xref: /qemu/target/arm/internals.h (revision 7ee9edfd)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC    1
33 #define BANK_ABT    2
34 #define BANK_UND    3
35 #define BANK_IRQ    4
36 #define BANK_FIQ    5
37 #define BANK_HYP    6
38 #define BANK_MON    7
39 
40 static inline bool excp_is_internal(int excp)
41 {
42     /* Return true if this exception number represents a QEMU-internal
43      * exception that will not be passed to the guest.
44      */
45     return excp == EXCP_INTERRUPT
46         || excp == EXCP_HLT
47         || excp == EXCP_DEBUG
48         || excp == EXCP_HALTED
49         || excp == EXCP_EXCEPTION_EXIT
50         || excp == EXCP_KERNEL_TRAP
51         || excp == EXCP_SEMIHOST;
52 }
53 
54 /* Scale factor for generic timers, ie number of ns per tick.
55  * This gives a 62.5MHz timer.
56  */
57 #define GTIMER_SCALE 16
58 
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
64 
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
74 
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78  * when using v8M security extension
79  */
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
81 
82 /* We use a few fake FSR values for internal purposes in M profile.
83  * M profile cores don't have A/R format FSRs, but currently our
84  * get_phys_addr() code assumes A/R profile and reports failures via
85  * an A/R format FSR value. We then translate that into the proper
86  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87  * Mostly the FSR values we use for this are those defined for v7PMSA,
88  * since we share some of that codepath. A few kinds of fault are
89  * only for M profile and have no A/R equivalent, though, so we have
90  * to pick a value from the reserved range (which we never otherwise
91  * generate) to use for these.
92  * These values will never be visible to the guest.
93  */
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
96 
97 /*
98  * For AArch64, map a given EL to an index in the banked_spsr array.
99  * Note that this mapping and the AArch32 mapping defined in bank_number()
100  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
101  * mandated mapping between each other.
102  */
103 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
104 {
105     static const unsigned int map[4] = {
106         [1] = BANK_SVC, /* EL1.  */
107         [2] = BANK_HYP, /* EL2.  */
108         [3] = BANK_MON, /* EL3.  */
109     };
110     assert(el >= 1 && el <= 3);
111     return map[el];
112 }
113 
114 /* Map CPU modes onto saved register banks.  */
115 static inline int bank_number(int mode)
116 {
117     switch (mode) {
118     case ARM_CPU_MODE_USR:
119     case ARM_CPU_MODE_SYS:
120         return BANK_USRSYS;
121     case ARM_CPU_MODE_SVC:
122         return BANK_SVC;
123     case ARM_CPU_MODE_ABT:
124         return BANK_ABT;
125     case ARM_CPU_MODE_UND:
126         return BANK_UND;
127     case ARM_CPU_MODE_IRQ:
128         return BANK_IRQ;
129     case ARM_CPU_MODE_FIQ:
130         return BANK_FIQ;
131     case ARM_CPU_MODE_HYP:
132         return BANK_HYP;
133     case ARM_CPU_MODE_MON:
134         return BANK_MON;
135     }
136     g_assert_not_reached();
137 }
138 
139 void switch_mode(CPUARMState *, int);
140 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
141 void arm_translate_init(void);
142 
143 enum arm_fprounding {
144     FPROUNDING_TIEEVEN,
145     FPROUNDING_POSINF,
146     FPROUNDING_NEGINF,
147     FPROUNDING_ZERO,
148     FPROUNDING_TIEAWAY,
149     FPROUNDING_ODD
150 };
151 
152 int arm_rmode_to_sf(int rmode);
153 
154 static inline void aarch64_save_sp(CPUARMState *env, int el)
155 {
156     if (env->pstate & PSTATE_SP) {
157         env->sp_el[el] = env->xregs[31];
158     } else {
159         env->sp_el[0] = env->xregs[31];
160     }
161 }
162 
163 static inline void aarch64_restore_sp(CPUARMState *env, int el)
164 {
165     if (env->pstate & PSTATE_SP) {
166         env->xregs[31] = env->sp_el[el];
167     } else {
168         env->xregs[31] = env->sp_el[0];
169     }
170 }
171 
172 static inline void update_spsel(CPUARMState *env, uint32_t imm)
173 {
174     unsigned int cur_el = arm_current_el(env);
175     /* Update PSTATE SPSel bit; this requires us to update the
176      * working stack pointer in xregs[31].
