xref: /qemu/target/arm/internals.h (revision a976a99a)
1 /*
2  * QEMU ARM CPU -- internal functions and types
3  *
4  * Copyright (c) 2014 Linaro Ltd
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  *
20  * This header defines functions, types, etc which need to be shared
21  * between different source files within target/arm/ but which are
22  * private to it and not required by the rest of QEMU.
23  */
24 
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
27 
28 #include "hw/registerfields.h"
29 #include "tcg/tcg-gvec-desc.h"
30 #include "syndrome.h"
31 
32 /* register banks for CPU modes */
33 #define BANK_USRSYS 0
34 #define BANK_SVC    1
35 #define BANK_ABT    2
36 #define BANK_UND    3
37 #define BANK_IRQ    4
38 #define BANK_FIQ    5
39 #define BANK_HYP    6
40 #define BANK_MON    7
41 
42 static inline bool excp_is_internal(int excp)
43 {
44     /* Return true if this exception number represents a QEMU-internal
45      * exception that will not be passed to the guest.
46      */
47     return excp == EXCP_INTERRUPT
48         || excp == EXCP_HLT
49         || excp == EXCP_DEBUG
50         || excp == EXCP_HALTED
51         || excp == EXCP_EXCEPTION_EXIT
52         || excp == EXCP_KERNEL_TRAP
53         || excp == EXCP_SEMIHOST;
54 }
55 
56 /* Scale factor for generic timers, ie number of ns per tick.
57  * This gives a 62.5MHz timer.
58  */
59 #define GTIMER_SCALE 16
60 
61 /* Bit definitions for the v7M CONTROL register */
62 FIELD(V7M_CONTROL, NPRIV, 0, 1)
63 FIELD(V7M_CONTROL, SPSEL, 1, 1)
64 FIELD(V7M_CONTROL, FPCA, 2, 1)
65 FIELD(V7M_CONTROL, SFPA, 3, 1)
66 
67 /* Bit definitions for v7M exception return payload */
68 FIELD(V7M_EXCRET, ES, 0, 1)
69 FIELD(V7M_EXCRET, RES0, 1, 1)
70 FIELD(V7M_EXCRET, SPSEL, 2, 1)
71 FIELD(V7M_EXCRET, MODE, 3, 1)
72 FIELD(V7M_EXCRET, FTYPE, 4, 1)
73 FIELD(V7M_EXCRET, DCRS, 5, 1)
74 FIELD(V7M_EXCRET, S, 6, 1)
75 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
76 
77 /* Minimum value which is a magic number for exception return */
78 #define EXC_RETURN_MIN_MAGIC 0xff000000
79 /* Minimum number which is a magic number for function or exception return
80  * when using v8M security extension
81  */
82 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
83 
84 /* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
85 FIELD(DBGWCR, E, 0, 1)
86 FIELD(DBGWCR, PAC, 1, 2)
87 FIELD(DBGWCR, LSC, 3, 2)
88 FIELD(DBGWCR, BAS, 5, 8)
89 FIELD(DBGWCR, HMC, 13, 1)
90 FIELD(DBGWCR, SSC, 14, 2)
91 FIELD(DBGWCR, LBN, 16, 4)
92 FIELD(DBGWCR, WT, 20, 1)
93 FIELD(DBGWCR, MASK, 24, 5)
94 FIELD(DBGWCR, SSCE, 29, 1)
95 
96 /* We use a few fake FSR values for internal purposes in M profile.
97  * M profile cores don't have A/R format FSRs, but currently our
98  * get_phys_addr() code assumes A/R profile and reports failures via
99  * an A/R format FSR value. We then translate that into the proper
100  * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
101  * Mostly the FSR values we use for this are those defined for v7PMSA,
102  * since we share some of that codepath. A few kinds of fault are
103  * only for M profile and have no A/R equivalent, though, so we have
104  * to pick a value from the reserved range (which we never otherwise
105  * generate) to use for these.
106  * These values will never be visible to the guest.
107  */
108 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
109 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
110 
111 /**
112  * raise_exception: Raise the specified exception.
113  * Raise a guest exception with the specified value, syndrome register
114  * and target exception level. This should be called from helper functions,
115  * and never returns because we will longjump back up to the CPU main loop.
116  */
117 G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
118                                 uint32_t syndrome, uint32_t target_el);
119 
120 /*
121  * Similarly, but also use unwinding to restore cpu state.
122  */
123 G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
124                                       uint32_t syndrome, uint32_t target_el,
125                                       uintptr_t ra);
126 
127 /*
128  * For AArch64, map a given EL to an index in the banked_spsr array.
129  * Note that this mapping and the AArch32 mapping defined in bank_number()
130  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
131  * mandated mapping between each other.
132  */
133 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
134 {
135     static const unsigned int map[4] = {
136         [1] = BANK_SVC, /* EL1.  */
137         [2] = BANK_HYP, /* EL2.  */
138         [3] = BANK_MON, /* EL3.  */
139     };
140     assert(el >= 1 && el <= 3);
141     return map[el];
142 }
143 
144 /* Map CPU modes onto saved register banks.  */
145 static inline int bank_number(int mode)
146 {
147     switch (mode) {
148     case ARM_CPU_MODE_USR:
149     case ARM_CPU_MODE_SYS:
150         return BANK_USRSYS;
151     case ARM_CPU_MODE_SVC:
152         return BANK_SVC;
153     case ARM_CPU_MODE_ABT:
154         return BANK_ABT;
155     case ARM_CPU_MODE_UND:
156         return BANK_UND;
157     case ARM_CPU_MODE_IRQ:
158         return BANK_IRQ;
159     case ARM_CPU_MODE_FIQ:
160         return BANK_FIQ;
161     case ARM_CPU_MODE_HYP:
162         return BANK_HYP;
163     case ARM_CPU_MODE_MON:
164         return BANK_MON;
165     }
166     g_assert_not_reached();
167 }
168 
169 /**
170  * r14_bank_number: Map CPU mode onto register bank for r14
171  *
172  * Given an AArch32 CPU mode, return the index into the saved register
173  * banks to use for the R14 (LR) in that mode. This is the same as
174  * bank_number(), except for the special case of Hyp mode, where
175  * R14 is shared with USR and SYS, unlike its R13 and SPSR.
