw_write,
7974       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7975 #ifndef CONFIG_USER_ONLY
7976     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7977       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7978       .fieldoffset =
7979         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7980       .type = ARM_CP_IO, .access = PL2_RW,
7981       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7982     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7983       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7984       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7985       .resetfn = gt_hv_timer_reset,
7986       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7987     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7988       .type = ARM_CP_IO,
7989       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7990       .access = PL2_RW,
7991       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7992       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7993     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7994       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7995       .type = ARM_CP_IO | ARM_CP_ALIAS,
7996       .access = PL2_RW, .accessfn = e2h_access,
7997       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7998       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7999     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8000       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8001       .type = ARM_CP_IO | ARM_CP_ALIAS,
8002       .access = PL2_RW, .accessfn = e2h_access,
8003       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8004       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8005     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8006       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8007       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8008       .access = PL2_RW, .accessfn = e2h_access,
8009       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8010     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8011       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8012       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8013       .access = PL2_RW, .accessfn = e2h_access,
8014       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8015     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8016       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8017       .type = ARM_CP_IO | ARM_CP_ALIAS,
8018       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8019       .access = PL2_RW, .accessfn = e2h_access,
8020       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8021     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8022       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8023       .type = ARM_CP_IO | ARM_CP_ALIAS,
8024       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8025       .access = PL2_RW, .accessfn = e2h_access,
8026       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8027 #endif
8028 };
8029 
8030 #ifndef CONFIG_USER_ONLY
8031 static const ARMCPRegInfo ats1e1_reginfo[] = {
8032     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8033       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8034       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8035       .fgt = FGT_ATS1E1RP,
8036       .writefn = ats_write64 },
8037     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8038       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8039       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8040       .fgt = FGT_ATS1E1WP,
8041       .writefn = ats_write64 },
8042 };
8043 
8044 static const ARMCPRegInfo ats1cp_reginfo[] = {
8045     { .name = "ATS1CPRP",
8046       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8047       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8048       .writefn = ats_write },
8049     { .name = "ATS1CPWP",
8050       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8051       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8052       .writefn = ats_write },
8053 };
8054 #endif
8055 
8056 /*
8057  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8058  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8059  * is non-zero, which is never for ARMv7, optionally in ARMv8
8060  * and mandatorily for ARMv8.2 and up.
8061  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8062  * implementation is RAZ/WI we can ignore this detail, as we
8063  * do for ACTLR.
8064  */
8065 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8066     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8067       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8068       .access = PL1_RW, .accessfn = access_tacr,
8069       .type = ARM_CP_CONST, .resetvalue = 0 },
8070     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8071       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8072       .access = PL2_RW, .type = ARM_CP_CONST,
8073       .resetvalue = 0 },
8074 };
8075 
8076 void register_cp_regs_for_features(ARMCPU *cpu)
8077 {
8078     /* Register all the coprocessor registers based on feature bits */
8079     CPUARMState *env = &cpu->env;
8080     if (arm_feature(env, ARM_FEATURE_M)) {
8081         /* M profile has no coprocessor registers */
8082         return;
8083     }
8084 
8085     define_arm_cp_regs(cpu, cp_reginfo);
8086     if (!arm_feature(env, ARM_FEATURE_V8)) {
8087         /*
8088          * Must go early as it is full of wildcards that may be
8089          * overridden by later definitions.
8090          */
8091         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8092     }
8093 
8094     if (arm_feature(env, ARM_FEATURE_V6)) {
8095         /* The ID registers all have impdef reset values */
8096         ARMCPRegInfo v6_idregs[] = {
8097             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8098               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8099               .access = PL1_R, .type = ARM_CP_CONST,
8100               .accessfn = access_aa32_tid3,
8101               .resetvalue = cpu->isar.id_pfr0 },
8102             /*
8103              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8104              * the value of the GIC field until after we define these regs.
8105              */
8106             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8107               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8108               .access = PL1_R, .type = ARM_CP_NO_RAW,
8109               .accessfn = access_aa32_tid3,
8110 #ifdef CONFIG_USER_ONLY
8111               .type = ARM_CP_CONST,
8112               .resetvalue = cpu->isar.id_pfr1,
8113 #else
8114               .type = ARM_CP_NO_RAW,
8115               .accessfn = access_aa32_tid3,
8116               .readfn = id_pfr1_read,
8117               .writefn = arm_cp_write_ignore
8118 #endif
8119             },
8120             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8121               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8122               .access = PL1_R, .type = ARM_CP_CONST,
8123               .accessfn = access_aa32_tid3,
8124               .resetvalue = cpu->isar.id_dfr0 },
8125             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8127               .access = PL1_R, .type = ARM_CP_CONST,
8128               .accessfn = access_aa32_tid3,
8129               .resetvalue = cpu->id_afr0 },
8130             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8131               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8132               .access = PL1_R, .type = ARM_CP_CONST,
8133               .accessfn = access_aa32_tid3,
8134               .resetvalue = cpu->isar.id_mmfr0 },
8135             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8137               .access = PL1_R, .type = ARM_CP_CONST,
8138               .accessfn = access_aa32_tid3,
8139               .resetvalue = cpu->isar.id_mmfr1 },
8140             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8141               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8142               .access = PL1_R, .type = ARM_CP_CONST,
8143               .accessfn = access_aa32_tid3,
8144               .resetvalue = cpu->isar.id_mmfr2 },
8145             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8146               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8147               .access = PL1_R, .type = ARM_CP_CONST,
8148               .accessfn = access_aa32_tid3,
8149               .resetvalue = cpu->isar.id_mmfr3 },
8150             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8151               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8152               .access = PL1_R, .type = ARM_CP_CONST,
8153               .accessfn = access_aa32_tid3,
8154               .resetvalue = cpu->isar.id_isar0 },
8155             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8156               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8157               .access = PL1_R, .type = ARM_CP_CONST,
8158               .accessfn = access_aa32_tid3,
8159               .resetvalue = cpu->isar.id_isar1 },
8160             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8161               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8162               .access = PL1_R, .type = ARM_CP_CONST,
8163               .accessfn = access_aa32_tid3,
8164               .resetvalue = cpu->isar.id_isar2 },
8165             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8166               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8167               .access = PL1_R, .type = ARM_CP_CONST,
8168               .accessfn = access_aa32_tid3,
8169               .resetvalue = cpu->isar.id_isar3 },
8170             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8171               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8172               .access = PL1_R, .type = ARM_CP_CONST,
8173               .accessfn = access_aa32_tid3,
8174               .resetvalue = cpu->isar.id_isar4 },
8175             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8176               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8177               .access = PL1_R, .type = ARM_CP_CONST,
8178               .accessfn = access_aa32_tid3,
8179               .resetvalue = cpu->isar.id_isar5 },
8180             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8181               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8182               .access = PL1_R, .type = ARM_CP_CONST,
8183               .accessfn = access_aa32_tid3,
8184               .resetvalue = cpu->isar.id_mmfr4 },
8185             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8186               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8187               .access = PL1_R, .type = ARM_CP_CONST,
8188               .accessfn = access_aa32_tid3,
8189               .resetvalue = cpu->isar.id_isar6 },
8190         };
8191         define_arm_cp_regs(cpu, v6_idregs);
8192         define_arm_cp_regs(cpu, v6_cp_reginfo);
8193     } else {
8194         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8195     }
8196     if (arm_feature(env, ARM_FEATURE_V6K)) {
8197         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8198     }
8199     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8200         !arm_feature(env, ARM_FEATURE_PMSA)) {
8201         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8202     }
8203     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8204         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8205     }
8206     if (arm_feature(env, ARM_FEATURE_V7)) {
8207         ARMCPRegInfo clidr = {
8208             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8209             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8210             .access = PL1_R, .type = ARM_CP_CONST,
8211             .accessfn = access_tid4,
8212             .fgt = FGT_CLIDR_EL1,
8213             .resetvalue = cpu->clidr
8214         };
8215         define_one_arm_cp_reg(cpu, &clidr);
8216         define_arm_cp_regs(cpu, v7_cp_reginfo);
8217         define_debug_regs(cpu);
8218         define_pmu_regs(cpu);
8219     } else {
8220         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8221     }
8222     if (arm_feature(env, ARM_FEATURE_V8)) {
8223         /*
8224          * v8 ID registers, which all have impdef reset values.
8225          * Note that within the ID register ranges the unused slots
8226          * must all RAZ, not UNDEF; future architecture versions may
8227          * define new registers here.
8228          * ID registers which are AArch64 views of the AArch32 ID registers
8229          * which already existed in v6 and v7 are handled elsewhere,
8230          * in v6_idregs[].
8231          */
8232         int i;
8233         ARMCPRegInfo v8_idregs[] = {
8234             /*
8235              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8236              * emulation because we don't know the right value for the
8237              * GIC field until after we define these regs.
8238              */
8239             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8240               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8241               .access = PL1_R,
8242 #ifdef CONFIG_USER_ONLY
8243               .type = ARM_CP_CONST,
8244               .resetvalue = cpu->isar.id_aa64pfr0
8245 #else
8246               .type = ARM_CP_NO_RAW,
8247               .accessfn = access_aa64_tid3,
8248               .readfn = id_aa64pfr0_read,
8249               .writefn = arm_cp_write_ignore
8250 #endif
8251             },
8252             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8253               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8254               .access = PL1_R, .type = ARM_CP_CONST,
8255               .accessfn = access_aa64_tid3,
8256               .resetvalue = cpu->isar.id_aa64pfr1},
8257             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8258               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8259               .access = PL1_R, .type = ARM_CP_CONST,
8260               .accessfn = access_aa64_tid3,
8261               .resetvalue = 0 },
8262             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8263               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8264               .access = PL1_R, .type = ARM_CP_CONST,
8265               .accessfn = access_aa64_tid3,
8266               .resetvalue = 0 },
8267             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8268               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8269               .access = PL1_R, .type = ARM_CP_CONST,
8270               .accessfn = access_aa64_tid3,
8271               .resetvalue = cpu->isar.id_aa64zfr0 },
8272             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8274               .access = PL1_R, .type = ARM_CP_CONST,
8275               .accessfn = access_aa64_tid3,
8276               .resetvalue = cpu->isar.id_aa64smfr0 },
8277             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8278               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8279               .access = PL1_R, .type = ARM_CP_CONST,
8280               .accessfn = access_aa64_tid3,
8281               .resetvalue = 0 },
8282             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8283               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8284               .access = PL1_R, .type = ARM_CP_CONST,
8285               .accessfn = access_aa64_tid3,
8286               .resetvalue = 0 },
8287             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8288               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8289               .access = PL1_R, .type = ARM_CP_CONST,
8290               .accessfn = access_aa64_tid3,
8291               .resetvalue = cpu->isar.id_aa64dfr0 },
8292             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8293               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8294               .access = PL1_R, .type = ARM_CP_CONST,
8295               .accessfn = access_aa64_tid3,
8296               .resetvalue = cpu->isar.id_aa64dfr1 },
8297             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8298               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8299               .access = PL1_R, .type = ARM_CP_CONST,
8300               .accessfn = access_aa64_tid3,
8301               .resetvalue = 0 },
8302             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8303               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8304               .access = PL1_R, .type = ARM_CP_CONST,
8305               .accessfn = access_aa64_tid3,
8306               .resetvalue = 0 },
8307             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8308               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8309               .access = PL1_R, .type = ARM_CP_CONST,
8310               .accessfn = access_aa64_tid3,
8311               .resetvalue = cpu->id_aa64afr0 },
8312             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8313               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8314               .access = PL1_R, .type = ARM_CP_CONST,
8315               .accessfn = access_aa64_tid3,
8316               .resetvalue = cpu->id_aa64afr1 },
8317             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8318               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8319               .access = PL1_R, .type = ARM_CP_CONST,
8320               .accessfn = access_aa64_tid3,
8321               .resetvalue = 0 },
8322             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8323               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8324               .access = PL1_R, .type = ARM_CP_CONST,
8325               .accessfn = access_aa64_tid3,
8326               .resetvalue = 0 },
8327             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8328               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8329               .access = PL1_R, .type = ARM_CP_CONST,
8330               .accessfn = access_aa64_tid3,
8331               .resetvalue = cpu->isar.id_aa64isar0 },
8332             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8333               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8334               .access = PL1_R, .type = ARM_CP_CONST,
8335               .accessfn = access_aa64_tid3,
8336               .resetvalue = cpu->isar.id_aa64isar1 },
8337             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8338               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8339               .access = PL1_R, .type = ARM_CP_CONST,
8340               .accessfn = access_aa64_tid3,
8341               .resetvalue = 0 },
8342             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8343               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8344               .access = PL1_R, .type = ARM_CP_CONST,
8345               .accessfn = access_aa64_tid3,
8346               .resetvalue = 0 },
8347             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8348               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8349               .access = PL1_R, .type = ARM_CP_CONST,
8350               .accessfn = access_aa64_tid3,
8351               .resetvalue = 0 },
8352             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8353               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8354               .access = PL1_R, .type = ARM_CP_CONST,
8355               .accessfn = access_aa64_tid3,
8356               .resetvalue = 0 },
8357             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8358               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8359               .access = PL1_R, .type = ARM_CP_CONST,
8360               .accessfn = access_aa64_tid3,
8361               .resetvalue = 0 },
8362             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8363               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8364               .access = PL1_R, .type = ARM_CP_CONST,
8365               .accessfn = access_aa64_tid3,
8366               .resetvalue = 0 },
8367             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8368               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8369               .access = PL1_R, .type = ARM_CP_CONST,
8370               .accessfn = access_aa64_tid3,
8371               .resetvalue = cpu->isar.id_aa64mmfr0 },
8372             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8373               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8374               .access = PL1_R, .type = ARM_CP_CONST,
8375               .accessfn = access_aa64_tid3,
8376               .resetvalue = cpu->isar.id_aa64mmfr1 },
8377             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8378               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8379               .access = PL1_R, .type = ARM_CP_CONST,
8380               .accessfn = access_aa64_tid3,
8381               .resetvalue = cpu->isar.id_aa64mmfr2 },
8382             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8383               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8384               .access = PL1_R, .type = ARM_CP_CONST,
8385               .accessfn = access_aa64_tid3,
8386               .resetvalue = 0 },
8387             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8388               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8389               .access = PL1_R, .type = ARM_CP_CONST,
8390               .accessfn = access_aa64_tid3,
8391               .resetvalue = 0 },
8392             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8393               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8394               .access = PL1_R, .type = ARM_CP_CONST,
8395               .accessfn = access_aa64_tid3,
8396               .resetvalue = 0 },
8397             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8398               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8399               .access = PL1_R, .type = ARM_CP_CONST,
8400               .accessfn = access_aa64_tid3,
8401               .resetvalue = 0 },
8402             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8403               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8404               .access = PL1_R, .type = ARM_CP_CONST,
8405               .accessfn = access_aa64_tid3,
8406               .resetvalue = 0 },
8407             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8408               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8409               .access = PL1_R, .type = ARM_CP_CONST,
8410               .accessfn = access_aa64_tid3,
8411               .resetvalue = cpu->isar.mvfr0 },
8412             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8413               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8414               .access = PL1_R, .type = ARM_CP_CONST,
8415               .accessfn = access_aa64_tid3,
8416               .resetvalue = cpu->isar.mvfr1 },
8417             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8418               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8419               .access = PL1_R, .type = ARM_CP_CONST,
8420               .accessfn = access_aa64_tid3,
8421               .resetvalue = cpu->isar.mvfr2 },
8422             /*
8423              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8424              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8425              * as RAZ, since it is in the "reserved for future ID
8426              * registers, RAZ" part of the AArch32 encoding space.
8427              */
8428             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8429               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8430               .access = PL1_R, .type = ARM_CP_CONST,
8431               .accessfn = access_aa64_tid3,
8432               .resetvalue = 0 },
8433             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8434               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8435               .access = PL1_R, .type = ARM_CP_CONST,
8436               .accessfn = access_aa64_tid3,
8437               .resetvalue = 0 },
8438             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8439               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8440               .access = PL1_R, .type = ARM_CP_CONST,
8441               .accessfn = access_aa64_tid3,
8442               .resetvalue = 0 },
8443             /*
8444              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8445              * they're also RAZ for AArch64, and in v8 are gradually
8446              * being filled with AArch64-view-of-AArch32-ID-register
8447              * for new ID registers.