177      */
178     if (!((imm ^ env->pstate) & PSTATE_SP)) {
179         return;
180     }
181     aarch64_save_sp(env, cur_el);
182     env->pstate = deposit32(env->pstate, 0, 1, imm);
183 
184     /* We rely on illegal updates to SPsel from EL0 to get trapped
185      * at translation time.
186      */
187     assert(cur_el >= 1 && cur_el <= 3);
188     aarch64_restore_sp(env, cur_el);
189 }
190 
191 /*
192  * arm_pamax
193  * @cpu: ARMCPU
194  *
195  * Returns the implementation defined bit-width of physical addresses.
196  * The ARMv8 reference manuals refer to this as PAMax().
197  */
198 static inline unsigned int arm_pamax(ARMCPU *cpu)
199 {
200     static const unsigned int pamax_map[] = {
201         [0] = 32,
202         [1] = 36,
203         [2] = 40,
204         [3] = 42,
205         [4] = 44,
206         [5] = 48,
207     };
208     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
209 
210     /* id_aa64mmfr0 is a read-only register so values outside of the
211      * supported mappings can be considered an implementation error.  */
212     assert(parange < ARRAY_SIZE(pamax_map));
213     return pamax_map[parange];
214 }
215 
216 /* Return true if extended addresses are enabled.
217  * This is always the case if our translation regime is 64 bit,
218  * but depends on TTBCR.EAE for 32 bit.
219  */
220 static inline bool extended_addresses_enabled(CPUARMState *env)
221 {
222     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
223     return arm_el_is_aa64(env, 1) ||
224            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
225 }
226 
227 /* Valid Syndrome Register EC field values */
228 enum arm_exception_class {
229     EC_UNCATEGORIZED          = 0x00,
230     EC_WFX_TRAP               = 0x01,
231     EC_CP15RTTRAP             = 0x03,
232     EC_CP15RRTTRAP            = 0x04,
233     EC_CP14RTTRAP             = 0x05,
234     EC_CP14DTTRAP             = 0x06,
235     EC_ADVSIMDFPACCESSTRAP    = 0x07,
236     EC_FPIDTRAP               = 0x08,
237     EC_CP14RRTTRAP            = 0x0c,
238     EC_ILLEGALSTATE           = 0x0e,
239     EC_AA32_SVC               = 0x11,
240     EC_AA32_HVC               = 0x12,
241     EC_AA32_SMC               = 0x13,
242     EC_AA64_SVC               = 0x15,
243     EC_AA64_HVC               = 0x16,
244     EC_AA64_SMC               = 0x17,
245     EC_SYSTEMREGISTERTRAP     = 0x18,
246     EC_SVEACCESSTRAP          = 0x19,
247     EC_INSNABORT              = 0x20,
248     EC_INSNABORT_SAME_EL      = 0x21,
249     EC_PCALIGNMENT            = 0x22,
250     EC_DATAABORT              = 0x24,
251     EC_DATAABORT_SAME_EL      = 0x25,
252     EC_SPALIGNMENT            = 0x26,
253     EC_AA32_FPTRAP            = 0x28,
254     EC_AA64_FPTRAP            = 0x2c,
255     EC_SERROR                 = 0x2f,
256     EC_BREAKPOINT             = 0x30,
257     EC_BREAKPOINT_SAME_EL     = 0x31,
258     EC_SOFTWARESTEP           = 0x32,
259     EC_SOFTWARESTEP_SAME_EL   = 0x33,
260     EC_WATCHPOINT             = 0x34,
261     EC_WATCHPOINT_SAME_EL     = 0x35,
262     EC_AA32_BKPT              = 0x38,
263     EC_VECTORCATCH            = 0x3a,
264     EC_AA64_BKPT              = 0x3c,
265 };
266 
267 #define ARM_EL_EC_SHIFT 26
268 #define ARM_EL_IL_SHIFT 25
269 #define ARM_EL_ISV_SHIFT 24
270 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
271 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
272 
273 /* Utility functions for constructing various kinds of syndrome value.