176  * This should be used as the index into env->banked_r14[], and
177  * bank_number() used for the index into env->banked_r13[] and
178  * env->banked_spsr[].
179  */
180 static inline int r14_bank_number(int mode)
181 {
182     return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
183 }
184 
185 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
186 void arm_translate_init(void);
187 
188 #ifdef CONFIG_TCG
189 void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
190 #endif /* CONFIG_TCG */
191 
192 enum arm_fprounding {
193     FPROUNDING_TIEEVEN,
194     FPROUNDING_POSINF,
195     FPROUNDING_NEGINF,
196     FPROUNDING_ZERO,
197     FPROUNDING_TIEAWAY,
198     FPROUNDING_ODD
199 };
200 
201 int arm_rmode_to_sf(int rmode);
202 
203 static inline void aarch64_save_sp(CPUARMState *env, int el)
204 {
205     if (env->pstate & PSTATE_SP) {
206         env->sp_el[el] = env->xregs[31];
207     } else {
208         env->sp_el[0] = env->xregs[31];
209     }
210 }
211 
212 static inline void aarch64_restore_sp(CPUARMState *env, int el)
213 {
214     if (env->pstate & PSTATE_SP) {
215         env->xregs[31] = env->sp_el[el];
216     } else {
217         env->xregs[31] = env->sp_el[0];
218     }
219 }
220 
221 static inline void update_spsel(CPUARMState *env, uint32_t imm)
222 {
223     unsigned int cur_el = arm_current_el(env);
224     /* Update PSTATE SPSel bit; this requires us to update the
225      * working stack pointer in xregs[31].
226      */
227     if (!((imm ^ env->pstate) & PSTATE_SP)) {
228         return;
229     }
230     aarch64_save_sp(env, cur_el);
231     env->pstate = deposit32(env->pstate, 0, 1, imm);
232 
233     /* We rely on illegal updates to SPsel from EL0 to get trapped
234      * at translation time.
235      */
236     assert(cur_el >= 1 && cur_el <= 3);
237     aarch64_restore_sp(env, cur_el);
238 }
239 
240 /*
241  * arm_pamax
242  * @cpu: ARMCPU
243  *
244  * Returns the implementation defined bit-width of physical addresses.
245  * The ARMv8 reference manuals refer to this as PAMax().
246  */
247 unsigned int arm_pamax(ARMCPU *cpu);
248 
249 /* Return true if extended addresses are enabled.
250  * This is always the case if our translation regime is 64 bit,
251  * but depends on TTBCR.EAE for 32 bit.
252  */
253 static inline bool extended_addresses_enabled(CPUARMState *env)
254 {
255     uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
256     return arm_el_is_aa64(env, 1) ||
257            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
258 }
259 
260 /* Update a QEMU watchpoint based on the information the guest has set in the
261  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
262  */
263 void hw_watchpoint_update(ARMCPU *cpu, int n);
264 /* Update the QEMU watchpoints for every guest watchpoint. This does a
265  * complete delete-and-reinstate of the QEMU watchpoint list and so is
266  * suitable for use after migration or on reset.
267  */
268 void hw_watchpoint_update_all(ARMCPU *cpu);
269 /* Update a QEMU breakpoint based on the information the guest has set in the
270  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
271  */
272 void hw_breakpoint_update(ARMCPU *cpu, int n);
273 /* Update the QEMU breakpoints for every guest breakpoint. This does a
274  * complete delete-and-reinstate of the QEMU breakpoint list and so is
275  * suitable for use after migration or on reset.
276  */
277 void hw_breakpoint_update_all(ARMCPU *cpu);
278 
279 /* Callback function for checking if a breakpoint should trigger. */
280 bool arm_debug_check_breakpoint(CPUState *cs);
281 
282 /* Callback function for checking if a watchpoint should trigger. */
283 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
284 
285 /* Adjust addresses (in BE32 mode) before testing against watchpoint
286  * addresses.
287  */
288 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
289 
290 /* Callback function for when a watchpoint or breakpoint triggers. */
291 void arm_debug_excp_handler(CPUState *cs);
292 
293 #if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
294 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
295 {
296     return false;
297 }
298 static inline void arm_handle_psci_call(ARMCPU *cpu)
299 {
300     g_assert_not_reached();
301 }
302 #else
303 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
304 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
305 /* Actually handle a PSCI call */
306 void arm_handle_psci_call(ARMCPU *cpu);
307 #endif
308 
309 /**
310  * arm_clear_exclusive: clear the exclusive monitor
311  * @env: CPU env
312  * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
313  */
314 static inline void arm_clear_exclusive(CPUARMState *env)
315 {
316     env->exclusive_addr = -1;
317 }
318 
319 /**
320  * ARMFaultType: type of an ARM MMU fault
321  * This corresponds to the v8A pseudocode's Fault enumeration,
322  * with extensions for QEMU internal conditions.
