xref: /qemu/target/arm/internals.h (revision 4a1babe5)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 #include "cpu-features.h"
32 
33 /* register banks for CPU modes */
34 #define BANK_USRSYS 0
35 #define BANK_SVC    1
36 #define BANK_ABT    2
37 #define BANK_UND    3
38 #define BANK_IRQ    4
39 #define BANK_FIQ    5
40 #define BANK_HYP    6
41 #define BANK_MON    7
42 
43 static inline int arm_env_mmu_index(CPUARMState *env)
44 {
45     return EX_TBFLAG_ANY(env->hflags, MMUIDX);
46 }
47 
48 static inline bool excp_is_internal(int excp)
49 {
50     /* Return true if this exception number represents a QEMU-internal
51      * exception that will not be passed to the guest.
52      */
53     return excp == EXCP_INTERRUPT
54         || excp == EXCP_HLT
55         || excp == EXCP_DEBUG
56         || excp == EXCP_HALTED
57         || excp == EXCP_EXCEPTION_EXIT
58         || excp == EXCP_KERNEL_TRAP
59         || excp == EXCP_SEMIHOST;
60 }
61 
62 /* Scale factor for generic timers, ie number of ns per tick.
63  * This gives a 62.5MHz timer.
64  */
65 #define GTIMER_SCALE 16
66 
67 /* Bit definitions for the v7M CONTROL register */
68 FIELD(V7M_CONTROL, NPRIV, 0, 1)
69 FIELD(V7M_CONTROL, SPSEL, 1, 1)
70 FIELD(V7M_CONTROL, FPCA, 2, 1)
71 FIELD(V7M_CONTROL, SFPA, 3, 1)
72 
73 /* Bit definitions for v7M exception return payload */
74 FIELD(V7M_EXCRET, ES, 0, 1)
75 FIELD(V7M_EXCRET, RES0, 1, 1)
76 FIELD(V7M_EXCRET, SPSEL, 2, 1)
77 FIELD(V7M_EXCRET, MODE, 3, 1)
78 FIELD(V7M_EXCRET, FTYPE, 4, 1)
79 FIELD(V7M_EXCRET, DCRS, 5, 1)
80 FIELD(V7M_EXCRET, S, 6, 1)
81 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
82 
83 /* Minimum value which is a magic number for exception return */
84 #define EXC_RETURN_MIN_MAGIC 0xff000000
85 /* Minimum number which is a magic number for function or exception return
86  * when using v8M security extension
87  */
88 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
89 
90 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
91 FIELD(DBGWCR, E, 0, 1)
92 FIELD(DBGWCR, PAC, 1, 2)
93 FIELD(DBGWCR, LSC, 3, 2)
94 FIELD(DBGWCR, BAS, 5, 8)
95 FIELD(DBGWCR, HMC, 13, 1)
96 FIELD(DBGWCR, SSC, 14, 2)
97 FIELD(DBGWCR, LBN, 16, 4)
98 FIELD(DBGWCR, WT, 20, 1)
99 FIELD(DBGWCR, MASK, 24, 5)
100 FIELD(DBGWCR, SSCE, 29, 1)
101 
102 #define VTCR_NSW (1u << 29)
103 #define VTCR_NSA (1u << 30)
104 #define VSTCR_SW VTCR_NSW
105 #define VSTCR_SA VTCR_NSA
106 
107 /* Bit definitions for CPACR (AArch32 only) */
108 FIELD(CPACR, CP10, 20, 2)
109 FIELD(CPACR, CP11, 22, 2)
110 FIELD(CPACR, TRCDIS, 28, 1)    /* matches CPACR_EL1.TTA */
111 FIELD(CPACR, D32DIS, 30, 1)    /* up to v7; RAZ in v8 */
112 FIELD(CPACR, ASEDIS, 31, 1)
113 
114 /* Bit definitions for CPACR_EL1 (AArch64 only) */
115 FIELD(CPACR_EL1, ZEN, 16, 2)
116 FIELD(CPACR_EL1, FPEN, 20, 2)
117 FIELD(CPACR_EL1, SMEN, 24, 2)
118 FIELD(CPACR_EL1, TTA, 28, 1)   /* matches CPACR.TRCDIS */
119 
120 /* Bit definitions for HCPTR (AArch32 only) */
121 FIELD(HCPTR, TCP10, 10, 1)
122 FIELD(HCPTR, TCP11, 11, 1)
123 FIELD(HCPTR, TASE, 15, 1)
124 FIELD(HCPTR, TTA, 20, 1)
125 FIELD(HCPTR, TAM, 30, 1)       /* matches CPTR_EL2.TAM */
126 FIELD(HCPTR, TCPAC, 31, 1)     /* matches CPTR_EL2.TCPAC */
127 
128 /* Bit definitions for CPTR_EL2 (AArch64 only) */
129 FIELD(CPTR_EL2, TZ, 8, 1)      /* !E2H */
130 FIELD(CPTR_EL2, TFP, 10, 1)    /* !E2H, matches HCPTR.TCP10 */
131 FIELD(CPTR_EL2, TSM, 12, 1)    /* !E2H */
132 FIELD(CPTR_EL2, ZEN, 16, 2)    /* E2H */
133 FIELD(CPTR_EL2, FPEN, 20, 2)   /* E2H */
134 FIELD(CPTR_EL2, SMEN, 24, 2)   /* E2H */
135 FIELD(CPTR_EL2, TTA, 28, 1)
136 FIELD(CPTR_EL2, TAM, 30, 1)    /* matches HCPTR.TAM */
137 FIELD(CPTR_EL2, TCPAC, 31, 1)  /* matches HCPTR.TCPAC */
138 
139 /* Bit definitions for CPTR_EL3 (AArch64 only) */
140 FIELD(CPTR_EL3, EZ, 8, 1)
141 FIELD(CPTR_EL3, TFP, 10, 1)
142 FIELD(CPTR_EL3, ESM, 12, 1)
143 FIELD(CPTR_EL3, TTA, 20, 1)
144 FIELD(CPTR_EL3, TAM, 30, 1)
145 FIELD(CPTR_EL3, TCPAC, 31, 1)
146 
147 #define MDCR_MTPME    (1U << 28)
148 #define MDCR_TDCC     (1U << 27)
149 #define MDCR_HLP      (1U << 26)  /* MDCR_EL2 */
150 #define MDCR_SCCD     (1U << 23)  /* MDCR_EL3 */
151 #define MDCR_HCCD     (1U << 23)  /* MDCR_EL2 */
152 #define MDCR_EPMAD    (1U << 21)
153 #define MDCR_EDAD     (1U << 20)
154 #define MDCR_TTRF     (1U << 19)
155 #define MDCR_STE      (1U << 18)  /* MDCR_EL3 */
156 #define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
157 #define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
158 #define MDCR_SDD      (1U << 16)
159 #define MDCR_SPD      (3U << 14)
160 #define MDCR_TDRA     (1U << 11)
161 #define MDCR_TDOSA    (1U << 10)
162 #define MDCR_TDA      (1U << 9)
163 #define MDCR_TDE      (1U << 8)
164 #define MDCR_HPME     (1U << 7)
165 #define MDCR_TPM      (1U << 6)
166 #define MDCR_TPMCR    (1U << 5)
167 #define MDCR_HPMN     (0x1fU)
168 
169 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
170 #define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
171                          MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
172                          MDCR_STE | MDCR_SPME | MDCR_SPD)
173 
174 #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
175 #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
176 #define TTBCR_PD0    (1U << 4)
177 #define TTBCR_PD1    (1U << 5)
178 #define TTBCR_EPD0   (1U << 7)
179 #define TTBCR_IRGN0  (3U << 8)
180 #define TTBCR_ORGN0  (3U << 10)
181 #define TTBCR_SH0    (3U << 12)
182 #define TTBCR_T1SZ   (3U << 16)
183 #define TTBCR_A1     (1U << 22)
184 #define TTBCR_EPD1   (1U << 23)
185 #define TTBCR_IRGN1  (3U << 24)