8448              */
8449             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8450               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8451               .access = PL1_R, .type = ARM_CP_CONST,
8452               .accessfn = access_aa64_tid3,
8453               .resetvalue = 0 },
8454             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8455               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8456               .access = PL1_R, .type = ARM_CP_CONST,
8457               .accessfn = access_aa64_tid3,
8458               .resetvalue = cpu->isar.id_pfr2 },
8459             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8460               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8461               .access = PL1_R, .type = ARM_CP_CONST,
8462               .accessfn = access_aa64_tid3,
8463               .resetvalue = cpu->isar.id_dfr1 },
8464             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8465               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8466               .access = PL1_R, .type = ARM_CP_CONST,
8467               .accessfn = access_aa64_tid3,
8468               .resetvalue = cpu->isar.id_mmfr5 },
8469             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8470               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8471               .access = PL1_R, .type = ARM_CP_CONST,
8472               .accessfn = access_aa64_tid3,
8473               .resetvalue = 0 },
8474             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8475               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8476               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8477               .fgt = FGT_PMCEIDN_EL0,
8478               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8479             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8480               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8481               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8482               .fgt = FGT_PMCEIDN_EL0,
8483               .resetvalue = cpu->pmceid0 },
8484             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8485               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8486               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8487               .fgt = FGT_PMCEIDN_EL0,
8488               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8489             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8490               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8491               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8492               .fgt = FGT_PMCEIDN_EL0,
8493               .resetvalue = cpu->pmceid1 },
8494         };
8495 #ifdef CONFIG_USER_ONLY
8496         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8497             { .name = "ID_AA64PFR0_EL1",
8498               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8499                                R_ID_AA64PFR0_ADVSIMD_MASK |
8500                                R_ID_AA64PFR0_SVE_MASK |
8501                                R_ID_AA64PFR0_DIT_MASK,
8502               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8503                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8504             { .name = "ID_AA64PFR1_EL1",
8505               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8506                                R_ID_AA64PFR1_SSBS_MASK |
8507                                R_ID_AA64PFR1_MTE_MASK |
8508                                R_ID_AA64PFR1_SME_MASK },
8509             { .name = "ID_AA64PFR*_EL1_RESERVED",
8510               .is_glob = true },
8511             { .name = "ID_AA64ZFR0_EL1",
8512               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8513                                R_ID_AA64ZFR0_AES_MASK |
8514                                R_ID_AA64ZFR0_BITPERM_MASK |
8515                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8516                                R_ID_AA64ZFR0_SHA3_MASK |
8517                                R_ID_AA64ZFR0_SM4_MASK |
8518                                R_ID_AA64ZFR0_I8MM_MASK |
8519                                R_ID_AA64ZFR0_F32MM_MASK |
8520                                R_ID_AA64ZFR0_F64MM_MASK },
8521             { .name = "ID_AA64SMFR0_EL1",
8522               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8523                                R_ID_AA64SMFR0_B16F32_MASK |
8524                                R_ID_AA64SMFR0_F16F32_MASK |
8525                                R_ID_AA64SMFR0_I8I32_MASK |
8526                                R_ID_AA64SMFR0_F64F64_MASK |
8527                                R_ID_AA64SMFR0_I16I64_MASK |
8528                                R_ID_AA64SMFR0_FA64_MASK },
8529             { .name = "ID_AA64MMFR0_EL1",
8530               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8531               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8532                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8533             { .name = "ID_AA64MMFR1_EL1",
8534               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8535             { .name = "ID_AA64MMFR2_EL1",
8536               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8537             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8538               .is_glob = true },
8539             { .name = "ID_AA64DFR0_EL1",
8540               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8541             { .name = "ID_AA64DFR1_EL1" },
8542             { .name = "ID_AA64DFR*_EL1_RESERVED",
8543               .is_glob = true },
8544             { .name = "ID_AA64AFR*",
8545               .is_glob = true },
8546             { .name = "ID_AA64ISAR0_EL1",
8547               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8548                                R_ID_AA64ISAR0_SHA1_MASK |
8549                                R_ID_AA64ISAR0_SHA2_MASK |
8550                                R_ID_AA64ISAR0_CRC32_MASK |
8551                                R_ID_AA64ISAR0_ATOMIC_MASK |
8552                                R_ID_AA64ISAR0_RDM_MASK |
8553                                R_ID_AA64ISAR0_SHA3_MASK |
8554                                R_ID_AA64ISAR0_SM3_MASK |
8555                                R_ID_AA64ISAR0_SM4_MASK |
8556                                R_ID_AA64ISAR0_DP_MASK |
8557                                R_ID_AA64ISAR0_FHM_MASK |
8558                                R_ID_AA64ISAR0_TS_MASK |
8559                                R_ID_AA64ISAR0_RNDR_MASK },
8560             { .name = "ID_AA64ISAR1_EL1",
8561               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8562                                R_ID_AA64ISAR1_APA_MASK |
8563                                R_ID_AA64ISAR1_API_MASK |
8564                                R_ID_AA64ISAR1_JSCVT_MASK |
8565                                R_ID_AA64ISAR1_FCMA_MASK |
8566                                R_ID_AA64ISAR1_LRCPC_MASK |
8567                                R_ID_AA64ISAR1_GPA_MASK |
8568                                R_ID_AA64ISAR1_GPI_MASK |
8569                                R_ID_AA64ISAR1_FRINTTS_MASK |
8570                                R_ID_AA64ISAR1_SB_MASK |
8571                                R_ID_AA64ISAR1_BF16_MASK |
8572                                R_ID_AA64ISAR1_DGH_MASK |
8573                                R_ID_AA64ISAR1_I8MM_MASK },
8574             { .name = "ID_AA64ISAR2_EL1",
8575               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8576                                R_ID_AA64ISAR2_RPRES_MASK |
8577                                R_ID_AA64ISAR2_GPA3_MASK |
8578                                R_ID_AA64ISAR2_APA3_MASK },
8579             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8580               .is_glob = true },
8581         };
8582         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8583 #endif
8584         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
8585         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8586             !arm_feature(env, ARM_FEATURE_EL2)) {
8587             ARMCPRegInfo rvbar = {
8588                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8589                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8590                 .access = PL1_R,
8591                 .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8592             };
8593             define_one_arm_cp_reg(cpu, &rvbar);
8594         }
8595         define_arm_cp_regs(cpu, v8_idregs);
8596         define_arm_cp_regs(cpu, v8_cp_reginfo);
8597 
8598         for (i = 4; i < 16; i++) {
8599             /*
8600              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8601              * For pre-v8 cores there are RAZ patterns for these in
8602              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8603              * v8 extends the "must RAZ" part of the ID register space
8604              * to also cover c0, 0, c{8-15}, {0-7}.
8605              * These are STATE_AA32 because in the AArch64 sysreg space
8606              * c4-c7 is where the AArch64 ID registers live (and we've
8607              * already defined those in v8_idregs[]), and c8-c15 are not
8608              * "must RAZ" for AArch64.
8609              */
8610             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8611             ARMCPRegInfo v8_aa32_raz_idregs = {
8612                 .name = name,
8613                 .state = ARM_CP_STATE_AA32,
8614                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8615                 .access = PL1_R, .type = ARM_CP_CONST,
8616                 .accessfn = access_aa64_tid3,
8617                 .resetvalue = 0 };
8618             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8619         }
8620     }
8621 
8622     /*
8623      * Register the base EL2 cpregs.
8624      * Pre v8, these registers are implemented only as part of the
8625      * Virtualization Extensions (EL2 present).  Beginning with v8,
8626      * if EL2 is missing but EL3 is enabled, mostly these become
8627      * RES0 from EL3, with some specific exceptions.
8628      */
8629     if (arm_feature(env, ARM_FEATURE_EL2)
8630         || (arm_feature(env, ARM_FEATURE_EL3)
8631             && arm_feature(env, ARM_FEATURE_V8))) {
8632         uint64_t vmpidr_def = mpidr_read_val(env);
8633         ARMCPRegInfo vpidr_regs[] = {
8634             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8635               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8636               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8637               .resetvalue = cpu->midr,
8638               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8639               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8640             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8641               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8642               .access = PL2_RW, .resetvalue = cpu->midr,
8643               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8644               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8645             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8646               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8647               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8648               .resetvalue = vmpidr_def,
8649               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8650               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8651             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8652               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8653               .access = PL2_RW, .resetvalue = vmpidr_def,
8654               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8655               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8656         };
8657         /*
8658          * The only field of MDCR_EL2 that has a defined architectural reset
8659          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8660          */
8661         ARMCPRegInfo mdcr_el2 = {
8662             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8663             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8664             .writefn = mdcr_el2_write,
8665             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8666             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8667         };
8668         define_one_arm_cp_reg(cpu, &mdcr_el2);
8669         define_arm_cp_regs(cpu, vpidr_regs);
8670         define_arm_cp_regs(cpu, el2_cp_reginfo);
8671         if (arm_feature(env, ARM_FEATURE_V8)) {
8672             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8673         }
8674         if (cpu_isar_feature(aa64_sel2, cpu)) {
8675             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8676         }
8677         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
8678         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8679             ARMCPRegInfo rvbar[] = {
8680                 {
8681                     .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8682                     .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8683                     .access = PL2_R,
8684                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8685                 },
8686                 {   .name = "RVBAR", .type = ARM_CP_ALIAS,
8687                     .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8688                     .access = PL2_R,
8689                     .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8690                 },
8691             };
8692             define_arm_cp_regs(cpu, rvbar);
8693         }
8694     }
8695 
8696     /* Register the base EL3 cpregs. */
8697     if (arm_feature(env, ARM_FEATURE_EL3)) {
8698         define_arm_cp_regs(cpu, el3_cp_reginfo);
8699         ARMCPRegInfo el3_regs[] = {
8700             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8701               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8702               .access = PL3_R,
8703               .fieldoffset = offsetof(CPUARMState, cp15.rvbar),
8704             },
8705             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8706               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8707               .access = PL3_RW,
8708               .raw_writefn = raw_write, .writefn = sctlr_write,
8709               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8710               .resetvalue = cpu->reset_sctlr },
8711         };
8712 
8713         define_arm_cp_regs(cpu, el3_regs);
8714     }
8715     /*
8716      * The behaviour of NSACR is sufficiently various that we don't
8717      * try to describe it in a single reginfo:
8718      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8719      *     reads as constant 0xc00 from NS EL1 and NS EL2
8720      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8721      *  if v7 without EL3, register doesn't exist
8722      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8723      */
8724     if (arm_feature(env, ARM_FEATURE_EL3)) {
8725         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8726             static const ARMCPRegInfo nsacr = {
8727                 .name = "NSACR", .type = ARM_CP_CONST,
8728                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8729                 .access = PL1_RW, .accessfn = nsacr_access,
8730                 .resetvalue = 0xc00
8731             };
8732             define_one_arm_cp_reg(cpu, &nsacr);
8733         } else {
8734             static const ARMCPRegInfo nsacr = {
8735                 .name = "NSACR",
8736                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8737                 .access = PL3_RW | PL1_R,
8738                 .resetvalue = 0,
8739                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8740             };
8741             define_one_arm_cp_reg(cpu, &nsacr);
8742         }
8743     } else {
8744         if (arm_feature(env, ARM_FEATURE_V8)) {
8745             static const ARMCPRegInfo nsacr = {
8746                 .name = "NSACR", .type = ARM_CP_CONST,
8747                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8748                 .access = PL1_R,
8749                 .resetvalue = 0xc00
8750             };
8751             define_one_arm_cp_reg(cpu, &nsacr);
8752         }
8753     }
8754 
8755     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8756         if (arm_feature(env, ARM_FEATURE_V6)) {
8757             /* PMSAv6 not implemented */
8758             assert(arm_feature(env, ARM_FEATURE_V7));
8759             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8760             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8761         } else {
8762             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8763         }
8764     } else {
8765         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8766         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8767         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8768         if (cpu_isar_feature(aa32_hpd, cpu)) {
8769             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8770         }
8771     }
8772     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8773         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8774     }
8775     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8776         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8777     }
8778     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8779         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8780     }
8781     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8782         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8783     }
8784     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8785         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8786     }
8787     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8788         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8789     }
8790     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8791         define_arm_cp_regs(cpu, omap_cp_reginfo);
8792     }
8793     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8794         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8795     }
8796     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8797         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8798     }
8799     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8800         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8801     }
8802     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8803         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8804     }
8805     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8806         define_arm_cp_regs(cpu, jazelle_regs);
8807     }
8808     /*
8809      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8810      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8811      * be read-only (ie write causes UNDEF exception).
8812      */
8813     {
8814         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8815             /*
8816              * Pre-v8 MIDR space.
8817              * Note that the MIDR isn't a simple constant register because
8818              * of the TI925 behaviour where writes to another register can
8819              * cause the MIDR value to change.
8820              *
8821              * Unimplemented registers in the c15 0 0 0 space default to
8822              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8823              * and friends override accordingly.
8824              */
8825             { .name = "MIDR",
8826               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8827               .access = PL1_R, .resetvalue = cpu->midr,
8828               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8829               .readfn = midr_read,
8830               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8831               .type = ARM_CP_OVERRIDE },
8832             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8833             { .name = "DUMMY",
8834               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8835               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8836             { .name = "DUMMY",
8837               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8838               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8839             { .name = "DUMMY",
8840               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8841               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8842             { .name = "DUMMY",
8843               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8844               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8845             { .name = "DUMMY",
8846               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8847               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8848         };
8849         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8850             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8851               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8852               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8853               .fgt = FGT_MIDR_EL1,
8854               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8855               .readfn = midr_read },
8856             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8857             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8858               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8859               .access = PL1_R, .resetvalue = cpu->midr },
8860             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8861               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8862               .access = PL1_R,
8863               .accessfn = access_aa64_tid1,
8864               .fgt = FGT_REVIDR_EL1,
8865               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
8866         };
8867         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
8868             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8869             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8870             .access = PL1_R, .resetvalue = cpu->midr
8871         };
8872         ARMCPRegInfo id_cp_reginfo[] = {
8873             /* These are common to v8 and pre-v8 */
8874             { .name = "CTR",
8875               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
8876               .access = PL1_R, .accessfn = ctr_el0_access,
8877               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8878             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
8879               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
8880               .access = PL0_R, .accessfn = ctr_el0_access,
8881               .fgt = FGT_CTR_EL0,
8882               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
8883             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
8884             { .name = "TCMTR",
8885               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
8886               .access = PL1_R,
8887               .accessfn = access_aa32_tid1,
8888               .type = ARM_CP_CONST, .resetvalue = 0 },
8889         };
8890         /* TLBTR is specific to VMSA */
8891         ARMCPRegInfo id_tlbtr_reginfo = {
8892               .name = "TLBTR",
8893               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
8894               .access = PL1_R,
8895               .accessfn = access_aa32_tid1,
8896               .type = ARM_CP_CONST, .resetvalue = 0,
8897         };
8898         /* MPUIR is specific to PMSA V6+ */
8899         ARMCPRegInfo id_mpuir_reginfo = {
8900               .name = "MPUIR",
8901               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
8902               .access = PL1_R, .type = ARM_CP_CONST,
8903               .resetvalue = cpu->pmsav7_dregion << 8
8904         };
8905         /* HMPUIR is specific to PMSA V8 */
8906         ARMCPRegInfo id_hmpuir_reginfo = {
8907             .name = "HMPUIR",
8908             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
8909             .access = PL2_R, .type = ARM_CP_CONST,
8910             .resetvalue = cpu->pmsav8r_hdregion
8911         };
8912         static const ARMCPRegInfo crn0_wi_reginfo = {
8913             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
8914             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
8915             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
8916         };
8917 #ifdef CONFIG_USER_ONLY
8918         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
8919             { .name = "MIDR_EL1",
8920               .exported_bits = R_MIDR_EL1_REVISION_MASK |
8921                                R_MIDR_EL1_PARTNUM_MASK |
8922                                R_MIDR_EL1_ARCHITECTURE_MASK |
8923                                R_MIDR_EL1_VARIANT_MASK |
8924                                R_MIDR_EL1_IMPLEMENTER_MASK },
8925             { .name = "REVIDR_EL1" },
8926         };
8927         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
8928 #endif
8929         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
8930             arm_feature(env, ARM_FEATURE_STRONGARM)) {
8931             size_t i;
8932             /*
8933              * Register the blanket "writes ignored" value first to cover the
8934              * whole space. Then update the specific ID registers to allow write
8935              * access, so that they ignore writes rather than causing them to
8936              * UNDEF.