323  */
324 typedef enum ARMFaultType {
325     ARMFault_None,
326     ARMFault_AccessFlag,
327     ARMFault_Alignment,
328     ARMFault_Background,
329     ARMFault_Domain,
330     ARMFault_Permission,
331     ARMFault_Translation,
332     ARMFault_AddressSize,
333     ARMFault_SyncExternal,
334     ARMFault_SyncExternalOnWalk,
335     ARMFault_SyncParity,
336     ARMFault_SyncParityOnWalk,
337     ARMFault_AsyncParity,
338     ARMFault_AsyncExternal,
339     ARMFault_Debug,
340     ARMFault_TLBConflict,
341     ARMFault_Lockdown,
342     ARMFault_Exclusive,
343     ARMFault_ICacheMaint,
344     ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
345     ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
346 } ARMFaultType;
347 
348 /**
349  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
350  * @type: Type of fault
351  * @level: Table walk level (for translation, access flag and permission faults)
352  * @domain: Domain of the fault address (for non-LPAE CPUs only)
353  * @s2addr: Address that caused a fault at stage 2
354  * @stage2: True if we faulted at stage 2
355  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
356  * @s1ns: True if we faulted on a non-secure IPA while in secure state
357  * @ea: True if we should set the EA (external abort type) bit in syndrome
358  */
359 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
360 struct ARMMMUFaultInfo {
361     ARMFaultType type;
362     target_ulong s2addr;
363     int level;
364     int domain;
365     bool stage2;
366     bool s1ptw;
367     bool s1ns;
368     bool ea;
369 };
370 
371 /**
372  * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
373  * Compare pseudocode EncodeSDFSC(), though unlike that function
374  * we set up a whole FSR-format code including domain field and
375  * putting the high bit of the FSC into bit 10.
376  */
377 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
378 {
379     uint32_t fsc;
380 
381     switch (fi->type) {
382     case ARMFault_None:
383         return 0;
384     case ARMFault_AccessFlag:
385         fsc = fi->level == 1 ? 0x3 : 0x6;
386         break;
387     case ARMFault_Alignment:
388         fsc = 0x1;
389         break;
390     case ARMFault_Permission:
391         fsc = fi->level == 1 ? 0xd : 0xf;
392         break;
393     case ARMFault_Domain:
394         fsc = fi->level == 1 ? 0x9 : 0xb;
395         break;
396     case ARMFault_Translation:
397         fsc = fi->level == 1 ? 0x5 : 0x7;
398         break;
399     case ARMFault_SyncExternal:
400         fsc = 0x8 | (fi->ea << 12);
401         break;
402     case ARMFault_SyncExternalOnWalk:
403         fsc = fi->level == 1 ? 0xc : 0xe;
404         fsc |= (fi->ea << 12);
405         break;
406     case ARMFault_SyncParity:
407         fsc = 0x409;
408         break;
409     case ARMFault_SyncParityOnWalk:
410         fsc = fi->level == 1 ? 0x40c : 0x40e;
411         break;
412     case ARMFault_AsyncParity:
413         fsc = 0x408;
414         break;
415     case ARMFault_AsyncExternal:
416         fsc = 0x406 | (fi->ea << 12);
417         break;
418     case ARMFault_Debug:
419         fsc = 0x2;
420         break;
421     case ARMFault_TLBConflict:
422         fsc = 0x400;
423         break;
424     case ARMFault_Lockdown:
425         fsc = 0x404;
426         break;
427     case ARMFault_Exclusive:
428         fsc = 0x405;
429         break;
430     case ARMFault_ICacheMaint:
431         fsc = 0x4;
432         break;
433     case ARMFault_Background:
434         fsc = 0x0;
435         break;
436     case ARMFault_QEMU_NSCExec:
437         fsc = M_FAKE_FSR_NSC_EXEC;
438         break;
439     case ARMFault_QEMU_SFault:
440         fsc = M_FAKE_FSR_SFAULT;
441         break;
442     default:
443         /* Other faults can't occur in a context that requires a
444          * short-format status code.
445          */
446         g_assert_not_reached();
447     }
448 
449     fsc |= (fi->domain << 4);
450     return fsc;
451 }
452 
453 /**
454  * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
455  * Compare pseudocode EncodeLDFSC(), though unlike that function
456  * we fill in also the LPAE bit 9 of a DFSR format.
457  */
458 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
459 {
460     uint32_t fsc;
461 
462     switch (fi->type) {
463     case ARMFault_None:
464         return 0;
465     case ARMFault_AddressSize:
466         assert(fi->level >= -1 && fi->level <= 3);
467         if (fi->level < 0) {
468             fsc = 0b101001;
469         } else {
470             fsc = fi->level;
471         }
472         break;
473     case ARMFault_AccessFlag:
474         assert(fi->level >= 0 && fi->level <= 3);
475         fsc = 0b001000 | fi->level;
476         break;
477     case ARMFault_Permission:
478         assert(fi->level >= 0 && fi->level <= 3);
479         fsc = 0b001100 | fi->level;
480         break;
481     case ARMFault_Translation:
482         assert(fi->level >= -1 && fi->level <= 3);
483         if (fi->level < 0) {
484             fsc = 0b101011;
485         } else {
486             fsc = 0b000100 | fi->level;
487         }
488         break;
489     case ARMFault_SyncExternal:
490         fsc = 0x10 | (fi->ea << 12);
491         break;
492     case ARMFault_SyncExternalOnWalk:
493         assert(fi->level >= -1 && fi->level <= 3);
494         if (fi->level < 0) {
495             fsc = 0b010011;
496         } else {
497             fsc = 0b010100 | fi->level;
498         }
499         fsc |= fi->ea << 12;
500         break;
501     case ARMFault_SyncParity:
502         fsc = 0x18;
503         break;
504     case ARMFault_SyncParityOnWalk:
505         assert(fi->level >= -1 && fi->level <= 3);
506         if (fi->level < 0) {
507             fsc = 0b011011;
508         } else {
509             fsc = 0b011100 | fi->level;
510         }
511         break;
512     case ARMFault_AsyncParity:
513         fsc = 0x19;
514         break;
515     case ARMFault_AsyncExternal:
516         fsc = 0x11 | (fi->ea << 12);
517         break;
518     case ARMFault_Alignment:
519         fsc = 0x21;
520         break;
521     case ARMFault_Debug:
522         fsc = 0x22;
523         break;
524     case ARMFault_TLBConflict:
525         fsc = 0x30;
526         break;
527     case ARMFault_Lockdown:
528         fsc = 0x34;
529         break;
530     case ARMFault_Exclusive:
531         fsc = 0x35;
532         break;
533     default:
534         /* Other faults can't occur in a context that requires a
535          * long-format status code.