186 #define TTBCR_ORGN1  (3U << 26)
187 #define TTBCR_SH1    (1U << 28)
188 #define TTBCR_EAE    (1U << 31)
189 
190 FIELD(VTCR, T0SZ, 0, 6)
191 FIELD(VTCR, SL0, 6, 2)
192 FIELD(VTCR, IRGN0, 8, 2)
193 FIELD(VTCR, ORGN0, 10, 2)
194 FIELD(VTCR, SH0, 12, 2)
195 FIELD(VTCR, TG0, 14, 2)
196 FIELD(VTCR, PS, 16, 3)
197 FIELD(VTCR, VS, 19, 1)
198 FIELD(VTCR, HA, 21, 1)
199 FIELD(VTCR, HD, 22, 1)
200 FIELD(VTCR, HWU59, 25, 1)
201 FIELD(VTCR, HWU60, 26, 1)
202 FIELD(VTCR, HWU61, 27, 1)
203 FIELD(VTCR, HWU62, 28, 1)
204 FIELD(VTCR, NSW, 29, 1)
205 FIELD(VTCR, NSA, 30, 1)
206 FIELD(VTCR, DS, 32, 1)
207 FIELD(VTCR, SL2, 33, 1)
208 
209 #define HCRX_ENAS0    (1ULL << 0)
210 #define HCRX_ENALS    (1ULL << 1)
211 #define HCRX_ENASR    (1ULL << 2)
212 #define HCRX_FNXS     (1ULL << 3)
213 #define HCRX_FGTNXS   (1ULL << 4)
214 #define HCRX_SMPME    (1ULL << 5)
215 #define HCRX_TALLINT  (1ULL << 6)
216 #define HCRX_VINMI    (1ULL << 7)
217 #define HCRX_VFNMI    (1ULL << 8)
218 #define HCRX_CMOW     (1ULL << 9)
219 #define HCRX_MCE2     (1ULL << 10)
220 #define HCRX_MSCEN    (1ULL << 11)
221 
222 #define HPFAR_NS      (1ULL << 63)
223 
224 #define HSTR_TTEE (1 << 16)
225 #define HSTR_TJDBX (1 << 17)
226 
227 /*
228  * Depending on the value of HCR_EL2.E2H, bits 0 and 1
229  * have different bit definitions, and EL1PCTEN might be
230  * bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
231  * disambiguate if necessary.
232  */
233 FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
234 FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
235 FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
236 FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
237 FIELD(CNTHCTL, EVNTEN, 2, 1)
238 FIELD(CNTHCTL, EVNTDIR, 3, 1)
239 FIELD(CNTHCTL, EVNTI, 4, 4)
240 FIELD(CNTHCTL, EL0VTEN, 8, 1)
241 FIELD(CNTHCTL, EL0PTEN, 9, 1)
242 FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
243 FIELD(CNTHCTL, EL1PTEN, 11, 1)
244 FIELD(CNTHCTL, ECV, 12, 1)
245 FIELD(CNTHCTL, EL1TVT, 13, 1)
246 FIELD(CNTHCTL, EL1TVCT, 14, 1)
247 FIELD(CNTHCTL, EL1NVPCT, 15, 1)
248 FIELD(CNTHCTL, EL1NVVCT, 16, 1)
249 FIELD(CNTHCTL, EVNTIS, 17, 1)
250 FIELD(CNTHCTL, CNTVMASK, 18, 1)
251 FIELD(CNTHCTL, CNTPMASK, 19, 1)
252 
253 /* We use a few fake FSR values for internal purposes in M profile.
254  * M profile cores don't have A/R format FSRs, but currently our
255  * get_phys_addr() code assumes A/R profile and reports failures via
256  * an A/R format FSR value. We then translate that into the proper
257  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
258  * Mostly the FSR values we use for this are those defined for v7PMSA,
259  * since we share some of that codepath. A few kinds of fault are
260  * only for M profile and have no A/R equivalent, though, so we have
261  * to pick a value from the reserved range (which we never otherwise
262  * generate) to use for these.
263  * These values will never be visible to the guest.
264  */
265 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
266 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
267 
268 /**
269  * raise_exception: Raise the specified exception.
270  * Raise a guest exception with the specified value, syndrome register
271  * and target exception level. This should be called from helper functions,
272  * and never returns because we will longjump back up to the CPU main loop.
273  */
274 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
275                                 uint32_t syndrome, uint32_t target_el);
276 
277 /*
278  * Similarly, but also use unwinding to restore cpu state.
279  */
280 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
281                                       uint32_t syndrome, uint32_t target_el,
282                                       uintptr_t ra);
283 
284 /*
285  * For AArch64, map a given EL to an index in the banked_spsr array.
286  * Note that this mapping and the AArch32 mapping defined in bank_number()
287  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
288  * mandated mapping between each other.
289  */
290 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
291 {
292     static const unsigned int map[4] = {
293         [1] = BANK_SVC, /* EL1.  */
294         [2] = BANK_HYP, /* EL2.  */
295         [3] = BANK_MON, /* EL3.  */
296     };
297     assert(el >= 1 && el <= 3);
298     return map[el];
299 }
300 
301 /* Map CPU modes onto saved register banks.  */
302 static inline int bank_number(int mode)
303 {
304     switch (mode) {
305     case ARM_CPU_MODE_USR:
306     case ARM_CPU_MODE_SYS:
307         return BANK_USRSYS;
308     case ARM_CPU_MODE_SVC:
309         return BANK_SVC;
310     case ARM_CPU_MODE_ABT:
311         return BANK_ABT;
312     case ARM_CPU_MODE_UND:
313         return BANK_UND;
314     case ARM_CPU_MODE_IRQ:
315         return BANK_IRQ;
316     case ARM_CPU_MODE_FIQ:
317         return BANK_FIQ;
318     case ARM_CPU_MODE_HYP:
319         return BANK_HYP;
320     case ARM_CPU_MODE_MON:
321         return BANK_MON;
322     }
323     g_assert_not_reached();
324 }
325 
326 /**
327  * r14_bank_number: Map CPU mode onto register bank for r14
328  *
329  * Given an AArch32 CPU mode, return the index into the saved register
330  * banks to use for the R14 (LR) in that mode. This is the same as
331  * bank_number(), except for the special case of Hyp mode, where
332  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
333  * This should be used as the index into env->banked_r14[], and
334  * bank_number() used for the index into env->banked_r13[] and
335  * env->banked_spsr[].