8937              */
8938             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
8939             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
8940                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
8941             }
8942             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
8943                 id_cp_reginfo[i].access = PL1_RW;
8944             }
8945             id_mpuir_reginfo.access = PL1_RW;
8946             id_tlbtr_reginfo.access = PL1_RW;
8947         }
8948         if (arm_feature(env, ARM_FEATURE_V8)) {
8949             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
8950             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8951                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
8952             }
8953         } else {
8954             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
8955         }
8956         define_arm_cp_regs(cpu, id_cp_reginfo);
8957         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
8958             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
8959         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
8960                    arm_feature(env, ARM_FEATURE_V8)) {
8961             uint32_t i = 0;
8962             char *tmp_string;
8963 
8964             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
8965             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
8966             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
8967 
8968             /* Register alias is only valid for first 32 indexes */
8969             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
8970                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
8971                 uint8_t opc1 = extract32(i, 4, 1);
8972                 uint8_t opc2 = extract32(i, 0, 1) << 2;
8973 
8974                 tmp_string = g_strdup_printf("PRBAR%u", i);
8975                 ARMCPRegInfo tmp_prbarn_reginfo = {
8976                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8977                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8978                     .access = PL1_RW, .resetvalue = 0,
8979                     .accessfn = access_tvm_trvm,
8980                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8981                 };
8982                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
8983                 g_free(tmp_string);
8984 
8985                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
8986                 tmp_string = g_strdup_printf("PRLAR%u", i);
8987                 ARMCPRegInfo tmp_prlarn_reginfo = {
8988                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
8989                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
8990                     .access = PL1_RW, .resetvalue = 0,
8991                     .accessfn = access_tvm_trvm,
8992                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
8993                 };
8994                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
8995                 g_free(tmp_string);
8996             }
8997 
8998             /* Register alias is only valid for first 32 indexes */
8999             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9000                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9001                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9002                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9003 
9004                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9005                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9006                     .name = tmp_string,
9007                     .type = ARM_CP_NO_RAW,
9008                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9009                     .access = PL2_RW, .resetvalue = 0,
9010                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9011                 };
9012                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9013                 g_free(tmp_string);
9014 
9015                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9016                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9017                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9018                     .name = tmp_string,
9019                     .type = ARM_CP_NO_RAW,
9020                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9021                     .access = PL2_RW, .resetvalue = 0,
9022                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9023                 };
9024                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9025                 g_free(tmp_string);
9026             }
9027         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9028             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9029         }
9030     }
9031 
9032     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9033         ARMCPRegInfo mpidr_cp_reginfo[] = {
9034             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9035               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9036               .fgt = FGT_MPIDR_EL1,
9037               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9038         };
9039 #ifdef CONFIG_USER_ONLY
9040         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9041             { .name = "MPIDR_EL1",
9042               .fixed_bits = 0x0000000080000000 },
9043         };
9044         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9045 #endif
9046         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9047     }
9048 
9049     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9050         ARMCPRegInfo auxcr_reginfo[] = {
9051             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9052               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9053               .access = PL1_RW, .accessfn = access_tacr,
9054               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9055             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9056               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9057               .access = PL2_RW, .type = ARM_CP_CONST,
9058               .resetvalue = 0 },
9059             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9060               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9061               .access = PL3_RW, .type = ARM_CP_CONST,
9062               .resetvalue = 0 },
9063         };
9064         define_arm_cp_regs(cpu, auxcr_reginfo);
9065         if (cpu_isar_feature(aa32_ac2, cpu)) {
9066             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9067         }
9068     }
9069 
9070     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9071         /*
9072          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9073          * There are two flavours:
9074          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9075          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9076          *      32-bit register visible to AArch32 at a different encoding
9077          *      to the "flavour 1" register and with the bits rearranged to
9078          *      be able to squash a 64-bit address into the 32-bit view.
9079          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9080          * in future if we support AArch32-only configs of some of the
9081          * AArch64 cores we might need to add a specific feature flag
9082          * to indicate cores with "flavour 2" CBAR.
9083          */
9084         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9085             /* 32 bit view is [31:18] 0...0 [43:32]. */
9086             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9087                 | extract64(cpu->reset_cbar, 32, 12);
9088             ARMCPRegInfo cbar_reginfo[] = {
9089                 { .name = "CBAR",
9090                   .type = ARM_CP_CONST,
9091                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9092                   .access = PL1_R, .resetvalue = cbar32 },
9093                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9094                   .type = ARM_CP_CONST,
9095                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9096                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9097             };
9098             /* We don't implement a r/w 64 bit CBAR currently */
9099             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9100             define_arm_cp_regs(cpu, cbar_reginfo);
9101         } else {
9102             ARMCPRegInfo cbar = {
9103                 .name = "CBAR",
9104                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9105                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9106                 .fieldoffset = offsetof(CPUARMState,
9107                                         cp15.c15_config_base_address)
9108             };
9109             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9110                 cbar.access = PL1_R;
9111                 cbar.fieldoffset = 0;
9112                 cbar.type = ARM_CP_CONST;
9113             }
9114             define_one_arm_cp_reg(cpu, &cbar);
9115         }
9116     }
9117 
9118     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9119         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9120             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9121               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9122               .access = PL1_RW, .writefn = vbar_write,
9123               .fgt = FGT_VBAR_EL1,
9124               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9125                                      offsetof(CPUARMState, cp15.vbar_ns) },
9126               .resetvalue = 0 },
9127         };
9128         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9129     }
9130 
9131     /* Generic registers whose values depend on the implementation */
9132     {
9133         ARMCPRegInfo sctlr = {
9134             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9135             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9136             .access = PL1_RW, .accessfn = access_tvm_trvm,
9137             .fgt = FGT_SCTLR_EL1,
9138             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9139                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9140             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9141             .raw_writefn = raw_write,
9142         };
9143         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9144             /*
9145              * Normally we would always end the TB on an SCTLR write, but Linux
9146              * arch/arm/mach-pxa/sleep.S expects two instructions following
9147              * an MMU enable to execute from cache.  Imitate this behaviour.
9148              */
9149             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9150         }
9151         define_one_arm_cp_reg(cpu, &sctlr);
9152 
9153         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9154             arm_feature(env, ARM_FEATURE_V8)) {
9155             ARMCPRegInfo vsctlr = {
9156                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9157                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9158                 .access = PL2_RW, .resetvalue = 0x0,
9159                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9160             };
9161             define_one_arm_cp_reg(cpu, &vsctlr);
9162         }
9163     }
9164 
9165     if (cpu_isar_feature(aa64_lor, cpu)) {
9166         define_arm_cp_regs(cpu, lor_reginfo);
9167     }
9168     if (cpu_isar_feature(aa64_pan, cpu)) {
9169         define_one_arm_cp_reg(cpu, &pan_reginfo);
9170     }
9171 #ifndef CONFIG_USER_ONLY
9172     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9173         define_arm_cp_regs(cpu, ats1e1_reginfo);
9174     }
9175     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9176         define_arm_cp_regs(cpu, ats1cp_reginfo);
9177     }
9178 #endif
9179     if (cpu_isar_feature(aa64_uao, cpu)) {
9180         define_one_arm_cp_reg(cpu, &uao_reginfo);
9181     }
9182 
9183     if (cpu_isar_feature(aa64_dit, cpu)) {
9184         define_one_arm_cp_reg(cpu, &dit_reginfo);
9185     }
9186     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9187         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9188     }
9189     if (cpu_isar_feature(any_ras, cpu)) {
9190         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9191     }
9192 
9193     if (cpu_isar_feature(aa64_vh, cpu) ||
9194         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9195         define_one_arm_cp_reg(cpu, &contextidr_el2);
9196     }
9197     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9198         define_arm_cp_regs(cpu, vhe_reginfo);
9199     }
9200 
9201     if (cpu_isar_feature(aa64_sve, cpu)) {
9202         define_arm_cp_regs(cpu, zcr_reginfo);
9203     }
9204 
9205     if (cpu_isar_feature(aa64_hcx, cpu)) {
9206         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9207     }
9208 
9209 #ifdef TARGET_AARCH64
9210     if (cpu_isar_feature(aa64_sme, cpu)) {
9211         define_arm_cp_regs(cpu, sme_reginfo);
9212     }
9213     if (cpu_isar_feature(aa64_pauth, cpu)) {
9214         define_arm_cp_regs(cpu, pauth_reginfo);
9215     }
9216     if (cpu_isar_feature(aa64_rndr, cpu)) {
9217         define_arm_cp_regs(cpu, rndr_reginfo);
9218     }
9219     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9220         define_arm_cp_regs(cpu, tlbirange_reginfo);
9221     }
9222     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9223         define_arm_cp_regs(cpu, tlbios_reginfo);
9224     }
9225     /* Data Cache clean instructions up to PoP */
9226     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9227         define_one_arm_cp_reg(cpu, dcpop_reg);
9228 
9229         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9230             define_one_arm_cp_reg(cpu, dcpodp_reg);
9231         }
9232     }
9233 
9234     /*
9235      * If full MTE is enabled, add all of the system registers.
9236      * If only "instructions available at EL0" are enabled,
9237      * then define only a RAZ/WI version of PSTATE.TCO.
9238      */
9239     if (cpu_isar_feature(aa64_mte, cpu)) {
9240         define_arm_cp_regs(cpu, mte_reginfo);
9241         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9242     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9243         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9244         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9245     }
9246 
9247     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9248         define_arm_cp_regs(cpu, scxtnum_reginfo);
9249     }
9250 
9251     if (cpu_isar_feature(aa64_fgt, cpu)) {
9252         define_arm_cp_regs(cpu, fgt_reginfo);
9253     }
9254 
9255     if (cpu_isar_feature(aa64_rme, cpu)) {
9256         define_arm_cp_regs(cpu, rme_reginfo);
9257         if (cpu_isar_feature(aa64_mte, cpu)) {
9258             define_arm_cp_regs(cpu, rme_mte_reginfo);
9259         }
9260     }
9261 #endif
9262 
9263     if (cpu_isar_feature(any_predinv, cpu)) {
9264         define_arm_cp_regs(cpu, predinv_reginfo);
9265     }
9266 
9267     if (cpu_isar_feature(any_ccidx, cpu)) {
9268         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9269     }
9270 
9271 #ifndef CONFIG_USER_ONLY
9272     /*
9273      * Register redirections and aliases must be done last,
9274      * after the registers from the other extensions have been defined.
9275      */
9276     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9277         define_arm_vh_e2h_redirects_aliases(cpu);
9278     }
9279 #endif
9280 }
9281 
9282 /* Sort alphabetically by type name, except for "any". */
9283 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9284 {
9285     ObjectClass *class_a = (ObjectClass *)a;
9286     ObjectClass *class_b = (ObjectClass *)b;
9287     const char *name_a, *name_b;
9288 
9289     name_a = object_class_get_name(class_a);
9290     name_b = object_class_get_name(class_b);
9291     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9292         return 1;
9293     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9294         return -1;
9295     } else {
9296         return strcmp(name_a, name_b);
9297     }
9298 }
9299 
9300 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9301 {
9302     ObjectClass *oc = data;
9303     CPUClass *cc = CPU_CLASS(oc);
9304     const char *typename;
9305     char *name;
9306 
9307     typename = object_class_get_name(oc);
9308     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9309     if (cc->deprecation_note) {
9310         qemu_printf("  %s (deprecated)\n", name);
9311     } else {
9312         qemu_printf("  %s\n", name);
9313     }
9314     g_free(name);
9315 }
9316 
9317 void arm_cpu_list(void)
9318 {
9319     GSList *list;
9320 
9321     list = object_class_get_list(TYPE_ARM_CPU, false);
9322     list = g_slist_sort(list, arm_cpu_list_compare);
9323     qemu_printf("Available CPUs:\n");
9324     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9325     g_slist_free(list);
9326 }
9327 
9328 /*
9329  * Private utility function for define_one_arm_cp_reg_with_opaque():
9330  * add a single reginfo struct to the hash table.
9331  */
9332 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9333                                    void *opaque, CPState state,
9334                                    CPSecureState secstate,
9335                                    int crm, int opc1, int opc2,
9336                                    const char *name)
9337 {
9338     CPUARMState *env = &cpu->env;
9339     uint32_t key;
9340     ARMCPRegInfo *r2;
9341     bool is64 = r->type & ARM_CP_64BIT;
9342     bool ns = secstate & ARM_CP_SECSTATE_NS;
9343     int cp = r->cp;
9344     size_t name_len;
9345     bool make_const;
9346 
9347     switch (state) {
9348     case ARM_CP_STATE_AA32:
9349         /* We assume it is a cp15 register if the .cp field is left unset. */
9350         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9351             cp = 15;
9352         }
9353         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9354         break;
9355     case ARM_CP_STATE_AA64:
9356         /*
9357          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9358          * cp == 0 as equivalent to the value for "standard guest-visible
9359          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9360          * in their AArch64 view (the .cp value may be non-zero for the
9361          * benefit of the AArch32 view).
9362          */
9363         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9364             cp = CP_REG_ARM64_SYSREG_CP;
9365         }
9366         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9367         break;
9368     default:
9369         g_assert_not_reached();
9370     }
9371 
9372     /* Overriding of an existing definition must be explicitly requested. */
9373     if (!(r->type & ARM_CP_OVERRIDE)) {
9374         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9375         if (oldreg) {
9376             assert(oldreg->type & ARM_CP_OVERRIDE);
9377         }
9378     }
9379 
9380     /*
9381      * Eliminate registers that are not present because the EL is missing.
9382      * Doing this here makes it easier to put all registers for a given
9383      * feature into the same ARMCPRegInfo array and define them all at once.
9384      */
9385     make_const = false;
9386     if (arm_feature(env, ARM_FEATURE_EL3)) {
9387         /*
9388          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9389          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9390          */
9391         int min_el = ctz32(r->access) / 2;
9392         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9393             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9394                 return;
9395             }
9396             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9397         }
9398     } else {
9399         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9400                                  ? PL2_RW : PL1_RW);
9401         if ((r->access & max_el) == 0) {
9402             return;
9403         }
9404     }
9405 
9406     /* Combine cpreg and name into one allocation. */
9407     name_len = strlen(name) + 1;
9408     r2 = g_malloc(sizeof(*r2) + name_len);
9409     *r2 = *r;
9410     r2->name = memcpy(r2 + 1, name, name_len);
9411 
9412     /*
9413      * Update fields to match the instantiation, overwiting wildcards
9414      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9415      */
9416     r2->cp = cp;
9417     r2->crm = crm;
9418     r2->opc1 = opc1;
9419     r2->opc2 = opc2;
9420     r2->state = state;
9421     r2->secure = secstate;
9422     if (opaque) {
9423         r2->opaque = opaque;
9424     }
9425 
9426     if (make_const) {
9427         /* This should not have been a very special register to begin. */
9428         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9429         assert(old_special == 0 || old_special == ARM_CP_NOP);
9430         /*
9431          * Set the special function to CONST, retaining the other flags.
9432          * This is important for e.g. ARM_CP_SVE so that we still
9433          * take the SVE trap if CPTR_EL3.EZ == 0.
9434          */
9435         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9436         /*
9437          * Usually, these registers become RES0, but there are a few
9438          * special cases like VPIDR_EL2 which have a constant non-zero
9439          * value with writes ignored.
9440          */
9441         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9442             r2->resetvalue = 0;
9443         }
9444         /*
9445          * ARM_CP_CONST has precedence, so removing the callbacks and
9446          * offsets are not strictly necessary, but it is potentially
9447          * less confusing to debug later.
9448          */
9449         r2->readfn = NULL;
9450         r2->writefn = NULL;
9451         r2->raw_readfn = NULL;
9452         r2->raw_writefn = NULL;
9453         r2->resetfn = NULL;
9454         r2->fieldoffset = 0;
9455         r2->bank_fieldoffsets[0] = 0;
9456         r2->bank_fieldoffsets[1] = 0;
9457     } else {
9458         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9459 
9460         if (isbanked) {
9461             /*
9462              * Register is banked (using both entries in array).
9463              * Overwriting fieldoffset as the array is only used to define
9464              * banked registers but later only fieldoffset is used.