536          */
537         g_assert_not_reached();
538     }
539 
540     fsc |= 1 << 9;
541     return fsc;
542 }
543 
544 static inline bool arm_extabort_type(MemTxResult result)
545 {
546     /* The EA bit in syndromes and fault status registers is an
547      * IMPDEF classification of external aborts. ARM implementations
548      * usually use this to indicate AXI bus Decode error (0) or
549      * Slave error (1); in QEMU we follow that.
550      */
551     return result != MEMTX_DECODE_ERROR;
552 }
553 
554 #ifdef CONFIG_USER_ONLY
555 void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
556                             MMUAccessType access_type,
557                             bool maperr, uintptr_t ra);
558 void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
559                            MMUAccessType access_type, uintptr_t ra);
560 #else
561 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
562                       MMUAccessType access_type, int mmu_idx,
563                       bool probe, uintptr_t retaddr);
564 #endif
565 
566 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
567 {
568     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
569 }
570 
571 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
572 {
573     if (arm_feature(env, ARM_FEATURE_M)) {
574         return mmu_idx | ARM_MMU_IDX_M;
575     } else {
576         return mmu_idx | ARM_MMU_IDX_A;
577     }
578 }
579 
580 static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
581 {
582     /* AArch64 is always a-profile. */
583     return mmu_idx | ARM_MMU_IDX_A;
584 }
585 
586 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
587 
588 /*
589  * Return the MMU index for a v7M CPU with all relevant information
590  * manually specified.
591  */
592 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
593                               bool secstate, bool priv, bool negpri);
594 
595 /*
596  * Return the MMU index for a v7M CPU in the specified security and
597  * privilege state.
598  */
599 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
600                                                 bool secstate, bool priv);
601 
602 /* Return the MMU index for a v7M CPU in the specified security state */
603 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
604 
605 /* Return true if the translation regime is using LPAE format page tables */
606 bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
607 
608 /*
609  * Return true if the stage 1 translation regime is using LPAE
610  * format page tables
611  */
612 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
613 
614 /* Raise a data fault alignment exception for the specified virtual address */
615 G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
616                                             MMUAccessType access_type,
617                                             int mmu_idx, uintptr_t retaddr);
618 
619 /* arm_cpu_do_transaction_failed: handle a memory system error response
620  * (eg "no device/memory present at address") by raising an external abort
621  * exception
622  */
623 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
624                                    vaddr addr, unsigned size,
625                                    MMUAccessType access_type,
626                                    int mmu_idx, MemTxAttrs attrs,
627                                    MemTxResult response, uintptr_t retaddr);
628 
629 /* Call any registered EL change hooks */
630 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
631 {
632     ARMELChangeHook *hook, *next;
633     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
634         hook->hook(cpu, hook->opaque);
635     }
636 }
637 static inline void arm_call_el_change_hook(ARMCPU *cpu)
638 {
639     ARMELChangeHook *hook, *next;
640     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
641         hook->hook(cpu, hook->opaque);
642     }
643 }
644 
645 /* Return true if this address translation regime has two ranges.  */
646 static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
647 {
648     switch (mmu_idx) {
649     case ARMMMUIdx_Stage1_E0:
650     case ARMMMUIdx_Stage1_E1:
651     case ARMMMUIdx_Stage1_E1_PAN:
652     case ARMMMUIdx_Stage1_SE0:
653     case ARMMMUIdx_Stage1_SE1:
654     case ARMMMUIdx_Stage1_SE1_PAN:
655     case ARMMMUIdx_E10_0:
656     case ARMMMUIdx_E10_1:
657     case ARMMMUIdx_E10_1_PAN:
658     case ARMMMUIdx_E20_0:
659     case ARMMMUIdx_E20_2:
660     case ARMMMUIdx_E20_2_PAN:
661     case ARMMMUIdx_SE10_0:
662     case ARMMMUIdx_SE10_1:
663     case ARMMMUIdx_SE10_1_PAN:
664     case ARMMMUIdx_SE20_0:
665     case ARMMMUIdx_SE20_2:
666     case ARMMMUIdx_SE20_2_PAN:
667         return true;
668     default:
669         return false;
670     }
671 }
672 
673 /* Return true if this address translation regime is secure */
674 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
675 {
676     switch (mmu_idx) {
677     case ARMMMUIdx_E10_0:
678     case ARMMMUIdx_E10_1:
679     case ARMMMUIdx_E10_1_PAN:
680     case ARMMMUIdx_E20_0:
681     case ARMMMUIdx_E20_2:
682     case ARMMMUIdx_E20_2_PAN:
683     case ARMMMUIdx_Stage1_E0:
684     case ARMMMUIdx_Stage1_E1:
685     case ARMMMUIdx_Stage1_E1_PAN:
686     case ARMMMUIdx_E2:
687     case ARMMMUIdx_Stage2:
688     case ARMMMUIdx_MPrivNegPri:
689     case ARMMMUIdx_MUserNegPri:
690     case ARMMMUIdx_MPriv:
691     case ARMMMUIdx_MUser:
692         return false;
693     case ARMMMUIdx_SE3:
694     case ARMMMUIdx_SE10_0:
695     case ARMMMUIdx_SE10_1:
696     case ARMMMUIdx_SE10_1_PAN:
697     case ARMMMUIdx_SE20_0:
698     case ARMMMUIdx_SE20_2:
699     case ARMMMUIdx_SE20_2_PAN:
700     case ARMMMUIdx_Stage1_SE0:
701     case ARMMMUIdx_Stage1_SE1:
702     case ARMMMUIdx_Stage1_SE1_PAN:
703     case ARMMMUIdx_SE2:
704     case ARMMMUIdx_Stage2_S:
705     case ARMMMUIdx_MSPrivNegPri:
706     case ARMMMUIdx_MSUserNegPri:
707     case ARMMMUIdx_MSPriv:
708     case ARMMMUIdx_MSUser:
709         return true;
710     default:
711         g_assert_not_reached();
712     }
713 }
714 
715 static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
716 {
717     switch (mmu_idx) {
718     case ARMMMUIdx_Stage1_E1_PAN:
719     case ARMMMUIdx_Stage1_SE1_PAN:
720     case ARMMMUIdx_E10_1_PAN:
721     case ARMMMUIdx_E20_2_PAN:
722     case ARMMMUIdx_SE10_1_PAN:
723     case ARMMMUIdx_SE20_2_PAN:
724         return true;
725     default:
726         return false;
727     }
728 }
729 
730 /* Return the exception level which controls this address translation regime */
731 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
732 {
733     switch (mmu_idx) {
734     case ARMMMUIdx_SE20_0:
735     case ARMMMUIdx_SE20_2:
736     case ARMMMUIdx_SE20_2_PAN:
737     case ARMMMUIdx_E20_0:
738     case ARMMMUIdx_E20_2:
739     case ARMMMUIdx_E20_2_PAN:
740     case ARMMMUIdx_Stage2:
741     case ARMMMUIdx_Stage2_S:
742     case ARMMMUIdx_SE2:
743     case ARMMMUIdx_E2:
744         return 2;
745     case ARMMMUIdx_SE3:
746         return 3;
747     case ARMMMUIdx_SE10_0:
748     case ARMMMUIdx_Stage1_SE0:
749         return arm_el_is_aa64(env, 3) ? 1 : 3;
750     case ARMMMUIdx_SE10_1:
751     case ARMMMUIdx_SE10_1_PAN:
752     case ARMMMUIdx_Stage1_E0:
753     case ARMMMUIdx_Stage1_E1:
754     case ARMMMUIdx_Stage1_E1_PAN:
755     case ARMMMUIdx_Stage1_SE1:
756     case ARMMMUIdx_Stage1_SE1_PAN:
757     case ARMMMUIdx_E10_0:
758     case ARMMMUIdx_E10_1:
759     case ARMMMUIdx_E10_1_PAN:
760     case ARMMMUIdx_MPrivNegPri:
761     case ARMMMUIdx_MUserNegPri:
762     case ARMMMUIdx_MPriv:
763     case ARMMMUIdx_MUser:
764     case ARMMMUIdx_MSPrivNegPri:
765     case ARMMMUIdx_MSUserNegPri:
766     case ARMMMUIdx_MSPriv:
767     case ARMMMUIdx_MSUser:
768         return 1;
769     default:
770         g_assert_not_reached();
771     }
772 }
773 
774 /* Return the SCTLR value which controls this address translation regime */
775 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
776 {
777     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
778 }
779 
780 /*
781  * These are the fields in VTCR_EL2 which affect both the Secure stage 2
782  * and the Non-Secure stage 2 translation regimes (and hence which are
783  * not present in VSTCR_EL2).
784  */
785 #define VTCR_SHARED_FIELD_MASK \
786     (R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
787      R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
788      R_VTCR_DS_MASK)
789 
790 /* Return the value of the TCR controlling this translation regime */
791 static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
792 {
793     if (mmu_idx == ARMMMUIdx_Stage2) {
794         return env->cp15.vtcr_el2;
795     }
796     if (mmu_idx == ARMMMUIdx_Stage2_S) {
797         /*
798          * Secure stage 2 shares fields from VTCR_EL2. We merge those
799          * in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
800          * value so the callers don't need to special case this.
801          *
802          * If a future architecture change defines bits in VSTCR_EL2 that
803          * overlap with these VTCR_EL2 fields we may need to revisit this.
804          */
805         uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
806         v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
807         return v;
808     }
809     return env->cp15.tcr_el[regime_el(env, mmu_idx)];
810 }
811 
812 /**
813  * arm_num_brps: Return number of implemented breakpoints.
814  * Note that the ID register BRPS field is "number of bps - 1",
815  * and we return the actual number of breakpoints.
816  */
817 static inline int arm_num_brps(ARMCPU *cpu)
818 {
819     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
820         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
821     } else {
822         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
823     }
824 }
825 
826 /**
827  * arm_num_wrps: Return number of implemented watchpoints.