336  */
337 static inline int r14_bank_number(int mode)
338 {
339     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
340 }
341 
342 void arm_cpu_register(const ARMCPUInfo *info);
343 void aarch64_cpu_register(const ARMCPUInfo *info);
344 
345 void register_cp_regs_for_features(ARMCPU *cpu);
346 void init_cpreg_list(ARMCPU *cpu);
347 
348 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
349 void arm_translate_init(void);
350 
351 void arm_restore_state_to_opc(CPUState *cs,
352                               const TranslationBlock *tb,
353                               const uint64_t *data);
354 
355 #ifdef CONFIG_TCG
356 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
357 #endif /* CONFIG_TCG */
358 
359 typedef enum ARMFPRounding {
360     FPROUNDING_TIEEVEN,
361     FPROUNDING_POSINF,
362     FPROUNDING_NEGINF,
363     FPROUNDING_ZERO,
364     FPROUNDING_TIEAWAY,
365     FPROUNDING_ODD
366 } ARMFPRounding;
367 
368 extern const FloatRoundMode arm_rmode_to_sf_map[6];
369 
370 static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
371 {
372     assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
373     return arm_rmode_to_sf_map[rmode];
374 }
375 
376 static inline void aarch64_save_sp(CPUARMState *env, int el)
377 {
378     if (env->pstate & PSTATE_SP) {
379         env->sp_el[el] = env->xregs[31];
380     } else {
381         env->sp_el[0] = env->xregs[31];
382     }
383 }
384 
385 static inline void aarch64_restore_sp(CPUARMState *env, int el)
386 {
387     if (env->pstate & PSTATE_SP) {
388         env->xregs[31] = env->sp_el[el];
389     } else {
390         env->xregs[31] = env->sp_el[0];
391     }
392 }
393 
394 static inline void update_spsel(CPUARMState *env, uint32_t imm)
395 {
396     unsigned int cur_el = arm_current_el(env);
397     /* Update PSTATE SPSel bit; this requires us to update the
398      * working stack pointer in xregs[31].
399      */
400     if (!((imm ^ env->pstate) & PSTATE_SP)) {
401         return;
402     }
403     aarch64_save_sp(env, cur_el);
404     env->pstate = deposit32(env->pstate, 0, 1, imm);
405 
406     /* We rely on illegal updates to SPsel from EL0 to get trapped
407      * at translation time.
408      */
409     assert(cur_el >= 1 && cur_el <= 3);
410     aarch64_restore_sp(env, cur_el);
411 }
412 
413 /*
414  * arm_pamax
415  * @cpu: ARMCPU
416  *
417  * Returns the implementation defined bit-width of physical addresses.
418  * The ARMv8 reference manuals refer to this as PAMax().
419  */
420 unsigned int arm_pamax(ARMCPU *cpu);
421 
422 /* Return true if extended addresses are enabled.
423  * This is always the case if our translation regime is 64 bit,
424  * but depends on TTBCR.EAE for 32 bit.
425  */
426 static inline bool extended_addresses_enabled(CPUARMState *env)
427 {
428     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
429     if (arm_feature(env, ARM_FEATURE_PMSA) &&
430         arm_feature(env, ARM_FEATURE_V8)) {
431         return true;
432     }
433     return arm_el_is_aa64(env, 1) ||
434            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
435 }
436 
437 /* Update a QEMU watchpoint based on the information the guest has set in the
438  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
439  */
440 void hw_watchpoint_update(ARMCPU *cpu, int n);
441 /* Update the QEMU watchpoints for every guest watchpoint. This does a
442  * complete delete-and-reinstate of the QEMU watchpoint list and so is
443  * suitable for use after migration or on reset.
444  */
445 void hw_watchpoint_update_all(ARMCPU *cpu);
446 /* Update a QEMU breakpoint based on the information the guest has set in the
447  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
448  */
449 void hw_breakpoint_update(ARMCPU *cpu, int n);
450 /* Update the QEMU breakpoints for every guest breakpoint. This does a
451  * complete delete-and-reinstate of the QEMU breakpoint list and so is
452  * suitable for use after migration or on reset.
453  */
454 void hw_breakpoint_update_all(ARMCPU *cpu);
455 
456 /* Callback function for checking if a breakpoint should trigger. */
457 bool arm_debug_check_breakpoint(CPUState *cs);
458 
459 /* Callback function for checking if a watchpoint should trigger. */
460 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
461 
462 /* Adjust addresses (in BE32 mode) before testing against watchpoint
463  * addresses.
464  */
465 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
466 
467 /* Callback function for when a watchpoint or breakpoint triggers. */
468 void arm_debug_excp_handler(CPUState *cs);
469 
470 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
471 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
472 {
473     return false;
474 }
475 static inline void arm_handle_psci_call(ARMCPU *cpu)
476 {
477     g_assert_not_reached();
478 }
479 #else
480 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
481 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
482 /* Actually handle a PSCI call */
483 void arm_handle_psci_call(ARMCPU *cpu);
484 #endif
485 
486 /**
487  * arm_clear_exclusive: clear the exclusive monitor
488  * @env: CPU env
489  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
490  */
491 static inline void arm_clear_exclusive(CPUARMState *env)
492 {
493     env->exclusive_addr = -1;
494 }
495 
496 /**
497  * ARMFaultType: type of an ARM MMU fault
498  * This corresponds to the v8A pseudocode's Fault enumeration,
499  * with extensions for QEMU internal conditions.
500  */
501 typedef enum ARMFaultType {
502     ARMFault_None,
503     ARMFault_AccessFlag,
504     ARMFault_Alignment,
505     ARMFault_Background,
506     ARMFault_Domain,
507     ARMFault_Permission,
508     ARMFault_Translation,
509     ARMFault_AddressSize,
510     ARMFault_SyncExternal,
511     ARMFault_SyncExternalOnWalk,
512     ARMFault_SyncParity,
513     ARMFault_SyncParityOnWalk,
514     ARMFault_AsyncParity,
515     ARMFault_AsyncExternal,
516     ARMFault_Debug,
517     ARMFault_TLBConflict,
518     ARMFault_UnsuppAtomicUpdate,
519     ARMFault_Lockdown,
520     ARMFault_Exclusive,
521     ARMFault_ICacheMaint,
522     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
523     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
524     ARMFault_GPCFOnWalk,
525     ARMFault_GPCFOnOutput,
526 } ARMFaultType;
527 
528 typedef enum ARMGPCF {
529     GPCF_None,
530     GPCF_AddressSize,
531     GPCF_Walk,
532     GPCF_EABT,
533     GPCF_Fail,
534 } ARMGPCF;
535 
536 /**
537  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
538  * @type: Type of fault
539  * @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
540  * @level: Table walk level (for translation, access flag and permission faults)
541  * @domain: Domain of the fault address (for non-LPAE CPUs only)
542  * @s2addr: Address that caused a fault at stage 2
543  * @paddr: physical address that caused a fault for gpc
544  * @paddr_space: physical address space that caused a fault for gpc
545  * @stage2: True if we faulted at stage 2
546  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
547  * @s1ns: True if we faulted on a non-secure IPA while in secure state
548  * @ea: True if we should set the EA (external abort type) bit in syndrome
549  */
550 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
551 struct ARMMMUFaultInfo {
552     ARMFaultType type;
553     ARMGPCF gpcf;
554     target_ulong s2addr;
555     target_ulong paddr;
556     ARMSecuritySpace paddr_space;
557     int level;
558     int domain;
559     bool stage2;
560     bool s1ptw;
561     bool s1ns;
562     bool ea;
563 };
564 
565 /**
566  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
567  * Compare pseudocode EncodeSDFSC(), though unlike that function
568  * we set up a whole FSR-format code including domain field and
569  * putting the high bit of the FSC into bit 10.