9465              */
9466             r2->fieldoffset = r->bank_fieldoffsets[ns];
9467         }
9468         if (state == ARM_CP_STATE_AA32) {
9469             if (isbanked) {
9470                 /*
9471                  * If the register is banked then we don't need to migrate or
9472                  * reset the 32-bit instance in certain cases:
9473                  *
9474                  * 1) If the register has both 32-bit and 64-bit instances
9475                  *    then we can count on the 64-bit instance taking care
9476                  *    of the non-secure bank.
9477                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9478                  *    version taking care of the secure bank.  This requires
9479                  *    that separate 32 and 64-bit definitions are provided.
9480                  */
9481                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9482                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9483                     r2->type |= ARM_CP_ALIAS;
9484                 }
9485             } else if ((secstate != r->secure) && !ns) {
9486                 /*
9487                  * The register is not banked so we only want to allow
9488                  * migration of the non-secure instance.
9489                  */
9490                 r2->type |= ARM_CP_ALIAS;
9491             }
9492 
9493             if (HOST_BIG_ENDIAN &&
9494                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9495                 r2->fieldoffset += sizeof(uint32_t);
9496             }
9497         }
9498     }
9499 
9500     /*
9501      * By convention, for wildcarded registers only the first
9502      * entry is used for migration; the others are marked as
9503      * ALIAS so we don't try to transfer the register
9504      * multiple times. Special registers (ie NOP/WFI) are
9505      * never migratable and not even raw-accessible.
9506      */
9507     if (r2->type & ARM_CP_SPECIAL_MASK) {
9508         r2->type |= ARM_CP_NO_RAW;
9509     }
9510     if (((r->crm == CP_ANY) && crm != 0) ||
9511         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9512         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9513         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9514     }
9515 
9516     /*
9517      * Check that raw accesses are either forbidden or handled. Note that
9518      * we can't assert this earlier because the setup of fieldoffset for
9519      * banked registers has to be done first.
9520      */
9521     if (!(r2->type & ARM_CP_NO_RAW)) {
9522         assert(!raw_accessors_invalid(r2));
9523     }
9524 
9525     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9526 }
9527 
9528 
9529 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9530                                        const ARMCPRegInfo *r, void *opaque)
9531 {
9532     /*
9533      * Define implementations of coprocessor registers.
9534      * We store these in a hashtable because typically
9535      * there are less than 150 registers in a space which
9536      * is 16*16*16*8*8 = 262144 in size.
9537      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9538      * If a register is defined twice then the second definition is
9539      * used, so this can be used to define some generic registers and
9540      * then override them with implementation specific variations.
9541      * At least one of the original and the second definition should
9542      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9543      * against accidental use.
9544      *
9545      * The state field defines whether the register is to be
9546      * visible in the AArch32 or AArch64 execution state. If the
9547      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9548      * reginfo structure for the AArch32 view, which sees the lower
9549      * 32 bits of the 64 bit register.
9550      *
9551      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9552      * be wildcarded. AArch64 registers are always considered to be 64
9553      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9554      * the register, if any.
9555      */
9556     int crm, opc1, opc2;
9557     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9558     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9559     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9560     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9561     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9562     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9563     CPState state;
9564 
9565     /* 64 bit registers have only CRm and Opc1 fields */
9566     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9567     /* op0 only exists in the AArch64 encodings */
9568     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9569     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9570     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9571     /*
9572      * This API is only for Arm's system coprocessors (14 and 15) or
9573      * (M-profile or v7A-and-earlier only) for implementation defined
9574      * coprocessors in the range 0..7.  Our decode assumes this, since
9575      * 8..13 can be used for other insns including VFP and Neon. See
9576      * valid_cp() in translate.c.  Assert here that we haven't tried
9577      * to use an invalid coprocessor number.
9578      */
9579     switch (r->state) {
9580     case ARM_CP_STATE_BOTH:
9581         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9582         if (r->cp == 0) {
9583             break;
9584         }
9585         /* fall through */
9586     case ARM_CP_STATE_AA32:
9587         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9588             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9589             assert(r->cp >= 14 && r->cp <= 15);
9590         } else {
9591             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9592         }
9593         break;
9594     case ARM_CP_STATE_AA64:
9595         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9596         break;
9597     default:
9598         g_assert_not_reached();
9599     }
9600     /*
9601      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9602      * encodes a minimum access level for the register. We roll this
9603      * runtime check into our general permission check code, so check
9604      * here that the reginfo's specified permissions are strict enough
9605      * to encompass the generic architectural permission check.
9606      */
9607     if (r->state != ARM_CP_STATE_AA32) {
9608         CPAccessRights mask;
9609         switch (r->opc1) {
9610         case 0:
9611             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9612             mask = PL0U_R | PL1_RW;
9613             break;
9614         case 1: case 2:
9615             /* min_EL EL1 */
9616             mask = PL1_RW;
9617             break;
9618         case 3:
9619             /* min_EL EL0 */
9620             mask = PL0_RW;
9621             break;
9622         case 4:
9623         case 5:
9624             /* min_EL EL2 */
9625             mask = PL2_RW;
9626             break;
9627         case 6:
9628             /* min_EL EL3 */
9629             mask = PL3_RW;
9630             break;
9631         case 7:
9632             /* min_EL EL1, secure mode only (we don't check the latter) */
9633             mask = PL1_RW;
9634             break;
9635         default:
9636             /* broken reginfo with out-of-range opc1 */
9637             g_assert_not_reached();
9638         }
9639         /* assert our permissions are not too lax (stricter is fine) */
9640         assert((r->access & ~mask) == 0);
9641     }
9642 
9643     /*
9644      * Check that the register definition has enough info to handle
9645      * reads and writes if they are permitted.
9646      */
9647     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9648         if (r->access & PL3_R) {
9649             assert((r->fieldoffset ||
9650                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9651                    r->readfn);
9652         }
9653         if (r->access & PL3_W) {
9654             assert((r->fieldoffset ||
9655                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9656                    r->writefn);
9657         }
9658     }
9659 
9660     for (crm = crmmin; crm <= crmmax; crm++) {
9661         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9662             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9663                 for (state = ARM_CP_STATE_AA32;
9664                      state <= ARM_CP_STATE_AA64; state++) {
9665                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9666                         continue;
9667                     }
9668                     if (state == ARM_CP_STATE_AA32) {
9669                         /*
9670                          * Under AArch32 CP registers can be common
9671                          * (same for secure and non-secure world) or banked.
9672                          */
9673                         char *name;
9674 
9675                         switch (r->secure) {
9676                         case ARM_CP_SECSTATE_S:
9677                         case ARM_CP_SECSTATE_NS:
9678                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9679                                                    r->secure, crm, opc1, opc2,
9680                                                    r->name);
9681                             break;
9682                         case ARM_CP_SECSTATE_BOTH:
9683                             name = g_strdup_printf("%s_S", r->name);
9684                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9685                                                    ARM_CP_SECSTATE_S,
9686                                                    crm, opc1, opc2, name);
9687                             g_free(name);
9688                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9689                                                    ARM_CP_SECSTATE_NS,
9690                                                    crm, opc1, opc2, r->name);
9691                             break;
9692                         default:
9693                             g_assert_not_reached();
9694                         }
9695                     } else {
9696                         /*
9697                          * AArch64 registers get mapped to non-secure instance
9698                          * of AArch32
9699                          */
9700                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9701                                                ARM_CP_SECSTATE_NS,
9702                                                crm, opc1, opc2, r->name);
9703                     }
9704                 }
9705             }
9706         }
9707     }
9708 }
9709 
9710 /* Define a whole list of registers */
9711 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9712                                         void *opaque, size_t len)
9713 {
9714     size_t i;
9715     for (i = 0; i < len; ++i) {
9716         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9717     }
9718 }
9719 
9720 /*
9721  * Modify ARMCPRegInfo for access from userspace.
9722  *
9723  * This is a data driven modification directed by
9724  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9725  * user-space cannot alter any values and dynamic values pertaining to
9726  * execution state are hidden from user space view anyway.
9727  */
9728 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9729                                  const ARMCPRegUserSpaceInfo *mods,
9730                                  size_t mods_len)
9731 {
9732     for (size_t mi = 0; mi < mods_len; ++mi) {
9733         const ARMCPRegUserSpaceInfo *m = mods + mi;
9734         GPatternSpec *pat = NULL;
9735 
9736         if (m->is_glob) {
9737             pat = g_pattern_spec_new(m->name);
9738         }
9739         for (size_t ri = 0; ri < regs_len; ++ri) {
9740             ARMCPRegInfo *r = regs + ri;
9741 
9742             if (pat && g_pattern_match_string(pat, r->name)) {
9743                 r->type = ARM_CP_CONST;
9744                 r->access = PL0U_R;
9745                 r->resetvalue = 0;
9746                 /* continue */
9747             } else if (strcmp(r->name, m->name) == 0) {
9748                 r->type = ARM_CP_CONST;
9749                 r->access = PL0U_R;
9750                 r->resetvalue &= m->exported_bits;
9751                 r->resetvalue |= m->fixed_bits;
9752                 break;
9753             }
9754         }
9755         if (pat) {
9756             g_pattern_spec_free(pat);
9757         }
9758     }
9759 }
9760 
9761 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9762 {
9763     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9764 }
9765 
9766 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9767                          uint64_t value)
9768 {
9769     /* Helper coprocessor write function for write-ignore registers */
9770 }
9771 
9772 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9773 {
9774     /* Helper coprocessor write function for read-as-zero registers */
9775     return 0;
9776 }
9777 
9778 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9779 {
9780     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9781 }
9782 
9783 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9784 {
9785     /*
9786      * Return true if it is not valid for us to switch to
9787      * this CPU mode (ie all the UNPREDICTABLE cases in
9788      * the ARM ARM CPSRWriteByInstr pseudocode).
9789      */
9790 
9791     /* Changes to or from Hyp via MSR and CPS are illegal. */
9792     if (write_type == CPSRWriteByInstr &&
9793         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9794          mode == ARM_CPU_MODE_HYP)) {
9795         return 1;
9796     }
9797 
9798     switch (mode) {
9799     case ARM_CPU_MODE_USR:
9800         return 0;
9801     case ARM_CPU_MODE_SYS:
9802     case ARM_CPU_MODE_SVC:
9803     case ARM_CPU_MODE_ABT:
9804     case ARM_CPU_MODE_UND:
9805     case ARM_CPU_MODE_IRQ:
9806     case ARM_CPU_MODE_FIQ:
9807         /*
9808          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9809          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9810          */
9811         /*
9812          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9813          * and CPS are treated as illegal mode changes.
9814          */
9815         if (write_type == CPSRWriteByInstr &&
9816             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9817             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9818             return 1;
9819         }
9820         return 0;
9821     case ARM_CPU_MODE_HYP:
9822         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9823     case ARM_CPU_MODE_MON:
9824         return arm_current_el(env) < 3;
9825     default:
9826         return 1;
9827     }
9828 }
9829 
9830 uint32_t cpsr_read(CPUARMState *env)
9831 {
9832     int ZF;
9833     ZF = (env->ZF == 0);
9834     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9835         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9836         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9837         | ((env->condexec_bits & 0xfc) << 8)
9838         | (env->GE << 16) | (env->daif & CPSR_AIF);
9839 }
9840 
9841 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9842                 CPSRWriteType write_type)
9843 {
9844     uint32_t changed_daif;
9845     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9846         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9847 
9848     if (mask & CPSR_NZCV) {
9849         env->ZF = (~val) & CPSR_Z;
9850         env->NF = val;
9851         env->CF = (val >> 29) & 1;
9852         env->VF = (val << 3) & 0x80000000;
9853     }
9854     if (mask & CPSR_Q) {
9855         env->QF = ((val & CPSR_Q) != 0);
9856     }
9857     if (mask & CPSR_T) {
9858         env->thumb = ((val & CPSR_T) != 0);
9859     }
9860     if (mask & CPSR_IT_0_1) {
9861         env->condexec_bits &= ~3;
9862         env->condexec_bits |= (val >> 25) & 3;
9863     }
9864     if (mask & CPSR_IT_2_7) {
9865         env->condexec_bits &= 3;
9866         env->condexec_bits |= (val >> 8) & 0xfc;
9867     }
9868     if (mask & CPSR_GE) {
9869         env->GE = (val >> 16) & 0xf;
9870     }
9871 
9872     /*
9873      * In a V7 implementation that includes the security extensions but does
9874      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
9875      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
9876      * bits respectively.
9877      *
9878      * In a V8 implementation, it is permitted for privileged software to
9879      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
9880      */
9881     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
9882         arm_feature(env, ARM_FEATURE_EL3) &&
9883         !arm_feature(env, ARM_FEATURE_EL2) &&
9884         !arm_is_secure(env)) {
9885 
9886         changed_daif = (env->daif ^ val) & mask;
9887 
9888         if (changed_daif & CPSR_A) {
9889             /*
9890              * Check to see if we are allowed to change the masking of async
9891              * abort exceptions from a non-secure state.
9892              */
9893             if (!(env->cp15.scr_el3 & SCR_AW)) {
9894                 qemu_log_mask(LOG_GUEST_ERROR,
9895                               "Ignoring attempt to switch CPSR_A flag from "
9896                               "non-secure world with SCR.AW bit clear\n");
9897                 mask &= ~CPSR_A;
9898             }
9899         }
9900 
9901         if (changed_daif & CPSR_F) {
9902             /*
9903              * Check to see if we are allowed to change the masking of FIQ
9904              * exceptions from a non-secure state.
9905              */
9906             if (!(env->cp15.scr_el3 & SCR_FW)) {
9907                 qemu_log_mask(LOG_GUEST_ERROR,
9908                               "Ignoring attempt to switch CPSR_F flag from "
9909                               "non-secure world with SCR.FW bit clear\n");
9910                 mask &= ~CPSR_F;
9911             }
9912 
9913             /*
9914              * Check whether non-maskable FIQ (NMFI) support is enabled.
9915              * If this bit is set software is not allowed to mask
9916              * FIQs, but is allowed to set CPSR_F to 0.
9917              */
9918             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
9919                 (val & CPSR_F)) {
9920                 qemu_log_mask(LOG_GUEST_ERROR,
9921                               "Ignoring attempt to enable CPSR_F flag "
9922                               "(non-maskable FIQ [NMFI] support enabled)\n");
9923                 mask &= ~CPSR_F;
9924             }
9925         }
9926     }
9927 
9928     env->daif &= ~(CPSR_AIF & mask);
9929     env->daif |= val & CPSR_AIF & mask;
9930 
9931     if (write_type != CPSRWriteRaw &&
9932         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
9933         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
9934             /*
9935              * Note that we can only get here in USR mode if this is a
9936              * gdb stub write; for this case we follow the architectural
9937              * behaviour for guest writes in USR mode of ignoring an attempt
9938              * to switch mode. (Those are caught by translate.c for writes
9939              * triggered by guest instructions.)
9940              */
9941             mask &= ~CPSR_M;
9942         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
9943             /*
9944              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
9945              * v7, and has defined behaviour in v8:
9946              *  + leave CPSR.M untouched
9947              *  + allow changes to the other CPSR fields
9948              *  + set PSTATE.IL
9949              * For user changes via the GDB stub, we don't set PSTATE.IL,
9950              * as this would be unnecessarily harsh for a user error.
9951              */
9952             mask &= ~CPSR_M;
9953             if (write_type != CPSRWriteByGDBStub &&
9954                 arm_feature(env, ARM_FEATURE_V8)) {
9955                 mask |= CPSR_IL;
9956                 val |= CPSR_IL;
9957             }
9958             qemu_log_mask(LOG_GUEST_ERROR,
9959                           "Illegal AArch32 mode switch attempt from %s to %s\n",
9960                           aarch32_mode_name(env->uncached_cpsr),
9961                           aarch32_mode_name(val));
9962         } else {
9963             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
9964                           write_type == CPSRWriteExceptionReturn ?