828  * Note that the ID register WRPS field is "number of wps - 1",
829  * and we return the actual number of watchpoints.
830  */
831 static inline int arm_num_wrps(ARMCPU *cpu)
832 {
833     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
834         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
835     } else {
836         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
837     }
838 }
839 
840 /**
841  * arm_num_ctx_cmps: Return number of implemented context comparators.
842  * Note that the ID register CTX_CMPS field is "number of cmps - 1",
843  * and we return the actual number of comparators.
844  */
845 static inline int arm_num_ctx_cmps(ARMCPU *cpu)
846 {
847     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
848         return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
849     } else {
850         return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
851     }
852 }
853 
854 /**
855  * v7m_using_psp: Return true if using process stack pointer
856  * Return true if the CPU is currently using the process stack
857  * pointer, or false if it is using the main stack pointer.
858  */
859 static inline bool v7m_using_psp(CPUARMState *env)
860 {
861     /* Handler mode always uses the main stack; for thread mode
862      * the CONTROL.SPSEL bit determines the answer.
863      * Note that in v7M it is not possible to be in Handler mode with
864      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
865      */
866     return !arm_v7m_is_handler_mode(env) &&
867         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
868 }
869 
870 /**
871  * v7m_sp_limit: Return SP limit for current CPU state
872  * Return the SP limit value for the current CPU security state
873  * and stack pointer.
874  */
875 static inline uint32_t v7m_sp_limit(CPUARMState *env)
876 {
877     if (v7m_using_psp(env)) {
878         return env->v7m.psplim[env->v7m.secure];
879     } else {
880         return env->v7m.msplim[env->v7m.secure];
881     }
882 }
883 
884 /**
885  * v7m_cpacr_pass:
886  * Return true if the v7M CPACR permits access to the FPU for the specified
887  * security state and privilege level.
888  */
889 static inline bool v7m_cpacr_pass(CPUARMState *env,
890                                   bool is_secure, bool is_priv)
891 {
892     switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
893     case 0:
894     case 2: /* UNPREDICTABLE: we treat like 0 */
895         return false;
896     case 1:
897         return is_priv;
898     case 3:
899         return true;
900     default:
901         g_assert_not_reached();
902     }
903 }
904 
905 /**
906  * aarch32_mode_name(): Return name of the AArch32 CPU mode
907  * @psr: Program Status Register indicating CPU mode
908  *
909  * Returns, for debug logging purposes, a printable representation
910  * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
911  * the low bits of the specified PSR.
912  */
913 static inline const char *aarch32_mode_name(uint32_t psr)
914 {
915     static const char cpu_mode_names[16][4] = {
916         "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
917         "???", "???", "hyp", "und", "???", "???", "???", "sys"
918     };
919 
920     return cpu_mode_names[psr & 0xf];
921 }
922 
923 /**
924  * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
925  *
926  * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
927  * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
928  * Must be called with the iothread lock held.
929  */
930 void arm_cpu_update_virq(ARMCPU *cpu);
931 
932 /**
933  * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
934  *
935  * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
936  * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
937  * Must be called with the iothread lock held.
938  */
939 void arm_cpu_update_vfiq(ARMCPU *cpu);
940 
941 /**
942  * arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
943  *
944  * Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
945  * following a change to the HCR_EL2.VSE bit.
946  */
947 void arm_cpu_update_vserr(ARMCPU *cpu);
948 
949 /**
950  * arm_mmu_idx_el:
951  * @env: The cpu environment
952  * @el: The EL to use.
953  *
954  * Return the full ARMMMUIdx for the translation regime for EL.
955  */
956 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
957 
958 /**
959  * arm_mmu_idx:
960  * @env: The cpu environment
961  *
962  * Return the full ARMMMUIdx for the current translation regime.
963  */
964 ARMMMUIdx arm_mmu_idx(CPUARMState *env);
965 
966 /**
967  * arm_stage1_mmu_idx:
968  * @env: The cpu environment
969  *
970  * Return the ARMMMUIdx for the stage1 traversal for the current regime.
971  */
972 #ifdef CONFIG_USER_ONLY
973 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
974 {
975     return ARMMMUIdx_Stage1_E0;
976 }
977 static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
978 {
979     return ARMMMUIdx_Stage1_E0;
980 }
981 #else
982 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
983 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
984 #endif
985 
986 /**
987  * arm_mmu_idx_is_stage1_of_2:
988  * @mmu_idx: The ARMMMUIdx to test
989  *
990  * Return true if @mmu_idx is a NOTLB mmu_idx that is the
991  * first stage of a two stage regime.