570  */
571 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
572 {
573     uint32_t fsc;
574 
575     switch (fi->type) {
576     case ARMFault_None:
577         return 0;
578     case ARMFault_AccessFlag:
579         fsc = fi->level == 1 ? 0x3 : 0x6;
580         break;
581     case ARMFault_Alignment:
582         fsc = 0x1;
583         break;
584     case ARMFault_Permission:
585         fsc = fi->level == 1 ? 0xd : 0xf;
586         break;
587     case ARMFault_Domain:
588         fsc = fi->level == 1 ? 0x9 : 0xb;
589         break;
590     case ARMFault_Translation:
591         fsc = fi->level == 1 ? 0x5 : 0x7;
592         break;
593     case ARMFault_SyncExternal:
594         fsc = 0x8 | (fi->ea << 12);
595         break;
596     case ARMFault_SyncExternalOnWalk:
597         fsc = fi->level == 1 ? 0xc : 0xe;
598         fsc |= (fi->ea << 12);
599         break;
600     case ARMFault_SyncParity:
601         fsc = 0x409;
602         break;
603     case ARMFault_SyncParityOnWalk:
604         fsc = fi->level == 1 ? 0x40c : 0x40e;
605         break;
606     case ARMFault_AsyncParity:
607         fsc = 0x408;
608         break;
609     case ARMFault_AsyncExternal:
610         fsc = 0x406 | (fi->ea << 12);
611         break;
612     case ARMFault_Debug:
613         fsc = 0x2;
614         break;
615     case ARMFault_TLBConflict:
616         fsc = 0x400;
617         break;
618     case ARMFault_Lockdown:
619         fsc = 0x404;
620         break;
621     case ARMFault_Exclusive:
622         fsc = 0x405;
623         break;
624     case ARMFault_ICacheMaint:
625         fsc = 0x4;
626         break;
627     case ARMFault_Background:
628         fsc = 0x0;
629         break;
630     case ARMFault_QEMU_NSCExec:
631         fsc = M_FAKE_FSR_NSC_EXEC;
632         break;
633     case ARMFault_QEMU_SFault:
634         fsc = M_FAKE_FSR_SFAULT;
635         break;
636     default:
637         /* Other faults can't occur in a context that requires a
638          * short-format status code.
639          */
640         g_assert_not_reached();
641     }
642 
643     fsc |= (fi->domain << 4);
644     return fsc;
645 }
646 
647 /**
648  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
649  * Compare pseudocode EncodeLDFSC(), though unlike that function
650  * we fill in also the LPAE bit 9 of a DFSR format.
651  */
652 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
653 {
654     uint32_t fsc;
655 
656     switch (fi->type) {
657     case ARMFault_None:
658         return 0;
659     case ARMFault_AddressSize:
660         assert(fi->level >= -1 && fi->level <= 3);
661         if (fi->level < 0) {
662             fsc = 0b101001;
663         } else {
664             fsc = fi->level;
665         }
666         break;
667     case ARMFault_AccessFlag:
668         assert(fi->level >= 0 && fi->level <= 3);
669         fsc = 0b001000 | fi->level;
670         break;
671     case ARMFault_Permission:
672         assert(fi->level >= 0 && fi->level <= 3);
673         fsc = 0b001100 | fi->level;
674         break;
675     case ARMFault_Translation:
676         assert(fi->level >= -1 && fi->level <= 3);
677         if (fi->level < 0) {
678             fsc = 0b101011;
679         } else {
680             fsc = 0b000100 | fi->level;
681         }
682         break;
683     case ARMFault_SyncExternal:
684         fsc = 0x10 | (fi->ea << 12);
685         break;
686     case ARMFault_SyncExternalOnWalk:
687         assert(fi->level >= -1 && fi->level <= 3);
688         if (fi->level < 0) {
689             fsc = 0b010011;
690         } else {
691             fsc = 0b010100 | fi->level;
692         }
693         fsc |= fi->ea << 12;
694         break;
695     case ARMFault_SyncParity:
696         fsc = 0x18;
697         break;
698     case ARMFault_SyncParityOnWalk:
699         assert(fi->level >= -1 && fi->level <= 3);
700         if (fi->level < 0) {
701             fsc = 0b011011;
702         } else {
703             fsc = 0b011100 | fi->level;
704         }
705         break;
706     case ARMFault_AsyncParity:
707         fsc = 0x19;
708         break;
709     case ARMFault_AsyncExternal:
710         fsc = 0x11 | (fi->ea << 12);
711         break;
712     case ARMFault_Alignment:
713         fsc = 0x21;
714         break;
715     case ARMFault_Debug:
716         fsc = 0x22;
717         break;
718     case ARMFault_TLBConflict:
719         fsc = 0x30;
720         break;
721     case ARMFault_UnsuppAtomicUpdate:
722         fsc = 0x31;
723         break;
724     case ARMFault_Lockdown:
725         fsc = 0x34;
726         break;
727     case ARMFault_Exclusive:
728         fsc = 0x35;
729         break;
730     case ARMFault_GPCFOnWalk:
731         assert(fi->level >= -1 && fi->level <= 3);
732         if (fi->level < 0) {
733             fsc = 0b100011;
734         } else {
735             fsc = 0b100100 | fi->level;
736         }
737         break;
738     case ARMFault_GPCFOnOutput:
739         fsc = 0b101000;
740         break;
741     default:
742         /* Other faults can't occur in a context that requires a
743          * long-format status code.
744          */
745         g_assert_not_reached();
746     }
747 
748     fsc |= 1 << 9;
749     return fsc;
750 }
751 
752 static inline bool arm_extabort_type(MemTxResult result)
753 {
754     /* The EA bit in syndromes and fault status registers is an
755      * IMPDEF classification of external aborts. ARM implementations
756      * usually use this to indicate AXI bus Decode error (0) or
757      * Slave error (1); in QEMU we follow that.