9965                           "Exception return from AArch32" :
9966                           "AArch32 mode switch from",
9967                           aarch32_mode_name(env->uncached_cpsr),
9968                           aarch32_mode_name(val), env->regs[15]);
9969             switch_mode(env, val & CPSR_M);
9970         }
9971     }
9972     mask &= ~CACHED_CPSR_BITS;
9973     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
9974     if (tcg_enabled() && rebuild_hflags) {
9975         arm_rebuild_hflags(env);
9976     }
9977 }
9978 
9979 /* Sign/zero extend */
9980 uint32_t HELPER(sxtb16)(uint32_t x)
9981 {
9982     uint32_t res;
9983     res = (uint16_t)(int8_t)x;
9984     res |= (uint32_t)(int8_t)(x >> 16) << 16;
9985     return res;
9986 }
9987 
9988 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
9989 {
9990     /*
9991      * Take a division-by-zero exception if necessary; otherwise return
9992      * to get the usual non-trapping division behaviour (result of 0)
9993      */
9994     if (arm_feature(env, ARM_FEATURE_M)
9995         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
9996         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
9997     }
9998 }
9999 
10000 uint32_t HELPER(uxtb16)(uint32_t x)
10001 {
10002     uint32_t res;
10003     res = (uint16_t)(uint8_t)x;
10004     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10005     return res;
10006 }
10007 
10008 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10009 {
10010     if (den == 0) {
10011         handle_possible_div0_trap(env, GETPC());
10012         return 0;
10013     }
10014     if (num == INT_MIN && den == -1) {
10015         return INT_MIN;
10016     }
10017     return num / den;
10018 }
10019 
10020 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10021 {
10022     if (den == 0) {
10023         handle_possible_div0_trap(env, GETPC());
10024         return 0;
10025     }
10026     return num / den;
10027 }
10028 
10029 uint32_t HELPER(rbit)(uint32_t x)
10030 {
10031     return revbit32(x);
10032 }
10033 
10034 #ifdef CONFIG_USER_ONLY
10035 
10036 static void switch_mode(CPUARMState *env, int mode)
10037 {
10038     ARMCPU *cpu = env_archcpu(env);
10039 
10040     if (mode != ARM_CPU_MODE_USR) {
10041         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10042     }
10043 }
10044 
10045 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10046                                  uint32_t cur_el, bool secure)
10047 {
10048     return 1;
10049 }
10050 
10051 void aarch64_sync_64_to_32(CPUARMState *env)
10052 {
10053     g_assert_not_reached();
10054 }
10055 
10056 #else
10057 
10058 static void switch_mode(CPUARMState *env, int mode)
10059 {
10060     int old_mode;
10061     int i;
10062 
10063     old_mode = env->uncached_cpsr & CPSR_M;
10064     if (mode == old_mode) {
10065         return;
10066     }
10067 
10068     if (old_mode == ARM_CPU_MODE_FIQ) {
10069         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10070         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10071     } else if (mode == ARM_CPU_MODE_FIQ) {
10072         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10073         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10074     }
10075 
10076     i = bank_number(old_mode);
10077     env->banked_r13[i] = env->regs[13];
10078     env->banked_spsr[i] = env->spsr;
10079 
10080     i = bank_number(mode);
10081     env->regs[13] = env->banked_r13[i];
10082     env->spsr = env->banked_spsr[i];
10083 
10084     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10085     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10086 }
10087 
10088 /*
10089  * Physical Interrupt Target EL Lookup Table
10090  *
10091  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10092  *
10093  * The below multi-dimensional table is used for looking up the target
10094  * exception level given numerous condition criteria.  Specifically, the
10095  * target EL is based on SCR and HCR routing controls as well as the
10096  * currently executing EL and secure state.
10097  *
10098  *    Dimensions:
10099  *    target_el_table[2][2][2][2][2][4]
10100  *                    |  |  |  |  |  +--- Current EL
10101  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10102  *                    |  |  |  +--------- HCR mask override
10103  *                    |  |  +------------ SCR exec state control
10104  *                    |  +--------------- SCR mask override
10105  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10106  *
10107  *    The table values are as such:
10108  *    0-3 = EL0-EL3
10109  *     -1 = Cannot occur
10110  *
10111  * The ARM ARM target EL table includes entries indicating that an "exception
10112  * is not taken".  The two cases where this is applicable are:
10113  *    1) An exception is taken from EL3 but the SCR does not have the exception
10114  *    routed to EL3.
10115  *    2) An exception is taken from EL2 but the HCR does not have the exception
10116  *    routed to EL2.
10117  * In these two cases, the below table contain a target of EL1.  This value is
10118  * returned as it is expected that the consumer of the table data will check
10119  * for "target EL >= current EL" to ensure the exception is not taken.
10120  *
10121  *            SCR     HCR
10122  *         64  EA     AMO                 From
10123  *        BIT IRQ     IMO      Non-secure         Secure
10124  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10125  */
10126 static const int8_t target_el_table[2][2][2][2][2][4] = {
10127     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10128        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10129       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10130        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10131      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10132        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10133       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10134        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10135     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10136        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10137       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10138        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10139      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10140        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10141       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10142        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10143 };
10144 
10145 /*
10146  * Determine the target EL for physical exceptions
10147  */
10148 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10149                                  uint32_t cur_el, bool secure)
10150 {
10151     CPUARMState *env = cs->env_ptr;
10152     bool rw;
10153     bool scr;
10154     bool hcr;
10155     int target_el;
10156     /* Is the highest EL AArch64? */
10157     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10158     uint64_t hcr_el2;
10159 
10160     if (arm_feature(env, ARM_FEATURE_EL3)) {
10161         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10162     } else {
10163         /*
10164          * Either EL2 is the highest EL (and so the EL2 register width
10165          * is given by is64); or there is no EL2 or EL3, in which case
10166          * the value of 'rw' does not affect the table lookup anyway.
10167          */
10168         rw = is64;
10169     }
10170 
10171     hcr_el2 = arm_hcr_el2_eff(env);
10172     switch (excp_idx) {
10173     case EXCP_IRQ:
10174         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10175         hcr = hcr_el2 & HCR_IMO;
10176         break;
10177     case EXCP_FIQ:
10178         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10179         hcr = hcr_el2 & HCR_FMO;
10180         break;
10181     default:
10182         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10183         hcr = hcr_el2 & HCR_AMO;
10184         break;
10185     };
10186 
10187     /*
10188      * For these purposes, TGE and AMO/IMO/FMO both force the
10189      * interrupt to EL2.  Fold TGE into the bit extracted above.
10190      */
10191     hcr |= (hcr_el2 & HCR_TGE) != 0;
10192 
10193     /* Perform a table-lookup for the target EL given the current state */
10194     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10195 
10196     assert(target_el > 0);
10197 
10198     return target_el;
10199 }
10200 
10201 void arm_log_exception(CPUState *cs)
10202 {
10203     int idx = cs->exception_index;
10204 
10205     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10206         const char *exc = NULL;
10207         static const char * const excnames[] = {
10208             [EXCP_UDEF] = "Undefined Instruction",
10209             [EXCP_SWI] = "SVC",
10210             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10211             [EXCP_DATA_ABORT] = "Data Abort",
10212             [EXCP_IRQ] = "IRQ",
10213             [EXCP_FIQ] = "FIQ",
10214             [EXCP_BKPT] = "Breakpoint",
10215             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10216             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10217             [EXCP_HVC] = "Hypervisor Call",
10218             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10219             [EXCP_SMC] = "Secure Monitor Call",
10220             [EXCP_VIRQ] = "Virtual IRQ",
10221             [EXCP_VFIQ] = "Virtual FIQ",
10222             [EXCP_SEMIHOST] = "Semihosting call",
10223             [EXCP_NOCP] = "v7M NOCP UsageFault",
10224             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10225             [EXCP_STKOF] = "v8M STKOF UsageFault",
10226             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10227             [EXCP_LSERR] = "v8M LSERR UsageFault",
10228             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10229             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10230             [EXCP_VSERR] = "Virtual SERR",
10231             [EXCP_GPC] = "Granule Protection Check",
10232         };
10233 
10234         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10235             exc = excnames[idx];
10236         }
10237         if (!exc) {
10238             exc = "unknown";
10239         }
10240         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10241                       idx, exc, cs->cpu_index);
10242     }
10243 }
10244 
10245 /*
10246  * Function used to synchronize QEMU's AArch64 register set with AArch32
10247  * register set.  This is necessary when switching between AArch32 and AArch64
10248  * execution state.
10249  */
10250 void aarch64_sync_32_to_64(CPUARMState *env)
10251 {
10252     int i;
10253     uint32_t mode = env->uncached_cpsr & CPSR_M;
10254 
10255     /* We can blanket copy R[0:7] to X[0:7] */
10256     for (i = 0; i < 8; i++) {
10257         env->xregs[i] = env->regs[i];
10258     }
10259 
10260     /*
10261      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10262      * Otherwise, they come from the banked user regs.
10263      */
10264     if (mode == ARM_CPU_MODE_FIQ) {
10265         for (i = 8; i < 13; i++) {
10266             env->xregs[i] = env->usr_regs[i - 8];
10267         }
10268     } else {
10269         for (i = 8; i < 13; i++) {
10270             env->xregs[i] = env->regs[i];
10271         }
10272     }
10273 
10274     /*
10275      * Registers x13-x23 are the various mode SP and FP registers. Registers
10276      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10277      * from the mode banked register.
10278      */
10279     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10280         env->xregs[13] = env->regs[13];
10281         env->xregs[14] = env->regs[14];
10282     } else {
10283         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10284         /* HYP is an exception in that it is copied from r14 */
10285         if (mode == ARM_CPU_MODE_HYP) {
10286             env->xregs[14] = env->regs[14];
10287         } else {
10288             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10289         }
10290     }
10291 
10292     if (mode == ARM_CPU_MODE_HYP) {
10293         env->xregs[15] = env->regs[13];
10294     } else {
10295         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10296     }
10297 
10298     if (mode == ARM_CPU_MODE_IRQ) {
10299         env->xregs[16] = env->regs[14];
10300         env->xregs[17] = env->regs[13];
10301     } else {
10302         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10303         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10304     }
10305 
10306     if (mode == ARM_CPU_MODE_SVC) {
10307         env->xregs[18] = env->regs[14];
10308         env->xregs[19] = env->regs[13];
10309     } else {
10310         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10311         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10312     }
10313 
10314     if (mode == ARM_CPU_MODE_ABT) {
10315         env->xregs[20] = env->regs[14];
10316         env->xregs[21] = env->regs[13];
10317     } else {
10318         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10319         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10320     }
10321 
10322     if (mode == ARM_CPU_MODE_UND) {
10323         env->xregs[22] = env->regs[14];
10324         env->xregs[23] = env->regs[13];
10325     } else {
10326         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10327         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10328     }
10329 
10330     /*
10331      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10332      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10333      * FIQ bank for r8-r14.
10334      */
10335     if (mode == ARM_CPU_MODE_FIQ) {
10336         for (i = 24; i < 31; i++) {
10337             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10338         }
10339     } else {
10340         for (i = 24; i < 29; i++) {
10341             env->xregs[i] = env->fiq_regs[i - 24];
10342         }
10343         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10344         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10345     }
10346 
10347     env->pc = env->regs[15];
10348 }
10349 
10350 /*
10351  * Function used to synchronize QEMU's AArch32 register set with AArch64
10352  * register set.  This is necessary when switching between AArch32 and AArch64
10353  * execution state.
10354  */
10355 void aarch64_sync_64_to_32(CPUARMState *env)
10356 {
10357     int i;
10358     uint32_t mode = env->uncached_cpsr & CPSR_M;
10359 
10360     /* We can blanket copy X[0:7] to R[0:7] */
10361     for (i = 0; i < 8; i++) {
10362         env->regs[i] = env->xregs[i];
10363     }
10364 
10365     /*
10366      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10367      * Otherwise, we copy x8-x12 into the banked user regs.
10368      */
10369     if (mode == ARM_CPU_MODE_FIQ) {
10370         for (i = 8; i < 13; i++) {
10371             env->usr_regs[i - 8] = env->xregs[i];
10372         }
10373     } else {
10374         for (i = 8; i < 13; i++) {
10375             env->regs[i] = env->xregs[i];
10376         }
10377     }
10378 
10379     /*
10380      * Registers r13 & r14 depend on the current mode.
10381      * If we are in a given mode, we copy the corresponding x registers to r13
10382      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10383      * for the mode.
10384      */
10385     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10386         env->regs[13] = env->xregs[13];
10387         env->regs[14] = env->xregs[14];
10388     } else {
10389         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10390 
10391         /*
10392          * HYP is an exception in that it does not have its own banked r14 but
10393          * shares the USR r14
10394          */
10395         if (mode == ARM_CPU_MODE_HYP) {
10396             env->regs[14] = env->xregs[14];
10397         } else {
10398             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10399         }
10400     }
10401 
10402     if (mode == ARM_CPU_MODE_HYP) {
10403         env->regs[13] = env->xregs[15];
10404     } else {
10405         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10406     }
10407 
10408     if (mode == ARM_CPU_MODE_IRQ) {
10409         env->regs[14] = env->xregs[16];
10410         env->regs[13] = env->xregs[17];
10411     } else {
10412         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10413         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10414     }
10415 
10416     if (mode == ARM_CPU_MODE_SVC) {
10417         env->regs[14] = env->xregs[18];
10418         env->regs[13] = env->xregs[19];
10419     } else {
10420         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10421         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10422     }
10423 
10424     if (mode == ARM_CPU_MODE_ABT) {
10425         env->regs[14] = env->xregs[20];
10426         env->regs[13] = env->xregs[21];
10427     } else {
10428         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10429         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10430     }
10431 
10432     if (mode == ARM_CPU_MODE_UND) {
10433         env->regs[14] = env->xregs[22];
10434         env->regs[13] = env->xregs[23];
10435     } else {
10436         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10437         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10438     }
10439 
10440     /*
10441      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10442      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10443      * FIQ bank for r8-r14.
10444      */
10445     if (mode == ARM_CPU_MODE_FIQ) {
10446         for (i = 24; i < 31; i++) {
10447             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10448         }
10449     } else {
10450         for (i = 24; i < 29; i++) {
10451             env->fiq_regs[i - 24] = env->xregs[i];
10452         }
10453         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10454         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10455     }
10456 
10457     env->regs[15] = env->pc;
10458 }
10459 
10460 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10461                                    uint32_t mask, uint32_t offset,
10462                                    uint32_t newpc)
10463 {
10464     int new_el;
10465 
10466     /* Change the CPU state so as to actually take the exception. */
10467     switch_mode(env, new_mode);
10468 
10469     /*
10470      * For exceptions taken to AArch32 we must clear the SS bit in both
10471      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10472      */
10473     env->pstate &= ~PSTATE_SS;
10474     env->spsr = cpsr_read(env);
10475     /* Clear IT bits.  */
10476     env->condexec_bits = 0;
10477     /* Switch to the new mode, and to the correct instruction set.  */
10478     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10479 
10480     /* This must be after mode switching. */
10481     new_el = arm_current_el(env);
10482 
10483     /* Set new mode endianness */
10484     env->uncached_cpsr &= ~CPSR_E;
10485     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10486         env->uncached_cpsr |= CPSR_E;
10487     }
10488     /* J and IL must always be cleared for exception entry */
10489     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10490     env->daif |= mask;
10491 
10492     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10493         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10494             env->uncached_cpsr |= CPSR_SSBS;
10495         } else {
10496             env->uncached_cpsr &= ~CPSR_SSBS;
10497         }
10498     }
10499 
10500     if (new_mode == ARM_CPU_MODE_HYP) {
10501         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10502         env->elr_el[2] = env->regs[15];
10503     } else {
10504         /* CPSR.PAN is normally preserved preserved unless...  */
10505         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10506             switch (new_el) {
10507             case 3:
10508                 if (!arm_is_secure_below_el3(env)) {
10509                     /* ... the target is EL3, from non-secure state.  */
10510                     env->uncached_cpsr &= ~CPSR_PAN;
10511                     break;
10512                 }
10513                 /* ... the target is EL3, from secure state ... */
10514                 /* fall through */
10515             case 1:
10516                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10517                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10518                     env->uncached_cpsr |= CPSR_PAN;
10519                 }
10520                 break;
10521             }
10522         }
10523         /*
10524          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10525          * and we should just guard the thumb mode on V4
10526          */
10527         if (arm_feature(env, ARM_FEATURE_V4T)) {
10528             env->thumb =
10529                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10530         }
10531         env->regs[14] = env->regs[15] + offset;
10532     }
10533     env->regs[15] = newpc;
10534 
10535     if (tcg_enabled()) {
10536         arm_rebuild_hflags(env);
10537     }
10538 }
10539 
10540 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10541 {
10542     /*
10543      * Handle exception entry to Hyp mode; this is sufficiently
10544      * different to entry to other AArch32 modes that we handle it
10545      * separately here.
10546      *
10547      * The vector table entry used is always the 0x14 Hyp mode entry point,
10548      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10549      * The offset applied to the preferred return address is always zero
10550      * (see DDI0487C.a section G1.12.3).