992  */
993 static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
994 {
995     switch (mmu_idx) {
996     case ARMMMUIdx_Stage1_E0:
997     case ARMMMUIdx_Stage1_E1:
998     case ARMMMUIdx_Stage1_E1_PAN:
999     case ARMMMUIdx_Stage1_SE0:
1000     case ARMMMUIdx_Stage1_SE1:
1001     case ARMMMUIdx_Stage1_SE1_PAN:
1002         return true;
1003     default:
1004         return false;
1005     }
1006 }
1007 
1008 static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
1009                                                const ARMISARegisters *id)
1010 {
1011     uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
1012 
1013     if ((features >> ARM_FEATURE_V4T) & 1) {
1014         valid |= CPSR_T;
1015     }
1016     if ((features >> ARM_FEATURE_V5) & 1) {
1017         valid |= CPSR_Q; /* V5TE in reality*/
1018     }
1019     if ((features >> ARM_FEATURE_V6) & 1) {
1020         valid |= CPSR_E | CPSR_GE;
1021     }
1022     if ((features >> ARM_FEATURE_THUMB2) & 1) {
1023         valid |= CPSR_IT;
1024     }
1025     if (isar_feature_aa32_jazelle(id)) {
1026         valid |= CPSR_J;
1027     }
1028     if (isar_feature_aa32_pan(id)) {
1029         valid |= CPSR_PAN;
1030     }
1031     if (isar_feature_aa32_dit(id)) {
1032         valid |= CPSR_DIT;
1033     }
1034     if (isar_feature_aa32_ssbs(id)) {
1035         valid |= CPSR_SSBS;
1036     }
1037 
1038     return valid;
1039 }
1040 
1041 static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
1042 {
1043     uint32_t valid;
1044 
1045     valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
1046     if (isar_feature_aa64_bti(id)) {
1047         valid |= PSTATE_BTYPE;
1048     }
1049     if (isar_feature_aa64_pan(id)) {
1050         valid |= PSTATE_PAN;
1051     }
1052     if (isar_feature_aa64_uao(id)) {
1053         valid |= PSTATE_UAO;
1054     }
1055     if (isar_feature_aa64_dit(id)) {
1056         valid |= PSTATE_DIT;
1057     }
1058     if (isar_feature_aa64_ssbs(id)) {
1059         valid |= PSTATE_SSBS;
1060     }
1061     if (isar_feature_aa64_mte(id)) {
1062         valid |= PSTATE_TCO;
1063     }
1064 
1065     return valid;
1066 }
1067 
1068 /*
1069  * Parameters of a given virtual address, as extracted from the
1070  * translation control register (TCR) for a given regime.
1071  */
1072 typedef struct ARMVAParameters {
1073     unsigned tsz    : 8;
1074     unsigned ps     : 3;
1075     unsigned sh     : 2;
1076     unsigned select : 1;
1077     bool tbi        : 1;
1078     bool epd        : 1;
1079     bool hpd        : 1;
1080     bool using16k   : 1;
1081     bool using64k   : 1;
1082     bool tsz_oob    : 1;  /* tsz has been clamped to legal range */
1083     bool ds         : 1;
1084 } ARMVAParameters;
1085 
1086 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
1087                                    ARMMMUIdx mmu_idx, bool data);
1088 
1089 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
1090 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
1091 
1092 /* Determine if allocation tags are available.  */
1093 static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
1094                                                  uint64_t sctlr)
1095 {
1096     if (el < 3
1097         && arm_feature(env, ARM_FEATURE_EL3)
1098         && !(env->cp15.scr_el3 & SCR_ATA)) {
1099         return false;
1100     }
1101     if (el < 2 && arm_is_el2_enabled(env)) {
1102         uint64_t hcr = arm_hcr_el2_eff(env);
1103         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
1104             return false;
1105         }
1106     }
1107     sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
1108     return sctlr != 0;
1109 }
1110 
1111 #ifndef CONFIG_USER_ONLY
1112 
1113 /* Security attributes for an address, as returned by v8m_security_lookup. */
1114 typedef struct V8M_SAttributes {
1115     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
1116     bool ns;
1117     bool nsc;
1118     uint8_t sregion;
1119     bool srvalid;
1120     uint8_t iregion;
1121     bool irvalid;
1122 } V8M_SAttributes;
1123 
1124 void v8m_security_lookup(CPUARMState *env, uint32_t address,
1125                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
1126                          bool secure, V8M_SAttributes *sattrs);
1127 
1128 /* Cacheability and shareability attributes for a memory access */
1129 typedef struct ARMCacheAttrs {
1130     /*
1131      * If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
1132      * Otherwise, attrs is the same as the MAIR_EL1 8-bit format
1133      */
1134     unsigned int attrs:8;
1135     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
1136     bool is_s2_format:1;
1137 } ARMCacheAttrs;
1138 
1139 /* Fields that are valid upon success. */
1140 typedef struct GetPhysAddrResult {
1141     hwaddr phys;
1142     target_ulong page_size;
1143     int prot;
1144     MemTxAttrs attrs;
1145     ARMCacheAttrs cacheattrs;
1146 } GetPhysAddrResult;
1147 
1148 bool get_phys_addr(CPUARMState *env, target_ulong address,
1149                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
1150                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1151     __attribute__((nonnull));
1152 
1153 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
1154                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
1155                        bool is_secure, GetPhysAddrResult *result,
1156                        ARMMMUFaultInfo *fi, uint32_t *mregion);
1157 
1158 void arm_log_exception(CPUState *cs);
1159 
1160 #endif /* !CONFIG_USER_ONLY */
1161 
1162 /*
1163  * The log2 of the words in the tag block, for GMID_EL1.BS.
1164  * The is the maximum, 256 bytes, which manipulates 64-bits of tags.
1165  */
1166 #define GMID_EL1_BS  6
1167 
1168 /* We associate one allocation tag per 16 bytes, the minimum.  */
1169 #define LOG2_TAG_GRANULE 4
1170 #define TAG_GRANULE      (1 << LOG2_TAG_GRANULE)
1171 
1172 /*
1173  * SVE predicates are 1/8 the size of SVE vectors, and cannot use
1174  * the same simd_desc() encoding due to restrictions on size.
1175  * Use these instead.
1176  */
1177 FIELD(PREDDESC, OPRSZ, 0, 6)
1178 FIELD(PREDDESC, ESZ, 6, 2)
1179 FIELD(PREDDESC, DATA, 8, 24)
1180 
1181 /*
1182  * The SVE simd_data field, for memory ops, contains either
1183  * rd (5 bits) or a shift count (2 bits).