758      */
759     return result != MEMTX_DECODE_ERROR;
760 }
761 
762 #ifdef CONFIG_USER_ONLY
763 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
764                             MMUAccessType access_type,
765                             bool maperr, uintptr_t ra);
766 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
767                            MMUAccessType access_type, uintptr_t ra);
768 #else
769 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
770                       MMUAccessType access_type, int mmu_idx,
771                       bool probe, uintptr_t retaddr);
772 #endif
773 
774 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
775 {
776     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
777 }
778 
779 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
780 {
781     if (arm_feature(env, ARM_FEATURE_M)) {
782         return mmu_idx | ARM_MMU_IDX_M;
783     } else {
784         return mmu_idx | ARM_MMU_IDX_A;
785     }
786 }
787 
788 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
789 {
790     /* AArch64 is always a-profile. */
791     return mmu_idx | ARM_MMU_IDX_A;
792 }
793 
794 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
795 
796 /* Return the MMU index for a v7M CPU in the specified security state */
797 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
798 
799 /*
800  * Return true if the stage 1 translation regime is using LPAE
801  * format page tables
802  */
803 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
804 
805 /* Raise a data fault alignment exception for the specified virtual address */
806 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
807                                             MMUAccessType access_type,
808                                             int mmu_idx, uintptr_t retaddr);
809 
810 #ifndef CONFIG_USER_ONLY
811 /* arm_cpu_do_transaction_failed: handle a memory system error response
812  * (eg "no device/memory present at address") by raising an external abort
813  * exception
814  */
815 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
816                                    vaddr addr, unsigned size,
817                                    MMUAccessType access_type,
818                                    int mmu_idx, MemTxAttrs attrs,
819                                    MemTxResult response, uintptr_t retaddr);
820 #endif
821 
822 /* Call any registered EL change hooks */
823 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
824 {
825     ARMELChangeHook *hook, *next;
826     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
827         hook->hook(cpu, hook->opaque);
828     }
829 }
830 static inline void arm_call_el_change_hook(ARMCPU *cpu)
831 {
832     ARMELChangeHook *hook, *next;
833     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
834         hook->hook(cpu, hook->opaque);
835     }
836 }
837 
838 /* Return true if this address translation regime has two ranges.  */
839 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
840 {
841     switch (mmu_idx) {
842     case ARMMMUIdx_Stage1_E0:
843     case ARMMMUIdx_Stage1_E1:
844     case ARMMMUIdx_Stage1_E1_PAN:
845     case ARMMMUIdx_E10_0:
846     case ARMMMUIdx_E10_1:
847     case ARMMMUIdx_E10_1_PAN:
848     case ARMMMUIdx_E20_0:
849     case ARMMMUIdx_E20_2:
850     case ARMMMUIdx_E20_2_PAN:
851         return true;
852     default:
853         return false;
854     }
855 }
856 
857 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
858 {
859     switch (mmu_idx) {
860     case ARMMMUIdx_Stage1_E1_PAN:
861     case ARMMMUIdx_E10_1_PAN:
862     case ARMMMUIdx_E20_2_PAN:
863         return true;
864     default:
865         return false;
866     }
867 }
868 
869 static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
870 {
871     return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
872 }
873 
874 /* Return the exception level which controls this address translation regime */
875 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
876 {
877     switch (mmu_idx) {
878     case ARMMMUIdx_E20_0:
879     case ARMMMUIdx_E20_2:
880     case ARMMMUIdx_E20_2_PAN:
881     case ARMMMUIdx_Stage2:
882     case ARMMMUIdx_Stage2_S:
883     case ARMMMUIdx_E2:
884         return 2;
885     case ARMMMUIdx_E3:
886         return 3;
887     case ARMMMUIdx_E10_0:
888     case ARMMMUIdx_Stage1_E0:
889         return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
890     case ARMMMUIdx_Stage1_E1:
891     case ARMMMUIdx_Stage1_E1_PAN:
892     case ARMMMUIdx_E10_1:
893     case ARMMMUIdx_E10_1_PAN:
894     case ARMMMUIdx_MPrivNegPri:
895     case ARMMMUIdx_MUserNegPri:
896     case ARMMMUIdx_MPriv:
897     case ARMMMUIdx_MUser:
898     case ARMMMUIdx_MSPrivNegPri:
899     case ARMMMUIdx_MSUserNegPri:
900     case ARMMMUIdx_MSPriv:
901     case ARMMMUIdx_MSUser:
902         return 1;
903     default:
904         g_assert_not_reached();
905     }
906 }
907 
908 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
909 {
910     switch (mmu_idx) {
911     case ARMMMUIdx_E20_0:
912     case ARMMMUIdx_Stage1_E0:
913     case ARMMMUIdx_MUser:
914     case ARMMMUIdx_MSUser:
915     case ARMMMUIdx_MUserNegPri:
916     case ARMMMUIdx_MSUserNegPri:
917         return true;
918     default:
919         return false;
920     case ARMMMUIdx_E10_0:
921     case ARMMMUIdx_E10_1:
922     case ARMMMUIdx_E10_1_PAN:
923         g_assert_not_reached();
924     }
925 }
926 
927 /* Return the SCTLR value which controls this address translation regime */
928 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
929 {
930     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
931 }
932 
933 /*
934  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
935  * and the Non-Secure stage 2 translation regimes (and hence which are
936  * not present in VSTCR_EL2).
937  */
938 #define VTCR_SHARED_FIELD_MASK \
939     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
940      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
941      R_VTCR_DS_MASK)
942 
943 /* Return the value of the TCR controlling this translation regime */
944 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
945 {
946     if (mmu_idx == ARMMMUIdx_Stage2) {
947         return env->cp15.vtcr_el2;
948     }
949     if (mmu_idx == ARMMMUIdx_Stage2_S) {
950         /*
951          * Secure stage 2 shares fields from VTCR_EL2. We merge those
952          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
953          * value so the callers don't need to special case this.
954          *
955          * If a future architecture change defines bits in VSTCR_EL2 that
956          * overlap with these VTCR_EL2 fields we may need to revisit this.
957          */
958         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
959         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
960         return v;
961     }
962     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
963 }
964 
965 /* Return true if the translation regime is using LPAE format page tables */
966 static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
967 {
968     int el = regime_el(env, mmu_idx);
969     if (el == 2 || arm_el_is_aa64(env, el)) {
970         return true;
971     }
972     if (arm_feature(env, ARM_FEATURE_PMSA) &&
973         arm_feature(env, ARM_FEATURE_V8)) {
974         return true;
975     }
976     if (arm_feature(env, ARM_FEATURE_LPAE)
977         && (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
978         return true;
979     }
980     return false;
981 }
982 
983 /**
984  * arm_num_brps: Return number of implemented breakpoints.
985  * Note that the ID register BRPS field is "number of bps - 1",
986  * and we return the actual number of breakpoints.
987  */
988 static inline int arm_num_brps(ARMCPU *cpu)
989 {
990     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
991         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
992     } else {
993         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
994     }
995 }
996 
997 /**
998  * arm_num_wrps: Return number of implemented watchpoints.
999  * Note that the ID register WRPS field is "number of wps - 1",
1000  * and we return the actual number of watchpoints.
1001  */
1002 static inline int arm_num_wrps(ARMCPU *cpu)
1003 {
1004     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1005         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
1006     } else {
1007         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
1008     }
1009 }
1010 
1011 /**
1012  * arm_num_ctx_cmps: Return number of implemented context comparators.
1013  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
1014  * and we return the actual number of comparators.
1015  */
1016 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
1017 {
1018     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1019         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
1020     } else {
1021         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
1022     }
1023 }
1024 
1025 /**
1026  * v7m_using_psp: Return true if using process stack pointer
1027  * Return true if the CPU is currently using the process stack
1028  * pointer, or false if it is using the main stack pointer.
1029  */
1030 static inline bool v7m_using_psp(CPUARMState *env)
1031 {
1032     /* Handler mode always uses the main stack; for thread mode
1033      * the CONTROL.SPSEL bit determines the answer.
1034      * Note that in v7M it is not possible to be in Handler mode with
1035      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
1036      */
1037     return !arm_v7m_is_handler_mode(env) &&
1038         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
1039 }
1040 
1041 /**
1042  * v7m_sp_limit: Return SP limit for current CPU state
1043  * Return the SP limit value for the current CPU security state
1044  * and stack pointer.