10551      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10552      */
10553     uint32_t addr, mask;
10554     ARMCPU *cpu = ARM_CPU(cs);
10555     CPUARMState *env = &cpu->env;
10556 
10557     switch (cs->exception_index) {
10558     case EXCP_UDEF:
10559         addr = 0x04;
10560         break;
10561     case EXCP_SWI:
10562         addr = 0x08;
10563         break;
10564     case EXCP_BKPT:
10565         /* Fall through to prefetch abort.  */
10566     case EXCP_PREFETCH_ABORT:
10567         env->cp15.ifar_s = env->exception.vaddress;
10568         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10569                       (uint32_t)env->exception.vaddress);
10570         addr = 0x0c;
10571         break;
10572     case EXCP_DATA_ABORT:
10573         env->cp15.dfar_s = env->exception.vaddress;
10574         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10575                       (uint32_t)env->exception.vaddress);
10576         addr = 0x10;
10577         break;
10578     case EXCP_IRQ:
10579         addr = 0x18;
10580         break;
10581     case EXCP_FIQ:
10582         addr = 0x1c;
10583         break;
10584     case EXCP_HVC:
10585         addr = 0x08;
10586         break;
10587     case EXCP_HYP_TRAP:
10588         addr = 0x14;
10589         break;
10590     default:
10591         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10592     }
10593 
10594     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10595         if (!arm_feature(env, ARM_FEATURE_V8)) {
10596             /*
10597              * QEMU syndrome values are v8-style. v7 has the IL bit
10598              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10599              * If this is a v7 CPU, squash the IL bit in those cases.
10600              */
10601             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10602                 (cs->exception_index == EXCP_DATA_ABORT &&
10603                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10604                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10605                 env->exception.syndrome &= ~ARM_EL_IL;
10606             }
10607         }
10608         env->cp15.esr_el[2] = env->exception.syndrome;
10609     }
10610 
10611     if (arm_current_el(env) != 2 && addr < 0x14) {
10612         addr = 0x14;
10613     }
10614 
10615     mask = 0;
10616     if (!(env->cp15.scr_el3 & SCR_EA)) {
10617         mask |= CPSR_A;
10618     }
10619     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10620         mask |= CPSR_I;
10621     }
10622     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10623         mask |= CPSR_F;
10624     }
10625 
10626     addr += env->cp15.hvbar;
10627 
10628     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10629 }
10630 
10631 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10632 {
10633     ARMCPU *cpu = ARM_CPU(cs);
10634     CPUARMState *env = &cpu->env;
10635     uint32_t addr;
10636     uint32_t mask;
10637     int new_mode;
10638     uint32_t offset;
10639     uint32_t moe;
10640 
10641     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10642     switch (syn_get_ec(env->exception.syndrome)) {
10643     case EC_BREAKPOINT:
10644     case EC_BREAKPOINT_SAME_EL:
10645         moe = 1;
10646         break;
10647     case EC_WATCHPOINT:
10648     case EC_WATCHPOINT_SAME_EL:
10649         moe = 10;
10650         break;
10651     case EC_AA32_BKPT:
10652         moe = 3;
10653         break;
10654     case EC_VECTORCATCH:
10655         moe = 5;
10656         break;
10657     default:
10658         moe = 0;
10659         break;
10660     }
10661 
10662     if (moe) {
10663         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10664     }
10665 
10666     if (env->exception.target_el == 2) {
10667         arm_cpu_do_interrupt_aarch32_hyp(cs);
10668         return;
10669     }
10670 
10671     switch (cs->exception_index) {
10672     case EXCP_UDEF:
10673         new_mode = ARM_CPU_MODE_UND;
10674         addr = 0x04;
10675         mask = CPSR_I;
10676         if (env->thumb) {
10677             offset = 2;
10678         } else {
10679             offset = 4;
10680         }
10681         break;
10682     case EXCP_SWI:
10683         new_mode = ARM_CPU_MODE_SVC;
10684         addr = 0x08;
10685         mask = CPSR_I;
10686         /* The PC already points to the next instruction.  */
10687         offset = 0;
10688         break;
10689     case EXCP_BKPT:
10690         /* Fall through to prefetch abort.  */
10691     case EXCP_PREFETCH_ABORT:
10692         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10693         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10694         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10695                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10696         new_mode = ARM_CPU_MODE_ABT;
10697         addr = 0x0c;
10698         mask = CPSR_A | CPSR_I;
10699         offset = 4;
10700         break;
10701     case EXCP_DATA_ABORT:
10702         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10703         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10704         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10705                       env->exception.fsr,
10706                       (uint32_t)env->exception.vaddress);
10707         new_mode = ARM_CPU_MODE_ABT;
10708         addr = 0x10;
10709         mask = CPSR_A | CPSR_I;
10710         offset = 8;
10711         break;
10712     case EXCP_IRQ:
10713         new_mode = ARM_CPU_MODE_IRQ;
10714         addr = 0x18;
10715         /* Disable IRQ and imprecise data aborts.  */
10716         mask = CPSR_A | CPSR_I;
10717         offset = 4;
10718         if (env->cp15.scr_el3 & SCR_IRQ) {
10719             /* IRQ routed to monitor mode */
10720             new_mode = ARM_CPU_MODE_MON;
10721             mask |= CPSR_F;
10722         }
10723         break;
10724     case EXCP_FIQ:
10725         new_mode = ARM_CPU_MODE_FIQ;
10726         addr = 0x1c;
10727         /* Disable FIQ, IRQ and imprecise data aborts.  */
10728         mask = CPSR_A | CPSR_I | CPSR_F;
10729         if (env->cp15.scr_el3 & SCR_FIQ) {
10730             /* FIQ routed to monitor mode */
10731             new_mode = ARM_CPU_MODE_MON;
10732         }
10733         offset = 4;
10734         break;
10735     case EXCP_VIRQ:
10736         new_mode = ARM_CPU_MODE_IRQ;
10737         addr = 0x18;
10738         /* Disable IRQ and imprecise data aborts.  */
10739         mask = CPSR_A | CPSR_I;
10740         offset = 4;
10741         break;
10742     case EXCP_VFIQ:
10743         new_mode = ARM_CPU_MODE_FIQ;
10744         addr = 0x1c;
10745         /* Disable FIQ, IRQ and imprecise data aborts.  */
10746         mask = CPSR_A | CPSR_I | CPSR_F;
10747         offset = 4;
10748         break;
10749     case EXCP_VSERR:
10750         {
10751             /*
10752              * Note that this is reported as a data abort, but the DFAR
10753              * has an UNKNOWN value.  Construct the SError syndrome from
10754              * AET and ExT fields.
10755              */
10756             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10757 
10758             if (extended_addresses_enabled(env)) {
10759                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10760             } else {
10761                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10762             }
10763             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10764             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10765             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10766                           env->exception.fsr);
10767 
10768             new_mode = ARM_CPU_MODE_ABT;
10769             addr = 0x10;
10770             mask = CPSR_A | CPSR_I;
10771             offset = 8;
10772         }
10773         break;
10774     case EXCP_SMC:
10775         new_mode = ARM_CPU_MODE_MON;
10776         addr = 0x08;
10777         mask = CPSR_A | CPSR_I | CPSR_F;
10778         offset = 0;
10779         break;
10780     default:
10781         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10782         return; /* Never happens.  Keep compiler happy.  */
10783     }
10784 
10785     if (new_mode == ARM_CPU_MODE_MON) {
10786         addr += env->cp15.mvbar;
10787     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10788         /* High vectors. When enabled, base address cannot be remapped. */
10789         addr += 0xffff0000;
10790     } else {
10791         /*
10792          * ARM v7 architectures provide a vector base address register to remap
10793          * the interrupt vector table.
10794          * This register is only followed in non-monitor mode, and is banked.
10795          * Note: only bits 31:5 are valid.
10796          */
10797         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10798     }
10799 
10800     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10801         env->cp15.scr_el3 &= ~SCR_NS;
10802     }
10803 
10804     take_aarch32_exception(env, new_mode, mask, offset, addr);
10805 }
10806 
10807 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10808 {
10809     /*
10810      * Return the register number of the AArch64 view of the AArch32
10811      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10812      * be that of the AArch32 mode the exception came from.
10813      */
10814     int mode = env->uncached_cpsr & CPSR_M;
10815 
10816     switch (aarch32_reg) {
10817     case 0 ... 7:
10818         return aarch32_reg;
10819     case 8 ... 12:
10820         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10821     case 13:
10822         switch (mode) {
10823         case ARM_CPU_MODE_USR:
10824         case ARM_CPU_MODE_SYS:
10825             return 13;
10826         case ARM_CPU_MODE_HYP:
10827             return 15;
10828         case ARM_CPU_MODE_IRQ:
10829             return 17;
10830         case ARM_CPU_MODE_SVC:
10831             return 19;
10832         case ARM_CPU_MODE_ABT:
10833             return 21;
10834         case ARM_CPU_MODE_UND:
10835             return 23;
10836         case ARM_CPU_MODE_FIQ:
10837             return 29;
10838         default:
10839             g_assert_not_reached();
10840         }
10841     case 14:
10842         switch (mode) {
10843         case ARM_CPU_MODE_USR:
10844         case ARM_CPU_MODE_SYS:
10845         case ARM_CPU_MODE_HYP:
10846             return 14;
10847         case ARM_CPU_MODE_IRQ:
10848             return 16;
10849         case ARM_CPU_MODE_SVC:
10850             return 18;
10851         case ARM_CPU_MODE_ABT:
10852             return 20;
10853         case ARM_CPU_MODE_UND:
10854             return 22;
10855         case ARM_CPU_MODE_FIQ:
10856             return 30;
10857         default:
10858             g_assert_not_reached();
10859         }
10860     case 15:
10861         return 31;
10862     default:
10863         g_assert_not_reached();
10864     }
10865 }
10866 
10867 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
10868 {
10869     uint32_t ret = cpsr_read(env);
10870 
10871     /* Move DIT to the correct location for SPSR_ELx */
10872     if (ret & CPSR_DIT) {
10873         ret &= ~CPSR_DIT;
10874         ret |= PSTATE_DIT;
10875     }
10876     /* Merge PSTATE.SS into SPSR_ELx */
10877     ret |= env->pstate & PSTATE_SS;
10878 
10879     return ret;
10880 }
10881 
10882 static bool syndrome_is_sync_extabt(uint32_t syndrome)
10883 {
10884     /* Return true if this syndrome value is a synchronous external abort */
10885     switch (syn_get_ec(syndrome)) {
10886     case EC_INSNABORT:
10887     case EC_INSNABORT_SAME_EL:
10888     case EC_DATAABORT:
10889     case EC_DATAABORT_SAME_EL:
10890         /* Look at fault status code for all the synchronous ext abort cases */
10891         switch (syndrome & 0x3f) {
10892         case 0x10:
10893         case 0x13:
10894         case 0x14:
10895         case 0x15:
10896         case 0x16:
10897         case 0x17:
10898             return true;
10899         default:
10900             return false;
10901         }
10902     default:
10903         return false;
10904     }
10905 }
10906 
10907 /* Handle exception entry to a target EL which is using AArch64 */
10908 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
10909 {
10910     ARMCPU *cpu = ARM_CPU(cs);
10911     CPUARMState *env = &cpu->env;
10912     unsigned int new_el = env->exception.target_el;
10913     target_ulong addr = env->cp15.vbar_el[new_el];
10914     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
10915     unsigned int old_mode;
10916     unsigned int cur_el = arm_current_el(env);
10917     int rt;
10918 
10919     if (tcg_enabled()) {
10920         /*
10921          * Note that new_el can never be 0.  If cur_el is 0, then
10922          * el0_a64 is is_a64(), else el0_a64 is ignored.
10923          */
10924         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
10925     }
10926 
10927     if (cur_el < new_el) {
10928         /*
10929          * Entry vector offset depends on whether the implemented EL
10930          * immediately lower than the target level is using AArch32 or AArch64
10931          */
10932         bool is_aa64;
10933         uint64_t hcr;
10934 
10935         switch (new_el) {
10936         case 3:
10937             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
10938             break;
10939         case 2:
10940             hcr = arm_hcr_el2_eff(env);
10941             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
10942                 is_aa64 = (hcr & HCR_RW) != 0;
10943                 break;
10944             }
10945             /* fall through */
10946         case 1:
10947             is_aa64 = is_a64(env);
10948             break;
10949         default:
10950             g_assert_not_reached();
10951         }
10952 
10953         if (is_aa64) {
10954             addr += 0x400;
10955         } else {
10956             addr += 0x600;
10957         }
10958     } else if (pstate_read(env) & PSTATE_SP) {
10959         addr += 0x200;
10960     }
10961 
10962     switch (cs->exception_index) {
10963     case EXCP_GPC:
10964         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
10965                       env->cp15.mfar_el3);
10966         /* fall through */
10967     case EXCP_PREFETCH_ABORT:
10968     case EXCP_DATA_ABORT:
10969         /*
10970          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
10971          * to be taken to the SError vector entrypoint.
10972          */
10973         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
10974             syndrome_is_sync_extabt(env->exception.syndrome)) {
10975             addr += 0x180;
10976         }
10977         env->cp15.far_el[new_el] = env->exception.vaddress;
10978         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
10979                       env->cp15.far_el[new_el]);
10980         /* fall through */
10981     case EXCP_BKPT:
10982     case EXCP_UDEF:
10983     case EXCP_SWI:
10984     case EXCP_HVC:
10985     case EXCP_HYP_TRAP:
10986     case EXCP_SMC:
10987         switch (syn_get_ec(env->exception.syndrome)) {
10988         case EC_ADVSIMDFPACCESSTRAP:
10989             /*
10990              * QEMU internal FP/SIMD syndromes from AArch32 include the
10991              * TA and coproc fields which are only exposed if the exception
10992              * is taken to AArch32 Hyp mode. Mask them out to get a valid
10993              * AArch64 format syndrome.
10994              */
10995             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
10996             break;
10997         case EC_CP14RTTRAP:
10998         case EC_CP15RTTRAP:
10999         case EC_CP14DTTRAP:
11000             /*
11001              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11002              * the raw register field from the insn; when taking this to
11003              * AArch64 we must convert it to the AArch64 view of the register
11004              * number. Notice that we read a 4-bit AArch32 register number and
11005              * write back a 5-bit AArch64 one.
11006              */
11007             rt = extract32(env->exception.syndrome, 5, 4);
11008             rt = aarch64_regnum(env, rt);
11009             env->exception.syndrome = deposit32(env->exception.syndrome,
11010                                                 5, 5, rt);
11011             break;
11012         case EC_CP15RRTTRAP:
11013         case EC_CP14RRTTRAP:
11014             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11015             rt = extract32(env->exception.syndrome, 5, 4);
11016             rt = aarch64_regnum(env, rt);
11017             env->exception.syndrome = deposit32(env->exception.syndrome,
11018                                                 5, 5, rt);
11019             rt = extract32(env->exception.syndrome, 10, 4);
11020             rt = aarch64_regnum(env, rt);
11021             env->exception.syndrome = deposit32(env->exception.syndrome,
11022                                                 10, 5, rt);
11023             break;
11024         }
11025         env->cp15.esr_el[new_el] = env->exception.syndrome;
11026         break;
11027     case EXCP_IRQ:
11028     case EXCP_VIRQ:
11029         addr += 0x80;
11030         break;
11031     case EXCP_FIQ:
11032     case EXCP_VFIQ:
11033         addr += 0x100;
11034         break;
11035     case EXCP_VSERR:
11036         addr += 0x180;
11037         /* Construct the SError syndrome from IDS and ISS fields. */
11038         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11039         env->cp15.esr_el[new_el] = env->exception.syndrome;
11040         break;
11041     default:
11042         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11043     }
11044 
11045     if (is_a64(env)) {
11046         old_mode = pstate_read(env);
11047         aarch64_save_sp(env, arm_current_el(env));
11048         env->elr_el[new_el] = env->pc;
11049     } else {
11050         old_mode = cpsr_read_for_spsr_elx(env);
11051         env->elr_el[new_el] = env->regs[15];
11052 
11053         aarch64_sync_32_to_64(env);
11054 
11055         env->condexec_bits = 0;
11056     }
11057     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11058 
11059     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11060                   env->elr_el[new_el]);
11061 
11062     if (cpu_isar_feature(aa64_pan, cpu)) {
11063         /* The value of PSTATE.PAN is normally preserved, except when ... */
11064         new_mode |= old_mode & PSTATE_PAN;
11065         switch (new_el) {
11066         case 2:
11067             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11068             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11069                 != (HCR_E2H | HCR_TGE)) {
11070                 break;
11071             }
11072             /* fall through */
11073         case 1:
11074             /* ... the target is EL1 ... */
11075             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11076             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11077                 new_mode |= PSTATE_PAN;
11078             }
11079             break;
11080         }
11081     }
11082     if (cpu_isar_feature(aa64_mte, cpu)) {
11083         new_mode |= PSTATE_TCO;
11084     }
11085 
11086     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11087         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11088             new_mode |= PSTATE_SSBS;
11089         } else {
11090             new_mode &= ~PSTATE_SSBS;
11091         }
11092     }
11093 
11094     pstate_write(env, PSTATE_DAIF | new_mode);
11095     env->aarch64 = true;
11096     aarch64_restore_sp(env, new_el);
11097 
11098     if (tcg_enabled()) {
11099         helper_rebuild_hflags_a64(env, new_el);
11100     }
11101 
11102     env->pc = addr;
11103 
11104     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11105                   new_el, env->pc, pstate_read(env));
11106 }
11107 
11108 /*
11109  * Do semihosting call and set the appropriate return value. All the
11110  * permission and validity checks have been done at translate time.