274  * Note that in general we follow the AArch64 syndrome values; in a
275  * few cases the value in HSR for exceptions taken to AArch32 Hyp
276  * mode differs slightly, so if we ever implemented Hyp mode then the
277  * syndrome value would need some massaging on exception entry.
278  * (One example of this is that AArch64 defaults to IL bit set for
279  * exceptions which don't specifically indicate information about the
280  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
281  */
282 static inline uint32_t syn_uncategorized(void)
283 {
284     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
285 }
286 
287 static inline uint32_t syn_aa64_svc(uint32_t imm16)
288 {
289     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
290 }
291 
292 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
293 {
294     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
295 }
296 
297 static inline uint32_t syn_aa64_smc(uint32_t imm16)
298 {
299     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
300 }
301 
302 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
303 {
304     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
305         | (is_16bit ? 0 : ARM_EL_IL);
306 }
307 
308 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
309 {
310     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
311 }
312 
313 static inline uint32_t syn_aa32_smc(void)
314 {
315     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
316 }
317 
318 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
319 {
320     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
321 }
322 
323 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
324 {
325     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
326         | (is_16bit ? 0 : ARM_EL_IL);
327 }
328 
329 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
330                                            int crn, int crm, int rt,
331                                            int isread)
332 {
333     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
334         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
335         | (crm << 1) | isread;
336 }
337 
338 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
339                                         int crn, int crm, int rt, int isread,
340                                         bool is_16bit)
341 {
342     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
343         | (is_16bit ? 0 : ARM_EL_IL)
344         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
345         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
346 }
347 
348 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
349                                         int crn, int crm, int rt, int isread,
350                                         bool is_16bit)
351 {
352     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
353         | (is_16bit ? 0 : ARM_EL_IL)
354         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
355         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
356 }
357 
358 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
359                                          int rt, int rt2, int isread,
360                                          bool is_16bit)
361 {
362     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
363         | (is_16bit ? 0 : ARM_EL_IL)
364         | (cv << 24) | (cond << 20) | (opc1 << 16)
365         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
366 }
367 
368 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
369                                          int rt, int rt2, int isread,
370                                          bool is_16bit)
371 {
372     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
373         | (is_16bit ? 0 : ARM_EL_IL)
374         | (cv << 24) | (cond << 20) | (opc1 << 16)
375         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
376 }
377 
378 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
379 {
380     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
381         | (is_16bit ? 0 : ARM_EL_IL)
382         | (cv << 24) | (cond << 20);
383 }
384 
385 static inline uint32_t syn_sve_access_trap(void)
386 {
387     return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
388 }
389 
390 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
391 {
392     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
393         | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
394 }
395 
396 static inline uint32_t syn_data_abort_no_iss(int same_el,
397                                              int ea, int cm, int s1ptw,
398                                              int wnr, int fsc)
399 {
400     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
401            | ARM_EL_IL
402            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
403 }
404 
405 static inline uint32_t syn_data_abort_with_iss(int same_el,
406                                                int sas, int sse, int srt,
407                                                int sf, int ar,
408                                                int ea, int cm, int s1ptw,
409                                                int wnr, int fsc,
410                                                bool is_16bit)
411 {
412     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
413            | (is_16bit ? 0 : ARM_EL_IL)
414            | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
415            | (sf << 15) | (ar << 14)
416            | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
417 }
418 
419 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
420 {
421     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
422         | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
423 }
424 
425 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
426 {
427     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
428         | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
429 }
430 
431 static inline uint32_t syn_breakpoint(int same_el)
432 {
433     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
434         | ARM_EL_IL | 0x22;
435 }
436 
437 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
438 {
439     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
440            (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
441            (cv << 24) | (cond << 20) | ti;
442 }
443 
444 /* Update a QEMU watchpoint based on the information the guest has set in the
445  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
446  */
447 void hw_watchpoint_update(ARMCPU *cpu, int n);
448 /* Update the QEMU watchpoints for every guest watchpoint. This does a
449  * complete delete-and-reinstate of the QEMU watchpoint list and so is
450  * suitable for use after migration or on reset.