1045  */
1046 static inline uint32_t v7m_sp_limit(CPUARMState *env)
1047 {
1048     if (v7m_using_psp(env)) {
1049         return env->v7m.psplim[env->v7m.secure];
1050     } else {
1051         return env->v7m.msplim[env->v7m.secure];
1052     }
1053 }
1054 
1055 /**
1056  * v7m_cpacr_pass:
1057  * Return true if the v7M CPACR permits access to the FPU for the specified
1058  * security state and privilege level.
1059  */
1060 static inline bool v7m_cpacr_pass(CPUARMState *env,
1061                                   bool is_secure, bool is_priv)
1062 {
1063     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
1064     case 0:
1065     case 2: /* UNPREDICTABLE: we treat like 0 */
1066         return false;
1067     case 1:
1068         return is_priv;
1069     case 3:
1070         return true;
1071     default:
1072         g_assert_not_reached();
1073     }
1074 }
1075 
1076 /**
1077  * aarch32_mode_name(): Return name of the AArch32 CPU mode
1078  * @psr: Program Status Register indicating CPU mode
1079  *
1080  * Returns, for debug logging purposes, a printable representation
1081  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
1082  * the low bits of the specified PSR.
1083  */
1084 static inline const char *aarch32_mode_name(uint32_t psr)
1085 {
1086     static const char cpu_mode_names[16][4] = {
1087         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
1088         "???", "???", "hyp", "und", "???", "???", "???", "sys"
1089     };
1090 
1091     return cpu_mode_names[psr & 0xf];
1092 }
1093 
1094 /**
1095  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
1096  *
1097  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
1098  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
1099  * Must be called with the BQL held.
1100  */
1101 void arm_cpu_update_virq(ARMCPU *cpu);
1102 
1103 /**
1104  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
1105  *
1106  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
1107  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
1108  * Must be called with the BQL held.
1109  */
1110 void arm_cpu_update_vfiq(ARMCPU *cpu);
1111 
1112 /**
1113  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
1114  *
1115  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
1116  * following a change to the HCR_EL2.VSE bit.
1117  */
1118 void arm_cpu_update_vserr(ARMCPU *cpu);
1119 
1120 /**
1121  * arm_mmu_idx_el:
1122  * @env: The cpu environment
1123  * @el: The EL to use.
1124  *
1125  * Return the full ARMMMUIdx for the translation regime for EL.
1126  */
1127 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
1128 
1129 /**
1130  * arm_mmu_idx:
1131  * @env: The cpu environment
1132  *
1133  * Return the full ARMMMUIdx for the current translation regime.
1134  */
1135 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
1136 
1137 /**
1138  * arm_stage1_mmu_idx:
1139  * @env: The cpu environment
1140  *
1141  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
1142  */
1143 #ifdef CONFIG_USER_ONLY
1144 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
1145 {
1146     return ARMMMUIdx_Stage1_E0;
1147 }
1148 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
1149 {
1150     return ARMMMUIdx_Stage1_E0;
1151 }
1152 #else
1153 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
1154 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
1155 #endif
1156 
1157 /**
1158  * arm_mmu_idx_is_stage1_of_2:
1159  * @mmu_idx: The ARMMMUIdx to test
1160  *
1161  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
1162  * first stage of a two stage regime.
1163  */
1164 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
1165 {
1166     switch (mmu_idx) {
1167     case ARMMMUIdx_Stage1_E0:
1168     case ARMMMUIdx_Stage1_E1:
1169     case ARMMMUIdx_Stage1_E1_PAN:
1170         return true;
1171     default:
1172         return false;
1173     }
1174 }
1175 
1176 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1177                                                const ARMISARegisters *id)
1178 {
1179     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1180 
1181     if ((features >> ARM_FEATURE_V4T) & 1) {
1182         valid |= CPSR_T;
1183     }
1184     if ((features >> ARM_FEATURE_V5) & 1) {
1185         valid |= CPSR_Q; /* V5TE in reality*/
1186     }
1187     if ((features >> ARM_FEATURE_V6) & 1) {
1188         valid |= CPSR_E | CPSR_GE;
1189     }
1190     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1191         valid |= CPSR_IT;
1192     }
1193     if (isar_feature_aa32_jazelle(id)) {
1194         valid |= CPSR_J;
1195     }
1196     if (isar_feature_aa32_pan(id)) {
1197         valid |= CPSR_PAN;
1198     }
1199     if (isar_feature_aa32_dit(id)) {
1200         valid |= CPSR_DIT;
1201     }
1202     if (isar_feature_aa32_ssbs(id)) {
1203         valid |= CPSR_SSBS;
1204     }
1205 
1206     return valid;
1207 }
1208 
1209 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1210 {
1211     uint32_t valid;
1212 
1213     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1214     if (isar_feature_aa64_bti(id)) {
1215         valid |= PSTATE_BTYPE;
1216     }
1217     if (isar_feature_aa64_pan(id)) {
1218         valid |= PSTATE_PAN;
1219     }
1220     if (isar_feature_aa64_uao(id)) {
1221         valid |= PSTATE_UAO;
1222     }
1223     if (isar_feature_aa64_dit(id)) {
1224         valid |= PSTATE_DIT;
1225     }
1226     if (isar_feature_aa64_ssbs(id)) {
1227         valid |= PSTATE_SSBS;
1228     }
1229     if (isar_feature_aa64_mte(id)) {
1230         valid |= PSTATE_TCO;
1231     }
1232 
1233     return valid;
1234 }
1235 
1236 /* Granule size (i.e. page size) */
1237 typedef enum ARMGranuleSize {
1238     /* Same order as TG0 encoding */
1239     Gran4K,
1240     Gran64K,
1241     Gran16K,
1242     GranInvalid,
1243 } ARMGranuleSize;
1244 
1245 /**
1246  * arm_granule_bits: Return address size of the granule in bits
1247  *
1248  * Return the address size of the granule in bits. This corresponds
1249  * to the pseudocode TGxGranuleBits().
1250  */
1251 static inline int arm_granule_bits(ARMGranuleSize gran)
1252 {
1253     switch (gran) {
1254     case Gran64K:
1255         return 16;
1256     case Gran16K:
1257         return 14;
1258     case Gran4K:
1259         return 12;
1260     default:
1261         g_assert_not_reached();
1262     }
1263 }
1264 
1265 /*
1266  * Parameters of a given virtual address, as extracted from the
1267  * translation control register (TCR) for a given regime.