11111  *
11112  * We only see semihosting exceptions in TCG only as they are not
11113  * trapped to the hypervisor in KVM.
11114  */
11115 #ifdef CONFIG_TCG
11116 static void tcg_handle_semihosting(CPUState *cs)
11117 {
11118     ARMCPU *cpu = ARM_CPU(cs);
11119     CPUARMState *env = &cpu->env;
11120 
11121     if (is_a64(env)) {
11122         qemu_log_mask(CPU_LOG_INT,
11123                       "...handling as semihosting call 0x%" PRIx64 "\n",
11124                       env->xregs[0]);
11125         do_common_semihosting(cs);
11126         env->pc += 4;
11127     } else {
11128         qemu_log_mask(CPU_LOG_INT,
11129                       "...handling as semihosting call 0x%x\n",
11130                       env->regs[0]);
11131         do_common_semihosting(cs);
11132         env->regs[15] += env->thumb ? 2 : 4;
11133     }
11134 }
11135 #endif
11136 
11137 /*
11138  * Handle a CPU exception for A and R profile CPUs.
11139  * Do any appropriate logging, handle PSCI calls, and then hand off
11140  * to the AArch64-entry or AArch32-entry function depending on the
11141  * target exception level's register width.
11142  *
11143  * Note: this is used for both TCG (as the do_interrupt tcg op),
11144  *       and KVM to re-inject guest debug exceptions, and to
11145  *       inject a Synchronous-External-Abort.
11146  */
11147 void arm_cpu_do_interrupt(CPUState *cs)
11148 {
11149     ARMCPU *cpu = ARM_CPU(cs);
11150     CPUARMState *env = &cpu->env;
11151     unsigned int new_el = env->exception.target_el;
11152 
11153     assert(!arm_feature(env, ARM_FEATURE_M));
11154 
11155     arm_log_exception(cs);
11156     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11157                   new_el);
11158     if (qemu_loglevel_mask(CPU_LOG_INT)
11159         && !excp_is_internal(cs->exception_index)) {
11160         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11161                       syn_get_ec(env->exception.syndrome),
11162                       env->exception.syndrome);
11163     }
11164 
11165     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11166         arm_handle_psci_call(cpu);
11167         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11168         return;
11169     }
11170 
11171     /*
11172      * Semihosting semantics depend on the register width of the code
11173      * that caused the exception, not the target exception level, so
11174      * must be handled here.
11175      */
11176 #ifdef CONFIG_TCG
11177     if (cs->exception_index == EXCP_SEMIHOST) {
11178         tcg_handle_semihosting(cs);
11179         return;
11180     }
11181 #endif
11182 
11183     /*
11184      * Hooks may change global state so BQL should be held, also the
11185      * BQL needs to be held for any modification of
11186      * cs->interrupt_request.
11187      */
11188     g_assert(qemu_mutex_iothread_locked());
11189 
11190     arm_call_pre_el_change_hook(cpu);
11191 
11192     assert(!excp_is_internal(cs->exception_index));
11193     if (arm_el_is_aa64(env, new_el)) {
11194         arm_cpu_do_interrupt_aarch64(cs);
11195     } else {
11196         arm_cpu_do_interrupt_aarch32(cs);
11197     }
11198 
11199     arm_call_el_change_hook(cpu);
11200 
11201     if (!kvm_enabled()) {
11202         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11203     }
11204 }
11205 #endif /* !CONFIG_USER_ONLY */
11206 
11207 uint64_t arm_sctlr(CPUARMState *env, int el)
11208 {
11209     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11210     if (el == 0) {
11211         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11212         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11213     }
11214     return env->cp15.sctlr_el[el];
11215 }
11216 
11217 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11218 {
11219     if (regime_has_2_ranges(mmu_idx)) {
11220         return extract64(tcr, 37, 2);
11221     } else if (regime_is_stage2(mmu_idx)) {
11222         return 0; /* VTCR_EL2 */
11223     } else {
11224         /* Replicate the single TBI bit so we always have 2 bits.  */
11225         return extract32(tcr, 20, 1) * 3;
11226     }
11227 }
11228 
11229 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11230 {
11231     if (regime_has_2_ranges(mmu_idx)) {
11232         return extract64(tcr, 51, 2);
11233     } else if (regime_is_stage2(mmu_idx)) {
11234         return 0; /* VTCR_EL2 */
11235     } else {
11236         /* Replicate the single TBID bit so we always have 2 bits.  */
11237         return extract32(tcr, 29, 1) * 3;
11238     }
11239 }
11240 
11241 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11242 {
11243     if (regime_has_2_ranges(mmu_idx)) {
11244         return extract64(tcr, 57, 2);
11245     } else {
11246         /* Replicate the single TCMA bit so we always have 2 bits.  */
11247         return extract32(tcr, 30, 1) * 3;
11248     }
11249 }
11250 
11251 static ARMGranuleSize tg0_to_gran_size(int tg)
11252 {
11253     switch (tg) {
11254     case 0:
11255         return Gran4K;
11256     case 1:
11257         return Gran64K;
11258     case 2:
11259         return Gran16K;
11260     default:
11261         return GranInvalid;
11262     }
11263 }
11264 
11265 static ARMGranuleSize tg1_to_gran_size(int tg)
11266 {
11267     switch (tg) {
11268     case 1:
11269         return Gran16K;
11270     case 2:
11271         return Gran4K;
11272     case 3:
11273         return Gran64K;
11274     default:
11275         return GranInvalid;
11276     }
11277 }
11278 
11279 static inline bool have4k(ARMCPU *cpu, bool stage2)
11280 {
11281     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11282         : cpu_isar_feature(aa64_tgran4, cpu);
11283 }
11284 
11285 static inline bool have16k(ARMCPU *cpu, bool stage2)
11286 {
11287     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11288         : cpu_isar_feature(aa64_tgran16, cpu);
11289 }
11290 
11291 static inline bool have64k(ARMCPU *cpu, bool stage2)
11292 {
11293     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11294         : cpu_isar_feature(aa64_tgran64, cpu);
11295 }
11296 
11297 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11298                                          bool stage2)
11299 {
11300     switch (gran) {
11301     case Gran4K:
11302         if (have4k(cpu, stage2)) {
11303             return gran;
11304         }
11305         break;
11306     case Gran16K:
11307         if (have16k(cpu, stage2)) {
11308             return gran;
11309         }
11310         break;
11311     case Gran64K:
11312         if (have64k(cpu, stage2)) {
11313             return gran;
11314         }
11315         break;
11316     case GranInvalid:
11317         break;
11318     }
11319     /*
11320      * If the guest selects a granule size that isn't implemented,
11321      * the architecture requires that we behave as if it selected one
11322      * that is (with an IMPDEF choice of which one to pick). We choose
11323      * to implement the smallest supported granule size.
11324      */
11325     if (have4k(cpu, stage2)) {
11326         return Gran4K;
11327     }
11328     if (have16k(cpu, stage2)) {
11329         return Gran16K;
11330     }
11331     assert(have64k(cpu, stage2));
11332     return Gran64K;
11333 }
11334 
11335 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11336                                    ARMMMUIdx mmu_idx, bool data,
11337                                    bool el1_is_aa32)
11338 {
11339     uint64_t tcr = regime_tcr(env, mmu_idx);
11340     bool epd, hpd, tsz_oob, ds, ha, hd;
11341     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11342     ARMGranuleSize gran;
11343     ARMCPU *cpu = env_archcpu(env);
11344     bool stage2 = regime_is_stage2(mmu_idx);
11345 
11346     if (!regime_has_2_ranges(mmu_idx)) {
11347         select = 0;
11348         tsz = extract32(tcr, 0, 6);
11349         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11350         if (stage2) {
11351             /* VTCR_EL2 */
11352             hpd = false;
11353         } else {
11354             hpd = extract32(tcr, 24, 1);
11355         }
11356         epd = false;
11357         sh = extract32(tcr, 12, 2);
11358         ps = extract32(tcr, 16, 3);
11359         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11360         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11361         ds = extract64(tcr, 32, 1);
11362     } else {
11363         bool e0pd;
11364 
11365         /*
11366          * Bit 55 is always between the two regions, and is canonical for
11367          * determining if address tagging is enabled.
11368          */
11369         select = extract64(va, 55, 1);
11370         if (!select) {
11371             tsz = extract32(tcr, 0, 6);
11372             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11373             epd = extract32(tcr, 7, 1);
11374             sh = extract32(tcr, 12, 2);
11375             hpd = extract64(tcr, 41, 1);
11376             e0pd = extract64(tcr, 55, 1);
11377         } else {
11378             tsz = extract32(tcr, 16, 6);
11379             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11380             epd = extract32(tcr, 23, 1);
11381             sh = extract32(tcr, 28, 2);
11382             hpd = extract64(tcr, 42, 1);
11383             e0pd = extract64(tcr, 56, 1);
11384         }
11385         ps = extract64(tcr, 32, 3);
11386         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11387         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11388         ds = extract64(tcr, 59, 1);
11389 
11390         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11391             regime_is_user(env, mmu_idx)) {
11392             epd = true;
11393         }
11394     }
11395 
11396     gran = sanitize_gran_size(cpu, gran, stage2);
11397 
11398     if (cpu_isar_feature(aa64_st, cpu)) {
11399         max_tsz = 48 - (gran == Gran64K);
11400     } else {
11401         max_tsz = 39;
11402     }
11403 
11404     /*
11405      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11406      * adjust the effective value of DS, as documented.
11407      */
11408     min_tsz = 16;
11409     if (gran == Gran64K) {
11410         if (cpu_isar_feature(aa64_lva, cpu)) {
11411             min_tsz = 12;
11412         }
11413         ds = false;
11414     } else if (ds) {
11415         if (regime_is_stage2(mmu_idx)) {
11416             if (gran == Gran16K) {
11417                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11418             } else {
11419                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11420             }
11421         } else {
11422             if (gran == Gran16K) {
11423                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11424             } else {
11425                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11426             }
11427         }
11428         if (ds) {
11429             min_tsz = 12;
11430         }
11431     }
11432 
11433     if (stage2 && el1_is_aa32) {
11434         /*
11435          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11436          * are loosened: a configured IPA of 40 bits is permitted even if
11437          * the implemented PA is less than that (and so a 40 bit IPA would
11438          * fault for an AArch64 EL1). See R_DTLMN.
11439          */
11440         min_tsz = MIN(min_tsz, 24);
11441     }
11442 
11443     if (tsz > max_tsz) {
11444         tsz = max_tsz;
11445         tsz_oob = true;
11446     } else if (tsz < min_tsz) {
11447         tsz = min_tsz;
11448         tsz_oob = true;
11449     } else {
11450         tsz_oob = false;
11451     }
11452 
11453     /* Present TBI as a composite with TBID.  */
11454     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11455     if (!data) {
11456         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11457     }
11458     tbi = (tbi >> select) & 1;
11459 
11460     return (ARMVAParameters) {
11461         .tsz = tsz,
11462         .ps = ps,
11463         .sh = sh,
11464         .select = select,
11465         .tbi = tbi,
11466         .epd = epd,
11467         .hpd = hpd,
11468         .tsz_oob = tsz_oob,
11469         .ds = ds,
11470         .ha = ha,
11471         .hd = ha && hd,
11472         .gran = gran,
11473     };
11474 }
11475 
11476 /*
11477  * Note that signed overflow is undefined in C.  The following routines are
11478  * careful to use unsigned types where modulo arithmetic is required.
11479  * Failure to do so _will_ break on newer gcc.
11480  */
11481 
11482 /* Signed saturating arithmetic.  */
11483 
11484 /* Perform 16-bit signed saturating addition.  */
11485 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11486 {
11487     uint16_t res;
11488 
11489     res = a + b;
11490     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11491         if (a & 0x8000) {
11492             res = 0x8000;
11493         } else {
11494             res = 0x7fff;
11495         }
11496     }
11497     return res;
11498 }
11499 
11500 /* Perform 8-bit signed saturating addition.  */
11501 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11502 {
11503     uint8_t res;
11504 
11505     res = a + b;
11506     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11507         if (a & 0x80) {
11508             res = 0x80;
11509         } else {
11510             res = 0x7f;
11511         }
11512     }
11513     return res;
11514 }
11515 
11516 /* Perform 16-bit signed saturating subtraction.  */
11517 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11518 {
11519     uint16_t res;
11520 
11521     res = a - b;
11522     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11523         if (a & 0x8000) {
11524             res = 0x8000;
11525         } else {
11526             res = 0x7fff;
11527         }
11528     }
11529     return res;
11530 }
11531 
11532 /* Perform 8-bit signed saturating subtraction.  */
11533 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11534 {
11535     uint8_t res;
11536 
11537     res = a - b;
11538     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11539         if (a & 0x80) {
11540             res = 0x80;
11541         } else {
11542             res = 0x7f;
11543         }
11544     }
11545     return res;
11546 }
11547 
11548 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11549 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11550 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11551 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11552 #define PFX q
11553 
11554 #include "op_addsub.h"
11555 
11556 /* Unsigned saturating arithmetic.  */
11557 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11558 {
11559     uint16_t res;
11560     res = a + b;
11561     if (res < a) {
11562         res = 0xffff;
11563     }
11564     return res;
11565 }
11566 
11567 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11568 {
11569     if (a > b) {
11570         return a - b;
11571     } else {
11572         return 0;
11573     }
11574 }
11575 
11576 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11577 {
11578     uint8_t res;
11579     res = a + b;
11580     if (res < a) {
11581         res = 0xff;
11582     }
11583     return res;
11584 }
11585 
11586 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11587 {
11588     if (a > b) {
11589         return a - b;
11590     } else {
11591         return 0;
11592     }
11593 }
11594 
11595 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11596 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11597 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11598 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11599 #define PFX uq
11600 
11601 #include "op_addsub.h"
11602 
11603 /* Signed modulo arithmetic.  */
11604 #define SARITH16(a, b, n, op) do { \
11605     int32_t sum; \
11606     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11607     RESULT(sum, n, 16); \
11608     if (sum >= 0) \
11609         ge |= 3 << (n * 2); \
11610     } while (0)
11611 
11612 #define SARITH8(a, b, n, op) do { \
11613     int32_t sum; \
11614     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11615     RESULT(sum, n, 8); \
11616     if (sum >= 0) \
11617         ge |= 1 << n; \
11618     } while (0)
11619 
11620 
11621 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11622 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11623 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11624 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11625 #define PFX s
11626 #define ARITH_GE
11627 
11628 #include "op_addsub.h"
11629 
11630 /* Unsigned modulo arithmetic.  */
11631 #define ADD16(a, b, n) do { \
11632     uint32_t sum; \
11633     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11634     RESULT(sum, n, 16); \
11635     if ((sum >> 16) == 1) \
11636         ge |= 3 << (n * 2); \
11637     } while (0)
11638 
11639 #define ADD8(a, b, n) do { \
11640     uint32_t sum; \
11641     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11642     RESULT(sum, n, 8); \
11643     if ((sum >> 8) == 1) \
11644         ge |= 1 << n; \
11645     } while (0)
11646 
11647 #define SUB16(a, b, n) do { \
11648     uint32_t sum; \
11649     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11650     RESULT(sum, n, 16); \
11651     if ((sum >> 16) == 0) \
11652         ge |= 3 << (n * 2); \
11653     } while (0)
11654 
11655 #define SUB8(a, b, n) do { \
11656     uint32_t sum; \
11657     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11658     RESULT(sum, n, 8); \
11659     if ((sum >> 8) == 0) \
11660         ge |= 1 << n; \
11661     } while (0)
11662 
11663 #define PFX u
11664 #define ARITH_GE
11665 
11666 #include "op_addsub.h"
11667 
11668 /* Halved signed arithmetic.  */
11669 #define ADD16(a, b, n) \
11670   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11671 #define SUB16(a, b, n) \
11672   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11673 #define ADD8(a, b, n) \
11674   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11675 #define SUB8(a, b, n) \
11676   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11677 #define PFX sh
11678 
11679 #include "op_addsub.h"
11680 
11681 /* Halved unsigned arithmetic.  */
11682 #define ADD16(a, b, n) \
11683   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11684 #define SUB16(a, b, n) \
11685   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11686 #define ADD8(a, b, n) \
11687   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11688 #define SUB8(a, b, n) \
11689   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11690 #define PFX uh
11691 
11692 #include "op_addsub.h"
11693 
11694 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11695 {
11696     if (a > b) {
11697         return a - b;
11698     } else {
11699         return b - a;
11700     }
11701 }
11702 
11703 /* Unsigned sum of absolute byte differences.  */
11704 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11705 {
11706     uint32_t sum;
11707     sum = do_usad(a, b);
11708     sum += do_usad(a >> 8, b >> 8);
11709     sum += do_usad(a >> 16, b >> 16);
11710     sum += do_usad(a >> 24, b >> 24);
11711     return sum;
11712 }
11713 
11714 /* For ARMv6 SEL instruction.  */
11715 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11716 {
11717     uint32_t mask;
11718 
11719     mask = 0;
11720     if (flags & 1) {
11721         mask |= 0xff;
11722     }
11723     if (flags & 2) {
11724         mask |= 0xff00;
11725     }
11726     if (flags & 4) {
11727         mask |= 0xff0000;
11728     }
11729     if (flags & 8) {
11730         mask |= 0xff000000;
11731     }
11732     return (a & mask) | (b & ~mask);
11733 }
11734 
11735 /*
11736  * CRC helpers.