451  */
452 void hw_watchpoint_update_all(ARMCPU *cpu);
453 /* Update a QEMU breakpoint based on the information the guest has set in the
454  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
455  */
456 void hw_breakpoint_update(ARMCPU *cpu, int n);
457 /* Update the QEMU breakpoints for every guest breakpoint. This does a
458  * complete delete-and-reinstate of the QEMU breakpoint list and so is
459  * suitable for use after migration or on reset.
460  */
461 void hw_breakpoint_update_all(ARMCPU *cpu);
462 
463 /* Callback function for checking if a watchpoint should trigger. */
464 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
465 
466 /* Adjust addresses (in BE32 mode) before testing against watchpoint
467  * addresses.
468  */
469 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
470 
471 /* Callback function for when a watchpoint or breakpoint triggers. */
472 void arm_debug_excp_handler(CPUState *cs);
473 
474 #ifdef CONFIG_USER_ONLY
475 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
476 {
477     return false;
478 }
479 #else
480 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
481 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
482 /* Actually handle a PSCI call */
483 void arm_handle_psci_call(ARMCPU *cpu);
484 #endif
485 
486 /**
487  * arm_clear_exclusive: clear the exclusive monitor
488  * @env: CPU env
489  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
490  */
491 static inline void arm_clear_exclusive(CPUARMState *env)
492 {
493     env->exclusive_addr = -1;
494 }
495 
496 /**
497  * ARMFaultType: type of an ARM MMU fault
498  * This corresponds to the v8A pseudocode's Fault enumeration,
499  * with extensions for QEMU internal conditions.
500  */
501 typedef enum ARMFaultType {
502     ARMFault_None,
503     ARMFault_AccessFlag,
504     ARMFault_Alignment,
505     ARMFault_Background,
506     ARMFault_Domain,
507     ARMFault_Permission,
508     ARMFault_Translation,
509     ARMFault_AddressSize,
510     ARMFault_SyncExternal,
511     ARMFault_SyncExternalOnWalk,
512     ARMFault_SyncParity,
513     ARMFault_SyncParityOnWalk,
514     ARMFault_AsyncParity,
515     ARMFault_AsyncExternal,
516     ARMFault_Debug,
517     ARMFault_TLBConflict,
518     ARMFault_Lockdown,
519     ARMFault_Exclusive,
520     ARMFault_ICacheMaint,
521     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
522     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
523 } ARMFaultType;
524 
525 /**
526  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
527  * @type: Type of fault
528  * @level: Table walk level (for translation, access flag and permission faults)
529  * @domain: Domain of the fault address (for non-LPAE CPUs only)
530  * @s2addr: Address that caused a fault at stage 2
531  * @stage2: True if we faulted at stage 2
532  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
533  * @ea: True if we should set the EA (external abort type) bit in syndrome
534  */
535 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
536 struct ARMMMUFaultInfo {
537     ARMFaultType type;
538     target_ulong s2addr;
539     int level;
540     int domain;
541     bool stage2;
542     bool s1ptw;
543     bool ea;
544 };
545 
546 /**
547  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
548  * Compare pseudocode EncodeSDFSC(), though unlike that function
549  * we set up a whole FSR-format code including domain field and
550  * putting the high bit of the FSC into bit 10.