1268  */
1269 typedef struct ARMVAParameters {
1270     unsigned tsz    : 8;
1271     unsigned ps     : 3;
1272     unsigned sh     : 2;
1273     unsigned select : 1;
1274     bool tbi        : 1;
1275     bool epd        : 1;
1276     bool hpd        : 1;
1277     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1278     bool ds         : 1;
1279     bool ha         : 1;
1280     bool hd         : 1;
1281     ARMGranuleSize gran : 2;
1282 } ARMVAParameters;
1283 
1284 /**
1285  * aa64_va_parameters: Return parameters for an AArch64 virtual address
1286  * @env: CPU
1287  * @va: virtual address to look up
1288  * @mmu_idx: determines translation regime to use
1289  * @data: true if this is a data access
1290  * @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
1291  *  (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
1292  */
1293 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1294                                    ARMMMUIdx mmu_idx, bool data,
1295                                    bool el1_is_aa32);
1296 
1297 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1298 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1299 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
1300 
1301 /* Determine if allocation tags are available.  */
1302 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1303                                                  uint64_t sctlr)
1304 {
1305     if (el < 3
1306         && arm_feature(env, ARM_FEATURE_EL3)
1307         && !(env->cp15.scr_el3 & SCR_ATA)) {
1308         return false;
1309     }
1310     if (el < 2 && arm_is_el2_enabled(env)) {
1311         uint64_t hcr = arm_hcr_el2_eff(env);
1312         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1313             return false;
1314         }
1315     }
1316     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1317     return sctlr != 0;
1318 }
1319 
1320 #ifndef CONFIG_USER_ONLY
1321 
1322 /* Security attributes for an address, as returned by v8m_security_lookup. */
1323 typedef struct V8M_SAttributes {
1324     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1325     bool ns;
1326     bool nsc;
1327     uint8_t sregion;
1328     bool srvalid;
1329     uint8_t iregion;
1330     bool irvalid;
1331 } V8M_SAttributes;
1332 
1333 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1334                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1335                          bool secure, V8M_SAttributes *sattrs);
1336 
1337 /* Cacheability and shareability attributes for a memory access */
1338 typedef struct ARMCacheAttrs {
1339     /*
1340      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1341      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1342      */
1343     unsigned int attrs:8;
1344     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1345     bool is_s2_format:1;
1346 } ARMCacheAttrs;
1347 
1348 /* Fields that are valid upon success. */
1349 typedef struct GetPhysAddrResult {
1350     CPUTLBEntryFull f;
1351     ARMCacheAttrs cacheattrs;
1352 } GetPhysAddrResult;
1353 
1354 /**
1355  * get_phys_addr: get the physical address for a virtual address
1356  * @env: CPUARMState
1357  * @address: virtual address to get physical address for
1358  * @access_type: 0 for read, 1 for write, 2 for execute
1359  * @mmu_idx: MMU index indicating required translation regime
1360  * @result: set on translation success.
1361  * @fi: set to fault info if the translation fails
1362  *
1363  * Find the physical address corresponding to the given virtual address,
1364  * by doing a translation table walk on MMU based systems or using the
1365  * MPU state on MPU based systems.
1366  *
1367  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
1368  * prot and page_size may not be filled in, and the populated fsr value provides
1369  * information on why the translation aborted, in the format of a
1370  * DFSR/IFSR fault register, with the following caveats:
1371  *  * we honour the short vs long DFSR format differences.
1372  *  * the WnR bit is never set (the caller must do this).
1373  *  * for PSMAv5 based systems we don't bother to return a full FSR format
1374  *    value.
1375  */
1376 bool get_phys_addr(CPUARMState *env, target_ulong address,
1377                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1378                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1379     __attribute__((nonnull));
1380 
1381 /**
1382  * get_phys_addr_with_space_nogpc: get the physical address for a virtual
1383  *                                 address
1384  * @env: CPUARMState
1385  * @address: virtual address to get physical address for
1386  * @access_type: 0 for read, 1 for write, 2 for execute
1387  * @mmu_idx: MMU index indicating required translation regime
1388  * @space: security space for the access
1389  * @result: set on translation success.
1390  * @fi: set to fault info if the translation fails
1391  *
1392  * Similar to get_phys_addr, but use the given security space and don't perform
1393  * a Granule Protection Check on the resulting address.
1394  */
1395 bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
1396                                     MMUAccessType access_type,
1397                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
1398                                     GetPhysAddrResult *result,
1399                                     ARMMMUFaultInfo *fi)
1400     __attribute__((nonnull));
1401 
1402 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1403                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1404                        bool is_secure, GetPhysAddrResult *result,
1405                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1406 
1407 void arm_log_exception(CPUState *cs);
1408 
1409 #endif /* !CONFIG_USER_ONLY */
1410 
1411 /*
1412  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1413  * the same simd_desc() encoding due to restrictions on size.
1414  * Use these instead.
1415  */
1416 FIELD(PREDDESC, OPRSZ, 0, 6)
1417 FIELD(PREDDESC, ESZ, 6, 2)
1418 FIELD(PREDDESC, DATA, 8, 24)
1419 
1420 /*
1421  * The SVE simd_data field, for memory ops, contains either
1422  * rd (5 bits) or a shift count (2 bits).
1423  */
1424 #define SVE_MTEDESC_SHIFT 5
1425 
1426 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1427 FIELD(MTEDESC, MIDX,  0, 4)
1428 FIELD(MTEDESC, TBI,   4, 2)
1429 FIELD(MTEDESC, TCMA,  6, 2)
1430 FIELD(MTEDESC, WRITE, 8, 1)
1431 FIELD(MTEDESC, ALIGN, 9, 3)
1432 FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12)  /* size - 1 */
1433 
1434 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1435 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1436 
1437 /**
1438  * mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
1439  * @env: CPU env
1440  * @ptr: start address of memory region (dirty pointer)
1441  * @size: length of region (guaranteed not to cross a page boundary)
1442  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1443  * Returns: the size of the region that can be copied without hitting
1444  *          an MTE tag failure
1445  *
1446  * Note that we assume that the caller has already checked the TBI
1447  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1448  * required.
1449  */
1450 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1451                         uint32_t desc);
1452 
1453 /**
1454  * mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
1455  *                     operation going in the reverse direction
1456  * @env: CPU env
1457  * @ptr: *end* address of memory region (dirty pointer)
1458  * @size: length of region (guaranteed not to cross a page boundary)
1459  * @desc: MTEDESC descriptor word (0 means no MTE checks)
1460  * Returns: the size of the region that can be copied without hitting
1461  *          an MTE tag failure
1462  *
1463  * Note that we assume that the caller has already checked the TBI
1464  * and TCMA bits with mte_checks_needed() and an MTE check is definitely
1465  * required.
1466  */
1467 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1468                             uint32_t desc);
1469 
1470 /**
1471  * mte_check_fail: Record an MTE tag check failure
1472  * @env: CPU env
1473  * @desc: MTEDESC descriptor word
1474  * @dirty_ptr: Failing dirty address
1475  * @ra: TCG retaddr
1476  *
1477  * This may never return (if the MTE tag checks are configured to fault).
1478  */
1479 void mte_check_fail(CPUARMState *env, uint32_t desc,
1480                     uint64_t dirty_ptr, uintptr_t ra);
1481 
1482 /**
1483  * mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
1484  * @env: CPU env
1485  * @dirty_ptr: Start address of memory region (dirty pointer)
1486  * @size: length of region (guaranteed not to cross page boundary)
1487  * @desc: MTEDESC descriptor word
1488  */
1489 void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
1490                        uint32_t desc);
1491 
1492 static inline int allocation_tag_from_addr(uint64_t ptr)
1493 {
1494     return extract64(ptr, 56, 4);
1495 }
1496 
1497 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1498 {
1499     return deposit64(ptr, 56, 4, rtag);
1500 }
1501 
1502 /* Return true if tbi bits mean that the access is checked.  */
1503 static inline bool tbi_check(uint32_t desc, int bit55)
1504 {
1505     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1506 }
1507 
1508 /* Return true if tcma bits mean that the access is unchecked.  */
1509 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1510 {
1511     /*
1512      * We had extracted bit55 and ptr_tag for other reasons, so fold
1513      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1514      */
1515     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1516     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1517     return tcma && match;
1518 }
1519 
1520 /*
1521  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1522  * for the tag to be present in the FAR_ELx register.  But for user-only
1523  * mode, we do not have a TLB with which to implement this, so we must
1524  * remove the top byte.