11737  * The upper bytes of val (above the number specified by 'bytes') must have
11738  * been zeroed out by the caller.
11739  */
11740 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11741 {
11742     uint8_t buf[4];
11743 
11744     stl_le_p(buf, val);
11745 
11746     /* zlib crc32 converts the accumulator and output to one's complement.  */
11747     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11748 }
11749 
11750 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11751 {
11752     uint8_t buf[4];
11753 
11754     stl_le_p(buf, val);
11755 
11756     /* Linux crc32c converts the output to one's complement.  */
11757     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11758 }
11759 
11760 /*
11761  * Return the exception level to which FP-disabled exceptions should
11762  * be taken, or 0 if FP is enabled.
11763  */
11764 int fp_exception_el(CPUARMState *env, int cur_el)
11765 {
11766 #ifndef CONFIG_USER_ONLY
11767     uint64_t hcr_el2;
11768 
11769     /*
11770      * CPACR and the CPTR registers don't exist before v6, so FP is
11771      * always accessible
11772      */
11773     if (!arm_feature(env, ARM_FEATURE_V6)) {
11774         return 0;
11775     }
11776 
11777     if (arm_feature(env, ARM_FEATURE_M)) {
11778         /* CPACR can cause a NOCP UsageFault taken to current security state */
11779         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11780             return 1;
11781         }
11782 
11783         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11784             if (!extract32(env->v7m.nsacr, 10, 1)) {
11785                 /* FP insns cause a NOCP UsageFault taken to Secure */
11786                 return 3;
11787             }
11788         }
11789 
11790         return 0;
11791     }
11792 
11793     hcr_el2 = arm_hcr_el2_eff(env);
11794 
11795     /*
11796      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11797      * 0, 2 : trap EL0 and EL1/PL1 accesses
11798      * 1    : trap only EL0 accesses
11799      * 3    : trap no accesses
11800      * This register is ignored if E2H+TGE are both set.
11801      */
11802     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11803         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11804 
11805         switch (fpen) {
11806         case 1:
11807             if (cur_el != 0) {
11808                 break;
11809             }
11810             /* fall through */
11811         case 0:
11812         case 2:
11813             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11814             if (!arm_el_is_aa64(env, 3)
11815                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11816                 return 3;
11817             }
11818             if (cur_el <= 1) {
11819                 return 1;
11820             }
11821             break;
11822         }
11823     }
11824 
11825     /*
11826      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11827      * to control non-secure access to the FPU. It doesn't have any
11828      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11829      */
11830     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11831          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11832         if (!extract32(env->cp15.nsacr, 10, 1)) {
11833             /* FP insns act as UNDEF */
11834             return cur_el == 2 ? 2 : 1;
11835         }
11836     }
11837 
11838     /*
11839      * CPTR_EL2 is present in v7VE or v8, and changes format
11840      * with HCR_EL2.E2H (regardless of TGE).
11841      */
11842     if (cur_el <= 2) {
11843         if (hcr_el2 & HCR_E2H) {
11844             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11845             case 1:
11846                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11847                     break;
11848                 }
11849                 /* fall through */
11850             case 0:
11851             case 2:
11852                 return 2;
11853             }
11854         } else if (arm_is_el2_enabled(env)) {
11855             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11856                 return 2;
11857             }
11858         }
11859     }
11860 
11861     /* CPTR_EL3 : present in v8 */
11862     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
11863         /* Trap all FP ops to EL3 */
11864         return 3;
11865     }
11866 #endif
11867     return 0;
11868 }
11869 
11870 /* Return the exception level we're running at if this is our mmu_idx */
11871 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
11872 {
11873     if (mmu_idx & ARM_MMU_IDX_M) {
11874         return mmu_idx & ARM_MMU_IDX_M_PRIV;
11875     }
11876 
11877     switch (mmu_idx) {
11878     case ARMMMUIdx_E10_0:
11879     case ARMMMUIdx_E20_0:
11880         return 0;
11881     case ARMMMUIdx_E10_1:
11882     case ARMMMUIdx_E10_1_PAN:
11883         return 1;
11884     case ARMMMUIdx_E2:
11885     case ARMMMUIdx_E20_2:
11886     case ARMMMUIdx_E20_2_PAN:
11887         return 2;
11888     case ARMMMUIdx_E3:
11889         return 3;
11890     default:
11891         g_assert_not_reached();
11892     }
11893 }
11894 
11895 #ifndef CONFIG_TCG
11896 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
11897 {
11898     g_assert_not_reached();
11899 }
11900 #endif
11901 
11902 static bool arm_pan_enabled(CPUARMState *env)
11903 {
11904     if (is_a64(env)) {
11905         return env->pstate & PSTATE_PAN;
11906     } else {
11907         return env->uncached_cpsr & CPSR_PAN;
11908     }
11909 }
11910 
11911 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
11912 {
11913     ARMMMUIdx idx;
11914     uint64_t hcr;
11915 
11916     if (arm_feature(env, ARM_FEATURE_M)) {
11917         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
11918     }
11919 
11920     /* See ARM pseudo-function ELIsInHost.  */
11921     switch (el) {
11922     case 0:
11923         hcr = arm_hcr_el2_eff(env);
11924         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
11925             idx = ARMMMUIdx_E20_0;
11926         } else {
11927             idx = ARMMMUIdx_E10_0;
11928         }
11929         break;
11930     case 1:
11931         if (arm_pan_enabled(env)) {
11932             idx = ARMMMUIdx_E10_1_PAN;
11933         } else {
11934             idx = ARMMMUIdx_E10_1;
11935         }
11936         break;
11937     case 2:
11938         /* Note that TGE does not apply at EL2.  */
11939         if (arm_hcr_el2_eff(env) & HCR_E2H) {
11940             if (arm_pan_enabled(env)) {
11941                 idx = ARMMMUIdx_E20_2_PAN;
11942             } else {
11943                 idx = ARMMMUIdx_E20_2;
11944             }
11945         } else {
11946             idx = ARMMMUIdx_E2;
11947         }
11948         break;
11949     case 3:
11950         return ARMMMUIdx_E3;
11951     default:
11952         g_assert_not_reached();
11953     }
11954 
11955     return idx;
11956 }
11957 
11958 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
11959 {
11960     return arm_mmu_idx_el(env, arm_current_el(env));
11961 }
11962 
11963 static bool mve_no_pred(CPUARMState *env)
11964 {
11965     /*
11966      * Return true if there is definitely no predication of MVE
11967      * instructions by VPR or LTPSIZE. (Returning false even if there
11968      * isn't any predication is OK; generated code will just be
11969      * a little worse.)
11970      * If the CPU does not implement MVE then this TB flag is always 0.
11971      *
11972      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
11973      * logic in gen_update_fp_context() needs to be updated to match.
11974      *
11975      * We do not include the effect of the ECI bits here -- they are
11976      * tracked in other TB flags. This simplifies the logic for
11977      * "when did we emit code that changes the MVE_NO_PRED TB flag
11978      * and thus need to end the TB?".
11979      */
11980     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
11981         return false;
11982     }
11983     if (env->v7m.vpr) {
11984         return false;
11985     }
11986     if (env->v7m.ltpsize < 4) {
11987         return false;
11988     }
11989     return true;
11990 }
11991 
11992 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
11993                           uint64_t *cs_base, uint32_t *pflags)
11994 {
11995     CPUARMTBFlags flags;
11996 
11997     assert_hflags_rebuild_correctly(env);
11998     flags = env->hflags;
11999 
12000     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12001         *pc = env->pc;
12002         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12003             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12004         }
12005     } else {
12006         *pc = env->regs[15];
12007 
12008         if (arm_feature(env, ARM_FEATURE_M)) {
12009             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12010                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12011                 != env->v7m.secure) {
12012                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12013             }
12014 
12015             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12016                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12017                  (env->v7m.secure &&
12018                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12019                 /*
12020                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12021                  * active FP context; we must create a new FP context before
12022                  * executing any FP insn.
12023                  */
12024                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12025             }
12026 
12027             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12028             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12029                 DP_TBFLAG_M32(flags, LSPACT, 1);
12030             }
12031 
12032             if (mve_no_pred(env)) {
12033                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12034             }
12035         } else {
12036             /*
12037              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12038              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12039              */
12040             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12041                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12042             } else {
12043                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12044                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12045             }
12046             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12047                 DP_TBFLAG_A32(flags, VFPEN, 1);
12048             }
12049         }
12050 
12051         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12052         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12053     }
12054 
12055     /*
12056      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12057      * states defined in the ARM ARM for software singlestep:
12058      *  SS_ACTIVE   PSTATE.SS   State
12059      *     0            x       Inactive (the TB flag for SS is always 0)
12060      *     1            0       Active-pending
12061      *     1            1       Active-not-pending
12062      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12063      */
12064     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12065         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12066     }
12067 
12068     *pflags = flags.flags;
12069     *cs_base = flags.flags2;
12070 }
12071 
12072 #ifdef TARGET_AARCH64
12073 /*
12074  * The manual says that when SVE is enabled and VQ is widened the
12075  * implementation is allowed to zero the previously inaccessible
12076  * portion of the registers.  The corollary to that is that when
12077  * SVE is enabled and VQ is narrowed we are also allowed to zero
12078  * the now inaccessible portion of the registers.
12079  *
12080  * The intent of this is that no predicate bit beyond VQ is ever set.
12081  * Which means that some operations on predicate registers themselves
12082  * may operate on full uint64_t or even unrolled across the maximum
12083  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12084  * may well be cheaper than conditionals to restrict the operation
12085  * to the relevant portion of a uint16_t[16].
12086  */
12087 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12088 {
12089     int i, j;
12090     uint64_t pmask;
12091 
12092     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12093     assert(vq <= env_archcpu(env)->sve_max_vq);
12094 
12095     /* Zap the high bits of the zregs.  */
12096     for (i = 0; i < 32; i++) {
12097         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12098     }
12099 
12100     /* Zap the high bits of the pregs and ffr.  */
12101     pmask = 0;
12102     if (vq & 3) {
12103         pmask = ~(-1ULL << (16 * (vq & 3)));
12104     }
12105     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12106         for (i = 0; i < 17; ++i) {
12107             env->vfp.pregs[i].p[j] &= pmask;
12108         }
12109         pmask = 0;
12110     }
12111 }
12112 
12113 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12114 {
12115     int exc_el;
12116 
12117     if (sm) {
12118         exc_el = sme_exception_el(env, el);
12119     } else {
12120         exc_el = sve_exception_el(env, el);
12121     }
12122     if (exc_el) {
12123         return 0; /* disabled */
12124     }
12125     return sve_vqm1_for_el_sm(env, el, sm);
12126 }
12127 
12128 /*
12129  * Notice a change in SVE vector size when changing EL.
12130  */
12131 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12132                            int new_el, bool el0_a64)
12133 {
12134     ARMCPU *cpu = env_archcpu(env);
12135     int old_len, new_len;
12136     bool old_a64, new_a64, sm;
12137 
12138     /* Nothing to do if no SVE.  */
12139     if (!cpu_isar_feature(aa64_sve, cpu)) {
12140         return;
12141     }
12142 
12143     /* Nothing to do if FP is disabled in either EL.  */
12144     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12145         return;
12146     }
12147 
12148     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12149     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12150 
12151     /*
12152      * Both AArch64.TakeException and AArch64.ExceptionReturn
12153      * invoke ResetSVEState when taking an exception from, or
12154      * returning to, AArch32 state when PSTATE.SM is enabled.
12155      */
12156     sm = FIELD_EX64(env->svcr, SVCR, SM);
12157     if (old_a64 != new_a64 && sm) {
12158         arm_reset_sve_state(env);
12159         return;
12160     }
12161 
12162     /*
12163      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12164      * at ELx, or not available because the EL is in AArch32 state, then
12165      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12166      * has an effective value of 0".
12167      *
12168      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12169      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12170      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12171      * we already have the correct register contents when encountering the
12172      * vq0->vq0 transition between EL0->EL1.
12173      */
12174     old_len = new_len = 0;
12175     if (old_a64) {
12176         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12177     }
12178     if (new_a64) {
12179         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12180     }
12181 
12182     /* When changing vector length, clear inaccessible state.  */
12183     if (new_len < old_len) {
12184         aarch64_sve_narrow_vq(env, new_len + 1);
12185     }
12186 }
12187 #endif
12188 
12189 #ifndef CONFIG_USER_ONLY
12190 ARMSecuritySpace arm_security_space(CPUARMState *env)
12191 {
12192     if (arm_feature(env, ARM_FEATURE_M)) {
12193         return arm_secure_to_space(env->v7m.secure);
12194     }
12195 
12196     /*
12197      * If EL3 is not supported then the secure state is implementation
12198      * defined, in which case QEMU defaults to non-secure.
12199      */
12200     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12201         return ARMSS_NonSecure;
12202     }
12203 
12204     /* Check for AArch64 EL3 or AArch32 Mon. */
12205     if (is_a64(env)) {
12206         if (extract32(env->pstate, 2, 2) == 3) {
12207             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12208                 return ARMSS_Root;
12209             } else {
12210                 return ARMSS_Secure;
12211             }
12212         }
12213     } else {
12214         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12215             return ARMSS_Secure;
12216         }
12217     }
12218 
12219     return arm_security_space_below_el3(env);
12220 }
12221 
12222 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12223 {
12224     assert(!arm_feature(env, ARM_FEATURE_M));
12225 
12226     /*
12227      * If EL3 is not supported then the secure state is implementation
12228      * defined, in which case QEMU defaults to non-secure.
12229      */
12230     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12231         return ARMSS_NonSecure;
12232     }
12233 
12234     /*
12235      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12236      * Ignoring NSE when !NS retains consistency without having to
12237      * modify other predicates.
12238      */
12239     if (!(env->cp15.scr_el3 & SCR_NS)) {
12240         return ARMSS_Secure;
12241     } else if (env->cp15.scr_el3 & SCR_NSE) {
12242         return ARMSS_Realm;
12243     } else {
12244         return ARMSS_NonSecure;
12245     }
12246 }
12247 #endif /* !CONFIG_USER_ONLY */
12248