1184  */
1185 #define SVE_MTEDESC_SHIFT 5
1186 
1187 /* Bits within a descriptor passed to the helper_mte_check* functions. */
1188 FIELD(MTEDESC, MIDX,  0, 4)
1189 FIELD(MTEDESC, TBI,   4, 2)
1190 FIELD(MTEDESC, TCMA,  6, 2)
1191 FIELD(MTEDESC, WRITE, 8, 1)
1192 FIELD(MTEDESC, SIZEM1, 9, SIMD_DATA_BITS - 9)  /* size - 1 */
1193 
1194 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
1195 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
1196 
1197 static inline int allocation_tag_from_addr(uint64_t ptr)
1198 {
1199     return extract64(ptr, 56, 4);
1200 }
1201 
1202 static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
1203 {
1204     return deposit64(ptr, 56, 4, rtag);
1205 }
1206 
1207 /* Return true if tbi bits mean that the access is checked.  */
1208 static inline bool tbi_check(uint32_t desc, int bit55)
1209 {
1210     return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
1211 }
1212 
1213 /* Return true if tcma bits mean that the access is unchecked.  */
1214 static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
1215 {
1216     /*
1217      * We had extracted bit55 and ptr_tag for other reasons, so fold
1218      * (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
1219      */
1220     bool match = ((ptr_tag + bit55) & 0xf) == 0;
1221     bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
1222     return tcma && match;
1223 }
1224 
1225 /*
1226  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
1227  * for the tag to be present in the FAR_ELx register.  But for user-only
1228  * mode, we do not have a TLB with which to implement this, so we must
1229  * remove the top byte.
1230  */
1231 static inline uint64_t useronly_clean_ptr(uint64_t ptr)
1232 {
1233 #ifdef CONFIG_USER_ONLY
1234     /* TBI0 is known to be enabled, while TBI1 is disabled. */
1235     ptr &= sextract64(ptr, 0, 56);
1236 #endif
1237     return ptr;
1238 }
1239 
1240 static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
1241 {
1242 #ifdef CONFIG_USER_ONLY
1243     int64_t clean_ptr = sextract64(ptr, 0, 56);
1244     if (tbi_check(desc, clean_ptr < 0)) {
1245         ptr = clean_ptr;
1246     }
1247 #endif
1248     return ptr;
1249 }
1250 
1251 /* Values for M-profile PSR.ECI for MVE insns */
1252 enum MVEECIState {
1253     ECI_NONE = 0, /* No completed beats */
1254     ECI_A0 = 1, /* Completed: A0 */
1255     ECI_A0A1 = 2, /* Completed: A0, A1 */
1256     /* 3 is reserved */
1257     ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
1258     ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
1259     /* All other values reserved */
1260 };
1261 
1262 /* Definitions for the PMU registers */
1263 #define PMCRN_MASK  0xf800
1264 #define PMCRN_SHIFT 11
1265 #define PMCRLP  0x80
1266 #define PMCRLC  0x40
1267 #define PMCRDP  0x20
1268 #define PMCRX   0x10
1269 #define PMCRD   0x8
1270 #define PMCRC   0x4
1271 #define PMCRP   0x2
1272 #define PMCRE   0x1
1273 /*
1274  * Mask of PMCR bits writable by guest (not including WO bits like C, P,
1275  * which can be written as 1 to trigger behaviour but which stay RAZ).
1276  */
1277 #define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1278 
1279 #define PMXEVTYPER_P          0x80000000
1280 #define PMXEVTYPER_U          0x40000000
1281 #define PMXEVTYPER_NSK        0x20000000
1282 #define PMXEVTYPER_NSU        0x10000000
1283 #define PMXEVTYPER_NSH        0x08000000
1284 #define PMXEVTYPER_M          0x04000000
1285 #define PMXEVTYPER_MT         0x02000000
1286 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1287 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1288                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1289                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1290                                PMXEVTYPER_EVTCOUNT)
1291 
1292 #define PMCCFILTR             0xf8000000
1293 #define PMCCFILTR_M           PMXEVTYPER_M
1294 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1295 
1296 static inline uint32_t pmu_num_counters(CPUARMState *env)
1297 {
1298     ARMCPU *cpu = env_archcpu(env);
1299 
1300     return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
1301 }
1302 
1303 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1304 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1305 {
1306   return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
1307 }
1308 
1309 #ifdef TARGET_AARCH64
1310 int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg);
1311 int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg);
1312 int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg);
1313 int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg);
1314 void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
1315 void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
1316 void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
1317 void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
1318 #endif
1319 
1320 #ifdef CONFIG_USER_ONLY
1321 static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
1322 #else
1323 void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
1324 #endif
1325 
1326 bool el_is_in_host(CPUARMState *env, int el);
1327 
1328 void aa32_max_features(ARMCPU *cpu);
1329 int exception_target_el(CPUARMState *env);
1330 bool arm_singlestep_active(CPUARMState *env);
1331 bool arm_generate_debug_exceptions(CPUARMState *env);
1332 
1333 /* Add the cpreg definitions for debug related system registers */
1334 void define_debug_regs(ARMCPU *cpu);
1335 
1336 /* Effective value of MDCR_EL2 */
1337 static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
1338 {
1339     return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
1340 }
1341 
1342 /* Powers of 2 for sve_vq_map et al. */
1343 #define SVE_VQ_POW2_MAP                                 \
1344     ((1 << (1 - 1)) | (1 << (2 - 1)) |                  \
1345      (1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
1346 
1347 #endif
1348