1525  */
1526 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1527 {
1528 #ifdef CONFIG_USER_ONLY
1529     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1530     ptr &= sextract64(ptr, 0, 56);
1531 #endif
1532     return ptr;
1533 }
1534 
1535 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1536 {
1537 #ifdef CONFIG_USER_ONLY
1538     int64_t clean_ptr = sextract64(ptr, 0, 56);
1539     if (tbi_check(desc, clean_ptr < 0)) {
1540         ptr = clean_ptr;
1541     }
1542 #endif
1543     return ptr;
1544 }
1545 
1546 /* Values for M-profile PSR.ECI for MVE insns */
1547 enum MVEECIState {
1548     ECI_NONE = 0, /* No completed beats */
1549     ECI_A0 = 1, /* Completed: A0 */
1550     ECI_A0A1 = 2, /* Completed: A0, A1 */
1551     /* 3 is reserved */
1552     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1553     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1554     /* All other values reserved */
1555 };
1556 
1557 /* Definitions for the PMU registers */
1558 #define PMCRN_MASK  0xf800
1559 #define PMCRN_SHIFT 11
1560 #define PMCRLP  0x80
1561 #define PMCRLC  0x40
1562 #define PMCRDP  0x20
1563 #define PMCRX   0x10
1564 #define PMCRD   0x8
1565 #define PMCRC   0x4
1566 #define PMCRP   0x2
1567 #define PMCRE   0x1
1568 /*
1569  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1570  * which can be written as 1 to trigger behaviour but which stay RAZ).
1571  */
1572 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1573 
1574 #define PMXEVTYPER_P          0x80000000
1575 #define PMXEVTYPER_U          0x40000000
1576 #define PMXEVTYPER_NSK        0x20000000
1577 #define PMXEVTYPER_NSU        0x10000000
1578 #define PMXEVTYPER_NSH        0x08000000
1579 #define PMXEVTYPER_M          0x04000000
1580 #define PMXEVTYPER_MT         0x02000000
1581 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1582 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1583                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1584                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1585                                PMXEVTYPER_EVTCOUNT)
1586 
1587 #define PMCCFILTR             0xf8000000
1588 #define PMCCFILTR_M           PMXEVTYPER_M
1589 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1590 
1591 static inline uint32_t pmu_num_counters(CPUARMState *env)
1592 {
1593     ARMCPU *cpu = env_archcpu(env);
1594 
1595     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1596 }
1597 
1598 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1599 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1600 {
1601   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1602 }
1603 
1604 #ifdef TARGET_AARCH64
1605 GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
1606 int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
1607 int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
1608 int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
1609 int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
1610 int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
1611 int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
1612 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1613 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1614 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1615 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1616 void aarch64_max_tcg_initfn(Object *obj);
1617 void aarch64_add_pauth_properties(Object *obj);
1618 void aarch64_add_sve_properties(Object *obj);
1619 void aarch64_add_sme_properties(Object *obj);
1620 #endif
1621 
1622 /* Read the CONTROL register as the MRS instruction would. */
1623 uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
1624 
1625 /*
1626  * Return a pointer to the location where we currently store the
1627  * stack pointer for the requested security state and thread mode.
1628  * This pointer will become invalid if the CPU state is updated
1629  * such that the stack pointers are switched around (eg changing
1630  * the SPSEL control bit).
1631  */
1632 uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
1633                              bool threadmode, bool spsel);
1634 
1635 bool el_is_in_host(CPUARMState *env, int el);
1636 
1637 void aa32_max_features(ARMCPU *cpu);
1638 int exception_target_el(CPUARMState *env);
1639 bool arm_singlestep_active(CPUARMState *env);
1640 bool arm_generate_debug_exceptions(CPUARMState *env);
1641 
1642 /**
1643  * pauth_ptr_mask:
1644  * @param: parameters defining the MMU setup
1645  *
1646  * Return a mask of the address bits that contain the authentication code,
1647  * given the MMU config defined by @param.
1648  */
1649 static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
1650 {
1651     int bot_pac_bit = 64 - param.tsz;
1652     int top_pac_bit = 64 - 8 * param.tbi;
1653 
1654     return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
1655 }
1656 
1657 /* Add the cpreg definitions for debug related system registers */
1658 void define_debug_regs(ARMCPU *cpu);
1659 
1660 /* Effective value of MDCR_EL2 */
1661 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1662 {
1663     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1664 }
1665 
1666 /* Powers of 2 for sve_vq_map et al. */
1667 #define SVE_VQ_POW2_MAP                                 \
1668     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1669      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1670 
1671 /*
1672  * Return true if it is possible to take a fine-grained-trap to EL2.
1673  */
1674 static inline bool arm_fgt_active(CPUARMState *env, int el)
1675 {
1676     /*
1677      * The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
1678      * that can affect EL0, but it is harmless to do the test also for
1679      * traps on registers that are only accessible at EL1 because if the test
1680      * returns true then we can't be executing at EL1 anyway.
1681      * FGT traps only happen when EL2 is enabled and EL1 is AArch64;
1682      * traps from AArch32 only happen for the EL0 is AArch32 case.
1683      */
1684     return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
1685         el < 2 && arm_is_el2_enabled(env) &&
1686         arm_el_is_aa64(env, 1) &&
1687         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
1688         (!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
1689 }
1690 
1691 void assert_hflags_rebuild_correctly(CPUARMState *env);
1692 
1693 /*
1694  * Although the ARM implementation of hardware assisted debugging
1695  * allows for different breakpoints per-core, the current GDB
1696  * interface treats them as a global pool of registers (which seems to
1697  * be the case for x86, ppc and s390). As a result we store one copy
1698  * of registers which is used for all active cores.
1699  *
1700  * Write access is serialised by virtue of the GDB protocol which
1701  * updates things. Read access (i.e. when the values are copied to the
1702  * vCPU) is also gated by GDB's run control.
1703  *
1704  * This is not unreasonable as most of the time debugging kernels you
1705  * never know which core will eventually execute your function.
1706  */
1707 
1708 typedef struct {
1709     uint64_t bcr;
1710     uint64_t bvr;
1711 } HWBreakpoint;
1712 
1713 /*
1714  * The watchpoint registers can cover more area than the requested
1715  * watchpoint so we need to store the additional information
1716  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
1717  * when the watchpoint is hit.
1718  */
1719 typedef struct {
1720     uint64_t wcr;
1721     uint64_t wvr;
1722     CPUWatchpoint details;
1723 } HWWatchpoint;
1724 
1725 /* Maximum and current break/watch point counts */
1726 extern int max_hw_bps, max_hw_wps;
1727 extern GArray *hw_breakpoints, *hw_watchpoints;
1728 
1729 #define cur_hw_wps      (hw_watchpoints->len)
1730 #define cur_hw_bps      (hw_breakpoints->len)
1731 #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
1732 #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
1733 
1734 bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
1735 int insert_hw_breakpoint(target_ulong pc);
1736 int delete_hw_breakpoint(target_ulong pc);
1737 
1738 bool check_watchpoint_in_range(int i, target_ulong addr);
1739 CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
1740 int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1741 int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
1742 #endif
1743