551  */
552 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
553 {
554     uint32_t fsc;
555 
556     switch (fi->type) {
557     case ARMFault_None:
558         return 0;
559     case ARMFault_AccessFlag:
560         fsc = fi->level == 1 ? 0x3 : 0x6;
561         break;
562     case ARMFault_Alignment:
563         fsc = 0x1;
564         break;
565     case ARMFault_Permission:
566         fsc = fi->level == 1 ? 0xd : 0xf;
567         break;
568     case ARMFault_Domain:
569         fsc = fi->level == 1 ? 0x9 : 0xb;
570         break;
571     case ARMFault_Translation:
572         fsc = fi->level == 1 ? 0x5 : 0x7;
573         break;
574     case ARMFault_SyncExternal:
575         fsc = 0x8 | (fi->ea << 12);
576         break;
577     case ARMFault_SyncExternalOnWalk:
578         fsc = fi->level == 1 ? 0xc : 0xe;
579         fsc |= (fi->ea << 12);
580         break;
581     case ARMFault_SyncParity:
582         fsc = 0x409;
583         break;
584     case ARMFault_SyncParityOnWalk:
585         fsc = fi->level == 1 ? 0x40c : 0x40e;
586         break;
587     case ARMFault_AsyncParity:
588         fsc = 0x408;
589         break;
590     case ARMFault_AsyncExternal:
591         fsc = 0x406 | (fi->ea << 12);
592         break;
593     case ARMFault_Debug:
594         fsc = 0x2;
595         break;
596     case ARMFault_TLBConflict:
597         fsc = 0x400;
598         break;
599     case ARMFault_Lockdown:
600         fsc = 0x404;
601         break;
602     case ARMFault_Exclusive:
603         fsc = 0x405;
604         break;
605     case ARMFault_ICacheMaint:
606         fsc = 0x4;
607         break;
608     case ARMFault_Background:
609         fsc = 0x0;
610         break;
611     case ARMFault_QEMU_NSCExec:
612         fsc = M_FAKE_FSR_NSC_EXEC;
613         break;
614     case ARMFault_QEMU_SFault:
615         fsc = M_FAKE_FSR_SFAULT;
616         break;
617     default:
618         /* Other faults can't occur in a context that requires a
619          * short-format status code.
620          */
621         g_assert_not_reached();
622     }
623 
624     fsc |= (fi->domain << 4);
625     return fsc;
626 }
627 
628 /**
629  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
630  * Compare pseudocode EncodeLDFSC(), though unlike that function
631  * we fill in also the LPAE bit 9 of a DFSR format.
632  */
633 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
634 {
635     uint32_t fsc;
636 
637     switch (fi->type) {
638     case ARMFault_None:
639         return 0;
640     case ARMFault_AddressSize:
641         fsc = fi->level & 3;
642         break;
643     case ARMFault_AccessFlag:
644         fsc = (fi->level & 3) | (0x2 << 2);
645         break;
646     case ARMFault_Permission:
647         fsc = (fi->level & 3) | (0x3 << 2);
648         break;
649     case ARMFault_Translation:
650         fsc = (fi->level & 3) | (0x1 << 2);
651         break;
652     case ARMFault_SyncExternal:
653         fsc = 0x10 | (fi->ea << 12);
654         break;
655     case ARMFault_SyncExternalOnWalk:
656         fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
657         break;
658     case ARMFault_SyncParity:
659         fsc = 0x18;
660         break;
661     case ARMFault_SyncParityOnWalk:
662         fsc = (fi->level & 3) | (0x7 << 2);
663         break;
664     case ARMFault_AsyncParity:
665         fsc = 0x19;
666         break;
667     case ARMFault_AsyncExternal:
668         fsc = 0x11 | (fi->ea << 12);
669         break;
670     case ARMFault_Alignment:
671         fsc = 0x21;
672         break;
673     case ARMFault_Debug:
674         fsc = 0x22;
675         break;
676     case ARMFault_TLBConflict:
677         fsc = 0x30;
678         break;
679     case ARMFault_Lockdown:
680         fsc = 0x34;
681         break;
682     case ARMFault_Exclusive:
683         fsc = 0x35;
684         break;
685     default:
686         /* Other faults can't occur in a context that requires a
687          * long-format status code.
688          */
689         g_assert_not_reached();
690     }
691 
692     fsc |= 1 << 9;
693     return fsc;
694 }
695 
696 static inline bool arm_extabort_type(MemTxResult result)
697 {
698     /* The EA bit in syndromes and fault status registers is an
699      * IMPDEF classification of external aborts. ARM implementations
700      * usually use this to indicate AXI bus Decode error (0) or
701      * Slave error (1); in QEMU we follow that.
702      */
703     return result != MEMTX_DECODE_ERROR;
704 }
705 
706 /* Do a page table walk and add page to TLB if possible */
707 bool arm_tlb_fill(CPUState *cpu, vaddr address,
708                   MMUAccessType access_type, int mmu_idx,
709                   ARMMMUFaultInfo *fi);
710 
711 /* Return true if the stage 1 translation regime is using LPAE format page
712  * tables */
713 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
714 
715 /* Raise a data fault alignment exception for the specified virtual address */
716 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
717                                  MMUAccessType access_type,
718                                  int mmu_idx, uintptr_t retaddr);
719 
720 /* arm_cpu_do_transaction_failed: handle a memory system error response
721  * (eg "no device/memory present at address") by raising an external abort
722  * exception
723  */
724 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
725                                    vaddr addr, unsigned size,
726                                    MMUAccessType access_type,
727                                    int mmu_idx, MemTxAttrs attrs,
728                                    MemTxResult response, uintptr_t retaddr);
729 
730 /* Call any registered EL change hooks */
731 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
732 {
733     ARMELChangeHook *hook, *next;
734     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
735         hook->hook(cpu, hook->opaque);
736     }
737 }
738 static inline void arm_call_el_change_hook(ARMCPU *cpu)
739 {
740     ARMELChangeHook *hook, *next;
741     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
742         hook->hook(cpu, hook->opaque);
743     }
744 }
745 
746 /* Return true if this address translation regime is secure */
747 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
748 {
749     switch (mmu_idx) {
750     case ARMMMUIdx_S12NSE0:
751     case ARMMMUIdx_S12NSE1:
752     case ARMMMUIdx_S1NSE0:
753     case ARMMMUIdx_S1NSE1:
754     case ARMMMUIdx_S1E2:
755     case ARMMMUIdx_S2NS:
756     case ARMMMUIdx_MPrivNegPri:
757     case ARMMMUIdx_MUserNegPri:
758     case ARMMMUIdx_MPriv:
759     case ARMMMUIdx_MUser:
760         return false;
761     case ARMMMUIdx_S1E3:
762     case ARMMMUIdx_S1SE0:
763     case ARMMMUIdx_S1SE1:
764     case ARMMMUIdx_MSPrivNegPri:
765     case ARMMMUIdx_MSUserNegPri:
766     case ARMMMUIdx_MSPriv:
767     case ARMMMUIdx_MSUser:
768         return true;
769     default:
770         g_assert_not_reached();
771     }
772 }
773 
774 /* Return the FSR value for a debug exception (watchpoint, hardware
775  * breakpoint or BKPT insn) targeting the specified exception level.
776  */
777 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
778 {
779     ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
780     int target_el = arm_debug_target_el(env);
781     bool using_lpae = false;
782 
783     if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
784         using_lpae = true;
785     } else {
786         if (arm_feature(env, ARM_FEATURE_LPAE) &&
787             (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
788             using_lpae = true;
789         }
790     }
791 
792     if (using_lpae) {
793         return arm_fi_to_lfsc(&fi);
794     } else {
795         return arm_fi_to_sfsc(&fi);
796     }
797 }
798 
799 #endif
800